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1. IUTWWCTION

-This report documents the research efforts of Advanced Information

& Decision Systems (AI&DS) to develop three-dimensional (3-D) object

classification techniques for vehicle targets in air-to-ground laser

range imagery. Ma& emphasize an artificial intelligence (AI) approach to

intelligently interpret laser imagery in terms of 3-D symbolic models.

The full classification system includes 3-D image feature extraction,

geometric modeling, model prediction, and feature-to-model matching. -

ihis report iscuhu new techniques for implementing these major sys-

tem components, and providehoverall conclusions and discussion about the

* k feasibility of developing an automated 3-D object classification system.

A range sensor measures the distance from the sensor to the visible

object surface along a given ray. Range images offer significant advan-

* tages over passive reflectance images because they preserve the 3-D

geometry of the scene viewed from the sensor. The intrinsic properties

of the scene such as depth, surface orientation, length, and size are of

fundamental importance for scene segmentation, target recognition and

scene interpretation. While these properties can only be obtained from

2-D images with extensive inference (due to the ambiguities introduced

by the 2-D projection of the 3-D scene), they can be easily calculated

-" from 3-D range images. Therefore, range data is becoming an increas-

ingly important source of information for a variety of industrial and

military applications. Military applications of laser or range imagery

d"" "1
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include automatic 3-D target classification, autonomous vehicles, and

missile guidance. Industrial applications of range data include

automatic inspection, and part handling and assembly by robots.

There are three types of range sensors: stereo vision, active

isl illumination (light stripe) and laser range finder (time-of-flight).

Stereo vision requires a correspondence process for matching and regis-

tering multiple images from different views. This is a difficult prob-

lem, and the accuracy of range estimation depends on the distance of the

object and the baseline length. Active illumination uses the same tri-

angulation principle to measure the depth information as in stereo

vision. Instead of using two images corresponding to two views, this

technique uses a stripe of light as illumination and records an image

from another position. Active illumination can only be used in a con-

trolled environment such as an industrial assembly line. Laser range

finders directly measure the time delay or use modulation techniques to

obtain the depth information. Laser range finders avoid the restric-

P tions inherent in stereo and active illumination, and have potential

applications in autonomous vehicles, missile guidance, space explora-

tion, robotics and industrial inspection. Although laser reflectance

imagery registered with the range imagery is also available, it may be

degraded by severe speckle noise and is thus not very useful for target

classification. In this project report we discuss 3-D object classifi-

cation for laser range imagery.
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Traditional methods for target classification in systems with laser

range sensors involve standard statistical pattern recognition algo-

U rithms that match multiple pre-stored model images with the sensed

images. These methods require a large number of pre-stored model images

corresponding to various viewpoints and tend to perform adequately in

normal situations where the observed laser image corresponds to one of

the model images. In situations involving unusual target aspect angles,

partially obscured or camouflaged targets, or targets of varying struc-

ture, most pattern recognition techniques based on matching global image

features will fail.

Recent Image Understanding (IU) research programs have emphasized

the symbolic interpretation of low level image features in terms of

models. The ACRONYM system (Brooks-81] developed at Stanford is a

U powerful model-based vision system for 2-D image interpretation. The

* approach taken in ACRONYM is to match the extracted 2-D image features

with the predictions from the 3-D model at multiple levels through the

*use of a geometric reasoning system. This system is shown to have good

performance for aerial photo-interpretation applications. In our 3-D

object classification task, the 3-D image features can be extracted

* directly from laser range imagery. Therefore, the interpretation pro-

cess requires symbolic reasoning among 3-D models and 3-D image

features. This capability does not exist in the ACRONYM system, and is

our major research contribution in this project.

.. 3
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In this research, we adopt an artificial intelligence (AI) approach

to interpreting 3-D range data in terms of 3-D symbolic models for

. object classification. The artificial intelligence approach brings

together a wide variety of analysis techniques (e.g., algorithmic,

heuristic, statistical) in order to perform interpretation in an "intel-

ligent" manner. This approach is more robust and uses contextual infor-

mation and common sense reasoning to aid in the analysis. The critical

research issues involved are:

1. extraction of 3-D image features from laser imagery.

2. prediction of 3-D image features from 3-D object models.

3. interpretation of 3-D image features in terms of models for object

recognition and classification.

i nThese three functions interact heavily, and the control process is of

fundamental importance. A snm-ary of our research results and conclu-

.i sions is presented in the next section.

- .1.2 SUDUX AMD CO CLUSIONS

AI&DS has developed a combined model-driven and data-driven 3-D

object classification technique for analyzing laser range imagery. This

research effort on air-to-ground vehicle target classification has

adopted an AI approach that involves a hierarchical analysis process for

•.......extracting and matching multi-level features from laser imagery to

object models. The low level image features are extracted from the

image using little model knovledge. The high level symbolic features

4
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such as object components are extracted from low level features with the

guidance of model predictions. The object model is represented by a

U single, viewpoint-independent 3-D model. The object classification task

proceeds from coarse to fine by first comparing gross object features

(e.g., object length, height, extreme points, etc.) and then finer com-

q ponent features (e.g., component volume, position, orientation, etc.)

extracted from laser imagery with a model using a set of rules that pro-

': duces a likelihood value to indicate the goodness of match. Since the

3-D information are available from the range image, the actual measure-

ments (e.g., length, width, volume) are used for matching.

A bare-bones system was designed and developed. It is domain-

independent in that it is applicable to a variety of tasks such as vehi-

cle classification, ship classification, and industrial parts classifi-

i cation. This system has four major components as shown in Figure 1-1.

The 3-D feature extraction techniques include object-ground segmenta-

tion, object orientation estimation, 3-D physical edge detection and

linking, and projection image formation. We emphasize extracting physi-

cal features which are directly related to a 3-D object model from the

, range data. The object-ground segmentation algorithm extracts object

PO segments from the laser image by use of a downward-continuation process.

The object segment is then used to generate its ground projection and

side-view projection images. The object orientation can be estimated

from the orientation of the ground projection image since vehicle tar-

4 ' gets are usually elongated. The side-view projection images provide

i . major object structure information and can be used to prune possible

object "dels. Pb sical edges, such as occluding, convex and concave

°5
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* edges that are not distinguishable in an intensity image can be

extracted from a range image directly. A 3-D physical edge detection

S algorithm is developed for this purpose. This physical edge detector is

not only useful for edge detection, but also useful for extracting

planar and curved surfaces.

The objects are represented by a viewpoint-independent volumetric

model based on "generalized cylinders." After the initial feature

extraction process has generated a candidate set of hypothesized target
r •

classifications, a prediction process can be used to further evaluate

* - the hypotheses. The prediction process predicts the appearance of the

model in the range image. Typical predictions are physical edge types

(occluding, convex, or concave edges), cylinder contour, and invariant

shape properties (parallel, collinear, connectivity). These knowledge-

U ibased predictions are very powerful for directing the feature extraction

algorithms' search for particular features in a limited region. The

results of feature extraction and prediction are gathered at multiple

levels, and a reasoning process is applied to classify the target. The

interpretation process uses the features of the individual components

and the component structure of the object as the basis for matching.

A preliminary classification experiment was performed on a class of

* C military vehicles which included such objects as tanks, missile launch-

ers, and decoys. These targets have distinct structures and components.

Past work on object recognition using 3-D range data only applied to

simple objects without much self-occlusion (one component occludes

another component). To classify the targets that we modeled is a

C.6
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." . challenging task.

The experiment consisted of processing synthetic range imagery with

additive range noise (provided by The Analytic Science Corporation).

The experiment consisted of processing imagery through a set of low

level feature extraction and high level feature interpretation algo-

rithms and inference rules. All the processing was automated but done

, .in a nonintegrated fashion. Although only a small amount of imagery was

processed based on a few models, the successful results with a primitive
inference system are encouraging.

1.3 ORGANIZATION OF TRIS REPORT

This project report is organized as follows: Section 2 presents

. basic 3-D feature extraction techniques for laser imagery. These

include object-ground segmentation, projection image generation, and 3-D

physical edge detection techniques. Examples of these 3-D feature

, extraction techniques are presented.

Section 3 discusses techniques for classifying vehicle objects by

-- matching the extracted image features with models. Objects are

represented by volumetric models based on generalized cylinders.

Multi-level predictions are generated from the model to guide the

extraction of higher level features from edge segments.

.
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Section 4 presents conclusions and discussion about the feasibility

of using artificial intelligence techniques for 3-D laser target clas-

nsification. Future directions pertaining to the critical research

issues are also addressed.
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2. UUZ-DINMSIO&L INWE FATURE MIACTION

. There are two major tasks in our laser target classification sys-

- ten, namely (1) extracting 3-D image features from laser imagery and (2)

" model-based interpretation of extracted image features for object recog-

* nition. In this section, we discuss the first task, where a largely

data-driven approach is used to extract 3-D image features. Several

techniques have been studied for extracting 3-D features from range

data. Duda et al. [Duda et al.-791 used registered range and reflec-

tance data to find planar surface regions in a sequential fashion.

Oshima and Shirai [Oshima, Shirai-79] fitted local range data with

planar surfaces, and merged local planes into planar and curved surface

regions. Agin and Binford [Agin, Binford-76] extracted "cylinder"

features from range data and segmented complex objects into simpler sub-

U Nparts in terms of generalized cylinders. All of these methods are basi-

*i cally concerned with various ways of fitting planar and curved surfaces

to the range data, and require the 3-D coordinates of the surface

points. Another approach is to obtain edge boundaries from range data.

Nevatia and Binford [Nevatia, Binford-771 extracted jump boundaries from

range imagery for object recognition. Sugihara [Sugihara-791 used a

-- junction dictionary to guide the extraction of physical edges. These

3-D edge detection techniques operate on the range image and only pro-

S. :"vide range difference information as seen from the sensor without

directly referring to the true physical properties of the object.

10

........... '- ..-" . A ." "".



In this section we present several new techniques for 3-D feature

extraction. We emphasize the extraction of 3-D physical features of the

object from range data. The approach used is to first transform the

range image (in a sensor-centered coordinate system) to the surface data

• :(in a world coordinate system) from knowledge of the sensor position.

We then separate the object from the background by an object-ground seg-

mentation algorithm. Once the object segment is extracted from the

image, the ground projection and side-view projection images of the

object segment are generated. These projection images are useful for

extracting gross object features and major object structure. The object

orientation can be estimated from the orientation of the ground projec-

tion image since vehicle targets are usually elongated. The side-view

projection image can be used to locate major object structure positions

such as wheel and missile positions of a missile launcher. After

extracting those global features, a 3-D edge detection algorithm is used

to extract physical edge segments for fine feature-to-model matching.

*. Our 3-D edge feature extraction algorithm directly calculates the physi-

P cal angle of the object surface from surface data. Convex and concave

edges can be distinguished according to the value of the physical edge

angle. This physical edge angle image is not only useful for physical

edge detection, but also provides relative surface orientation informa-

tion for extracting planar and curved surfaces. Figure 2-1 presents the

structure of our 3-D image feature extraction process. The extraction

process moves from the laser image to symbolic feature information that

is provided to other levels of the system.

.=,.,11
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-: .2.1 COORDIiRTM TAIS1OIRWOII

g IThere are two basic methods of range data acquisition: triangula-

- tion and time-of-flight. The range information acquired from both sys-

teas is described using a sensor-centered coordinate system, and we call

it a "range image." The range image is a special ordering of 3-D range
S

data viewed from the sensor, and the topology (neighborhood pixel rela-

tionships) defined in the range image is useful for feature extraction.

However, in order to manipulate the range data more effectively, we need

to transform the range image into a sensor-independent world coordinate

system. This transformation can be carried out through a camera cali-

* bration procedure [Sobel-701 or from the geometry of the data acquisi-

tion system. For an air-to-ground laser sensor, the information

required for this coordinate transformation are the depression angle and

"i the angular scanning resolution along the azimuth and elevation direc-

tions. Figure 2-2 illustrates this transformation. The resulting 3-D

Cartesian coordinates of the visible surface defined in a world coordi-

nate are called "surface data."

The surface data obtained through the coordinate transformation

provide direct 3-D scene information. Figure 2-3(a) is a synthetic

range image of a decoy produced by The Analytic Science Corporation. In

this image the range image intensity is proportional to the range value,

and a bright region in the image corresponds to an area far away from

the sensor. A drawing of a decoy is shown in Figure 2-3(b) for com-

parison. The range image in Figure 2-3(a) is defined in a sensor-

. centered coordinate system and does not give us direct information about

13
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Figure 2-3(a) Range Imagery of a Decoy
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Figure 2-3(c) Z Coordinate of Figure 2-3(a)
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The surface data obtained through the coordinate transformation

provide direct 3-D scene information. Figure 2-3(a) is a synthetic

range image of a decoy produced by The Analytic Science Corporation. In

this image the range image intensity is proportional to the range value,

and a bright region in the image corresponds to an area far away from

the sensor. A drawing of a decoy is shown in Figure 2-3(b) for com-

parison. The range image in Figure 2-3(a) is defined in a sensor-

centered coordinate system and does not give us direct information about

the 3-D physical properties of the object. However, the z coordinate

(defined in Figure 2-2) of the surface data obtained from the range

image as shown in Figure 2-3(c) gives us a clear knowledge of the object

elevation distribution along the z-axis.

. In this report, we assume that surface data is available, and our

3-D feature extraction techniques operate directly on surface data

independent of the techniques used for range image acquisition (e.g.,

stereo, light stripe, or laser range finder).

2.2 OBDJCT-GIOUND SENGMTATIOl

To analyze range images, we need to first separate interesting

objects from the background. In most applications (such as autonomous

vehicles and robot vision), the background is the ground that supports

the objects. Object-ground segmentation can be done by finding the jump

boundaries in the range image and linking them into a complete bounding

* ~contour of the object. However, for noisy range data or objects that

7 touch the ground surface, this process cannot be done reliably. A more

is
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robust segmentation technique that considers object and ground charac-

teristics seems more appropriate.

Knowledge of the relationship between object and ground can aid the. . 'q

segmentation. The object is supported below by a ground plane that is

locally flat. Furthermore, there are no data points below the ground

plane. These support relations allow us to select a threshold z (along-:' 0

the z axis in the world coordinates as in Figure 2-2) to separate those

object points at least z0 distance above the lowest ground point. The

selection of threshold z° depends on the heights of the objects that we

are interested in.

The object segment extracted consists of data points on the upper

part of the object. The next step is to perform a local downward-

continuation process such that we can adaptively lower the threshold in

Y . order to extract more object points without including ground points.

Since an object is a connected 3-D blob with finite extent, the connec-

tivity property of the object segment and concave edge evidence (which

will be discussed in Section 2-4) can be used for this purpose. If we

lover the threshold too much, some ground points will be included in the

object segment. For this case, the segmented object points will not be

connected and the extent of the object blob will increase sharply due to

the inclusion of randomly spatially distributed ground points. Figure

2-3(a) is a synthetic range image of a decoy above an uneven ground sup-

port. The object segment extracted from the range image through down-

ward continuation is shown in Figure 2-4.

19



Figure 2-4 Extracted Object Segment of Decoy
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Note that the downward-continuation process is performed locally

such that the assumption about object and ground are valid. To further

extract object points, we need to use an adaptive thresholding scheme.

The extent of the object segment is fixed (e.g., its ground projection)

and points around the object segment are examined. New points are
U

included in the object segment if they do not increase the extent of the

object and no concave edge has been reached. Concave edges are used

because they occur at the junction of object and ground.

The object-ground segmentation algorithm generates a binary mask

where the object points are set to one and the background points are set

to zero as shown in Figure 2-4 of the object segment. Subsequent pro-

cessing can be concentrated inside the object segment to reduce computa-

tion time and unnecessary analysis. This binary mask also provides a

suitable form for extracting some important object features such as

boundary curves.

2.3 PROJECTION IIMGUS GENMN TIOI

Once we extract the object segment from the range image, the next

step is to extract and analyze the global object features such as orien-

tation, length, width, height, and the boundary. The object-ground seg-

mentation process generates a binary mask of the object segment, and

this allows us to focus attention inside the object.

21
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The range image is recorded as a perspective view of the scene

viewed from the sensor. The ordering or the neighborhood pixel rela-

tionships of the range image is defined in a sensor-centered coordinate

* system. The coordinate transformation discussed in Section 2-1

transforms the range image into 3-D surface data in an object-centered
U

coordinate system and thus removes this specific ordering and permits

effective manipulation of 3-D data. Projection image generation is a

good example of reordering these surface data points to form useful new

-* images. Gross object features and major object structure can be

extracted from projection images.

One of the most important pieces of information about the object in

the scene is its orientation. This information is not directly avail-

able from the range image. However, with a specific ordering according

to the x and y coordinates of the surface data, i.e., a ground projec-

* tion, we can estimate the object orientation easily. Figure '- is the

projection of the object segment in Figure 2-4 onto the ground plane.

The jump points in the upper left side of the ground projection image

are caused by the split of the scanning laser beam on the object boun-

dary points. These error points can be eliminated by checking the con-

nectivity of the object segment. The connectivity algorithm removes

isolated points in the object segment according to their 3-D coordinates

based on the assumption that the object is 3-D connected and a single

jump point must be due to noise. The ground projection of the refined

object segment is shown in Figure 2-6. The ground projection image pro-

vides the top view of the object that is not available from the sensor

position. However, this is only a partial top view. The occluded part

22
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Figure 2-6 Refined Ground Projection of Decoy
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of the object seen from the sensor will not appear in the projection

image. Therefore, in Figure 2-6, we are more certain about the object

length direction than the object width direction. The occlusion problem

has to be resolved by a higher level model prediction system, and the

occlusions in the projection image may put back-constraints on the

model.

Because the imaged targets are vehicles whose shape is known (i.e.,

they are usually elongated), the orientation of these objects can be

obtained by finding the orientation of the most elongated bounding rec-

tangle on those ground projection points as illustrated in Figure 2-7.

The length and width estimates of the object are equal to those of the

bounding rectangle. In Figure 2-6, the object orientation estimate is

45 degrees with respect to the xaxis in the world coordinate system.

The length estimate is 199, and the width estimate is 55.86 where each

resolution unit is 2 inches. Due to the object-self-occlusion along the

width direction, we are not certain about the width estimate. This fact

is included in the rule-based interpretation system in that we allow a

larger tolerance for object width in feature-to-model matching. Note

that the actual measurements for scene geometry (e.g., lengths, widths,

heights, etc.) are available from surface data and can be compared

directly to similar parameters of an object model.

S.Other important characteristic views can also be obtained from pro-

jections. For example, we can project the surface data to the plane

"'.r defined by the orientation of the object and the z-axis to obtain the

side view of the object. Figure 2-8 is the side view projection of the

25
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object segment in Figure 2-3(a). Much structural information not avail-

U 5able from the sensor position shows up in this side view projection.

Figure 2-9(a) is the synthetic range image of a missile launcher.

- Figure 2-9(b) is a drawing of a missile launcher. It is difficult for

human analysts to determine whether this object is the same object as in

Figure 2-3(a) or not. Figure 2-10 is the side view projection of the

object segment in Figure 2-9(a). Unexpected structures are revealed in

this side view picture and are very useful for target classification.

For simple objects, the orientation and the characteristic side views

N may be sufficient for object recognition and manipulation.

This suggests a simple 3-D recognition scheme; that is, we only

store two characteristic views (ground projection and side view projec-

tion) as the model images, and compare the projection images generated

from 3-D surface data to the model images. However, this scheme does

not work for complex objects and situations where severe occlusion

occurs.

The projection points are unstructured. A binary image or even a

range image can be formed from these data. Figure 2-11 is the binary

image formed from projection points in Figure 2-8. To get this picture,

we first define a sampling distance D on the projection plane. A reso-

" lution cell is a D by D. square. If a certain number of points fall

inside a resolution cell and its 8-connected neighboring cells, the

center cell is set to one, otherwise set to zero. This procedure

creates a silhouette projection image of the object from a new viewing

27
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Figure 2-8 Side-View Projection of Decoy
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(a) Range Image

(b) Missile Launcher Drawing

Figure 2-9 Range Image of a Missile Launcher
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Figure 2-10 Side View Projection Points
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- Figure 2-11 Side-View Projection Image of Decoy
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position. The range image seen from this new position can also be gen-

erated by a hidden point elimination algorithm similar to the z-buffer

algorithm [Newman, Sproull-73] used for bidden surface removal. Essen-

tially, for each resolution cell and its 8-connected neighboring cells,

we keep a record of the closest data point from the new viewing position

F". and the resulting image is the side-view range image.

Projection images provide important information about the object

that is not directly available from the range image. Standard image

analysis algorithms for binary images can be applied to these projection

to images to extract gross object features at the object level. The same

techniques can also be used at the component level for component orien-

tation estimation, length and volume estimation, and major structure

identification.

2.4 3-D PUISICAL EDGE DETECTION

The feature extraction techniques discussed in the last two sec-

tions extract gross features at the object level, and are useful for

object orientation estimation and major structure identification. How-

ever, they do not provide internal object component structure and fine

details which are of critical importance for complex 3-D object recogni-

tion. In this section, we introduce a physical edge detection technique

for extracting fine edge features. These low level edge features are

the primitives in goal-directed shape feature extraction.

32
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2.4.1 Occluding Zdge Detection

A 0 Physical edges such as occluding, convex, and concave edges that

-' .are not distinguishable in an intensity image can be extracted from a

range image directly. Past work on 3-D edge detection concentrated on

jump boundary extraction. These jump boundaries correspond to large

. range discontinuities caused by object occlusion and can be easily

extracted from the range image. However, jump boundaries are also

regions subject to large measurement errors due to the splitting of the

scanning laser beam across occluding boundaries. Although this will

only introduce one or two pixel error in the range image, it causes

large errors in 3-D coordinates and restricts the use of 3-D position

and orientation of the occluding boundaries. A more reliable way to

extract/calculate the occluding exterior boundary of an object is to

trace the boundary of the extracted object segment. Since the connec-

tivity analysis has been performed on the segmented object, large error

points have been removed and we have more confidence in the 3-D edge

U information. Figure 2-12 is the exterior boundary obtained from the

refined object segment (after the connectivity test) in Figure 2-4 by a

boundary tracing algorithm [Rosenfeld, Kak-76]. This boundary contour

only describes the exterior occluding edges between the object and back-

ground. Another type of occluding edge that occurs inside the object

segment is called an interior occluding edge. Interior occluding edges

are due to object self-occlusion at the component level (e.g., one com-

ponent occludes another). There are two advantages to explicitly dis-

tinguishing these two types of occluding edges. First, the interior

occluding edges usually have smaller range jumps and we need to use a

33
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smaller threshold for edge detection. Second, the exterior occluding

segments are global features at the object level while the interior

occluding segments are features at the component level. To distinguish

features at multiple levels can facilitate and hasten the feature to

model matching process.

• - In the world coordinate system defined in Figure 2-2, if the

* azimuth scanning direction of the sensor lies roughly along the x axis

direction, then the x coordinate values of the range image have more or

less uniform sampling distance. The y and z coordinates vary according

to the spatial detail of the object. The large range discontinuity is

the result of occlusion or range shadow casting as illustrated in Figure

2-13, where the z difference is the reason for occlusion. This suggests

that the interior occluding boundaries can be extracted from large

differences of x or y coordinates instead of the range difference. Thus

.... occluding edges can be extracted from surface data instead of the range

" image and are more closely related to the physical properties of the

object. The importance of this direct physical relationship becomes

more clear for concave and convex edge detection.

2.4.2 Concave and Convex Udge Detection

There are certain invariant properties of shapes that are in gen-

* eral independent of the sensor position. For example, three collinear

points in 3-D space will be collinear in the 2-D projection images

r viewed from different positions. This invariant property of the col-

linear relationship is a singular case of a more general invariant

34
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Figure 2-12 Exterior Boundary Obtained by Applying the

* Boundary Tracing Algorithm to the Decoy Image
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property of concave and convex angles. Assume that we have three points

in the y-z plane as illustrated in Figure 2-14. The two vectors a(k-1)

- " and b(k+l) are defined as

-N a(k-1) - r(k-1) - r(k) and b(k+l) - r(k+l) - r(k)

where r(k) is the position vector of the center point. The order of

these vectors has been defined, and a(k-1) is the first vector, b(k+l)

:" -. is the second vector. The direction of the cross product a(k-l)*b(k+l)

- will be pointing in the positive x direction if the counter clockwise

angle from a(k-1) to b(k+l) is between 0 and 180 degrees; i.e., a convex

N angle. On the other hand, for a concave angle where the counter clock-

wise angle from a(k-1) to b(k+l) is between 180 degrees and 360 degrees,

the direction of a(k-l)*b(k+l) will be pointing along the negative x

axis. This property is invariant as long as the viewer is in the posi-

tive x half-space. Thus convex angles and concave angles have different

polarities and can be determined once we define our relative viewing

position (the particular half-space). Although the apparent angle

between these two vectors projected on an image plane will vary accord-

ing to the plane orientation, it will not exceed 180 degrees if it is a

convex angle in the 3-D space. That is, a convex angle in 3-D will

always appear to be nonconcave in 2-D images. Similarly, a concave

F angle in 3-D will always be a nonconvex angle in 2-D images. The singu-

lar case (180 degrees) occurs when the viewing position is on the y-z

plane. Figure 2-15 shows the region of the apparent angle on the image

plane for determining 3-D convex and concave angles.
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Figure 2-14 Convex and Concave Angles Calculation
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Figure 2-15 Region Diagram of Convex and Concave Angles
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From the above discussions, it is clear that the extraction of con-

vex and concave edges from range images can be done by calculating the

u ,polarity of the data. The polarity information is sufficient to distin-

guish between convex and concave edges, but it is not a physical quan-

tity that directly related to the physical properties of the object.

Here. we calculate the physical angle of three surface data points along

a specified direction. For example, let the surface data of a range

image at pixel (i,j) be r(i,j). The distance from the sensor to the

object point is I r(i,j) I. If the column direction is chosen, the vec-

tors a(k-1) and b(k+l) are defined as

a(k-1) r(i-s,j) - r(i,j) b(k+l) = r(i,j+s) - r(i,j);

where s is the step size. The step size is chosen according to the

image resolution and the amount of noise in the range image. The physi-

cal angle between a(k-1) and b(k+l) can be determined from their inner

product and cross product. Those points with concave angle (180 to 360

degrees) are candidates for concave edges. To avoid the singular case

(edges along the column direction), we need to calculate the edge angle

along the row direction. From the invariant property of convex and con-

cave angles, the two physical edge angle images along column and row

! "directions are sufficient to detect convex and concave edges. The thres-

hold for physical edge detection corresponds to a physical quantity

(i.e., edge angle) of the object. Figure 2-16 is the physical edge

angle image of Figure 2-3(a) along the column direction with step size

equal to 2. The edge angle is between 0 and 360 degrees, and the inten-

sity of the image is proportional to the edge angle. Bright edges are

concave edges which usually occur at the junction of two object

40
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components and are of fundamental importance for segmenting complex

objects into simpler components. Figure 2-17 is the detected concave

edges of Figure 2-16 with threshold equal to 220 degrees.

The physical edge angle image also provides local surface orienta-

tion information. Instead of thresholding for convex or concave edge

detection, we can merge connected points with physical angle close to

180 degrees to extract a planar surface. A curved surface such as the

cylinder on top of the vehicle platform in Figure 2-3(a) will show as

connected points with their edge angles clustered in a convex angle

region. Thus our 3-D edge feature extraction algorithm is not only use-

ful for physical edge detection, but also suitable for surface recon-

struction.

2.4.3 Linear Feature Extraction

The detected edge points in Figure 2-17 are clustered and requireU
edge thining. The edge thinning algorithm we used is similar to the

Nevatia-Babu edge detector [Nevatia, Babu-80] and it proceeds as fol-

lows: If the edge angle at the pixel is larger than the edge angles of

its two neighbors in a direction normal to the direction of the edge,

then the edge point is considered to be present at the pixel. The

S:"thinned concave edges of Figure 2-17 are shown in Figure 2-18. The next

step is to link the edge points into an edge segment. Finally, each

edge segment is approximated by piecewise linear segments. This is

_ r accomplished by using the well-known recursive line fitting algorithm

[Duda, Hart-73]. This algorithm proceeds recursively in approximating a
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Figure 2-19 Recursive Line Fitting for Occluding and Concave Edges
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segment by joining the end points and then dividing the segment into two

- segments at the point where the original segment has maximum deviation

from the data. This process is repeated until all the segments fit

within the threshold. Figure 2-19 shows the results of applying the

recursive line fitting algorithm to the exterior occluding boundary (in

solid-line) of the object segment and the concave edge segments (in

dashed-line). Note that the cylinder on top of the vehicle platform is

bounded by occluding and concave edge segments and can be extracted by a

- cylinder extraction algorithm. These physical edge segments are inputs

to a high level cylinder extraction algorithm for segmenting complex

* objects into simpler components.
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3. NDDE-R ED IUTKPREUTTION

- The task of 3-D object classification is one of comparing image

features extracted from the laser imagery with object models. Much of

the work in computer vision is based on trying to extract image features

* without any & priori knowledge of the object model. This approach faces

the difficult problem of developing a meaningful interpretation based on

image features that are ambiguous and incomplete due to inadequate

feature extraction processes. Furthermore, the inherent ambiguities of

perspective projections and occlusion prevent this data-driven approach

from always making a unique interpretation.

A more powerful approach is to make use of "higher level" informa-

- tion to aid in the image feature interpretation process. This higher

level knowledge can be any information that reduces the ambiguities of

the feature extraction process. It can take many forms including con-

textual information about what is in the scene, or pre-developed com-

puter models stored in the system to help determine the position or

location of image objects. This approach is known as the model-driven

approach, and in this research, a largely model-driven interpretation is

S .undertaken.

The model-driven approach involves:

: :(i) developing computer models of a set of objects that are likely

to appear in the image

47
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(ii) developing techniques for predicting the appearance of the

objects (or portions of those objects) in a given view or situa-

tion

(iii) developing techniques for associating these predicted features

with features extracted from the image.

Sections 3.2, 3.3, and 3.4 deal with these topics. Section 3.1

discusses the general approach and interactions in more detail.

t. The model representation is based on the concept of generalized

cylinders which represent objects as volume primitives. These primi-

tives can be hierarchically organized to provide alternative levels of

3t detail in prediction and interpretation.

The image feature-to-model matching process predicts invariant

image features and the appearance of the modeled object in the range

image with a rule-based prediction system. Typical predictions include

information about physical edge types (occluding, convex, or concave

edges), shapes (length, cylinder contour), linear segment relations

(parallel, collinear, connectivity, angle), and possible shape occlu-

sions. The model predictions guide the feature extraction process byV " providing guidelines for extracting the most useful image features to

match the model, and are critical to interpreting partially occluded

shapes.



The interpretation process compares the extracted image features

with the object model according to a set of rules and produces a "good-

ness" measure of how well the two features match. The feature-to-model

matching can occur on multiple levels (for example, from the edge seg-

ment level, component level, and object level up to the contextual
U

level). The spatial relationships between locally matched features are

checked for global consistency. Because the prediction and interpreta-

tion rules are domain independent (they operate on any model in a gen-

eralized cylinder form), our system is applicable to various 3-D clas-

sification problems such as vehicle classification, ship classification

and robot vision.

3.1 OVURVIZW OF 3-D I&TURE-TO-NDDL H&TCIE

The feature extraction techniques discussed in Section 2 extracts

3-D physical features from the laser range image. Once such feature

descriptions are available, the recognition problem of intelligently

interpreting these descriptions in terms of the object instance still

remains. Instead of directly matching the low level laser image

features with possible object models, the feature-to-model matching can

occur on multiple levels (e.g., the object level, the component level,

the edge segment level). Figure 3-1 illustrates this multi-level match-

ing process.

The proposed multi-level matching can be either data-driven or

model-driven, or a combination of the two. The data-driven approach

proceeds by first extracting image features such as edges from laser
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imagery, then grouping them into higher level features (e.g., cylinder

contours), and finally matching these multi-level features to the object

model. In general, the data-driven process requires extensive inferenc-

:- ing capability to resolve ambiguities caused by occlusion and error-

"' prone image descriptions. A typical problem is how to associate edge

segments into the contour of a cylinder based on incompletely detected

edge segments. Partial occlusion makes this problem more difficult.

The model-driven approach on the other hand predicts the appearance of

the object in the image from the model, then a goal-directed feature

extraction process tries to fit the low level image features to the

- .prediction. In general, a model-driven approach can be more reliable

and robust, and it uses knowledge of the model and contextual knowledge

" :of the situation. However, the model-driven approach is inefficient for

. .situations where the class of objects is large (especially if little

S Icontextual or collateral information is available).

As indicated above, the processing control can be either data-

driven or model-driven. To avoid the inefficiency of the model-driven

approach and the ambiguities associated with the data-driven approach,

we use a combination of the two. A typical processing example proceeds

. as follows: An input laser range image is presented to the system.

Initial feature extraction algorithms are used to extract an initial set

of both low-level and global image features (e.g., physical edges,

planar and curved surfaces, projections). This is accomplished without

using model knowledge. The global image features (e.g., overall length,

orientation, etc.) are compared with the coarsest level of the object

model to eliminate unlikely object classes. Then the system searches

51
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for a single best-fit cylinder from the detected edge segments using

some heuristic rules. If this is successful, the properties of the

extracted cylinder (e.g., length, width, volume) and its relative posi-

tion and orientation with respect to the object coordinate system are

used to prune the set of likely models. Component occlusion rarely
U

causes any problem in extracting the first cylinder because at least one

cylinder is not occluded. In most situations, the properties of the

first cylinder are Eufficient for object classification.

At this point (regardless of whether the first-cylinder extraction

is successful), the system switches to a model-driven mode to guide the

search for high level symbolic features using model predictions and low

level image feature data. Predictions such as physical edge types, col-

g "linear and parallel relations, cylinder contours, and spatial relations

between cylinders are generated from object models. Higher level sym-

bolic features are formed from low level features according to these

predictions, and compared with the object model. Incompatible featuresU
can generate negative likelihood factors to reduce our confidence in the

hypothesized object. Locally matched features are checked for global

consistency. Figure 3-1 shows this multi-level image feature-to-model

*. matching and the control flow of the system.

3.2 3-D OBJKCT N0D3L. R1RSEUTTION

There are basically two types of representation for 3-D shape

recognition: visible surface representation and volumetric representa-

tion. The coordinate system used for visible surface representation is
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viewer-centered, and locations are indicated relative to the viewer.

The visible surface representation uses the same types of features as

are available in an image and thus provides direct matching capability

. i. between model and image features. However, a viewer-centered represen-

- tation depends on the orientation of the object, and thus requires an

enormous number of descriptions for different possible viewpoint posi-

tions. The volumetric representation, on the other hand, uses an

object-centered coordinate system and is viewpoint-independent. The

primitive elements of a volumetric representation are based on more glo-

bal geometric features such as volumes and cylinders rather than on

" - cumbersome surface details. Since the emphasis of our 3-D object clas-

sification system is to classify objects from various viewpoints, a

volumetric representation is more suitable.

* iThe volume primitives we use are generalized cylinders [Agin,

Binford-761. A generalized cylinder is defined by a space curve, called

the axis, and planar cross-section functions defined on the axis. Fig-
U

ure 3-2 shows examples of typical generalized cylinders. A more complex

object (e.g., a tank or missile launcher) is represented in terms of a

set of individual cylinders and their spatial relationships to each

other. Generalized cylinders are natural representations of elongated

shapes which are common in the vehicle targets we are trying to clas-

sify. The shape of an object is represented in terms of its distinct

-- components. Both the properties of individual components and their spa-

tial relations are specified for recognition purposes. This model

allows segmentation of a complex object into simpler components. The

3-D object model can be represented at several levels of coarse to fine
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detail in a hierarchy. This allows for successive levels of increas-

ingly refined analysis. The first level corresponds to the coarsest

information of the object. For example in Figure 3-3, the tank is

modeled at the top level as a single entity (a box). This top level

representation gives global coarse information such as the orientation,

volume, height, length and width of the object. At the next lower

level, the tank is made up of several major components (gun barrel, gun

turret and platform). The locations of components and their spatial

relations are defined in the object coordinate system at the next higher

level (the top level in this case). Each component has its own local

coordinate system and is in turn made up of several smaller components.

This hierarchical represeatation with coarse to fine details enables

successful refinement of analysis end also provides a prediction genera-

tion mechanism at multiple levels.

The components in the same detail level may vary in importance for

recognizing the object. For example, the gun barrel of a tank is unique

in vehicle models and provides sufficient evidence to distinguish a tank

from a truck or other vehicles. Therefore, to recognize a tank, we may

first look for the gun barrel in the image. This kind of knowledge is

explicitly implemented in our object models by using a model priority

index. Another kind of component priority index is determined by the

geometric properties of each cylinder. For example, elongated com-

ponents and large components show distinct cylinder properties and are

easy to distinguish from other components. These distinguished pieces

can be used similarly for model selection. The model priority index is

viewpoint-independent and provides a mechanism for efficient model

.
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access and selection. However, this index does not give us any informa-

tion about the visibility of the component or the ease of cylinder
I

extraction. Therefore, it provides only part of the information needed

to select the appropriate feature to extract.

U

Shapes that are occluded or have low contrast in terms of the sen-

sor are generally more difficult to extract from images. Hence an

obscuration priority index has also been introduced to represent the

occlusion and visibility relations among components. This index depends

on the viewpoint and indicates an order for cylinder extraction based on

relative computational simplicity. In our model-driven system, the
M

obscuration priority index allows us to extract a totally visible

• cylinder first for reliable analysis. This will be discussed in more

detail in Section 3.3.2.

As was discussed in Section 2, physical edges such as occluding,

convex and concave edges can be distinguished in the range image. The

prediction of the physical edge types of a cylinder contour strongly

constrain the possible interpretations of each edge segment. Hence our

models should facilitate prediction of the physical edge type. To do

this, the attachment relations between cylinders in the object are

explicitly specified. The convex edges correspond to the internal edges

of cylinders, and thus are not useful for segmenting a complex object

-. into simpler components (cylinders). The occluding edges occur at the

occluding boundaries of a cylinder that are not attached to any cylinder

" "in the model. The concave edges correspond to the occluding boundaries

of a cylinder that is attached to another cylinder. These relationships
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are useful for physical edge type prediction and will be discussed in

more detail in Section 3.3.

Figure 3-4 shows models of a missile launcher and a decoy. Due to

the relatively low resolution of the air-to-ground laser imagery usedU
for these examples, two levels of detail are adequate for target clas-

sification (additional levels can be used in higher resolution imagery).

Figure 3-5 gives an example of the information stored in the decoy

model.

3.3 PREDICTION

" :Prediction is the process of making estimates about the image

appearance of image objects using volumetric models of the object and

given some information about the objects' relative position, orienta-

tion, and shape in the image. Predictions first give guidance to low

level image feature extraction processes for goal-directed shape extrac-

tion; then they provide mechanisms for feature-to-model matching and

interpretation. The best features for prediction are those invariant

features that will always be observable in the image independent of the

object's orientation and sensor position. Examples of these invariant

features in range imagery are physical edge type (i.e., occluding, con-

vex, concave), surface type (planar, curved), collinear and parallel

relations and connectivity. Some invariant features are also indepen-

dent of the class of objects modeled (e.g., parallel, collinear rela-

tions) and thus provide data-driven capability and improve the effi-

ciency of an object classification system.
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cii Component Level Model of Missile Launcher

.Main Body

UL

.- Wheels

Platform

Component Level Model of Missile Launcher Decoy

Figure 3-4 3-D Models of a Missile Launcher and a Decoy
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The prediction process proceeds in a top-down fashion. Various

' -rule-based prediction algorithms developed for different levels are dis-

..cussed in the following subsections.

3.3.1 Context Level Prediction

The context level prediction suggests relationships among objects

in the scene. For example, tanks usually form a group and appear

together. The classification of one object in the scene as a tank may

easily generate a contextual prediction about the object next to it

(e.g., another tank). Context level prediction provides strong condi-

tions for searching and verification. This level of prediction is not

implemented in our system, because the provided laser imagery used in

this research contains only single vehicles and has little textual

information.

3.3.2 Object Level Prediction

*The object level predictions provide global object features and

spatial relations among object components viewed from the sensor. Exam-

ples are the symbolic description of the object contour in the image,

the spatial relationships between object components and the occluding

"- relations among object components.

The occluding object contour can be predicted once we know the sen-

sor position and the object orientation. In the range image, the object

contour can be extracted from range jump boundaries or the object
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segment obtained from object-ground segmentation. Object classification

can be performed by matching the extracted object boundary with the

I model prediction. However, this method only works for cases without

object occlusion and when the objects considered have distinct boundary

contours. For example, a missile launcher and a decoy are vehicle

objects modeled in this research that have similar occluding contours

when viewed from certain directions. These objects can only be classi-

.-' fied according to their internal components' structure.

" . The model priority index discussed in Section 3.2 is a viewpoint-

independent description of the importance of each cylinder for object

recognition. Some components may not be visible in the range image due

to self-occlusion. Since distinguished components (e.g., the gun barrel

of a tank) may not be visible and occluded shapes are generally diffi-

cult to extract, we need to have a viewpoint-dependent obscuration

priority index to indicate the ease of cylinder extraction in the range

image. The obscuration priority index is similar to the priority algo-

rithm [Newman, Sproull-73] used for hioden surface elimination. The

idea is to arrange all cylinders in the scene in priority order based on

their depth and obscuration relations. Cylinders nearer to the

viewpoint and not obscured by other cylinders will have higher priority

indices. Cylinders that are totally obscured are explicitly indicated,

°" and no effort is spent trying to find them in the range image. This

obscuration priority index is purely geometrical and determined from the

object orientation and viewpoint. The combination of model priority

index and obscuration priority index gives a new priority order that not

.' i only indicates the importance of a particular cylinder for object
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recognition, but also compares the ease of cylinder extraction in the

range image. We currently use the obscuration priority indpx as the

base index for cylinder extraction and matching. If two linders have

the same obscuration priorities (they don't obscure each other), then

the model priority indices are compared. In general, the priority index

is valid for an interval of viewing angle and thus can be used based on

rough object orientation estimates.

The structural relationships among object components are the basis

for object recognition. The object level prediction indicates relation-

ships between object components. The nodes contain both 3-D properties

of each cylinder (e.g., volume, 3-D relative position and orientation in

the object coordinate system) and their 2-D image properties (e.g.,

cylinder length, width and visibility). The arcs specify the spatial

relations between cylinders (e.g., connectivity, obscuration, support

and relative angle). The object prediction information is used for glo-

bal structure matching after we extract and analyze the individual

cylinders of an object.

3.3.3 Cylinder-level Prediction

Cylinder-level predictions provide goal-directed guidance for

cylinder extraction from low level image features. This is the most

important prediction level in our system because cylinders are the basic

symbolic primitives we use to perform image feature-to-model matching.
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A generalized cylinder is hierarchically characterized by first

defining its axis and then the cross-sections along the axis. For the

man-made vehicle objects we are trying to classify, the cylinder axis is

a generally straight line segment, and the cross-sections are generally

uniform and at most linearly varying. At the cylinder level, we predict

the shape of a cylinder in the range image. Due to the internal struc-U

ture of the objects we modeled and the general air-to-ground imaging

geometry, only a few cylinder contours will be totally visible

(cylinders with a high obscuration priority index), and most cylinders

are partially obscured. The prediction of occluded cylinder contours in

the image can be generated by polygon clipping algorithms [Weiler,

Antherton-771. In this case, the cylinder extraction process guided by

predictions corresponds to finding a complete, closed polygon (or

several polygons) from the detected edge segments. This polygon match-

ing approach is cumbersome and difficult because of complex shape match-

ing and possible missing edge segments. Here, cylinder level prediction

is accomplished by using a hierarchy in defining generalized cylinders.

.1The properties of the two cylinder boundaries along the cylinder axis

are first predicted. These predictions include parallel relations

(relative angles 4n general), physical edge types (concave, occluding),

length, distance between two segments, missing parts due to occlusion,

and collinear relations between disjoint segments. These predictions

are sufficient to guide the coarse extraction of cylinders. After

extracting the two cylinder boundaries along the axis, other boundaries

on the cylinder contour can be predicted in limited regions relative to

the two major boundaries, and heuristic rules can be used to construct

the cylinder contour from incomplete edge segments.
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3.3.4 Surface-level Prediction

Surface-level predictions provide the cylinder surface appearances

U and their spatial relations in the image. Due to the low resolution

.- nature of air-to-ground laser imagery, surface properties are not easy

to extract and to use (sometimes a single surface patch only has a few

W points). However, for industrial applications where high resolution

range images are available, surface level predictions impose strong con-

straints on cylinder extraction. The physical edge angle images dis-

cussed in Section 2 can be used for planar and curved surface extrac-

tion. These surface primitives can then be grouped together to form a

cylinder according to surface level predictions from the model.

3.3.5 Edge Level Prediction

Edge-level predictions assign physical edge types to each edge seg-

ment and thus strongly constrain the possible interpretation of each

edge segment for cylinder contour extraction.

p

Prediction of the physical edge type of a cylinder contour is made

possible by explicitly specifying the attachment relations between

- cylinders in the model. For example, if cylinder A is supported by

cylinder B, the two touching faces of the cylinders are explicitly

labeled in the object model. The occluding edge type is predicted for

those cylinder contour segments that do not belong to a labeled face.

,. The concave edge type is predicted for those segments that belong to a

labeled face, and are inside the other surfaces with the same label.
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The convex edges correspond to the internal edges of cylinders, and thus

are not useful for cylinder extraction since we don't use surface level

predictions. The physical edge type limits the search space for

cylinder grouping, but more importantly, it can be used to verify the

correctness of the extracted cylinder. Therefore, we have more confi-

dence in the cylinder extraction because not only the geometric proper-

ties of edge segments are used, but also the physical properties of edge

segments are examined.

3.4 INTERPRETATION
p1

" Interpretation proceeds by comparing the image features on multiple

levels to the object models according to a set of if-then rules (a pro-

duction system). Each rule for comparison produces a "goodness" measure

of the system's confidence in how well the two features match. If a

single object model has a much larger likelihood than others, the target

in the range image is classified as an instance of that object. Besides

* - the classification of the object, object position and orientation infor-

* mation are also available and can be used for higher level scene

interpretation.
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1. OBJECT LENGTH

If FEATURE LENGTH > MODEL LENGTH + DELTA or

FEATURELENGTH < MODELLENGTH - DELTA

then -0.5

S" else 0.5 IFEATURELENGTH - MODEL LENGTHI
(1 MODELLENGTH

2. OBJECT WIDTH

If FEATUREWIDTH > MODELWIDTH + DELTA or

FEATUREWIDTH < MODELWIDTH - DELTA

then -0.5

* else 0.5 (1 - IFEATURE WIDTH- MODEL WIDTHI

3. OBJECT HEIGHT

If FEATUREHEIGHT > MODELHEIGHT + DELTA or

FEATUREHEIGHT < MODELHEIGHT - DELTA

S*-:. then -0.5

else 0.5 (1 - IFEATUREHEIGHT - MODEL HEIGHTI
_ MODELHEIGHT

4. MINIMUM HEIGHT POINT LOCATION

If NUM.MODELMINHEIGHTREAR > 0 and

NUM.FEATUREMINHEIGHTREAR > 0

= *then 0.5

else -0.5

Figure 3-6 Sample Set of Interpretation Rules
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5. FRONT EXTREME POINT HEIGHT

If FEATURE FRONTEXTREME HEIGHT > MODEL FRONTEXTREME HEIGHT + DELTA

or

FEATUREFRONTEXTREME HEIGHT < MODEL FRONTEXTREME HEIGHT - DELTA

then -0.5

else 0.5 (1 - IFEATURE-FRONTEXTREME-HEIGHT - MODELFRONTEXTREME HEIGHT

MODELFRONTEXTREMEHEIGHT

6. REAR EXTREME POINT HEIGHT

If FEATUREREAREXTREMEHEIGHT > MODELREAREXTREMEHEIGHT + DELTA

or

FEATURE REAREXTREME HEIGHT < MODEL REAREXTREME HEIGHT - DELTA

m then -0.5

else 0.5 (1 IFEATURE REAREXTREME HEIGHT - MODEL REAREXTREMEHEIGHTI)

ee5 -F UMODELREAREXTREMEHEIGHT

Figure 3-6 Sample Set of Interpretation Rules (Continued)
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The set of rules for interpreting image features in terms of models

can be classified into two classes according to the level of detail they

compare. The first class of rules looks for general features and global

characteristics; i.e., the object level features such as the object

length, width, and height. Since the 3-D surface data can be obtained

from the range image through a coordinate transformation, the actual

length measurements are available and can be compared directly with the

model parameters. A typical rule for object length matching is shown in

the first rule of Figure 3-6. The rule assigns a negative likelihood to

models that exceed the tolerance interval DELTA and prunes these objects

from further consideration. For those object models within the toler-

ance interval, the rule returns a likelihood value as the goodness meas-

ure. Another set of general features is the extreme positions of the

a image object. For example, the lowest components of a truck are its

wheels. Therefore, from a thin cross-section slice of the target, a

segment with low z value (elevation) will probably show the wheel posi-

tions relative to the overall object length. The fourth rule in Figure

3-6 is one example. Other extreme positions such as the heights of the

front and rear points of the side-view projection image can also be used

for comparison. These extreme position rules usually pinpoint the end

positions of cylinders and check for general structural features, and

can be valuable even for partially occluded objects. Note that these

rules are domain-independent and are derived from the object models.

Since we are not sure which end of the image feature is the vehicle

front, we need to hypothesize two possibilities (front and rear), and

4: C. the results of an extreme positions match usually prune some more

unlikely models and resolve the front-rear ambiguities.
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The second class of rules compares finer object details at the

cylinder level. The system first tries to extract a single cylinder

from range image by some heuristic rules and predictions of invariants

(e.g., antiparallels, angles). Once a cylinder is extracted, its 3-D

properties (length, width, length, and volume) and relative position and
U

orientation in the object coordinate system are compared with the model.

These cylinder level features not only provide finer detail for feature

* -. to model matching, but also put strong constraints on the internal

.- structure of the object. These constraints are often sufficient to make

a unique interpretation of the image.

3.5 PROCSSINEUMimRS

To assess the feasibility and capability of rule-based interpreta-

tion for classifying vehicle targets from extracted 3-D features, a sam-

ple set of rules was developed and tested on extracted image feature

information obtained using the techniques described in Section 2. Fig-

ure 3-6 represents this set of rules. They are not meant to be

comprehensive, just representative. The rules are applied in sequence

according to the rule number. This sequential process is used to prune

possible models at the early interpretation stage with the most impor-

* tant features and resolve the object front-rear ambiguity in the begin-

,. ning of analysis.
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A laser range image of a decoy was processed using the sequence of

analysis steps shown in Figure 2-1. A ammary of the extracted feature

information is shown in Figure 3-7. The rules in Figure 3-6 were then

used to compare this extracted feature information about the decoy with

two vehicle models. These were a decoy and a missile launcher. They
p

are chosen because their similarities in size and structure make the

selection and correct classification a non-trivial task. The relevant

model information for these two objects is obtained from their volume

models and is shown in Figure 3-8.

The results of applying the rules in Figure 3-6 to these vehicle

models are shown in Figure 3-9. The first three rules check the object

length measurements and the system prefers the decoy slightly. No clas-

3 sification can be made at this stage. Rules 4 to 6 check the general

features of each model and try to resolve the object front rear ambi-

-" 'guity. Rule 4 compares the relative positions of object points with the

*1 I minimum z coordinate and gives likelihood values to the front and rearp
hypotheses of the same object. Both the missile launcher front and

decoy front are favored because the bottom points are on the rear part

of the segmented object and the model wheels are on the rear part of the

vehicle. Rule 5 and Rule 6 check the height (z coordinate) of the

extreme points (front and rear) to figure out major structural differ-

ences. Note that we used the relative z coordinate difference between

. the extreme points and the maximum z coordinate value of the segmented

object, because we are not certain about the ground level. The rule

L matching results apparently favor the decoy model with the model front

corresponding to the feature front. Reasonable classification is

achieved at this level.
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.1: OBJECT ORIENTATION 45 degrees

OBJECT LENGTH = 199.24

SOBJECT WIDTH 55.86

U OBJECT HEIGHT 38

-, MINIMUM OBJECT POINT HEIGHT = 10

MAXIMUM OBJECT POINT HEIGHT = 48

MINIMUM HEIGHT POINT RELATIVE POSITION

IN SIDE-VIEW PROJECTION

=2 at rear (from 60 - 100%) of vehicle

*? positions (along the vehicle length direction): 152.83, 156.66

EXTREME POINTS (FRONT-REAR) HEIGHT

IN SIDE-VIEW PROJECTION

* = front extreme has height 24

, ""rear extreme has height 21

-. ",.4 (Resolution: 2 inches per unit)

Figure 3-7 Extracted Feature Information from Decoy Image
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MODEL INFORMATION

RULE MISSILE LAUNCHER DECOY

1 1. OBJECT LENGTH 225 195

2. OBJECT WIDTH 48 56

3. OBJECT HEIGHT 60 47

4. MINIMUM HEIGHT MIDDLE (40-60%), REAR (60-100%) REAR (60-100%)
POINT LOCATION

* 5. FRONT EXTREME 12 25
POINT HEIGHT (measured from the top of the (measured from the

missile launcher) top of the decoy)

6. REAR EXTREME 25 25
POINT HEIGHT (measured from the top of the (measured from the

missile launcher) top of the decoy)

RESOLUTION: 2.0 inches per unit

n

--Figure 3-8 Relevant Model Information
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RULE MISSILE LAUNCHER DECOYI
1. OBJECT LENGTH 0.443 0.489

2. OBJECT WIDTH 0.418 0.499

3. OBJECT HEIGHT 0.400 0.489

SUBTOTAL 1.261 1.477

MISSILE MISSILE DECOY DECOY
LAUNCHER LAUNCHER FRO REAR
FRONT REARREAR

4. MINIMUM HEIGHT
POINT LOCATION 0.5 -0.5 0.5 -0.5

5. OBJECT FRONT
EXTREME POINT HEIGHT -0.5 -0.5 0.48 0.48

6. OBJECT REAR
EXTREME POINT HEIGHT -0.5 -0.5 0.46 0.46

TOTAL 0.711 -0.239 2.917 1.917

Figure 3-9 Likelihood Weights Associating Rules and Object Models
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If the gross object features and major structures do not provide

sufficient evidence for classificaiton, the system tries to extract

-, finer details at the component level. Figure 3-10 is a reproduction of

Figure 2-19, and the occluding exterior boundaries are in solid line,

and the concave edge segments are in dashed line. The cylinder extrac-

tion algorithm first finds the major cylinder boundaries along the

cylinder axis by using the prediction that these two segments will

appear parallel in the image and one of them is a concave edge. This

prediction strongly constrains the possible edge segments for the major

cylinder boundaries. The cylinder extraction algorithm successfully

finds that two edge segments (with labels A and B in Figure 3-10)

m satisfy the cylinder prediction and that they have a significant amount

of overlap between them. Using these two edge segments as two sides, a

-- 'closed polygon is formed and used as an approximation of the cylinder

contour. The length, width, and height of this cylinder can be

extracted by the same techniques used for gross object feature extrac-

tion. Its length measurements, relative orientation and position to the

object coordinate system are shown in Figure 3-11. These features

strongly restrict the possible object models for matching.

elm :Another example is demonstrated using the missile launcher image in

Figure 2-9(a). The extracted image feature information is shown in Fig-

ure 3-12 and the interpretation results are shown in Figure 3-13. The

- system correctly classified the image as the front view of the missile

launcher. For cylinder level fine detail analysis, the exterior
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Figure 3-10 Line Segments of Occluding and Concave Edges
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occluding boundaries and concave edge segments were extracted from the

image and are shown in Figure 3-14. The system successfully extracted

the cylinder bounded by edge segments A and B, but fail to extract the

major missile component due to missing edges. Future research efforts

are required to make the cylinder extraction algorithm more robust and

to allow the physical edge detector to operate in a prediction mode,

i.e., first predict missing edges then drive the edge detector to find

them.
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p !CYLINDER FEATURE INFORMATION

ORIENTATION = 54 degrees

RELATIVE ORIENTATION TO THE OBJECT = 9 degrees

LENGTH = 136

WIDTH = 26.48

HEIGHT = 30 (minimum height point = 18, maximum height point = 48)

RELATIVE CENTER POSITION (TO THE OBJECT CENTER POSITION (0,0,0))

- (14, 4, 4)

Figure 3-11 Extracted Cylinder Feature Information from Decoy Image
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OBJECT ORIENTATION = 54 degrees

OBJECT LENGTH = 232.12

. OBJECT WIDTH = 45.66

OBJECT HEIGHT = 49

[ MINIMUM OBJECT POINT HEIGHT = 12

MAXIMUM OBJECT POINT HEIGHT = 61

MINIMUM HEIGHT POINT RELATIVE POSITION

IN SIDE-VIEW PROJECTION

= 3 at rear (from 60 ~ 100%) of vehicle

positions (along the vehicle length direction): 200.66, 168.46, 170.96

1 at middle (from 40 60%) of vehicle

* position (along the vehicle length direction): 110.38

EXTREME POINTS (FRONT-REAR) HEIGHT

IN SIDE-VIEW PROJECTION

- front extreme has height 49

rear extreme has height 26

(Resolution: 2 inches per unit)

Figure 3-12 Extracted Feature Information from
Missile Launcher Image
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RULE MISSILE LAUNCHER DECOY

1. OBJECT LENGTH 0.484 -0.5

" 2. OBJECT WIDTH 0.476 0.408

3. OBJECT HEIGHT 0.492 0.372

SUBTOTAL 1.452 0.280

MISSILE MISSILE DECOY DECOY
LAUNCHER LAUNCHER FRONT REAR
FRONT REAR

4. MINIMUM HEIGHT
POINT LOCATION 0.5 -0.5 0.5 -0.5

5. OBJECT FRONT
EXTREME POINT HEIGHT 0.5 -0.5 -0.5 -0.5

6. OBJECT REAR
EXTREME POINT HEIGHT 0.46 -0.5 -0.5 -0.5

TOTAL 2.912 -0.048 -0.220 -1.220

Figure 3-13 Likelihood Weights Associating Rules and Object Models
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Figure 3-14 Line Segments of Occluding and Concave Edges
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4. SUMMRY AND CONCLUSIONS

I This document addresses AI&DS's research effort to develop 3-D

object classification techniques for laser range imagery. Our conclu-

sion is that even though there are several remaining research issues,

* laser range imagery does provide more useful information than intensity

imagery and it is feasible to build an automated 3-D object classifica-

tion system. The techniques which we have examined from the fields of

artificial intelligence and image understanding have shown promise of

providing assistance in achieving this goal. Techniques for extracting

-.. 3-D image features were developed and estimates of gross object features

such as object length, width, height, object orientation, and major

structure were obtained. Fine object features at component level such

- , as component length, width, height, and its relative orientation and

position to the object were obtained through a cylinder extraction pro-

cess based on the detected physical edges. An initial knowledge data

base of information about three military vehicles (i.e., tank, missile

P launcher, and decoy) was developed. Prediction rules and interpretation

rules were formulated to associate the extracted image features with the

data base. Using a few synthetic range images, the rules were tested on

automatically extracted information and proper object classification was

achieved. These results are encouraging and are optimistic indications

of the potential power of the technology.

Efforts to develop and test object-ground segmentation techniques

and techniques indicate that gross object features can be obtained.

L These features will also provide information to drastically prune the
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list of possible alternatives by checking the general structural

features of the models. However, some analysis of fine detail in the

Simage is required to classify objects with similar general structures

and to have more robust and reliable performance. The cylinder extrac-

tion technique used the model prediction rules as guidelines to extract

fine object detail at the component level (cylinders) from low level

edge features. As illustrated in Section 3.5, this fine feature usually

provides sufficient evidence to make a final classification.

The above conclusion should be considered with the knowledge that

* only the laser range imagery was analyzed and no external object occlu-

sion was assumed (component occlusion by other vehicle parts was con-

" sidered). In the air-to-ground laser sensor, the laser reflectance

.'imagery registered with the range imagery is also available. Even

though the reflectance imagery is noisy due to the coherent nature of

*: the laser sensor, adequate analysis based on the object-surface reflec-

tivity model can provide useful information to aid object classifica-

tion. This aspect was not discussed in our work, and it is a good

d4.rection for future research. Another important issue is object occlu-

sion. Our gross feature extraction techniques may not provide meaning-

ful information for occluded objects. A flexible control process is

desirable to bypass this useless processing and to analyze available

Jfeatures (e.g., cylinder features, fine details).

AI&DS believes that with more research efforts, the construction of

an automated 3-D object classification system is feasible and in many

applications has the potential for exceeding human performances or the
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performance of other imaging sensors in classifying objects. An

automated system can take advantage of the rules and knowledge used by

human analysts while at the same time using 3-D information effectively

and using the more precise measurement capabilities available with a

machine. The system also has the memory capabilities to consider and

manipulate multiple hypotheses or explanations and quickly evaluate or

update them. The critical issue is the development of a more flexible

control process for bottom-up and top-down processing.

As has been mentioned above, several key research issues remain to

be explored before the development of an automated 3-D object classifi-

cation system for laser range imagery. This research has partially

-. addressed some of these tasks but further work is still required. These
-4

-" include:

*i e Extraction and interpretation of finer image features

- extraction of weak edge features using prediction

- refinement of cylinder extraction algorithm

- extension of cylinder extraction techniques to deal with par-

tially occluded cylinders

' Use of laser reflectance imagery and object surface reflectivity

modeling
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. Development of robust interpretation and prediction rules, heuris-

*.." tics and algorithms

*: e Development of flexible processing mechanisms and more sophistica-

tion control techniques

m - effective use of combined top-down and bottom-up processing

- opportunistic control to analyze available features (occlusion

case)

The development of 3-D object classification techniques has been an

interesting and challenging effort. We gained much insight in 3-D data

analysis. We believe that a prototype classification system should be

developed and tested. Because our approach is domain-independent and

-~ somewhat independent of the types of range sensor used, it can have wide

o.

aplcain the d ve hlen shi and obje c at classification , eohique isioena

• somewha inepend of tmuhehles.o ag esruei a aewd
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