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1. INTRODUCYION

\
\
\

This report documents the research efforts of Advanced Information
& Decision Systems (AI&DS) to develop three-dimensional (3-D) object
classification techniques for vehicle targets in air-to-ground laser

f}\g_ av horS
range imagery. W& emphasize an artificial intelligence (AI) approach to
intelligently interpret laser imagery in terms of 3-D symbolic models.
The full classification system includes 3-D image feature extraction,
geometric modeling, model prediction, and feature-to-model matching. i 5
ol /sensse s

#his report;péidiscuts-new techniques for implementing these major sys-

tem components, and provide%rverall conclusions and discussion about the

1.1 RESEARCH OVERVIEW

A range sensor measures the distance from the sensor to the visible
object surface along a given ray. Range images offer significant advan-
tages over passive reflectance images because they preserve the 3-D
geometry of the scene viewed from the sensor. The intrimnsic properties
of the scene such as depth, surface orientation, length, and size are of
fundamental importance for scene segmentation, target recognition and
scene interpretation. While these properties can only be obtained from
2-D images with extensive inference (due to the ambiguities introduced
by the 2-D projection of the 3-D scene), they can be easily calculated
from 3-D range images. Therefore, range data is becoming an increas-
ingly important source of information for a variety of industrial and

military applications. Military applications of laser or range imagery

feasibility of developing an automated 3-D object classification system. C:—\
—_—
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include automatic 3-D target classification, autonomous vehicles, and
missile guidance. Industrial applications of range data include

automatic inspection, and part handling and assembly by robots.

There are three types of range sensors: stereo vision, active
illumination (light stripe) and laser range finder (time-of-flight).
Stereo vision require; a correspondence process for matching and regis-
tering multiple images from different views. This is a difficult prob-
lem, and the accuracy of range estimation depends on the distance of the
object and the baseline length. Active illumination uses the same tri-
angulation principle to measure the depth information as in stereo
vision. Instead of using two images corresponding to two views, this
technique uses a stripe of light as illumination and records an image
from another position. Active illumination can only be used in a con-
trolled enviromment such as an industrial assembly line: Laser range
finders directly measure the time delay or use modulation techniques to
obtain the depth information. Laser range finders avoid the restric-
tions inherent in stereo and active illumination, and have potential
applications in autonomous vehicles, missile guidance, space explora-
tion, robotics and industrial inspection. Although laser reflectance
imagery registered with the range imagery is also available, it may be
degraded by severe speckle noise and is thus not very useful for target

classification. In this project report we discuss 3-D object classifi-

cation for laser range imagery.
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Traditional methods for target classification in systems with laser
range sensors involve standard statistical pattern recognition algo-
rithms that match multiple pre-stored model images with the sensed
images. These methods require a large number of pre-stored model images
corresponding to various viewpoints and tend to perform adequately in
normal situations where the observed laser image corresponds to one of
the model images. In situations involving unusual target aspect angles,
partially obscured or camouflaged targets, or targets of varying struc-
ture, most pattern recognition techniques based on matching global image

features will fail.

Recent Image Understanding (IU) research programs have emphasized
the symbolic interpretation of low level image features in terms of
models. The ACRONYM system [Brooks-81] developed at Stanford is a
powerful model-based vision system for 2-D image interpretation. The
approach taken in ACRONYM is to match the extracted 2-D image features
with the predictions from the 3-D model at multiple levels through the
use of a geometric reasoning system. This system is shown to have good
performance for aerial photo-interpretation applications. In our 3-D
object classification task, the 3-D image features can be extracted
directly from laser range imagery. Therefore, the interpretation pro-
cess requires symbolic reasoning among 3-D models and 3-D image
features. This capability does not exist in the ACRONYM system, and is

our major research contribution in this project.
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iy {? In this research, we adopt an artificial intelligence (AI) approach
to interpreting 3-D range data in terms of 3-D symbolic models for

!
!l object classification. The artificial intelligence approach brings

T
et

together a wide variety of analysis techniques (e.g., algorithmic,

AP
et
s s
»

e W heuristic, statistical) in order to perform interpretation in an "intel-
- ligent" manner. This approach is more robust and uses contextual infor-
= mation and common sense reasoning to aid in the analysis. The critical

research issues involved are:

? i: 1. extraction of 3-D image features from laser imagery.
»?lfl 2. prediction of 3-D image features from 3-D object models.
|

AR 3. interpretation of 3-D image features in terms of models for object
L £ recognition and classification.

:.:

_ ‘l These three functions interact heavily, and the control process is of
;& o0 fundamental importance. A summary of our research results and conclu-
: sions is presented in the mext section.

Lo 1.2 SUMMARY AND CONCLUSIONS

- AI&DS has developed a combined model-driven and data-driven 3-D
object classification technique for analyzing laser range imagery. This

2 research effort on air-to-ground vehicle target classification has

= adopted an AI approach that involves a hierarchical analysis process for
3; extracting and matching multi-level features from laser imagery to
? L object models. The low level image features are extracted from the
.
L image using little model knowledge. The high level symbolic features
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such as object components are extracted from low level features with the
guidance of model predictions. The object model is represented by a
single, viewpoint-independent 3-D model. The object classification task
ﬁtoceeds from coarse to fine by first comparing gross object features
(e.g., object length, height, extreme points, etc.) and then finer com-
ponent features (e.g., component volume, position, orientation, etc.)
extracted from laser imagery with &8 model using a set of rules that pro-
duces a likelihood value to indicate the goodness of match. Since the
3-D information are available from the range image, the actual measure-

ments (e.g., length, width, volume) are used for matching.

A bare-bones system was designed and developed. It is domain-
independent in that it is applicable to a variety of tasks such as vehi-
cle classification, ship classification, and industrial parts classifi-
cation. This system has four major components as shown in Figure 1-1.
The 3-D feature extraction techniques include object-ground segmenta-
tion, object orientation estimation, 3-D physical edge detection and
linking, and projection image formation. We emphasize extracting physi-
cal features which are directly related to a 3-D object model from the
range data. The object-ground segmentation algorithm extracts object
segments from the laser image by use of a downward-continuation process.
The object segment is then used to generate its ground projection and
side~view projection images. The object orientation can be estimated
from the orientation of the ground projection image since vehicle tar-
gets are usually elongated. The side-view projection images provide
major object structure information and can be used to prune possible

object mudels. Ph 'sical edges, such as qccluding, convex and concave

et e e
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ﬁ: edges that are not distinguishable in an intensity image can be
" extracted from a range image directly. A 3-D physical edge detection
.l algorithm is developed for this purpose.‘ This physical edge detector is
not only useful for edge detection, but also useful for extracting
planar and curved surfaces.
P The objects are represented by a viewpoint-independent volumetric
fﬂ model based on “generalized cylinders." After the initial feature
.- extraction process has generated a candidate set of hypothesized target
é ?E classifications, a prediction process can be used to further evaluate
i I the hypotheses. The prediction process predicts the appearance of the
- model in the range image. Typical predictions are physical edge types
(occluding, convex, or concave edges), cylinder contour, and invariant
shape properties (parallel, collinear, connectivity). These knowledge-
I' based predictions are very powerful for directing the feature extraction
o algorithms” search for particular features in a limited region. The
results of feature extraction and prediction are gathered at multiple
|! levels, and a reasoning process is applied to classify the target. The
interpretation process uses the features of the individual components
and the component structure of the object as the basis for matching.
2
v A preliminary classification experiment was performed on a class of
. :{ military vehicles which included such objects as tanks, missile launch-
'

ers, and decoys. These targets have distinct structures and components.
Past work on object recognition using 3-D range data only applied to
simple objects without much self-occlusion (one component occludes

another component). To classify the targets that we modeled is a

it bt ittt teit e it S s intinstinstysathuadiniindhedhiinfbsi oottt bl ol Bt
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Figure 1-1 Major Components of 3-D Object Classification System
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challenging task.

The experiment consisted of processing synthetic range imagery with
additive range noise (provided by The Analytic Science Corporation).
The experiment consisted of processing imagery through a set of low
level feature extraction and high level feature interpretation algo-
rithms and inference rules. All the processing was automated but done
in a nonintegrated fashion. Although only a small amount of imagery was
processed based on a few models, the successful results with a primitive

inference system are encouraging.

1.3 ORGANIZATIOR OF THIS REPORT

This project report is organized as follows: Section 2 preseuts
basic 3-D feature extraction techniques for laser imagery. These
include object-ground segmentation, projection image generation, and 3-D
physical edge detection techniques. Examples of these 3-D feature

extraction techniques are presented.

Section 3 discusses techniques for classifying vehicle objects by
matching the extracted image features with models. Objects are
represented by volumetric models based on generalized cylinders.
Multi-level predictions are generated from the model to guide the

extraction of higher level features from edge segments.
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Section 4 presents conclusions and discussion about the feasibility
of using artificial intelligence techniques for 3-D laser target clas-
sification. Future directions pertaining to the critical research

issues are also addressed.
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2, THREE-DIMENSIONAL IMAGE FEATURE EXTRACTION

There are two major tasks in our laser target classification sys-
tem, namely (1) extracting 3-D image features from laser imagery and (2)
model-based interpretation of extracted image features for object recog-
nition. In this section, we discuss the first task, where a largely
data-driven approach is used to extract 3-D image features. Several
techniques have been studied for extracting 3-D features from range
data. Duda et al. [Duda et al.-79] used registered range and reflec-
tance data to find planar surface regions in a sequential fashion.
Oshima and Shirai [Oshima, Shirai-79] fitted local range data with
planar surfaces, and merged local planes into planar and curved surface
regions. Agin and Binford [Agin, Binford-76] extracted "cylinder"
features from range data and segmented complex objects into simpler sub-
parts in terms of generalized cylinders. All of these methods are basi-
cally concerned with various ways of fitting planar and curved surfaces
to the range data, and require the 3-D coordinates of the surface
points. Another approach is to obtain edge boundaries from range data.
Nevatia and Binford [Nevatia, Binford-77] extracted jump boundaries from
range imagery for object recognition. Sugihara [Sugihara-79] used a
junction dictionary to guide the extraction of physical edges. These
3-D edge detection techniques operate on the range image and only pro-
vide range difference information ass seen from the sensor without

directly referring to the true physical properties of the object.

10
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In this section we present several new techniques for 3-D feature
extraction. We emphasize the extraction of 3-D physical features of the
object from range data. The approach used is to first transform the
range image (in a sensor-centered coordinate system) to the surface data
(in a world coordinate system) from knowledge of the semsor position.

We then separate the object from the background by an object-ground seg-
mentation algorithm. Once the object segment is extracted from the
image, the ground projection and side-view projection images of the
object segment are generated. These projection images are useful for
extracting gross object features and major object structure. The object
orientation can be estimated from the orientation of the ground projec-
tion image since vehicle targets are usually elongated. The side-view
projection image can be used to locate major object structure positions

such as wheel and missile positions of a missile launcher. After

extracting those global features, a 3-D edge detection algorithm is used
to extract physical edge segments for fine feature-to-model matching.
Our 3-D edge feature extraction algorithm directly calculates the physi-

cal angle of the object surface from surface data. Convex and concave

i)

edges can be distinguished according to the value of the physical edge

AL YR

ALMEN

angle. This physical edge angle image is not only useful for physical
edge detection, but also provides relative surface orientation informa-
tion for extracting planar and curved surfaces. Figure 2-1 presents the
structure of our 3-D image feature extraction process. The extraction

process moves from the laser image to symbolic feature information that

is provided to other levels of the system.

11
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o2 2.1 COORDINATE TRANSFORMATION
P

o " There are two basic methods of range data acquisition: triangula-
tion and time-of-flight. The range information acquired from both sys-
1: Z% tems is described using a sensor-centered coordinate system, and we call
it a "range image." The range image is a special ordering of 3-D range
data viewed from the sensor, and the topology (neighborhood pixel rela-
i . tionships) defined in the range image is useful for feature extraction.
L However, in order to manipulate the range data more effectively, we need
55 to transform the range image into a sensor-independent world coordinate
system. This transformation can be carried out through a camera cali-
A i; bration procedure [Sobel-70] or from the geometry of the data acquisi-
tion system. For an air-to-ground laser sensor, the information
required for this coordinate transformation are the depression angle and
' the angular scanning resolution along the azimuth and elevation direc-
tions. Figure 2-2 illustrates this transformation. The resulting 3-D
Cartesian coordinates of the visible surface defined in a world coordi-

- ll nate are called "surface data."

The surface data obtained through the coordinate transformation

e Ty S

provide direct 3-D scene information. Figure 2-3(a) is a synthetic
range image of a decoy produced by The Analytic Science Corporation. In
this image the range image intensity is proportional to the range value,
and a bright region in the image corresponds to an area far away from
the sensor. A drawing of a decoy is shown in Figure 2-3(b) for com-
parison. The range image in Figure 2-3(a) is defined in a sensor-

centered coordinate system and does not give us direct information about

13
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Figure 2-2 Coordinate Transformation Between a Senscr-Centered
Coordinate System and the World Coordinate System
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Figure 2-3(b) Drawing of a Decoy

e e B : . .
L. P PR N LD PSP J-__IAAIAj




BREERAR AT AT A A AR TR AN A A R AL SO
. .t e -® e - - « b ~, -, -~

B Y

SR YTV R R T o R o T

S N A

Figure 2-3(c)

Z Coordinate of Figure 2-3(a)

T T

.......




: ﬁé The surface data obtained through the coordinate transformation
provide direct 3-D scene information. Figure 2-3(a) is a synthetic
range image of a decoy produced by The Analytic Science Corporation. In
.~; i: this image the range image intensity is proportional to the range value,
snd a bright region in the image corresponds to an area far away from
the sensor. A drawing of a decoy is shown in Figure 2-3(b) for com-
parison. The range image in Figure 2-3(a) is defined in a sensor-
centered coordinate system and does not give us direct information about
- the 3-D physical properties of the object. However, the z coordinate
(defined in Figure 2-2) of the surface data obtained from the ranmge
- image as shown in Figure 2-3(c) gives us a clear knowledge of the object

elevation distribution along the z-axis.

In this report, we assume that surface data is available, and our
3-D feature extraction techniques operate directly on surface data
independent of the techniques used for range image acquisition (e.g.,

stereo, light stripe, or laser range finder).

. 2.2 OBJECT-GROUND SEGMENTATION

To analyze range images, we need to first separate interesting
objects from the background. In most applications (such as autonomous
o vehicles and robot vision), the background is the ground that supports
the objects. Object-ground segmentation can be done by finding the jump
boundaries in the range image and linking them into a complete bounding
contour of the object. However, for noisy range data or objects that

touch the ground surface, this process cannot be done reliably. A more

18 |

TR IR ST i SN LIPS LS. (A D P DU VO TN _J

R R TS . - Te T . - . " . - .
SRSV T TS ST VAT S SO CE AP SR S N VAP 3PP NPT AP SPUE Py W S S S Lo il




l‘fll
Vg4

Y

robust segmentation technique that considers object and ground charac-

teristics seems more appropriate.

Knowledge of the relationship between object and ground can aid the
segmentation. The object is supported below by a ground plane that is
locally flat. Furthermore, there are no data points below the ground
plane. These support relations allow us to select a threshold z, (along
the z axis in the world coordinates as in Figure 2-2) to separate those
object points at least z distance above the lowest ground point. The
selection of threshold z depends on the heights of the objects that we

are interested in.

The object segment extracted consists of data points on the upper
part of the object. The next step is to perform a local downward-
continuation process such that we can adaptively lower the threshold in
order to extract more object points without including ground points.
Since an object is a8 connected 3-D blob with finite extent, the connec-
tivity property of the object segment and concave edge evidence (which
will be discussed in Section 2-4) csn be used for this purpose. If we
lower the threshold too much, some ground points will be included in the
object segment. For this case, the segmented object points will not be
connected and the extent of the object blob will increase sharply due to
the inclusion of randomly spatially distributed ground points. Figure
2-3(a) is a synthetic range image of a decoy above an uneven ground sup-
port. The object segment extracted from ;;e range image through down-

ward continuation is shown in Figure 2-4.
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Figure 2-4 Extracted Object Segment of Decoy
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Note that the downward-continuation process is performed locally
such that the assumption about object and ground are valid. To further
extract object points, we need to use an adaptive thresholding scheme.
The extent of the object segment is fixed (e.g., its ground projection)
and points around the object segment are examined. New points are
included in the object segment if they do not increase the extent of the
object and no concave edge has been reached. Concave edges are used

because they occur at the junction of object and ground.

The object-ground segmentation algorithm generates a binary mask

where the object points are set to one and the background points are set
to zero as shown in Figure 2-4 of the object segment. Subsequent pro-
cessing can be concentrated inside the object segment to reduce computa-
tion time and unnecessary analysis. This binary mask also provides a
suitable form for extracting some important object features such as

boundary curves.

2.3 PROJECTION IMAGES GENERATION

Once we extract the object segment from the range image, the next
step is to extract and analyze the global object features such as orien-
tation, léngth, width, height, and the boundary. The object-ground seg-
mentation process generates a binary mask of the object segment, and

this allows us to focus attention inside the object.
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The range image is recorded as a perspective view of the scene

viewed from the sensor. The ordering or the neighborhood pixel rela-
tionships of the range image is defined in a sensqr-centered coordinate
system. The coordinate transformation discussed in Section 2-1
transforms the range image into 3-D surface data in an object-centered
coordinate system and thus removes this specific ordering and permits
effective manipulation of 3-D data. Projection image generation is a
good example of reordering these surface data points to form useful new
images. Gross object features and major object structure can be

extracted from projection images.

One of the most important pieces of information about the object in
the scene is its orientation. This information is not directly avail-
able from the range image. However, with a specific ordering according
to the x and y coordinates of the surface data, i.e., a ground projec-
tion, we can estimate the object orientation easily. Figure 3-¥ is th#
projection of the object segment in Figure 2-4 onto the ground plane.
The jump points in the upper left side of the ground projection image
are caused by the split of the scanning laser beam on the object boun-

dary points. These error points can be eliminated by checking the con-

nectivity of the object segment. The connectivity algorithm removes
isolated points in the object segment according to their 3-D coordinates
5 ;i based on the assumption that the object is 3-D connected and a single

P jump point must be due to noise. The ground projection of the refined

object segment is shown in Figure 2-6. The ground projection image pro-

vides the top view of the object that is not available from the sensor

position. However, this is only a partial top view. The occluded part
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Figure 2-5 Ground Projection Points of Decoy




Figure 2-6 Refined Ground Projection of Decoy
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of the object seen from the sensor will not appear in the projection
image. Therefore, in Figure 2-6, we are more certain about the object
length direction than the object width direction. The occlusion problem
has to be resolved by a higher level model prediction system, and the
occlusions in the projection image may put back-constraints om the

model.

Because the imaged targets are vehicles whose shape is known (i.e.,
they are usually elongated), the orientation of these objects can be
obtained by finding the orientation of the most elongated bounding rec-
tangle on those ground projection points as illustrated in Figure 2-7.
The length and width estimates of the object are equal to those of the
bounding rectangle. In Figure 2-6, the object orientation estimate is
45 degrees with respect to the x-axis in the world coordinate system.
The length estimate is 199, and the width estimate is 55.86 where each
resolution unit is 2 inches. Due to the object-self-occlusion along the
width direction, we are not certain about the width estimate. This fact
is included in the rule-based interpretation system in that we allow a
larger tolerance for object width in feature-to-model matching. Note

that the actual measurements for scene geometry (e.g., lengths, widths,

o oo

3 heights, etc.) are available from surface data and can be compared

Ef directly to similar parameters of an object model.

Tha

tj,;- Other important characteristic views can also be obtained from pro-

S

t? jections. For example, we can project the surface data to the plane

Ei ;i defined by the orientation of the object and the z-axis to obtain the

i. side view of the object. Figure 2-8 is the side view projection of the
25
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Figure 2-7 Bounding Rectangles for Orientation Estimation




object segment in Figure 2-3(a). Much structural information not avail-

able from the sensor position shows up in this side view projection.

Figure 2-9(a) is the synthetic range image of a missile launcher.
Figure 2-9(b) is a drawing of a missile launcher. It is difficult for
human analysts to determine whether this object is the same object as in
Figure 2-3(a) or not. Figure 2-10 is the side view projection of the
object segment in Figure 2-9(a). Unexpected structures are revealed in
this side view picture and are very useful for target classification.
For simple objects, the orientation and the characteristic side views

may be sufficient for object recognition and manipulation.

This suggests a simple 3-D recognition scheme; that is, we only
store two characteristic views (ground projection and side view projec-
tion) as the model images, and compare the projection images generated
from 3-D surface data to the model images. However, this scheme does
not work for complex objects and situations where severe occlusion

occurs.

The projection points are unstructured. A binary image or even a
range image can be formed from these data. Figure 2-11 is the binary
image formed from projection points in Figure 2-8. To get this picture,
we first define a sampling distance Ds on the projection plane. A reso-
lution cell is a Ds by D, square. If a certain number of points fall
inside a resolution cell and its 8-connected neighboring cells, the
center cell is set to one, otherwise set to zero. This procedure

creates a silhouette projection image of the object from a new viewing
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Figure 2-9 Range Image of a Missile Launcher
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Figure 2-10 Side View Projection Points
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Figure 2-11 Side-View Projection Image of Decoy
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position. The range image seen from this new position can glso be gen-
erated by a hidden point elimination algorithm similar to the z-buffer
algorithm [Newman, Sproull-73] used for hidden surface removal. Essen-
tially, for each resolution cell and its 8-connected neighboring cells,
we keep a record of the closest data point from the new viewing position

and the resulting image is the side-view range image.

Projection images provide important information about the object
that is not directly available from the range image. Standard image
analysis algorithms for binary images can be applied to these projection
images to extract gross object features at the object level. The same
techniques can also be used at the component level for component orien-
tation estimation, length and volume estimation, and major structure

identification.

2.4 3-D PHYSICAL EDGE DETECTION

The feature extraction techniques discussed in the last two sec-
tions extract gross features at the object level, and are useful for
object orientation estimation and major structure identification. How-
ever, they do not provide intermal object component structure and fine
details which are of critical importance for complex 3-D object recogni-
tion. In this section, we introduce a physical edge detection technique
for extracting fine edge features. These low level edge features are

the primitives in goal-directed shape feature extraction.
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2.4.1 Occluding Edge Detection

Physical edges such as occluding, convex, and concave edges that
are not distinguishable in an intensity image can be extracted from a
range image directly. Past work on 3-D edge detection concentrated on
jump boundary extraction. These jump boundaries correspond to large
range discontinuities caused by object occlusion and can be easily
extracted from the range image. However, jump boundaries are also
regions subject to large measurement errors due to the splitting of the
scanning laser beam across occluding boundaries. Although this will
only introduce one or two pixel error in the range image, it causes
large errors in 3-D coordinates and restricts the use of 3-D position
and orientation of the occluding boundaries. A more reliable way to
extract/calculate the occluding exterior boundary of an object is to
trace the boundary of the extracted object segment. Since the conmec-
tivity analysis has been performed on the segmented object, large error
points have been removed and we have more confidence in the 3-D edge
information. Figure 2-12 is the exterior boundary obtained from the
refined object segment (after the comnectivity test) in Figure 2-4 by a
boundary tracing algorithm [Rosenfeld, Kak-76]. This boundary contour
only describes the exterior occluding edges between the object and back-
ground. Another type of occluding edge that occurs inside the object
segment is called an interior occluding edge. Interior occluding edges
are due to object self-occlusion at the component level (e.g., one com-
ponent o;cludea another). There are two advantages to explicitly dis-
tinguishing these two types of occluding edges. First, the interior

occluding edges usually have smaller range jumps and we need to use a
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smaller threshold for edge detection. Second, the exterior occluding |
segments are global features at the object level while the interior
occluding segments are features at the component level. To distinguish
features at multiple levels can facilitate and hasten the feature to

model matching process.

In the world coordinate system defined in Figure 2-2, if the
azimuth scanning direction of the sensor lies roughly along the x axis
direction, then the x coordinate values of the range image have more or
less uniform sampling distance. The y and z coordinates vary according
to the spatial detail of the object. The large range discontinuity is
the result of occlusion or range shadow casting as illustrated in Figure
2-13, where the z difference is the reason for occlusion. This suggests
that the interior occluding boundaries can be extracted from large
differences of z or y coordinates instead of the range difference. Thus
occluding edges can be extracted from surface data instead of the range
image and are more closely related to the physical properties of the
object. The importance of this direct physical relationship becomes

more clear for concave and convex edge detection.

2.4.2 Concave and Couvex Edge Detection

There are certain invariant properties of shapes that are in gen-
eral independent of the sensor position. For example, three collinear
points in 3-D space will be collinear in the 2-D projection images
viewed from different positions. This invariant property of the col-

linear relationship is a singular case of a more general invariant
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Figure 2-12 Exterior Boundary Obtained by Applying the
Boundary Tracing Algorithm to the Decoy Image
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property of concave and convex angles. Assume that we have three points
in the y-z plane as illustrated in Figure 2-14. The two vectors a(k-1)

and b(k+l) are defined as
a(k-1) = r(k-1) - r(k) and b(k+l) = r(k+l) - r(k)

where r(k) is the position vector of the center point. The order of
these vectors has been defined, and a(k-1) is the first vector, b(k+l)
is the second vector. The direction of the cross product a(k-1)*b(k+l)
will be pointing in the positive x direction if the counter clockwise
angle from a(k-1) to b(k+l) is between 0 and 180 degrees; i.e., a convex
angle. On the other hand, for a concave angle where the counter clock-
wise angle from a(k-1) to b(k+l) is between 180 degrees and 360 degrees,
the direction of a(k-1)*b(k+l) will be pointing along the negative x
axis. This property is invariant as long as the viewer is in the posi-
tive x half-space. Thus convex angles and concave angles have different
polarities and can be determined once we define our relative viewing
position (the particular half-space). Although the apparent angle
between these two vectors projected on an image plane will vary accorde
ing to the plane orientation, it will not exceed 180 degrees if it is a

convex angle in the 3-D space. That is, a convex angle in 3-D will

always appear to be nonconcave in 2-D images. Similarly, a concave
angle in 3-D will always be a nonconvex angle in 2-D images. The singu-

- lar case (180 degrees) occurs when the viewing position is on the y-z

plane. Figure 2-15 shows the region of the apparent angle on the image
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plane for determining 3-D convex and concave angles.
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— Figure 2-14 Convex and Concave Angles Calculation
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Figure 2-15 Region Diagram of Convex and Concave Angles
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From the above discussions, it is clear that the extraction of con-
vex and concave edges from range images can be done by calculating the
polarity of the data. The polarity information is sufficient to distin-
guish between convex and concave edges, but it is not a physical quan-
tity that directly related to the physical properties of the object.
Here. we calculate the physical angle of three surface data points along
a specified direction. For example, let the surface data of a range
image at pixel (i,j) be r(i,j). The distance from the sensor to the

object point is |{r(i,j)!l. If the column direction is chosen, the vec-

tors a(k-1) and b(k+l) are defined as

a(k-1) = r(i-s,j) ~ r(i,j) b(k+l) = r(i,j+s) - r(i,j);

where s is the step size. The step size is chosen according to the

image resolution and the amount of noise in the range image. The physi-

cal angle between a(k-1) and b(k+l) can be determined from their inner
t; product and cross product. Those points with concave angle (180 to 360

degrees) are candidates for concave edges. To avoid the singular case
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(edges along the column direction), we need to calculate the edge angle

angle image of Figure 2-3(a) along the column direction with step size

Ef'.ﬁ along the row direction. From the invariant property of convex and con-
;:; - cave angles, the two physical edge angle images along column and row

Ff = directions are sufficient to detect convex and concave edges. The thres-
L -

b{; hold for physical edge detection corresponds to a physical quantity

;;i ;; (i.e., edge angle) of the object. Figure 2-16 is the physical edge

24
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equal to 2. The edge angle is between 0 and 360 degrees, and the inten-

sity of the image is proportional to the edge angle. Bright edges are

(

concave edges which usually occur at the junction of two object
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components and are of fundamental importance for segmenting complex
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! objects into simpler components. Figure 2-17 is the detected concave
i}g - edges of Figure 2-16 with threshold equal to 220 degrees.
ii ' The physical edge angle image also provides local surface orienta-

tion information. Instead of thresholding for convex or concave edge
detection, we can merge connected points with physical angle close to
m 180 degrees to extract a planar surface. A curved surface such as the
cylinder on top of the vehicle platform in Figure 2-3(a) will show as

connected points with their edge angles clustered in a convex angle

region. Thus our 3-D edge feature extraction algorithm is not only use-
ful for physical edge detection, but also suitable for surface recon-

struction.

2.4.3 Linear Feature Extraction

The detected edge points in Figure 2-17 are clustered and require
edge thining. The edge thinning algorithm we used is similar to the
Nevatia-Babu edge detector [Nevatia, Babu-80] and it proceeds as fol-
lows: If the edge angle at the pixel is larger than the edge angles of
its two neighbors in a direction normal to the direction of the edge,
then the edge point is considered to be present at the pixel. The

thinned concave edges of Figure 2-17 are shown in Figure 2-18. The next

step is to link the edge points into an edge segment. Finally, each
EE - edge segment is approximated by piecewise linear segments. This is
;i accomplished by using the well-known recursive line fitting algorithm

[Duda, Hart-73]. This algorithm proceeds recursively in approximating a
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Figure 2-17 Concave Edge Detection with Threshold Equal to 220°
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Figure 2-19 Recursive Line Fitting for Occluding and Concave Edges
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segment by joining the end points and then dividing the segment into two
segments at the point where the original segment has maximum deviation
from the data. This process is repeated until all the segments fit
vwithin the threshold. Figure 2-19 shows the results of applying the
recursive line fitting algorithm to the exterior occluding boundary (in
solid-line) of the object segment and the concave edge segments (in
dashed-line). Note that the cylinder on top of the vehicle platform is
bounded by occluding and concave edge segments and can be extracted by a
cylinder extraction algorithm. These physical edge segments are inputs
to a high level cylinder extraction algorithm for segmenting complex

objects into simpler components.




3. MODEL-BASED INTERPRETATION

The task of 3-D object classification is one of comparing image
features extracted from the laser imagery with object models. Much of
the vork in computer vision is based on trying to extract image features
without any a priori knowledge of the object model. This approach faces
the difficult problem of developing a meaningful interpretation based on
image features that are ambiguous and incomplete due to inadequate
feature extraction processes. Furthermore, the inherent ambiguities of
perspective projections and occlusion prevent this data-driven approach

from always making a unique interpretation.

A more powerful approach is to make use of "higher level" informa-
tion to aid in the image feature interpretation process. This higher
level knowledge can be any information that reduces the ambiguities of
the feature extraction process. It can take many forms including con-
textual information about what is in the scene, or pre-developed com-
puter models stored in the system to help determine the position or
location of image objects. This approach is known as the model-driven

approach, and in this research, a largely model-driven interpretation is

undertaken.

The model-driven approach involves:

(i) developing computer models of a set of objects that are likely

to appear in the image
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(ii) developing techniques for predicting the appearance of the
objects (or portions of those objects) in a given view or situa-

tion

(iii) developing techniques for associating these predicted features

with features extracted from the image.

Sections 3.2, 3.3, and 3.4 deal with these topics. Section 3.l

discusses the general approach and interactions in more detail.

The model representation is based on the concept of generalized
cylinders which represent objects as volume primitives. These primi-
tives can be hierarchically organized to provide alternative levels of

detail in prediction and interpretation.

The image feature-to-model matching process predicts invariant
image features and the appearance of the modeled object in the range
image with a rule-based prediction system. Typical predictions include
information about physical edge types (occluding, convex, or concave
edges), shapes (length, cylinder contour), linear segment relations
(parallel, collinear, conmectivity, angle), and possible shape occlu-
sions. The model predictions guide the feature extraction process by
providing guidelines for extracting the most useful image features to
match the model, and are critical to interpreting partially occluded

shapes.
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The interpretation process compares the extracted image features
with the object model according to a set of rules and produces a “good-
ness" measure of how well the two features match. The feature-to-model
matching can occur on multiple levels (for example, from the edge seg-
ment level, component level, a;d object level up to the contextual
level). The spatial relationships between locally matched features are
checked for global consistency. Because the prediction and interpreta-
tion rules are domain independent (they operate on any model in a gen-
eralized cylinder form), our system is applicable to various 3-D clas-
sification problems such as vehicle classification, ship classification

and robot vision.

3.1 OVERVIEW OF 3-D FEATURE-TO-MODEL MATCHING

The feature extraction techniques discussed in Section 2 extracts
3-D physical features from the laser range image. Once such feature
descriptions are available, the recognition problem of intelligently
interpreting these descriptions in terms of the object instance still
remains. Instead of directly matching the low level laser image
features with possible object models, the feature-to-model matching can
occur on multiple levels (e.g., the object level, the component level,
the edge segment level). Figure 3-1 illustrates this multi-level match-

ing process.

The proposed multi-level matching can be either data-driven or
model-driven, or a combination of the two. The data-driven approach

proceeds by first extracting image features such as edges from laser
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imagery, then grouping them into higher level features (e.g., cylinder
contours), and finally matching these multi-level features to the object
model. In general, the data-driven process requires extemsive inferenc-
ing capability to resolve ambiguities caused by occlusion and error-
prone image descriptions. A typical problem is how to associate edge
segments into the contour of a cylinder based on incompletely detected
edge segments. Partial occlusgion makes this problem more difficult.

The model-driven approach on the other hand predicts the appearance of
the object in the image from the model, then a goal-directed feature
extraction process tries to fit the low level image features to the
prediction. In general, a model-driven approach can be more reliable
and robust, and it uses knowledge of the model and contextual knowledge
of the situation. However, the model-driven approach is inefficient for
situations where the class of objects is large (especially if little

contextual or collateral information is available).

As indicated above, the processing control can be either data-
driven or model-driven. To avoid the inefficiency of the model-driven
approach and the ambiguities associated with the data-driven approach,
we use a combination of the two. A typical processing example proceeds
as follows: An input laser range image is presented to the system.
Initial feature extraction algorithms are used to extract an initial set
of both low-level and global image features (e.g., physical edges,
planar and curved surfaces, projections). This is accomplished without
using model knowledge. The global image features (e.g., overall length,
orientation, etc.) are compared with the coarsest level of the object

model to eliminate unlikely object classes. Then the system searches
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for a single best-fit cylinder from the detected edge segments using
some heuristic rules. If this is successful, the properties of the
extracted cylinder (e.g., length, width, volume) and its relative posi-
tion and orientation with respect to the object coordinate system are
used to prune the set of likely models. Component occlusion rarely
causes any problem in extracting the first cylinder because at least one
cylinder is not occluded. In most situations, the properties of the

first cylinder are sufficient for object classification.

At this point (regardless of whether the first-cylinder extraction
is successful), the system switches to a model-driven mode to guide the
search for high level symbolic features using model predictions and low
level image feature data. Predictions such as physical edge types, col-
linear and parallel relations, cylinder contours, and spatial relations
between cylinders are generated from object models. Higher level sym-
bolic features are formed from low level features according to these
predictions, and compared with the object model. Incompatible features
can generate negative likelihood factors to reduce our confidence in the
hypothesized object. Locally matched features are checked for global
congistency. Figure 3-1 shows this multi-level image feature-to-model

matching and the control flow of the system.

3.2 3-D OBJECT MODEL REPRESENTATION

There are basically two types of representation for 3-D shape
recognition: wvisible surface representation and volumetric representa-

tion. The coordinate system used for visible surface representation is
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viewer-centered, and locations are indicated relative to the viewver.
The visible surface representation uses the same types of features as
are available in an image and thus provides direct matching capability
between model and image features. However, a viewer—centered represen-
tation depends on the orientation of the object, and thus requires an
enormous number of descriptions for different possible viewpoint posi-
tions. The volumetric representation, on the other hand, uses an
object-centered coordinate system and is viewpoint-independent. The
primitive elements of a volumetric representation are based on more glo-
bal geometric features such as volumes and cylinders rather than on
cumbersome surface details. Since the emphasis of our 3-D object clas-
sification system is to classify objects from various viewpoints, a

volumetric representation is more suitable.

The volume primitives we use are generalized cylinders [Agin,
Binford-76]. A generalized cylinder is defined by a space curve, called
the axis, and planar cross-section functions defined on the axis. Fig-
ure 3-2 shows examples of typical generalized cylinders. A more complex
object (e.g., a tank or missile launcher) is represented in terms of a
set of individual cylinders and their spatial relationships to each
other. Generalized cylinders are natural representations of elongated
shapes which are common in the vehicle targets we are trying to clas-
sify. The shape of an object is represented in terms of its distinct
components. Both the properties of individual components and their spa-
tial relations are specified for recognition purposes. This model
allows segmentation of a complex object into simpler components. The

3-D object model can be represented at several levels of coarse to fine
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Figure 3-2 Examples of Generalized Cylinders
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detail in a hierarchy. This allows for successive levels of increas-
ingly refined analysis. The first level corresponds to the coarsest
information of the object. For example in Figure 3-3, the tank is
modeled at the top level as a single entity (a box). This top level
representation gives global coarse information such as the orientation,
volume, height, length and width of the object. At the next lower
level, the tank is made up of several major components (gun barrel, gun
turret and platform). The locations of components and their spatial
relations are defined in the object coordinate system at the next higher
level (the top level in this case). Each component has its own local
coordinate system and is in turn made up of several smaller components.
This hierarchical reprececitation with coarse to fine details enables
successful refinement of analysis «nd also provides a prediction genera-

tion mechanism at multiple levels.

The compouents in the same detail level may vary in importance for
recognizing the object. For example, the gun barrel of a tamnk is unique
in vehicle models and provides sufficient evidence to distinguish a tank
from a truck or other vehicles. Therefore, to recognize a tank, we may
first look for the gun barrel in the image. This kind of knowledge is
explicitly implemented in our object models by using a model priority
index. Another kind of compoment priority index is determined by the
geometric properties of each cylinder. For example, elongated com-
ponents and large components show distinct cylinder properties and are
easy to distinguish from other components. These distinguished pieces
can be used similarly for model selection. The model priority index is

viewpoint-independent and provides a mechanism for efficient model
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access and selection. However, this index does not give us any informa-
tion about the visibility of the component or the ease of cylinder
extraction. Therefore, it provides only part of the information needed

to select the appropriate feature to extract.

Shapes that are occluded or have low contrast in terms of the sen-

sor are generally more difficult to extract from images. Hence an

f_
iii o obscuration priority index has also been introduced to represent the
- occlusion and visibility relations among components. This index depends
: on the viewpoint and indicates an order for cylinder extraction based on
is' relative computational simplicity. In our model-driven system, the

obscuration priority index allows us to extract a totally visible

cylinder first for reliable analysis. This will be discussed in more

detail in Section 3.3.2.

As was discussed in Section 2, physical edges such as occluding,
convex and concave edges can be distinguished in the range image. The
prediction of the physical edge types of a cylinder contour strongly
constrain the possible interpretations of each edge segment. Hence our
models should facilitate prediction of the physical edge type. To do
this, the attachment relations between cylinders in the object are
explicitly specified. The convex edges correspond to the internal edges

of cylinders, and thus are not useful for segmenting a complex object

into simpler components (cylinders). The occluding edges occur at the

l;]'* occluding boundaries of a cylinder that are not attached to any cylinder
E; ;5 in the model. The concave edges correspond to the occluding boundaries
L" ——
o of a cylinder that is attached to another cylinder. These relationships
b
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are useful for physical edge type prediction and will be discussed in

more detail in Section 3.3.°

Figure 3-4 shows models of a missile launcher and a decoy. Due to
the relatively low resolution of the air-to-ground laser imagery used
for these examples, two levels of detail are adequate for target clas-
sification (additional levels can be used in higher resolution imagery).
Figure 3-5 gives an example of the information stored in the decoy

model.

3.3 PREDICTION

Prediction is the process of making estimates about the image
appearance of image objects using volumetric models of the object and
given some information about the objects” relative position, orienta-
tion, and shape in the image. Predictions first give guidance to low
level image feature extraction processes for goal-directed shape extrac-
tion; then they provide mechanisms for feature-to-model matching and
interpretation. The best features for prediction are those invariant
features that will always be observable in the image independent of the
object’s orientation and sensor position. Examples of these invariant
features in range imagery are physical edge type (i.e., occluding, con-
vex, concave), surface type (planar, curved), collinear and parallel
relaticns and connectivity. Some invariant fesatures are also indepen-
dent of the class of objects modeled (e.g., parallel, collinear rela-
tions) and thus provide data-driven capability and improve the effi-

ciency of sn object classification system.
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The prediction process proceeds in a top-down fashion. Various
rule-based prediction algorithms developed for different levels are dis-

cussed in the following subsections.

3.3.1 Context Level Prediction

The context level prediction suggests relationships among objects
in the scene. For example, tanks usually form a group and appear
together. The classification of one object in the scene as a tank may
easily generate a contextual prediction about the object next to it
(e.g., another tank). Context level prediction provides strong condi-
tions for searching and verification. This level of prediction is not
implemented in our system, because the provided laser imagery used in
this research contains only single vehicles and has little textual

information.

3.3.2 Object Level Prediction

The object level predictions provide global object features and
spatial relations among object components viewed from the sensor. Exam-
ples are the symbolic description of the object contour in the image,

the spatial relationships between object components and the occluding

relations among object components.

The occluding object contour can be predicted once we know the sen-
sor position and the object orientation. In the range image, the object

contour can be extracted from range jump boundaries or the object
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segment obtained from object-ground segmentation. Object classification
can be performed by matching the extracted object boundary with the

' ll model prediction. However, this method only works for cases without
object occlusion and when the objects considered have distinct boundary
contours. For example, a missile launcher and a decoy are vehicle
objects modeled in this research that have similar occluding contours
when viewed from certain directions. These objects can only be classi-

o fied according to their internal components” structure.

The model priority index discussed in Section 3.2 is a viewpoint-
independent description of the importance of each cylinder for object

(o] recognition. Some components may not be visible in the range image due

to self-occlusion. Since distinguished components (e.g., the gun barrel

of a tank) may not be visible and occluded shapes are generally diffi-

-8 R P
‘l ." . ‘l" \'l' .-
PR

i R

Ii cult to extract, we need to have a viewpoint-dependent obscuration
priority index to indicate the ease of cylinder extraction in the range
image. The obscuration priority index is similar to the priority algo-

h . rithm [Newman, Sproull-73] used for hidden surface elimination. The

idea is to arrange all cylinders in the scene in priority order based on

their depth and obscuration relations. Cylinders nearer to the

viewpoint and not obscured by other cylinders will have higher priority

T indices. Cylinders that are totally obscured are explicitly indicated,

RAARA PN
F
[ 1

and no effort is spent trying to find them in the range image. This

s
»

“w obscuration priority index is purely geometrical and determined from the
object orientation and viewpoint. The combination of model priority
i index and obscuration priority index gives a new priority order that not

I only indicates the importance of a particular cylinder for object
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recognition, but also compares the ease of cylinder extraction in the
range image. We currently use the obscuration priority indgx as the
base index for cylinder extraction and matching. If two iglinders have
the same obscuration priorities (they don“t obscure each other), then i
the model priority indices are compared. In general, the priority index
is valid for an interval of viewing angle and thus can be used based on

rough object orientation estimates.

The structural relationships among object components are the basis
for object recognition. The object level prediction indicates relation-
ships between object components. The nodes contain both 3-D properties
of each cylinder (e.g., volume, 3-D relative position and orientation in
the object coordinate system) and their 2-D image properties (e.g.,
cylinder length, width and visibility). The arcs specify the spatial
relations between cylinders (e.g., connectivity, obscuration, support
and relative angle). The object prediction information is used for glo-
bal structure matching after we extract and analyze the individual

cylinders of an object.

3.3.3 Cylinder-level Prediction

Cylinder-level predictions provide goal-directed guidance for
cylinder extraction from low level image features. This is the most
important prediction level in our system because cylinders are the basic

symbolic primitives we use to perform image feature-to-model matching.
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:_ - A generalized cylinder is hierarchically characterized by first
N defining its axis and then the cross-sections along the axis. For the
II man-made vehicle objects we are trying to classify, the cylinder axis is

a generally straight line segment, and the cross-sections are generally
Pk uniform and at most linearly varying. At the cylinder level, we predict
the shape of a cylinder in the range image. Due to the internal struc-
- ture of the objects we modeled and the general air-to-ground imaging
geometry, only a few cylinder contours will be totally visible
(cylinders with a high obscuration priority index), and most cylinders
l& :3 are partially obscured. The prediction of occluded cylinder contours in
the image can be generated by polygon clipping algorithms [Weiler,
. ] Antherton-77]. 1In this case, the cylinder extraction process guided by
¥ - predictions corresponds to finding a complete, closed polygon (or
several polygons) from the detected edge segments. This polygon match-
™ ii ing approach is cumbersome and difficult because of complex shape match-
- ing and possible missing edge segments. Here, cylinder level prediction

is accomplished by using a hierarchy in defining generalized cylinders.

] The properties of the two cylinder boundaries along the cylinder axis

. are first predicted. These predictions include parallel relatioms

o
(BN

‘el
)
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(relative angles ‘n general), physical edge types (concave, occluding),

length, distance between two segments, missing parts due to occlusion,

XD |

-f
i

and collinear relations between disjoint segments. These predictions

are sufficient to guide the coarse extraction of cylinders. After

AN A A

extracting the two cylinder boundaries along the axis, other boundaries

. :‘j E Sttt
o

on the cylinder contour can be predicted in limited regions relative to

the two major boundaries, and heuristic rules can be used to comstruct

G AL A A g
v e e
ST

the cylinder contour from incomplete edge segments.
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3.3.4 Surface-level Prediction

Surface-level predictions provide the cylinder surface appearances
and their spatial relations in the image. Due to the low resolution
nature of air-to-ground laser imagery, surface properties are not easy
to extract and to use (sometimes a single surface patch only has a few
points). However, for industrial applications where high resolution
range images are available, surface level predictions impose strong con-
straints on cylinder extraction. The physical edge angle images dis-
cussed in Section 2 can be used for planar and curved surface extrac-
tion. These surface primitives can then be grouped together to form a

cylinder according to surface level predictions from the model.

3.3.5 Edge Level Prediction

PN DN Set)
B A
Bt .
i

F ! Edge-level predictions assign physical edge types to each edge seg-
\ ment and thus strongly constrain the possible interpretation of each

g ; edge segment for cylinder contour extraction.

Prediction of the physical edge type of a cylinder contour is made

Vt.'z: possible by explicitly specifying the attachment relations between

- cylinders in the model. For example, if cylinder A is supported by

. cylinder B, the two touching faces of the cylinders are explicitly
labeled in the object model. The occluding edge type is predicted for
those cylinder contour segments that do not belong to a labeled face.
The concave edge type is predicted for those segments that belong to a

labeled face, and are inside the other surfaces with the same label.
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The convex edges correspond to the internal edges of cylinders, and thus
are not useful for cylinder extraction since we don“t use surface level
predictions. The physical edge type limits the search space for
cylinder grouping, but more importantly, it can be used to verify the
correctness of the extracted cylinder. Therefore, we have more confi-
dence in the cylinder extraction because not only the geometric proper-
ties of edge segments are used, but also the physical properties of edge

segments are examined.

3.4 INTERPRETATION

Interpretation proceeds by comparing the image features on multiple
levels to the object models according to a set of if-then rules (a pro-
duction system). Each rule for comparison produces a "goodness" measure
of the system’s confidence in how well the two features match. If a
single object model has a much larger likelihood than others, the target
in the range image is classified as an instance of that object. Besides
the classification of the object, object position and orientation infor-
mation are also available and can be used for higher level scene

interpretation.
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1.

2.

3.

4.

...................

OBJECT LENGTH

If FEATURE_LENGTH > MODEL_LENGTH + DELTA  or
FEATURE_LENGTH < MODEL_LENGTH - DELTA
then  -0.5
else 0.5 (1 - |FEATURE_LENGTH - MODEL_LENGTH| )
— ‘ MODEL_LENGTH

OBJECT WIDTH

If FEATURE_WIDTH > MODEL_WIDTH + DELTA or
FEATURE_WIDTH < MODEL_WIDTH - DELTA
then -0.5
else 0.5 (1 [FEATURE WIDTH - MODEL_WIDTH| )

~ MODEL_WIDTH

OBJECT HEIGHT

If FEATURE_HEIGHT > MODEL_HEIGHT + DELTA or
FEATURE_HEIGHT < MODEL_HEIGHT - DELTA
then -0.5
else 0.5 (1 - |FEATURE HEIGHT ~ MODEL HEIGHTI

~ MODEL_HEIGHT

MINIMUM HEIGHT POINT LOCATION

1f NUM.MODEL_MINHEIGHT REAR > Q and
NUM.FEATURE_MINHEIGHT REAR > 0
then 0.5
else -0.5

Figure 3-6 Sample Set of Interpretation Rules
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5. FRONT EXTREME POINT HEIGHT
If FEATURE_FRONTEXTREME_HEIGHT > MODEL_FRONTEXTREME_HEIGHT + DELTA

FEATURE_FRONTEXTREME_HEIGHT < MODEL_FRONTEXTREME_HEIGHT - DELTA
then -0.5

| FEATURE_FRONTEXTREME_HEIGHT - MODEL_FRONTEXTREME_HEIGHT )

else 0.5 (1 -
MODEL_FRONTEXTREME_HEIGHT

6. REAR EXTREME POINT HEIGHT
If FEATURE_REAREXTREME_HEIGHT > MODEL_REAREXTREME_HEIGHT + DELTA

FEATURE_REAREXTREME_HEIGHT < MODEL_REAREXTREME_HEIGHT - DELTA

then -0.5

| FEATURE_REAREXTREME_HEIGHT - MODEL_REAREXTREME_HEIGHT|)

else 0.5 (1 -
MODEL_REAREXTREME_HEIGHT

Figure 3-6 Sample Set of Interpretation Rules (Continued)
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EN The set of rules for interpreting image features in terms of models
II can be classified into two classes according to the level of detail they
compare. The first class of rules looks for general features and global
.. :' characteristics; i.e., the object level features such as the object
length, width, and height. Since the 3-D surface data can be obtained
from the range image through a coordinate transformation, the actual
length measurements are available and can be compared directly with the
model parameters. A typical rule for object length matching is shown in
o 2 the first rule of Figure 3-6. The rule assigns a negative likelihood to
models that exceed the tolerance interval DELTA and prunes these objects
¥ ;; from further consideration. For those object models within the toler-
SO ance interval, the rule returns a likelihood value as the goodness meas-
ure. Another set of general features is the extreme positions of the
: ii image object. For example, the lowest components of a truck are its
;f wheels. Therefore, from a thin cross-section slice of the target, a
segment with low z value (elevation) will probably show the wheel posi-
tions relative to the overall object length. The fourth rule in Figure
o 3-6 is one example. Other extreme positions such as the heights of the
e front and rear points of the side-view projection image can also be used
> for comparison. These extreme position rules usually pinpoint the end
positions of cylinders and check for general structural features, and
can be valuable even for partially occluded objects. Note that these
- rules are domain-independent and are derived from the object models.
Since we are not sure which end of the image feature is the vehicle
-2 front, we need to hypothesize two possibilities (front and rear), and
1 E} the results of an extreme positions match usually prune some more

unlikely models and resolve the front-rear ambiguities.
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The second class of rules compares finer object details at the
cylinder level. The system first tries to extract a single cylinder
from range image by some heuristic rules and predictions of invariants
(e.g., antiparallels, angles). Once a cylinder is extracted, its 3-D
properties (length, width, length, and volume) and relative position and
orientation in the object coordinate system are compared with the model.
These cylinder level features not only provide finer detail for feature
to model matching, but also put strong constraints on the internal
structure of the object. These constraints are often sufficient to make

a unique interpretation of the image.

3.5 PROCESSING EXAMPLES

To assess the feasibility and capability of rule-based interpreta-
tion for classifying vehicle targets from extracted 3-D features, a sam-
ple set of rules was developed and tested on extracted image feature
information obtained using the techniques described in Section 2. Fig-
ure 3-6 represents this set of rules. They are not meant to be
comprehensive, just representative. The rules are applied in sequence
according to the rule number. This sequential process is used to prune
possible models at the early interpretation stage with the most impor-
tant features and resolve the object front-rear ambiguity in the begin-

ning of analysis.
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A laser range image of a decoy was processed using the sequence of
analyeis steps shown in Figure 2-1. A summary of the extracted feature
information is shown in Figure 3-7. The rules in Figure 3-6 were then
used to compare this extracted feature information about the decoy with
two vehicle models. These were a decoy and a missile launcher. They
are chosen because their similarities in size and structure make the
selection and correct classification a non-trivial task. The relevant
model information for these two objects is obtained from their volume

models and is shown in Figure 3-8.

The results of applying the rules in Figure 3-6 to these vehicle
models are shown in Figure 3-9. The first three rules check the object
length measurements and the system prefers the decoy slightly. No clas-
sification can be made at this stage. Rules &4 to 6 check the general
features of each model and try to resolve the object front rear ambi-
guity. Rule 4 compares the relative positions of object points with the
minimum z coordinate and gives likelihood values to the front and rear
hypotheses of the same object. Both the missile launcher front and
decoy front are favored because the bottom points are on the rear part
of the segmented ohject and the model wheels are on the rear part of the
vehicle. Rule 5 and Rule 6 check the height (z coordinate) of the

extreme points (front and rear) to figure out major structural differ-

= ences. Note that we used the relative z coordinate difference between

the extreme points and the maximum z coordinate value of the segmented
object, because we are not certain sbout the ground level. The rule
matching results apparently favor the decoy model with the model front
corresponding to the feature front. Reasonable classification is

achieved at this level.
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v

- !. OBJECT ORIENTATION = 45 degrees |
L OBJECT LENGTH = 199.24 |
B 0BJECT WIDTH = 55.86

N = OBJECT HEIGHT = 38

MINIMUM OBJECT POINT HEIGHT = 10

- MAXIMUM OBJECT POINT HEIGHT = 48

NS MINIMUM HEIGHT POINT RELATIVE POSITION

N IN SIDE-VIEW PROJECTION

™

= 2 at rear (from 60 ~ 100%) of vehicle

positions (along the vehicle length direction): 152.83, 156.66

EXTREME POINTS (FRONT-REAR) HEIGHT
IN SIDE-VIEW PROJECTION
o n = front extreme has height 24

rear extreme has height 21

(Resolution: 2 inches per unit)

- : Figure 3-7 Extracted Feature Information from Decoy Image




c MODEL INFORMATION
- RULE MISSILE LAUNCHER DECOY
N
K 1. OBJECT LENGTH 225 195
2. OBJECT WIDTH 48 56
3. OBJECT HEIGHT 60 47
4. MINIMUM HEIGHT MIDDLE (40-60%), REAR (60-100%)  REAR (60-100%)
POINT LOCATION
. & 5. FRONT EXTREME 12 25
| POINT HEIGHT (measured from the top of the (measured from the
L missile launcher) top of the decoy)
SO 6. REAR EXTREME 25 25
3 POINT HEIGHT (measured from the top of the (measured from the
. missile launcher) top of the decoy)
S RESOLUTION: 2.0 inches per unit
"
AT Figure 3-8 Relevant Model Information
;3
o 73
f-

PO T LR S S S .t . L. .
Yl e et S demne S S o Sl A e S e S o B WA TIE VN S SRS AU Wi WA SURE WU SV = P SR

A MRS MC L M R R I e v e SA M A e SRR AR A A RC RO RN MRS
P M A T - - Lo R - . L
.
)




= B O T - EORORREDA S
o
o 5 RULE MISSILE LAUNCHER DECOY
3 '_ 1. OBJECT LENGTH 0.443 0.489
~ - 2. OBJECT WIDTH 0.418 0.499
| - 3. OBJECT HEIGHT 0.400 0.489
SUBTOTAL 1.261 1.477
_ MISSILE MISSILE DECOY DECOY
e LAUNCHER | LAUNCHER | cioes AR
s FRONT REAR
:“: 4. MINIMUM HEIGHT
L= POINT LOCATION 0.5 -0.5 0.5 -0.5
T 5. OBJECT FRONT
s EXTREME POINT HEIGHT | _g.5 -0.5 0.48 0.48
3 6. OBJECT REAR
v i. EXTREME POINT HEIGHT -0.5 -0.5 0.46 0.46
. TOTAL 0.711 -0.239 2.917 1.917
B

| 1%
cH e

Figure 3-9 Likelihood Weights Associating Rules and Object Models
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I1f the gross object features and major structures do not provide

,i? = sufficient evidence for classificaiton, the system tries to extract

h finer details at the component level. Figure 3-10 is a reproduction of

e " Figure 2-19, and the occluding exterior boundaries are in solid line,

';ﬁ - and the concave edge segments are in dashed line. The cylinder extrac-
; 3; tion algorithm first finds the major cylinder boundaries along the

cylinder axis by using the prediction that these two segments will

appear parallel in the image and one of them is a concave edge. This

: és prediction strongly constrains the possible edge segments for the major
cylinder boundaries. The cylinder extraction algorithm successfully

;f }? finds that two edge segments (with labels A and B in Figure 3-10)

.i satisfy the cylinder prediction and that they have a significant amount

of overlap between them. Using these two edge segments as two sides, a

closed polygon is formed and used as an approximation of the cylinder
contour. The length, width, and height of this cylinder can be

- extracted by the same techniques used for gross object feature extrac-
- tion. Its length measurements, relative orientation and position to the

object coordinate system are shown in Figure 3-11. These features

- strongly restrict the possible object models for matching.
: E; . Another example is demonstrated using the missile launcher image in
" Figure 2-9(a). The extracted image feature information is shown in Fig-
::' B ure 3-12 and the interpretation results are shown in Figure 3-13. The

system correctly classified the image as the front view of the missile

[

. launcher. For cylinder level fine detail analysis, the exterior




Figure 3-10 Line Segments of Occluding and Concave Edges
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occluding boundaries and concave edge segments were extracted from the
image and are shown in Figure 3-14. The system successfully extracted
the cylinder bounded by edge segments A and B, but fail to extract the
major missile component due to missing edges. Future research efforts
are required to make the cylinder extraction algorithm more robust and
to allow the physical edge detector to operate in a prediction mode,

i.e., first predict missing edges then drive the edge detector to find

them.
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CYLINDER FEATURE INFORMATION

ORIENTATION = 54 degrees
RELATIVE ORIENTATION TO THE OBJECT = 9 degrees
LENGTH = 136
WIDTH = 26.48
HEIGHT = 30 (minimum height point = 18, maximum height point = 48)
RELATIVE CENTER POSITION (TO THE OBJECT CENTER POSITION (0,0,0))
= (14, 4, 4)

Figure 3-11 Extracted Cylinder Feature Information from Decoy Image
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OBJECT ORIENTATION = 54 degrees
OBJECT LENGTH = 232.12
OBJECT WIDTH = 45,60
OBJECT HEIGHT = 49

MINIMUM OBJECT POINT HEIGHT = 12
MAXIMUM OBJECT POINT HEIGHT = 61

MINIMUM HEIGHT POINT RELATIVE POSITION

IN SIDE-VIEW PROJECTION
= 3 at rear (from 60 ~ 100%) of vehicle

positions (along the vehicle length direction):

1 at middle (from 40 ~ 60%) of vehicle

position (along the vehicle length direction):
EXTREME POINTS (FRONT-REAR) HEIGHT

IN SIDE-VIEW PROJECTION
= front extreme has height 49

rear extreme has height 26

(Resolution: 2 inches per uni:)

Figure 3-12 Extracted Feature Information from

Missile Launcher Image
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RULE MISSILE LAUNCHER DECOY
OBJECT LENGTH 0.484 -0.5
OBJECT WIDTH 0.476 0.408
OBJECT HEIGHT 0.492 0.372
SUBTOTAL 1.452 0.280
MISSILE MISSILE
LAUNCHER | LAUNCHER | DECOY o
FRONT REAR
4. MINIMUM HEIGHT
POINT LOCATION 0.5 -0.5 0.5 -0.5
5. OBJECT FRONT
EXTREME POINT HEIGHT 0.5 -0.5 -0.5 -0.5
6. OBJECT REAR
EXTREME POINT HEIGHT 0.46 -0.5 -0.5 -0.5
TOTAL 2.912 -0.048 -0.220 -1.220
2 = Figure 3-13 Likelihood Weights Associating Rules and Object Models
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b
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Figure 3-14 Line Segments of Occluding and Concave Edges
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4. SUMMARY AND CONCLUSIONS

This document addresses AI&DS”s research effort to develop 3-D
object classification techniques for laser range imagery. Our conclu-
sion is that even though there are several remaining research issues,
laser range imagery does provide more useful information than intensity
imagery and it is feasible to build an automated 3-D object classifica-
tion system. The techniques which we have examined from the fields of
artificial intelligence and image understanding have shown promise of
providing assistance in achieving this goal. Techniques for extracting
3-D image features were developed and estimates of gross object features
such as object length, width, height, object orientation, and major
structure were obtained. Fine object features at component level such
as component length, width, height, and its relative orientation and
position to the object were obtained through a cylinder extraction pro-
cess based on the detected physical edges. Amn initial knowledge data
base of information about three military vehicles (i.e., tank, missile
launcher, and decoy) was developed. Prediction rules and interpretation
rules were formulated to associate the extracted image features with the
data base. Using a few synthetic range images, the rules were tested on
automatically extracted information and proper object classification was
achieved. These results are encouraging and are optimistic indications

of the potential power of the technology.

Efforts to develop and test object-ground segmentation techniques
and techniques indicate that gross object features can be obtained.

These features will also provide information to drastically prume the
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list of possible alternatives by checking the general structural
features of the models. However, some analysis of fine detail in the
image is required to classify objects with similar general structures
and to have more robust and reliable performance. The cylinder extrac-
tion technique used the model prediction rules as guidelines to extract
fine object detail at the component level (cylinders) from low level
edge features. As illustrated in Section 3.5, this fine feature usually

provides sufficient evidence to make a final classificatiomn.

The above conclusion should be considered with the knowledge that
only the laser range imagery was analyzed and no external object occlu-
sion was assumed (component occlusion by other vehicle parts was con-
sidered). In the air-to-ground laser semsor, the laser reflectance
imagery registered with the range imagery is also available. Even
though the reflectance imagery is noisy due to the coherent nature of
the laser sensor, adequate analysis based on the object-surface reflec-
tivity model can provide useful information to aid object classifica-
tion. This aspect was not discussed in our work, and it is a good
direction for future research. Another important issue is object occlu-
sion. Our gross feature extraction techniques may not provide meaning-
ful information for occluded objects. A flexible comtrol process is
desirable to bypass this useless processing and to analyze available

features (e.g., cylinder features, fine details).

AI&DS believes that with more research efforts, the construction of
an automated 3-D object classification system is feasible and in many

applications has the potential for exceeding human performances or the
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performance of other imaging sensors in classifying objects. Anm
automated system can take advantage of the rules and knowledge used by
human analysts while at the same time using 3-D information effectively
and using the more precise measurement capabilities available with a
machine. The system also has the memory capabilities to consider and
manipulate multiple hypotheses or explanations and quickly evaluate or
update them. The critical issue is the development of a more flexible

control process for bottom-up and top-down processing.

As has been mentioned above, several key research issues remain to
be explored before the development of an automated 3-D object classifi-
cation system for laser range imagery. This research has partially
addressed some of these tasks but further work is still required. These

include:

e Extraction and interpretation of finer image features

extraction of weak edge features using prediction

refinement of cylinder extraction algorithm

extension of cylinder extraction techniques to deal with par-

tially occluded cylinders

o Use of laser reflectance imagery and object surface reflectivity

model ing
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S e Development of robust interpretation and prediction rules, heuris-

tics and algorithms

e Development of flexible processing mechanisms and more sophistica-

tion control techniques

RS - effective use of combined top-down and bottom-up processing

'ij - opportunistic control to analyze available features (occlusion
g” ) case)

2

o

e

o Bl The development of 3-D object classification techniques has been an
t; . interesting and challenging effort. We gained much insight in 3-D data
?3 ' analysis. We believe that a prototype classification system should be

-— £)
8

developed and tested. Because our approach is domain-independent and

S somevwhat independent of the types of range sensor used, it can have wide

NI

g applications to vehicle, ship and aircraft classification, robot vision,
B and in the use of autonomous vehicles.
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