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ABSTRACT

Finite amplitude solitary waves in water of arbitrary uniform depth are

considered. A numerical scheme based on collocation is presented to calculate

the highest solitary wave. It is found that the ratio of the amplitude of the

wave versus the depth is 0.83322. This value is about 0.006 higher than the

values obtained by most previous investigators. In addition another numerical

scheme based on an integro-differential formulation is derived to compute

-. solitary waves of arbitrary amplitude. These calculations show that the

results of Longuet-Higgins and Fenton (1974) are not accurate for very steep

waves. Graphs and tables of the results ari included. Accession For
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SIGNIFICANCE AND EXPLANATION

Since the time of Scott Russel (1845) many approximate solutions for

solitary waves have been obtained. Most of these calculations are in good

agreement for relatively small values of the wave height. However, some

discrepancies between these calculations appear as the wave of maximum height

is approached. In the present paper we present accurate numerical methods to

.4 compute steep solitary waves. We show that the ratio of the amplitude of the

highest solitary wave versus the depth is 0.83322. This value is about 0.006

higher than the values obtained by most previous investigators.

The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the authors of this report.



ACCURATE COMPUTATIONS FOR STEEP SOLITARY WAVES~* *0
J. K. Hunter and J.-M. Vanden-Broeck

1. Introduction

Since the time of Scott Russel (1845) many approximate solutions for

solitary waves have been obtained. Solutions in the form of an expansion in

powers of the wave amplitude were derived by Rayleigh (1876), Korteweg and

de Vries (1895), Keller (1948), Laitone (1960), Fenton (1972), Longuet-Higgins

and Fenton (1974), Witting (1975) and others. On the other hand direct

numerical calculations were attempted by Yamada (1957), Lenau (1966), Yamada,

et al (1968), Byatt-Smith (1971) and Byatt-Smith and Longuet-Higgins (1976).

A review of these investigations can be found in Miles (1980).

. Most of these calculations are in good agreement for relatively small

values of the wave height
"" A

H * (1.1)

Here A is the elevation of the crest of the wave measured from the

undisturbed level of the free surface and H is the undisturbed depth.

However, some discrepancies appear as the wave of maximum height is

approached. For example the following numerical values for the maximum

A. amplitude a have been obtained: 0.827 t 0.008 (Yamada (1957)), 0.827
max

(Lenau (1966)), 0.8262 (Yamada, et al. (1968)), 0.827 (Longuet-Higgins and

Fenton (1974)), 0.8332 (Witting and Bergin, unpublished work mentioned by
-p

Witting (1975)) and 0.8332 (Fox, unpublished dissertation mentioned by

Schwartz and Fenton (1982)).

Department of Mathematics, Colorado State University, Fort Collins, Colorado
A! 80523

Department of Mathematics and Mathematics Research Center, University of
Wisconsin-Madison, Madison, Wisconsin 53705.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MC8-8001960.

• e o .
- '

o . '. • • -' : • -. o .. . -/ - . . • • • . . . . , . . . - . .. .. .



The most reliable calculations for steep solitary waves are those of

Longuet Higgins and Fenton (1974) and Byatt-Smith and Longuet-Higgins

(1976). Both calculations predict that the highest solitary wave is not the

fastest. However the results predicted by these calculations do not agree for

very steep waves (see Figure 3). It is worthwhile mentioning that Witting

(1975) has suggested that the method used by Longuet-Higgins and Fenton (1974)

is defective because the assumed expansion is incomplete.

In this paper we present a numerical scheme based on collocation to

compute the solitary wave of maximum height. The method in akin to that of

Lenau (1966). However our results are more accurate since we retain up to 100

terms in the power expansion whereas Lenau retained only 9 terms. It is found

that a= 0.83322. This value is about 0.006 higher than the valuesmax

obtained by Yamada (1957), Lenau (1966), Yamada, et al (1968) and Longuet-

Higgins and Fenton (1974). On the other hand it agrees with the values

mentioned by Witting (1975) and Schwartz and Fenton (1982). We also show that

Yamada's (1957) scheme yields the value 0.833 when a sufficiently large

number of mesh points is used.

In addition we present another numerical scheme based on an integro-

differential equation to compute solitary waves of arbitrary amplitude. The

method is similar in philosophy if not in details to the scheme derived by

Vanden-Broeck and Schwartz (1979).

Following Longuet-Higgins and Fenton (1974) we introduce the parameter
2

1 (1.2)

Here qc is the velocity at the crest of the wave and g is the acceleration

of gravity. The parameter w varies between 0 and I as the wave

-. amplitude varies from zero to its maximum value.

-2-
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The numerical solutions of our integro-differential equation differ from

the results of Longuet-Higgins and Fenton (1974) for w > 0.92. On the other

hand they agree with the numerical results of Byatt-Smith and Longuet-Higgins

(197.6) for w 4 0.96. Byatt-Smith and Longuet-Higgins (1976) also used an

integro-differential formulation. However they were not able to compute waves

for w > 0.96 because too many mesh points were required to describe

accurately the flow in the neighborhood of the crest. In the present work

this difficulty is avoided by concentrating the mesh points near the crest by

an appropriate change of variable. This enables us to compute accurate

solutions up to w - 0.99. An extrapolation of, these results shows that

a. 0.833 as w + 1. This constitutes an important check on the consistency

of our two numerical schemes.

The problem is formulated in Section 2 and the highest wave is calculated

in Section 3. In Section 4 we compute solitary waves of arbitrary amplitude

via an integro-differential equation formulation. The results are discussed

in Section S.

2. Formulation

We consider a two dimensional solitary wave in an inviscid incompressible

and irrotational fluid bounded below by an horizontal bottom. We take a frame

of reference with the x-axis parallel to the bottom and moving with the phase

velocity c of the wave. The level y - 0 is chosen as the undisturbed

level of the free surface and gravity is assumed to act in the negative y

-, direction.

We introduce the potential function *(x,y) and the stream function

"(xey). Without loss of generality we choose * = 0 at the crest and l = 0

on the free surface. We denote by Q the value of * on.the bottom. Then

-3-
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the undisturbed depth H is given by

H (2.1)
C

We introduce dimensionless variables by taking H as the unit length

and c as the unit velocity. We choose the complex potential

f- * + 1# (2.2)

as the independent variable.

We shall seek the complex velocity

- u - iv (2.3)

as an analytic function of f in the strip -1 < * < 0. At infinity we

require the velocity to be c in the x-direction so that the dimensionless

velocity is unity in the x-direction. Therefore C must tend to one at

infinity.

On the free surface, the Bernoulli equation yields

F~2
F2 (u21() + v2 + f# v(s)

u 2s)+v2 (s)
(2.4)

F2

2 G on -0 •

Here a is the elevation of the crest and F is the Froude number defined by

IC
F - C (2.5)

The functions u(#) and v(#) in (2.4) denote respectively u(*,O) and

. v(#,O).

On the bottom the kinematic boundary condition yields

v - 0 on #-1 . (2.6)

-' This completes the formulation of the problem of determining the analytic

* function C. This function must tend to one at infinity and satisfy (2.4) on

liI and (2.6) on # -1.

-- 4
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Finally let us mention that the asymptotic behavior of u(#) - iv() as

"* . is described by Stokes' result

II UM* iv(#) -Ae as * ± .(2.7)

Here A is a complex constant to be found as part of the solution and X is

the smallest root of

tan wA

3. The highest solitary wave

In this section we present a numerical scheme based on collocation to

compute the highest solitary wave. This wave is characterized by a stagnation

point at the crest where the surface makes a 120e angle with itself. (See

Figure 1.)

Following Lenau (1966) we introduce the new variable t by the relation

f = 2 log l+t (3.1)
w 1-t

This transformation maps the flow domain onto the domain (Iti < 1, Im t > 0)

in the complex t plane (see Figure 2). We use the notation t - re so

that the free surface is described by r - 1, 0 ( o 4 w.

Lenau (1966) derived the following expansion for the complex velocity C

% i~ 2 1/3,.t eQlt)

2 (3.2)

where

*. Q(t) " (l-t2)2A + an.1 t2 n  (3.3)

n-0

Here X is the smallest root of (2.8). The coefficients A and ai (i -

1,2,3,...) in (3.3) have to be found to satisfy the boundary condition (2.4).

We solve the problem approximately by truncating the infinite sum in

(3.3) after N terms. Differentiating (2.4) with respect to a and using

(3.1) yields

"ji:
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2F [u(a)u a(a) + v(O)V a( a)

2 v(a) 1-- 0T -2 -'2 in au (0)+-V (a)

Here u(a) - u(#(a)] and v(0) - v[*(U)J are the components of the velocity

on the free surface.

The functions u and v and their derivatives ua and va are

obtained in terms of A, X and ai(i - 1,...,N) by substituting t - e in

. (3.2). We find the N + 3 unknowns A, A, F, ai(i-1,...,N) by satisfying

(3.4) at the N + 2 mesh points

M1  X (I - 1) I - 1,...,N+2 (3.5)
" (N+2) 2

Thus we obtain a system of N + 2 nonlinear algebraic equations. The last

equation is obtained by imposing (2.8).

This system of N + 3 equations for the N + 3 unknowns A, A, F,

ai(i-1,..,N) was solved by Newton's iterations. For most calculations the

1
values a1 - - , ai - 0 (i-2,...,N), A - -0.32, A - 0.32 and F - 1.3 were

used as the initial guess. The method converges rapidly and a residual error

of 10- 10 was obtained after 4 or 5 iterations.

" Numerical values of F for various values of N are shown in Table 1.

These results indicate that the value F - 1.29091 is correct to 5 decimal

places. The profile of the wave is shown in Figure 1.

Relation (2.4) shows that the amplitude a of the highest wave is
max

given by
F2

a.- -- 0.83322 . (3.6)max 2
This value is about 0.006 higher than the values obtained by Yamada (1957),

Lenau (1966), Yamada, et al (1968) and Longuet-Higgins and Fenton (1974). On

the other hand it agrees with the values mentioned by Witting (1975) and

Schwartz and Fenton (1982).
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Table 1: Values of the Froude number of the

highest wave for various values of N.

N F

9 1.28998

15 1.29055

30 1.29083

50 1.29089

75 1.29091

100 1.29091

-9-
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Our numerical method differs from that of Lenau (1966) because we satisfy

(3.5) at the mesh points (3.6) instead of solving for the Fourier

coefficients. It is also more accurate because we retain up to 100 terms in

(3.3) whereas Lenau retained only 9 terms.

. As a further check on our calculations we repeated Yamada's (1957)

-calculations. Yamada (1957) presented the value 0.827 1 0.008 obtained with

11 mesh points. With 11 mesh points we also obtained 0.827. However, we

obtain 0.832 with 30 mesh points and 0.833 with 100 mesh points. Thus

Yamada's (1957) scheme yields the correct answer when a sufficiently large

number of mesh points is used.

4. Numerical solution via an integro-differential equation

It is convenient to reformulate the problem as an integro-differential

equation by considering u - iv - 1. This function tends to zero at

-Atinity. In order to satisfy the boundary condition (2.6) on 4- -1 we

reflect the flow in the boundary 4 -1. Thus we seek u - iv -I as an

analytic function of f in--thestrip -2 ( -(0.

The values of u and v on the fr 0 and its image

4.- -2 are related by the identities

i:::.i  .*,.o - u*,.-2)

v(,O) - -v(,-2) (4.2)

In order to find a relation between u(#,0) and v(#,0) we apply

* Cauchy's theorem to the function u - iv - I in the strip -2 4 * ( 0. Using

*(4.1) and (4.2) and exploiting the bilateral symmetry of the wave about

* -0 we obtain after some algebra

-10-
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u- r .v(s) + d

++2us- de (4.3)( -))2 + 4

+,."  (- +)v(s) + 2[u(s)-1] d(

(s+#)2 + 4

The first integral in (4.3) is of Cauchy principal value form. We shall

measure the amplitude of the wave by the parameter Ou Using the symmetry of

the wave about * - 0, we rewrite (1.2) in the form

2 2
d = 1 - F2[u(O)] • (4.4)

Using (4.4) and (2.4) evaluated at *- 0 we obtain

2

2 2 _ 0(4.5)2-2

For a given value of e, (2.4), (4.3) and (4.5) define a system of

integro-differential equatins for u(#), v(#), a and F.

In order to solve these equations we find it convenient to introduce the

new variable 8 instead of # by the relation

-T , Y) 1 > (4.6)

Therefore we rewrite (2.4), (4.3) and (4.5) in terms of 0, u() 

and v (0) = v[*(8)].

Next we introduce the K mesh points

8 1 - (2-1)z I M 1,..., (4.7)

where Z is the interval of discretization. The change of variable (4.6) is

*chosen because it concentrates the mesh points near the crest of the wave.

For very steep waves the value of y was taken as 3.

We shall satisfy (2.4) and (4.3) at the points 8 1 ---". ,-
1+ 2

I - 1,• ,1 Thus we obtain, after discretization 2 - 2 nonlinear

algebraic equations for the 2M1 + 2 unknowns , F, and u ( ), v (0) I 

1,...,No Relations (4.4) and (4.5) provide two more equations. An extra

* -11-
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equation is obtained by imposing the symmetry condition

v (B 0 C 4.8)

The last equation expresses u (0 ) in term of u* (6 ) and u (0) by
M K-1 M-2

an extrapolation formula based on the asymptotic formula (2.7). The

.. discretization of (2.4) and (4.3) follows closely the work of Vanden-Broeck

and Schwartz (1979).

The system of 24 + 2 equations was solved by Newton's iterations.

The most important source of error in the numerical scheme arises from

the truncation of the infinite integrals in (4.3) at

a (.] (4.8)
max

We used two different methods to approximate the infinite integrals in

- (4.3). In the first method we used the asymptotic formula (2.7) to

approximate the integrals between * and infinity. This approach is
max

similar to the method used by Byatt-Smith and Longuet-Higgins (1976). In the

second method we simply neglected the contribution of the integrals between

#mx and infinity. In this second method we also replaced the equation in

which an extrapolation based on (2.7) is used by a Lagrange extrapolation

formula. Thus the second method is completely independent of (2.7). Both

methods were found to give accurate results. However the first method is more

efficient because accurate results can be obtained with *mex relatively

* small. Most of the results presented in the next section were obtained by

using the first method.

-12-
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5. Discussion of the results

In the first calculation the iterations were started with the classical

solution of the Korteweg and de Vries equation. For w small the iterations

converged rapidly. Once a solution was obtained it was used as an initial

guess for a larger value of w and so on.

For each value of w we took E small enough and #max large enough

for the results to be independent of E and *-- . This was achieved in the
x

following way. For a given value of #max we progressively decreased E to

a value for which the results were independent of E to the degree of

accuracy desired. We repeated the procedure for larger and larger values of

# up to a value for which the results were also independent of xmax #max

This procedure is illustrated in Table 2.

In Figure 3 we present the numerical values of the Froude number F

versus w. These results confirm that the highest solitary wave is not the

fastest. We also show the results obtained by Longuet-Higgins and Fenton

(1974) and by Byatt-Smith and Longuet-Higgins (1976). Our results agree with

those of Longuet-Higgins and Fenton for w 4 0.92 and with those of Byatt-

Smith and Longuet-Higgins for w 4 0.96.

Byatt-Smith and Longuet-Higgins (1976) were not able to compute waves for

w > 0.96 because their numerical procedure uses equal increments in the

velocity potential. This is not well suited to the calculation of very steep

waves because large curvature, low velocity and sparse point spacing are

characteristic of the crest region. In the present work this difficulty has

been avoided by concentrating the mesh points near the crest by the change of

variable (4.6).

-13-
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S"-Table 2t Values of n vhen

w- 0.98 and Y1-3

(a)#-max" 7 (b) +ax "10

N V N r

100 1.29141 100 1.29395

2 120 1.29143 120 1.29152

150 1.29145 150 1.29145

* 180 1.29145 180 1.29145

*1

I..d

.,
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Our calculations show that the results of Longuet-Higgins and Fenton

f . (1974) are not accurate for w > 0.92. This sas to confirm Witting's (1975)

suggestion that their method is defective because the assumed expansion is

incomplete.

Acknowledgement

The authors are indebted to Professor P. G. Saffman for suggesting the

calculation described in the last paragraph of section 3.

.- 165%

,A.',

,-16-

,5

S. ' " % % % " r " ' = ' ' , , 
'

° - 'L " " " " ' ' -° " ' ' ' ' ' ' - '' - - ' " "



Captions for Figures

Figure 1. Computed free-surface profile for the highest solitary vave.

The vertical scale is the same as the horizontal scale.

Figure 2. Flov configuration in the complex t-plane

Figure 3~ The Froude number F as a function of w as given by the

numerical scheme of Section 4 (curve a, Dyatt-Saith and Longuet-

Higgins (1976) (curve b) and Longuet-Higgins and Fenton (1974)

(curve c).* The cross corresponds to the highest wave calculated

in Section 2.
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