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ABSTRACT

&

congidered. A numerical scheme based on collocation is presented to calculate

Finite amplitude solitary waves in water of arbitrary uniform depth are

the highest solitary wave. It is found that the ratio of the amplitude of the
wave versus the depth is 0.83322. This value is about 0.006 higher than the
values obtained by most previous investigators. In addition another numerical
scheme based on an integro-differential formulation is derived to compute
solitary waves of arbitrary amplitude. These calculations show that the

VR

results of Longuet-Higgins and Fenton (1974) are not accurate for very steep

waves. Graphs and tables of the results are included. 4°°°5510n_§g£;____*__J
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SIGNIFICANCE AND EXPLANATION

Since the time of Scott Russel (1845) many approximate solutions for
solitary waves have been obtained. Most of these calculations are in good
agreement for relatively small values of the wave height. However, some
discrepancies between these calculations appear as the wave of maximum height
is approached. 1In the present paper we present accurate numerical methods to
compute steep solitary waves. We show that the ratio of the amplitude of the
highest solitary wave versus the depth is 0.83322., This value is about 0.006

higher than the values obtained by most previous investigators.

The rxesponsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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N ACCURATE COMPUTATIONS FOR STEEP SOLITARY WAVES
::{ * [ 1
¥ J. K. Hunter and J.-M. Vanden-Broeck
{

o 1. Introduction

:f Since the time of Scott Russel (1845) many approximate solutions for
Fii solitary waves have been obtained. Solutions in the form of an expansion in
. powers of the wave amplitude were derived by Rayleigh (1876), Korteweg and

%: de Vries (1895), Keller (1948), Laitone (1960), Fenton (1972), Longuet-Higgins
ﬁ; and Fenton (1974), witting (1975) and others. On the other hand direct
1n numerical calculations were attempted by Yamada (1957), Lenau (1966), Yamada,
-4'.'

é: et al (1968), Byatt-Smith (1971) and Byatt-Smith and Longuet-Higgins (1976).
»;l A review of these investigations can be found in Miles (1980).
:, Most of these calculations are in good agreement for relatively small

i: values of the wave height

Y -2

." a H . (1.1,
o Here A is the elevation of the crest of the wave measured from the

~

ﬁ undisturbed level of the free surface and H is the undisturbed depth.

-
= However, some discrepancies appear as the wave of maximum height is

. approached. For example the following numerical values for the maximum
,$ amplitude “hax have been obtained: 0.827 £ 0.008 (Yamada (1957)), 0.827

' ’

o (Lenau (1966)), 0.8262 (Yamada, et al. (1968)), 0.827 (Longuet-Higgins and
!: Fenton (1974)), 0.8332 (witting and Bergin, unpublished work mentioned by
{i witting (1975)) and 0.8332 (Fox, unpublished dissertation mentioned by
¥ Schwartz and Penton (1982)).
Y

:,j

% *

i Department of Mathematics, Colorado State University, Fort Collins, Colorado
* 80523
' _

- Department of Mathematics and Mathematics Research Center, University of

- Wisconsin-Madison, Madison, Wisconsin 5370S5.

ﬂ Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
i material is based upon work supported by the National Science Foundation under
° Grant No. MC8-8001960.
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The most reliable calculationg for steep solitary waves are those of
Longuet Higgins and Fenton (1974) and Byatt-Smith and Longuet-Higgins
{1976). Both calculations.predict that the highest solitary wave is not the
fastest. However the results predicted by these calculations do not agree for
very steep waves (see Figure 3). It is worthwhile mentioning that Witting
(1975) has suggested that the method used by Longuet-Higgins and Fenton (1974)
is defective because the assumed expansion is incomplete.

'3 In this paper we present a numerical scheme based on collocation to

i compute the solitary wave of maximum height. The method is akin to that of
Lenau (1966). However our results are more accurate since we retain up to 100
texrms in the power expansion whereas Lenau retained only 9 terms. It is found
that Qnax = 0.83322. This value is about 0.006 higher than the values
obtained by Yamada (1957), Lenau (1966), Yamada, et al (1968) and Longuet-
Higgins and Fenton (1974). On the other hand it agrees with the values
mentioned by Witting (1975) and Schwartz and Fenton (1982). We also show that
Yamada's (1957) scheme yields the value 0.833 when a sufficiently large
number of mesh points is used.

In addition we present another numerical scheme based on an integro-
differential equation to compute solitary waves of arbitrary amplitude. The
.5 method is similar in philosophy if not in details to the scheme derived by
ul Vanden-Broeck and Schwartz (1979).

Following Longuet-Higgins and Fenton (1974) we introduce the parameter
2

9

-1 ===, 1.2
w oH (1.2)

Here q, is the velocity at the crest of the wave and g is the acceleration

of gravity. The parameter ® varies between 0 and 1 as the wave

amplitude varies from zero to its maximum value.
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The numerical solutions of ocur integro-differential equation differ from
the results of Longuet-Higgins and Fenton (1974) for w > 0.92.' On the other
hand they agree with the numerical results of Byatt-Smith and Longuet-Higgins
{1976) for w < 0.96. Byatt-smith and Longuet-Higgins (1976) also used an

integro-differential formulation. However they were not able to compute waves

for ® > 0.96 because too many mesh points were required to describe
- accurately the flow in the neighborhood of the crest. In the present work
this difficulty is avoided by concentrating the mesh points near the crest by

an appropriate change of variable. This enables us to compute accurate

solutions up to © = 0.99. An extrapolation of these results shows that

a+ 0,833 as w+ 1. This constitutes an important check on the consistency
of our two numerical schemes.

The problem is formulated in Section 2 and the highest wave is calculated
in Section 3. 1In Section 4 we compute solitary waves of arbitrary amplitude
via an integro~differential equation formulation. The results are discussed

in Section 5.

2. Formulation
We consider a two dimensional solitary wave in an inviscid incompressible
and irrotational fluid bounded below by an horizontal bottom. We take a frame

of reference with the x—axis parallel to the bottom and moving with the phase

velocity ¢ of the wave. The level y = 0 is chosen as the undisturbed

level of the free surface and gravity is assumed to act in the negative y

direction.

We introduce the potential function ¢(x,y) and the stream function

R I B R

¥(x,y). without loss of generality we choose ¢ =0 at the crest and ¥y =0

on the free surface. We denote by Q the value of V on.the bottom. Then
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the undisturbed depth H is given by
H=2 ., (2.1)
We introduce dimensionless variables by taking H as the unit length
and ¢ as the unit velocity. We choose the complex potential
£= ¢+ iy (2.2)
as the independent variable.
We shall seek the complex velocity
E=u - iv (2.3)
as an analytic function of £ in the strip -1 < ¥ < 0., At infinity we
require the velocity to be ¢ in the x-direction so that the dimensionless
velocity is unity in the x-direction. Therefore { must tend to one at

infinity.

On the free surface, the Bernoulli equation yields

2
= ki + v 4 [P UE
u (8)+v (s)

(2.4)
2

-;—’-a on ‘?"0 .

Here «a 1is the elevation of the crest and F 4is the Froude number defined by

F=- (2.5)

You
The functions u(¢) and v(¢) in (2.4) denote respectively u(¢,0_) and

v(¢,0_).
On the bottom the kinematic boundary condition yields
v==0 on V= -1 , (2.6)
This completes the formulation of the problem of determining the analytic
function {. This function must tend to one at infinity and satisfy (2.4) on 1

¥v=1 and (2.6) on V= -1,
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Finally let us mention that the asymptotic behavior of u(¢) - iv(¢) as
¢ > t» ig described by Stokes' result

ul(¢) = iv(é) ~ Ae-'x"‘ as ¢ + t» (2.7)

Here A 4is a complex constant to be found as part of the solution and A is

the smallest root of

ux-ﬁ-z—"l-o . (2.8)

F

3. The highest solitary wave

In this section we present a numerical scheme based on collocation to
compute the highest solitary wave. This wave is characterized by a stagnation
point at the crest where the surface makes a 120° angle with itself. (See

Figure 1.)

Following Lenau (1966) we introduce the new variable t by the relation

f-%log-:—fti-i . (3.1)

This transformation maps the flow domain onto the domain {|t| < 1, Im ¢t > 0}

in the complex t plane (see Figure 2). We use the notation t = re10 so

that the free surface is described by r =1, 0 < o < x,

Lenau (1966) derived the following expansion for the complex velocity

o

I JRAD

) 2 1/3
% g= () Y (3.2)
where
2.2x . ¢ 2
ae) = A=t + T a7 (3.3)
n=0

Here A is the smallest root of (2.8). The coefficients A and a; (i =
1,2,3,+++) 1in (3.3) have to be found to satisfy the boundary condition (2.4).
We solve the problem approximately by truncating the infinite sum in

(3.3) after N terms. Differentiating (2.4) with respect to ¢ and using

{3.1) yields
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2.~ ~ ~ ~
F [u(a)ud(O) + v(a)vc( 0)]

.7;:\ ;'( o) 1 (304)

sin 0 =

2
¥ 32(a)+v(0)

Here ;(d) = ul¢(o)] and ;(c) = v($¢(0)] are the components of the velocity
on the free surface.

i ~ ~ ~

X The functions u and v and their derivatives Uy and ve are
-
&

obtained in terms of A, A and ai(i = 1,.0¢,N) Dby substituting ¢t = eio in
(3.2). We find the N + 3 unknowns A, A, F, a;(i=1,...,N) Dby satisfying
- (3.4) at the N + 2 mesh points
- w

% = 2(v+2)
- Thus we obtain a system of N + 2 nonlinear algebraic equations. The last

(I - %) I = 1,000,“"’2 . (305)

- equation is obtained by imposing (2.8).

This system of N + 3 equations for the N + 3 unknowns A, A, F,
a;(i=1,...,N) was solved by Newton's iterations. For most calculations the
values a; = - %7 a; = 0 (i=2,...,N), A = =0.32, A =0.32 and F = 1,3 were
used as the initial guess; The method converges rapidly and a residual error
of 10”10 yas obtained after 4 or 5 iterations.

Numerical values of F for various values of N are shown in Table 1.
These results indicate that the value F = 1.29091 is correct to 5 decimal

places. The profile of the wave is shown in Figure 1.

f; ' Relation (2.4) shows that the amplitude °hax of the highest wave is

.
k given by

Fz

'~_. Cax ~ 2 " 0.83322 . (3.6)
.:; This value is about 0.006 higher than the values obtained by Yamada (1957),
>
Z2 Lenau (1966), Yamada, et al (1968) and Longuet-Higgins and Fenton (1974). On
. the other hand it agrees with the values mentioned by Witting (1975) and

.
) Schwartz and Fenton (1982).




- Table 1: Values of the Froude number of the
’ highest wave for various values of N.
:
N F
: 9 "~ 1.28998
15 1.29055
30 1.29083
50 1.29089
75 1.29091
100 1.29091
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Our numerical method differs from that of Lenau (1966) because we satisfy

(3.5) at the mesh points (3.6) instead of solving for the PFourier
coefficients. It is also more accurate because we retain up to 100 terms in
(3.3) whereas Lenau retained only 9 terms.

As a further check on our calculations we repeated Yamada's (1957)
calculations. Yamada (1957) presented the value 0.827 £ 0.008 obtained with
11 mesh points. With 11 mesh points we also obtained 0.827. However, we
obtain 0.832 with 30 mesh points and 0.833 with 100 mesh points. Thus
Yamada's (1957) scheme yields the correct answer when a sufficiently large
number of mesh points is used.

4. Numerical solution via an integro~differential ation

It is convenient to reformulate the problem as an integro-differential
equation by considering u - iv - 1. This function tends to zero at
~infinity. In order to satisfy the boundary condition (2.6) on ¢ = -1 we
rofloc;\gﬁi“fieu\ig\fhe boundary ¥ = -1. Thus we seek u - iv - 1 as an

—

analytic function of f\?ﬁTﬂﬁnLgEE}p -2 < y<0.

—
The values of u and v on the frEE\nu:ggsg\\fa- 0 and its image

-~

V= -2 are related by the identities T
ul$,0) = u($,~2) T
v($,0) = -v(¢,~2) . (4.2)
In order to find a relation between u(¢,0) and v(4¢,0) we apply
Cauchy's theorem to the function u ~ iv = 1 in the strip -2 < y € 0. Using
(4.1) and (4.2) and exploiting the bilateral symmetry of the wave about

¢ = 0 we obtain after some algebra

=10~

R
N

A A
COIN)
a s 0 8 s 8




..........

1 1
f; V(l)['_¢ + ”—.]dl
s=¢)vi(s) + 2{u(s)-1

(s-9)2 + &

f. (s+)v(s) + 2[u(s)-1]
+ 0 2 ds .
A (s+4)" + 4

+
ol
o3

ds (4.3)

o |-

. The first integral in (4.3) is of Cauchy principal value form. We shall
;; measure the amplitude of the wave by the parameter . Using the symmetry of
the wave about ¢ = 0, we rewrite (1.2) in the form
W= 1 - !‘zlu(o)]2 . (4.4)

ij Using (4.4) and (2.4) evaluated at ¢ = 0 we obtain

2
F =1
2 + 2 . (4.5)

For a given value of ®, (2.4), (4.3) and (4.5) define a system of
integro-differential equatins for u(¢), v(¢), ¢ and F.
In order to solve these equations we find it convenient to introduce the
new variable B instead of ¢ by the relation
¢=8", v>1 . (4.6)
Therefore we rewrite (2.4), (4.3) and (4.5) in terms of B, u (8) = ulé(B)]
and v (B) = vI4(B)].
Next we introduce the M mesh points
B, = (1-1)E I= 1,000,M (4.7)
where E is the interval of discretization. The change of variable (4.6) is
chosen because it concentrates the mesh points near the crest of the wave.
For very steep waves the value of Y was taken as 3.

We shall satisfy (2.4) and (4.3) at the points 6 | =d-tge8 )

I+ 2

I=1,.0.0,M1. Thus we obtain, after discretization 2M - 2 nonlinear

B L

* *
algebraic equations for the 2M + 2 unknowns @, P, and u (BI), v (BI) I=

1,¢00,Mc Relations (4.4) and (4.5) provide two more equations. An extra
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equation is obtained by imposing the symmetry condition

Y Srta
»

*
v (81) = ( . (4.8)

[
L
[
Pty
(39
»

The last equation expresses “.(BM) in term of u.(BM_1) and u'(Bu_z) by
an extrapolation formula based on the asymptotic formula (2.7). The
discretization of (2.4) and (4.3) follows closely the work of Vanden-Broeck
and Schwartz (1979).

The system of 2M + 2 equations was solved by Newton's iterations.

The most important gsource of error in the numerical scheme arises from
the truncation of the infinite integrals in (4.3) at

s=¢, = (enm)7 . (4.8)

We used two different methods to approximate the infinite integrals in
(4.3). 1In the first method we used the asymptotic formula (2.7) to
approximate the integrals between ‘iax and infinity. This approach is
similar to the method used by Byatt-Smith and Longuet-Higgins (1976). In the
second method we simply neglected the contribution of the integrals between
‘max and infinity. In this second method we also replaced the equation in
which an extrapolation based on (2.7) is used by a Lagrange extrapolation
formula. Thus the second method is completely independent of (2.7). Both
methods were found to give accurate results. However the first method is more

efficient because accurate results can be obtained with ¢hax relatively

small., Most of the results presented in the next section were obtained by

using the first method.
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5. Discussion of the results

In the first calculation the iterations were started with the classical
solution of the Korteweg and de Vries equation. For ® small the iterations
converged rapidly. Once a solution was obtained it was used as an initial
guess for a larger value of ®w and so on.

For each value of ®w we took E small enough and ‘hax large enough
for the results to be independent of E and ¢hax' This was achieved in the
following way. For a given value of ‘max we progressively decreased E to
a value for which the results were independent of E to the degree of
accuracy desired. We repeated the procedure for larger and larger values of
’max up to a value for which the results were also independent of ﬂnax'
This procedure is illustrated in Table 2.

In Fiéure 3 we present the numerical values of the Froude number F
versus W. These results confirm that the highest solitary wave is not the
fastest. We also show the results obtained by Longuet-Higgins and Fenton
(1974) and by ByattJSnith and Lonquet-Higgins (1976). Our results agree with
those of Longuet-Higgins and Fenton for ® € 0,92 and with those of Byatt-
Smith and Longuet~Higgins for o < 0.96.

Byatt-Smith and Longuet-Higginsg (1976) were not able to compute waves for
w > 0.96 because their numerical procedure uses equal increments in the
velocity potential. This is not well suited to the calculation of very steep
waves because large curvature, low velocity and sparse point spacing are
characteristic of the crest region. In the present work this difficulty has

been avoided by concentrating the mesh points near the crest by the change of

variable (4.6).

-13-
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100
120
150
180

Table 23

.IIX- 7

1.29141
1.29143
1.29145
1.29145

Values of F when
o= 0,98 and Y= 3

=14~

(B) 4= 10
N r
100 1.29395
120 1.29152
150 1.29145
180 1.29145
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'i: our calculations show that the results of Longuet-Higgins and Penton

f&; (1974) are not accurate for > 0.92. This seems to confirm Witting's (1975)
!.}!

e

suggestion that their method is defective because the assumed expansion is

oL,
v,

incomplete.
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“ Captions for Figures
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% Figure 1. Computed free-surface profile for the highest solitary wave.

'3 The vertical scale is the same as the horizontal scale.

\ Figure 2. Flow configuration in the complex t-plane

Pigure 3. The Proude number F as a function of w as given by the

,. numerical scheme of Section 4 (curve a), Byatt-Smith and Longuet-
4

3 Higgins (1976) (curve b) and Longuet-Higgins and Penton (1974)
""‘: (curve c). The cross corresponds to the highest wave calculated
» in Section 2.
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