
AD-A127 667 NETWORK MANAGEMENT RESEARCH(U) CALIFORNIA UNIV BERKELEY l/1
ELECTRONICS RESEARCH LAB C V RAMAMOORTHY 14 MAR 83
ARO 16984.2-EL-A DAAG29-79-C 0171

UNCL ASSIFIED FIG 9/2 N



liii! *Q,o
1 LM

1111 64

IL8

flfl 1.5 IIII 0 111111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARD 963-A

A 16



NETWORK MANAGEMENT RESEARCH

FINAL REPORT

C. V. Ramamoorthy

August 14, 1982 - March 14, 1983

U. S. ARMY RESEARCH OFFICE

/

DAAG29-79-C-0171

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LA.1 .
* APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

83 05 03 02

I _____________

-I---o- "- __



Ao

The views, opinions, and/or findings contained in this report are those
of the author(s) and should not be construed as an official Department
of the Amy position, policy, or decision, unless so designated by other
documentation.



SECURITY CLASSIFICATION OF THIS PAGE (11me Da Entered

REPORT DOCMENTATION PAGE ______ INSTRUCTIONS _

I. REPORT NMmma 2. OVI' ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mod Sck'41*e) S. TYPE OF REPORT A PERIOD COVERED

Final: 8/14/82 - 3/14/83

Network Management Research S. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(e) S. CONTRACT OR GRANT NUM119R(q)

C. V. Ramamoorthy DAAG29-79-C-0171

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Electronics Research Laboratory AE OKUI UBR

University of California
Berkeley, CA 94720

ti. CONTROLLING OFFICE NANE AND ADDRESS 12. REPORT DATE

U. S. Army Research Office 13. NUMBER OFPAGES

MONITO IArG, CV N a A7O S I differenlt frost Controllingd Office) 15. SECURITY CLASS. (ot this report)

1S.. DECL ASSIIlCATION/ DOWN GRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of tisd Report)

approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrt en tered in Block 20. It different h 0ee, Repor)

NA

1S. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those
of the author(s) and should not be construed as an official Department
of the Army position, policy, or decision, unless so designated by other
documentation.

19. KEY WORDS (Continue an reverse side it necessary, ad idenatify by block nober)

20. ABSTRACT (C60111010 OR sveee side It neo00emIv mad ldsntif' by block nabm')

DO I 'jA7 1473 EDIION of, I Nov * is OBSOLETE

qECulITY CLASSIFICATION OF THIS3 PAGE (Wen Vdot En0"Ore



iUCumrT CLASSPICATION OF THIS PAO(UM Dets o

SICUMIT CLASSIFICATION Of THIS PAWOInhea Dae Servo

30111 SO -.. r. -H



ABSTACT
'>This report deals with important issues which concern functional com-

ponents that are present in a distributed processing system for control pur-
poses. These components are global information m'anagement, dynamic
reconflguration, deadlock handling, and the communication-oriented com-
ponents of protocol, and routing. In the management of global information, the
ensuring of consistency and availability are crucial, and unsolved .pioblems exist
in integrating techniques for providing these attributes in a viable manner.
Dynamic reconfiguration, necessary for providing load-balancing ahd reliability,
poses the problems of design of the state determination mechanism, the deriva-
tion of conditions for reconfigurability and the design of reconftguration stra-
tegies. Correct and efficient deadlock detection algorithms need to be
developed to resolve deadlocks due to c~acurrent usage of resources. In the
area of communication protocols, efficient protocol analysis techniques and
tools for protocol specification and design are needed to ensure the correctness
of each class of protocols. In the design of routing algorithms, distributed rout-
ing algorithms are usually preferred.-but due to the nature of parallel process-
ing, they also give rise to some difficultie-ir' Hierarchical routing algorithms are
more suitable for very large networks; however, little work has been done in this
area,,_

Ss

%o , --



1. Introduction

A distributed processing system (DPS) is a collection of autonomous pro-

cessing elements (PE's) connected by a communication subnet, which provides

real-time data distribution facilities between the PE's. In the following discus-

sion, we will refer to PE's and processors in the communication subnet as nodes.

In this report, we consider some important functional components which

must be present in order to control a DPS, namely, global itformation manage-

ment, dynamic reconfiguration, deadlock handling, and the components associ-

ated with communication subnets, protocol and routing. We are especially

interested In the design issues concerning these components for the case of

large systems, wher-E centralized solutions have obvious disadvantages. Our

functional approach to partitioning the DFS is in contrast to the ISO model, in

which the system is partitioned into a set of seven logical layers, each layer

being built using the facilities provided bf) layers below and in turn providing

facilities to the layers above. For ow purposes, the ISO model is too

communication-oriented to provide a basis for discussion of the functional com-

ponents mentioned above. Moreover, many issues we will be discussing will be

applicable to all or most layers of the model.

To coordinate all the functions of a distributed Processing system(DPS),

certain control information should be shared and communicated among

members. The requirements for dealing with such global information are espe-

cially severe in a distributed environment. The partition of information for

storage, the currency and the correctness of the information, the frequency and

methods of update are all significant issues to be addressed.

The reconfigurability of a distributed system is important for its ability to

enhance the fault tolerance of a system by tailoring the system configuration in

response to failures. The steps involved in dynamic reconfguration are fault

.,,,, - - -V.J> Jl ' - - - -. . . . . ..



detection, fault location, reconfiguration and recovery. Techniques for carrying

out these steps are discussed.

In the distributed environment, system deadlock could cause severe degra-

dation in performance and poor utilization of resources. We will review some of

the current approaches in attacking this problem.

Since the correct operation of communication protocols strongly affects

the reliability and performance of distributed processing systems, correctness

of the design and implementation of protocols has to.be ensured in order to pro-

vide reliable communication. To validate correctness of protocols, specification

methods and formal models of protocols are studied, and an implementation

model for protocols is presented. Further, with the increasing interests in office

automation and broadcast capability of long haul networks, we will also point out

issues on multi-party communication.

Due to the possible existence of several alternative paths between PE's and

sizable amount of traffic in the distributed system, reliable and adaptive routing

techniques become more important in order to provide high throughput and fast

response time. Because of our interest in large systems, we will deal in this

report distributed and hierarchical routing algorithms. Distributed routing

algorithms have received a lot of attention recently as the centralized schemes

are too vulnerable. However, due to the nature of parallel processing, distri-

buted routing algorithms are more difficult to design. Previous work has con-

centrated almost exclusively on the minimization of the delay of individual infor-

mation packets, and other objectives are usually ignored. Hierarchical routing

algorithms will become more and more important as larger and larger networks

are built in the future. The question of how to update information in such

hierarchical networks is a very important issue.



Z Global Information Management

A key function of a distributed system is to allow nodes to share informa-

tion. We call such shared information global. Global information may be used for

control purposes e.g. node status tables, routing tables, etc. or it may be used

by multiple users e.g. database files. In the following discussion we will often

omit the adjective global for brevity.

In order to satisfy the requirements imposed by the entities using thE infor-

mation, we will require techniques for guaranteeing various desirable attributes,

namely rapid accessibility, security, integrity. availability and consstenc .

Availability and consistency are related issues which arise out .f the

occurrence of failures and the concurrency present in the distributed system

respectively and together they constitute a major part of the problem of rianag-

ing global information. Below we discuss the problems and the corresponding

solution techniques concerned with ensuring the availability and consistency of

global information.

2.1. Availability

The availability of a system is defined as the probability that the system will

be functioning correctly at any time during its scheduled working period. We

can extend this definition and say that the availability of a piece of global infor-

mation is the probability that an authorized entity that wishes to read or update

it is able to do so. We also include the proviso that the information read should

not be out-of-date or corrupted as a result of prior failures.

The difficulty of ensuring the availability of information depends on the kind

and degree of failure that must be prevented from making the information una-

vailable or unusable. Failures may occur at nodes or links. Nodes may crash, be

jammed or destroyed. In these cases, we assume that after the instant of failure,

o~- - ,m ,-.. .



the failed node does not send out further messages till it recovers or only sends

out meaningless streams of bits which are easily detected as emanating from a

failed node. But nodes may fail in such a way that they send out incorrect mes-

sages but these messages are not easily detected to be incorrect. In such cases

the incorrect information obtained from these messages may spread throughout

the distributed system. Such failures may occur if some node(s) are taken over

by malicious agents or if a node sends out information whose incorrectness is

not detected by local checking software or hardware. We refer to failed nodes

which are able to mislead correctly-operating nodes in this manner as malfunc-

tioning nodes. In addition to node failures, failures in the communication sub-

net may result in messages not being transmitted or received in time.

Given the set of nodes and the communication subnet through which they

communicate with each other, we require copies of information to be stored at

multiple nodes to prevent loss of availability if some copies become unavailable

due to node or communication failures. Another scheme would be to split the

information into a number of parts and store the parts at different nodes with

error-correcting information so that the information could be reconstructed

even if some part(s) become unavailable. But this scheme does not have general

applicability because the information may have to be reconstructed before any

processing can be done on it, resulting in heavy communication costs. However,

error-correcting codes can and should be used e.g. to ensure the correctness of

each copy, or for correcting errors arising in communication.

From the viewpoint of availability, the following protocols used in managing

the replicated global information are relevant:

(a) read and update access protocoLs

Let us assume that transactions are being processed serially, i.e. there is

no concurrency in the system, for the time being. Further, let us assume that

- Wj -. - -L -



no malfunctions occur. Then a number of protocols exist for performing the

read and update operations. The selection of the protocols to be used in a

design will affect the availability of the information for read and update opera-

tions. For example, the read protocol may involve reading any single copy and

the update protocol may involve updating all copies. Alternatively. we could

read z copies and update V copies where (z+y) is greater than the total number

of copies, using a timestamping mechanism to determine the most up-to-date

value if some of the z values read were not coincident. Yet another aIternati,e

would be to direct all reads and updates to a single copy,called the printary,

which is responsible for distributing updates to all the other copies. These pro-

tocols ensure different degrees of availability for read and update operations. as

well as other attributes such as response time, communication costs, etc. Thus,

in a distributed system design, the choice of the number of copies of the

different pieces of information (fles,tables, etc.) and the read and update proto-

cols to be used should be made in the light of the requirements on the values of

the above attributes. Unfortunately, the related optimization problem, called

the file allocation problem, becomes intractable if formulated in a way which

realistically models all the parameters involved [ROT 77]. For example, work on

the file allQcation problem usually assumes pre-selected read and update proto-

cols in determining the degree of replication of the various flles( e.g. [MAH 76] ).

Suppose we also wish to guard against malfunctions. If (Zx+I) copies exist,

then by reading all copies and computing the majority value, we can protect

against upto z malfunctioning nodes. However, if more than x malfunctioning

nodes exist, then two nodes trying to read this information, may end up with

different majority values, because a malfunctioning node may give out different

values to different read requests for the same information. This gives rise to the

following possibility of spread of error. Cnsider two pieces of information, dl

and d2. Suppose that a ma -, of - nodes which hold copies of dl are

71!



malfunctioning but that the same is not true for d[2. Then if a transaction which

reads dl and updates d2 is processed, the values of d2 held by correctly operat-

ing nodes may diverge. In solving this problem, recently published work on the

Byzantine Generals Agreement problem is relevant [LAM 80, DOL 52a, DOL 82b].

Consider a node T which wishes to transmit a value to a set of receiving

nodes Rj . Then, the Byzantine Generals Agreement is reached among the nodes

in Rj if the following conditions are fulfilled:

1. If the transmitter operates correctly, all receivers arrive at the value v.

2. All receivers arrive at the same value, whether or not the transmitter is mal-

functioning.

To show the nature of this agreement, we show an example of a completely-

connected network of four nodes in Fig. 1. Assume that the transmitting node (

marked T in the figure ) is required to transmit the value 5 to the receiving

nodes ( marked R in the figure ). We show two possible scenarios, in the left and

right parts of the figure respectively, the first involving a malfunction in a

receiver and the second in the transmitter itself. We also show how a algorithm

given in [LAM 80] is applicable to this network to reach the Byzantine Generals

Agreement, assuming (as is true for the two scenarios described above) that

there is at most one malfunctioning node in the network. The algorithm requires

two phases for our example, under the assumption made above. In the first

phase, the transmitter sends its value (5) to all the receivers. Observe that in

the second scenario, the transmitter does this incorrectly. In the second phase,

each receiver sends the value received in the first phase to all receivers, includ-

ing itself. Observe that in the first scenario one receiver executes this phase

incorrectly. After this phase, each receiver computes the median of the values

received in the second phase. A quick look at Fig. 1 will verify that all correctly

operating receivers arrive at the same vulue, 5 in the first scenario, 2 in the

,. ,..' Plow-



second. The conditions of the Byzantine Generals Agreement are fulfilled in both

scenarios. 11 more malfunctioning nodes are to be tolerated, more phases will

be required [lAM 80].

Algorithms of polynomial complexity which reach this agreement are given

in [DOL 82a, DOL 82b]. The problem of restricting spread of error and its solu-

tion in the the light of these ideas, is shown in [RAM 82a]. Here, it is shown how

algorithms solving a generalized form of the Byzantine Generals Agreement can

be used in conjunction with assertions restricting the values that a variable may

take, to prevent error from spreading throughout the system, even if some or all

the nodes holding copies of the variable are malfunctioning.

(b) commit protocols

Commit protocols (such as the 2-phase commit protocol [GaA.78] ) are used

to ensure the atomicity of transactions i.e. either all the effects of the transac-

tion are installed (commit) into the global information structures concerned or

none are (abort). Examples of situations where the latter may be a desirable

alternative are (a) failures may occur which make completion of the transaction

problematic, (b) it may be found that the transaction can not be completed

without violating some consistency requirement as a result of concurrently exe-

cuting transactions which have been operating on the same information.

From the viewpoint of preserving availability, the important question is

whether or not the protocol is nonblocking [SKE 81]. A commit protocol is said

to be non-blocking for a class of failures, if a failure in this class cannot cause a

node to wait for another node to recover before it can decide if a transaction is

to be committed or aborted. Unless this decision is made, the information being

used in this transaction cannot be made available to other transactions. Exam-

ples of such non-blocking commit protocols are in [SKE 81, HAM 80].

..............
S ol -



(c) node recovery protocol

A node which has failed or been isolated from changes to the global infor-

mation because of a partition in the network must be brought up-to-date when

the failure has been repaired or the partition ceases to exist. There are broadly

two alternative ways of doing this. The first way involves the receiving node

obtaining a full copy of the latest version of the information from another node

and installing it. The other way is to buffer all the messages that can not be

delivered to a node because of failure of the node or its isolation by partition.

The first alternative is feasible only if the size of the information is small and

failures are rare [GAR 82).

2.2. Consistency

The general nature of consistency requirement of global information is as

explained below.

We have in the distributed systera a number of concurrently executing tran-

sactions (or processes) which operate in various ways on the global information.

Each transaction is made up of atomic actions. The effect of the execution of

each atomic action on the information is indivisible in the sense that it has

exclusive access to it during the execution. For example in a database context,

the transaction is made up of read and update actions. Another example is the

allocation table for a set of shared resources. The transactions which share the

resources perform acquire and release actions on resources thus altering the

allocation table to show the changed status of the resources. The deadlock

detector executes read actions on the allocation table. An atomic action "sees"

the effect of other atomic actions which have executed earlier e.g. in the data-

base example, a read action sees the effect of prior update actions. Consistency

requirements are restrictions placed on what an atomic action may be allowed

to see. In the database example, one requirement that is usually made is that. a

~-*-~ - 7 . -



CASE 1: CASE 2:

ON4E RECEIVER TP.ANSHITTER

UALFUNCTIO4ING MALFUNCTION ING

T PHASEl I

CTRAMNS14IT)

5 5 1 2

R R Rt Rt f

PHASE 20

(EXCHANGE)

50

0 PROPERLY OPERATING NODE@PALFUNCTIONING NODE

fig. 1: Reaching Ageemnt in the Presence of at mst
am. Mlfumctiontlng Node

A J wulqr



read action see the effects of all actions of a transaction which executed earlier

or see the effects of none. In the example of the resource allocation table, a

requirement may be that if the read action of the deadlock detector sees the

effect of an acquire action by a transaction, it should also see the effects of any

release executed by the transaction prior to the acquire operation. Otherwise,

an inconsistent picture of the status of resources and transactions may be

formed by the deadlock detector, resulting in the detection of false deadlocks.

The techniques that can be used for ensuring consistency in distributed

databases have been elegantly classified in [BER 31]; they fall into the two broad

categories of locking and time-stamp ordering. The answer to the question of

which technique is preferable for distributed databases with given requirements

must await further research; however, it can be concluded from the available

literature that time-stamp ordering appears to provide a more versatile and

efficient mechanism for preserving the consistency of global information used in

the control of the distributed system. Examples of such cases are in node

recovery[&AM 80], maintenance of information on which nodes in the system

have failed [WAL 81], dynamic reconfiguration [MA 81] etc.

Some sort of clock mechanism has to be available from which the time-

stamps can be derived. For the reasons outlined above and others which space

considerations prevent us from mentioning it appears that in a distributed sys-

tem a clock facility accessible from every part of it can be a very useful

feature. Such a facility should have the following characteristics:

(i) it should be distributed for reasons of reliability,survivability and

efficiency of access.

(ii) the facility should assign time values which reflect the ordering of events

in the computer system. For most applications, it would be sufficient if

the values reflected the ordering of events at a single node and the order-

' Plod



r-1

ing of events at different nodes imposed by the flow of messages.

(iii) the value of the clock at a node should preferably be close to the real-

world time. This in turn implies that clock values at different nodes should

not drift appreciably from one another.

(iv) Maintenance of the clock facility should be inexpensive.

[LAM 78] has proposed a distributed clock mechanism synchronized by

messages which satisfies properties (i) and (ii). The mechanism requires the

clock at a node to be advanced when a message arrives bearing a timestamp

value greater than the local clock value. Hence, all the clocks have a tendency

to catch up with the fastest one among the~m. This in turn may cause them to

drift ahead of the real-world time. However. turning them back may vitiate the

required ordering of events. [BEL 79] sugg ast a slowing dawn of clocks, when

too large a drift from the real-world time 's noticed. This would provide pro-

perty (iii). Much of the functionality required of the facility could be imple-

mented by hardware or microcode and this could help to satisfy the efficiency

requirement mentioned in (iv) above.

Z3. Providing Facilities for Availability and Consistency

Although techniques for handling individual problems in this area are fairly

well-developed theoretically, there is a paucity of systems which have imple-

mented any but the simplest options available. The SDD-1 [HAM 80] is one of

example of experimentation with a novel distributed operating system (the Rel-

net) which has attempted to provide time-stamp based lower-level mechanisms

on the basis of which the availability and consistency requirements can be

fulfilled. Much work remains to be done in exploring and evaluating ways of

selecting from the various options available and putting the selected options

together to realize viable systems.

W.



3. Communication Protocols

Any distributed data processing system has to be supported by a under-

lined communication subsystem which may consist of many different com-

ponents such as terminals, terminal controllers, network front-end processors,

communication channels and host computers. Each of these components has its

own operating characteristics. A basic function to be performed in the com-

munication subsystem is to provide access paths by which remote end users can

communicate with each other. Communication protocols are a set of rules esta-

blished to regulate the interactions between tne attached entities and to accom-

modate for the differences of components along the path such that the commun-

ication can proceed in an orderly fashion. There is a way of looking at the func-

tions of access paths in terms of layered hierarchical structures of network

architectures [WEC 79, Z]M 50]. Each layer provides a particular set of services

to its next higher layer (or end users).

A number of communication protocols in computer networks of various pro-

cessing in the past decade. They play very crucial roles in maintaining smooth

operations of the entire network. Most of them are implemented in software,

except the lowest physical level protocols. However, many design ercors or

u-idesired and unexpected behavior have presented in most protocols, due to

the informal design techniques. Hence, to verify the correctness of the protocol

design and to facilitate its hardware realization for communication, formal

specification methods and implementation models for communication protocols

are needed in the design and implementation phases. The objectives of these

methods include:

(1) to provide a precise and compact specification to eliminate ambiguous

interpretation;

(2) to formally define many properties of protocols such as completeness.

boundedness, deadlock-freeness and proper termination;



(3) to support formal proofs of those properties;

(4) to provide a better management of complexity; and

(5) to facilitate automatic implementation of the protocol.

The specification method and the implementation model should be general

enough so that they are applicable to every layer of the protocol hierarchy. The

complexities of developing these models are mostly due to the distributed

nature of information and concurrency of operations. With the developme it of

formal speciffication models and implementation -nodels, a consistent and sys-

tematic design process from the specification down to the architecture level of

the protocol is demonstrated, which achieves the above goals.

3. 1. Techniques For Modeling Communcation Protocols

Currently. there are two basic approaches for modeling and validating

point-to-point protocols [SUN 79): (1) state-oriented models together with

reachability analysis [MER 79b, RAIM 82c, WES 75] and (2) language-oriented

models followed by program proving [TEN 78, SCH 81].

The first approach primarily models the control flow in protocols. Protocol

properties can be validated in terms of the structure of the state transition

graph. However it suffers from the state explosion problem. The size of the

state transition graph grows rapidly with protocol complexity. This can be

exemplified by the number of states used in [RAZ 80] where they jump from 235

to 3890 when undefined, lost and external signals all included in the primitive

model for X.21 protocol. Also, transition-oriented models do not attempt to ade-

quately model data transfer aspects of protocols such as timers and sequence

numbers. It will make the state explosion problem worse if data transfer aspects

are included in pure transition oriented models.

-- pow-



The second approach, the language-oriented approach is poor in control

flow modeling because of the tack of suitable and simple representations for pro-

tocol properties. The data transfer aspects instead can be successfully

represented because of the capability in handling variables and parameters. It

requires the use of program proving techniques which is very complex. The for-

mulation of assertions and/or invariants for proving protocol correctness

involves semantics of protocol specifications and needs a great deal of ingenuity

to derive.

There are some other augmented state transition models [DAN 78, BOC 8O]

attempting to integrate the features of both approaches. However, a great deal

of work remains to be done. On the synthesis and implementation of protocols,

the research literature is scarce [GOU 76, HOF 80]. The reported research is not

complete in the sense that it does not deal with protocol multiplexing [COH 79]

which is an important implementation feature of layered protocols.

In next two subsections, a specification method and a consistent implemen-

tation model for communication protocols, which are applicable to every proto-

col layer, will be briefly presented to expose various properties and complexities

during the development of such models.

3.2. Specification Model Development

Here, Petri net models [PET 77] are chosen as the basic specification

modeling tool. With their concurrent, asynchronous and nondeterministic

nature, and many common properties such as liveness and boundedness they

share with protocols, Petri nets are very suitable to model communication pro-

tocols. Since state oriented models and language oriented models are comple-

mentary to each other with respect to control flow representation and data

transfer modeling capabilities, Petri nets are augmented with state variables

- -- -,



and transition procedures to model full range properties of protocols.

In layered protocol structures, a protocol at some particular level concep-

tually consists of two communicating entities and a full-duplex virtual link. The

Local modeLing approach is an appropriate way to represent the nature and pro-

perties of this structure. In local modeling, each entity and each link are

modeled separately by a Petri net. An advantage of this approach is that it can

be directly implemented in each party without the problem of Inconsistent or

noncompatible decomposition among the parties. Kowever, to ensure the

correctness of a protocol, one still has to go through glooal analysis. Simply

looking at the behavior of each local model cannot have the global view of the

interactions between communicating entities and hence cannot guarantee the

correctness of the protocol. Since direct synthesization from the state transi-

tion graph of each party will give rise to the state expios:on problem in complex

protocols, a compact global Petri net model for communicable entities is con-

structed from their local models directly in order to a.llevia~e the state explo-

sion problem. In each individual local model, there is a need to communicate

with outside world. Therefore a set of external input (output) places is defined

in each local model, which may be used to represent incormng (outgoing) mes-

sages to (from) the local model. Entities are communicable if their external

places match with each other's.

In order to model the behavior of a link, a set of primitive transitions is

defined in the link machine, such as normal operation, message Lost, message

duplicated and message corrupted. The purposes are: (1) error recovery stra-

tegies used in protocols can be formally incorporated, and (2) the performance

of the communication link will be taken into consideration in evaluating the per-

formance of the entire protocol.



To analyze the control flow of the global model, reachability analysis is

employed. Only after the general control properties have been proved correct,

the specific protocol requirements will be checked against the specification by

employing conventional assertion proving techniques. Regarding the state

explosion problem. [RAM 82] has developed a Petri net abstraction procedure to

control this problem. The complexity of analysis has been reduced significantly

by employing this method. Although the method is effective for models which

are highly structured, research efforts are still needed to resolve the state

explosion problem in general.

3.& Implementation Model Development

The realization of the protocol at a particular layer involves the implemen-

tation of the entity machines only. Link machines model the behavior of lower

level protocols, which will then be taken care when we implement lower level

protocols. In order to bridge the gap between the specification model and the

actual implementation, an intermediate implementation model is necessary. An

implementation model for the entity machine is developed from its Petri net

model.

The implementation model provides a framework for the architecture of a

protocol handler, from which the protocol handler is readily realized. The

implementation model proposed in Fig. 2 is compatible with the choice of our

augmented Petri net model. It is external event driven because the operations

of the protocol service are of the request-response type. Moreover, since the

layered hierarchy of the protocol allows each level to multiplex several, possibly

different, higher level entity machines [COF 79], our implementation model also

supports this capability by including an Entity Machine Multiplexer (EMM)

module. EMM schedules the processing of service requests.



Lib
SVV r



Entity Machine Description (EMD), State Variable Hank (SVB) and Transition

Procedure Library (TPL) are derived from our formal specification model

directly. The EMD is the machine readable form of the Petri net model. It could

be an incidence matrix representation or a production system implemented in

associative memory such that, given an input marking pattern, we may readily

know the fdrable transitions. The SVB consists of separate local copies of state

variables for entities which are running concurrently. The TPL is the library of

transition procedures. As in [HOF 80], depending upon the choices of hardware

realization approaches, these procedures could be implemented in random logic

or microprograrnming or even handled by microprocessors.

The incoming event handler decodes the messages and identifies the incom-

ing requests and the destination entity for each request. Interrupt mechanisms

or polling schemes could be used in receiving data. Once an request queued in

EMM is activated, EMD and SVB will be consulted according to the entity identity

and some control signals will be generated to activate a proper transition pro-

cedure. Depending on the scheduling policy, timing requirements and priority

structures, EMM could multiplex the entities on request-by-request basis or

transition-by-transition basis. In the first case, an activated entity machine will

complete its service for an request before next entity machine is activated. In

the second case, an activated entity machine has to wait for rescheduling after

the execution of a single transition.

Transition procedures will modify corresponding state variables and pro-

duce any necessary outgoing messages for outgoing event handler. The outgoing

event handler encodes and combines messages in a well-defined format and for-

wards them to other adjacent layers.



3.4. Multi-Party Communication

With the growing interest in distributed processing systems, new applica-

tions such as office automation, teleconferencing, electronics mails have been

continuously emerging. They frequently require the exchange of multi-

destination messages. For instance, to update replicate files in a distributed

data base, the data base manager may want to transmit multi-destination mes-

sages to those nodes where the replicate files locate. Multi-party communication

is the transmission of multi-destination messages among some specified nodes.

An objective to employ multi-party communication is to further exploit the

inherent concurrency in distributed systems. Most of research to date is res-

tricted to point-to-point communication, very few researchers pay attentions to

the multi-party communication problem.

Multi-destinaLtion routing, that is, how to direct a message from its source

to a group of intended receivers, is the first important issue. It is essential to

the design of multi-communication systems. Broadcast routing is a special case

of multi-destinat~on routing. However, routing is only one aspect of the design.

To ensure the reliable transport of multi-destination messages, robust and

correct multi-party communication protocols are needed. Techniques we have

presented before for modeling and designing point-to-point communication pro-

tocols should be extended to cover the multi-party communication. A lot of

research effort is needed in this nearly unexplored area.

4. ROUTNG

The goal of routing algorithms is to provide some best collection of paths

between message sources and destinations, given various network conditions

such as the delay of each link, the network topology and so on. The definition of

- '. .- -j



"best" collection really depends on the the user or system's objectives. For

example, to achieve minimum delay of individual packets has been a common

objective for many existing routing algorithms such as the original and new

Arpanet routing algorithms [MCQ 74, MCQ B0]; to achieve minimum delay of all

system-wide packets is another objective [FRA 73]; extremely reliable transmis-

sion and others are some of the typical objectives of the existing algorithms.

The objectives are closely related to the user's requirements. The user may

require that the routing algorithm support either the datagram or virtual circuit

kind of communication, or both. He may also require the routing algorithm to

deliver multi-priority messages varying from the "Federal Express" type of mes-

sages to the "bulk rate" type. The user may want a routing algorithm that can

be used to design the network topology while another routing algorithm may be

used at real time. If the algorithm is to he used at real time, the user may

specify how reliable and how fast the algorithm should be. If the network is to

be operated in the dynamic environment, reliability is probably the most

important concern. Survivability needs usually will require the system to be

operated without any central controller and to be able to reconfigure in a decen-

tralized fashion whenever the system status changes. In order to achieve these

objectives, the routing designers would have to consider many factors such as

delay and bandwidth of each of the links, flow control, network topology, proces-

sor capability, memory size and so on. The routing algorithm should be able to

adapt itself to the changing environment such as a sudden burst of input from

the user, or congestion among some of the nodes in the network. The global

topology as well as the local configuration should be considered before comput-

ing the routing table. The node processor capabilit.y and memory size are lim-

ited, thus the routing algorithms designed should not use up too much computa-

tional resources or occupy large amount of memory. During the past ten years,

a great deal of research has been done in this area resulting in numerous



routing algorithms. However, many of the algorithms do not consider one or

more of the factors involved mentioned above. For example, some routing algo-

rithms designed for packet radio networks do not consider the multiaccess pro-

tocol [GAF 81]; the flow deviation routing algorithm [FRA 73] and Courtois' algo-

rithm [COU 81] do not treat the update problem for they are designed to be

used at the design stage and not for real-Lime application; Gallager's distributed

algorithm has been pointed out to be of theoretical importance but difficult to

be used in the real environment [CER 81]. Due to the complexity of routing algo-

rithms, it may not be possible to devise a single algorithm that can satisfy all

objectives mentioned above and work under all different environments.

In the future, a network is likely to be equipped with several different kinds

of routing algorithms, each with different oojectives and suitable for some

specific environments only. As the network topology changes, or users' require-

ments change, the network automatically changes its routing policy so as to

achieve maximum utilization of the resources, highest efficiency or minimum

delay. However, in order to achieve this goal, we will have to understand various

tradeoffs among numerous routing algorithms available right now. Many

researchers only discuss the specific properties of their algorithms and do not

give a comprehensive comparison of their algorithms with the other ones.

Research in comparison study and classification of the routing algorithms is

very much in need. Since we are interested in large networks, we choose to dis-

cuss distributed and hierarchical routing algorithms. Ever since distributed

routing algorithms were first popularized by the design and implementation of

the original Arpanet algorithm, a lot of attention has been paid to that type of

algorithms. Hierarchical routing algorithms are discussed because they are

becoming important for the future as the size of networks grow larger and

larger, and comparatively little has been said about them in the literature.

S- ~- g4



4.1. Distributed Routing Algorithms

There are many advantages to distributed routing algorithms as compared

the more conventional centralized routing algorithms, the most notable one

being reliability. Distributed routing algorithms do not require any central con-

troller to compute the routing table, the failure of which halts the operation of

the network. Usually, both the initial computation of the routes and the subse-

quent update process are carried out autonomously without any supervision by

a central monitor. The whole process is iteratively done by computation of the

routing table at each node and exchange of information among the neighbors.

This type of algorithm was first introduced by the original Arpanet algorithm,

and subsequently many distributed routing algorithms appears have appeared

[C-U 78. JAF 81, GAL 77, GAF 81, SEG 81, SEG 82, MCQ 80]. The actual number of

publications is far greater than the list indicates.

Due to the nature of parallel processing and the exchange of routing infor-

mation by many different nodes at the same time, distributed algorithms are

more difficult to understand, to verify, and to analyze than their centralized

counterparts. This is witnessed by the development of the original Arpanet rout-

ing algorithm. The original Arpanet algorithm evolved from Baran's hot potato

algorithm [BAR 64], and its centralized version was developed by Bellman. Ford

and Fulkerson some time back [LAW 76, SCH 80]. However, the proof of its

correctness was not available until 1977 [TAJ 77]. One of the major problems of

this routing algorithm is that a loop may form during the update process. Many

of the recent publications still discuss new techniques to handle the problem of

the loop for that algorithm [JAF 51, CHU 78].

There are many questions remaining unanswered. For example, the ques-

tion of how much information should be kept at each node has not been com-

pletely understood. The amount of information stored at each node will cer-

- I .- 1, ' -. .. . . -. .. . . . - _ -



tainly affect the update cost as well as the computational overhead. If we store

complete topological information at each node, the problem of update becomes

one of the update problems in a fully replicated data base. The new Arpanet

algorithm takes this approach and the whole network topology informaticn is

replicated throughout the network. The update algorithm is the flooding algo-

rithm which ensures that every node that is reachable will be reached[MCQ 80].

If we store no information at each node, the orliy routing algorithms we c.)uld

have are the flooding and random routing agrithms. There is no need to

update. In between these two extremes, there djre marany possible ways to imple-

ment a distributed routing algorithm. The original Arpanet algorithm iE an

example of one that stores condensed information instead of whole network ,on-

nectivity, and the update protocol is more complicated than the new Arpanet

algorithm. It has been observed that it is better t.o store more informatioi at

each node , because by doing so one is likely to increase the reliability, decrease

the communicational overhead but obtain greater computational overhead [TSA

82]. However, the question of how much information should be stored at each

node and what kind of information should be kept remain basically open.

Distributed routing algorithms would be no use if they could not update the

routing table autonomously without excessive communicational and computa-

tional overhead. The design of such distributed routing algorithms is still a chal-

lenging task. As we have discussed above, the update protocol is dependent on

the how and what information is kept at each node. However, given the kind and

amount of information stored at. each node, there are many kinds of update pro-

tocols that could be used. For example, there are several kinds of update proto-

cols that could work for a network in which each node keeps the same informa-

tion as the original Arpanet. How should we choose from them?

Much research in distributed routing has concentrated on supporting the

datagram, however, there are times when we need to support the virtual circuit

n--



kind of communication. Can distributed routing algorithms satisfactorily sup-

port virtual circuits or a combination of datagrams and virtual circuits? We

think so, but more work needs to be done before the belief can be substantiated.

Some early work has been done in this area [MOS 77].

Furthermore, many distributed routing algorithms have limited their objec-

tives to minimizing the delay of indvidual packets. Much work remains to be

done in designing distributed routing algorithms that could satisfy other objec-

tives such as minimum average system-wide messages delay, or minimum com-

munication control packets, or maximum flow and so on.

4.2. Hierarchical Routing Algorithms

As the network size grows larger and larger, both centralized and distri-

buted conventional routing algorithms becomes less suitable. The difficulties of

using conventional routing algorithms in a very large network come from the

excessiveness of the communicational and computational overhead. Kleinrock

and Kamoun have shown that given the limitation on memory size at each node

and the need for periodic updates, hierarchical routing algorithms would have to

be used in order to avoid the long delay and small throughput that will be

incurred by using conventional distributed routing algorithms [KAM 79]. How-

ever, much less work has been done in this area than in any other area of rout-

ing. In order to do hierarchical routing, the network is partitioned into several

clusters with links connecting these clusters. Communication between nodes of

different clusters is referred to as inter-cluster communication. For the within-

cluster communication, conventional routing algorithms are employed. How-

ever, inter-cluster communication requires some handlings.

Most of the work that has been done in hierarchical routing concentrates on

extension of the original Arpanet routing algorithm to a hierarchical scheme,

e.g. [KAM 79, KLE 77, MCQ 74, HER 52]. These schemes thus incur both of the

S. --



advantages and disadvantages of the original Arpanet algorithm. They are rela-

tively easy to implement, use decentralized control, and have fast response time

when the good news (delays along some links decrease) arrives. However, they

perform poorly when some of the links fail or the delays along some of the links

increase. The loop problem may arise as in the case of the original Arpanet

routing algorithm. In contrast, some other researchers have extended central-

ized routing algorithms to hierarchical scheme, e.g. [ClU 81]. In Chu's scheme,

all nodes would have to send their status to the local supervisors; the supervi-

sors would then broadcast the routing table to local nodes after computing the

routing information. Whenever there is any change in the network, the nodes

that detect the change will report to the supervisor and the supervisor would

compute the routing table again. If there is sufficient change in the routing

table, the supervisor would broadcast this information to all the nodes. The

major disadvantage of this scheme is that it uses central controllers: The loss of

the central controller will have disastrous effects on the network. In the follow-

ing discussion, we will refer to those hierarchical algorithms that are extended

from the centralized conventional routing algorithms as centralized hierarchical

algorithms, and refer to those algorithms that are extended from the distri-

buted schemes as distributed hierarchical algorithms.

In fact, there are many more ways to implement hierarchical routing algo-

rithms. For example in the centralized case, we could use hill-climbing algo-

rithm instead of Chu's scheme. In this scheme, if a node wishes to communicate

with a distant node, it would have to send the packet to the center where it will

have more information to make the decision on how to route the packet. If the

center does not know how to route the packet, it will forward the packet to the

center at a higher level; otherwise, it will forward the packet to the destination.

This process is similar to the traveler climbing up a hill. The process by which

the packet is sent from the topmost center to the the destination could take

A.r



exactly the reverse form: the center forwards the packet to the center that is

one level below, which will either forward the packet directly to the destination

or forward the packet to the center one level down, and the process is repeated

until the packet arrives at the destination. Another possible way of forwarding is

that the center computes the whole route to the destination and sticks the

address to the packet before forwarding, and the internediate nodes just follow

the instructions on the packet.. There are, of course, many other ways to imple-

ment the centralized hierarchical scheme. In the case of the distributed

hierarchical scheme, we could extend the new Arpanet routing algorithm instead

of the original Arpanet routing algorithm. Such algorithms could potentially

avoid many of the disadvantages of the original Arpanet algorithm such as the

loop, slow response time for bad news and so on. The reader is referred to [RAM

82b, TSA 82] for more details of such an algorithm. Some hybrid schemes also

could be designed, e.g. one in which a distributed routing algorithm is used for

local communication, while a-iother centralized algorithm is used at a higher

level, or vice versa. As we have just demonstrated there are many ways to imple-

ment hierarchical routing, and it is essential to characterize various routing

algorithms and carry out research in comprehensive comparison of these algo-

rithms.

A very important problem associated with hierarchical routing is how and

how often we should update the routing table. Previous investigations have

always chosen to update immediately if there are any changes in the network

using either a centralized or a distributed scheme. However, it seems that it is

not necessary to communicate every change as soon as possible. Not every

change in the network topology will have global effects or any effect outside the

local cluster. For example in Fig. 3, the failure of link AB may not have any effect

outside the cluster, as there are sufficient redundant paths connecting east,

west, south, and north points. A notion of "delayed update" has been devised



that could potentially save a lot of communicational overhead [RAM 32b, TSA 82].

The idea of delayed update is that we postpone any update until we have to per-

form it.

In order to do hierarchical routing, we should first divide the nodes in the

network into some clusters. We still do not fully understand what constitutes an

optimal clustering structure. Kleinrock and Kamoun have done excellent work

in this area, and their objective is minimization of the routing tables stored at

each node [KLE 77]. However, there are some other objectives such as reliabil-

ity. communicational overhead and so on. The problem of finding clustering

structares with objective of optimizing such attributes is unsolved. For example,

should the clusters be overlapped? How do we dynamically recluster the network

as network topology changes? How do we know which nodes are in which clus-

ters? Most of previous work has concentrated on the static network, where once

a node is assigned to a cluster, it will remain there forever. If some of the nodes

move from one cluster to another cluster, how should the network respond?

These problems are open.

5. Dynamic Reconfgu-ation

The design of dynamically reconfigurable architectures is basically driven

by enhancing the reliability and availability of a system through changes in its

configuration so that the effect of failures and faults may be bypassed. This abil-

ity of a system known as reconfigurability can be defined as the ability to change

its physical and/or functional organization in response to failures or faults in

the system. A sequence of events will occur in a dynamically reconfIgurable sys-

tem in response to any faults. The sequences of responses consist of the follow-

ing four steps : (1) detection of fault; (2) location of the fault; (3)

reconfiguration or repair; and (4) computation recovery. Techniques for carry-

ing out these steps will be discussed subsequently.



fig.



5.1. Fault Detection

The first step in designing dynamically reconfIgurable systems is to design

mechanisms which are able to detect faults or errors caused by faulty elements.

Since steps (2), (3) and (4) can be started only if the faults are able to be

detected, the correctly designed fault detection facilities are extremely impor-

tant for the proper operations of reconfgurable systems.

Fault detection can be implemerted by means of special hardware and /or

software during the system operation. The hardware methods of detection

include error detection codes such as parity, duplication and comparison,

majority voting, self checking, logic circuits, status check and ftags, and the

built-in testing schemes. Software methods of fault detection usually employ

redundant modules, concurrent execution and comparison of results on execut-

able assertions. No matter which meLhods are chosen, fault detection mechan-

isms should permit distributed or hierarchical fault detection so that the

failures at dilerent levels of the distributed system hierarchy can be handled in

a decentralized manner.

In systems controlled in a distributed fashion, the distribution of the fault

detection mechanisms is essential. It not only meets the design philosophy of

such systems but also makes the systems more robust. Each nonfaulty process-

ing element must be able to independently and correctly detect any failures and

malfunctions of other processors, based on the analysis of information which are

exchanged between neighboring nodes through communication links. The good

management of global information certainly is very helpful in accelerating the

detection of faults. Because of the high communication cost involved in inter-

processor communication, most of the above described hardware fault detection

techniques may not be applicable to the detection of faulty processors in the

distributed environment. For example, the majority voting technique may incur

__ ].

-t ... nm -. -



too much communication overhead if processors are geographically distributed.

[KUH 80 has developed a simple but effective way of detecting and isolating

remote faulty processing elements so that the fault detection is achieved in a

distributed fashion.

5.2. Fault Location

Once the faults are detected, the next step is the location of faults. Again

distributed or hierarchical fault location techniques will be more appropriate to

locate faults in a distributed computing system. Most of the previous work in

fault location deals with faults at the logic level. The stuck-at-i or stuck-at-0

may be the most frequently used model to represent faults in logic circuits.

This circuit level representation is too detailed to show faults at the system level

and too low-level to describe the faulty behavior at the system level. At the sys-

tem level, we are more interested in locating faults of some specific units such

as processors and links with little regard to the specific locations of faults within

the faulty unit.

A faulty unit is a unit in which one or more faults is present. Tests which

are performed to identify the faulty unit may be classified as hardware-

implemented or software-implemented. Typical hardware-implemented tests

employ redundant facilities and information in the form of error detecting codes

or replication. The testing is then carried out by feeding carefully selected sets

of inputs during normal operation and observing system outputs with code

checkers or comparators. These techniques, however, are not adequate to han-

dle all fault-location problems; because, firstly, faults may not always be

detected by checking algorithms used and, secondly, the selected input sets

may not be complete enough to detect and disclose fault locations. To resolve

these difficulties, sequences of tests should be used instead. These test

sequences, if they are relatively short or easily generated, can be produced by

1" " a



dedicated hardware in the unit. Such approach is particularly attractive to be

used in VLSI implementation. For more complex sequences and for testing

interfaces between units, software tests can be applied by one unit to another.

One basic assumption about these test sequences is that at least one processing

element functions correctly. Starting from the nonfaulty processor, each pro-

cessor can then be tested and determined faulty or not.

Error propagation is one of the important issues that affect the techniques

for fault location significantly. Obviously, if errors are allowed to propagate

throughout the system in an unrestricted manner, location of errors will be

diffiLcult to perform if not impossible. Thus, the reconfiguration , nd recovery

steps may become impossible. There arc two strategies in dea.ing with the

error propagation problem. The flrst strategy is to prevent errcrs from pro-

pagating beyond the boundary of processors. A commonly used technique is to

provide some hardware mechanisms which are able to perform corcurrent fault

detection for any information into or beyond boundary of a processing element.

Such concurrent fault detection permits immediate identification of erroneous

data, thus enables tight error containment. Another strategy is to require each

individual processing element record its own history of communication, such as

messages exchanged, so that, when necessary, the extent of error propagation

can be determined by tracing the history of interactions. This approach

requires that checkpoint information be maintained and requires special

mechanisms to protect the processes implementing fault tolerance. The second

strategy may involve a lot of communication overhead if the messages are

inter-processor messages.

1.--



5.3. Reconfiguration Strategies

After the faults are located, either the faulty processing elements will be

repaired and the computation recovered or the whole system will be

reconfIgured in such a way that the faulty units are excluded from the system

without human intervention. Methods for computation recovery have been dis-

cussed extensively in [KIM 79, KOH 81]. Here, we will only focus on the

reconfiguration issue.

Given a system faulty condition, there may be many different methods to

reconfigure the system to the normal operation. A systematic way to design the

optimal reconfIguration strategies is described as follows. First, appropriate

models and analysis techniques should be developed to analyze faulty behaviors

of the systems, Based on these models, the conditions for feasibility of

reconfiguration are derived. Such a feasibility study indicates whether a system

would be able to recover and recuperate from the given failures. Under various

assumptions about types and numbers of simultaneous faults, faults during

reconfiguration or not, priori knowledge of fault probabilities or not and so on,

[HEL 78, MA 81, JEN 82] have described various models and corresponding

ftures of merit to study the optimal reconfiguration. Also, some problems in

designing the optimal reconfiguration strategies have been proved to be NP-

completeness [MA 81]. However, more general models for describing the faulty

behavior of a system are still needed to provide a more realistic view in studying

dynamic reconfiguration.

Besides developing formal methods of selecting the optimal reconfiguration

strategy, there are some other practical considerations that should be taken

into account in designing dynamically reconfIgurable systems and realizing

reconfiguration strategies. For examples, the processors in the system should

be functionally compatible so that the function of a failed processor can be

-. ~ I--J



shifted to other compatible processors. The interconnection network should be

able to remain connected even after a node in the connected path fails. This

may require special attention on topology design and need some switching ele-

ments to perform connections. The reconfIguration strategies designed to cope

with different types of failures should be verified formally to assure their

correctness. Experiences obtained in protocol validation can be applied to this

aspect. Because of the high communication cost in distributed systems. the

reconfiguration strategy should also be designed to minimize uomma.nication

overhead so as to be efficient and cost effective.

6. Deadlock Handling

Three classes of strategies may be distinguished for handling deadlocks.

Deadlock prevention strategies work by imposing some constraint on the pat-

tern of resource usage by requesting processes, e.g. resource ordering, acquir-

ing all needed resources simultaneously, etc. Deadlock avoidance algorithms

operate by granting requests only when at least one path exists for the

processes to complete execution, e.g. Habermann's algorithm. In deadlock

detection strategies, no constraint need be imposed on the granting of an avail-

able resource; periodic checks are made of the state of resources and processes

to ensure that no process is deadlocked. The state can be maintained in the

form of a general resource graph [HOL 72]. It can be shown that if all processes

having requests are blocked, the necessary and sufficient condition for deadlock

is the existence of a cycle in the graph.

A comparison of these techniques in the context of their behavior in distri-

buted environments shows that deadlock avoidance is unlikely to be cost

effective because of the volume of communication required to cost-effective

because of the volume of communication required to transmit the usage



patterns of processes in advance. Further, if the run-time computations of safe

paths are to be distributed, additional communication may be required on each

resource request. Deadlock prevention strategies tend to reduce concurrency

by forcing processes to request resources earlier than required. They are most

effective when a "natural" ordering exists in the use of resources. For example.

the designers of Medusa ensured that the layers in Medusa were allocated dis-

joint sets of resources and thus prevented deadlocks which spanned layers.

Therefore, if a high degree of concurrency is desired, detection strategies

appear to be the best strategy in a distributed environment. They can be cen-

tralized, hierarchical or distributed in the allocation of detection capability over

a network. As a result of non-zero communication delays, resource allocation

information at a node may not be up-to-date. The detection algorithms, com-

puting on the basis of such information, may be unable to detect an existing

deadlock, or give an indication of deadlock when none exists. In fact, many of

the algorithms proposed in the literature have been shown to behave incorrectly

under race conditions.

Centralized and hierarchical algorithms which behave robustly in the face

of the above-mentioned race conditions have been developed in [HO 79]. The

algorithms can be executed in one or two phases, trading off response-time for

space.

Truly distributed algorithms are very important because such algorithms

require only the nodes involved in the deadlock to participate in detecting it.

Hence a minimum of reconfIguration is required under node crashes and net-

work partitions. Three distributed algorithms described in the literature are in

[MEN 79, CHA 82. OBE 82]. [MEN 79] stores "condensed" information to improve

response time, but does not adequately address the problems of updating such

condensed information. On the other hand, the algorithms in [CHA 81] and [OBE



. -1i- -- r-

82] du not condense information and hence the response time may not be small

enough. In addition, false deadlocks are avoided in [OBE 52] by a validation

phase after the preliminary detection, which will cause the response time to

increase. Development of an efficient and robust distributed algorithm with a

low response time must await future research.

7. Summary

This report has focussed on some unsolved problems related to certain

functions involved in the control of a distributed processing c"'qtem.

In the management of global information, availability must be maintained in

the presence of failures and consistency must be maintained in the presence of

concurrency. With reference to the former attribute, many algorithms and

techniques are appearing in the literature for handling various kinds and

degrees of failures and preserving availability in, spite of them. With reference

to the latter attribute, it is becoming clear that time-stamp ordering based on a

distributed clock mechanism is a very flexible and versatile method for ensuring

consistency. However, there is a lack of research in exploring putting together

these techniques in a unified, coherent manner to realize viable systems.

In the area of dynamic reconfiguration, although general procedures to

respond fault conditions in a system are well understood, efficient and robust

algorithms are still strongly demanded for detecting faults distributedly, for

managing the error propagation problem and for selecting optimal

reconfiguration strategies. The desirable distributed algorithms should take

into account both computation efficiency and communication overhead.

In the field of deadlock handling there is a lack of distributed algorithms,

which use condensed information to detect deadlocks rapidly and solve the

problems involved in managing this condensed information.

-.--



Most of research in the area of long haul computer communication is lim-

ited to issues on point-to-point communication to date. We have shown general

techniques for modeling and analyzing communication protocols and examples

of the specification and implementation model development. However, to model

and analyze full range properties of communication protocols, research effort is

further needed to extend hybrid models, to manage the state explosion problem

and to explore issues in multi-party communication.

Distributed routing algorithms are usually preferred over the centralized

schemes. However, due to the nature of parallel processing, they are difincult to

understand, to verify, and to analyze Existing algorithms suffer from a lack of

validation for these reasons and hence research is needed on the characteriza-

tion and comparison study of these algorithms. Much previous work is the area

has concentrated in minimizing the delays of individual packets. Future

research in distributed routing algorithms should include other objectives such

as minimizing the average system-wide message delay, minimum communica-

tion control packets and so on.

Since employment of conventional routing algorithms would incur excessive

communication and computational overhead, nierarchical routing algorithms

are necessary for networks of very large size. Previous research in this area has

almost exclusively concentrated on extension of the original Arpanet algorithm.

Research is needed in exploring some other objectives to implement hierarchi-

cal routing. Other issues such as optimal clustering structures that achieve

various objectives, dynamic reclustering strategies and so on are also needed to

be investigated.



8. References
[BAR 64] Baran, P. "On Distributed Communications," series of 11 reports. The

Rand Corporation. Santa Monica, Calif. August 1964.
[BEL 79] Belford, G.G. and Grapa, E. "Setting Clocks 'back' in a Distributed

Computing System," 1st Intl. Conf. Distributed Computing Systems,
Huntsville. Ala., Oct. 1979.

[BER 51] BernsteinP.A. and Goodman,N. "Concurrency Control in Distributed
Database Systems", ACM Computing Surveys, June 1981.

[BOC 80] Bockmann, G.V. "A General Transitions model for Protocols and Com-
munication Services," IEEE Trans, Comrr., Vol. COM-28, No. 4, April
1980.

[CER 81] Cerf, V., "Packet Communication Technology," in Protocols & Tech-
niques for Data Comrunwation .et-works, edited by F. F. Kuo,
Prentice-Hali, 1981.

[CHA 82] Chandy, K.M., Misra, J. and Faas, L.M., "A Distributed Deadlock Detec-
tion Algorithm and its Correctness Proof," Tech. Rep. TR-LCS-8204.
The University of Texas at Austin, Feb. 1982.

[CHU 78] Chu, K.-C., "A Distributed Protocol for Updating Network Topology
Information," IBM Research Report RC 7235, 1978.

[CHU 81] Chu, W., and Shen. M., "A Hierarchical Routing and Flow Control Pol-
icy (HRFC) for Packet Switched Networks " IEEE Tran. on Computer,
1981.

[COH 79] Cohen, D. and Postel, J., "On Protocol Muliplexing," Proc. 4 6th Data
Comm. Symp., Nov. 1979.

[COU 81] Courtois, P.-J., and Semal, P., "An Algorithm for the Optimization of
Nonbifurcated Flows in Computer Commuaication Networks," Perfor-
mance Evalluation 1(1981) 139-152.

[DAN 78] Danthine, A. and Bremer, J., "Modelling and Verification of End-to-End
Transport Protocols," Computer Networks, vol. 2, Oct. 1978.

[DOL 82a] Dolev, D., Fischer,M.J., Fowler,R., Lynch,N.A. and StrongH.R. "An
Efficient Byzantine Agreement without Authentication", to be pub-
lished.

[DOL 82b] Dolev, D. and Strong, H.R. "Authenticated Algorithms for Byzantine
Algorithms for Byzantine Agreement",IBM Research Report RJ3416
(40682), April 1982.

[FRA 73] Fratta, L., Gerla M., and Kleinrock, L., "The Flow Deviation Method: An
Approach to Store-and Forward Computer-Communication Network
Design," Networks, 3, pp. 97-133, 1973.

[GAF 81] Gafni, E., and Bertsekas, D., "Distributed Algorithms for Generating
Loop-Free Routes in Networks with Frequently Changing Topology,"
IEEE Trans. on Comm., Jan. 198 1.

[GAL 77] Gallager, R.G., "A Minimum Delay Routing Algorithm using Distributed
Computation," IEEE Trans. on Communications, COM-25(1), January
1977.

[GAR 82] Garcia-Molina, H. "Reliability Issues in Fully Replicated Databases",
Computer, Sept. 1982.

[GOU 76] Gouda, M.G. and Manning, E.G., "Protocol Machines: A Concise Model
and its Automatic Implementation," Proc. of the 3rd ICCC, Toronto,
Aug. 1976.

V 17



[GRA 78] Gray, J.N., "Notes on Database Operating Systems." in Operating Sys-
tems - an advanced course. R. Bayer et al. Eds., Springer Verlag, New
York 1978.

[HAXM 80] Hammer, M. and ShipmanD. "Reliability Mechanisms for SDD-l: A
System for Distributed Databases",ACM Trans. Database Systems,
Dec. 1980.

[HEL 78] Helvik, B.E., "An Approach to Optimal Reconfiguration in Dynamic
Fault-Tolerant Systems", 8th Int'l Conf. on Fault-Tolerant Computing,
June 1978.

[HER 82] Heritsch, R., "A Distributed Routing Protocol for a Packet Radio Net-
work," M.S. Thesis, Naval Postgraduate School, March 1982.

[HOF 80] Hoffmann, M.G., "Hardware Implementation of Communication Proto-
cols: A Formal Approach," Proc. of 7th Symp. on Computer Architec-
ture, May 1980.

[HOL 72] Holt, R.C., "Some Deadlock Properties of Computer Systems," ACM
Computing Surveys, 4,3 (Dec. 1972).

[KAM 79] Kamoun. F., and Kleinrock, L., "Stochastic Performance Evaluation of
Hierarchical Routing for Large Networks." Computer Networks
3(1979) 337-353.

[KIM 79] Kim, K.H., "Error Detection, Reconfiguration and Recovery in Distri-
buted Processing Systems", Proc. 1st Int'l Conf. on Distributed Com-
puting Systems, Oct. 1979.

[KLE 77] Kleinro'k, L., and Kamoun, F., "Hierarchical Routing for Large
Networks-Performance Evaluation and Optimization," Computer Net-
works, 1 (1977) 155-174.

[KOH 81] Kohler, W.H., "A survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems," ACM Computing Sur-
veys, 13, 2 (June 1981).

[KUH 80] Kuhl, J.G., Reddy, S.M., "Distributed Fault-Tolerance For Large Mul-
tiprocessor Systems", Proc. of 7th Syrup. on Computer Architecture,
May 1980.

[JAF 81] Jaffe, J. M. and Moss, F.H., "A Responsive Distributed Routing Algo-
rithm for Computer Network," Proc. The 2nd International Confer-
ence on Distributed Computing Systems, Paris. France, April 1981.

[JEN 82] Jen, C., "Overhead and Reconfigurability Considerations in the design
of Distributed Computing Systems", Ph.D. Dissertation, University of
California, Berkeley. 1982.

[LAM 78] Lamport, L., "Time, Clocks and Ordering of Events in a Distributed
System," Comm. ACM, 21, 7 (July 1978).

[LAM 50] Lamport, L.,Shostak, R. and Pease, M. "The Byzantine Generals Pr b-
lem", Research Report, Computer Science Laboratory, SRI Interna-
tional, March 1981.

[LAW 76] Lawler, E., Combimatoral Optimization: Networks and iMatroids,
Holt-Rinehart-Winston, 1976.

[MA 813 Ma, Y., "Techniques for the Design and Management of Dynamic Com-
puter Networks", Ph.D. Dissertation, Univ. of California. Berkeley,
1981.

[MAH 76] Mahmoud,S. and Riordan, J.S. "Optimal Allocation of Resources in Dis-
tributed Information Networks",ACM Trans. Database Systems,March



1976.
[MCQ 74] McQuillan, J., "Adaptive Routing Algorithms for Distributed Computer

Networks," Bolt, Beranek and Newman Inc., Cambridge, MA. Report
No. 2831, May 1974

(MCQ 80] McQuillan, J., and et al., "The New Routing Algorithm for the Arpanet."
IEEE Trans. on Comm., May 1980.

[MEN 79] Menasce, D.A. and Muntz, R.R., "Docking and Deadlock Detection in
Distrubuted Databases," IEEE Trans. Software Eng. SE-5, 3 (May
1979).

[MER 79] Merlin, P.M., and Segall, A., "A Failsafe Distributed Routing Protocol,"
IEEE Trans. on Comm., Sept. 1979.

[MER 79b] Merlin, P.M., "Specification and Validation of Protocols", IEEE Trans.
Commm., Vol COM-27, No 11, Nov. 1979.

[MOS 79] Moss, F. H. and Merlin, P.M., "A Routing Scheme for Session Oriented
Stored and Forward Computer Networks," Proc. of IEEE National
Telecommunications Conference, 1979.

[OBE 82] Obermarck, R., "Distributed Deadlock Detection Algorithm", ACM
Trans. Databa'3e Systems, June 1982.

[PET 77] Peterson, J.L., "Petri Nets", Computing Surveys, Vol 9, No 3, Sept.
1977.

[RAM 82a] Ramamoorthy, C.V. and GaneshS.L. "Global Information Manage-
ment", UCLA Packet Radio Analytical Workshop, Aug. 1982.

[RAM 82b] Ramamoorthy, C.V. and Tsai, W.-T., "Update Protocols for Hierarchi-
cal Routing Agorithms," UCLA Packet Radio Analytical Workshop,
Aug. 1982.

[RAM 52c] Ramamoorthy, C.V. and Dong, S.T., "On Modeling and Validation of
Communication Protocols", Proc. of Int'l Computer Symp., Taiwan,
R.O.C., Dec. 1C82.

[RAZ 80] Razouk, R., Estrin, C., "Modeling and Verification of Communication
Protocols in SARA : The X.21 Interface", IEEE Trans. Computer, Vol C-
29, No 12, Dec. 1980.

[ROT 77] Rothnie,J.B. and Goodman,N.A. "A Survey of Research and Develop-
ment in Distributed Data Management",Proc. Conf. Very Large Data-
base Systems, Tokyo, Japan,Oct. 1977.

[SCH 80] Schwawrtz, M., and Stern, T. E., "Routing Techniques Used in Com-
puter Communication Networks," IEEE Trans. on Comm., April 1980.

[SCH 81] Schwartz, R.L., Melliar-Smith, P.M., "Temporal Logic Specification of
Distributed Systems", Proc. 2nd Int'l Conf. on Distributed Computing
Systems, April 1981.

[SEC 81] Segall, A., "Advances in Verfiable Failsafe Routing Procedures," IEEE
Trans. on Comm., April 1980.

[SEG 82] Segall, A., "Decentralized Maximum-Flow Protocols," Networks, Vol.
12(1982) 213-230.

[SKE 81] Skeen, D.,"Non-blocking Commit Protocos",SIGMOD International
Conf. on Management of Data, Ann Arbor, Michigan, 1981.

[SUN 79) Sunshine, C., "Formal Techniques for Protocol Specification and
Verification," IEEE Computer, Vol. 12, No. 9, Sept. 1979.

-



[TAJ 77] Tajibnapis, W. D., "A Correctness Proof of a Topology Information
Maintenance Protocol for a Distributed Computer Network," CACM,
July 1977.

[TEN 78] Teng, A.Y., Liu, M.T., "A Formal Approach to the Design and Imple-
mentation of Network Protocols", Proc. COMPSAC, Nov. 1978.

[TSA 82] Tsai, W.-T., "Routing Techniques for Dynamic Computer Networks,"
M.S. Report, Computer Science Division, University of California,
Berkeley, Aug. 1982.

[WAL 81] Walter, B.. "A Robust and EtTicient Protocol for Checking the Availabil-
ity of Remote Sites",Proc. 6th Berkeley Workshop on Distributed Date.
Management and Computer Networks, Asilomar, Feb. 1982.

[WEC 79] Wecker, S., "Computer Network Architecture," IEEE Computer, Vol.
12, No. 9, Sept. 1979.

[WES 78] West, C.H., "A General Technique for Communication Control Valida-
tion", IBM J. Res. Develop., Vol 22, July 1978.

[ZIM 80] Zimmermann, H.. "OSJ Reference Model - The ISO Model of Architec-
ture for Open Systems Interconnection," IEEE Trans. Comm, Vol.
COM-28, No. 4, April 1980.

_4 -7



U~Tu.


