. —— ’ . w Ty P T R e
FEERTR T IR SO ) M s .

IXPACT RESTSTANCE OF MULTI-LAYER

Reproduced From
- Best Available Copy




UNCLASSIFIED
ARITY CLASSIFICATION OF THIS PAGE (When Date unm RED 2782-MS

REPORT DCCUMENTATION PAGE BEFORE COMBLE NG PORM

P R ¥ PN

REPORT NUMBER b GOVY ACCESSION NOJ 3. RECIPIEr " ‘S CATALOG NUMBER

N AL2T ¢ 4d

TITLE (and Subtitie) 8. TYPE OF REPORT & PEMOD COVERED

Final Technical Report
Ballistic Impact Resistance of Multi-Layer October 1979-October 1981
Textile Fabrics

6. PERFORMING ORG. REFPORT NUMBER

M‘T LN

AUTHOR(s) 8. CONTRACT OR GRANT NUMBIN(S)
J.W.S. Heul‘, C.H. IAGCh' A. my‘f" WA37‘79'C-0532
C.R. Cork

« PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL!M!NY PROJECT, TASK
University of Manchester Institute of Science AREA & WORK UNIT NUMBERS

and Technology 6.11.02a

P.O0. Box 88, Manchester M60 1QD 1716 1102BH57-04

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
USARDSG-UK October 1981

.Box 65 13. NUMBER OF PAGES
FPO New York 09510 104 :
MONITORING AGENCY NAME & ADDRESS(/( ditferent frem Contrelling Oftfice) 18. SECURITY CLASS. (of thie repen)

Unclassified
[ 182 DECL ASSIFICATION/ DOWNGRADGING
SCHEDULE

—————————————————
. DISTRIBUTION STATEMENT (el thie Report)

Approved for public release; Distribution unlimited,

+ DISTRIBUTION STATEMENT (ol the sbatract entered in Bleek 20, I diffeorent from Repert)

\

0 My,

@
H

b SUPPLEMENTARY NOTES [

Y

. KEY WORDS (Continue en reverae side If y and identily by Bleck number) - . -
Textile materials, ballistic impact, impact testing, nulti-layer impact,

finishes, triaxial fabric, impact nodolling, characteristics model,
finite element model.

& ABSTRACT (Castinus en rewwree sile /i naseesary end identify by bloek manber)

“&xperimental and theoretical work on the transverse ballistic impact of
Kevlar and nylon fabrics is presented in two parts. Part I is an experimental
investigation into a) the relation between the multi-layer and gingle layer
impact; b) the effec: of fabric finishes; and c¢) the effect of weave. A
simple model of impact togsther with the experimental data showed that
inter-layer effects are of second order. High friction finishes and bonding

’ “'“” m EDITION OF ? NOV 68 1S OBSOLETE UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (When Dote Entered)




-
.D.

v —,
L)
F Ve

e N

TN 30 2% 2% ae 4
< -'- LA

O I

LAAIIE X4
.

~ .
. ‘["J

i

UNLLADD LY L EU
SECURITY CLAZSIFICATION OF THIS PAGE(Man Date Entered)

‘agents were found to be detrimental to the performance of Kevlar. Triaxial
fabrics were found to be inferior to biaxial fabrics. Part II describes
the development and applications of computer models of impact using both
characteristics and finite element methods.

\ .‘Fﬁéo'vz!aw “ap '
\ ETe geagy .
f"":' !ﬁﬂ
U tsn ¢ o 3
Jee ol i hog
— T
,’.—.-,.....
| Distrites.ypy ‘.-—lx
. Av,n LT 10w paia, i
1 Ave il ang. L
Dist | Jamelal {
[ ¢ ‘
; !
]

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entercd)

Ol § ¢ I )

a0 SO

v gmevv. o

IRATI Y AL § 199§ PY L




BALLISTIC IMPACT RESISTANCE OF MULTI-LAYER TEXTILE FABRICS

J.W.S. Hearle
C.M. Leech

A. Adeyefa
C.R. Cork

University of Manchester Institute of Science and Technology

Department of Textile Technology

Contract No. DAJA37-79-C-0532 - -

Final
Technical Report

October, 1981.

The research reported in this document has been made possible through

the support and sponsorship of the U.S. government through its European

. Research Office, this report is intended only for the internai management
use of the grantee and the U.S. government. :

. .
.L.:..-..'--'...'.A e’

A

I S

tv- .
i i e st

Qe s
S AP




|

RS LI ’v

0% et
» . [T A LY N

Ty

RRUE- SEEPOAARN B WIGRIA IS - AN

-

T
TETY VYOS

. e

-+ AP

+

.

GENERAL INTRODUCTICN

This report, presented in two parts, describes the investigation
carried out in UHIST in the period 1979-1981 into the pertormance'of

textile structures under ballistic impact. ‘The investigation

follows two complementary routes, namely an exhaustive program of

experimentation centred around ballistic impact tests and secondly a
detailed survey and‘de#elopment of theoretical and computer models for

simulation of the textile and projectile dynamics. The design and

" evaluation of textile structures for protection against high speed

normal impact must hinge upon the many material, surface and structure
parameters intrinsic in the structure design. -~ The projectile,
impac;ing in the rahge 150 m/s - 550 m/s, and with a nominal mass of 1
gm, encounters the textile structure both at the fibre level and at‘the
weave level. 1In the first instance, one must consider firstly for the
arrest of the projectile, resistance to cutting by the projectile
edges, and opening of the weave structures., These are not important
considerations in the present configuration, but would obviously be
considered for very small projectiles where the projectile diameter is
of the order of the weave pitch. A more important con;ideration is in
the indentatior . fabric surface, leadiﬁgrto higﬁ”tibré sﬁrai&ﬁ;r;a&

when these strains exceed the fibre fracture strain, the structure will

fail. The structure 1s also considered inadequate if the total

indentation is sufficiently large as to present a hazard to the sensitive
20one behind the fabric, even through the fibre fracture strain is never
exceeded. Important *o these two criteria are firstly fibre material
properties quantified by fracture strain, modulus of elasticity and

fibre weight (denier). Then the method of assembly into the textile
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material is important, quantifi?d by the Qarp and weft pitch leading to
the area density (textile weight) and crimp parameters, by the fibre
friction uhich ‘impede the relative motions of the fibres in
accommodating the impact energy and finally by the assembly of textile
layers into a structure considering layer mixes and laver fixing by
stitching or by resin bonding. The important projectile impact
parameters are projectile mass, and impact velocity or energy.

In the first part of this report, the result; of an experimental
research programme are presented. | The main aspects of this work were
investigations of the effects of the addition of finishes designed to
alter the degree of yarn té yarn cohesion within a fabric and also the
compare the multi-ply response to impact to thap of the single Iayef.

In the second part of this report, various theoretical
considerations are examined with the motives dt genericing procedures
for predicting and stimulating textile structure performances. The
first consideratiéns examine the mode ot propagation to stress signals
through the structure, leading to the ideas in fibre matcbing at the
nodes (1ntersection of warpi and wefts) and then describes the
variational model appliéd to triaxial fabrics. This model has
previously been developed and applied to regular orthoganal weaves
(Journal of Textile Institute Vol 70, No. 111, page 469 et seq, 1972)
and is applicable in the very approximate sense to single and then
multilayer structures with no slip either between fibres or layers.
Then, the method of characteristics is examined, this leading to a
computer simulation which is very applicable tovsingla layer structures
an which the fibre materials and fibre orientation are significant. The
high speed impact results are quite accurate since this model is stress
wave based. The next set of models are finite element models,

focussing on various details in the structure. The first mod2l, the




membrane model incorporates the crimp effects into the element and is

vy .
L3 PR a

appropriate to single layer structures. The second looks at the detail

~ of the fibres in the node area. The third and fourth programs consider

A

the multilayer structure the former considering the layers bonded by a

resin or glue effective only in shear, and the latter the more important

of the'tuo, allowing layers to slide relative to each other.
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1.1 Introduction

The aims of the present study were to construct a ballistic range
capable of 1mpac£1ng 1 gm steel projectiles onto fabric samples and to
also provide apparatus for the measurement of impact velocity and the
energy absorbed by penetration. Apparatus was also developed in order
to (1) provide multiflash photographs of fabrics under impact (2)
measure the arrival_of the stress wave at the fabric boundary. In
addition work was undertaken to:

1) establish the effects on the ballistic performance of the addition

\
to fabrics of chemical finishes designed to alter the degree of

yarn Lo yarn cohesion within a fabric;

2) compare the multi-ply response to impact to that of the single
layer over A range of 1mpéct velocities.
These two factors were known to be of importance because:

1) Laiblg’vhas found that the addition of high friction finishes
significantly improved the ballistic performance of polypropylene

fabrics; alternatively Morrisonz has shown that when Kevlar is

used in either a polyester resin or a silicone rubber composite,

the ballistic resistance is reduced when compared to the untreated
fabric;
2) most theoretical work has onl} been developed to the level of
single layer impaét.
In addition to the ballistic performances 6£ the above, two‘
triaxial weave fabrics an& a lightweight nylon fabric were compared to a
heavyweight biaxia’ fabric more representative of those normally used

for ballistic protection.
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1.2 Development of the Ballistic Range

During the previous research programme supportgd by the Ministry
of Defence, SCRDE, facilities were devéloped to allow transverse
ballistic impact onto rabrics.l Lead airgun pellets were fired from a
cartridge gun at velocities within the range‘100 n 3'1 to 550 m s".

The velocities of the projectile, before impact (vin) and after
penetration of the fabric (Vou;), were measured in the following
manner. -Four pencil leads were aligned along the path of the
projectile; <wo in front of the fubric, and two behind. The pencil
leads formed part of.a simple resistive circuit with an input to a
storage oscilliscope. As each pencil lead in tﬁrn was broken by the
projectile, the voltage vinput to the oscilloscope was consequently
reduced. From the stored diaplay the time between contact breaks anc
thus t: o Vin and vout velocities, were obtained.

Phcetographs of the deformation process after impact but before
penetration were obtained by illuminating the event with a single flash
of light of 1.2 u s duration. These experiments were perrformed in a
darkened room with the camera lens open. The time of the flash, in
relation to a contact break a short distanrce ovefore impact, was varied _
using a simple delay circuit. By varying this delay for each trial,
plots of pellet position against time were bbtained. This method,
however, gave a large scatter of results as both a constant impact
velocity for each trial, and identical modes of penetration for each
sample, from the same fabric, had to be assumed.

This apparatus was modified for the present research in order to
minimise the energy absorntion due to projectile deformation..Steel,
rather than lead projectiles were required. Cylindrical steel

projectiles of diameter 5.5 mm, length 5.5 mm ard mass 1.004 (+ 0.0008)g.




were obtained. The projectiles are located in plastic sabots and

fired from a 0.303 inch (.769 mm) rifle barrel. So far, muzzle

1 ! have been achieved.

velocities. of between 262 ms~ and 550 ms”
Multiple flash photbgrahhs show that before impact thevprojectiles yaw
slightly but do not spin. As there was a danger that the steel
projectiles might richochet, the whole apparatus was enclosed in a
steel bhox. Polycarbon#te~windows were includea in the structure to
allow the fabric samplé to be photographed. The present apparatus is
shown in Figure 1. |

In order to trigger a series of light flaaheé to obtain multiple
image photographs of the brbjectile-rabric interaction; a 'Bowen' ten
channel delay was acguired.

This unit produces electronic delays,v in either parallel or
series, down to intervals of 1us (+ 0.01%). A projectile moving at a
velocity of say 550 m 3'1 moves .55 mm in 1 us, thus six stages of fabric
deformation can, in theofy be observed before the pyraqidal deformation
. has reached 3.3 mm. Therefore the delay is‘mbre than adequate for the
present research. |

Previously a single<fiash of a stroboscope was used as the light
source for photography. _Although this flash was of a relatively shopt
duration and of reasonable brightness, image quality'uas impaired due
to either; (a) blur cﬁused by projectile movement during the time of
the flash, b) a small depth of focus due to che large lens apertures
required for the low light level or (c) high graininess due to the fast
film which was required. These effecis were exaggerated when negatives
were greatly enlarged for analysis. In order to improve image quality,

three 'Pulse' double flash argon arc light sources have been obtained.

The manufacturer quotes a flash duration of 0.3 us.
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Two still cameras, for exclusive use on the present research
programme, were purchased to enable simultaneous 'side on' and 'end on'
photographs of the deformation to be obtained. |

Previously there was a relatively large error in the measured
values of Vin,aqd vout' It is particularly important to reduce the
errors of these measurements, as the energy loss of the projectile is

obtained from the difference of the squares of vin and vout‘

Previously, time intervals could only be measured to an accuracy of +

2%. In-brder to improve on this two digital timers were purchased.
These can each measure time intervals down to O.1us. The separation
of the velocity measuring stations are now of the order of 80 cm.
Therefore, timing errors now contribqte to orly 0.07% of the error in.
velocity measurement for a velocity of 550 m 3'1.

The above facilities were used to obtain micrographs of fabric
systems under impact. '

Figure 2 shows three such single flash 'photographa of the
deformation of a double-layered nylon fabric. The impact velocity is
approximately 350 ms°1 in each case. A general vieﬁ of the whole
fabric is shown in figure 2A. Lines were drawn on this fabriec at 0.5 em
separation, parallel to both the warp and wef?t directions. From this
photograph the pyramidal form of the transverse deformation is clearly
seen. A line drawn on the print parallel to one of the grid lines helpsv
to show the in-plane die lacement of the fabric towards the point of
impact. Figures 2B and 2C show the region of the fabric near the
impact zone at approximately 20 us and 60 us after impact. In figure
2B the projectile, which is moving in a direction from bottom to top of
the photograph, has not yet penetrated the fabric while in 2C the whole

of the cylindrical projectile is visible.
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FIG. 2
A Fabric Undergoing Ballistic Impact.
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Projectile in Flight,
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Side View of Fabric Under Impact
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(figures 5B and 5C) as much original detail is lost‘during reproduction.
In figure 5A the time between flashes is 10 ys while in figure 5B thi;
interval is 20 us. Figure S5A shows the fabric at times before
penetratibn. In figure 5B, however, one image shows the fabric before
and two images show the fabric after penetration. The multiple flash
technique has been used by previous researchers in the samo’field.
However much previous work us;ng mﬁltiple flash methods has been at low
impact velocities in order to Se able to observe large deformations
before penetration. In figure 5A, the pyramid neight is only 0.8 cm at

the time of failure. (Approximately 50 us after impact).

Strain Measurement

It would be of enormbua theoretical interest to be able to measure
the spacial and temporal distribution of stw=sin during impsct. The
measuremcnt of the level and distribution of stress and strain
throughout a fabric during impact, does however, present' serious
experimental problems, as the measuring instruments could easily
themselves influence the strain distribution. A partial solution is to
restrict measurements to the fabric boundary. For this purpose a
comnercial pressure transducer has been mounted in such a mannar as to
enable tensile forres to be measured. One yarn from the fabric was
clamped to the transducer. The sample holder was then adjusted in order
to ensure that the yarns intersected the impact zone.

The force transduch alone has a resonant frequency of 200 kHz.
The output is therefore filtered by a 180 kHz low pass filter. Stress
wave reflections at the boundary would be expected to give rise to
frequencies (f) in the region of

¢ = %&2

where v = sonic velocity

d = distance from impact zone to fabric edge.
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This is only an approximation, as no consideration was made of

crimp.
For Kevlar
3
4 x 10
£ 0.075x2 = 26.6 kiz

Thus the apparatus was adequate for :he present research.

.The output from the transducer was fed into a transient recorded
via a change amplifier. The resulting data was displayed and then
stored on floppy disc.

To allow the force measurements to be synchronised with
micrographs of the fabric during impact, the outbut'trom a photodiode
was displayed on one channel of the transient recorder. A typ;cal
trace is shown in figure 6. Ore yarn from the last layer of a
multilayered sample was attached to the force transducer. The
uppermost trace is the output from the rorée transducer. Below, the
photodiode output is shown. The large decay time of the photodiode
output does not reflect the 1light flash duration, but is 'merely
attributable to the electrical system. The peak output occurs as the
projectile is arrested.

Figure 7 shows the synchronised output from another trial. Here,
although the cone deformation has already occurred and the photograph
shows the fabric at a time of at least 20 us after impact, no signalvis
recorded by the transducer until 22 us later. It can be sean from the

micrograph that the fabric is not completely flat in the region near the

transducer. It seems that this has resulted in a delay of the stress

wave.
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Only preliminary work has so far been undertaken using the
multiple flash and the boundary transducer but results will be obtained
on the deceleration of the projectile and the resulting force at the

boundary in the following research programme.

1.3 The Ballistic Performance of a Lightweight Fabric

buring the course of the current project the author was asked to
comﬁare a_lightweight and a heavyweight nylon fabric on the ballistic
range as a part of preliminary work for a proposed project. Details of
the two fabrics are shown in Table 1. Figueta" reports that the
ballistic performance of a pultilayered fabric of given weight

increases-as the area density of the individual layers is reduced.

Fabric Area Yarns " Tex of Mean : Mean

Density per cm. yarns breaking load % extension
snl-2 (Kgr?

Warp Weft Warp Weft Warp Weft Warp Weft

42.8 38.7 39.7 5.40 5.19 0.137 0.132 17.0 16.1
378.0 9.75 9.75 19T7.1 193.6 13.3 13.6 . , 23.8 23.6
Table 1

The fabrics were tested on the ballistic range. The results are
presented as # plot of the energy loss against the combined area density
of the multilayered samples, (fig. 8). It is clear that weight for
weight, less energy is absorbed by the lightweight fabric. It is of
interest to compare the VSO energies. The data from tests on 28 layers
(= 1198 gm'z) of the lightweight fabric are shown as a plot of absorbed
energy against impact velocity (fig. 8b). The VSO energy was found to

be 27.3 J. Frcam the v50 energy curve of the heavyweight fabric, the
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Vs energy at 1198 gn~° was calculated to be 40.3 J. This difference

could be a reflection of the differences in the quasi-static work of

‘rupture of the constituent yarns. Assuming that the tensile strain

energy is the only hode of energy absorption and that only yarns which

make contact with the projectile .are strained then the expected

projectile energy loss per unit area density was calculated to be -
héavy duty nylon = 5.29 J per Kg/m2

lightweight nylon 3.39 J per Kg/m°

(Typical quasi-static stress strain curves are shown in figure 9).

. These results are only one sixth of the V50 energies found by

experiment, howaver, the ratios of the experimental -~nd calculated

energies are similar:
'Ratio of specific work of rupture of principal yarns - g%g% =z 1.56

‘..‘ - uo. -
Ratic of vSO energies 57_§ = 1.48

. However, the ballistic performance of the two nylon fabrics might
have been expected to be more similar as the work of rupture is not the
only mode of energy absorption. For example, the transverse kinetic
energy o( the tabﬁic accounts for some of the energy absorbed from the
projectile.

One possible cause of the 1nreriqr ballistic performance of the
lightweight fabric is a difference in the mode of penetration. Many
photgraphs of the projectile in flight after penetration revealed a
small object travelling ahead of the projectile. This was identified

518 that fibre melting is a

as a fused plug of nylon. It is known
factor in the failure mechaniam but no plugging has' been observed
before. The nylon plug travels ahead of the impact projectile but was

slowed due to air friction. It must be concluded that the plug was

ejected before the final disengagement of the projectile from the

fabric. The exact mechanism is however unknown.
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1.4 The Ballistic Performance of Two Triaxial Fabries =

In normal (biaxial) fabrics two sets of parallel threads intersect
at 90°. In triaxial fabrics, three sets of parallel threads intersect
‘at 60° intervals. There are reasons for believing that the ballistic

performances of otherwise identical fabrics would be different for

biaxial and triaxial fabrics, although as yet the superiority of either |

cannot be confidently demonstrated due to lack of knowledge of the
importance of various effects of weave. For example a triaxial weave
might confer added ballistic performance due to the spreading of load
more evenly around the impact zone or alternatively might confer a
reduced ballistic bertormance due to the inherent openness of the
triaxizl weave.

Two triaxial fabrics (A and B) were therefore compared on the
ballistic range. First consider fabric A which became available early
on in the research program. As the dallistic rig was only partially
opsritionai at the time, and the fabric quantity was ligpited the
triaxial fabric was compared to a biaxial fabric using A simple ad hoc
procedure. The fabric parameters are shown in Table 2. The ballistic
performance of each fabric was assessed by finding the number of layers
required to stop the projectile at a known velocity.

The results are shown in Table 3. It is clear that the total area
density of the biaxial fabric (2400 gm'z), which is required to stop the
projectile, is much less than that required in the case of the triaxial

fabric (3094 ms™').




Area Yarns per ca Tex of‘yarns Breaking load :i:‘\ "
density of yarn Breaking Extension -t -/
(gp-z) (Newtons) (%) ' ;E :/’
WARP  WEFT  WARP  WEFT  WARP  WEFT WARP  WEFT =
260 1.4 123 103 101 67.1  68.5 4.9 25.5 o
A B A B C A B C A B ¢ S
221 3.8 3.9 3.7 200 205 201 109 128 130 20.8 22.2 23.2 .»: , g
B
Table 2 ?3';
Although the fabrics had similar area densities, it cannot be g: :
concluded that the difference in construction was the sole reason for ' 4\,
the difference in ballistic resiétance, as the triaxial was of a very , /
open structure. A triaxial fabric of a much closer weave was therefore ﬁ .

tested ballistically.

Fabrice No. of layers Area Density Impact velocity Was sample ‘
of sample (ms") penetrated "
'(sn'?') )
.8 1920 . 392 -!esr—','-fl
Biaxial 9 2160 405 Yes Py
aylon 10 2400 407 No B
11 2640 399 No ) i
. PN
1" 2431 376 Yes
Triaxial 13 2783 378 Yes .'1'.: ‘
nylon 14 3094 387 No .“j
15 3315 385 No oy
Table 3 o
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.The area dens’ s of three layered

sauple was 1281 gm'z. The Vg, energy was found to be 38.3 J. The

equivalent VSO limit of the heavy duty nylon described earlier can be
found from the plot of V50 energy against area density (figure 8). By
this method the vSO limit for the biaxial nylon of combined area density

2

1281 gmn™“ is 42.5 J.

The '50 energy of the triaxial fabric was thus marginally lower

than the biaxial fabric, buc this is not statistically significant. It
is concluded that the performance of the biaxial and triaxial fabrics
were similar. .

In part II of this report it is demonstrated that a computer model
of the impact onto iriaxial structures predicts that the triaxial weave
is ballistically inferior to the biaxial weave. Conversely it might be
expected that the ¢triaxial fabric might bde more efficient by
considering difterences in the transverse wave front.

Adeyefa predicts that for triaxial weaves, the transverse wave
front would be hexagonal. A photograph of the reverse side of the
triaxial fabric during impact is shown in rigﬂre 10. The wave front is
confirmed to bde hexagontl. Figure 10bshows a biaxial nylon and a
biaxial Kevlar by way of comparison. = In these cases the transverse
wave front is rhomboidal.

By geometrical considerations it is found that the area bounded by
the transverse wave front is greater for the triaxial wave over the
biaxial weave by 1 : 1.3. It is expected that the kinetic energy of the
transversely moving region of the fabric would be greater for triaxial
than biaxial weaves. This effect would make the triaxial weave a

better absorbant of projeciile energy.
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FIG. 10

Triaxial Fabric Undergoing Ballistic Impact.
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1.5 Main Research Programme
Experimental Procedure

For the purposes of the present research two methods of
quantifyingyﬁhe ﬁaliistic performance of textile materials have been
adopted. |

First, the_variation of energy loss against impact velocity is
established, and from this the Vg, limit is obtained. The variation of
impact velocity provides an independent input parameter for models.

The expebiméntal and theoretical results can then be compared. This

method also provides a means of comparing the ballistic properties of

different fabrics. The VSO limit can be found for samples compose? of

different number of layers. The variation of the Vso limit with:the

|

combined area density of the multilayered sample enables the balliétic
|

performance to be quantified. This method has the advantage that the
vSO limit is a widely accepted way. of assessing ballistie resistance; A

great disadvantage is the large number of tests required to estab#ish
|

the vso limit even for a single layered sample. Difficulties also -

!

arise due to the large scatter of results at velocities near theivsd
n

limit. . Co : |

The second technique is to impact a series of multilayered samples

1

at one impact v§locity (approx. 500 m s~ '). In ihis procedure fabric

performance is established by the variation of énergy absorbed with the

combined area density of the multilayer sample. Figueia (ref, 4)

reports that, for Kevlar, this relationlis linear. Figucia also
reports that the projectile energy loss was found to be independeﬁt of
impact velocity in the range tested. Figucia only considers resﬁlts
where less than 50-60% of the available energy is absorbed. The
author's technique was to include all results for velocities where

penetration occurred, for it has been found that although the absolute
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value of the experimental scatter wes high, the fractional variation in
absorbed energy was acceptable. The second method has proved very
successful in quantifying fabric differences.

Fabric Finishes

Hany computer models have been developed to predict behaviour of
woven textiles when subjected to impact by a free flying projectile. A
common approachlis to treat thé woven fabric as a pin Joihted net.
However, previous research by the ﬁuthor has produced évidencé that
longitudinal movements of the principal yarns can occur relative to the
crossing yarns. The evidence originates from observations of residual
displacements, and residual damage of the principal yarns (ref.6). It
is expected that changing the ability of yarns to pass freely over each
other might change the energy absorbing characteristics of the fabric.
Three possible effects are postulated. First, an increase in crossover
stability will cause an increase in the reflected part of the
longitudihal wav; at each crossover. This leads to ihcreased ttrain at
the impact zone, and early failure. Second, an increase in crossover
stability increases the energy transfer to parallel-yarns. Third, a
decrease in crossover stability would increase the 2bility of yarns to
move laterally at the impact zone and allow the proJecti;e t& pass

‘dithout yarn failure.

Horriaonz has shown that the addition of a rubber matrix to a
Kevlar fabric seriously reduces the ballistic performance. Morrison
ccncludes that for the materials tested, the second effect i.e. the
increase of nodal reflections must be predominant.

Alternatively, 1t 1is known that wet vsampies of Kevlar are
seriously weaker than dry samples (ref 7). One possible explanation is
that water has seriouély reduced the yarn to yarn frictipn. Alterations
to the stress-strain behaviour of wetted Kevlar were not found to be

large enough to explain this.
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Laible1 has shown experimentally that the ballistic performance of
polypropylene fabrics is improved by the addition of high friction
finishes.

Lateral yarn movements have been observed by the author (ref 5).
In some cases single layer fabrics were penetrated without any yarns
beinglbroken.

The above observations indicate that there is an optimum yarn to
yarn cohesion. | .

In order to investigate whether yarn to yarn friction affected the
ballistic properties of fabrics and in order to observe whether any such
eff.:ts are dependent onlimpact velocity, muitilayer fabrics of nylon
and Kevlar were tested on the ballistic range. The fabrics had
previously been treated with chemical treatments designed ﬁo either
decrease or increase the degree of yarn to yarn triction at crossovefs

within the fabric. Ideally it would have been desirable to find a

treatment which would have reduced the friction in Kevlar fabrics, but

none was found. Even a finish (Siligen E) which is designed to reduce
friction was foun& to increase the level of friction for Kevlar. The
results are shown in rigtres 11 to 16 as plots of the energy loss of the
projectile against the impact veloecity. The scatter of data is a
consequence of real differences in absorbed energy for each trial. As
no measurements .of rebound velocity were measured, the energy loss is

strictly the loss of kinetic energy of forward momentum. Thus, for

tests where the fabric was not penetrated, the data points lie on the

curve of formula

E = juv®
where m is the mass of the projectile. For cases where the fabric was
penetrated the curve was fitted statistically to fit the exponential

curve
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The choice of this form of curve is somewhat afbitrary, however the aim
was to be able to apply a systematic routine to evaluate differences
between the two fabric finishes. When the constants a and b have been
evaluated, the Vso limit 13 predicted by solving

ae® - }mvz s 0.

The ng eneréy can thén be calculated. The relative performance
of these fabrics can be'fcund from the plot of the vSO energy against
the combined area density of the multilayered fabric. The ballistic
performance for these tests were qualified by then calculating the vSO
energy loss at an area density of 1000 gm‘z. This value was chosen
arbitrarily, but is well in the range of the area densities tested in
the current research. The results are shown in table i, The
following conclusions can be drawn:

1) the high friction finish conferred an improved ballistic

performance on the nylon fabric compared to ihe addition of a low

friction finish;

é) toth the high friction treatments produced a large reduction

in ballistic performance of the Kevlar fabric;

3) the water treatment improved the ballistic performance over

the 'as received' fabric possibly because residual finishes were

removed;

4) none of the treatments conrerred any strong velocity

dependent effects.

In view of this last conclusion, it was decided to adopt Figueia's
method for any further quantification of ballistic perférmance. In the
next phase of research a more open weave fabric was tested as it was
felt that the inherent freedom of yarns would provide plenty of scope

for modification of yarn to yarn cohesion. Samples of these fabrics
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were immsrsed in aqueous solution of the fabric finish and then cured at
120° for 15 minutes. As a control;va set of samples was jimmersed in
water and dried at the same temperature. One of two finishes were
applied:-

1) LURAPRET * B30. Thisvéonters a high yarn to yarn f-iction.
Chemically it is an aqueous solution of silic acid.

(11) PARAPRET HVN * LURAPRET B30. 50/50 mixture. Parapret‘is
an aqueous diSpersion of an anionic polyacrylate..

The effects of these treatmentaAwere’quahtified using the yarn
‘pull test described in the preyious report. A typical force-extension
curve obtained from this test is shown in figure 17. For each test,
the first two maxiha (A,B) were recorded. The results for the Kev;ar
fabrics treated with finishes are shown in table 5. As expected the
maximum forces were greatest for the Lurapret-Parapret (bonded) samples
and ieast for the control samples (water treatment). Fob the ':cuded
sample; there was a 66.8$-reduction in force between the fifst and
second peaks, whereas for the other samples this figure was ir the
region of 15%. It is concluded that the yarn tc¢ yarn bonds are broken
at the first peak and that the level of the second peak is determined by
frictiocnal forces. There appears to‘be very little yarn to yarn bonding
for the fabrics which were treated with the higheﬁ friction finish.

|

Resh;ts of the ballistic tests on treated fabrics

Hbight for weight the water ¢treated samples we found to be
signiricéntly superior in ballistic performance than either the 'high
friction' or bonded samples. The latter two fabrics were found to be of

equal bgllistie performance, even though there was a large difference

between the levels of force in the yarn pull test. The BPI's(Ballistic
performance Indicator), the slope of the energy - area density relation is

’Registered trade made of BASF, England.
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listed in table 5. .The results are presented graphicélly in figure 18.
s These results hold even if the add on weight of the finishes is not

g included when calculating the B.P.l, although the differences are

adds weight buﬁ not strength. ' These renormalised results are shown

! graphically in figure 19.

* Conclusions on the effect of increased yarn to yarn friction

Although it is possible that similarity in ballistic performance
some intermediary level of cohesion would produce different results; it
. aeohesion which significantly reduces the resistance of Kevlar fabric.

ifurther increase in friction 6r bonding, alternatively the add-on
;wnight of the finishes could have modified the response to impact.

% -Fig.5.29a and.5.29b show strain histories, at the point of impact
éor an identical fabric, as predicted by the methods déscribed in part
EII. Fig, 53.292 shows the case where slipping is allowed at yarn
‘erossovers and £1g.5.29b models the case where the yarns are rigidly
connected. , Although the time to projectile arrest is less for the
latter case, the strains are generally higher. Thus a strain.tailure

criterion is applied to both cases, it is predicted that the fabric with

rigidly connected yarns would fail at a lower impact velocity than the

experimental results.

Ballistic Resistance of Kevlar 29 and Kevlar 49

Kevlar 29 exhibits twice the tensile breaking strain but almost

half the tensile modulus of Kevlar 49. Roylance(ref.3) has developed

lower. The reason for this, of course, is that the fabric treatment

between the bonded and the high friction finish is coincidental, and the.
?seems probable that there exists a relatively low level of yarn to yarn

"Above this level the ballistic resistance becomes insensitive to any

fabric where yarn slip is allowed. This is consistent with the'
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va "finite difference model for the ballistic impact onto textile
structures. Using these quasi-stétic fibre parameters, Roylance
predicts that Kevlar 29 is superior to Kévlar 49, However, Roylance
refers to experimental results which seenm io indicate a similérity in
ballistic resistance.
In order to provide our own data a Kevlar 29 and a Kevlar 49 fadric
of similar construction were compared on the ballistic test range. Both
fabrics were treated with the high friction finish as the results were

also used to provide data on the effect of finishers.

Rasults of Tests on Kev'ir 49 and Kevlar 29

No significant difference was found between the ballistic
resistance of Kevlar 29 and Kevlar 49. Figures 20 and 21 are plots of
prbjectile energy loss against combined ahea density of the multilayer
fabric for these two fabrics. In Figure 21 the results have been
renormalised to reflect the untreated weight of the fabrics (175 sm-z);
The B.P.1's are shown in Table S5 .

It is of interest to compare the author5s results with those of
Figucia (ref. 4) who found B.P.1's in the range of 22.6 to 31.5.J/kg/m2.

The two untreated Kevlar samples tested by the arthor were found to have

B.P.I's of 29.6 and 33.6 J/ks/mzn Thus the results for Kevlar are in

good agreement even though the authurs results were obtained using a
blunt cylindrical projectile instead of the fragment simulator and a 6"

rather an a 1" diameter fabric sample size.

Model of Multilayer Impact

A simple computer model was used to calculate and display
graphically the multilayer performance from single layer data. The

model assumed no physical interaction between layers. The exit

Jo
N

< . * . - *
NP MY W ST W W

e . Ce Ty . . .
. . PRI .
. P A
SO et
. AR S T L s
O L. . o .,

' i 7 o a0 B




L e PR | TR B

02 °D14 ‘YSTUTJ UOT1D 4] ydiy v yagm peilvaal usaq puwy soOTIqE :u:.um
6F J181A9) puw ggZ IBVIAOY JO oouswioyxad O11SITIVq °OY] uaamlaq uosiivdwo) °soydwus
paxakerratnu jo (v)- £31SuUBp ¥OI¥ pPOUTqWOD BYI) Isutsdu (H) ssoy AJaous e1y190foad

GUL3H JUVNOS U3d SHYYD) ALISHSO YRSV

C o i Y AL S A SR
Do . - S ..O«x ..C. P

vt

5810} 0062 0002 06aS1 0001 095 2] o
02
_ (%] 24
ViBiloo®* 'S0°2 = 7
(,-u 3 012) 63 tuysoy
‘ n N
0z
vo910'0 + e5'p- = & 1 ez
(W 3 612) 6p auiaey
A
4 001
41 621

e e e e .
ERRE R A I R
t, r .
. et ety t.

M SSOT AQYENI F1L3SCNd

o




=T \\ ! * _,/V - 5 \ ./ /
‘‘‘‘‘ - . ~ i AT T . y
- o0 roN vl e | / //
\ . . i : \ | ‘
_ C e — S _ , E . .pw S e . L e ....‘:.. T ..; 5 ....u_.........‘i . ,q.......... ......._..‘.‘.. ” _. .. e M e m K :..., . % ...:.\.“ _... -
- (V]9 wid ..:mv. ._ﬂ... :C_...-C+st Yoy u rm.—:.. tc..c‘l.ﬁ.. [TEVTVINY __v...nﬂ.....t.x::.. @_...t.... e 0 ' PP

GF IT[ADY put g JBVIADY JO edunwarojyaad O13ISTIIvq 3Yy) UdsMIng uostavdwo) ‘sardures
poadaferyritnu jJo (y) £3ysusp uvaasu paujquod oyl Isurede (g) ssoy Adaaus eryiInofoaqdg

QGUi3N 3UVNDS U3d §HVUD) ALISHEG YUY
go0E 0062 6002 oSl ool 695 12}

v v | J L4 ¥ 14 @

ab
v/810°0 ¥ 'S0'2 = 1
Am1e 3 012) 62 amvyasy

)
_ O
(™ SSOT ASY¥=NT 37113 04d

n
. . um . -
v9910°0 + 65°b {4 ¢z
Awns 3 612) 6V auviasy
_ A
1 601
4 621




RRARL: o’ ol
tz o1 *YSTury UOT3IdIAY Y31y ® yi1yM pojwar , o
) uoo v X
6% 1u1A9) pue gz JVIAO)Y JO eduswioyxad O1ISTLLBq M:uvcwmsuwn =omqwameww« H._Mw.n _w_mm \\_‘
paxade{yitnu jo (v) £31ysuep weawm pautquod eyl 3surede (g) ssoy AJasue aryroefoad /
'343Ton pojweriun wo pesee - (FYLIN IUVNDS Y3 GHYHD) ALISNIO YRV .‘
’ B
a0 0852 900z  09G1 8091 005 n .W,_
™— Y t 1 14 6 ~.,
j
X M , w .
o .
& s
Y
| P
ETSI | .
l
[ atd :
~
m
§2¢0°0 + $0°C = 4 09 -M _/
(,- 3 012) 62 x8yAey B 1]] Iy
) B AJ Y
19 ] wo
. 'A ~ »».
- m T
.h.unu s \% M
u BN
o~ T :
S P
. VL020°0 +-65'v = a {1 o1 B
Amas 3 612) 6v xeiAey :
A <
1 w2l
- ,.
_




¢ °DI14

*YSTUT UOTIOTAI Y3IU ¥ YITM pPol1eal] UdS9q PBY SOJJ
6V I1BTADY pu® @z JUIAdY JO @omaEuOuuwa oﬂuwﬁaaam w:un:mwsuma :omﬁwa soo«

pateduryitnu yo (y) Ajysusp wvoaw paujquod ayj 3suyede (g) ssoy AJasus aryloafosgd
‘3u3tom pejwarun uo pased - (FULIH JUYNDS U3 SHYYD) ALISN3O YRIV

000

0052

BE0Z

B9S1

0o91

Bns

G220°0 + $0°2 = 13

(,_w 3 012) 62 18(Ad)

(4

(

Nlu

V(020’0 +-65'v = &
w 3 g12) 6% hd~>JW

|

v

v

v

 J

nauvu

‘sat

it

oy

=

-t

=
1

-'
-
)
vl

04
ues

3 37T12=rCed

-y
-

() SS07 AQ¥




e L et e

P R I R T
LR M A A

*807JqQEJ JBTAGY JO 396 B J0J JOJEBOTPUI SOUEWIOJJ9J

OTICTITeY oyl pue 3893 TInd uaek jJo saTnesy °G eyqel
\.
N-___m ote
Lgt G°Gl EngE°0 9040 | UOT3OTJJ YBTH 62 HVIASN ==
?
” uoT301a) USTY + g-0 oz \
9°91 8°99 ho°2 hi*9 | jue¥e Buypuog 6h YVIATN
| N..aw 612
S°Lt 6°9t 064°0 065°0 , Uuo¥IOTIJ YFTH 6h HVIATN w,
2-U3SLL
5°62 hont lot°o ' G2L'0 Jojen 6h UVIAIN
w/3n/ : A
¢ puooes 03 38; wWouay _
HOLVOIANI - ENWXew uy |
FONVWHOJUId 98eaJ00p I I3
o11s111Ve 3 HORIXVA pug RNKIXVH 3Si INTHLVAUL o1ygvd
_.\.
Ny 7
Y BRI . CERRTIR T S -/




i
b
r.\
e
a.
2
.
e
e
e
s
-

PR

velocity ("e) from each layer is calculated from the single layer
relation (Est(vI)) of energy loss against impact velocity (vI). Thus

v, 3 3 mv? -f (VI)

where @ =z projectile mass.

This velocity is then taken to be the impact velocity onto the next
layer. This iteration is continued until penetration of all the

layers, or until the projectile is arrested. This routine is repeated

for initial impact velocities in the range 0 to S50 m 3'1 in order to .

obtain the multilayer related (E + r"('vI)).

This routine was applied @o single layer data which had earlier
been obtained for nylon and Kevlar treated with high and low fabric
finishes. Experimental data from the multilayer tests was then
compared to that predicted by calculated. The original data points,
the corresponding least squares curve fits, together with the predicted
curves or_en;rgy loss against impact velocity are shown in figures (11)
to (16).

If can be seen that generalli the experimental results show that
the maximum energy absorption occurs at the VSO limit. In addition the
calculated energy losses (shown b&'a broken line) are generally higher
than those found experimentally at the high velocities. The one
exception to this is the Kevlar treated with Siligen E, where the three
layer curves are similar.

The above results are replotted as graphs of projectile energy
loss at the VSO limit against the ccmbined area density ot the
multilayered sample. These are presented in fig, 22 <o 27. It is
concluded that in the range of these tests, the calculated VSO limit

agrees with the experimental results.
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General Results and Conclusicns

A ballistic rig has been designed and constructed by the author in

. order to:

1) impact 1 gm cylindrical steel projectiles onto a fabric
samples;

2) measure the impact velocity electronically;

3) measure the exit velocity photographically;

4) provide single or multiflash photographs of th§ fabric under
impact;

5) measure the arrival of stress waves at the fabric boundary.
Tests on fabrics have produced the following results:

1) the shape of the transverse wave front is octagonal for a two
ply fabric, if the yarn directions of eacﬁ layér are set at 45° to
each other; .

2) the shape of the transverse wave front 13' hexagonal for
triaxial fabrics;

3) two triaxiil fabrics have been shown not to be ballistically
Suﬁerior to biaxial fabrics.

4) a Kevlar 29 and a Kevlar 49 fabric of similar weight and
construction were found to have similar ballistic resistances.
The following conclusions can be drawn:

1) the octagonal form of the transverse wave in the bilayer
impact indicates that there is some degree of interlayer
interaction and that any computer ‘mo&el must not assume a
rhomboidal form as a starting condition unless the fabric in each
layer is similarly orientzted;

2) the hexagonal shape of the transverse wave for a triaxial

fabric indicates that more energy should be absorbed as kinetic

RS .I‘."n s
N

R Iy o,




energy of transverse motion, however as empirical data'shows that
triaxial fabrics are in fact inferior to biaxial weaves other
effects such as the parting of yarns at the impact zone must be
predominant;

3) the high friction finish probably improved the ballistie
performance of the nylon fabric by a reduction in lateral mobility
of yarns at the iampact zone or due to the influence of the degree
of yarn to yarn friction on the strain'distribution during impact;
4) a 1lightweight uylon fabric was shown to pe ballistically
inferior to a heavyweight nylon rabric and although these results

could be partly attributable to the stress-strain relations of the

.3 constituent yarns, it is postulated that the mode of penetration %}

5 (plugging in the case of the lightwaight close weave fabric) is i;zn

% also a contributcry factor; ;ijx.

J 5) a high friction finish conferred a greater ballistic gg%

5 performance on a nylon fabric than the same fabric treated with a ?2?

? low friction finish; ;E:

1 6) both the high friction and the bonding agent proved seriously g;é
detrimental to the ballistic performance 5r the Kevlar fabrics Eé;f
tested; ;;z

i o ®-

! 7) a simple energy model, designed to simulate impact onto 73:. .
separate layers, agrees well with empirical results of the Vsc éﬁ%
energy where the number of layers is low, but overestimates the 5;§f
ballistic performacne when penetrztion occurs at high velocities; ;;f
8) the reduction in ballistic performance of Kevlar due to the 22214 N
addition of high friction or bonding agentz could be because the l;;f
level of friction is alread; idealised in the natural state, L
unfortunately no finish was found to confer a lower friction on E;ﬁ;




Kevlar. Another possible effect is that the add-on weight could

influence the mechanics of impact and penetration and therefore S
ﬁask any effects of friction; ' ' : '//f
9) as -the energy models for multiple impact do not consider : ; ~-2\
interlayer interaction, yet generally agree with empirical data z,f/

i -

of VSO energy, it seems that interlayer interactions are second

order effects, where the number of layers is small. } e

It is proposed that , | | -

‘-

1) no major work on the ballistic properties of triaxial fabrics
alone should be undertaken. However the use of triaxial fabries in

hard composites should not be dismissed as in such materials, yarn

T e

mobility will be reduced and penetration due to the pushing aside R i
of yarns will be precluded; . g A
2) the multilayer impact models should be compared with data from Y }?/ﬁf .
multilayer impact where the number of layers is greater, in order g o
to determine whether there is a need. for more sophisticated : j% —?f;
models. o '?; e
CALCULATED FROM EXPERIMENTAL R
SINGLE LAYER RESULT BN
DATA . I
(Joules) (Joules)
'KEVLAR As Received 62.4 62.8
Siligen E 40.8 : 43.9
(high frietion)
Lurapret 48.3 ‘ yy.4
(high friction)
Nylon Siligen E 27.8 26.6
(low friction
Lurapret 37.5 . . 35.6 : if 7 ;

(high friction)

Table 4. VSO Energy at an Area Density of 10003.m‘2
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Introduction

Textile materials in the forms of fabrics, webbings and felts ar=
widely used in energy absorbing systems such as automobile seat belts,'

parachute lines, and personnel protect.on. The» particular problem

reported here . . 1s an investigation of the behaviouxf of single-

layer and multiple-layer assembles of woven fabric used in protective
clothing worm in the vicinity .ot' medium velocity (506 ma'1) pérticle
hazards. ' . | |

These protective clothings are made by sewing together many layers
of fabrics, each ¢* which may have been subjected f;o various surface
treatments. Usually for easy mobility, the tabrics are not bonded
together and can therefore slip relative to one another. The matérials
most commonly used in t_he manufacture of these fabrics are Nyleon and
Kevlar. The yarns are bundles of thin, long, fibers, held together by
friction.

The mechanics of the behaviour of the clothing is complex and
various simplications are made to render the problem tractable. The
projectile is taken to be rigid, dblunt, and tz‘ayelling perpendicularly
to the fabric asseﬁxbly -without spinn.ing. Zach yarn is assumed %o
completaly lie in a plane, initially. Under th.ese'vconditions, 1t is no
longer possible for the projectile to penetrate the fabric simply by
pushing aside the yarns in its path without breaking them. Yarn rupture
occurs when a given mexium strain is exceeded and visco-elastic
effects are not mvesﬁigated. )

Different mathematical methods are used to investizate the
mechanics of the fabric assembliss with the aim of déveloping aumerical

methods for evaluating the effectiveness of various fabric parareters.
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Before the details of these methods are given, a brief review of
publications by previous investigators of this and related problems, is
given in Chapter 1; '

In Chapter 2, a variational model is described. In this model,
only the out-of-plane transverse motion of the fabric(s) is considered.
'n;e shape of the indentation is first predicted from the given weave
pattern and the equation of motion is then derive&. Next, the effect of
yarn croa‘sovers - (nodes) on the transmission and reflection of the
strain waves which are initiatedrat, and propagate away from, the impact
area are investigated. The well-known equation for. the propagation og"
waves along a string forms the basis of th.:ls enﬁuiry. Assuming rigid
connections at the nodes, equations are derived for the impedance of a
node for any fabric geometry. Numerical examples are obtained _to
compare various geometries.

In Chapter 3, a description is given of an application of the
method of characteristics to the investigation. The characteristic
equations of the three types of waves travé’uing along the yarns (no
twist) are obtained. The motion of the fabric assembly is obtained by
following the characteristics entering each of the nodes. A quasi-
linear model is also developed in which only the out-of-plane motion is
considered: an attempt to reduce the amounL\ of computatign effort. In
each of the moat;ls bazed on the method of characteristics, it ias
necessary to give the fabric a non-zero prestrain to prevent numerical
instability.

The application of the finite element method to the development of
different models of a fabric is described in Chapter 4. Attempts were
made to 1investigate the significance to ‘overall‘ fabrie structural
behaviour of; crimp, 1nter-yam slip, and inter-fabric slip.

In Chapter 5, the numerical results are discussed and compared

with the available experimental results.
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Chapter 6§ is the conclusion and some suggestions are also included

for those interested in pursuing the investigation.
The impacting particle is always a blunt cylinder, mass 1.0003g,

diameter 5.56 m.

. PP I )
. AR MY .
f Flet L Wt

PRI et

I8

T




G B
o ST

[

TRV ETE ¥
e .

- sv.am

CHAPTER 1 LITERATURE SURVEY

The geometrical structure of the arrangements of yarns in a

fabrics significantly affects some of the fabric properties. This fact '

makes a brief review of publications on the geometry of fabrics of
relevance here. Pierce(1) made an important contribution to study of
the geometry of the plain orthogdnal weave consisting of two families of
yarns interlaced. at right angle;. The yarns, in that 1nve5tigation,
were considered as thin rods of circular cross section. Allowance was
made for the ef{ect: of the finite radius of the yaras, at t!ie cross
overs, that is, crimp was included. The deformation characteristics of
the model was not considered in his analysis. Since, geometric-
mechanical models have been developed for various fabdbrics (18), (19).
Olofson(2) developed a model and analised ihe tensile deformation of a
fabric. Kawabata et al, in a series of pﬁpers (3), (4) ana (5),
developed the 'stereo’ model and applied it to the study of uniaxial
extension, biaxial extension and of a plain weave shear. They showed
that the compressive strengthi of thé yarn significantly affects its
mechanical properties under these loading cases. In the case of

uniaxial extension, localised bending at the yarn cross overs was

7 utMuced to prevent straightening out of the yarrn.' This bendins“ -

resistance was p;'oduced by the frictional resistance against inter-
fiber slip. In the analysis of biaxial extension, perfectly flexible
yarns were assumed. The resistance of the fabric to shear was predicted
to be due to the torsional resistance to the rotation of the yarns
relative to one another at the_ cross-overs. The magnitude of the shear
stiffness was therefore dependent on the reaction between crossing

yarns.
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In another publication, Olofsson(6) investigated the rheology of a

frictional-elasto-plastic model and derived expressions for the
extensional, shearing, bending and buckling, and creasing modglii in
terms of the yarn bending stiffness, its erimp, its extensional |
stiffness and the effect of sliding friction between the yarns. There
are many publications of studies into the mechanics of fabric under
static conditions by the researchers associated with Leeds Univéraity,
Grosberg and Kedia(7) reported that the initial extension of a fabric
can only be analysed successfuily by including the bending resistance
of the yarﬁs, and that the assumption of perfect flexibility lgads to -
large discrepancies between theoretical and experimental restits.
MacRoy, McSraith and McNamara(8), and Hearle and Grosberg(9) have
analysed the mechanical behaviour c¢f knitted fabrics. Skelton and
Frqeston(10)‘reported that the sffect of a decrrase of the pitch of a
fabric, that is an increase of the pick per length, is greater interyarn
forqe and poofer translation of yarn strength to fabric strength. The
efficiency of translation, however, remains above 902 in most cases at
both low and high strain rates for all conditions of finish. Shanahan
and Postle(11), and Hearle(12) hﬁve alsb reported analyses of the
mechanics of knitted fabrics.

- The mechanics of triaxially woven fabrics was inyestiéated by
Skelton(13). The results showed that the use of this weave pattern
improves thé ahfar strength of a fabric over that of a biaxially woven
fabric of the same area density. It has subsequently been reported(14)
that a triaxial weave is superior to a biaxial not only in resistance to
shear but also in resistance to uniaxial and biaxial extensions.

Huang(15) analrsed the finite biaxial and uniaxial extension of a
completely set plain-woven fabrie in which the yarns have a non-zero

flexural stiffness. The flexural resistance sharply decreases when the

’
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change of curvature exceeds a fixed, limiting, value. This reduction in

flexural resistance is due to slipping of the fibers in the yarn. The
resrlts show that the stress-strain relation for the yarn is non-linear
even for a Hookean or linear ribér material.

Genensky and Rivlin(16) developed a theory for the deformation of
a network of orthogonal cords, assuming a stress-free shear derormétion
model. They analysed different deformations. Recently
Christoffersen(17) published an analysis of the mechanics of the in-

plane deformation of fabrics. The fabric was treated as an orthotropic

~ plane which behaves elastically in stretching along two orthotropic

diréctions.and 1s‘capable of Stress-free deformation in shear. No
slippage of the yarns was allowed. Results were published for stress
concentration at a crack in the fabric.

Another line of 1nvestigﬁtion, different from all those reported_
above, was adopted by Leech(20) in the analysis of nets. Fourier
representation of the thickness changes was used to obtain expressicas
for:s the naturai frequency of the net, the conditions for travelliy®
waves, and, the ray and front theories for propagation.

There have been few publications of thevanalysis of the dynamic

response of uncoated fabrics and dense nets to impact loading. Most

publications on the mechanical behaviour have been for statical loading

while there have been reports on the dynamics of ‘the response of
individual yarns to impact. The paucity of publications in this field
is reflected in the fact that only 2 of the 278 references cited in the
review of the mechanics of penetration, by Jonas and Zukas (21), are on
the penetration of uncoated fabrics. Mansel1(22) compiled an up-to-
date list of publications on the response of single layers of uncoated

fabrics and has reported some new experimental work and finite element

analysis.

-
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In the analysis of the mechanics of muitiiayer of fabrics, new
factors, either negligible in, or unconnected with, the analysis of
single layers now have to be considered. These include the influence of
slip between layers, the trictionél properties pf the fabric surfaces,
the pattern of laying the layers and the aignificﬁnc§ of the compressive
stifrnésaeé. | A relevant investigation is the study by Marom and
Bodner(23) in which results show that a pultilay assembly of thin
aluminium plateé has a higher- resistance to ballistic impact than
either a monulithic plate of the same total thizkness or seperated thin
plates. The different modes of shear and compression are cited.as
causes of the difrebent resistances.

The publications on the response of composite plates to impact are
also relevanﬁ. Daniel and Liber(2%) rgpobted that the ﬁrimary
deformation appeared ﬁo be a flexural wave. Cristescu et al(ZS); on the
other hagd, conclpded from experimental results, that, even for
composite plates, the projectile energy is absorbed mostly by
extensional deformation. While it mostly occurs after heavy
delamination, extension is the major energy'absorption mechanism, but
that the delamination serves to spread the deformations, thus involving
more of panel in the energy absorption. The sequence of delamination is

also reported.\

\.

. r& FINITE ELEMENT ANALYSIS OF FABRICS
A bibliog

phy of most of the published finite element analyses of
fabrics are listed in Ref (22). Henghold and Russel(26) developed a
rormdlatian for cable element which is directly applicable to the
podelling of individual yarns. Ozdemir(27) modified the strain
formulation in the last-mentioned model. In the new formulation, the

cable length at any time is specified as a function of the lengths from
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"the origin to the nodes. The formulation avolds the incensistencies in

some formulations which lead to non-zero strains when the shape of the
cable distorts without a change of length. The equations of motion
obtained by this formulation were shown to coincide with thcse obtained
by the simple rod elements, for two-node elements. The 3-node, and 4
node elements tend to be overstiff compared with other published

results. de Lynch(28) analysed the dynamins of both yarns/fibers and

- fabrics. Rod elements were used to represent the yarns while semi-

annuli membrane elements wex.'e used for fabric analysis. In the fabric
analysis, circumferential bucklinz was reported to occur during the
propagation of waves pricr to reflection at the boundaries. The
accuracy of the modelling of bugkling was said to need further study.

Shanks and Leech(29) published results on the influence of weave
pattern on the transient response of coarse nets and cloths to impact.
Zero ecrimp was assumed in the model, an assumption which, while
realistic enough for c¢oarse nets may lead to inaccuracies in the
ana'lysis of dense fabrics. Stubbs and Fluss (18) developed a space-
truss model for a plain-weave, coated fabric. The model incerporates
erimp. Each elesment has 6 nodes and is a combination of 7 straignt
rods. The formulation allows feor large deformation and non-line.r
material propertieé to .be investigacecd. While resu}ts were not
published for dyﬁamic loading, this model i3 considered here as it is
easily used in such an analysis. A similar model develeoped by Torbe(19)
involves shear resistance and has the nodal variables at tiie yarn
crossovers céndensed cut, leaving'only 4 nodes for element. This
erucifix element was used in the analysis of coated airballons. It
should make a more efficienﬁ use of computer storage than the 6-node

element of Ref 18. However, the 1latter model allowed for yarn

flattening, or yarn compression, which the former neglected.

g PR




' T —
9
MEMBRANE MODELS
' Leech, Hearle and Mansell(30) developed a membrane model to . =
G analyse the arrest of projectiles by pretensioned cloths and nets. All ‘ / :‘”/
‘ in-plane motions were heglected while the shape of the front of the out;- ' / ff A‘/
N 'or-plane transverse motion was based on earlier work by Leech and ?§ ‘//_A
E .  Mansell(31) on the prediction of wave fronts in orthogoral fabrics. It l j;‘ .
. was shown the shape assumed for the cross section of the indent does not \v\\'
i significantly affect the numerical results. Already mentioned 1is the \}
' use of semi-annulii membrane elements in the finite element of fabrics l l
y: by de Lynch. There was no comparison given between the numerical . ‘i ;/J?'
results and experimental results and as such it is difficult to specify 5 ‘ :—
r! the extent to which the wave front could be predicted using annulii I :\'“
elements. Annulii{ elements may be most appropriate in the analysis or. \\J‘

i the dynamics of knitted fabrics for which experimental results show a

F eircular front for out-of-plane transverse motion. Oden, .Kay and

Fost(32) published results on an analysis of the non-linear response of
‘- an incompressible membrance using constant strain, triangular, elements
E with a Green's deformation tensor formulation for strain. The loading
was provided by a constant force which was applied for a short time and
then removed. Benzley and Kay(33) obtained numerical results for the.
? vibration of a pretensioned membrane and reported that these results
- compare well wiﬁh analytical results. The nonlinearities caused by
£ large deformation were shown while the derivation of the equations of
N motion ¢f the nodes of the elements involve the .determination of Cauchy
' stresses. The formulation allows for the initial orientation of yarns
to be specified and allows for their rotation during motion.
r Computationally, the disadvantage of this formulation results from the

fact that the directional cosine of the yarns are defined relative to

the initial shape of each element, and therefore has to be recaleculated
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for each element shape. This is e;tcept when a membrane is divided into
square, recta.nguiar, or similar triangular, elemenvts. Another ﬁethod
of accounting for the rotation of yarns was adopted by Tabaddor and
Starford(34) in their study of the vibration of a cord-reinforced tyre.
The constitutive equations were defined to incorﬁorate the relatién

between yarn rotation and strains.

Leonard and Verma(35) used.a double curved element to analyse the

properties of a Mooney~-Rivlin membrane. Coons geometry was used to

obtain accurate representation of points on the curved surface. The

. paper contalns a useful bibliography.

The only study, known to this author, of the use of three-
dimensional finite element analysis to model a single layér of a fabric
is that by Lloyd(36). 1In this analysis, 20-Node, three dimensional
parallelpiped elements gere used and the deformed shape of a knitted
rébric was successfully predicted. However the model fails at large

strains.

MULTILAYER SYSTEM OF UNCOATED FABRICS

The only publication encountered in this literature survey, on the
response of layered, uncoated fabries to impact, by Flaherty (37), is
based on experimental wiitk. The results show that }:he order of
arrangement of tﬁe fabrics affects their combined strength, at least,
Zor the 2-layer system reported. There are, however, reports of
pumerical, and even analytical, studies of the responses of layered
beams or plates made from aluminium and wood. Some of these stddies are
dbriefly mentioned later.

Some of the phenomena such as slipping, which may significantly

affect the overall structural behaviour of a multilayer system of

fabrics have already been investigated in the study of metal
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deformation of Wilkins(38). The method used in that study to model

separation is also relevant. }

Thompson, Goodman and Vanderbilt(39)l studied the effect of
| interlayer slip on the deflections and stressed in a statically loaded
layered system of wooden beams. The 8lip was related to the shear
across the thickness of each layer. With the assumption o‘t‘ negligiﬁle
friction, resistance against _1nterlayer slip onvly ~occurs when the
_ layers are glued together. Suzuki and Chang(40) showed that interlayer
slip may significantly affect the overall structural beha;\viour of
layered wooden strugtures, in a study of bbnding failure during. the

bending of a laminated cantilever. Analytical expressions were derived

to relate deneétion and loading force, and the movement of the slip/no-

slip boundary, with increasing load, was demonstrated. It was
concluded th;t; interlayer slip due to debonding, if it occurs, will
reduce the overall stiffness of the cantilever. This conclusion canvbe
' compared with that of Refs (24) and (25) on the significance of the
de'lamination process in spreading an impact load over a large area of
composite sheet.

‘ There are othaé publications, which are not on the analysis of
fabrics, but which 'a.re relevant to this study because they. suggest
possible ipproaches to the finite element analysis of mu]:tilayers(lu),
(s2), (43).

The study of fluid motion in containers also involve the modelling
of slip. An outline of the problems and prospects of the methods
currently used in that analysis are given in a book on structural
mechanics which is edited by Donea (iilt). One of the most important

sections in the bock is the description of an extension of Wilkins's

work on the concept of 'slave' line, 'slave' nodes and 'master' elements -

which are defined at the interface between.two materials which can slide
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relative to one other during motion. Other important coatributions
have also been made to the modelling ot" slip in finite element
analyses(i5) - (51).
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CHAPTER 2  SIMPLE MODELS

2.0 Introduction

In this chapter, two aspécts are considered;

13

firstly the

variational model used by Leech, Hearle and Mansell(‘.’:O) in analysing the

response of an orthogonally woven cloth to transverse impact is

extended to the case of an impacted triaxially woven fabric. The -

equations for the two fabrics are then used to predict their relative

effectiveness in retarding a projectile.

The second aspect considered here relates to nodal impedances; the

relationship between yarn angular arrangen}ent and the rates at which

different incidents disturbances are tranamitted.

2.1 Wave front Variational Model

In this model only the out-of-plane motion is considered, with all

in-plane yarn motions negiected.

Firstly, the shape of the transverse wave front is predicted and

the size of the disturbed area expressed és a function of time and a

similarity coordinate, ‘l y which measures the perpendicular distance

behind the wave front, the magnitude of t\ at the wave-front being 1.

The deflection at any point in the disturbed area, V(I(ll 2t)y 1is

represented by a trial function which satisfied the kinematic

conditicns at the point of impact and at the boundary between the

excited zone and the quiet zone.

The total energies, (kinztic and strain) are calculated and

Hamilton's principle intrcduced to obtain the dynamics of the system.

Ramiltion's principle states that between times t

1

and t

2’

- 1 e
e . ..
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for any dynamic system, where the kinetic variables vanish at t1
and t2" T is the Kinetic co-energy of the system and W is the
virtual i:érk associated with slippage and internal friction. 1In
this case, an ordinary 2nd order differential equation results and
can be solved numerically using Runge-Kutta methods. '

2.1.2 Application to a Triaxially woven Fabrice

Leech and Mansell (31) showed that the wave front in a transversely

impacted orthogonal fabric is rhomboical. This prediction is confirmed
by experiments. The equation of motion they obtained is given 5y

t = x + 3y, vhere t is time; Cx and Cy are respectively the
c C '

x 4
wave velocities in the x- and y-directions. The triaxially woven fabric
consists of three families of strands each of wﬁich makes a 60 degree
angle with the adjacent yarn, Fig 2.7(c). In the first instance, the
wave fronts separating the 'quiet' region from ﬁhe transversely
displaced region is necessarily deduced.

Consider the fabric shown in Fis 2.1 and let it be transversely
impacted at afly point, I.

The axes, sl, s2, s3, are as shown in Fig 2.1 alt;ng the s)trand
directions. The fabric is then divided into six sectors. Now consider
one of these sectors. A

On impact, disturbances travel along Ia' and Ib! resi:ectively. At
b', the disturbance along Ib' is partly reflected, partly diverted
along b'a' and partly transmitted along b‘bz, similarly for the
disturbance along Ia' when it reaches al.

A strand parallel to s3, such as a 'bl is disturbed at both ends.

. e e .
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After the tuo waves have passed through it, it would become horizontal

and unstrained for the rest of the. motion.

Considering only the

. trannission of out-of-plane transverse waves, it is clear that, at time

t after signal initiation, the stress front in this section is given bdy:

[ JCAN

t = sl - 82
similarly, the wave front equations in the 5 other sectors are:
t 2 =381 - 382
a1 g2 2.2b
t z 82 + 383
&2 &3 2.2¢
) t = 83 - st
: &3 &1 2.24
' t 2 =82 - s3
€2 &3 2.2e
I . - = -83 + 81 9
: &3 [ 2.2r
: where C1, C2, C3 are the transverse wave velocities in the directions of

31, 82, and s3 respectively. The fronts whose equations are given in

F equations (2.2,a-f) form the sides of an hexagon. The
L predicted indentation 1s shown in Fig.'OA ind is confirmed by the

experimental photograph, Fig.|0® (PART I)

2.1.3 Equation of Motion for small deformation

. In Appendix 1, the derivation §f the equation of motion for an
} impacted triaxial fabrié is given, using the wave front predicted in
section 2.1.2. The equatien relating the displacement at the impact

point, Wo and the non-dimensionalised time,fis given by:
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(1 + rz)wo"+2r Wo' AI3+(I1-IZ)WO = 0, 2.3
. )

where r is related to the real time, t, by the equation

r atta; o % = {Gn(cicaecacncicd)
' T2

"p 3 mass of projectile; m = area density of fabric;

A = Ci1C3 o o+ 0 + C,C 01 + a2 03 » @
2 —2) 21\ o2 e 2
\C C3 ¢ 2 3 2

n(C1C3 +* 61C2 * C3C1)

and ¢ )' = Q)

or
I1, I2, and I3 are integrals whose values depend on the assdmed shape
(trial function) of the sides of the indent. The equation,
corresponding to equation (2.3), for an orthogonal fabric, is given in .

1]
Rer (30) as: (l*";)w., +2_T'w,. + Swo =0 2:4
—a xt: a2 g '
vhere r-qut, a, :mcxcy' s I3+I1 -;:2 ;
i
3"9

and Cx and Cy are the respective transverse wave speed along the two
orthogonal strands. For comparison of the two fabrics, let
C12C2=C3=Cx=Cy and the following simplified expressions are now

obtained:

LA -
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Also, equation 2.3 could be written as:

(terP)iomezriiors (31318-12)W0 = o 2.5
g

and equation 2.4 as

(14r®)Wome2riiots I3+I1-I2 Wo =0 - 2.6

I3

Equation 2.5 is only different from 2.6 in that in equatiori 2.5 the
term I3 is mmltiplied by 2/3, while in equatioxk: 2.6 it is multiplied by
i« - The last expression of the left hand s?ide of equation 2.5 (or
equation 2.6) was obtained from strain ener.gs?r considerations and the

factor of 2/3 in equation 2.5 represents a reiduction in strain energy

" per unit area in the triaxial weave case due to'the fact that in each of

the six slanted facea of the pyramid, one ﬁamily of strands remain
|

horixontal and unstrained. The material utif}j.sat'ion factor for the

. triaxial weave, relative to the biaxial, in ab#orbing projectile energy

by strand straining, is 2/3. |

The ratio of tl'ze displaced areas is 1.3:1, to the advantage of the
triaxially woven fabric, which is less than 1:2/3 or (1.5:1), the ratio
of material utilisation factors. It 1is reasonable, therefore, to
conclude that more atrain energy may be absorbed, in a given time, by an
orthogonally woven fabrie than by a triaxially woven fabric of the same
area density.

The ratio of the time factors, at/ a, =1.30,

since a, = V3 ﬁﬂﬁ and a, =%ﬁi
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This ratio r_esulﬁa from the fact that in a given time, the
transversely displaced area is larger in the fabriec with 0-60° -120°
arranged strands than in another fabric of equal area density in which
the yarn directions are perpendicular. It is reasonable to suppose that
the kinetic energy of the triaxial fabric is high r at any time after
impact than that of the biaxial fabric. This combirnation ¢f these two
generally produces a difference between the performances of the two

fabrics of equal area density, one with orthogonally woven yarns and the

second with triaxial weave.

2.1.4 Equation of Motion for Large Deformation

Equation 2.3 and 2.4, above, are only applicable for small

strains. For large strains the full, non-linear strain expressions are

needed.
It was shown in Appendix 1 that the equation of motion for the

triaxial fabric then becomes:

(1+r2)wo"+2rw°'+éwo(l_<_]_!3_l(1‘+£1 - 1 W1 +E)
€, {U1eW a/c,r)%)
. k202(1+€2), .. ¢ | 1 -
+ keba(1+L 2)¢ 1-\-&2 - )
a 2 L J
JQeWoascar)?)
k331:E 014 €, - 1 L ada o, 2.7
£3 ﬂ1+(ﬁoalc3r)2)
c1c3+c1C2

where k1 = m e Cico«c2c3

s o C1C3sC1C2

k2 = SiCoscic3sc2c3

e .y
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k3 = £ac3+C1e3 s and b1, b2, and b3 are

C1C2+C2C3+C3CL the mass fraction of the st, s2,

and s3 strands.

For an orthogonally woven fabric, the corresponding equation is:

(1+ r2)Woms2r Wo'+6Wo((1+E x) “"'Ex' 1 )
—& J(h(Woa/CxT‘, )2 )
+1e €9y (1484 - 1 ) -1/3) =0 2.8
&y j' ( 1+ (Woascy T )2)

Putting the wave velocities equal, as before, equation 2.7 and

equation 2.8 respectively become:

(1+ r2)Woms2r Wo'sbWo(2/3E (14 € - 1 ) =1/3)=0 2.9
E = J(7+(Woazcr)2)
and
2 1+ (1+& = 1 ; |
(1l r )Ho"+2rﬂo'fﬁﬂé(-:£—-— + J(mszn/3)=0 2.10

Comparing equation 2.9 with equatiorn 2.10, it is clear that,
again, the triaxial arrangement of the strands leads to 2 larger time
factor, ‘t’ and, at the same time, causes an underutilisation of a .third
of the fabric as far as the absorption of energy by strain is concerned.

The above observations suggest that in a multilayer ply, there
might be some im;.)rovement in performance if the direction of the yarns
in two orthogonally woven fabrics are set at 45° to one another so as to
gain the advantages of the two different weaves.

.'l'his possibility may be examined in details by more accurate

methods.
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2.2 NODAL IMPEDANCE METHOD

2.2.0 Introduction

The absorption of impact by fabrics is accbmplished by the

propagation of the input energy away from the directly impacted zone.
Energy is dispersed into connecting members in the fabric via the node
connections. In general three types of signals are generated in the
yarns of a fabric on impact. These are, in the plane of the yarns; the
transverse signal and the extenéional signal, and, perpendicular to the
plan?, the out-of-plane transverse signal. At the nodes, each type of
signal may generate one or more of the three types of signals in the
connecting yarns, depending on the fabric weave. '

The yarns normally undergd large deformations and consequently the
complete non-linear string equations would bes employed to model the
response of such systems. The string equations have been developed by
various investigators; for example see Ref 30. They form a non-linear
hyperbolic system yith two distinet propagation speeds, namely, the
propagation speed of extensional (fast) and transverse (slow)
disturbances. The nonlinearities arise from eoﬁsiderations of gross

deformation of the string (yarn) and from the admission of nonlinear

- constitutive relations.

In this section, the propagation of disturbances through fabrics
of various weaves 1s considered, the 1linearised dec;upled string
equations are employed and coupling between extensional and transverse
waves is initlated when nodes are encountered.

The effectiveness of the weaves is assessed by comparing the
percentages of the incident disturbed signals which are reflected at a

node.
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2.2.1 Linearized string Theory

The linearized equations of motion of the strings are easily
derivable and are summarised in this section.
(a) Extensional motion

The equation of motion is

f }zu -E B Zu 20 2.3.1 \\
dt? dx? Lo
[ ]
where f is the material density, E is the modulus of
elasticity ;X is a running cg-ordinate along the string, t is time and .
u(x,t) is longitudinal displacement of the string. The material strain 5
is simply given by o
€= _du ‘ '
a X : 203.2 _::‘
o
The equation of motion admits the following characteristic .
solution
u=zPe (x-C‘t) and u = Gc(x + c‘t) o8 \.\
where c.(a J (E/f )) is the propagation speed of extensicnal \
signals.  The two characteristic solutions represent outgoing (right- ‘
. ‘ ..,
travelling) and ingoing signals (laft-travelling) and they suggest that -
there is no attenuation or dispersion of the wave front. ) ;::
(b) Transverse motion T
i
The equation of motions, in this case, is RN
P . }j! -T 3% : .!:
2 3x2 =0 » 2.3.3 T
A . . L i ; " . c ’5'1',_
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where A is the string cross-sectional area, .T is the pre-tension and

V(X ,t) is the transverse displacement of the string. The equation of

motion for transverse disturbances, admits charicteristic solutions

VaPF (X -C.t)and V= Glx+ ctt),'

where Ct(a J (T/f A)), is the propagation speed of transverse signals.

The material :‘train induced by the transverse aotion is, for 5mall

motions:

v )2 |
* *('b—:) : | 2.3.4

Although this is a second order quantity, it will propagate ahead of the

transverse signal with the extensional propagation speed, Ce.

2.2.2 NODE EFFECTS NEAR IMPACT ZONE

When a di2tarbdance propagating through ° yarn encounters a node,

only part of the signal will pass throqgh the node, while another,part.

of the s;gnal is reflected. The attenuation will be dependent upon the
type of disturbance (extensional, iﬁ-plane transverse or'out—or—plaﬁe
transverse), upon the material characteristics of the yarns meeting at
the node, and upon the weave paitern. This node, as well as

transmitting part of the signal, will cause a reflection back towards

the signal source and a diversion along the branch yarns and for in-

plane motions, a change of mode along the connezting yarns.
In an impact zone, energy 1is continuously provided by the
projectile as it is retarded. Three types of signals are propagated

along the impacted yarns. The signals are consequently partly

transmitted, partly diverted to other yarns beyond the impact zone, and

o~
L] e

LOETE




partly reflected back into the zone. At a rate of energy input, the

chances of yarn falluie increases as the percentage re?flecéion of
signals back ':into the directly impacted yirns. | The innuénce of yarn
arrangement on this percentage is an i.ndicator of weav.e erficiency.

In the first instance, the passage of an out-of-plgng transverse
input distw'bance through a node is ,,t':onsidered. Onl'y two weave

patterns, the nrt_hogonal and the (0 - 60° < 120°) "triaxial are

considered. The general equations for the passage of in-plane signals ’

are then derived and expressions obtained for a few weave patterns.

’

2.3.1 Out-of-plane Transverse Signals

The discussion refars to Fig. 2.8(a), 2.4(b), 2.5(a) and 2.5(b).

In an orthogonal weave, a disturbance along IM, the 1néident at I,
creates signals in the three other yarns connected to I, that is in IX,
‘n. and IJ.  The input signal in IM, f.( S - Cept)s gives rise to a
transmitted signal f,( S - Ctxt), a reflected signal g( 5 - tht) and
signals in the cross elements h( S- Ctst) vhere 1is a cdordinate
along a yarn.

. Referring ﬁo Fig 2.5, it can be shown that

1 2.1 ,1 1,1 .1 1

§ 23fy sy = gLpby = Py = 3y 2.3.5
and

1 1 1,1 '

h, = Py = x1, | 2.3.6

vhere ( )! & D¢ )/\S » the slope.
The sum of the amptitudes of the incident signal, tl' and the
reflected signal, &
* rl +*8 = §f1 from equation 2.3.5 t
. Leech and Mansell (31) showed that the corresponding gquations for

a bdiaxial fadbric are:
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1 1 1
2 |2f11' g 4* zf” h

1 Lt 1 1
£ bt If:’ 20307

where fz, g, snd h are the transmitted, reflected and diverted signals
respectively.

‘rhgi-crore, roxj,,a biaxial weave, the sum of the incident and-
reflected signals is given by

£, + gy . %{1 2.3.8

Since the sum is less for a biaxially woven fabdriec, fallure due to
overstraining might de expected to occur at a lower impact velocity in a
triaxially woven fabric. A higher proportion of the imident signal 1is |
reflected in l‘ triaxiall fabric because the greatet; number of yarns
- poses a stiffer constraint to out-of plane motions.

The partitioning of the total input energy (kinetic and strain),
It, into that transmitted, It, that reflected, Ir, and that diverted
into the dranch yarnms, IM’ and Ibz’ ¢an be shown to be given by

It = 1 Ir 4 IdI = ID2 & 1 2.3.9
I3 9 1 9 I I1 9
Hence the energy in the yarn carrying the incident wave, assuming
continuous input of energy = .1-% 1. (I e ? Ii).
Under aimilar; conditions for an grthogonal fabric, the energy in

yarn » % 1.

2.3.2 NODAL IMPEDANCE FOR IN-PLANE SIGNALS: GENERAL éQUATIONS

The general equations for the influsnce of a node subjected to an
in-plane incident wave along one of its connecting member will be
derived. The percentage of the incident wave which is reflscted along
the disturbed yarn 1'3 of paramount 1mparténce, since, as mentioned
earlier, a yarn arrangement which causes an high percentage of the
incident wave to be reflected would produce yarn fallure =* - ~

vignal level.
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Consider the node O in Fig 2.5 at which n + 1 yarns meet. The
pretensions in the yarns are enough to prevent compression (or
buckiing) from occuring.

The yarn labelled 1 is subjected to an extensional wave U(x-c.t)
and an in-plane transverse disturbance V(X - ct:), where the wave
speeds are given by: C,s j ;— and C, '/F}

The reflected extensioral wave is taken as PU(: + C,t), while the
reflected in-plane transverse wave 1is dV (x + cte). .'l'he
fractions B and d are dependent on the yarn arrangement.  The
extensional, and the transverse disturbance generated in a typical yarn
are respectively taken as U (x -C l.t.) md V (x = Ce 6) where the wave
speeds are given by

§¢ f% and T, ./;-‘:AL

Compatibility at the node requires that (Fig 2.6)

N [ ] [ 4 . .

U = U(1-P ) cosd, + V(1-d) sin X 2.3.10
resolving salong the yarn, and perpendicular tc the yarns

L ]

VL = -U(‘l -p) sind( * V(1-d)cos°&L ’ 2.3.11

" where the dot denotes differentiation with respect to time and

prinos denotes derivatives with respect to x.

Tho oqmuons can be rmitten in terms of derivatives with
respect to axial length, x, as . o

Cor Uy 26,0 (1=B ) e0s% 4q,v'(1-4) ata¥L

C, ':'. = -c‘u"n-p ) sindl_-o»ctV'U-d) cos“v

or

v

Ls p_e_u (1= P ) cos® 4 ct v'(1-d) sin® 2.3.12
CeL P “Cel Ls

AR ce V'(1-4) cos &, - Ce u'(-p)stnk o 5.3.13
ctL ctL

o oL
e I Y
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The equations 2.3.10 and 2.3.11 holds for each yarn connected to
node 0.
~ From equilibrium conslderations:
along disturbed yarn,
EAU'(1 +f ) = Z'(ELALU‘: Cosd; = T,V sin% ) 2.3.14
Substituting for U!: and‘vx: from equations 2.3.12 and 2.3.13,

equation 2.3 becomes

Lo Cel. v'(1-d)sin °\L)

- Tyatnd ((Eh V(1) cos® | -£8 U'(1- P )stndk ) ’4
|

The terms mvolving the rmctionsp and 4 are all put on one side and

the final equation is:

. | 2
P“'-[ﬂ o Z(EA - g oo AL .1 C:Lsmze( ]

C Ct)

- d.V'.ZsinZO(L RIS :

. = (ELAL-C':L- LCtL w )
= <BAU' & U'Z(ELALcoszd L * '1'[" Ec':'l. sinz ‘L)
uudn

- v' Z(ELAL ce

Geo *TL Ctl.)

2.3.15

smilarly,‘ consi_deration of equilibrium in a direction perpendicular to

the disturbed yarn gives the following:

™' (1+d) Z (E A0, st o TV cosK ) 2.3.16
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and V1

Upon substitution for U1 L?

L
TV1(1+d) ZE A sin & (U: g—:—L (1-p )cos°(L)

1Ct Ce 1
+ Teosd  (V E'EL(1'd) cosdd, -z U (1-p) sind )+

ct v (1-d) smO\
Cel

The final form of this expression is

1 E ct 2 2
d.v {'xw (E A Go Sin °(L+TL G o KX |
Ct sin ZC(L

1 Ce
po (ma g -T R 3

(E. A 7. Ce sin2 (L
-1 . gl LLCeL Tt 2

+

. . |
1Z(TL CtL cosz« L E AL ct sin * ) 2.3. 17
' The summation is over all q'S\Lé yarns connected to the node, apart

from the initially disturbed yarn.

' Given the number of the yarns connected to a node and the angle
with a fixed direction, equations 2.3.15 and 2.3.17 wo.pld give the
values of the rréctions of the proportions of an in-plane disturbance
vhich are reflected along the disturbed yarn. The expressions for the
general solutions of the two equations are long and were not very useful
for numerical work. It is bette for any givep fabrie, to generate the
values of the summed expressions from the given values ofO(L, TL’ EL
and AL, and then to solve the two resulting simultanecus equations.

Once the values of P axﬁd d are evaluated, the level of the signal

(UL and VL) in the other yarns can be calculated using equations 2;3.12
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2.3.3 IN-PLANE TRANSVERSE DISTURBANCES

The equations connected with this case are obtained by putting A

0 in equations 2.3.15 and 2.3.17. They are:

.vndZ£"_2_f_(_. (ELAL "TL) s

sin2( -
'VZ(EL"L G * T & = 2.3.18

and,

V [ ) d [ Z(ELAL CQL Sinzd L .¢ TL g%ln cosz dL]
. .
=-T Z( S SR Y & oanldy . 2.3.19

The expression in equation 2.3.10 shows that an incident in-plane
transverse disturdance generateﬁ, in a branch yarn, an extensional
wave, if .

.SID‘KL# 0, that is if the yarn 1n question is not parallel to the
disturbed yarn. '

In the case¢ when only éwo yarns ai'e connected together at the mode
(41 = 180°), Fig 2.7(a), the equations reduce to

0 = 0. and

' ct v I cs :
Vi.d [T s & ] L=+ E‘EL] 0 2.3.20

If the yar;\s are made of the same material, the right hand side of
equation 2.3.20 is zero since the tensions are the same. This is as
could he expected, and the wave would pass through the yarn without
reflection since the two yarns are equivalent o a single continuous

yarn. If yarn 1 is denser than the disturbed yarn, that is C, > CyL,
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some reflection occurs. The value of d increased with the ratio of the
densiﬁies until thel case of a rigid (yarn) (Ct» Cu.) when the whole
signal is reflected.

* On the other hard, a wave of the opposite sign is refleéted in the
case v;rhen yarma 1 is ughier than the disturbed yarn (Cu} Ct).. In the
terminal casea with the second yarn removed, d = = 1. This is as could de

expected since the free end must be stress-free.

2.3.4 EXTENSIONAL DISTURBANCES

The governing equations are:

-Eat's U’ Z(ELALcos £ Cel + 7T _C_:_L sin2°< L)

i p.u' [EA +Z(BLALcosa°(L ct_ +T, Ce éinZO(L)-]7 2.3.21

CelL ctL
1 Ce sin 2K
p.u Z‘EL‘Lca‘. -1, Gp)
i ‘ Ce .

For the case X, s 180, Fib 2.(a), equation 2.3.22 is trivial,

while equation 2.3.21 gives

Ce
Pe(-Earen, CeL )7 (ea + £, CeL) .  2.3.23
For the same material, P 2 0, no reflection. For a free
end, CeL) Ce, h=z -1. At the other extreme, when the yarn
carrying, the disturbance is connected to an extremely dense yarn, ﬁ =

.1, complete reflection occurs and any incident strain is Jdoubled.
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2.3.5 NODAL IMPEDANCE OF DIFFERENT YARN ARRANGEMENTS
- The different patterns of yarn arrangement which are discussed are
shown in Figs 2.7 (a ~ e)
(a) ORTHOGONAL PATTERN
Joint data
0 o o
0\13901 d\2:180,«,3=270 .
(Assume equal tensions and yarn materials)
Case 1, Ve 1, u' - 0 (in-plane transverse)
Ct ct :
'I‘-o-ZEA-c: + 7T :-‘1'4»231\35*1., .
ct
4 s« EAgg s+ EACt
T + EACE TCe .
Ce 1 + EACt
TCe
:  1Ep, where p = Tot 2.3.24
Case 2, V' 2o, 0' a1 (Extensional disturbance)
P EA (EA + 2T Ce ) 2 <EA+EA+ 2T Ce
: P ct T &
Ce
p = TL E ’
EA + T Ce
.o

2.3.25
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The value of B 1s equal to that of case 2 while that of d equals

that of cae 1..

(b) TRIAXIAL PATTERN (60°-120°-180°)

Case 4 Incident extensional wave, U' =z 1, V'_ 20

1= p/3

EA+3'1'§:- ‘
P

3ER + 31c Ce
Tt

Case 5 Incident 1n-p17ne disturbance V! 3 1,u' = 0

1

|

T « 3EA Ct/Ce . i+P
3T + 3EA A Ct/Ce 1+ P
i

! ' ]
Case 6 Combined incident disturbance V =z U =z 1

|
The values of P and d are given by 2.3.26 and 2.3.27
!

_ i
(c) - SPECIAL TRIAXIAL (45°-135°-180°)
}

o = 85%, o, 2135 A x 180, X 2 225, % = 315

Caée T In'cident extensional signal
PEa+ p[m (3+3+1+3+3) + TLE%(?:*&'*%M)J

Cct :
- A B2+ TL) (3-ded-b)

=-EA+3EA+2LCt

2.3.26

2.3.27
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= 2EA+ T C2 = 1+P
Lct TF 2P
TEA + ZTL%:
= (e, 1 |
1+ 2P 1+P ‘ 2.3.28
Case 8
'Incident. in-plane t_ransvérse signal, 7! z 1, 01 =0
d [? + EA %% (3+3+0+%+3) + T (}+i+1+}b§ﬂ
Ce
~BEA-TE)  (3-1ei-D)
2 «T+ T (3+3+1+3+%) + EA %% (3+3+0+3+3) -
d ur+2359-€1 = 2T + 26a S
' Ce : Ce
Cct
d = 2T + ZEA_C? 2z 1+P
3T + 2EASE 2+F
2
* -(———;'* BE. 2.3.29

(d) LIMIT PATTERN WITH LARGE NUMBER OF YARNS

In the limit when tl;e number of yarns are large and uniformly
arranged, the summation signs of equations 2.3.15 and 2.3.17 are
replaced by 1ntggration. signs. This is how the result below is
obtained. This 1limit case is practicﬁl ‘with the regular ‘'fan'

arrangement of yarns which are then heid together in a matrix.
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Case 9 Incident extensional disturbaﬁce, U' =1, vi=0

P[EA# (EA+T§§)] +d.o=-EA+Tf[EA+T-g-%]
Ce

P = EACW =1) + WT & . 0.6819P « 1

2 (T -1) P +T (1‘ +P) 1 ’

(r + D P+ T+ P 2.3.30
x 0.6819 P+ 1 . (1+P) . 1

1.318P + 1 (1+P)

Case 10 Incident in-plane transverse disturbance V z «, U = 0

ct . Ct. .
d[r+ W(EA&- +'r)_=-r + (T +EAG)T
T 1 P .
ds T(F- 1) +WEAEE N S 2.3.31
- el
T(F4+1) +TEa 7

o £0.6819 + P) (1 + P) 1
1.318 + P 1+ P

2.3.6 ENERGY PARTITIONING

In order to compare the 4 different yarn arrangement patterns, the
rates at which enérgy is reflected are calculated.

The energy dissipated in time t are

1 2 2 :
C tT(V') + Ce EAL (")
2 -z

Innident energy =

L

a2

TR

. e
1‘ IR AN
N TR R R A
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2 2 2
Reflected energy = Ctt T dz(V') =z CtEg\_} (U')
2 ¢ 2

The percentage energy reflected is proportional togz and dz.

The values ofﬁz, d2 are compared for the different yarn patterns.

2

In Fig 2.8, the values of Pz and d° are each plotted adgainst

values of 1/P. The range of values of % used is 0 - 1. This fange
corresponds to values of p from e to 1.0 and the range of strain from
0.0 to 1.0.

Note that for a yarn made of Hooken material:

P = EACt = EA p-f =/EA . O 2.3.32
TCe = ™ v €
v [E/p
P2 1o . =& 2.3.33
e P - L ] L ]

It is the region of low values of prestrain, £ , which are of
practical interest. This region, as the graphs show, is also the :egion
where the percentaz. of 1ncideht signal which is reflected is highest.

The most "efficient™ yarn arrangement is the orthogonal, since
this arrangement produces the lowest percentage of ref]_.ected energy
both in-plane transverse disturbance and extensional disturbance. At
very low prestrains, the percentage of input in-plane transverse signal
which is reflected in case 8 is less than that in case (1).

The graphs for the different yarn arrangements are very close to
one another at low prestrains, for in-plane transverse disturbances;
which means that the arrangement of tbe yarns would not apprexiably
affect the performance of the fabrics. ‘At zero pretension, in Ref
(61), a very low reflection coefficient (approximately 0.01) is

estimated for typical fabrics.
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The optimum condition occurs at p 3,1’ or when the prestrain equals
unity. Most yarns would fai. long betére this strain is attained so
this condition cannot be realised. Evén if such prestrains could bde
attained, the practical diffisulty of designing rigid anchors necessary

to maintain the fabric under the high strain remains.

2.8 SUMMARY

In these simplified analyses, salip, friction and geometric
nonlinearities were not considered.

The results show that a diaxially woven fabric may fail at a higher
impact velocity for a given area density, than ahother fabric of a
different weave pattern. This is true for out-of-plane disturbdances,

and in-plane disturbances.
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CHAPTER 3

 CHARACTERISTIC THEORY

3.0 Introduction

In this chapter, an application of the methgd ot.charactéristics
to the analysis of the dynamic resbonse of densely woven faoric is
described. The fabric 1is analyse& as a network of the yarns. The
expressions for the kinetic ahd'strain energy in a yarn are stated and

both the equation of motion of the yarn and the compatibility equations

‘for the yarn crossovers are obtained. A technique using the theory of

characteristics is then employed in a discrete fashion to determine-the
motion of each crossover or node. The moticn of the fabric is then

-

defined bdy tho motion of eaéh node.

The method has, computationally, advantages over a finite element
podel with consistent wmass formulation in- that, for the same
discretisation, thQ rank of the_largest'matrix to be inverted in the
solution by the method of characteristics is 3 agﬁinst nz (vhere n is
the number of nodes in the finite element model). It is also better
suited for wave front predictions. This 1s because“the positions of
the waves fronts, sven then they are between nodes, could be determined
directly with the characteristics equations. Whereas ;n the finite
element solution, the uave-fronﬁ is not usually sharp, but smoothened

and spread out.

3.1 ~ THEORY
The following assumptions are made;

1) the centreline of the yarns are initially straight.
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11) The yarns are rigidly fixed at the nodes, slip and
" aeparation of the yarns are not allowed.
111) ° the yarns are completely flexible and the energles

associated with bending or twist is negligible,

3.1.1 FIBRE/YARN DYNAMICS

For a hypenhstic yarn material, there is a work or strain energy
functioral W which is a mnotién of only the extensional Green strain E;
the dependency of this functional on tpe other components of strain is
assumed to de ver;y' weak since the yarm is stiff in tension dut weak in

flexure and shear.

the extension Green strain E is written as

2 2 12
E=u+tldsev+w), - 3.1

where u, v, ¥ are the motions of the yarn in the extensional and two

transverse directions, Fig. 3.1. the strain energy functional is thus

W =W(['-=- N(U',V', w'). | - a2

The kinetic energy of the yarn is simply obtained and the
Lagrangian Ltor a complete yarn, length L, density f and rosette

area A u thus

L
i"-f:‘( Yot iY) - Wa T s s

o/

where d_—___l-g
S
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and t and s are time and position along the yarn.

Now by applying Hamilton's principle to each yarn, and ignoring
for a moment the end conditions, then the following equations hold with

the span of the yarns.

LM i
3.1.4(a)

fv'- ‘U¥(l+u W {d‘h/ dW}v"_ ‘L’@vww =0 3.1.4(p)
d—-—?{(lf-u')wu 43_2'! ' " {dﬁ‘w + ﬂ]w =0 3.1.4(e)

Thoao three ccupled ron-linear partiai differential equations fora
a hyperbolic set with three pairs of characteristic equations. One of
thes¢ pairs is associated with the propagation of extension waves and

propagates with the velocity

Ce = [T+ U+2EYSE ) /p 1.5

where T, the 2nd Piola-Kirchhoff streas, is given by dW
dE

and dzw = dT is the modulus of elasticity of the yarn. The remaining

e
pairs of characteriatics propagate with the common velocity

- [ie

where ct 13 the propagation velocity of transverse waves.

At this point;, a set of parameters is substituted solely for

simplicity and ease of development;
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let p=u 1-\/, r=w

mde u', ¢=vn}«—wﬁ

Then 9*-‘-(9 ¢‘+¥/")

and the equations of motion becone

pp-[SRLO) S f-TRln 6 - oy = o

f‘} 4—”&(&9}4’9 [dE"4> JWﬂ, JIW@'I’V = O:
pf- 4"” Tk (+0)y o' - SR oyd- {d,,, *iE Hiy' =0
ond 9 P =0,

¢-9' | =0,

¥ -r o =0,
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3.1.6

3.1.7
3.1.8

3.1.9(a)
3.1.9(b)
3.1.9(e)
3.1.9(d)
3.1.9(e)

- 3.1.9(1)

This set of six first order, non-linear, partial differential equations

will be referred to in the later section on the application of

characteristics.

3.1.2 Node Conditions

In the previous section, the end ccaditions associated with each

yarn have been ignored. They will now be considered for each yarn

intersecting a node and a compatibility conditionvror each node will be

applied.

Firstly, the end variation for each yarn can be shown to bde

dWiaE Su *BE Y +%Eﬁ, XN}

applied it each end of the yarn.

Now let each yarn originate from the node under consideration and

now label each yarn. The natural boundary condition then becomes

.Z.Au {55&{,&5 oV + ?__': Swi

.bVQ We 3“:)

where there are m yarns meeting at the node.

/ 441 . _ .y
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Now let the joint movement be u, v, w, and since each yarn end must

respond with the node, the following compatibility equations result

e R )
.'/u.a.'. LA N

- 15 Q] \l'COS.x1 +VSin’Xi, : : .3;1.i1(5)
Vis-USia¥t+ veosX, o . 3.1.11(b)
- ViawW, | 3

vhere X, is the initial angle orientation to the frame axis. Fig 3.3

- /I - It then follows that the constraint equations apply
- 6 - SLLCOSX;, + Svg.,,'x,;, ’3'.1.12(;)
‘ Sv. =—8u ginh + Svcos'xo. , 3+1.12(0)
;‘ ' awb gw, 3.1.12(e)
, N and the node equationa then become ’ -
i suz A jo+s~)c°sx., _dasint .} =0,
i SVZAudMﬂHQL)Sm'X + ¢z. cosX } o, . .31.13
o t=l |
! di |
K Sw Z Au = O,
: &’
’ ; since YU, S'v and SH are independent; however, since they afe also
N arbitrary as they are vir*ual displacemenis, it must rollow that their

nultipliers are zero and the node equations then become

’ ZA.,J"L {+0) cosX; - ¢, 8nX;} =0,
/ 2A., {(HG)S‘MX‘-\‘- lﬁ;,cos'x,} =0» 3.1.14
1/ '. Z udE \yg =0 .

v=1 If there is a point mass located at the node then these equations

s have to be re-uritten to take account of the kinetic energy of the mass

located at the node. They now become




MP Z Avdw" {(H-Db)cos)(g - ¢4, S‘thb} = 0>
m-ZMW'{(uet)smx,. +icesXil = -
™Mr- Z Ao%“‘l“ V’ =0.

3.1. 3 Solution Strategy

The solution to the fabric dynamics problem, as has been stated, is

defined by the deflections of each node or crossover. In woven fabrics

the free span of yarn is small since the material is an array of closely

_packed yarns, it is sensible to consider the node equations as equally

important as the yarn equations.
Consequently, the yarn equations are written in characteristics
form, and more specifically as backward going characteristies, and
meeting the node all at the same time; they now become, in difference
fornm, - .
(40 Api+ i Agut i Ar; #Ce [UtB) A6+, AD, #Y;4; }=0,3.1.16 ()
bilp; - (H+0)Aq; +Le]di80; -(140)A¢. ] = 0, 3.1.16(b)
vibpi - U400 An sy MR- (HB)AY:} = 0.

Equation 3.1. 16(a) is the backward goixg extensional wave and the

3.1.16(e)

difference operator is applied between point d and point a along the I
characteristic, Fig. 3.2 Equation 3.1.16(b) and 3.1.16(c) are applied
along the backward .éoing transverse characteristics, II, and the
operatorA in this case, is the difference between the values at point
d and point b. The time stepA t and hence the point d 13 dictated by
t_ho condition that all of the characteristics shall originate from a
poinq in the free span in the yarn and not from beyond the neighbouring
nodes.

Given the point d.or the time step At, the points a and b, the
origin of the relgvsnt characteristic is found by projecting backwards
from point d with the appropriate slopes Ce and Ct; however, these

slopes do change since they depend on the local strain and hence the
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local deflections. An iterative process is then used to account for
this curvature, the procedﬁrs being as follous: First, using the
conditions at the node (di) which are knoﬁn and at node ¢, an estimate
is made for points a and b. The values of strain and hence prapagation
velocities at these points is then evaluated and averag‘éd. with those of
point d. These average quantities are then used to find a new estimate
of points a ana b and the ﬁrocess is repeated a number of times
(approximately five) to ensure a reasonably accurate location of the
points a and b. the iteration scheme is shown in fis. 3.4 and Fig. 3.5
The equations 3.1.16(a), (b), (e¢) can then be used to search for
the six unknowns of the yarn, namely pi, 91, ri and 01, Oi, Yi at the
point d. 4However, the velocities are constrained by the node
compatibility equation to the glodbal node velocities. ]
That is

~=pcos‘X., + ﬂ,sm'Xu
9; = -psinXi + 9cosXi,

TwW=r.
'nms, at each node there are three velocity unknowns (p, 3, r) and thre

3.1.17

deformation gradients (91, 01, \r 1) for each connecting yarn. There are
three backward going characteristic equations for each connecting yarn
and, finally, t{xere are the three node equations to complete the
solution.

Two approaches for the incorporation of these nodal equations are
now considered. Firstly, if “he problem is solely concerned with fabric
dynamics without |lany impacting masses, the equations are firstly
differentiated and |then numerically integrated.

The differentiated equations are
2w

dE 9Cas'1~ ¢S'"7(o}*A¢d f(l*on.)bs'x‘-dﬁynl,,}(ﬁa)o
itV Vc} =0

g At dE fo Blab@&sﬁ *A oE_Iy iﬂ fOL)SmY'_'I'@&)sL}(H'Q‘) 9;.

m o .. el - + ¢ ¢t"?y‘-
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or in matrix form
. " .
2 [Elfef =0
where
n ig' ¢ 3.1.20
, Qs - SR LA ’W‘} .
this matrix equation can be written in difference form
LEJ{B } .—Z[EJ{Q} 3.1.21
where "tﬁs superscripts D and O refer to the positions, Fig, 3.5.
Using this approach, the problem is then welil posed for numerical
evaluation using simple matrix algebra. For each joint, the problem to
be solved is the following matrix inversion:
Peamnty . '“- rP —— ol 1
O E, E:. - = - 9 E
: r .
A B 0 - --||&]| |
g?.
*
A). O 89 - - - ¢3 S"
- - Va 3.1.22
| ! b=
\ i b - ! i
- )
where the matrices A, B and C are obtained from the characteristie
equations. The rank of the above system is 3m + 3 where there are nm
connecting yarns into that joint. Each joint can be solved, for that
time, independently of the neighbours, and a march through the
structure will complete the solution for one time step.
i
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The problem above can be reduced by noting that
AP* 519'."-'»‘9'«. «;-m- =52, ... m, 3.1.23
and ZE\. B = F . : 3.1.24
) 9., = B [ei-AiP] > 35
and hence <~ E;.Bv [C. "A‘f] - f . | 3.1.26

- Solving then for f 31ves
p=(BenlA) BEBTC-F]. s

The problem has thus been reduced to that of finding the inverses

- of matrices, rank 3, rather than matrices, rank 3m + 3.

In the case where there are impacting masses, the differentiation
of the joint equation leads to rates of change of accsleration and there
is no improvement in this formulation; instead a finite difference

fomulation of the Joint equation 1: u:ed° they ! thue beccme

.-At de CDS.ALBE 3ch¢ I P+%ZALdE{Q"’9¢)COSXL

- & sin; }7 1.28(a)
‘ At va » 30 . a
ZAL fpc 3!'\10 Cos-xg 1;;’ gA;d? 3.1.28(b)

s CaSAif o
i.Ac,cg\P‘ =t + ZA 3.1.28(c)

¢ dE
and in tbil.'s case the matrix form

[I]p ZE 9 [I]P +ZE;,. = F . 3.1.29
A similar node ot' solution is employed to that previcusly described and,

in this ease, d m -l F

. M of B '

P= [I*SEED Av] [g,E" 8 Gt J . 3.1.30
In this latter approach, improved approximation dW, the intermediate

dE
values of O, @ and '[P and the propagation velocities C, and C, are

obtained by performing a two pass system at each joint. The first pass

finds approximate values for the joint motion and yarn deformation

gradients at point . These are then used to improve the approximation

T . !
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for the above and these improved values are then used to find better

values for the joint movements and ‘yam deformation gradients.

3.2 LINEAR OUT-OF-PLANE TRANSVERSE WAVE MODEL

This model involves only the o_ut-or-plaxie transverse wave, as ail"

in-plane motions were neglected. ‘rhis podel was developed to overcome
the buckling of the yarns which may occur when the equations developed
in Section -3.1 are applied -to .the analysis of a fadbric under low pre-
strain. The minimum prestrain ‘above which no yara of a fabric will

buckle increases with the velocity of vimpact.
The modei is applied to a highly stressed fabric where

dwW ,Ji‘_, é‘_’ .., dw. v%, or dw.W’, and
el & Y& &
the product terﬁ are small, Equation 3.1.4(e¢c) then reduces to

pe-Twrt 20, | - 3.2.1

where T =2 % the tension which is taken as constant. The corresponding
y .

characteristic equation is: - o

Be; - CelYy:  =o, 3.2.2
C, = /(T/f) | | 3.2.3

The nodal equilibrum equation is:
m

N"" - Z.At- Tu"‘"o =D. 3.2.4

t=1! .
The solution 1is obtained with the strategy described in Section

3.1.3
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3.3 QUASI-LINEAR OUT-OF-PLANE TRANSVERSE WAVE MODEL

In order to maintain the accuracy of the linear model described in
Section 3.2 without losing much of its simplicity, the condition that

the tension in the yarn remain constant during motion was remcved. The

relevant equations are:

ADre, - .CtAW;, =201 where Ct:_/z;‘i%

and the equilibrum equation

m .
- ShSEv =o
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CHAPTER 4

FINITE ELEMENT MODELS

4.0 Introduction
The theory of the finite element methnd has been described in many

books and publications and would therefore not be repeated here.

Interested readers are referred to either the book by Zienkiewicz

(57) or the book by'irons and Ahmed (58).

There are many possible approaches to the formulation of the
equations of state of the finite elements. Some involved only dne
indépendent_fieid while others invelve two or more independent fields.
The variational siatements used in the work reported here involve

displacement as the only independent field.

A short theoretical background to the equations of motion is

‘given.

Four different models are described. Each was developed for the
investigation of the significance of specific fabrics parameters to the

overall structural performance. The four models are:

1) A space-truss model - with crimp, slip and shear in aingle'

layers.
2) A membrane model for single layers, as well as multilayers.
3) A combination of membrane eleménts and three dimensional

elements to model compression and slip.

o

o
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4) A two-dimensional, layered membrane model which allows slip

between layers, 2alled thz master-slave layer model.

4.1 GENERAL BACKGROUND THEQRY

In the finite element approach to the analysis of a body its volume
i3 divided into a finite number of subregions called elements. Within
each element (subregion) the unknown variazbles are represented by
simple functions o:f their values at points on (or within) the subregion
called nodes. The nodal variables are calculated in a manner that
leaves the corresponding variational statement stationary. . |

Consider a volume V in a space defined by cartesian coordinate

system (x1, X9 x3). Let the nodal displacement vector U(n) =z U(n) (Uyy

-

The general field displacement I_I_ = S- U(n) N(“) where there are

n=1
P such nodes and,

(n)

the matrix N is the shape function for the nth node.

The Cartesian components, eij, of the Green's straln tensor are

defined as

dui . AUy Quy W
sy = .'— - .—J ___.-K » ___.k [
Eij ’2(3’% +bx;, M TR TS ) ) 4,pk=1,2,3. 8.1.1

It is assumed that there exisis a strain energy density function,

§ s referred to the undeformed state of the body which depends only on
the components of strain tensors:i = @( 5” .e 812 . 533).

To define the state of stress in the body, the second Piola-

Kirchhoff stress tensor is used, given by

4.1.2

e, = 29
1 - .

K‘ Fo g— 1K :

As in the classical theory of elastiecity, it can be shown that

4.1.3

and that @ = -ﬁi Cp'gjl. Eik g‘d" .
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where Cikjl are the components of a fourth-order tensor of material

properties.

The total potential energy of the system consists of

1) the strain .energy,, given by U =J‘v§ JV
.2) the energy due to the body forces. j fF Uudv
(f is mass per unit underomed volune)
3) the energy due to surfaces forces (thess forces may be non=-

conservative)

s X.y_

Applying the principle of virtual displacement, after summing up for

all the elements of the body, the variational expression is:

ZLSWV-SIPE-_@JV- X-Su=0. "t

T
The strain field, E [ﬁn,ﬁu ++J 13 then related to the nodal

point displacement vector ase [8987 - B ]u .-[ BJ ,and the virtual
nodal displacement S _q _can be expressed as 8‘_£_=L5] SQ and eqtn.

8,1.4 as

z(f(s]s av+fdev -X)S4 =0~

tlements

¢ (') denotes differentiations with respect to time)

Since the expression within the brackets must always be. zero for

any arbitrary variation of displacement,

Y/fmc.:.:... focs, vY - A
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Equations (4.1.6) can.be written in matrix form as

a—

| LM]Q +F = R B.1.7

the column vector E is dependent on the strain and therefore changes as
the volume deforms, while the column of externally applied t'orce;_R_ may

also vary with time.

The original mass matrix, (_M], obtained by integrations, was
consistent. Thereafter, all the non-diagonal elements in a column were
lumped with the diagonal. All the results presented later were

therefore obtained using a diagcmlised mass matrix.

To obtain the displacement vector at a timetm,zt s the central

difference scheme is used given by

2 at[R-FIMI e 0 |

t . .
utAE = ,{At(ut*“-«-g*‘) | 3.1.9

- -

§.2 THE SPACE-TRUSS MODEL

Introduction

Photographs of mpaéted f_'ibrics show that yarn strain distribution
in an uncoated fabric may vary discontinuously from yarn to yarn.‘ This
evidence points to the possibility .that better results might bde
obtained by modelling a fabric as an assembly of yarns, appropriately
arranged, than as a thi:n cton't.‘inuum. A model of fabric as an assembly,
of yarns whose relative motions follow a pattern determinad by the

fabric weave is described. The model is designed to allow the
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influence of the initial distribution of 'mpact load can also be

investigated.

N.2.1 KINEMATICS AND STRAINS

The dasic element of this model is the cable element which may be a
simple .tuo-nodc rod or a higher order element. The element may have all
éhc nodes lying on a straight line, or the equations of its centre line
may be desorided by a specified polynomial (or transcedental)
expression. By the appropriate choice of the shape 6f the centre line,

crimp is modelled.

Fig. 3.1 (b) sdows an mangehene' of four, 2-node, straight
elements, to reproduce plain-weave while Fig. 4.2(b) shows the
combination of two 3-node elements to model the same weave. Fig 4.2(c)
shows a model of a triaxial weave, and Fig. 4.2(d) shows a knitted
fabric model. The nodes numbered (5) and (6) are actually vertically
atove one anbther but were separated in Fiz. 8.2(d) enly for
11lustration purposes. The same is true of node§ (7) and (8). Only one

str-in is cf interest, that along the yarn.

Following Ozdemir, the distance along a yarn from/ the origin to any
point is expressed as a function of the distances from j:h; origin to the
nodes. The values of the Green Strain of the yarn based on such nodal
length is reported to be more consistent than that obtained by the usua]_.

methods (27)0
For a 2-node element, the equation obtained by this formulation

- coincides with those obtained using the usual rod formulation.
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4.2.2 MODELLING OF SLIP AT YARN CROSSOVERS

The discussion will be restricted to a plain-weave fabric with

ﬂ o orthogonal yarn directions. "1
:313 In the space-truss model assembled from 3-node eisments, slip waa oo
. - allowed at yarn crossovers. . 1

To simplify the calculations, it is assumed that the two nodes

. . representing the crossoirer poinis lis on top of one another threughout, o
'the'notion of the fabric. This approximation is reasonable in cassz .

|
‘where yarn pull-through does not occur, and the total slip is small

7 ’ : relative to yarn length.

: At the beginning of a time step, bdoth the t;lagnitude and direction
l " of the frictional force opposing slip are unknown To overcome this
difficulty a two-pass step was adopted. :
: |

! At the bdeginning of the first pass, the f‘xf;ic_tional resistance is

! .S set equal to zerojandythe transverse velocities of the two overlapping
~ nodes and a first estimate of the direction of the relative motion are ,
? calculated. The frictional force is put equal to the product of the | ’...".‘L

normal reaction and the corresponding coefficient of sliding frietion.

.0 s,

In the second pass, the frictional force is applied as an external force

each node, 'acting along the slip direction estimated above, but opposed ""7.'1

.:‘
to it. Better estimates are then calculated for the magnitude and .
direction of the slip and hence of the components of the frictional

resistance. The second-pass is repeated a few times until convergence.

See Fig. 4.3 1

.
——— e Wt ® ¢ ® .‘Ql..-l‘d- )
l‘
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Let the relevant equations of motion of the nodes, assembled as in

equation (4J417) be

"
M_U
2725 + F5, = Rg, (a)
M "
6%6 + Fez = PRez ()
1] - K ‘
"suxs}* FS‘ = Rsx () §.2.1
" K
”6Ux6 + st = R6x (d) .
" X '
" K
Msuy6 + Fﬁy = “Re v (£

where the prefix (K) denotes the Kth,estimate.

The significance of an approximation mentioned briefly before'will
be stated. This was the approximation involving in putting the nodse
(5) and node (6) of each element of the fabric vertically above one
another at the beginning of eaéh time step, despite the cummﬁlativs slip
during the earlier time steps. <his approach obviates the need to

determine:
{(a) the actual points where the orthogonal yarns cross.

(v) the nodal equivalents of the normal reaction and the
frictional resistance which act at the points which  would

otherwise have been calculated in (a).

If this approximation were not made, then the value of the normal

- reaction would also have had to be recalculated at every pass.

N
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4.2.3 FABRIC SHEAR
Shear deformation, at a node, is defined as the relative rotation

at that node between a yarn and an orthogonal yarn which overlaps it at

that node. The shear resistance, T, is related to the relative

rotation, O, and the normal reactions at the crossover, F,» by the

equation:
T = 01 + (c2+c3.tz)ie ' §.2.2

where 01, cz and c3 are material and weave properties. The equation is

adopted from the work by Kawabata et al. and discussed in greater

details in the next section.

4.3 THE MEMBRANE MODEL

Introduction
In this model, the fabric is treated as a thin membrane made from

densely woven yarns. The yarn are thin, perfectly flexible,
incompressidble rods. The weave pattern is modelled by the "stereo

model”™ described by Kawabata et al. and shown in Fig. 4.4 and Fig. 4.5,

8.3.1 KINEMATICS AND STRAINS

The relevant strains are (Exx, Eyy, Exy, Eyx), given by:

du 1 |fdul} 2 dv) 2 dwl) 2
Exx = = * -4 &-z—) +* (HV) + (a;) ] ’ ‘
dv 1. 2 _ [av) 2 dw) 2
EY! = a;- » -2- [(a-; . +* (‘d?) * (d—y-) ] u.3.1

1 (& dv 1 ]dv dv du _du dw dw
E”"E"”z( *ax)‘z x*d T ax'dy * &'y
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4.3.2 CONSTRAINTS AND SEOMETRY OF WEAVE

In order to satisfy the weave pattern, both .fofce.and geometrical
constraints have to be satisfied for each element. This mathematically
means an addition of extra terms to the variatidnal statement of
equation 4.1.4. Fig. 8.6 shows the initial geometry of the centrelines
.ot' the 1ntei'secting yarns before deformation and Fig. 4.7 show the same

lines after deformation.

Let Exx be the strain in the plane of the fabric in the plane of
yarn 1, and the Eyy the strain along the perpendicular direction_. These
strains are calculated using equations (4.3.1). Let €, be the actual
strain ia yarn 1. which lies in the xz plane. If thev pitches 11:1 the x
and y directions are P, an& P, respectively, the equations

=2 P12(1 +* En)z +* h,z, . u.3.2

L.zh +e, )231n201

L,201 = e;)2s10%, 2 p,2 (1 + Ey)? 4 1,2, | 4.3.3

arise from the assumption of no slip.

Also from the incomprassibility assumption

l’(1 +Q)) cosQ, » Lz'( | » e,)cos8,
s meosew +L2°cosezo 2.,3.4

=By +hy 2hyy +hy,

Let the tensions in the yarns be '1'1 and 'rz respectively, then, from

consideration of equilibrum at the crossover (see Figl&.'l)

‘1‘1¢:c.\s°1 = Tacoscz 4.3.5
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At any given time, Exx and Eyy, the strains in the plane of the
fabric can be calculated using equations 4.3.1. then, using the Newton-

Ralphson method, equations (4.3.2) to (%.3.5) are solved iteratively to

obtain e,, e, and tierefore T, (e1) and T, (ez). The values of T, and T,

can now be used for the integration of equations (4.1.6) to obtain the

equations of motion.

§.3.3 SHEAR EQUATIONS

-

Until the shear force 1is increased beyond a limiting value,
relative rotations between the yarn, in other words, shear, would not

occur. Beyond this limit, the shear strain, Exy'or Eyx, increases in a

. complex way which depends on the magnitude of shear force és well as the

reaction between the yarns, and on the direction of rotation.

The model was developed by Kawabata et al (3) and could be written

Ta=22Cs(C,+ C3aT,cos0,) Exy 4.3.6

where T,, is the shear force, C, is the frictional constraint, while Cj

and c3 represent the effect of elastic dehaviour of the contact area.

8.4 THREE-DIMENSIONAL MODEL

Experiments show that in a multilayer of fabric, the 1layers
closest to an impacting projectile fail first even uheh the layers are
identical and slip ia'négligible. Such a sequence of perforation cannot
be easily predicted if the layers are treated aﬁ thin plates.
Otherwise, a failu}e criterion which involves the magnitude of the

reantianal farcea on the surface of each laver may be necessary. Apart
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from this observation, it has be suggested by Marom and Bodner (23) that
compressive resistance 1is significant to the overall structural

mechanics of layers of comparatively thin 1100-316 aluminium sheets

and beams.

The three-dimensionai model is therefore designed to investigate
the significance of the yarn compressive ;trength, and, at the same time,

the significance of inter-layer slip.

Under impact, some layers may be penetrated and separated from the
forward, unpenetrated layers. This model allows such separation to

occur. there is also a check for when a previously separated layer re-

establishes contaét.

|
o
l

i

The 1n-plan§ resistance of a fabric 1is provided by a two-

dimensional mémbéane element. The interface between two layers is

|
modelled by threefdimensional parallelpiped elements which also provide

-

resistance against shear and compression.: Each three-dimensional
i

element has zerofnaSs, and its thickness equals half the sum of the

thicknesses of ﬁha fabrics on either side of the interface it

represents.
4

Pig. 4.8 shows the combination of elements to model three fabric

layers.

4.4.1 : STRAINS AND STRESSES

For the two dimensional membrane elements, the relevant strains

are?

_:.q ,A?x3“4;1
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e - &) ( |

1[ du du ,du dv dv dw dw
E lfdu | dv) , 1fdu _du dv dv dw dw
Exy = Eyx = ( + dx) * 2 ax dy &x'dyy dy dx]

From experiments, the in-plane stiffness cosfficients of a fadbrie,
along and perpendicular to the weft direction, are measured. They could

be expressed in a relation between stresses and strains as:-

roe] [ o Ex]
Sxx Dyq D40 0 Exx
Syyl = Dy, Dy 0 Eyy| 5.4.2
LSxy- . 0 0 . D33 Ex?;

During the arrangement of fabrics into a multilayer assembly, the

warp direction of a layer may be laid at an angle ¢ to that of the

reference layer. This angle may ve different from layer to layer. It
is neceasary.to transform the constitutive relations so as to relate the
force in each layer and the strain in the reference directions.

The terms Dij of the constitutive r2lations in equations 8.3.2. is

then replaced by Dij (Q), which are given by the expressions:

n,,’ x n,1eos“0 +D,, sine + (20 12 + 1D33) sin20 cos2e

2

D122 ] D11ainuo + 022 cosno + (21)12 * uD33) sinze cos e

1 1 2
Di2’ = °z1 = D12 + (D + Dyp = g5 = H1)33) 510 cos’e

1

3 -
D,y + 233) sin’e cose
1 3 v
D33 =2 D33 + (D11 - 012 "D33) 8in”e cosd - (D12¢-

Dyp + 23,) sind cos39

4.4.3

-T;.af
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STRAIN AND STRESSES FOR INTERFACE ELEMENTS

The nodal displacsments are the same as for the two-dimensional

fabric elements. The important strains are: (Exx, Eyy, Ezz, Exz, Eyz) e
which are defined as:
2 2 N

= g (e ) - (] =
: 2 2
dv 11([du dw s

.B” *y t2 Bd—y. * (g * (6)]’ ' 4.4.4 s
Ag 2 ‘ i‘-,

Ezz = g‘z—' * % [(d‘; + (g%) S (g%)i,
1fau _ gu\. 1fdu . du . dw _ dw -

By = ‘é’(‘d‘z‘*ﬁ"i(&‘z‘ x * & dz)’ g
: 1(dv dw\, 1 [av v . dw du e
- ilg e ) 18- §8) i
i:

Thq derived stresses which are of interest are Sxx, Syy, Szz, Sxz, Syz. ‘\'

they are related to the strains in equations 4.4.4 by the expression; of

the form: ‘
Sxx Ci4 Cy2 Cy3 0 ] Exx
Sy €21 €22 €y O O By | 5
saz| o+ |y C5 3 O O ez | wos
sxz 0 Cuy 0 Cyy O - Exz ,
_Syzr 0 0 0 0 c5§_ Eyz-

Where the stiffness coefficients C”, c22' depend con both strain and

strain rates.
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. For unbonded, layered fabrics, Cyy, Cy5s Cq3s Cqr Cps C3qr C3p EE
] are made very small and C33 put equal to the average compressive modulus i-‘
n of the fabrics on either side of the interface. When Ezz is positive, _
:Z' that is separation occurs, 033 and the other coefficients are set to j:Z:_§'~
. . a very small number (10'“). When the interlayer is compressed, that is -'"
;j Ezz is - ve, C35 is set to the value stated earlier. |
1  The stresses are integrated through the volume to obtain the nodal ;-‘.*F‘
n load vector (Fx, Fy, Fz). In cases where the layers are free to slip, .
' the resultant in-plane force, (sz + Fyz)* is adjusted, if necessary, so

[ that

¢ (Fx? + ry2)} < M » 8.4.6

where M 1is the coefficient of friction.

In a bonded interface, the stiffnesses in the xx, yy, and 2z

. el
directions are set equal to that of the binding resin. -3‘~

4.5 THE MASTER-SLAVE LAYER METHOD T
4.5.0 Introduction . ’ ‘:lu;:'»‘j:.:.-

The model iiscussed in the last section involved the use of three-.

dimensinnal elements to simulate the compressive resistance of the

yarns and the slip between layers. Thz thickness of each fabric 1s

however very small compared with its in-plane dimensions: 0.5mm to . .

150ma by 150mm. Very many elements are necessary to keep the aspect

ratio of the three-dimensional elements low and to ensure accurate

[

. ."..i.'--'
stress results. This requirement drastically restricts the number of -
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layers which could be modelled. A solution to the problem is to avoid
the use of threze dimensional interface elements altogether. The
master-3lave layer method is an attempt to achieve this end, and at the

same time allow for slip between layers.

The computational procedure iﬁ similar to that used in fluid-
structure dynamic analysis to investigate the moﬁion of two contacting
materials .which have a relative- tangential motion along their
1ntertac§,'but which remain in contact throughout this ﬁotion. See Ref
4y, The material lying on one side of the plane of contact {is
designated as the 'master' material, while the ﬁaterial on the other
side is the 'slave’ material. Generally the stiffer, or the denser
material, is chosen as the 'master’ matefial. Both materials ar;
divided into element; as usual, the nodes of the elém;nts of the master
material lying on the interface are given different numberﬁ from the
nodes of the slave elements lying on the same surface even when some
nodes are initially coincident. The values of the variables at the
nodes of the slave elements which lie on the interface are fixed by
those of the nodes of the master elements on which they lie. In tum,

the slave nodes are deemed to exert forces on these master elements.

In the application of auéh a scheme to the investigation of the
dynamic responsa of a multilayer system, many modifications are
necessary. For exampie, the master layer at any time is the layer
directly in contact with the projectile at that time. Since, during
motion, layers may get penetrated and separate, the layer designated as
the master layer must be upgraded at the beginning of each time‘sgep to
be the layer just below the last penetrated layer. To satisfy this
requirement, a check is carried out at tﬁe start of each time step for

elements which have falled. If elements in the top layec héve failed,

O
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then the projectile is assumed tc be in contact with the next layer.
The check is continued until the projectile is in contact with an

unpenetrated layer.

Once the master layer has been identified, as above, the next step

is to calculate the acceleration during the time step. irst the nodal -

loads (Vector F in equation (4416)) are determined for the nodes of each
layer not yet penetrated. The external forces acting at the nodes of

the elements of ‘the master'layer, due to inertia and strains in the

other layers, are determined. The layers are assumed to be constrained

against slip and the accelerations of the master nodes are calculated.

From the accelerations of the master nodes, an estimate can be obtained

.of the acceleration of a node on any slave layer. This is only possible

because it was assumed that slip did not occur. The reaction force
between the ;ayers is calculzted a% each node, and modified, if
necessary, to satisfy the frictional properties of the interface. The
acceleration of each node (master or slave) is recalculated with the

modified values of reactions.'

4.5.1 BASIC PRINCIPLES : MASTER-SLAVE LAYERS

Consider the membrane elements T and S in Fig. %.9. The element S

lies on element T.

Let the element T be the master elemeht and the element S the slave
element.i The velocities of the nodes A, B, C and D of the element S are
therefore determined by their positions on the element T. This
statement is tfue as long as contact is maintained between the elements

without slip.

o
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The equation of motion of the nodes of element T, following

equation (4.1.17) can be written as

"151 + Fr = B o . 5.5.1

The equation of motion of the nodes of element S is similarly

written as .

L

Where the externally applied force vector Ri is assumed to dbe only

due to the reaction of element T on element S.

The velocity vector of A, B, C or D is given by

_i'z . Z"x O 1 | ».5.3
where !fx is the value of the aﬁape function of the Ith node of element

-Ty-evaluated at the position of node i of element S.

Using the approximation

s d t LY |
L_f“ = gt +At.g s

and assuming that slip is small we car. rewrite the expression (4.5.3) in

terts ¢f accelerations as:

8 . > Ny 8 8.5.4

S .
el et
PR
Pl W O AL




L 2 28R 2 N
. . PN

'.']‘[..‘..o‘n.a:.‘

o e
L

ER B A

b Ih s

MG A A A A A L A A e e e A i . B D B

64
bod
M A A o %.5.5

By virtual work considerations it can be shown that the force H, at

node I of element T due to the action of external force Ri at A is given

by
" .
Hye - Np By == NpoJ ND; - NF . 8.5.6

The total external force R. at node I is the sum of the equivalent
nodal forces, EI’ due to the reactions on elements which share node I ¢ ;

a common node, that is

‘!I = Zgz 2 - Z"I R’i IS | | uoSo?

Equation 4.5.1 can now be rewritten as

" L Q

the éummation variable L refers to the number of slave nodes which
lie on ﬁaster elements to which node I is common, while the variable Q
refers to the number of nodes, J, of the particular master element on,
or within, which the slave node, i, lies.

By this procedure, the number of uhknowns has been reduced, and
only the acceleration vectors of the master nodes need to be calculated.
The acceleration of the slave nodes are later evaluated using equation

(u.s.n)o

It can be shown that the expression 4.5.8 is correct even when the
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slave layer (on which node 1) ‘lies is not in direct contact with the
paster layer, but is in contact with another slave layer which is in
cénf.acf. with the master layer. 'l'he expression is co:;rect fcr as long as
the velocity vector of the slave nodes satisfies equatiua (4.5.3), that
is, for as long as there is no slip between tne fabrics or the

separation of one fabric from the rest.

,

§.5.2 APPLICATION TO MULTI-LAYER ANALYSIS

The layers are identically 'divided into elements, so nodes on the
lover layers are vertically belcw nodes on the top, master, layer. Once

upict occurs, slip generally takes place, and a node on a lower layer

may no longer be vertically below any node in the top layer. Therefore,

in order to calculate the acceleration vector of a slave layer nods from
those of master layer nodes (using equation 4.5.3) the following steps
have to be taken: |

1. the identification of the elemont in thé top layer within which

horizontal projection the slave layer node lies.

2.  the calculation of the values of the parametric coordinates of
the point in the master layer element (identified in 1) which is

vertically below the slave layer node.

3.5.3 IDENTIFICATION OF MASTER LAYER ELEMENT
BELOW A GIVEN SLAVE LAYER NODE

The search scheme described here is, strictly speaking, only

suitable for elements bounded by straight edges. It can however be
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easily modified for use with other shapes.

Referring to Fig 4.10, the problem is to determine '.whether or not a

given point N lies on, or within, an area bounded by straight sides.

-~ See Fig 4.11, also.
The nodes of the elements are numbered in an anticlockwise sense. :;‘_Af
—.-Q
The coordinates of the rectangle 1234 which envelopes the master .
element is found. If the coordinates of N, (Xp, Yp), do not satisfy the .,
- conditions :
‘\“ .'!
Xain € xp € Xmax 5.5.9 o
and TYmin € Yp § Ymax 5.5.10 C
_ o~
/ .?:13 then the search procedure is terminated. :
e If dboth conditions are satisfied, then the distance from the node N
:_.;:§ to each of the sides of the element IJLK is calculated. .
- 1r point (Xp, Yp) lies within the element whose sides have end R
& -
Ejf. points (Xl, !1) and (xz, !2) respectively, then j-i_-;:fj
;‘ o Yo
= (T = Y).%p + (X5 - X)) Yp + (XX, = X,.,) 2 0 B.5.11 B
If this inequality is not satified by any side of the element, the ,'.'lj;j
g ' ' —
| "' point (Xp, Yp) does not lie within the element. The condition given by B
‘ E:: equation (4.5.11) follows from the choice of node numbering system.
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Once it has been shown that a node lies above an element, the next
step is to calculate the parametric coordinate of the vertical

projection of this node on the master element. This is the object of

the next section.

CALCULATION OF THE PARAMETRIC COORDINATES
OF A POINT, GIVEN ITS CARTESIAN COORDINATES

u.s.u

The cartesian coordinate of a general point, A(X, Y, Z),"gn an
AR B4

element can be calculated from the nodal values using the expression

K
A = ZA(“) n(n) (§, . 4.5.12

'uhere the nbdal shape functions N(n) are evaluated at this point. (Note

that the slave node and its vertical projection on a master element have

the same x and y coordinates).
The parametric coordinates (SI"]I) of point I (xI,!I), are

obtained from the solution of the equations

K y(n) (n)
Lo xU N (E,n)
and _
y . X _(n) (n) | :
Y, =gy N (5 s ) 4.5.14
The equations can respectively be rewritten as

v . .
ﬁ(SHv =XI-ExM)Mm(SrQ) 4.5.15

K
_ e (n) ,(n)
and F, (§,n) = L -2y N (S )
The solution procedure used to solve functions F1 and Fz are based

on the Newton's method for non-linear equations.

4.5.16.

- e,




4.5.5 ORGANISATION OF COMPUTER PROGRAM
The diagonalised mass matrix is stored in an array MASS.
At the beginning of a time step, the coordinates of all the nodes

(slave and mastor nodes) are known. The vector of internal nodal

forces, E, due to strains are evaluated by numerical integration and

stored in an array FOR (NNODS, NVAR) where, NNODS = total number of

nodes in the active aystem, that is, the nodes of all the layers that
have not been penetrated or separated, and NVAR = number of variables at

egch node.

Next the element in the master llayer, above which a node on a slave
layer lies, i1s identified as described in Section (4.5.3). Let the
n.:aster element be called E. The contribution of the slave node to the
equation of motion of each of the nodes of element E, given by -§I’ (see
equation 4.5.6 of Section 8.5.1) is then summed. The coefficient of the
acceleration term of this contribution (first term in br.ackei:, eqtn.
§.5.8) is added into the corresponding position of an initially null
my\com(wou, NNOLA),where

NNOLA = number of free (unfixed) nodes in a layer.

The second term within t& bracket (edtn. 3.5.8) is added to the

cormesponding location in an array RHS (NNOLA, NVAR).

No} that Fi in equation (4.5.6) is the transpose of the terms

stored in the column of array FOR(NNODS, NVAR).

The equations obtained after summing up the contributions of all

the slave layer nodes and completing the summation of equation (4.5.8)

/ .
/ ’
/ | ’/

>
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U’] .9: * L‘i] = 0 “ ‘ | 8.5.17

where

[ﬁ] 2z the modified mass matrix, no longer diagonal but sparce

(equivalent to array CONTR).

Q _i Vector of the ‘acceleration of master layer nodes

(= NNOLAXNVAR).

[é] = vector of modified generalised forces at master layer nodes

(= NNOLAxXNVAR).
The equation is then solved for Q.

§.5.6 NODAL ACCELERATIONS WITHOUT SLIP RESTRICTION

This last part of the procedure involves the calculation of the

accelerations of each active (both master and slave nodes) with the no-

slip restriction relaxed. The acceleration vectors for the master

layer nodes, Q, calculated in equation 4.5.17 are used.
’ [

Two arrays are set up: RETbP (NNOLA, NVAR) and REBOT (NNOLA, NVAR).
the first array contains the vector of forces externally abplied to the
top surface of the ia&er.under consideration, while the array REBOT
(NNOLA, NVAR) cocntains the forces externally applied to the. lower
surface of the array. Initially all the elements of each of the two

arrays is set to zero.

The steps taken in order to calculzte the acceleration dt an

Ol
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unfixed node in any layer, starting from the top (master) layer are:

Note: The master layer is the topmost layer. -

"Twoclmvetos@-l alr t 2} =[r., r.,R.1" B
olu ctor. 9 an £'b] are set up. [_t] 2 [xt’ vt? Rzt -
contains the external reactions at the ncde due to the effect of the t‘.f
layer just above. : L j;
v B

[3;} z [Rxb’ Ryps Rzg-is the external reaction at the node due to the

- reaction between tha layer under investigation and the one below it.

- 4
. ; : o,
The total external force at node I,(Bl,x: [g_t-lx * [&,] I. 4.5.18 ._:f-j
For a slave layer,[}!tl is calculated using the expression .:
) v T
where R 3 are force veq‘cors read from the array REBOT which must have
been earlier calculated for the layer above that of node I, NJ(I) is i-'-j'.:,-,
the shape function of node J with respect to the element above which .
node I lies. Generslly, the node I lies within one element, but it may

1ie on the boundary between elements. In the second case, node I could
be assumed to lie on any of the elements sharing the boundary. '-".“:'
For the master layer, [.E?']I is null since its top surtace is
AN
assumed free. . : - @
The components of ['lj_t g are now stored in the Ir’h column of array
RETCP. .9




T1
The forces at node I, on the lower surface of the layer, is calcul

ated using equations 4.1.17 and 3.5.8 are

" |
[‘."‘]I =M I ‘[_3‘11 | 4.5.20

- For a slave node I, the accalération vector '§I is dete:;mined by
using equation 4.5.4 and the ;alues of vector Q which were evaluated in
equation ll 5.1T. .

A check 1is now pertomed to see if the reaction vector [Rg
satisfies the f‘rictional properties of the interface between the layer

on which I lies and the one above it.

.

The directional cosines of the normal at I, (1, m, n), are
caloculated. The normal component, R" of [gaz is given by
Ry = LR, + m.R_

yt * n‘nzt - §.5.21

and the components of the in-plane part of the vector Rt 1 are:

. K ;
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If the value of the normal reaction, RN’ obtained from equation
4,5.21 is negative, then separation has occurred and the program is
terminated. Else, the satistaction of the no-slip assumption is
checked:

The resultant in-plane reaction,




2 2 2
Rr -lt’x + Py +* l‘z y

while the maximum allowed in-plane reaction is /4 BN'
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4.5.22

If Rr é /“ﬁN then no adjustment is needed to the vectorﬁ_(t I and

there was no slip at the node I in that interval. _If, hbwever, this

condition is violated, the components of the in-plane reaction are

adjusted to the values:

Ry re/Re
Rn.r,/Rr
Rn.rzlnr

3.5.23

The corrected reaction at the node I, (a the top surface,[gt L

beéomes:
[-Bt] c ° Ry o L.y
| Ry-ry/Br + m.Ry

R“. /Re + n.
it B

The acceleration of node I is recalculated with the vector[gt] 1 in

_ equation 4.5.18 replaced by [Et] ., —

- the vector [Et] 1c 1s now stored in the I*® row of the array

RETOP.

8.5.214

After these calculations have been completed for all the free

vodes in a layer, the contents of array REBOT are now replaced with

those of array RETOP in preparation for the repetition of the same

calculations for the nodes in the next layer. "This completes the

-~

solutions for one time step.
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CHAPTER 5

_RESULTS AND DISCUSSION

8.0 Introduction

In this éhépter- the numerical results obtained using the models

described earlier will be presented and discussed. The potent;al use of

the different models in the accurate analysis of fabric mechaniecs will

also be discussed and finally the results will be compared with those of
other investigations. Of paramount interest is the prediction of the
- veloeity of impact at which a given fabric fails, for a given projectile
mass. Many models have been proposed for fabric, yarn and fiber
failure, some of which are based on the strain energy absorbed by ‘a un:l.vt
lengti: of the yarn while others are based on the strain history of the
yarn. In Ref (54) and (55) models of locad shearing between the
constitue:xt fibers of a yarn under tension were proposed. The loading
to which the yarns in a fabric are¢ subjected are mainly due to
extenéion, although as suggested in Chaptér 2, failure may occur due to
local overstressing at a nodes | .‘l'he overstressing may be due to
nodal constraints or wave renecticn. In order to minimise the
comple;:'it.:y of the analysis, a simple failure criterion was chosen. This
condition is tiat when the strain at a point in the fabiric exceeds the

maximum value allowed, the yarn breaks. The magnitude, of course,

varies from material to material. A fabric is penetrated when a yarn in .

the region of impact 1is broken. Results were only obtained for
materials whose mechanical properties were independent of strain rates.
This decision was takex; because earlier reports (22) indicate that the
significance of such strain rate dependency on the mechanical response

of fabrics is minimal.
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Only two yarn materials are investigated. They are Nyloq and
Kevlar. This choice was based on the fact that these two m;terials are
the most commonly used for weaving protective clothing and sheaths.
Different types of nylon yarns‘were investigated. Some had linear
stress strain relations, while the complex constitive relations of
others are represented by three linear sections. Only Kevlar 29 was

modelled. .

- Input Data

Projectile

Radius 2.76 mm

Mass 1.1 g

The projectile is assumed to be rigid and the effect of its shape

was not modelled.

Irepact Velocity

=

Impact takes place normal to the plane of the fabric panel.

" veloeity range of 100 m/s to 500 m/s was investigated.
Fabrics

Size The in-plane size of the fabric panel investigated in each
case was approximately 154 mm by 154 mm. This size was chosen to
correspond with that ¢ the specimen used in some fabric

, . penetration experiments in UMIST.
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The thickness of the fabric was assumed to be at 0.5 mm

purposes of numerical work.

- Yarn Materials:

+

For convenience, the units

Newton/strain/Tex.
Kevlar 29
Modulus 3 48.56

Breaking strain : 3.23 per cent

gzlon

Type A

Strain Range  Modulus
0.0 - 0.05 1.75
0.116 - 0.20 5.16

0.:!0 - C’.Zl‘ 1..75

Breaking strain 24.0 per cent

of

the

yarn

modulus
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Type B

Strain Raﬁge Modulus

0.0 - 0.1 0.629 .

Breaking strain 24.0 per cent
Fabric Weight
Fabric Area Density Yarns per cm Tex of Yarns Weave

No units gmmz

Nylon .
D305 240 11.4 12.3 103 10.1 Biaxial
Nylon
D322 386 9.8 9.1 181 170 Biaxial
Kevlar
D236 351 10.8 9.2 175 175 Bi_axial
Nylon 221 3.63 3.75 3.77 200 205 201  Triaxial
Nylon 483 Biaxial
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5.1 SIMPLE MODEL RESULTS i< .
h Linear Model i"
The strain expression used in the linear model (appendix 1) for N
fabric with high prestrain is '
= £2 (1+8p) avo , 5.1.1 £
. ds oas
L
where Ep 1 the prestrain, Wo the transverse deflection at the poiht of
impact and s the length along the yarn.
It can be shown that the maximum value of the slope, dW, occurs ° ;‘-ff
. _ ds Y
immediately after impact. This fact can be observed from the graph of e
. the indentation against time, Fig. 5.1. ,:
The maximum value of d¥ = YVp where Vp is the velocity of impact o

ds Cs Py
"/

j:' and Cs is the wave speed along the yarn. Lt
Equation 5.1.1 can therefore be written as: ’

o . o,
5 = (1 +€p) Vp 5.1.2 e
1 £ : o
. For a linear Hooken material, Cs = -p.E where f is the yarn -
- density and E is the modulus, hence: o
[ . 'y
- €= (1« f—p) Vp 5.1.3 -
: /Emﬁ
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' In other words, the value of the maximum strain developed in the
yarn is directly proportional to the impact veloeity for a given

g .
#‘.. : prestrain. | ‘ e
L% : o=
. . . -
- The impact velocity, V,, required to producs fabric (yarn) failure 5
§ _ -

_ | : at strain £ i3 given by: g
b ,‘ .
't oL Eat 53'_@_2;_ - it g
: £ s
L (1 +}€‘P) 1+&p JIF . : .
’ . ‘ ‘. -
SO o
b2 This velocity increases as the yarn material modulus, E, T
: |
e increases, which means that fabrics made of strong materials are more L

‘ R

. ‘ i

efficient.

1 s -

o '
Fig. 5.2 shows the deceleration diagrams for three different

fabric densities at an impact veloci#y of 150 m/s. In Fig. 5.3 the :.:’

- initial slopes of the indentation timfe curves are all the same for the
three fabrics, which 1s as expected. : Fig. 5.4 shows the deceleration !

diagrams at a lower prestrain, 0.002; for 2 nylon tabrics and one of "‘

Kevlar. As expected, the deceleration is higher for Case (3). 'Fig. 5.5

shows that the use of a heavier fabric, Case (2), does not lead to a

reduction in the value of thq maximum stfain developed in the yarns, ".""

\\ although it leads to a smaller value for the maximum ind.entation, and a
shorter projectile arrest time than case (1).

b - | .
The results obtained for the response of two fabrics of similar ;.j.j';:'.'

‘ area densities, Fig. 5.2 for a 240 gm'z orthogonally woven nylon
‘\\. fabric, and Fig. 5.3 for a 221 sm;z triaxially woven nylon fabrie, '!—'

predict that the orthogonal weaving pattern provides a better

translation of yarn strength to fabric dynamic stiffness.
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Non-linear Model

The expression for strain valid for large deflections which are

expected to occur in fabrics with low prestrains is given by:

N

2y
£= O ¢£p)‘/(1 +(__"f‘j‘) ) -1 | 5.1.5
Cst :

W

It can also be shown that the ratio| "o | attains its maximum value
C.t
of XE’ Just immediately after time t = 0.3 Note that the magnitude of

c
the sfope of the line from the origin to the curve at time t is _‘_'_o__
Cyte See

Fig. 5.1.
Hence the maximum strain, enax, is given,

€ pax = ((1 ) j(1 ¢G§)-,1 516

The impact velocity, Vr, above which failure of the fabric occurs,

is given by
Ve = ZpE((1 s E(1 +ER2 2 1) 5.1.7

. The optimum value of prestrain, corresponding to the stationary

value of the variation of Vr with respect to £p, is given by:

ip = W= (1+ £)/3v, uhere

A
3

w :[(1 + &s) +/(1 e Es) + (1 +£3)3/27
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This optimum conditions corresponds to a high prestrain which

would be higher than the breaking strain, § s’ for most yarn materials

and is therefore not practically realisabla.
The general equation for strain (eqtn. 5.1.6) predicts that:

1 the velocity at which fa:l.luré occurs is indepeudent of the density
(mass per area) of the fabric. This follows because the highest
strain occurs immediately after impact, that is before part of the

projectile energy is absorbed by the fabric as kinetic energy,

4 2 The value of the strain 1: independent of the geometry of the
weave. This 1is true for any weave in which the yarns through the

point of impact are straight (neglecting crimp).

3 For equal prestrains, the value of the maximum strain is lower in a
fabric made out of the material of higher modulus since the value

of C, is higher. Protective clothing are, therefore, more
effective if made of high tensile modulus materials.

Pig. 5.6 shows indentation of 240 g/mz, orthogonally.woven, fabriec
as predicted by the non-linear model. The variation of ;.mpact velocity
at failure with prestrains is displayed in Fig. 5.7 for Kevlar and
Nylon. Very low values of prestrain which may, somehow, be easily

produced in cloths are used in the calculations.

‘N
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5.2 Characteristic Model results

A property of the charcacteristic solu_tions described in Chapter 3
is that it can only be succesfully applied to the analysis of
prestrained fabric. At low prestrains, buckling occurs and the
solutions goes unstadle. The level of prestrain iequirgd to prévent

buckling méreaaes with the impact velocity. It was noticed that in

cases when the initial velocity of the transverse wave (which 1is

proportional to the root of the prestrain) is less than the velocity of
impact, compressive strains are developed at sone poinés in the fabrics
and the solution routine fails. The results which are discussed are
obtained with the smallest prestrains necessary to prevent buckling.
The ottect‘ot' prestrain is indicated byl the differences in the
graphs in Fig. 5.8. The results obtained by the finite element method

(membrane model) almost exactly coincides with experimental results

(56). Until approximately 16()/3 after impact, the deflection of a
fabric with 1% prestrain obtained dy the method of characteristics is

indistinguishable from the finite element results. Zero pretension
was assumed in the finite element solution. Since fabric failure, when
it occurs, takes place early during motion, it may be predictable by a

method of characteristics solution with small prestrains.

Results obtained by using this method was succes'smlly applied to
predict the maximum velocity at which layerav of nylon can be impacted

before failure occurs.

-Two achemes were used to model the impact. In one scheme, the
velocity of each impacted node was put equal to that of the praiasss

- at time t =2 0, and the e~~-- Sy

ppe—
.
— KE




the deceleration of the projectile. This corresponds to putting the

acceleration of those nodes equal to infinity at time t = 0.

In this second scheme, a pericd of acceleration of 10}:3 was
assumed, and,in this period,normal velocity of each node in the impacted
zone was put equal to

' v
('3 N sinfy

_  (t/ 0.00001) ) ’
2

where Vp is the velocity of impact. Beyond this period, deceleratian
oceurs, ‘The second scheme was successful, except in the high velocity
cases, when some of the yarns attached to an 1ppacced node failed during
the period of acceleration. The first scheme was used on such occasions
to determine the correct residual velocity, and thenee{ the enérgy
absorbed by the fabric before failure.

Apart from the high velocity cases mentioned above, there was no
difference in the results obtained by using either scheme with the same
input data. While most of the results were obtained from solutions

involving the use of the first scheme, others were obtained uiing the

.second. The solution converges as the number of nodes. was 1nc¥eased.

The results reported below were obtained using a 39 x 39 grid. For most
fabrics, this means a representation of about every % yarns by a\hingle

yarn.

Fig, 5.9 (a) shows the sequence of the deformation of a 386 g/m2

nylon fabric on impact by a 1.1 gm projectle at 150 m/s. The arrest of

the projectile took place in 262/~.s during which the maxi—um strain in

the yarns through the impact zone was 21.7%. The initial fabrie

. S
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prestrain was 3%. Is is evident, Fig. 5.9 (b) that the out-of-plane
transverse wave reached the fixed edge of ihe' panel before the
projectile came to rest. This can also be deducted from the velocity
profile. ihe absence of a second ‘hump' in the curve of the strain
history shows that the reflected out-of-plane transverse wave did not
arrive back at th§ point of impact befor~ tﬁe projectile was stopped.
Fig. 5.10 shows similar graphé for a projectile velocity of 160vﬁls.
The maximum strain in the yarn for an impact velocity of 170 ms", Fig.

5.11, is quite close to the breaking strain of 24% and the fabric will

be penefrated at a slightly higher velocity.

(

MULTI-LAYERS

i
i

I@ order to model the dynamics of layered fabric panels, by the
nethodfot characteristics, the yarn and fabric pfoperties of a single
layer ;re multiplied by the number of layers. This method involves the
implicit assumption that the deformation of each fabric in a panel of

1ayerafia the same as the next. Slip is presumed not to occur between

layers.

The prestrain required to prevent yarn bucklihg during motion was
found to increase with the number of layers in a panel. This makes the

analysis of the results more complex.

The results obtained for a simulated panel of two layers of
351 g/m2 Kevlar fabrics are plotted in Fig. 5.12 (a) and (b). The
impact velocity is 290 m/s. The two layers absorbed 33.0 J before

penetration. This amount of energy is close to the experimental results

o)
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" obtained in UMIST when a panel of these two layers of Kevlar fabric,

free of prestrain, was impacted. With a prestrain of 0.0025, three

el

layers of Kevlar, modelled as described above absorbed 36.1J when

impacted by a projectile moving at 300 ms". Again this amount of

energy falls within the range of experimental results obtained for the

o .

three layers, under zero prestrain at impact.
The results obtained from the model of a panel made up of two .
layers of 240 gm"z Nylon fabrics, with an initial prestrain of 3%,

1, predict a maximum strain of 26.8 per cent -about

impacted at 235 ms"~
the average breaking strain for the size of the yarns. See Fig. 5.13.
For a panel made up of three-layers of fabrics, a maximum strain of 26
per cent is predicted, with the same prestrain, when the impact velbcity
is increased to 245 ms~', Fig 5.14 shows the profiles for the out-of-
plane transverse velocity along a yarn through the point of impact at
five different times after impact. Also shown are the deformed shapes
of this yarm at these same times. From the graph of the out-of-plane
transverse velocity, the speed for the out-of-plane transverse wave can

be estimated, the wave being assumed to have just reached the point on

the yarn where the graph becomes horizontal.

S;ne results were also obtained for multi-layer panels made up of |

higher density nylon fabric. The maximum strain developed in a panel of

1

three 386 gm"z Nylon fabrics, due to an impact at 255 ms~ was 18 per

cent. The panel was under a wuniform prestrain of 3 per cent. The

2 is almost half as much .

-

combined area density of the panel, 1158 gm
again as that of the panel in the last case, while the maximum strain

was reduced by only about 30 per cent.
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" Fig. 5.15 shows‘the.shape, at different times after impact, of a
483 gm'2 Nylon fabric impacted at 150 ms™'. An 1 x 11 grid was used.
Fig. 5.16 shows the velocity variation along a yarn through the single
impacted node and the shape of the yarn at different times. It could be
noted that the out-of-plane transverse wave did not reach the edge cof
the panel before the projectile Qas stopped. The results shown in
fig. 5.15 are for the case in uhlgh the projectile was fixed to the

central node throughout the motion.

Fig. 5.17 shows the response of a 966 gm‘z fabric, (2x483), to a
similar impact. The arrest of the projectile, as could be expected,
occurred earlier than in the last case, and with a smaller out-of-pane

indentation.

Fig. 5.18 shows a typical variation of boundary force with time.

QUASI-LINEAR CHARACTERISTICS METHOD: RESULTS

The values of prestriin, above which numerical results could bde
successfully obtained for Nylon fabrics, is 10 per cent. - Below
this pr?strain, wild veloecity fluctuations occurrei. For Kevlar
fabrics, prestrains greater than 0.02 per cent were requi;ed. This fact
makes this approximate model only useful for the analysis of highly
prestrained fabrics. For a given fabric prestrain, the quasi-linear
model is much stiffer than the fully nonlinear model. For example, the

! into a 240gn™2

former predicts that a projectile fired at 150ms” Nylon
fabric would be arrested 100/As after impact while the nonlinear model
predicts that a much heavier fabric, a ﬁ833m'2 fabric with the same
prestrain value of 16% would bring the project to rest only 1“9/‘3 after

impact.

“ _..-:'“'.‘-1.":.: .

el .
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o Fig. 5.19 and Fig 5.20 show respectively the results obtained
' 2

'7.3:‘-.'_':’- using the quasi-linear model to analyse the response of a 240 gm ° and a

s 386gm™2 Nylon fabric to impact at 150ms™'.

N 5.3 FINITE ELEMENT METHOD RESULTS
3

{ | |
! ; 5.3.1 Introduction .

In this section, some examples of the descretisations used in tha
various finite element codes are mentioned and examples are given of the

results obtained. Comparison is also made with a few experimental

'3 results.

5.3.2 THE MEMBRANE MODEL

Firstly, the results obtained using constant strain, three-ncde,

triangular elements are described.

Fig 5.21 (a) and 5.21 (b) show the two patterns of descretisatioﬁs
investigated. With the patterm in Fig. 5.2 (a), compressive str_ai.ﬁs o
are generated in some elements for all impact velocities when the yarn
directions are chosen to be parallel to the perpendicul-ar sides of the
elements. The déscretisation pattern was therefore abaﬁdoned and that
Fig. 5.21 (b) used subsequently. The results obtained with this mesh
was then compared with the experimental values of deformation obtained
in Ref (56). Even for this coarse mesh the predicted formation results
were close to the experimental. The need for a finer division of the
panel was found necessary in order to obtain accurate strain values.

The model was found to converge and the final mesh chosen for generating

results is the 800 element, 441 node mesh shawn in Fis & 22

et
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The membrane model involving constant strain triangluar elements

was used to investigate the significance of:

1 Initial distribution of impact load
2 Shear resistance and jamming

3 Multilayer panels

It wvas found that for some values of input data, there were wild

oscillations in the value of strain at the point of impact. These

oscillations were suppressed 'by the addition of a damping factor kMﬁ to
the assembled equation of motion. The equation (equation 4117) then

becomes

[H]a k[“]ﬁ + = 7 . | 503.1
where k is a fraction chosen to lie in the range .01 - .1.

1 Two starting procedures were used. In the first, a single node
which was considered to be directly hit by the projectile was given an
ir;:ltial ;lisplécement. In the second procedure, the impact was shared

between 5 nodes each. of which is given the velocity of the projectile,

2 The fabric stiffness against| shear, as explained earlier, is
assumed to be mostly due to torsional resistance against the rotation of
one yarn against another at their crpssover. By changing the weft, or
warp, pitch it was possible to change the numbér of crossovers in a
given area and therefore the shear sﬁirfness of the fabric. Using the
3515::'2 Kevlar fabric, and also the 386 gm’z Nylon fabriq, as test

fabrics, both the pitch and the tex of the yarns were halved (area

B | RIERURIRPUPE TR
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density maintained constant). Thé results did ngt show any appreciable
change. This was inavitable as theé shear stiffness of the fabric was
very ;ow compared with the stiffness in tension in either the weft or
warp directions. 1In fact there was hardly any change in the strain
hiatbry at the point of impact when the shear stiffness was removed.
The value of the parameters c1 and 03 in eqtn. U4.3.6 are respectively

-8

3.5 x 107" and 0.0002. These values are taken in Ref. (3).

For values of shear strains less than % 0.174 rad (10%), the value

of the parametcr 02 in the Kawabata equations relating shear torque and

shear strain was set to 1.943 x 10'ng. Above this value of shear

strain, 02 was increased to 1.0gm, that is by a factor of about 5 x 10“.
By this means, it was possible to prevent shear strain from exceeding
0.20. However the system as a whole became much stiffer than the

physical system. This method of modelling Jémming was therefore

abanddned.

3 To model the response, to impact, of a panel made of a number of
fabrics, the panei is replaced by a single layer but the tex and the
modulus of ¢ach yarn in this model layer is put equal to that of the
yarn of a.single tabfic multiplied by ﬁhe nuhber of fabriqs in the

panel. Of course, this approach is only possible when the fabrics are

all identical, and laid one over another with the weft yarns parallel.

Fig. 5.23 (a) shows deceleration of a projectile fired into a
483 gm'z Nylon Fabric at 150 ms'T.‘ The experimental results are from
Ref. (56). There was also remarkable closeness between the
experimental and the finite element model results for the transverse

deformation at the point of impact. In the experimental set up, the top

edge of the fabric is fixed while the lower edge is loaded by hanging

—p——r
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weights. The prestrain produced in the yarn is estimated to equal

0.0022., In the finite element model, the prestrain is put equal to

zero.

At the same impact velocity of 150 m.s", the projectile was stopped
by a 351 gm'z Kevlar fabric in 170 /( s. The maximum strain developed at
the impact point was 2.7 percent 135/13 after impact. The ma*imum
transverse deflection of the 'fabric was 1.6 cm. I£ is instructive to
. compare the response of this Kevlar fabric with that of a Nylon fabric

of similar density, a 386 gm‘z fabric. The Nylon fabric brought the

projectile to rest in 353 }Js. The transverse deflection at the impacted

node was 2.97 cm. The maximum strain in the fabric was 0.17 which is

about 70 percent of the breaking strain of the yarns. See Fig. 5.24.
This maximum strain is a smailer percentage of the breaking strain of
the yarn than in the previous case .where maximum strain attained was
about 84 per cent of the breaking strain of the Kevlar 29 yarns. It can
be noticed from the shape of a‘ quarter of the fabrie, displayed at
different times, that the faster in-plane wave was reflected from the
boundary before the projectile was atopped. Experimental results show

that the shape of the transverse 1ndentation_ is rhomboidal, this is

reasonably in agreement with the results, especially in the first

200 ’l s after impact.

Fig. 5.25 (a) show the deformed shape of two layers of 240 gm’z
1

Nylon fabric impacted at 200 ms™ . Again, it can be noticed from the

distortion of che grille drawn on the fabric that the in-plane waves
have been reflected from the boundary before this time. The strain at
the pcint of impact, Fig. 5.25 (b) shows the second 'hump' when this

reflected wave arrives back at the impact point.
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The mod:z1 predicts that a panel of two layers of 351 gm'z Kevlar
fabric will fail if impacted at 270 ms™'. This is an underestiration,
most likély, of the impact velocity at which failure occurs, as z single

1{ However, the energy which is

layer is penetrated only above 250 s~
preaicted to be absorbed before failure, 34.7 J is close to the
experimental values for the energy absorbed by the 2-layer panel at high

velocities. . ’

Finally, a comparison is made between.the results obtained with
the membrane model involving constant strain, triangular elements and
another model involving 8 mode quadratic element:. As wili be shown
later, the results obtained using the quadratic elements are generally
very close to the experimental fesulté. Fig. 5.26 (a) shows the
variation of normal strain with time, at the single impacted ncde, using
tﬁe two different elements, for a 351 gm'z Kevlar fabric impacted by a

1

1.003 g projectile at 350 ms~ . The calculations involving rectangular

. elements were stopped irmediately the yarn exceeded its breaking ;train
of 3.2 per cent, while that involving the triangular elements were
continued. There ﬁas appreciable difference between the variation of
strain in the two models. In Fig. 5.26 (b) the two set of results for
projectile dispiacement were almost coincident. Theee~resu1t3 typify
the general behaviour of the membrane model with triangular elements.
While it predicts the central deflection of the fabric with reasonable

accuracy, the strain values are poor. The poor strain valuas result

from the requirement that the strain does not vary within an element.

A second disadvantage of this model is the spurious oscillations
which have to be supresszed by the addition of damping. .-s advantage is
that, relative other codes, particularly the program based on the

method of characteristics, it uses very little computer running time.
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5.3.3 CABLE ELEMENTS: RESULTS

Introduction

The results obtained using either the 2-node element or the 3-node

element showed oscillations which were damped as described in the

section on the membrane model. Only few results are therefore

presented.

The 2-node elements were used to mbdel different fabrics of size

152 o by 152 mm. A standard 39 x 39 orthogonal representation was

used.

A circular piece of fabric 152 mm diameter was modelled using the

3-node cable elements.

81ngle-boint and multiple-point impacts were simulated.

The simulations of crimp effect was found difficult as the
numerical oscillations increased rapidly when the magnitude of the

erimp is increased from zero.

An attempt to allow yarn slip when using 2-node elements was

abandoned due to too numerical instability.

Fig. 5.27 shows the strain history at the centre of the 240 gm‘z

1

fabric impacted at 150 ms~ . The proJectile‘came to rest 305Us after

. impact, showing that the model is stiffer compared with the membrane
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impact of the two layers of a 152 mm x 152 mm square piece of Kevlar 29
fabric. In either model; the fabric was_uﬂder a prestrain of 0.005.

While the values for the central out-of-plane deflection predicted by
the two methods are reasonably close, Fig. 5.28 (b), there are large
differences in the predicted strains. It however has to be remembered
that the yarn strain plotted in Fig. 5.28 (a)Afor the 2-ncde model is
for the maximum strain in the yarn at any given time. This maximum
value may occur in the wefﬁ yarn thrﬁugh the centre at one instaht and
oceur in the warp yarn at the next 1nstéﬁt. However the fact that no
erimp was included in the characteristic model ensures that the equal

strain occur in the four yarns connected“po the impacted node.

The results shown in Fig. 5.29 (a) and Fig; 5.29 (b) are obtaine;
using the 3-node cable element. Only a quarter of the fabric is
modelled, and the model has 1592 nodes. Tﬁé oscillation of the strain
values could be noiiced in both cases. Siip was allowed in the first
fabric, and ; coefficient of frictions of 0.5 was used. The percenﬁage
of an incident wave which is reflected frp@ 5 node is maximum when the
yarns are rigidly connected. The percentagg‘ﬁhich is reflected for any
given value of friction coefficient lies between this maximum value and
zero. This is why thevstrain at the point of impact is higher when
rigid crossover connections are assuﬁed. Yarn failure and fabric
penetration is therefore likely to occur at a lower impact velocity when

the yarns are rigidly connected.

On the whole, the rod elements are stiffer compared with either the

membrane (triangular element) model or with experimental results.

o o .. Wy
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5.3.4 THREE-DIMENSIONAL ELEMENTS: RESULTS

'fig. 5.30 shows the descretisation used in a model involving the

‘use of 3-dimensional, 8-node parallelopiped interface elements and H4-

node membrane elements. Only a quarter of the fabric is investigated
pecause of the symmetry of the problem. Fig. S.31 shows the
discretisaticn used in another model in which the H4-node membrzne
elements of the former model were replaced by 9-node rectangular
elements. The details of the interface elements in this second model
are shown in Fig. 5.32. There are four interface elements covering the
surface of each meubrane element such that the nodes -of the membrane
element coincide with those of the 1nterr;ce elements. During mation,
interpenetration of the curved membrane surface by the straight edges
of the Iinterface element will occur away from the nodes. This
approximation should not affect the results sugnificantly as the
interface elements are only introduced to produce a resistance and do
not correspond to any physical material. A single point integration
point 1is wused for the 3-dimensional elements; which means the

generalised reaction forces on the nodes on the top surface are equal

and opposita to those of the nodes on the lower surface. 2 x 2 Gaussian

integration scheme is used for the membrane elenents.

It was not possible to successfully obtain results when any of the

Vthree dimensional models are used to model a multilayer assembly for

impact velocities higher than 160 ms'1, even in this range the
numerical results optained are not reliable. The numerical
difficulties arise from the ecritical nature of the compressive
resistance of the interface elements to a successful code

implementation. Experimental data of the relationship between the yarn

-y
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not available, and therefore arbitrary values were used. If the assumed

compressive modulus is too high, the projectile is prematurely

arrested. If the modulus is too low, on the other hand, the downstrean ’
layers do not provide any resistance, and some interface elements will

flip over, that is, their deptﬁs become negative. However, thé _
Adifficulty' may not totally stem from the non-availability of .4
experimental data. ‘o

A solution to this problem would be to inake ‘the marching step
iterative and treat the nodal forces dus to the compression of the
interface elements as a sort of 'reaction' forces. At the beginning of
the atep, a first estimate is made of the inodal acceieration at the
beginning of that step and the new nodal position vector and nodal force

~vector are calculated. Generally the forces at the nodes would not

balance. The requiremen! that the upward reaction on a layer above an
: interlayer element be equal to the downward reaction vector exerted by -
the same intc.srlayer element only the lower layer would not be satisfied, ‘
in other words. The nodal acceleration vector is then adjusted until

" the n.mgnitude of the difference between the vectors falls below a fixed
\ limit. This modification of the code was made unnecessary by the .
success of the master-slave method, described next, is modelling the -
mechanics of multilayer panels.
L
5.3.5 MASTER-SLAVE LAYER METHOD: RESULTS o
Initialy, the method was tested in a model involving B4-node .

rectangular elements. Each layer was divided i{dentically and the

central node in a layer is given the same displacement to stimulate
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impact. The method was found to converge with an increase in the number
of elements into which a layer is divided'. A test run was carried out

with a panel of two layers. One layer is a ZROgm'z Nylon fabric while the

second is a 351 gm'z Nylon fabric. The panel was impacted at 500 ms'1.

In the first run, the lighter fabric was put in froat (nearer'to the

projectile) and in the second, the position ‘of the fabrics were

_reverﬁed. In each run, the projectile penetrated the panel, lel-l s after
impact, with a residual velocity of U457 ms". 'nie coincidence of the

results of the two runs confirms the stability of th: procedure.

The influence of the frictional re‘sist.ance between the layers was
checked for values of coefficients of dynamic friction between
0.0 - 0.03. Frictional resistance against interlay slip, or the
surface treatment of the fabres, did not significantly affect the
overall structural behaviour of the panel for this range of frictional

coefficient.

For a single layer of fabric, it was found, that the membrane model
based on &-node element alway; predicts that fabric failure occurs
earlier than experimentally observed. The» difference 1is, partly,
because the linear nature of the variations of variables within the
4-node element prevents an adequate variation ot strains. The assumed
strain variation pattern which results fr§m the differentations of the
displacements cannot accurately model the rapid change of strains which
cccurs in the fabric; especially in the area close to the.impact point.
The model therefore predicts higher yarn strains. The result is that
the breaking strain is reached too early during motion and failure
occurs at low impact velocities, for example, a projectile striking a

351 m'z Kevlar fabric at 500 ms'1 is predicted to have penetrated with

. ST S
Y . o
L N I




) J‘J‘o"-;

™ 4 RO gy

LRI I

.l'."l .

96

To improve the prediction 6f‘rabric strains, 8-node elements were
subsequently used to obtain results comparable to the available
experimental results. Nodal strains were calculated from strains at

integration points by the use of a least square smoothing routine (59).

Still using 4 -node elements, the ability of the procedure to
model the separation of layers during motions was tested. A two-layer

2

panel of a 386 gm~2 Nylon fabric and a 351 gm™° Kevlar fabric was

modelied. The resistance to interlayer slip was put at zerc. In the
first run, the Kevlar fabric was put nearer to the impacting projectile.
The Kevlar fabric was penetrated 10,4 s after the start of motion when
the projectile speed has been reduced to 492 ms~!. For the remaining
part of the motion, the projectile was in contact with the Nylon fabric
which then moved away from the penetrated fabric. The second layer was
penetrated m/u S later when the breaking strain of nylon was reached.
The residual projectile velocity was U459 ms~'. In the next run the
nylon fabric was put nearer to the projectile so that seperation does

not occur throughout the motion, although the Kevlar fabric failed when

the strain at the centre of the panel exceeded 0.0323.

Fig. 5.33 shows the deceleration curve and the change of vertical

displacement at the impacted node for a 240 5m'2 Nylon fabric impacted

1

at 150 ms™'. The 8-node rectangular elements were used. Although there

are no comparable experimental results, the numerical results seen

reasonable.

The strain values were improved by the use of 8-node rectangular

elements. The residual velocity with which a 1.0 g projectile with an

1 -2

initial velocity of 500 ms™ 1leaves a 351 gn™° Kevlar fabric was
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predicted to be 472 ms~'. The energy absorbed by the fabric, 13.6 J,
compares well with the value of 14,6 J which was obtained
experimentally '-'m, UMIST for an impact velocity of 512 ms"1. The

variation of the energy absorbed with velocity 1s very weak at such h:l_.gh

velocities.

The posibility of modelling multilayer panels as single layer

panel was also investigated. This was achieved by multiplying the tex

' of the yarns and the fabric density of a single layer by the number of

layers in panel. This implicity involves the assumption that each layer
deforms ‘identimlly to the other, t;hich means tha£ inter-layer s;ip is
1nsign1f1c§bt. This abproximation is reasonable at high veloc'jlties.
Experimental results obtained in UMIST (Textile Technology) (61) showed
that while 9 layers of 240 gn'z Nyion fabric are totally penetrated by a

1, 10 layers are not penetratecjl even

. |
when the projectile velocity is Iincreased to 407 ms". WLt%h the

projectile travelling at 405 ms™

approximate multilayer mcdel just explained, it was predictecﬂ that
whereas 10 layers of the fabric are 'totally penetrated at a veloczity'ot
' i

§20 u"’, while the projectile is atopped when the velocity is reduced

to 400 ms" .-

Fig _5.3& shows the variation of the energy absorbed before

2

penetration, for increasing numbers of 351 gm™“ Kevlar layers. Both

the experimental results and the numerical predictions are shown.

In general it is observed that this approximate method of
modelling multilayer panel produces results which are very close to the
experimental results. However the difference between the numerical and

experimental results increasetsas the residual energy approaches zero.
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In this region, the size of fabric is Jjust encugh to absorb all the

initial energy of the projectile. | The contact time bdetween the
projectile and the fabrics, especially the 1last layers, is then

relatively high and some factors, neglected in the approximation,

become significant.

The master-slave layer method, with allowance for igtgrlayer slip,
that is the system described in section 4.5, was successfully
implemented using 8-node rectangluar elemeﬁta. However, solution time
was found to be multiples of that required for the same problem when
slipping was suppressed. Most of the extra time was taken in the search
subroutine and in the calculation of the normal components of the
reaction between the layers. Also, as explained 1& section 4.5, the
modified mass matrix (eqtn. 4.5.17) is then no longer diagonal and has
to be inverted. The only condition in which the o}iginal methbd need be
used instead of this more efficient approximation is when the effect of
fabric slip is under investigation or when panel is assembled from
(abrics of different materials. Under tbese conditions, the panel may
not be replaced by a single, equivalent, fadbric.

Because of the storage and execution time advantages of the

approximate method, it is to be preferred to the complete master-slave

layer method, except under special conditions.

Experimer.ial results (37) show that it is more effective, in a two

layer panel, to put the denser layer upstream instead of downstreanm.

‘the difference in effectiveness cannot be predicted by this model. This

is possibly 1linked to the fact that influence of localised yarn

compression on yarn rupture is neglected.

o
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On the whole, this model can predict, with reasonable accuracy,
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CHAPTER 6

CONCLUSION

6.0 Introduction

The accuracy and usefulness of the different models in predicting
the VSO’ which is defined as the speed at which 50$I6f the projectiles
fail to penetrate a test panel, is discussed in fhis chapter. The
computer times required to obtain numerical methods by these methods

are compared.

6.1 The Simple Variational Method

Although the computer units used in solving th2 equation is small,
results are only obtainable for fabrics wita high prestrains. While the
method is useful for comparing different fabric weaves, it is not

suitable for obtaining the VSO of a panel.

6.2 Nodal Impedance Analysis

This analysis may be useful in predicting the relative advantages
of different fabric geometries, as far as their response to impact is
concerned. However, the suggestion by two earlier.iﬁ;éstigations is
that crossover effects may net significantly magniff strains as

considerable slipping occurs (61), (62).

6.3 Method of Characteristics

This solution requires the maximum computer time, for a given
fabric and projectile, of all the approaches and methods used in this
investigation. Apart from this disadvantage, a high prestrain which

increases with the impact velocity is required for its successful
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implementation. The use of this method should be restricted to

providing a basis for comparing different fabrics as it 1s too expensive

fer regular usage.

6.4 Finite Element Solutions

The various models are treated separately.
(a) Rod elements - (2 node and 2 node)

These produced well-conditicned resulis, with no oscillations for

some fabrics. But oscillations occur, especially for Kevlar fabriecs.’

This model provides a means of investigating the effect of rigidity of
yarn connections at crossovers. However methods of supressing tﬁe
strain oscillations have to be introduced before the model could be used
in production. The model based on 2-node rod elemgnts makes the most
efficient use of computer time, compared with all the other models.
They also provide an approximate approach to assessing the effect of
erimp. |
(b) The 3 node (triangular) membrane Element

This 1s an accurate model for investigating the mechanics of a
single fabric layer. While the results are well-behaved for most input
data, oscillations have to be supressed for some input data. The model
is quite efficient in computer time usage. It is useful for different
weaves of fabric and also for knitted fabric.
(c) The 3-Dimensional Model

. Further work is required to render this model usable for routine

design. The solution might be to replace the two-dimensional membrane
elements by 20-node parallelopiped and remove the interface elements.
(d) The Master-slave layer method .

This model involving 4-node rectangular elements produces poor
predictions of VSO values. However it is useful as an inexpensiverway

of studving the affante Af intarlaven elin
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Better results are obtainable by using 8-node rectangular

el<ments. However the running times are high, compared with either
that involving 3-node triangular elements or u-nqde tbiangular

elements. This code is useful for routine caleulations.

6.5 Factors affecting overall behaviour of fabrie

Oﬁly a description rather than a quantitative comparison of the
significance of the various yarn and fabrie properties would be given.

In-Plane Shear

Shear stiffeners seem to have little signiticahce on fabric
perrormahce until its value is high enough to reduce the ability of the
yarns to absorb the prolectile kinetic energy as longitudinal straié
energy. This will happen when a very stiff coating 1is applied to a
fabric. Otherwise the change in fabric shear stiffness obtained by
washing may not be significant.

Crimp interchange

The descretisation has not been fine enoggh for definite
conclusions on'the signiricancé of crimp interchange. Its effect on
fabric performance may vary with the impact velocity.

Friction

Increasing the friction of yarn crossovers will increase the
percentage of reflections at nodes, and will therefore reduce fabric
effectiveness. Fricﬁion between layers does not seem to be very
significant close to the Vso since penetration océurs before
appreciable movement of the panel can take place. The influence of
friction~generated heat on modulus and breaking strain was not
evaluated.

Siée of yarn and pitch

~

The tex of a yarn seems to affect the value of its breaking strain
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while its crimp varies with pitch, for a given tex. Apart from these
indirect effects, neither the text of a yarn, nor the piten in any

direction, seem to significantly aftecf fabric performance.

Bending stiffness of yarn

Although some earlier investigations cdnclude that yarn bending
cannot be neglected if the mechanics of fabric behaviour at low strains
is to be accurately modelled, the results obtained show that the

influence of bending may be of second order to thé overall fabric

effectiveness.
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6.6 Future Work
(1) The condition for yarn failure which was adopted here is the

simplest possible. Since the order of arrangements of two fabrics has
been found to affect t'eir efficlency in absorbing 1m§act energy, it is
likely that yarn compression affects the lbngitudinal strain at which a
yarn ruptures. The relationship should be studied and incorporated
Ainto the failure condition used in any numerical method for predicting
Vso values. | » |

(2) The attempts to model a.tabric with yarns which can slip during
mbtion has not been very successful due to numerical oscillations of

yarn strain. The development of an alternative method should be

investigated. ;
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APPENDIX 1

Wavefronts in Triaxial Weaves

Prediction of Wave-Front

Leech and Mansell (31) have shown that the wave front in a
transversely impacted orthogonally woven fabrics is rhombiocal.
Below, it is shown that for a plain triaxial weave the
propagation front is hexago;xal. The repeated cell of this fabric is
shown in Fig. At.1(a).

The equation of the sides of the hexagonal are

3, -3 SS,

3
1 , Al.1a
t 2 =— + = ’ t 3 = - -_—
< C2 1 )
s s -8 s
t 2 2 4 2 t 2 —2 - =2, A1.1b
c ¢ c ¢
2 3 2 3
3 s -8 s
t s c—3- - c—' , t s —c—3- - -él At.e
3 1 3 1

where S1 » Sy and 83 are the coordinate in the directions of the
yarns (Fig. i1.1b) and Cy» C, and c3- are the transverse wave velocities
in the respective directior.s.

A similarity type of solution H(t1s1,:2,33) =z Wo(®)W (‘1 ) is

: ] S
introduced where "l = E—% * E—% for the ragion where S, 2 0,
1 2

S2 >/ o, 837, 0 where Wo 1is the displacement at the point of iampact.

See Fig A1.2.
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The coordinate '] is perpendicular to the wavefront and 1 = o at

the impact and 9 = 1 at the wavefront Fig. A1.3.

The excited area A = r%. t2t21c2 12 and the incremental area,
3 .2 -

T, the kinetic energy of the material in area dA behind the wave

. front, at any time t, is given by,
1 ) 2

F iy P 20 F3 are the mass fractions of the yarn families (1, 2 and

3). The total kinetie energy tor the whole de»fomed is

[ } ) .
: ‘J"3’ 2 2. . WoWo 2 -

: | ¢
L r - 1,2

' vhere I, Wnd and I, 3 - fa‘. an -

1 | 'of ’l '1 ’ 2 o 1. 'l

Note (') denotes differentiation with respect to 'l and (")

8 differentiations with respect to time. '

The expression for the strain at one point in the yarn s, is

a:{“# Es) /1-&(—%2)2-1} ’

oW

whers 8 s is the prestrair and -_O—S- is the slope along the yarn at

that point.
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For a linearly elastic material, the resulting strain energy =
2
z 1 AW
3 j Egh, { (1 + Es) fj - B’) «1.}@1\, Al.Y
A N

Summed up for all the familiarty strands in the area. E is the Young's

modulus of the sth strand and hs is its average thickness.
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Assuming highly stressed triaxial fabrics with small identation,
the system is now linear ( )is!-l &« | ) and the strain energy
s

Uzg[ C‘(c+_,)+C203(°- )+C,Cz(g";+£'-;§)]fw:wgd:l, A1.5a
U- LNl G B OB COE B, s
where I3 = L'(W.)z:ldq.

The initial kinetic energy of the projectile is % Mpi}o_z- When this
is added to the total energy of the fabric and Hamilton's principle 1is

applied, the result is the equation of motién: e e e
[0 + Jmtcicgoe,epoese e )] Wo + 2 3atc,cye 6 00,0, )08 o
*I%[(c,c, G BB E) 0, BB -
JBm(c1cz+c1c3+c2c3)(I, - Iz)j Wo =0, A1.6

where m = Z’.; O',_ +033
c'l.
C.’a
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The equations can be nondimensionalised by introducing the factor

7= dtand A, toget

-

Al + (1 -Ip)

1+ THWo" + 2T Wo' + T A1.T

"
o

Wo

C,+C,C,+C,C)
were  of = Dm@%TNTY

As 0o (& B)CLEG) G5
Mm(CiCz + CiC3+CaCy)

Equation 3.7 is veby similar to the expression (I + 7 2)w::" + 2T

Vo' « S Wo = 0 obtained for mn indentation ‘or an orthogonally woven

fabric (31) where

E 3 AT
L

The only parameter which affects the response of the orthogonal
fabric for a nondimensional velocity of impact, is g which 1is
dependent only on the \grouping of integrals while for the triaxial

fabric X also depends i on the ratio of the yarn stresses.

Large Deformations
‘ The equations of motion for large deformations of the triaxial

fabric is obtained by the application of Hamilton's principle with the

~ expressions A1.3 and A1.4 incorporated ;nd is as follows

LY 5 DA R - - . .




(1 7:7 ““'2.2'.Wo 'f'(awe[k' .(He)[l £, ~

v l-+<w le,0)*
+k&z(,h—£,,)i, } a1.8
LUGLARL'S § L7 Esll+£3)
3 /"‘\ 0,
* ""‘(Wolcz'z) €s I +(Wo ¢ 3I) ]
1 3 + C C
h k = ’
where ¥4 34-cc +czc3)
€1Cy + C,C4
kZ - C C + CZCB + C3C
. . C,C3 + C,Cq , and ﬁ.l, FZ’ p3 are tﬁe
3 % T, v 6y ¢ Gt

mass fraction of the 34 8, and 33 strands respectively.
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APPENDIX 2

Thecry of the Method of Characteristics

Theory .
Consider a single filament, Fig. A2.1, with displacement

functions, u, v, w relative to its initial constraint position. The
displacements are functions.of x, the running coordinate along the
undisplaced length of the filament, and t the time.

To allow for large deformations, the strain, ¢ , is defined as
. 2 2. l .
£ "{(“" q;x) "'V,x + W,x } - 1.' A2.1

(Note: h,x denotes the differentiation of h with respect to x).

The kinetic co-energy and the strain energy can be written as:

L

‘ °
L AE 2
U = £ ax ’
° 2

where A is the cross-sectional area of the yarn and E its Young's

modulus, and f its density.
Applying Hamiiton's principles, the differential equations of the

motion of the string are:

E
U,tt - f (1+8 )2 {2(1 + ¢ )U"(X + (1 + U,x ) £9x5= 0 A2.3(a)

sttt e e s

.

SLE LRI




Vytt - —— {(1 + e v, } =0 A2.3(b)
’ (1+ €)2 _ e Tl B .

E

W,tt = e ——————
’ (1+¢)2

i(ug_)w',“ sWx E£og} =0 A2.3()

These equations are conveniently reduced to a system of six
quasilinear hyperbolic equations by the introduction of the following

terms:
P;U,t ’ Q'-'v’t ’ P-‘-",t)

°=st ’ 0'=V,'x ’ '\f="9x .

Further at a point on the filament, the vectors Z, W, and p are

defined as
zs= [o] ¥=T0] , p= [P
q r A2.4
: 1 q
: ¢
O .
\f

These 6 equations are now written in matrix form as

Z,, + AZ,, = 0, ) A2.5

where A is a 6 x 6 matrix.

Equations A2.3 are the equations of prop.zations of signais or
disturban~es along the filament.

Equation A2.3(a) models longitudinal wave motion while A2.3(b) and
A2.3(c) are the equations of propagation of waves in the two transverse

directions.

"o )

cahd




Characteristic theory is now applied to equation A2.5 to obtain

the characteristic.equations of the single yarn. These are:

, dx '
along dt = «+ e = JB/P , A2.6(a)
1* U, (W) dz = 0y
dx _ E/
along _ dt Ce =V P A2.6(b)
I U, (W dz = 0 ,
dx =
along at - * GO '/35 pU+E) A2.6(c)
mt g, madz =0,
Oy (W dz = 0 . A2.6(d)
dx
aleng _dt_* Cr =-ﬁ &p0+£) 12.6(e)
o~ U Wz = 0 ,
Ug (¥).dZ = C. A2.6(1)

In each of the equations, dZ i3 the change in the vector Z along

the characteristic curve see Fig A2.2, while

=1

Uiy L2 1,2 ceeeesb are the § left eigen vectors of the matrix A

(equationA). 12).

It is to be noticed that the velocities of propagation of the

transverse waves Ce’ CT are dependent on the strain and so vary with time.

Also C, P4 _c‘l'

for all values of €  of interest.
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The eigenvectors of the matrix A, equation A2.5 are:

U, = U, = [(1+o), oY, A1+ 0, Aeo,/\e\izy T a2.7
U, = U -[o(1+o)o.')"¢‘}\(1+o) o) T 2.8
3 - 5 - ? 4 ? t’ t ] J .
Uu = 86 S[W ,-(1#0), O’At‘y g -~ At(1+°) ,.‘g' A2.9

The equations A2;§ are now.regritten as
(1+0)Ap, +0 Agq, + ]yA‘i-i s, (140 Ao, + ceeAu; .

Ce"\‘/ iA\y =0 (I - eftensional) AZI‘.1>O
@.Ap -(1+ o)'l.\.o,a1 +c, 0 B0, -c 1+ cw)Ai\[/i -0 | A2.11
(xx~ eharacteristics;inplane transverse)..
V-Bp-cre0 B ecy A?i -C1 0 A, 20, A2.12

(II” characteristics-ocut-of-plane transverse)

r
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Compatibility at node 0

Fig. 2.6
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t =249 us

Deformation of impacted fabric

Fabric: 386gm~2 Nylon

Impact velocity =150ms™
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o Simplified master-slave layer model
180 (8-node model)
Q Experimental results
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