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GENE1MA INTRODUCTION

This report, presented in two parts, describes the investigation

carried out in UMIST in the period 1979-1981 into the performance of

textile structures under ballistic impact. -The investigation

follows two complementary routes, namely. an exhaustive program of

experimentation centred around ballistic impact tests and secondlya

simlaionofthe textile and projectile dynamics. The design and

evalatio oftextile structures for protection against high speed

normal impact Must hinge upon the many material, surface and structure

parameters intrinsic in the structure design. - The projectile,

impacting in the range 150 Mn/s - 550 ms/, and with a nominal mass Of I

gin, encounters the textile structure both at the fibre level and at the

weave level. In the first instance, one Must consider firstly for the

arrest of the projectile, resistance to cutting by the projectile

edges, and opening of the weave structures. These are not important

considerations in the present configuration, but would obviously be

considered for very small projectiles where the projectile diameter is

of the order of the weave pitch. A more important con3idetation is in

the indentatior isf fabric surface, leading to high fibre strains, and

when these strains exceed the fibre fracture strain, the structure will

fail. The structure is also considered inadequate if the total

indentation is sufficiently large as to present a hazard to the sensitive

zone behind the fabric, even through the fibre fracture strain is never

exceeded. Important t~o these two criteria are fir'stly fibre material

properties quantified by fracture strain, modulus of elasticity and

fibre weight (denier). Then the method of assembly into the textile

r



material is important, quantified by the warp and weft pitch leading to

the area density (textile weight) and crimp parameters, by the fibre

friction which impede the relative motions of the fibres in

accommodating the impact energy and finally by the assembly of textile

layers into a structure considering layer mixes and layer fixing, by

stitching or by resin bonding. The important projectile impact

"parameters are projectile mass, and impact velocity or energy.

In the first part of this report, the results of an experimental

research programme are presented. The main aspects of 3s work were

investigations of the effects of the additionof finishes designed to

alter the degree of yarn to yarn cohesion within a fabric and also the

compare the multi-ply response to impact to that of the single layer.

In the second part of this report, various theoretical

considerations are examined with the motives of generating procedures

for predicting and stimulating textile structure performances. The

first considerations examine the mode of propagation to stress signals"

through the structure, leading to the ideas in fibre matching at the

i nodes (intersection of warp and wefts) and then describes the

variational model applied to triaxial fabrics. This model has

previously been developed and applied to regular orthoganal weaves

(Journal of Textile Institute Vol 70, No. 111, page 469 et seq, 1972)

and is applicable in the very approximate sense to single and then -

multilayer structures with no slip either between fibres or layers. ,

Then, the method of characteristics is examined, this leading to a

computer simulation which is very applicable to single layer structures

.in which the fibre materials and fibre orientation are significant. The

high speed impact results are quite accurate since this model is stress

wave based. The next set of models are finite element models,

focussing on various details in the structure. The first modal, the
p-



membrane model incorporates the crimp effects into the element and is

appropriate to single layer structures. The second looks at the detail

of the fibres in the node area. The third and fourth programs consider -

the multilayer structure the former considering the layers bonded by a

resin or glue effective only in shear, and the latter the more important

of the two, allowing layers to slide relative to each other.
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"1.1 Introduction

The aims of the present study were to construct a ballistic range

capable of impacting 1 gM steel projectiles onto fabric samples and to

also provide apparatus for the measurement of impact velocity and the

"energy absorbed by penetration. Apparatus was also developed in order

to (1) provide multi-flash photographs of' fabrics under imvact (2)

measure the arrival of the stress wave at the fabric: boundary. In

addition work was undertaken to:

S1) establish the effects on the ballistic performance of the addition

to fabrics of chemical finishes designed to alter the degree of

yarn to yarn cohesion within a fabric;

2) compare the multi-ply response to impact to that of the single

layer over a range of impact velocities.

These two factors were known to be of importance because:

1I) Lalble has found that the addition of high friction finishes

significantly improved the ballistic performance of polypropylene

2
fabrics; alternatively Morrison has shown that when Kevlar is

used in either a polyester resin or a silicone rubber composite,
C. -L.

the ballistic resistance is reduced when compared to the untreated

fabric;

2) most theoretical work has only been developed to the level of

single layer impact.

r' In addition to the ballistic performances of the above, two
3

triaxial weave fabrics and a lightweight nylon fabric were compared to a

heavyweight biaxia, fabric more representative of those normally used

for ballistic protection.II:

p.....
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"1.2 Development of the Ballistic Range

"Duxing the previous research programme supported by the Ministry

of Defence, SCRDE, facilities were developed to allow transverse

ballistic impact onto fabrics. Lead airgun pellets were fired from a
'-"-1 -1 .

"cartridge gun at velocities within the range 100 m s to 550 m s

The velocities of the projectile, before impact (Vin) and after

"penetration of the fabric (YVour) were measured in the following

manner. Four pencil leads were aligned along the path of the

projectile; two in front of the fabric, and two behind. The pencil

leads formed part of a simple resistive circuit with an input to a

storage oscilliscope. As each pencil lead in turn was broken by the

projectile, the voltage input to the oscilloscope was consequently

reduced. From the stored display the time between contact breaks an.'

thus t;: Vin and Vout velocities, were obtained.

Phctographs of the deformation process after impact but before P,

penetration were obtained by illuminating the event with a single flash

"of light of 1.2 U s duration. These experiments were performed in a

darkened room with the camera lens open. The time of the flash, in

relation to a contact break a chort d1stanre before impact, was varied

using a simple delay circuit. By varying this delay for each trial,

plots of pellet position against time were obtained. This method,

however, gave a large scatter of results as both a constant impact

velocity for each trial, and identical modes of penetration for each

sample, from the same fabric, had to be assumed.

This apparatus was modified for the present research in order to

minimise the energy absorption due to projectile deformation. Steel,

rather than lead projectiles were required. Cylindrical steel

projectiles of diameter 5.5 mm, length 5.5 -m ar.d mass 1.004 (+ 0.0008 )g.

p



were obtained. The projectiles are located in plastic sabots and

fired from a 0.303 inch (.769 m) rifle barrel. So far, muzzle

velocities, of between 262 ms" and 550 ms"1 have been achieved.

Multiple flash photographs show that before impact the projectiles yaw

slightly but do not spin. As there was a danger that the steel

projectiles might richochet, the whole apparatus was enclosed in a

steel box. Polycarbonate windows were included in the structure to

allow the fabric sample to be photographed. The present apparatus is

shown in Figure 1..

In order to trigger a series of light flashes to obtain multiple

image photographs of the projectile-fabric interaction; a 'Bowen' ten

channel delay was acquired.

This unit produces electronic delays, in either parallel or

series, down to intervals of 1 U s (±t 0.01%). A projectile moving at a
-1

velocity of say 550 Ms 3 moves .55 mm in 1 us, thus six stages of fabric

deformation can, in theory be observed before the pyramidal deformation

has reached 3.3 mm. Therefore the delay is more than adequate for the

present research.

Previously a single flash of a stroboscope was used as the light

source for photography. Although this flash was of a relatively short

duration and of reasonable brightness, image quality was impaired due

to either; (a) blur caused by projectile movement during the time of

the flash, b) a small depth of focus due to che large lens apertures

required for the low light level or (c) high graininess due to the fast

film which was required. These effects were exaggerated when negatives

were greatly enlarged for analysis. In order to improve image quality,

three 'Pulse' double flash argon arc light sources have been obtained.

The manufacturer quotes a flash duration of 0.3 Us.

p.
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Figure 1

The Cartridge Gun Apparatus



Two still cameras, for exclusive use on the present research

programme, were purchased to enable simultaneous 'side on' and 'end on'

photographs of the deformation to be obtained.

Previously there was a relatively large error in the measured

values of V and V It is particularly important to reduce the

errors of these measurements, as the energy loss of the projectile is

obtained from the difference of the squares of Vin and Vout.

Previously, time intervals could only be measured to an accuracy of ±

2$. In order to improve on this two digital timers were purchased.

These Can each measure time intervals down to 0.1 3 s. The separation

of the velocity measuring stations are now of the order of 80 cm.

Therefore, timing errors now contribute to orcly 0.07% of the error in

velocity measurement for a velocity of 550 m 3•-

The above facilities were used to obtain micrographs of fabric

systems under impact.

Figure 2 shows three such single flash photographs of the

deformation of a double-layered nylon fabric. The impact velocity is

1&
approximately 350 ms3 in each case. A general view of the whole

fabric is shown in figure 2A. Lines were drawn on this fabric at 0.5 cm

separation, parallel to both the warp and weft directions. From this

photograph the pyramidal form of the transverse deformation is clearly

seen. A line drawn on the print parallel to one of the grid lines helps

to show the in-plane dir..lacement of the fabric towards the point of

impact. Figures 23 and 2C show the region of the fabric near the

impact zone at approximately 20 us and 60 us after impact. In figure

23 the projectile, which is moving in a direction from bottom to top of

the photograph, has not yet penetrated the fabric while in 2C the whole

of the cylindrical projectile is visible.

p.
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FIG. 2

A Fabric Uzxiergoing Ballistic Impact. p.
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FIG. 4

Projectile in Flight.
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Fig. 5

tide View of Fabric Under Impact
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(figures 5B and 5C) as much original detail is lost during reproduction.

In figure 5A the time between flashes is 10 Us while in figure 5B th.s. ,

interval is 20 us. Figure 5A shows the fabric at times before

penetration. In figure 5B, however, one image shows the fabric before

and two images show the fabric after penetration. The multiple flash

technique has been used by previous researchers in the same field.

"However much previous rwork Using multiple flash methoC;s has been at low

:. impact velocities in order to be able to observe large deformations

before penetration. In figure 5A, the pyramid height is only 0.8 cm at

the time of failure. (Approximately 50 us after impact).

Strain Measurement .

It would be of enormous theoretical interest to be able to measure

the spacial and temporal distribution of r-t-iin during impact. The

measuremnt of the level and distribution of stress and strain

throughout a fabric during impact, does however, present serious

experimental problems, as the measuring instruments could easily -

themselves influence the strain distribution. A partial solution is to I

restrict measurements to the fabric boundary. For this purpose a -

commercial pressure transducer has been mounted in such a mannr as to

enable tensile for'es to be measured. One yarn from the fabric was

clamped to the transducer. The sample holder was then adjusted in order

to ensure that the yarns intersected the impact zone.

The force transducer alone has a resonant frequency of 200 kHz. D

The output is therefore filtered by a 180 kHz low pass filter. Stress

wave reflections at the boundary would be expected to give rise to

frequencies (f) in the region of .
fV

dx2

where v 2 sonic velocity

d x distance from impact zone to fabric edge. 0.

6 ,I" / - ;



I

This is only an approximation, as no consideration was made of

crimp.

For Kevlar 26.6k~z *1
0.075x2

Thus the apparatus was adequate for the present research.

The output from the transducer was fed into a transient recorded

via a change amplifier. The resulting data was displayed and then

stored on floppy disc.

To allow the force measArements to be synchronised with

micrographs of the fabric during impact, the output from a photodiode

was displayed on one channel of the transient recorder. A typical

trace is shown in figure 6. Ore yarn from the last layer of a

multilayered sample was attached to the force transducer. The P

uppermost trace is the output from the force transducer. Below, the .

photodiode output is shown. The large decay time of the photodiode

output does not reflect the light flash duration, but is merely

attributable to the electrical system. The peak output occurs as the

projectile is arrested.

Figure 7 shows the synchronised output from another trial. Here,

although the cone deformation has already occurred and the photograph

shows the fabric at a time of at least 20 Us after impact, no signal is

recorded by the transducer until 22 us later. It can be se.n from the p

micrograph that the fabric is not completely flat in the region near the

transducer. It seems that this has resulted in a delay of the stress

wave. 0
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Only preliminary work has so far been undertaken using the

multiple flash and the boundary transducer but results will be obtained

on the deceleration of the projectile and the resulting force at the

boundary in the following research programme.

1.3 The Ballistic Performance of a Lightweight Fabric

During the course of the current project the author was asked to

compare a lightweight and a heavyweight nylon fabric on the ballistic
I.-•

range as a part of preliminary work for a proposed projeut. Details of

the two fabrics are shown in Table 1. Figucta reports that the

ballistic performance of a multilayered fabric of given weight

increases'as the area density of the individual layers is reduced.

Fabric Area Yarns Tex of Mean Mean
Density per cm. yarns breaking load % extension

-2 (Kgf-

"Warp Weft Warp Weft Warp Weft Warp Weft

42.8 38.7 39.7 5.40 5.19 0.137 0.132 17.0 16.1

378.0 9.75 9.75 197.1 193.6 13.3 13.6 23.8 23.6

Table 1

The fabrics were tested on the ballistic range. The results are

presented as a plot of the energy loss against the combined area density

of the multilayered samples, (fig. 8). It is clear that weight for

weight, less energy is absorbed by the lightweight fabric. It is of

interest to compare the VSO energies. The data from tests on 28 layers

(z 1198 gm 2 ) of the lightweight fabric are shown as a plot of absorbed SI

energy against impact velocity (fig. 8b). The V5 O energy was found to

be 27.3 J. From the V5 energy curve of the heavyweight fabric, the

0*4.J
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V50  nerg at 198 -2
V 5 enrgyat 198gm was Calculated to be 40.3 J. This difference

could be a reflection of the differences in the quasi-static work of

rupture of the constituent yarns. Assuming that the tensile strain

energy is the only mode of energy absorption and that only yarns which

make contact with the projectile are strained then the expected

projectile energy loss per unit area density was calculated to be-

heavy duty nylon s5.29 J per Kg/rn

lightweight nylon 3.39 J per Kg/rn

(Typical quasi-static stress strain curves are shown in figure 9).

These results are -only one sixth of the V 0 energies found by

experiment, however, the ratios of the experimental --nd calculated

energies are similar:

Ratio Of specific work of rupture of principal yarns 5-2 1.5627.3
Ratic of V energies - 403z1.48

V50  27.3

However, the ballistic performance of the two nylon fabrics might

have been expected to be more similar as the work of rupture is not the

only mode of energy absorption. For example, the transverse kinetic

energy of the fabric accounts for some of the energy absorbed from the

projectile.

One Possible cause of the inferior ballistic performance of the

lightweight fabric is a difference in the mode of penetration. Many

photgraphs of the projectile in flight after penetration revealed a

small object travelling ahead of the projectile. This was identified

5,60as a fused plug of nylon. It is known that fibre melting is a

factor in the failure mechan13m but no plugging has been observed

before. The nylon plug travels ahead of the impact projectile but was

slowed due to air friction. It must be concluded that the plug was

ejected before the final disengagement of the projectile from the7

fabric. The exact mechanism is however unknown.
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1.4 The Ballistic Performance of Two Triaxial Fabrics

In normal (biaxial) fabrics two sets of parallel threads intersect

at 900. In triaxial fabrics, three sets of parallel threads intersect

at 600 intervals. There are reasons for believing that the ballistic

performances of otherwise identical fabrics would be different for

biaxial and triaxial fabrics, although as yet the superiority of either

cannot be confidently demonstrated due to lack of knowledge of the

importance of various effects of weave. For example a triaxial weave
F

Eight confer added ballistic performance due to the spreading of load

more evenly around the impact zone or alternatively might confer a

reduced ballistic performance due to the inherent openness of the

triaxial weave. /

Two triaxial fabrics (A and B) were therefore compared on the

ballistic range. First consider fabric A ohich became available early

on in the research program. As the ballistic rig was only partially

operational at the time, and the fabric quantity was limited the

triaxial fabric was compared to a biaxial fabric using a simple ad hoc

procedure. The fabric parameters are shown in Table 2. The ballistic

performance of each fabric was assessed by finding the number of layers

required to stop the projectile at a known velocity. -4--

The results are shown in Table 3. It is clear that the total area __-

-2density of the biaxial fabric (2400 gm ), which is required to stop the

projectile, is much less than that required in the case of the triaxial

fabric (3094 ms )•

0

'9°

-o*

I* '.\,'~~~~~ ------------------------------.-



rr

- Area Yarns per cm Tex of yarns Breaking load
density of yarn Breaking Extension -
(g*- 2) (Newtons) (%)

WARP WEFT WARP WEFT WARP WEFT WARP WEFT

240 11.4 .12.3 103 101 67.1 68.5 24.9 25.5
ion

A B C A B C A B C A B C '

iaxial 221 3.8 3.9 3.7 200 205 201 109 128 130 20.8 22.2 23.2

on1

Table 2

Although the fabrics had similar area densities, it cannot be '

concluded that the difference in construction was the sole reason for

the difference in ballistic resistance, as the triaxial was of a very

open structure. A triaxial fabric of a much Closer weave was therefore

tested ballistically.

Fabric No. of layers Area Density Impact velocity Was sample
of sample I-1) penetrated(g- 2) j:i"

8 1920 392 .. . es -

Biaxial 9 2160 405 Yes

nylon 10 2400 407 No

11 2640 399 No

11 2431 376 Yes

Triaxial 13 2783 3?8 Yes

nylon 114 30914 387 No

15 3315 385 No .

Table 3

• ._. .' . .. \ ; . • •. ". •
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-2-

found from the plot of V energy against area density (figure 8). By
-50

this method the V limit for the biaxial nylon of combined area density

1281 i- 1i8 42.5 J.

The V 0 energy of the triaxial fabric was thus marginally lower

than the biaxial fabric, but this is not statistically significant. It

is concluded that the performance of the biaxial and triaxial fabrics

were similar.

In part TI of this report it is demonstrated that a computer model :.-:

&;7
of the impact onto triaxial structures predicts that the triaxial weave

is ballistically inferior to the biaxial weave. Conversely it might be

expected that the triaxial fabric might be more efficient by

considering differences in the transverse wave front.

Adeyefa predicts that for triaxial weaves, the transverse wave

front would be hexagonal. A photograph of the reverse side of the

triaxial fabric during impact is shown in figure 10. The wave front is

confirmed to be hexagonal. Figure lOb shows a biaxial nylon and a

biaxial Kevlar by way of comparison. In these cases the transverse

wave front is rhomboidal.

By geometrical considerations it is found that the area bounded by

the transverse wave front is greater for the triaxial wave over the

biaxial weave by 1 : 1.3. It is expected that the kinetic energy of the

transversely moving region of the fabr'ic would be greater for triaxial

than biaxial weaves. This effect would make the triaxial weave a

better absorbant of projectile energy.
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FIG. 10b

A Biaxial nylon (top) and a Biaxial Keviar (bottam)
under ballistic Impact.
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1.5 Main Research Programme

Experimental Procedure

For the purposes of the present research two methods of

quantifying the ballistic performance of textile materials have been

adopted.

First, the variation of energy loss against impact velocity is

established, and from this the V50 limit is obtained. The variation of

impact velocity provides an independent input parameter for models.

The experimental and theoretical results can then be compared. This

method also provides a means of comparing the ballistic properties of

different fabrics. The V5 0 limit can be found for samples composed of

different number of layers. The variation of the V5o limit with :the

combined area density of the multilayered sample enables the ballistic

performance to be quantified. This method has the advantage that the

V5o limit is a widely accepted way- of assessing ballistic resistance. A

great disadvantage is the large number of tests required to establish

the V5 0 limit even for a single layered sample. Difficulties also

arise due to the large scatter of results at velocities near the !Vo

limit.

The second technique is to impact a series of multilayered samples

at one impact velocity (approx. 500 m s3). In '6his procedure fabric

performance is established by the variation of energy absorbed with the

combined area density of the multilayer sample. Figucia (ref. 4)

reports that, for Kevlar, this relation is linear. Figucia also -1

reports that the projectile energy loss was found to be independent of

impact velocity in the range tested. Figucia only considers results

where less than 50-60% of the available energy is absorbed. The

author's technique was to include all results for velocities where

penetration occurred, for it has been found that although the absolute

* /1 .. •. ' . ,.* -? /
/ , , , " - .." . - ,j /



value of the experimental scatter was high, the fractional variation in

* absorbed energy was acceptable. The second method has proved very

successful in quantifying fabric differences.

Fabric Finishes

Hany computer models have been developed to predict behaviour of

woven textiles when subjected to impact by a free flying projectile. A

common approach is to treat the woven fabric as a pin jointed net.

However, previous research by the author has produced evidence that ,

longitudinal movements of the principal yarns can occur relative to th.

crossing yarns. The evidence originates from observations of residual

displacements, and rasidual damage of the principal yarns (ref. 6(). It

is expected that changing the ability of yarns to pass freely over each,

other might change the energy absorbing characteristics of the fabric.

Three possible effects are postulated. First, an increase in crossover

stability will cause an increase in the reflected part of the

longitudinal wave at each crossover. This leads to increased :train at

the impact zone, and early failure. Second, an increase in crossover

stability increases the energy transfer to parallel yarns. Third, a

decrease in crossover stability would increase the ability of yarns to

move laterally at the impact zone and allow the projectile to pass

without yarn failure.

Morrison has shown that the addition of a rubber matrix to a f

Kevlar fabric seriously reduces the ballistic performance. Morrison

concludes that for the materials tested, the second effect i.e. the

increase of nodal reflections must be predominant.

Alternatively, It is known that wet samples of Kevlar are

seriously weaker than dry samples (ref 7). One possible explanation is

that water has seriously reduced the yarn to yarn friction. Alterations

to the stress-strain behaviour of wetted Ievlar were not found to be

large enough to explain this.

-. *.X* - -
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Laible has shown experimentally that the ballistic performance of

polypropylene fabrics is improved by the addition of high friction

finishes.

Lateral yarn movements have been observed by the author (ref }).

In some cases single layer fabrics were. penetrated without any yarns

being broken. 7

The above observations indicate that there is an optimum yarn to

yarn cohesion.

In order to investigate whether yarn to yarn friction affected the

ballistic properties of fabrics and in order to observe whether any such

eff.ts are dependent on impact velocity, multilayer fabrics of nylon

and Kevlar were tested on the ballistic range. The fabrics had

previously been treated with chemical treatments designed to either

decrease or increase the degree of yarn to yarn friction at crossovers

within the fabric. Ideally it would have been desirable to find a .

treatment which would have reduced the friction in Kevlar fabrics, but 7

none was found. Even a finish (Siligen E) which is designed to reduce

friction was found to increase the level of friction for Kevlar. The . -

results are shown in figures 11 to 16 as plots of the energy loss of the

projectile against the impact velocity. The scatter of data is a

consequence of real differences in absorbed energy for each trial. As

no measurements .of rebound velocity were measured, the energy loss is

strictly the loss of kinetic energy of forward momentum. Thus, for

tests where the fabric was not penetrated, the data points lie on the

curve of formula

E &mV2

where m is the mass of the projectile. For cases where the fabric was

penetrated the curve was fitted statistically to fit the exponential

1urve

E ae
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The choice of this form of curve is somewhat arbitrary, however the aim

was to be able to apply a systematic routine to evaluate differences

between the two fabric finishes. When the constants a and b have been

evaluated, the V50 limit is predicted by solving

aebv - &mY2  Q O. 
.7

The V 5  energy can then be calculated. The relative performance

of these fabrics can be found from the plot of the V energy against

the combined area density of the multilayered fabric. The ballistic

performance for these tests were qualified by then calculating the V5 0

-2-
energy loss at an area density of 1000 gm . This value was chosen

S

arbitrarily, but is well in the range of the area densities tested in

the current research. The results are shown in table 4. The

* following conclusions can be drawn:

I) the high friction finish conferred an improved ballistic

performance on the nylon fabric compared to the addition of a low

friction finish;

2) both the high friction treatments produced a large reduction

in ballistic performance of the Kevlar fabric;

3) the water treatment improved the ballistic performance over

the 'as received' fabric possibly because residual finishes were

removed;

4) none of the treatments conferred any strong velocity

dependent effects.

In view of this last conclusion, it was decided to adopt Figucia's

method for any further quantification of ballistic performance. In the

next phase of research a more open weave fabric was tested as it was

felt that the inherent freedom of yarns would provide plenty of scope

for modification of yarn to yarn cohesion. Samples of these fabrics

1. .



were immersed in aqueous solution of the fabric finish and then cured, at

120 for 15 minutes. As a control, a set of samples was immersed in

water and dried at the same temperature. One of two finishes were

applied:-

i) LURAPRET E;30. This confers a high yarn to yarn f.-iction.

Chemically it is an aqueous solution of sllic acid.

(ii) PARAPRET HVN + LURAPRET B30. 50/50 mixture. Parapret is

an aqueous dispersion of an anionic polyacrylate..

The effects of these treatments were quantified using the yarn

pull test described in the previous report. A typical force-extension

curve obtained from this test is shown in figure 17. For each test,

the first two maxima (A,B) were recorded. The results for the Kevlar .

fabrics treated with finishes are shown in table 5. As expected the

maximum forces were greatest for the Lurapret-Parapret (bonded) sample-

and least for the control samples (water treatment). For the ::oCded 9

samples there was a 66.8% reduction in force between the first and

second peaks, whereas for the other samples this figure was ir. the

0region of 15%. It is concluded that the yarn tc yarn bonds are broken

at the first peak and that the level of the second peax is determined by

frictional forces. There appears to be very little yarn to yarn bonding

0
for the fabrics which were treated with the higher friction finish. O

Resblts of the ballistic tests on treated fabrics

Weikht for weight the water treated samples we found to be

significantly superior in ballistic performance than either the 'high

friction' or bonded samples. The latter two fabrics were found to be of
Or

equal ballistic performance, even though there was a large difference

between the levels of force in the yarn pull test. The BPI's(Ballistic
performance Indicator), the slope of the energy - area density refation is

Registered trade made of BASF, England.
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listed in table 5. The results are presented graphically in figure 18. .

These results hold even if the add on weight of the finishes is not

included when calculating the B.P.1, although the differences are

lower. The reason for this, of course, is that tha fabric treatment

adds weight but not strength. These renormalised results are shown /
graphically in figure 19. I

Conclusions on the effect of increased Zarn to yarn friction

Although it is possible that similarity in ballistic performance S

between the bonded and the high friction finish is coincidental, and the.

some intermediary level of cohesion would produce different results; it -

seems probable that there exists a relatively low level of yarn to yarn
." /

cohesion which significantly reduces the resistance of Kevlar fabric.

Above this level the ballistic resistance becomes insensitive to any

further increase in friction or bonding, alternatively the add-on

weight of the finishes could have modified the response to impact.

Fig.8.29a and.5.29b show strain histories, at the point of impact

of an identical fabric, as predicted by the methods described in part

II. Fie.. 5.29a shows the case where slipping is allowed at yarn

crossovers and fig.5.29b models the case where the yarns are rigidly

connected. Although the time to projectile arrest is less for the -

latter case, the strains are generally higher. Thus a strain failure

criterion is applied to both cases, it is predicted that the fabric with
0"

rigidly connected yarns would fail at a lower impact velocity than the

fabric where yarn slip is allowed. This is consistent with the

experimental results.

Ballistic Resistance of Kevlar 29 and Kevlar 49

Kevlar 29 exhibits twice the tensile breaking strain but almost 2

half the tensile modulus of Kevlar 49. Roylance(ref. 5) has developed - _

V
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a finite difference model for the ballistic impact onto textile

: structures. Using these quasi-static fibre parameters, Roylance

predicts that Kevlar 29 is superior to Kevlar 49. However, Roylance s.-

refers to experimental results which seem to indicate a similarity in.

balliitic resistance.

In order to provide our own data a Kevlar 29 and a Kevlar 49 fabric

of similar construction were compared on the ballistic test range. Both

fabrics were treated with the high friction finish as the results were

also used to provide data on the effect of finishers.

Results of Tests on Kevi.-r 49 and Kevlar 29

No significant difference was found between the ballistic'

resistance of Kevlar 29 and Kevlar 49. Figures 20 and 21 are plots of

projectile energy loss against combined area density of the multilayer

fabric for these two fabrics. In Figure 21 the results have been

-2
renormalised to reflect the untreated weight of the fabrics (175 .:

The B.P.1,s are shown in Table .5

It is of interest to compare the author's results with those of

Figucia (ref. 4) who found B.P.1's in the range of 22.6 to 31.5 J/kg/M. .

The two untreated Kevlar samples tested by the a,:thor were found to have

B.P.I's of 29.6 and 33.6 -/J/ n/m2 . Thus the results for Kevlar are in ..

good agreement even though the authurs results were obtained using a

blunt cylindrical projectile instead of the fragment simulator and a 6"

rather an a 1" diameter fabric sample size.

Model of Multilayer Impact S,,it'-: I

A simple computer model was used to calculate and display

graphically the multilayer performance from single layer data. The

model assumed no physical interaction between layers. The exit

• 'o ..
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velocity (ve) from each layer is calculated from the single layer

relation (Ezf(vi)) of energy loss against impact velocity (v Thus
b

2v = Y - f (vI)

where m : projectile mass.

This velocity is then taken to be the impact velocity onto the next

layer. This iteration is continued until penetration of all the

layers, or until the projectile is arrested. This routine is repeated

for initial impact velocities in the range 0 to 550 M s3 in order to

obtain the multilayer related (E + fl(v

This routine was applied to single layer data which had earlier

been obtained for nylon and Kevlar treated with high and low fabric

finishes. Experimental data from the multilayer tests was then

compared to that predicted by calculated. The original data points,

the corresponding least squares curve fits, together with the predicted

curves of energy loss against impact velocity are shown in figures (11)

to (16).

It can be seen that generally the experimental results show that

the maximum energy absorption occurs at the V50 limit. In addition the
50

calculated energy losses (shown by a broken line) are generally higher

than those found experimentally at the high velocities. The one

exception to this is the Kevlar treated with Siligen E, where the three "

layer curves are similar.

The above results are replotted as graphs of projectile energy

loss at the V50 limit against the combined area density of the

multilayered sample. These are presented in fig, 22 to 27. It is

concluded that in the range of these tests, the calculated Vso limit

agrees with the experimental results.

• o .. I ..
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General Results and Conclusions

A ballistic rig has been designed and constructed by the author in

order to:

1) impact 1 g cylindrical steel projectiles onto a fabric . .

samples;

2) measure the impact velocity electronically;

3) measure -the exit velocity photographically;

4) provide single or multiflash photographs of the fabric under

impact;

5) measure the arrival of stress waves at the fabric boundary.

Tests on fabrics have produced the following results:

1) the shape of the transverse wave front is octagonal for a two

ply fabric, if the yarn directions of each layer are set at 45° to

each other;

2) the shape of the transverse wave front is hexagonal for

triaxial fabrics;

3) two triaxial fabrics have been shown not to be ballistically

Superior to biaxial fabrics.

4) a Kevlar 29 and a Kevlar 49 fabric of similar weight and

construction -ere found to have similar ballistic resistances.

The following conclusions can be drawn:

1) the octagonal form of the transverse wave in the bilayer

impact indicates that there is some degree of interlayer

interaction and that any computer model must not assume a

rhomboidal form as a starting condition unless the fabric in each

layer is similarly orientrted;

2) the hexagonal shape of the transverse wave for a triaxial -

fabric indicates that more energy should be absorbed as kinetic

"-S.
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energy of transverse motion, however as empirical data shows that

triaxial fabrics are in fact inferior to biaxial weaves other

effects such as the parting of yarns at the impact zone must be

predominant;

3) the h..gh friction finish probibly improved the ballistic

performance of the nylon fabric by a reduction in lateral mobility

of yarns at the impact zone or due to the influence of the degree

of yarn to yarn friction on the strain distribution during impact; ,

4) a lightweight nylon fabric was shown to be ballistically

inferior to a heavyweight nylon fabric and although these results

could be partly attributable to the stress-strain relations of the

"constituent yarns, it is postulated that the mode of penetration :

(plugging in the case of the lightwaig1t close weave fabric) is

also a contributcry factor;

5) a high friction finish conferred a greater ballistic

performance on a nylon fabric than the same fabric treated with a

low friction finish;

6) both the high friction and the bonding agent proved seriously

detrimental to the ballistic performance of the Kevlar fabrics

tested;

7) a simple energy model, designed to simulate impact onto

separate layers, agrees well with empirical results of the V5 .

energy where the number of layers is low, but overestimates the

ballistic performacne when penetr-tion occurs at high velocities;

8) the reduction in ballistic performance of Kevlar due to the

addition of high friction or bonding agento could be because the

level of friction is alread'r idealised in the natural state,

unfortunately no finish was found to confer a lower friction on

""-.
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Kevlar. Another possible effect is that the add-on weight could

influence the mechanics of impact and penetration and therefore

Imask any effects of friction;

9) as the energy models for multiple impact do not consider

interlayer interaction, yet generally agree with empirical data
L

of V5 0 energy, it seems that interlayer interactions are second

order effects, where the number of layers is small.

It is proposed that

1) no major work on the ballistic properties of triaxial fabrics

alone should be undertaken. However the use of triaxial fabrics in

hard composites should not be dismissed as in such materials, yarn

mobility will be reduced and penetration due to the pushing aside

of yarns will be precluded;

2) the multilayer impact models should be compared with data from

multilayer impact where the number of layers is greater, in order

to determine whether there is a need for more sophisticated

models.

CALCULATED FROM EXPERIMENTAL
SINGLE LAYER RESULT
DATA
(Joules) (Joules)

KEVLAR As Received 62.4 62.8

Siligen E 40.8 43.9
(high friction)

Lurapret 48.3 44.4 '
(high friction) -

Nylon Siligen E 27.8 26.6
(low friction

Lurapret 37.5 35.6
(high friction)

• \ 1
Table 4. V5 0 Energy at an Area Density of 1000g.m 2  .
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Introduction

Textile materials in the forms of fabrics, webbings and felts are

widely used in energy absorbing systems such as automobile seat belts,

parachute lines, and personnel protectiin. The particular problem

reported here is an investigation of the behaviour of single-

layer and multiple-layer assembles of woven fabric used in protective

clothing worn in the vicinity of medium velocity (500 ms") particle

hazards. •

These protective clothings are made by sewing together many layers

of fabrics, each 0A' which may have been subjected to various surface

treatments. Usually for easy mobility, the fabrics are not bonded D

together and can therefore slip relative to one another. The materials

most commonly used in the manufacture of these fabrics are Nylon and

Kevlar. The yarns are bundles of thin, long, fibers, held together by 0

friction.

The mechanics of the behaviour of the clothing is complex and

various simplications are made to render the problem tractable. The 0

projectile is taken to be rigid, blunt, and travelling perpendicularly

to the fabric assembly without spinnirg. Each yarn is assumed to

completely lie in a plane, initially. Under these conditions, it is no 0

longer possible for the projectile to penetrate the fabric simply by

pushing aside the yarns in its path without breaking them. Yarn rupture

occurs when a given maxiumum strain is exceeded and visco-elastic 0

effects are not investigated.

Different mathematical methods are used to investigate the

mechanics of the fabric assemblies with the aim of developing numeriýLal

methods for evaluating the effectiveness of various fabric parameters.

0.
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Before the details of these methods are given, a brief review of

publications by previous investigators of this and related problems, is
* /j

given in Chapter 1.

In Chapter 2, a variational model is described. In this model,

only the out-of-plane transverse motion of the fabric(s) is considered.

The shape of the indentation is first predicted from the given weave

pattern and the equation of motion is then derived. Next, -the effect of

yarn crossovers (nodes) on the transmission and reflection of the

strain waves which are initiated at, and propagate away from, the impact

area are investigated. The well-known equation for. the propagation of

waves alon a string forms the basis of this enquiry. Assuming rigid

connections at the nodes, equations are derived for the impedance of a

node for any fabric geometry. Numerical examples are obtained to

compare various geometries.

In Chapter 3, a description is given of an application of the

method of characteristics to the investigation. The characteristic

equations of the three types of waves travelling along the yarns (no

twist) are obtained. The motion of the fabric assembly is obtained by

following the characteristics entering each of the nodes. A quasi-

linear model is also developed in which only the out-of-plane motion is

considered: an attempt to reduce the amount of computation effort. In

* each of the mocels based on the method f characteristics, it is

necessary to give the fabric a non-zero pre~train to prevent numerical

instability.

The application of the finite element me hod to the development of

different models of a fabric is described in hapter 4. Attempts were

made to investigate the significance to overall fabric structural

behaviour of; crimp, inter-yarn slip, and inter-fabric slip.

In Chapter 5, the numerical results are discussed and compared

with the available experimental results.

/ .
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Chapter 6 is the conclusion and some suggestions are also included

* for those interested in pursuing •he investigation.

The impacting particle is always a blunt cylinder, mass 1.0003g,

diameter 5.56 m.

0-
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CHAPTER 1 LITERATURE SURVEY

The geometrical structure of the arrangements of yarns in a

fabrics significantly affects some of the fabric properties. This fact

makes a brief review of publications on the geometry of fabrics of

relevance here. Pierce(I) made an important contribution to study of

the geometry of the plain orthogonal weave consisting of two families of

yarns interlaced- at right angles. The yarns, in that investigation,

were considered as thin rods of circular cross section. Allowance was

made for the effect of the finite radius of the yarns, at the cross

overs, that is, crimp was included. The deformation characteristics of

the model was not considered in his analysis. Since, geometric-

mechanical models have been developed for various fabrics (18), (19).

Olofson(2) developed a model and analysed the tensile deformation of a

fabric. Kawabata et al, in a series of papers (3), (4) and (5),

developed the 'stereo' model and applied it to the study of uniaxial

extension, biaxial extension and of a plain weave shear. They showed

that the compressive strength of the yarn significantly affects its

mechanical properties under these loading cases. In the case of

uniaxial extension, local1sed bending at the yarn cross overs was

introduced to prevent straightening out of the yarn. This bending

resistance was produced by the frictional resistance against inter-

fiber slip. In the analysis of biaxial extension, perfectly flexible *0
yarns were assumed. The resistance of the fabric to shear was predicted -

to be due to the torsional resistance to the rotation of the yarns

relative to one another at the cross-overs. The magnitude of the shear

stiffness was therefore dependenit on the reaction between crossing - -

yarns.

'0-3
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In another publication, Olofsson(6) investigated the rheology of a

frictional-elasto-plastic model and derived expressions for the
p

extensional, shearing, bending and buckling, and creasing modulii in

terms of the yarn bending stiffness, its crimp, its extensional

stiffness and the effect of sliding friction between the yarns. There r
are many publications of studies into the mechanics of fabric under

static conditions by the researchers associated with Leeds University,

Grosberg and Kedia(7) reported that the initial extension of a fabric

can only be analysed successfully by including the bending resistance

of the yarns, and that the assumption of perfect flexibility leads to

large discrepancies between theoretical and experimental results.

MacRoy, Mctraith and McNamara(8), and Hearle and Grosberg(9) have

analysed the mechanical behaviour cf knitted fabrics. Skelton and

Freeston(10) reported that the effect of a deormase of the pitch of a

fabrio, that is an increase of the pick per length, is greater interyarn

force and poorer translation of yarn strength to fabric strength. The

efficiency of translation, however, remains above 90% in most cases at

both low and high strain rates for all conditions of finish. Shanahan

and Postle(11.), and Rearle(12) have also reported analyses of the

mechanics of knitted fabrics.

The mechanics of triaxially woven fabrics was investigated by

Skelton(13). The results showed that the use of this weave pattern

improves the shear strength of a fabric over that of a biaxially woven
t0

fabric of the same area density. It has subsequently been reported(14)

that a triaxial weave is superior to a biaxial not only in resistance to

shear but also in resistance to uniaxial and biaxial extensions. -

Huang(15) anal:-sed the finite biaxial and uniaxial extension of a

completely set plain-woven fabric in which the yarns have a non-zero

flexural stiffness. The flexural resistance sharply decreases when the
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change of curvature exceeds a fixed, limiting, value. This reduction in

flexural resistance is due to slipping of the fibers in the yarn. The

resrlts show that the stress-strain relation for the yarn is non-linear

even for a Hookean or linear fiber material.

Genensky and Rivlin(16) developed a theory for the deformation of

* a network of orthogonal cords, assuming a stress-free shear deformation

"" model. They analysed different deformations. Recently 7/

Christoffersen(177 published an analysis of the mechanics of the in-

plane deformation of fabrics. The fabric was treated as an orthotropic

plane which behaves elastically in stretching along two orthotropic

directions and is capable of stress-free deformation in shear. No

slippage of the yarns was allowed. Results were published for stress

concentration at a crack in the fabric.

Another line of investigation, different from all those reported

above, was adopted by Lech(20) in the analysis of nets. Fourier

representation of the thickness changes was used to obtain expressions

for: the natural frequency of the net, the conditions for travelli",

waves, and, the ray and front theories for propagation.

There have been few publications of the analysis of the dynamic

response of uncoated fabrics and dense nets to impact loading. Most

publications on the mechanical behaviour have been for statical loading

while there have been reports on the dynamics of the response of

individual yarns to impact. The paucity of publications in this field

is reflected in the fact that only 2 of the 278 references cited in the

review of the mechanics of penetration, by Jonas and Zukas (21), are on

the penetration of uncoated fabrics. Mansell(22) compiled an up-to-

date list of publications on the response of single layers of uncoated

fabrics and has reported some new experimental work and finite element

analysis.

II I II I II I I I II • i i I ii i " ' : /
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In the analysis of the mechanics of multilayer of fabrics, new

factors, either negligible in, or unconnected with, the analysis of

single layers now have to be considered. These include the influence of

slip between layers, the frictional properties of the fabric surfaces,

the pattorn of laying the layers and the significance of the compressive

stiffnesses. A relevant investigation is the study by Marom and

Bodner(23) in which results show that a multilay assembly of thin

aluminium plates has a higher, resistance to ballistic impact than

either a monulithic plate of the same total thickness or seperated thin

plates. The different modes of shear and compression are cited as

causes of the different resistances.

The publications on the response of composite plates to impact are

also relevant. Daniel and Liber(24) reported that the primary

deformation appeared to be a flexural wave. Cristescu et al(25), on the

other hand, concluded from experimental results, that, even for

composite plates, the projectile energy is absorbed mostly by

extensional deformation. While it mostly occurs after he-ivy

delamination, extension is the major energy absorption mechanism, but

that the delamination serves to spread the deformations, thus involving

more of panel in the energy absorption. The sequence of delamination is

also reported..

FINITE ELEMENT ANALYSIS OF FABRICS0

A bibliogr.phy of most of the published finite element analyses of

fabrics are list• in Ref (22). Henghold and Russel(26) developed a

formulation for a cable element which is directly applicable to the

modelling of individual yarns. Ozdemir(27) modified the strain

formulation in the last-mentioned model. In the new formulation, the

cable length at any time is specified as a function of the lengths from

I ii i
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the origin to the nodes. The formulation avoids the inconsistencies in

some formulations which lead to non-zero strains when the shape of the

cable distorts without a change of length. The equations of motion

obtained by this formulation were shown to coincide with those obtained

by the simple rod elements, for two-node elements. The 3-node, and •4-

node elements tend to be overstiff compared with other published

results. de Lynch(28) analysed the dynamics of both yarns/fibers and

fabrics. Rod elements were used to represent the yarns while semi-

annuli membrane elements were used for fabric analysis. In the fabric

analysis, circumferential buckling was reported to occur during the

propagation of waves prior to reflection at the boundaries. The

accuracy of the modelling of buckling was said to need further study.

Shanks and Leech(29) published results on the influence of weave

pattern on the transient response of coarse nets and cloths to impact.

Zero crimp was assumed in the model, an assumption which, while

realistic enough for coarse nets may lead to inaccuracies in the

analysis of dense fabrics. Stubbs and Fluss (18) developed a space-

truss model for a plain-weave, coated fabric. The model incorporates

crimp. Each element has 6 nodes and is a combination of 7 straignt

rods. The formulation allows for l arge dcformation and non-line.r

material properties to be investigated. While re3ults were not

published for dynamic loading, this model is considered here as it i.-

easily used in such an analysis. A similar model developed by Torbe(19)"

involves shear resistance and has the nodal variables at tie yarn

crossovers condensed cut, leaving only 4 nodes for element. This

crucifix element was used in the analysis of coat-ld airballuns. It

should make a more efficient use of computer storage than the 6-node

element of Ref 18. However, the latter model allowed for yarn

flattening, or yarn cimpression, which the foLemer neglected.



MEMBRANE MODELS

Leech, Hearle and Mansell(30) developed a membrane model to

analyse the arrest of projectiles by pretensioned cloths and nets. All

in-plane motions were neglected while the shape of the front of the out-

"- of-plane transverse motion was based on earlier work by Leech and

Mansell(31) on the prediction of wave fronts in orthogonal'fabrics. It

was shown the shape assumed for the cross section of the indent does not

significantly affect the numerical results. Already mentioned is the

use of semi-annulii membrane elements in the finite element of fabrics
4U

by de Lynch. There was no comparison given between the numerical

results and experimental results and as such it is difficult to specify

the extent to which the wave front could be predicted using annulii

elements. Annulii elements may be most appropriate in the analysis of

the dynamics of knitted fabrics for which experimental results show a

circular front for out-of-plane transverse motion. Oden, Kay and

Fost(32) published results on an analysis of the non-linear response of

an incompressible membrance using constant strain, triangular, elements -

with a Green's deformation tensor formulation for strain. The loading "

was provided by a constant force which was applied for a short time and

then removed. Benzley and Kay(33) obtained numerical results for the.

vibration of a pretensioned membrane and reported that these results

compare well with analytical results. The nonlinearities caused by

large deformation were shown while the derivation of the equations of

motion of the nodes of the elements involve the determination of Cauchy

stresses. The formulation allows for the initial orientation of yarns

to be specified and allows for their rotation during motion.

Computationally, the disadvantage of this formulation results from the

fact that the directional cosine of the yarns are defined relative to

the initial shape of each element, and therefore has to be recalculated * .Z

-.- *,., . ., -, ,-.
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for each element shape. This is except when a membrane is divided into

square, rectangular, or similar triangular, elements. Another method -

of accounting for the rotation of yarns was adopted by Tabaddor and

"Stafford(34) in their study of the vibration of a cord-reinforced tyre.

The constitutive equations were defined to incorporate the relation

between yarn rotation and strains.

Leonard and Verma(35) used.a double curved element to analyse the

properties of a Mooney-Rivlin membrane. Coons geometry was used to

obtain accurate representation of points on the curved surface. The

paper contains a useful bibliography.

The only study, known to this author, of the use of three-

dimensional finite element analysis to model a single layer of a fabric

is that by Lloyd(36). In this analysis, 20-Node, three dimensional

parallelpiped elements were used and the deformed shape of a knitted

fabric was successfully predicted. However the model fails at large -

strains.

MULTILAYER SYSTEM OF UNCOATED FABRICS

The only publication encountered in this literature survey, on the A .'\

response of layered, uncoated fabrics to impact, by Flaherty (37), is
r;l based on experimental w'i~k. The results show that the order of ,i•

.arrangement c0 the fabrics affects their combined strength, at least,

for the 2-layer system reported. There are, however, reports of -
:71j

numerical, and even analytical, studies of the responses of layered

beams or plates made from aluminium and wood. Some of these studies are

briefly mentioned later.

Some of the phenomena such as slipping, which may significantly , .,

affect the overall structural behaviour of a multilayer system of ',

fabrics have already been investigated in the study of metal.

7., , ... . I. -, .- - , . - .-
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deformation of Wilkins(38). The method used in that study to model

separation is also relevant.

Thompson, Goodman and Vanderbilt(39) studied the effect of

interlayer slip on the deflections and stressed in a statically loaded .

layered system of wooden beams. The slip was related to the shear

across the thickness of each layer. With the assumption of negligible

"friction, resistance against interlayer slip only occurs when the

layers are glued together. Suzuki and Chang(40) showed that interlayer

slip may significantly affect the overall structural behaviour of

layered wooden structures, in a study of bonding failure during the

bending of a laminated cantilever. Analytical expressions were derived

to relate deflection and loading force, and the movement of the slip/no-

slip boundary, with increasing load, was demonstrated. It was

concluded that; interlayer slip due to debonding, if it occurs, will

reduce the overall stiffness of the cantilever. This conclusion can be

compared with that of Refs (24) and (25) on the significance of the

delamination process in spreading an impact load over a large area ofj

composite sheet.

There are other publications, which are not on the analysis of

fabrics, but which are relevant to this study because -they- suggest

possible approaches to the finite element analysis of multilayers(41),

(412)t (43).

The study of fluid motion in containers also involve the modelling

of slip. An outline of the problems and prospects of the methods

currently used in that analysis are given in a book on structural

mechanics which is edited by Donea (44). One of the most important

sections in the book is the description of an extension of Wilkins's

work on the concept of 'slave' line, 'slave' nodes and 'master' elements

which are defined at the interface between two materials which can slide

. /40I
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relative to one other during motion. Other important contributions

have also been made to the modelling Of slip in finite element

analyses(45) - (51).

-- /
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CHAPTER 2 SIMPLE MODELS

S

2.0 Introduction

In this chapter, two aspects are considered; firstly the

variational model used by Leech, Hearle and Mansell(30)in analysing the

response of an orthogonally woven cloth to transverse impact is

extended to the case of an impacted triaxially woven fabric. The,

equations for the two fabrics are then used to predict their relative

effectiveness in retarding a projectile.

The second aspect considered here relates to nodal impedances; the

relationship between yarn angular arrangement and the rates at which

different incidents disturbances are tran3mitted.

2.1 Wave front Variational Model

In this model only the out-of-plane motion is considered, with all

in-plane yarn motions negiected.

Firstly, the shape of the transverse wave front is predicted and

the size of the disturbed area expressed as a function of time and a

similarity coordinate, , which measures the perpendicular distance

behind the wave front, the magnitude of f at the wave-front being 1. I

The deflection at any point in the disturbed area, W( ,t), is

reprenented by a trial function which satisfied the kinematic

conditions at the point of impact and at the boundary between the

excited zone and the quiet zone.

The total energies, (kinetic and strain) are calculated and

Hamilton's principle introduced to obtain the dynamics of the system.

Hamiltion's principle states that between times t1 and t2•1 . .-2 : -, .!
-:- -/
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(T-U)dt ÷ Wdt --0 2.1

for any dynamic system, where the kinetic variables vanish at t,

and t 2 . T is the Kinetic co-energy of the system and W is the

virtual work associated with slippage and internal friction. In

this case, an ordinary 2nd order differential equation results" and

can be solved numerically using Runge-Kutta methods.

2.1.2 Application to a Triaxially woven Fabric

Leech and Mansell (31) showed that the wave front in a transversely

impacted orthogonal fabric is rhomboical. This prediction is confirmed

by experiments. The equation of motion they obtained is given by

t x x . L+ where t is time; Cx and Cy are respectively the
CCx y

wave velocities in the x- and y-directions. The triaxially woven fabric

consists of three families of strands each of which makes a 60 degree

"angle with the adjacent yarn, Fig 2.- (c.). In the first instance, the

S wave fronts separating the 'quiet' region from the transversely

displaced region is necessarily deduced.

Consider the fabric shown in Fi3 2.1 and let it be transversely

impacted at aay point, I.

The axes, sl, s2, s3, are as shown in Fig 2.1 along the strand

directions. The fabric is then divided into six sectors. Now consider

one of these sectors.

On impact, disturbances travel along Ia' and Ib' respectively. At

b', the disturbance along Ib' is partly reflected, partly diverted

along b'a' and partly transmitted along bib2, similarly for the

disturbance along Ia' when it reaches a1.

A strand parallel to s3, such as a Ibl is disturbed at both ends.

-4
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After the two waves have passed through it, it would become horizontal

"and unstrained for the rest of the motion. Considering only the

tranntssion of out-of-plane transverse waves, it is clear that, at time p

t after signal initiation, the stress front in this section is given by:

t sl 2 2.2a

similarly, the wave front equations in the 5 other sectors are:

t 31l s2
SC2 2.2b

t 3..2 * .3
S2.2o

t s .3 - s9
C3 a1 2.2d

t • -s2 - s3
C2 C3 2.2e

t 3 -33 + sl "
C3 Ci 2.2f

where C1, C2, C3 are the transverse wave velocities in the directions of

s9, .2, and s3 respectively. The fronts whose equations are given in

equations (2.2,a-f) form the sides of an hexagon. The

predicted indentation is shown in Fig. OA rind is confirmed by the

experimental photograph, Fig. i01 kPAR )""

2.1.3 Equation of Motion for small deformation

In Appendix 1, the derivation of the equation of motion for an

impacted triaxial fabric is given, using the wave front predicted in

section 2.1.2. The equation relating the displacement at the impact

point, Wo and the non-dimensionalised time,!ris given by:

0o.
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2(1 . r )Wo"+ 2 r Wo' . \I3+((I1I2)WO O, 2.3
II

where r is related to the real time, t, by the equation

at; at Jm(C1C2+C2C3÷C1C3)

124
p = mass of projectile; m s area density of fabric;

13 c CM(a + 3) +4 C2Cl ('1 +C 0 + 2
C C22 C2 C2/.

m(C1 C3  C1 C2. + C3 C1 )

and( '

U L,w,

I11 12, and 13 are integrals whose values depend on the assumed shape

"(trial function) of the sides of the indent. The equation,

corresponding to equation (2.3), for an orthogonal fabric, is given in p

Ref (30) as: I+r w' X 2+ S CO 2.-4.

2where r:Gxt; a C13+11 -12
IV" ab, ______I

and Cx and Cy are the respective transverse wave speed along the two

orthogonal strands. For comparison of the two fabrics, let

ClsC2=C3=Cx=Cy and the following simplified expressions are now

obtained:

a• 2
3mC%t 3C; 2  and A =2/3

4t

p
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Also, equation 2.3 could be written as:

3.
S(I.r2 )WO"÷2rWo'÷ (- 3.I3÷I,-I2)Wo -02.5

and equation 2.4 as

(O+r2 )Wo"+2rWo'e 13+11-12 Wo =0 2.6
V L

Equation 2.5 is only different from 2.6 in that in equation 2.5 the /

tirm 13 is multiplied by 2/3, while in equation 2.6 it is multiplied by

1. The last expression of the left hand side of equation 2.5 (or

equation 2.6) was obtained from strain energy considerations and the

factor of 2/3 in equation 2.5 represents a reduction in strain energy

per unit area in the triaxial weave case due to' the fact that in each of

the six slanted faces of the pyramid, one family of strands remain

horixontal and Unstrained. The material uti isation factor for the

triazial weave, relative to the biaxial, in absorbing projectile energy

by strand straining, is 2/3.

The ratio of the displaced areas is 1.3:1, to the advantage of the

triaxially woven fabric, which is less than 1:2/3 or (1.5:1), the ratio

of material utilisation factors. It is reasonable, therefore, to

conclude that more strain energy may be absorbed, in a given time, by an

orthogonally woven fabric than by a triaxially woven fabric of the same

area den.'tity.

The ratio of the time factors, at/ ab :1.30,

since at ¶I'm and ab

to b

IIp
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This ratio results from the fact tUat in a given time, the

transversely displaced area is larger in the fabric with 0-600 -1200

arranged strands than in another fabric of equal area density in which

the yam directions are perpendicular. It is reasonable to suppose that

the kinetic energy of the triaxial fabric is high r at any time after

impact than that of the biaxial fabric. This combination cf these two

generally produces a difference between the performances of the two

fabrics of equal area density, one with orthogonally woven yarns and the

second with triaxial weave.

2.1.4 Equation of Motion for Large Deformation a
Equation 2.3 and 2.4, above, are only applicable for smaln

strains. For large strains the full, non-linear strain expressions are

needed.

It was shown in Appendix 1 that the equation of motion for the

triaxial fabric then becomes:

(1+r 2 )o)Wo"+2rWo'+6Wo(klb1(1(,E. 1  W 1 F1

+ k2b2(14.L2)(*j 1

-+-
£ ! Itr•l+(Woa/Clr )2)::"

k b3(1+E3) (1+e ~1~ ~ ac: 2 0 .

E l1(Woa/C3r) 2

CiC3+C1C2::
where ki = CIC3+C1C2+C2C3

k2 C1C3+CiC2
C1C2+CiC3+C2C3

0 ~.
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k3 C2C3+CC3 ; and bl, b2, and b3 are

CIC2+C2C3+C3Ci the mass fraction of the 1, s2,.

and s3 strands.

For an orthogonally woven fabric, the corresponding equation is:

(1. r2 )Wo"2r Wo'+6Wo((l÷ Ex) (1÷E- 1 )

+(1+ Y) (l1+ - 1 ) -1/3) : 0 2.8
•.• ~ Jr 1÷(Woa/Cy'r).

Putting the wave velocities equal, as before, equation 2.7 and 0

equation 2.8 respectively become:

(1. r 2 )Wo"÷2r Wo'÷6Wo(2/' 0(1+÷ - 1 ) -1/3)=0 2.9
EJ(1+(Woa/Cr)2)

and

(1+ r2)Wo"*2rWo'+6Wo(l÷ /Ct+(woa /' 3 " 2.10& /~71•+(Woa /CrT2j"/)° 2 O-.

Comparing equation 2.9 with equation 2.10,, it is clear that,

again, the triaxial arrangement of the strands leads to a larger time

factor, at, and,, at the same time, causes an~ underutilisation of a third

of the fabric as far as the absorption of energy by strain is concerned.*

The above observations suggest that in a mutltilayer ply, there

might be some improvement in performance if the direction of the yarns

in two orthogonally woven fabrics are set at 450 to one another so as to

. 4,

gain the advantages of the two different weaves.

This Possibility may be examined in details by more accurate

methods. Of he abro a fa astheabsrpt• o enrEYby tran i cocered.:•:.
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2.2 NODAL IMPEDANCE METHOD

2.2.0 Introduction

The absorption of impact by fabrics is accomplished by the

propagation of the input energy away from the directly impacted zone.

Energy is dispersed into connecting members in the fabric via the node

connections. In general three types of signals are generated in the

yarns of a fabric on impact. These are, in the plane of the yarns; the

transverse signal and the extensional signal, and, perpendicular to the

plan3, the out-of-plane transverse signal. At the nodes, each type of

signal may generate one or more of the three types of signals in the

connecting yarns, depending on the fabric weave.

The yarns normally undergo large deformations and consequently the

complete non-linear string equations would be employed to model the

responbe of such systems. The string equations have been developed by

various investigators; for example see Ref 30. They form a non-linear

hyperbolic system with two distinct propagation speeds, namely, the

propagation speed of extensional (fast) and transverse (slow)

disturbances. The nonlinearities arise from considerations of gross

deformation of the string (yarn) and from the admission of nonlinear

constitutive relations.

In this section, the propagation of disturbances through fabrics

of various weaves is considered, the linearised decoupled string

equations are employed and coupling between extensional and transverse
C'

waves is initiated when nodes are encountered.

The effectiveness of the weaves is assessed by comparing the

percentages of the incident disturbed signals which are reflected at a

node.

•/ //

//



2.2.1 Linearized string Theory

The linearized equations of motion of the strings are e.sily

derivable and are sumnarised in this section.

(a) Extensional motion

The equation of motion is

S- 02.3.1

X

where p is the material density, E is the modulus of

elasticity lX is a running co-ordinate along the string, t is time and

u(xt) is longitudinal displacement of the string. The material strain

is simply given by

u
bz 2.3.2

The equation of motion admits the following characteristic

solution

U S Fe (X-Cet) and u G 0e(X + Cet) 9 ,

where C(- I (E/l )) is the propagation speed of extensional

signals. The two characteristic solutions represent outgoing (right-

travelling) and ingoing signals (left-travelling) and they suggest that

there is no attenuation or dispersion of the wave front.

(b) Transverse motion

The equation of motions, in this Case, is

pA -2VT 2__

t 2 ..z o, 2.3.3. .
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where A is the string cross-sectional area, .T is the pre-tension and

V(X ,t) 13 the transverse displacement of the string. The equation of

motion for transverse disturbances, admits charLcteristic solutions

V a Ft(X -Ctt) and V= G(x C tit

where Ct(u 4 (T/f A)), is the propagation speed of transverse signals.

The material. -train induced by the transverse motion is, for small

motions:

1v(~ )2
2. 23.4

Although this is a second order quantity, it will propagate ahead of the

transverse signal with the extensional propagation speed, C.e ,O*

2.2.2 NODE EFFECTS NEAR IMPACT ZONE

Vhen a di-et'rbance propagating through yarn encounters a node,

only part of the signal will pass through the node, while another part

of the signal is reflected. The attenuation will be dependent upon the

type of disturbance (extensional, in-plane transverse or out-of-plane "0

transverse), upon the material characteristics of the yarns meeting at

the node, and upon the weave pattDrn. This node, as well as

transmitting part of the signal, will cause a reflection back towards 0

the signal source and a diversion along the branch yarns and for in-

plane motions, a change of mode along the connecting yarns.

In an impact zone, energy is continuously provided by the ___

projectile as it is retarded. Three types of signals are propagated

along the impacted yarns. The signals are consequently partly

transmitted, partly diverted to other yarns beyond the impact zone, and

"*- I\_. , -. -, . •--. .- s4 .. \, .. , . , , i.S .... •': "F• :''• / >r' . ,• \*•.- :", ,.•., ," .. "'• .
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partly reflected back into the zone. At a rate of energy input, the

*chances of yarn failuve increases as the percentage re~flection of

*Signals back into the directly impacted yarns- The influence of yarn

arrangement on this percentage is an indicator of weave efficiency.

In the first instance, the pa3sage'of an out-of-plane transverse

*input d13isutubance through a node is considered. Only two weave

I- patterns, thle orthogonal and the (0 -600 - 1200) 'triaxial are

-considered. The general equations for the passage of in-plane signals

are then derived and expressions obtained for a few weave patterns.

S2J3.1 Out-of-plane Transverse Signals

The discussion refers to Fig. 2.4I(a), 2.4(b)9 2.5(a) and 2.5(b).

In an orthogonal weave, a disturbance along IM, the incident at 1,

*creates signals in the three other yarns connected to 1, that is in IX,

IL and IJ. The input signal in IH, f C~tt), gives ri3f to a

transmitted signal f2 ( 5-Ctxt)t a reflected signal g( 5 + C txt) and

signals in the cross elements h( 5.Ctgt) whzere is a coordinate

* along ayarn.

Referring to Fig 2.5, it can be shown that

1 2 1 1 I 1  h1  1
£ 1 f, 9 f f 1' 1 I p1  's 1f 2.3.5

and

h P f2 P2 . 1 2.3.6

whiere C ( ) ~ ,the slope.

The sum of the aznptitudes of the incident signal, f~t and the

reflected signal, gj,

U~ ~ ~ I f1*£,~ 1  from equation 2.3.5

Leech and Mansell (31) showed that the corresponding *,quations for

a biaxial fabric are:
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11 I I 1' 2.3.7

where f 2 # g, and h are the transmitted, reflected and diverted signals

'. respectively.

Therefore, for. a biaxial weave, the sum of the incident and

reflected signals is given by

U fl o 1. f 2.3.8

Since the sum is less for a biaxially woven fabric, failure due to

overstraining might be expected to occur at a lower impact velocity in a

triaxially woven fabric. A higher proportion of the incident signal is 4

"reflected in a triaxial fabric because the greater number of yarns

poses A stiffe6r constraint to out-of plane motions.

.The partitioning of the total input energy (kinetic and strain),

li, into that transmitted, It, that reflected, Ir, and that diverted:-.. .

into the branch yarns, lbl, and lb2, can be shown to be given by

I t ; Ir 4 ; IbI Ib2 I 1
- 2.3.9z-1 T i- Ii 11 9 .-.-... :

Hence the energy in the yarn carrying the incident wave, assuming

continuous input of energy a 1 ie (1 + I

Under similar conditions for an orthogonal fabric, the energy in

yarn a~.i

• 0

2.3.2 NODAL IMPEDANCE FOR IN-PLANE SIGNALS: GENERAL EQUATIONS

The general equations for the influence of a node subjected to an

in-plane incident wave along one of its connecting member will be . .

derived. The percentage of the incident wave which is reflected along

the disturbed yarn is of paramount importance, since, as mentioned

earlier, a yarn arrangement which causes an high percentage of the

incident wave to be reflected would produce yarn failurox -

signal level.
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Consider the node 0 in Fig 2.5 at which n I I yarns meet. The

*" pretensions in the yarns are enough to prevent compression (or

buckling) from occuring. S

The yarn labelled I is subjected to an extensional wave U(x-C t)

and an in-plane transverse disturbance V(X- Ctt), where the wave

speeds are given by: C* t~ an CCA.

The reflected extensional wave is taken as pU(x C Cat), while the

Sreflected in-plane transverse wave is dV (x z Ctt). The

fractions and d are dependent on the yarn arrangement. The

*. extensional, and the transverse disturbance generated in a typical yarn

are respectively taken as UL(x -CeLt) and Vx CtLt) where the wave

speeds are given by

,Cei, E and CtL

Compatibility at the node requires that (Fig 2.6)
0, 9

;(L -A ) 0osL + V(1-d) sin Q( 2.3.10

resolving along the yarn, and perpendicular to th yarn:

VL 8 -UCI - i) sin•L • V(1-d)cosGL , 2.3.11

where the dot denotes differentiation with respect to time and

primes denotes derivatives with respect to X.

The equations an be rewritten in terms of derivatives with

respect to axial length, x, as

Ct L -SCeUI(1-• ) sin0 4 C V'0(-d) cosi L,tOU I. L t

or

VL Ct '(1-d) cos03 .Ce UV(1-d) sin*(

CL L L L .2.31V~CtV'L dcs CL Ce (1 )sn 233
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The equations 2.3.10 and 2.3.11 holds for each yarn connected to

nods 0.

From equilibrim considerations:

along disturbed yarn,

EAU'(¶ -• ) •Z(EALU 'L - TLVL si ) 2.3.114

Substituting for and from 'equations 2.3.12 and 2.3.13,

equation 2.3A becomes

MU (E u'(1- • )sin A L V'(1-d)s3ino.)
) (LAL003 L(CeL LCeL

- TLsin L( V ( -d) cos o' L-ML Uc 1 s

The terms involving the fractions p and d are all put on one side and

"the final equation is:

C 2
"" L 4. T'L ''s C<

U' [EAE(AL~ CtL 0o2 L 1CO )
0eL

-d.Y. 31n2OCKL __ 4 Ct
S.Z _.... 2 (Y•, "C tL'

, EA:o..Z'r."~c L L~si 2 ~L
S-v E'L U11 (Et LC sine Q).

CeL TL CtL- 2 2.3.15

Similarly, consideration of equilibrium in a direction perpendicular to

the disturbed yarn gives the following:

TV'(l.d) =j(ELAL ' 3iPL+ -VCOS 0(L 2.3.16
9 L -%
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Upon substitution for UL and

T (1+d) ZELALsinOL(U1 Ce (1- A )Cos•)
1 Ct L U

(VTuCOs , 1 C ? (1-d) cos (' Se- U1 (1- )sin o( L) e

T Los L TL L Ct'.

Ct V (1-d) sin L

The final form of this expression is

d1V 1T + (~ETAL sin2 0t L T' Ct 003c
1 CeL L CtL -

1 Ce Ct sin 2C(L" u ELAL C'L -TL CtL 2

1 ce( Aý sin2 C L i
= - L UI LELA' CeL + TLC-eL 2 ..

20

+ V 0 20s L E C sinc) 2.3.17

"The s-mation is over all tA yarns connected to the node, apart

from the initially disturbed yarn.

Given the number of the yarns connected to a node and the angle

with a fixed direction, equations 2.3.15 and 2.3.17 would give the

values of the fractions of the proportions of an in-plane disturbance

which are reflected along the disturbed yarn. The expressions for the

general solutions of the two equations are long and were not very useful

for numerical work. It is bette. for any given fabric, to generate the

values of the summed expressions from the given values of C< L' TL, EL

and AL, and then to solve the two resulting simultaneous equations.

Once the values of and d are evaluated, the level of the signal

WL and VL) in the other yarns can be calculated using equations 2.3.12
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"2.3.3 IN-PLANE TRANSVERSE DISTURBANCES

The equations connected with this case are obtained by putting U :

0 in equations 2.3.15 and 2.3.17. They are:

V* ,IZsin2 L (EA C TL

_2 L

eELA + +.31

and, ...

2 at 2

uTV + V (t~ 2os CL 2c

LdCtL L sELAL s 3 2.3.19

The expression in equation 2.3.10 shows that an incident in-plane

transverse distrbance generates, in a branch yarn, an extensional

wave# if

sinT e 0, that is if the yarn in question is not parallel to the

disturbed yarn.

In the case when only two yarns are connected together at the mode'

x 1800), Fig 2.7(a), the equations reduce to

0 a 0 . and

V' T TLCt V, r T + T C
.d[T * TL =V -L T÷TL j 2.3.20 -0

* If the yarns are made of the same material, the right hand side of'

equation 2.3.20 is zero since the tensions are the same. This is as

could be expected, and the wave would pass through the yarn without

reflection since the two yarns are equivalent to a single continuous

yarn. If yarn 1 is denser than the disturbed yarn, that is Ct CtL,
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some reflection occurs. The value of d increased with the ratio Of the

densities until the case of a rigid (yarn) (Ct>? CtL) when the whole

signal is reflected.

On the other hal4, a wave of the opposite sign is reflected in the

case when yarn I is Lighter than the disturbed yarn (CtL> Ct). In the

"P terminal case with the second yarn removed, d z - I. This is as could be

"expected since the free end must be stress-free.

---., 2.3.o EXTENSIONAL DISTURBANCES

gThe overning equations are:

ct Ct ."2"<j;- UCtL 2..-.EAU' U' 2(ELAL~cos3 31M 1  L si 2  L)

V U.U' EA ZCO( L Ct TL sin2o( 7  2.3.21
'SCeL t

; " " (ELAL ceCe sin 2 L
LACeITL) -r--2

- a - T *) sin 2 L 2.3.2-2
2

For the case C( 180, Fib 2.(a), equation 2.3.22 is trivial, -

* while equation 2.3.21 gives

CO (t E .E ~ EA EACe
-E Lr 1A1 CeL 1 1 CeL 2.3.23

For the same material, 0 = 0, no reflection. For a free

end, CeL>) Ce, : -1. At the other extreme, when the yarn

carrying, the disturbance is connected to an extremely dense yarn, =

1, complete reflection occurs and any incident strain is doubled.

-./ /. '.
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"2.3.5 NODAL IMPEDANCE OF DIFFERENT YARN ARRANGEMENTS

S .The different patterns of yarn arrangement which are discussed are

shown in Figs 2.7 (a -e)

(a) ORTHOGONAL PATTERN

Joint data 2 1 , 7
0, 

"0:;" • 1 =9° 1 • 2 " 8 ° (3 270°

(Assume equal tensions and yarn materials)

case 1" 19 U 0 (in-plane transverse)

T .2A + T T+ 2EA Ct

-d EA EACt "-
T EACt TCe

Ce 1 + EACt

TCe

1-- y wherepu T ~ 2.3.241

Cas 2. V o U1  1 (Extensional disturbance)

.EA * (EA +2T Ce) -EA EA 2T CCt Ct

TL~

4 Ct

,f~E +" Te "
SP n e t et

-1 ,p2.3.25

%* 
." 0

S. .. • as 2 z o U : 1 (E~ e si na is u b n e :2 .
'. Ce e / "............ " ~n + /( + 2 /1 V n n 2• _

_e 
-O
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Case 3 V = 1, U 1

The value of is equal to that of case 2 while that of d equals

that of ca-e 1.. -.

(b) ThIAXIAL PATTERN (600-1200-1800)

Case 4 Incident extensional wave, U' = 1, V1 S 0

-IEA +3T C P32
Ce 3TP/3 2.3.26

E'.A + 3Tc Ce

Case. 5 Incident in-plane disturbance V = 19,UI = 0

d T+ 3EA Ct/Ce + p 2.3.27
3T+ 3EA Ct/Ce 3 + P.

* Case 6 Combined incident disturbance V U 1 =-1

%"The values of and d are given by 2.3.26 and 2.3.27

** I o
(a) •SPECMIL TRIAXIAL (145°-135c-180c)

S -,-- -%i 135 ,225 315 .-

-'Case? Inoldent extensional signal

EIL + [EA (1+1&111+&) . le(&IjO~+*)j

I.

Sd(F' Ct

it *." "-*



32

. 2EA + T Ce I + P
LCt_-'. EA + 2TL

2 (1P) 2  1
1 + 2P 1+P 2.3.28

"Case 8

Incident in-plane transverse signal, V 1, U 0

d [T + EA Ct (J+10+1+1) + T (j&4.144)]

Ce"(EA T.),

,. ~~~~~Ct (+++÷)":'• .; = - T + T (Q+J+1+j+½) + A .. :.

Ce z ,

2T + 2EAct%-: d =Ce z I + P ''"

ECt 2 + P4IT + Mt .:

"•. .: " "2.3.29
:2 + P -= P"

(d) LIMIT PATTERN WITH LARGE NUMBER OF YARNS .-

In the limit when the number of yarns are large and uniformly

arranged, the sumation signs of equations 2.3.15 and 2.3.17 are

* replaced by integration signs. This is how the result below is

obtained. This limit case is practical with the regular 'fan'

arrangement of yarns which are then held together in a matrix.

1 :-•2-2S

- I°-•- - -
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Case 9 Incident extensional disturbance, U1  1, V o 0

LP ( EA(T- d) k WTA t
C 6 ..1

Cei':: p • EA( i -1) + rT o- ,..6819P + 1 -

(IT -1) P +IT (1 +P 1
(Jr + 1) P +if 1 + P 2.3.30 *

0.6819 P.1 0 +1.P) . 1
1.318P .1 1 1P1

case 10 Incident in-plane transverse disturbance V x U 0

d [T. lr *C T). x T *(T + EA c..4

"d ( 1) C I +W (12 + 2.3.31

Ct * ,+ P

* ~ I. .

*(0.6819 P) (1.P) 1

°...1.31d8P I P .i

2.3.6 ENERGY PARTITIONING

In order to compare the 4 n different yarn arrangement patterns, the

rates at which energy is reflected are calculated.

The energy dissipated in time t are

Inident energy e ('"")
2 2

ct --0
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Reflected energy Ct t T d2 2 C::E (

2 2

222
:;:.: ~The percentage energy reflected is proportional top2 and d.-.;

2The values of 2, d are compared for the different yarn patterns.
2.8, theue vofeso 2

F/ In Fig 2.8, the values of 2 and d2 are each plotted against

values of 1 /P. The range of values of used is 0 - 1. This range

corresponds to values of p from On to 1.0 and the range of strain from

0.0 to 1.0.

Note that for a yarn made of Hooken material:

P EACt AV EA z 2.3.32
• : ~T /E/p -'l

2 1,-
p 2 [ : e. 2.3.33

It is the region of low values of prestrain, , which are of

practical interest. This region, as the graphs show, is also the region

where the percentaZ • of incident signal which is reflected is highest.

The most "efficient" yarn arrangement is the orthogonal, since

this arrangement produces the lowest percentage of reflected energy

both in-plane transverse disturbance and extensional disturbance. At

very low prestrains, the percentage of input in-plane transverse signal

which is reflected in case 8 is less than that in case (1). -'4"

The graphs for the different yarn arrangements are very close to

"one another at low prestrains, for in-plane transverse disturbances;

which means that the arrangement of the yarns would not appreutably ._

"affect the performance of the fabrics. At zero pretension, in Ref

(61), a very low reflection coefficient (approximately 0.01) is

estimated for typical fabrics..-
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The optimum condition occurs at p 2 1, or when the prestrain equals

unity. Most yarns would fai. long before this strain is attained so

Sthis condition cannot be realised. Even if such prestrains could be

attained, the practical difficulty of designing rigid anchors necessary

* to maintain the fabric under the high strain remains.

2.4 SU"9ARY

In these simplified analyses, slip, friction and geometric

nonlinearities were not considered.

The results show that a biaxially woven fabric may fail at a higher

Impact velocity 'for a given area density, than another fabric of a

oddifferent weave pattern. This is true for out-of-plane disturbances,

and in-plane disturbances.

* *

0 ":i-

0 i
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CHAPTER 3

"CHARACTERISTIC THEORY

3.0 Introduction

In this chapter, an application of the method of characteristics

to the. analysis of the dynamic response of densely wovein fa z..•c is

described. The fabric is analysed as a network of the yarns. The

expressions for the kinetic and strain energy in a yarn are stated and

both the equation of motion of the yarn and the compatibility equations

"for the yarn crossovers are obtained. A technique using the theory of

characteristics is then employed in a discrete fashion to determine the .0
motion of each crossover or node. The motion of the fabric is then

defined by the motion of each node.

The method has, computationally, advantages over a finite element

model with consistent mass formulation in that, for the same ..'

discretisation, the rank of the largest matrix to be inverted in the

solution by the method of characteristics is 3 against n2 (where n is

the number of nodes in the finite element model). It is also better

suited for wave front predictions. This is because the positions of
0

the waves fronts, even then they are between nodes, could be determined

directly with the characteristics equations. Whereas in the finite

element solution, the wave-front is not usually sharp, but smoothened
0

and spread out.

3.1 THEORY -o

The following assumptions are made;

1) the centreline of the yarns are initially straight.
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ii) The yarns are rigidly fixed at the nodes, slip and

separation of the yarns are not allowed.

iii) the yarns are completely flexible and the energies

associated with bending or twist is negligible.

i 3.1. lTBRE/YARN DYNAMICS

For a hyperelastio yarn material, there is a work or strain energy

tmn.etio-al W which is a function of only the extensional Green strain E;

the dependency of this functional on the other components Of strain is "

a., assumed to be very weak since the yarn is stiff in tension but weak in

flexure and shear.

1 the extension Green strain E is written as

ae2

F. 3.1.1

4 

- .

where u, v, w are the motions of the yarn in the extensional and two

transverse directions, Fig. 3.1. the strain energy functional is thu-

W (L WU,--= V'J W, 3.1.2

The kinetic energy of the yarn is simply obtained and the

Lagrangian for a complete yarn, length L, density f and rosette

area A is thus

*~-P JUr (01 V)1v A + 3.1.3
w r0

where L -, _
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and t and 3 are time and position along the yarn.

Now by applying Hamilton's principle to each. yarn, and ignoring

for a moment the end conditions, then the following equations hold with

the span of the yarns.

-:- L~iU)4.d~pu]-- u- (I+U)vv
* ~3.1.4(a)S•1('l+ul I u 1c•' v' dW IV"- .. '.1rJe. A,, ,, .lli 11*

[,T• aJ" •-r v'w w 0 3.1.,(b)
to I. =0 3.1.,4(c)

These three coupled ron-linear partial differential equations form .

a hyperbolic set with three pairs of characteristic equations. One of

"these pairs is associated with the propagation of extension waves and

propagates with the velocity •,,.,

""1 Cp =IFT+ ( 1 2E) )lp 3.1.5

where T, the 2nd Piola-Kirchhoff stress, is given by dW
dE

and d2W dT is the modulusof elasticity of the yarn. The remaining

dE M,
, pairs of characteristics propagate with the common velocity

Ct

where C is the propagation velocity of transverse waves.

At this point, a set of parameters is substituted 0olely for

simplicity and ease of development;,
9 .

7
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lot p = , U 3.1.6

and =V.$ W 3.1.7

Then E X 3.1.8

and the equations of motion become

V2-W(1+9(fr- d$~ 0"tl 9pJ!9 3.1.9(a)

4'A (I& ,-1Yý*,r# 1r 0, 3.1.9(b)

.... L '"ra•:o

-.. • A- 3.1.9(c)
•Cl " 0"

,I - 3.1.9(d)
and b-- 1 

=0, 3.1.9(e)

""--. 3.1.9(f)

This set of six first order, non-linear, partial differential equations

N will be referred to in the later section on the application of

characteristics.

3.1.2 Node Conditions

In the previous section, the end ocoiditions associated with each

yar have been ignored. They will now be considered for each yarn

"Intersecting a node and a compatibility condition for each node will be

applied.
%0

Firstly, the end variation for each yarn can be shown to be

applied it each end of the yarn.

low let each yarn originate from the node under consideration and

h now label each yarn. The natural boundary condition then becomes

where there are a yarns meeting at the node.AD
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Now let the Joint movement be u, v, w, and since each yarn end must

respond with the node, the following compatibility equations result

.Ui U, CO*Xi * V Sin'Xi, 3-1.11(a)
Vi:- vcosY ' 3. S. 11 (b) ..,-,

Wi, WO:" W:L u W,3.1.11(c):'"

' u~where •C is the initial angle orientation to the frame axis. Fig 3.3

It then follows that the constraint equations apply

t 3.12(a)

SSv, - 'o 3.1.12(b)

* tenbecme3.1.12(c)

and the node equations then become

02 .3 1.13

A-&,

aince T, 16V and YWare independent; however, since they are also

*arbitrary as they are virlual displacements, It Must follow that their

multipliers are zero and thi. node equations then become

* -0..

' *A• • =i ~ ~o, .3.1.14

If there is a point mass located at the node then these equations

"have to be re-written to take account of the kinetic energy or the Mass

located at the node n They now become

/ "
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*M ZAv ~f(I + VD ost - =

".2k M1:ZA)(I+ ,,Xu4tcos 3.1.15

3.1.3 Solution Strategy

The solution to the fabric dynamics problem, as has been stated, is

p defined by the deflections of each node or crossover. In woven fabrics.

the free span of yarn is small since the material is an array of closely

packed yarns, it is sensible to consider the node equations as equally
- 0

' - important as the yarn equations.

Consequently, the yarn equations are written in characteristics

form, and more specifically as backward going characteristics, and

meeting the node all at the same time; they now become, in difference

form,

"0,3.1.16(b)

v- (1+ ) 4-i t A0. 3.116 (c)

S •Equation .3.1.16(a) is the backward going extensional wave and the

difference operator is applied between point d and point a along the I

characteristic, Fig. 3.2 Equation 3.1.16(b) and 3.1.16(c) are applied

along the backward going transverse characteristics, 11, and the

operator in this case, is the difference between the values at point

, and point b. The time stepA t and hence the point d i dictated by

* tho condition that all of the characteristics shall originate from a

point in the free span in the yarn and not from beyond the neighbouring

nodes.

Given the point d or the time step At, the points a and b, the
0-

origin of the relevont characteristic is found by projecting backwards

from point d with the appropriate slopes Ce and Ct; however, these

slopes do change since they depend on the local strain and hence the

\/
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local deflections. An iterative process is then used to account for

"this curvature, the procedure being as follows: First, using the
.I.

conditions at the node (d ) which are known and at node a, an estimate

is made for points a and b. The values of strain and hence propagation

velocities at these points is then evaluated and averaged with those of

S-- " point d. These average quantities are then used to find a new estimate

of points a and b and the process is repeated a number of times -

(approximately five) to ensure a reasonably accurate location of the

points a and b. the iteration scheme is shown In Fig. 3.4 and Fig. 3.5

The equations 3.1.16(a), (b), (c) can then be used to search for

S-"the six unknowns of the yarn, namely pi, qi, ri and Gi, Ui, fi at the
SP0

point d. However, the velocities are constrained by the node

- compatibility equation to the global node velocities.

That is

.41.

• - v r 3.1. •17.,-:

- " =r.
Thus, at each node there are three velocity unknowns (p, q, r) and three

I deformation gradients (Qi, 0i, y i) for each connecting yarn. There are

three backward going characteristic equations for each connecting yarn

and, finally, t ere are the three node equations to complete the

solution.

- - TWo approaches for the incorporation of these nodal equations are

now considered. F rstlyg if the problem is solely concerned with fabric

dynamics without any impacting masses, the equations are firstly

differentiated and then numerically integrated.

The differentiated equations are ' "

*M L

t~ .a*...D -1 d¢lg. +

S. .. . . .. ._/ - - . •i- - .

_ _ . . -- -; - - *. . . ' .-



or in matrix form

/, . •3 . 1 . 1 9

where

3 .20

this matrix equation can be written in difference form,,

inD 0

where 1'~~superscripts D and 0 refer to the positions, Fig,, 3.5.

4

Using this approach, the problem is then well posed for numerical

"evaluation using simple matrix algebra. For each joint, the problem to ' -

be solved is the following matrix inversion:

o,.. .4jr
- I I --.

HFAI Be - g ...
Ia 3. .2 7L.

'" l I - - " -

where the matrices A, B and C are obtained from the characteristic

. equations. The rank of the above system is 3m 3 3 where there are m

"connecting yarns into that joint. Each joint can be solved, for that

"time, independently of the neighbours, and a march through the

structure will complete the solution for one time step.

i".i \/... ".7
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The problem above can be reduced by noting that

A[•;, F+ 61. =V 1.o- •= , ... m, 3.1.23

and Z LG .~3.1.24

Then ~ ~ e- P ,3.1.*25
mI

and hence &5K ELL . -A. 1,F. 3.1.26

Solving e'... for- P gives

/~~~~f p-(25'/Y [ 1  L j'C 3.1.27

The problem has thus been reduced to that of finding the inverses

of matrices, rank 3, rather than matrices, rank 3m ÷ 3.

In the case where there are impacting masses, the differentiation

of the joint equation leads to rates of change of acceleration and there

is no improvement in this formulation; instead a finite difference

.formulation of the joint equation is Used; theythus beccme

;n,,, : 3.1.28(a)

, :.:: • LA& : _.e ± W, C 3-1.28(b)

and in th case the matrix form is

. A similar mode of solution is employed to that previously described and,

in this case,

p [.E~b ~ ~E,~~ j. 3.1.30
i~:'-. I

In this latter approach, improved approximation dW, the intermediate
"dE

values of 0, 0 and and the propagation velocities Ce and Ct are

obtained by performing a two pass system at each joint. The first pass

finds approximate values for the joint motion and yarn deformation-

gradients at point These are then used to improve the approximation jD-

/., ,•, /



for the above and these improved values are then used to find better

values for the joint movements and yarn deformation gradients.

ip

3.2 LINEAR OUT-OF-PLANE TRANSVERSE WAVE MODEL

I IN

This model involves only the out-of-plane transverse wave, as all

in-plane motions were neglected. This model was developed to overcome

the buckling of the yarns which may, occur when the equations developed

k .in Section-3.1 are applied to the analysis of a fabric under low pre-

strain. The minimum prestrain above which no yarn of a fabric will

buckle increaser with the velocity o• impact.

The model Is applied to a highly stressed fabric where

dj" jW. V2 or d W.2 '7 and

d E SE

. i.. Fthe product terms are small, Equation 3.1.4(c) then reduces to

I T.v" , 3.2..
3.2.1

where T a the tension which is taken as constant. The corresponding

.characteristic equation is: -

Ct 3.2.2

Ct 3.2.3

- The nodal equilibrum equation is:

-~A.T~'; 0.3.2.14
The solution is obtained with the strategy described in Section

* 3.1.3* I. .".
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"3.3 QUASI-LINEAR OUT-OF-PLANE TRANSVERSE WAVE MODEL

In order to maintain the accuracy of the linear model described in

Section 3.2 without losing much of its simplicity, the condition that

the tension in the yarn remain constant during motion was remcved. The

relevant equations are:

-- 4 ,

CI

and the equilibrum equation

S ._ ,=0.,
/ .,

N

S /1:::

" s- q;-

V '":

• % !'-

-.,0

1' - ..

I e. .I



CHAPTER 4

FINITE ELEMENT MODELS
j-

""4.0 Introduction

The theory of the finite element methnd has been described in many

books and publications and would therefore not be repeated here.

Interested readers are referred to either the book by Zienkiewicz

(57) or the book by Irons and Ahmed (58).

There are many possible approaches to the formulation of the

equations of state of the finite elements. Some involved only one

independent field while others involve two or more independent fields.
The variational statemeats used in the work reported here involve

displacement as the only independent field.

A short theoretical background to the equations of motion is

given.

"Four different models are described. Each was developed for the

investigation of the significance of specific fabrics parameters to the

overall structural performance. The four models are:

1) A space-truss model - with crimp, slip and shear in single

layers.

2) A membrane model for single layers, as well as multilayers.

.1 3) A combination of membrane elements and three dimensional

elements to model compression and slip.

• Oo
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4) A two-dimensional, layered membrane model which allows slip

between layers, called the master-3.ave layer model.

"4.1 GENERAL BACKGROUND THEORY

In the finite element approach to the analysis of a body its volume

is divided into a finite number of subregions called elements. Within

each element (subregion) the unknown variables are represented by

"simple functions of their values at points on (or within) the subregion

called nodes. The nodal variables are calculated in a manner that

leaves the corresponding variational statement stationary.

Consider a volume V in a space defined by cartesian coordinate

system (xl, x2 , Let the nodal displacement vector U(n) U (U

U2 , U3  for node n p

The general field displacement U U(n) N(n) where there are

P such nodes and,

the matrix N is the shape function for the nth node.

The Cartesian components, ij, of the Green's strain tensor are
-41

defined as .7

It is assumed that there existzs a strain energy density function,

- , referred to the undeformed state of the body which depends only on

the components of strain tensors:- "a.l 12

To define the state of stress in the body, the second Piola-

Kirchhoff stress tensor is used, given by

n4.1.2

As in the classical theory of elasticity, it can be shown that

4.1.3

and that ,Kit



where Ckkjl are the components of a fourth-order tensor of material

properties.

The total potential energy of the system consists of

"1) the strain energy, given by U

2) the energy due to the body forces. JPF.4 dV
(f is mass per unit undeformed volume)

* 3) the energy due to surfaces forces (these forces may be non-

I conservative)

* ., .U

Applying the principle of virtual displacement, after summing up for

&Ul the elements of the body, the variational expression is:

x.;O.

The strain field, x[E u ltts ~Jis then related to the nodal

pon•s (.F -iYn the virtua

point displacement vector asE 489X .-. M)tL Uland the virtual

nodal displacement can be expressed as : and eqtn.

4.1.• as

( 0 denotes differentiations with respect to time)

i!3Since the expression within the brackets must always be zero for

any arbitrary variation of displacement,

s:I{rac:,.j.. rc,,•.. ,,

________________________________
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Equations (4.1.6) can be written in matrix form as

:..4.1.7

the column vector F is dependent on the strain and therefore changes as

I the volume deforms, while the column of externally applied forces R may

* also vary with time.

I mThe original mass matrix, [MJ, obtained by integrations, was

consistent. Thereafter, aln the non-diagonal elements in a column were

S"lumped with the diagonal. All the results presented later were

P therefore obtained using a diagonalised mass matrix. -

. To obtain the displacement vector at a timett , the central

P difference scheme is used given by

-- At W 4,. +.1.9 ."-

4.2 THE SPACE-TRUSS MODEL0

Introduction

Photographs of impacted fabrics show that yarn strain distribution

in an uncoated fabric may vary discontinuously from yarn to yarn. This

evidence points to the possibility that better results might be

obtained by modelling a fabric as an assembly of yarns, appropriately

arranged, than as a thin ctontinuum. A model of fabric as an assembly,

of yarns whose relative motions follow a pattern determined by the

fabric weave is described. The model is designed to allow the
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Influence of the initial distribution of impact load can also be

-' investigated.

""..2.1 KrAEMATICS AND STRAINS

The basic element of this model is the cable element which may be a

simple two-node rod or a higher order element. The element may have all

"the nodes lying on a straight line, or the equations of its centre line

: may be described by a specified polynomial (or transoedental)

expression. By the appropriate choice of the shape of the centre line,

crimp is modelled.

* Fig. 4.1 () abo"s an arrangement of four, 2-node, straight

elements, to reproduce plain-weave while Fig. 4.2(b) shows th"

combination of two 3-node elements to model the same weave. Fig 4.2(c)

shows a model of a triaxial weave, and rig. 4.2(d) shows a knitted

fabric model. The nodes numbered (5) and (6) are actually vertically

•va!e one another but were separated in FPg. 1.2(1) only for

illustration purposes. The same is true of nodes (7) and (8). Only one

atrin is of interest, that along the yarn.

Following Ozdemir, the distance along a yarn from the origin to any

* point is expressed as a function of the distances from the origin to the

nodes. The values of the Green Strain of the yarn based on such nodal

length is reported to be more Consistent than that obtained by the usual

methods (27).

For a 2-node element, the equation obtained by this formulation

oitncides with those obtained using the usual rod formulation.
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4".2.2 MODELLING OF SLIP AT YARN CROSSOVERS

" "The discussion will be restricted to a plain-weave fabric •ith

orthogonal yarn directions.

In the space-truss model assembled from 3-node el.ments, slip W-3
.. allowed at yarn crossovers. 1

To simplify the calculations, it is assumed that tihe t,40 nodes

representing the crossover points lie on top of one another throughosa.

the motion of the febric. This approximation is reasonable in ca.s -]

where yarn pull-through does not occur, and the• total slip is small

relative to yarn length.

A at the beginning of a time step, both the magnitude and direction

. of the frictional force opposing slip are unknown. To overcome this

difficulty a two-pass step was adopted. '

At the beginning of the first pass, the frictional resistance is

set equal to zero and2 the transverse velocities of the two overlapping

nodes and a first estimate of the direction of the relative motion are

c calculated. The frictional force is put equal to the product of the

normal reaction and the corresponding coefficient of sliding friction.

In the second pass, the frictional force is applied as an external force

each node, acting along the slip direction estimated above, but opposed

to it. Better estimates are then calculated for the magnitude and

* direction of the slip and hence of the components of the frictional

1 resistance. The second-pass is repeated a few times until convergence.

See Fig. 4.3
I o



f53

."Let the relevant equations of motion of the nodes, assembled as in

S.i equation (4317) be

-A

H-u
"* z5 ÷ F5 =5 5z (a)

M6Uz6 + F6z = 6z (b)

"MU +F = R (0 4.2.1
5 x5 5x 5zx

M 6Ux6 + F6x KR6x (d)

• sU5 + Fy it (e)"-

M5 5 + F5  R M~5
. 6U 6  6y 6y

where the prefix (K) denotes the Kth estimate.

* . The significance of an approximation mentioned briefly before will

be stated. This was the approximation involving in putting the node

(5) and node (6) of each element of the fabric vertically above one

another at the beginning of each time step, despite the cummulative slip

during the earlier time steps. ':his approach obviates the need to

determine:

(a) the actual points where the orthogonal yarns cross.

"(b) the nodal equivalents of the normal reaction and the ,

frictional resistance which act at the points which would

otherwise have been calculated in (a).

If this approximation were not made, then the value of the normal

reaction would also have had to be recalculated at every pass.

-a
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41.2.3 FABRIC SHEAR

Shear deformation, at a node, is defined as the relative rotation

at that node between a yarn and an orthogonal yarn which overlaps it at

"that node. The shear resistance, T, is related to the relative

rotation, 0, and the normal reactions at the crossover, F , by the

Ul equation:

"T = C1 , (C2  C3 *.Fz) 11.2.2

N where C1 , C2 and C3 are material and weave properties. The equation is e

"adopted from the work by Kawabata et al. and discussed in greater

* details in the next section.

41.3 THE MEMBRANE MOD

Introduction

* In this model, the fabric is treated as a thin membrane made. from

"densely woven yarns. The yarn are thin, perfectly flexible,

"incompressible rods. The weave pattern is modelled by the 'stereo

model' described by Kawabata et al. and shown in Fig. 41.41 and Fig. 145.

'".3.1 KINEMATICS AND STRAINS

"The relevant strains are (Exx, Eyy, Exy, Eyx), given by:

du 1 I~u2 Idv 2 NOw 2]

,.. d 2 2, 2 dw)2
dy 2 ~~y ~dy/ dyJ 11.3.1

[dv ~dv d dy d
/du du ,o

A 2 x o, o

Il . ,
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.4.3.2 CONSTRAINTS AND =EOTHTRY OF WEAVE

In order to satisfy the weave pattern, both force and geometrical S

constraints have to be satisfied for each element. 'This mathematically

means an addition of extra terms to the variational statement of

equation 4.1.4. Fig. 4.6 shows the initial geometry of the centrelines 6

of the intersecting yarns before deformation and Fig. 4.7 show the same

lines after deformation.

Let Exi be the strain in the plane of the fabric in the plane of

yarn 1, and the Eyy the strain along the perpendicular direction. These

strains are calculated using equations (4.3.1). Let e1 be the actual
r - / -•

strain in yarn 1. which lies in the xz plane. If the pitches in the X
and y directions are P1 and P respectively, the equations

L212 1 22on2 0 P *( Exi)2 + h92, 04.3.2•,"2 e1 )2sin21 12( 0..

- a ••3 (1 Eyy)2 + h, 2 , 4.3.3
"" L22 e2sin 2 P22 22

ar'ise from the assuMption of no slip. 140

Also from the incompressibility assumption

1,(1.)2os( 1  e2)cose2

OC03eC03 .3.41
t 1 cs10 *L2 0coe 2 0h' h |

1h 1  h 2  h1 oh 20

S.Let the tensions in the yarns be T1 and T2 respectively, then, from ;

A. consideration of equilibrum at the crossover (see Fig.4.7)

0 o coso 4.3.5
1 2.2

/,/
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At any given time, Exx and Eyy, the strains in the plane of the

"fabric can be calculated using equations 4.3.1. then, using the Newton-

Ralphson method, equations (4.3.2) to (4.3.5) are solved iteratively to

obtain ea, e2 and therefore T, (eI) and T2 (ed. The values of TI and T2

can now be used for the integration of equations (4.1.6) to obtain the

equations of motion.

o4.3.3 SHEAR EQUATIONS

Until the shear force is increased beyond a limiting value,

*relative rotations between the yarn, in other words, shear, would not

occur. Beyond this limit, the shear strain,, Exy or Eyx, increases in a

complex way which depends on the magnitude of shear force as well as the

Sreaction between the yarns, and on the direction of rotation.

,*.The model wans developed by Kawabata et al (3) and could be written

as

T + C1  T (C2 0 3 9Tcs Exy 14.3.6

where T is the shear force, C1 is the frictional constraint, while C2

and C3 rpresent the effect of elastic behaviour of the contact area.

14.14THREE-DIMENSIONAL MODEL

Experiments show that in a multilayer of fabric, the layers

closest to an impacting projectile fail first even when the layers are

identical and slip is ne gligible. Such a sequence of perforation cannot

be easily predicted if the layers are treated as thin plates.

Otherwise, a failure criterion which involves the magnitude of the

.reactio n ,between the surface of each laver may be necessary. Apart

. o , i.

-- J2'.;'"Themodl wa deeloed y gwabaa e alI31andcoul bewriten:2"
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from this observation, it has be suggested by Marom and Bodner (23) that

compressive resistance is significant to the overall structural

mechanics of layers of comparatively thin 1100-H16 aluminium sheets

and beams.

The three-dimensional model is therefore designed to investigate S

the significance of the yarn compressive strength, and, at the same time,

* the significance of inter-layer slip.

Under impact, some layers may be penetrated and separated from the -

" forward, unpenetrated layers. This model allows such separation to

occur. there is also a check for when a previously separated layer re-

establishes contact. .

The in-plane resistance of a fabric is provided by a two-
1ýV ..

49

dimensional membrane element. The interface between two layers is

""modelled by threedimensional parallelpiped elements which also provide

resistance against shear and compression. Each three-dimensional

element has zero 'mass, and its thickness equals half the sum of the

thicknesses of the fabrics on either side of the interface it

represents.

Fig. 1.8 shows the combination of elements to model three fabric

layers.

4.4.1 STRAINS AND STRESSES

For the two dimensional membrane elements, the relevant strains

*are:

7 
/

;y
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a--du

Iix + x' 2 idi 21
2B

Ey du 1 du dvj + Idy
*-. d d , 2 l, 2 21

dy 2 ['AdyI V4 "( dyj it4.Z
S+ 7 + :-d

d.: 1rd du !dv dy dw dv.

2 d 2 dydx dy dy d
From experiments, the in-plane stiffness cosficients of a fabric, 5;

along and perpendicular to the weft direction, are measured. They could

be expressed in a relation between stresses and strains as:-

Si D12  0 EXX

Syy- D 12  0 E92 4.4.2

SXY 0 0 D Exy
J .33

During the arrangement of fabrics into a multilayer assembly, the

warp direction of a layer may be laid at an angle 0 to that of the

reference layer. This angle may be different from layer to layer. It

is necessary to transform the constitutive relations so as to relate the

force in each layer and the strain in the reference directions.

The terms Dij of the constitutive r'lations in equations 14.4.2. is

then replaced by Dij (0), which are given by the expressions:

11 a D,,1 1cos 0 D2 2 sin 0 + (2D 12 + 41D 33 ) sin2  00 os 2e
S1 21 o32 -D 22 D in + D2 2 cos4 + (2D9 + 14D) sin2 e C03 a,91 1 9 11 22 1)33 )"..-

.. 2 1 x D2 1 12 + (- -+ sin29 cos 29
11D2 . 22 (D1  212  33) ""

1 1 3
D 2 3 aD 3 2 : (D11 - D12 - 2D 33 )sine cos 0+ (D12 -

D + 2D3 3 ) sin a0os0e
931 "3.

D 33  D 33 + (D11 - D12 -D3 3) sin0 cos,- (D12 .

3D + D22 D23 3 ) sine co03

4.4.3
,... ;-iS
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-4.- °4.2 STRAIN AND STRESSES FOR INTERFACE ELEMENTS

The nodal displacements are the same as for the two-dimensional

fabric elements. The important strains are: (Exx, Eyy, Ezz, Exz, Eyz)

S ."which are defined as:
4 Ie

"�"axx

y* + + 4ij r7W-

Z. dw 2 1 ( * dw

Ex I (du dAj 1 u du ,dw dv\
2dz dx1  ux d Z,

1~ . (dy dy . I dy dw * dwd )

T d-. y zzzY r z

The derived stresses which are of interest are Sxx, Syy, 5::, S=z, Syz.

they are related to the strains in equations 4.4.4 by the expressions of

* the form: p

Six C 1  C 2  C1  0 0 Exx

Syy C 1  C 2 C 3  0 0 Eyy

Szz a C3  C 2  C3  0 0 Ezz 4.14.5

Six 0 C ~ 0 ~ 0. IEI

_.,-., ££.

Sz0 0 0 0 C5

Where the stiffness coefficients C1ill C22, depend on both strain and

strain rates.

! -Y:" - •
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For unbonded, layered fabrics, Cll, C12 , C1 3 , C2 1, C2, C3 1 , C3 2

are made very small and C33 put equal to the average compressive modulus

of the fabrics on either side of tha interface. When Ezz is positive,

that is separation occurs, C33 and the other coefficients are set to

-4a very small number (10"). When the interlayer is compressed, that is.

Ezz is - ve, C 3 is set to the value stated earlier.

The stresses are integrated through the volume to obtain the nodal

load vector (Fx, Fy, Fz). In cases where the layers are free to slip,,

the resultant in-plane force, (Fx2 2)2 is adjusted, if necessary, so

that0

(Fx 2  y ,u F: 4.4.6

where 1A is the coefficient of friction.

In a bonded interface, the stiffnesses in the =v yy, and zz

directions are set equal to that of the binding resin.

4.5 THE MASTER-SLAVE LAYER METHOD

4.5.0 Introduction -

S

The model Jiscussed in the last section involved the use of three.

dimensional elements to simulate the compressive resistance of the

yarns and the slip between layers. The thickness of each fabric is

however very small compared with its in-plane dimensions: O..5mm to -

150mm by 150mm. Very many elements are necessary to keep the aspect

ratio of the three-dimensional elements low and to ensure accurate

stress results. This requirement drastically restricts the number of --

S/ -

/
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layers which could be modelled. A solution to the problem is to avoid

the use of three dimensional interface elements altogether. The

master-slave layer method is an attempt to achieve this end, and at the s
same time allow for slip between layers.

The computational procedure is similar to that used in fluid- e
structure dynamic analysis to investigate the motion of two contacting

materials which have a relative tangential motion along their

interface, but which remain in contact throughout this motion. See Ref

•44. The material lying on one side of the plane of contact is

designated as the 'master' material, while the material on the other

side is the 'slave' material. Generally the stiffer, or the denser

material, is chosen as the 'master' material. Both materials are

"divided into elements as usual, the nodes of the elements of the master

material lying on the interface are given different numbers from the --

nodes of the slave elements lying on the same surface even when some

nodes are initially coincident. The values of the variables at the

nodes of the slave elements which lie on the interface are fixed by

those of the nodes of the master elements on which they lie. In turn,

the slave nodes are deemed to exert forces on these master elementr.

"In the application of such a scheme the investigation of the

dynamic responsa of a multilayer system many modifications are

necessary. For example, the master layer t any time is the layer

directly in contact with the projectile at hat time. Since, during

motion, layers may get penetrated and separat the layer designated as "

the master layer Must be upgraded at the beginning of each %lime step to

be the layer just below the last penetrated layer. To satisfy this

requirement, a check is carried out at the start of each time step for

elem•.nts which have failed. If elements in the top layee have failed,
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then the projectile is aesumed to be in contact with the next layer.

The check is continued until the projectile is in contact with an

unpenetrated layer.

Once the master layer has been identified, as above, the next step

is to calculate the acceleration during the time step. First the nodal

"loads (Vector F in equation (4.U6)) are determined for the nodes of each

layer not yet penetrated. The external forces acting at the nodes of

the elements of the master layer, due to inertia and strains in the

"other layers, are determined. The layers are assumed to be constrained

"against slip arnd the accelerations of the master nodes are calculated.

From the accelerations of the master nodes, an estimate can be obtained

"of the acceleration of a node on any slave layer. This is only possible

because it was assumed that slip did not occur. The reaction force

between the layers is calculated at each node, and modified, if

necessary, to satisfy the frictional properties of the interface. The

acceleration of each node (master or slave) is recalculated with the

modified values of reactions.

S.5.1 BASIC PRINCIPLES : MASTER-SLAVE LAYERS

Consider the membrane elements T and S in Fig. -4.9. The element S

"lies on element T.

Let the element T be the master element and the element S the slave

element. The velocities of the nodes A, B, C and D of the element S are

• therefore determined by their positions on the element T. This

"statement is true as long as contact is maintained between the elements

without slip.

0.
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The equation of motion of the nodes of element T, following

equation (4.1.17) can be written as

M, F •.

I. The equation of motion of the nodes of element S is similarly

b~written as,

Where the externally applied force vector Ri is assumed to be only
Sdue to tthe reaction of" element T an element S.

The velocity vector of A, B, C or D is given by

iU

wriere N1 is the value of the shape funotion of the Ith node of element

T, evaluated at the position of node I of element S.

Using the approximation

It+I'
I•,

and assiming that slip is small we car, rewrite the expression (4.5.3) in

"terms ol accelerations as:

. * . .

- / ~
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By virtual work considerations it can be shown that the force HI at

: node I of element T due to the action of external force Ri at A is given

by

.N ! - NINE N1 0-3!. 4.5.6

SThe total external force a at node I is the sum of the equivalent

nodal forces,_ HIP due to the reactions on elements which share node I

"a comon node, that is

-It " !. 2  N - -4.5.7

Equation 4.5.1 can now be rewritten as

IM M - + * 4( M N•I F- 0 07 •.•5.8

the awimation variable L refers to the number of slave nodes which

4 1lie on Waster elements to which node I is common, while the variable Q

refers to the number of nodes, J, of the particular master element on,

or within, which the slave node, i, lies.

DBy this procedure, the number of unknowns has been reduced, and .

only the acceleration vectors of the master nodes need t4 be calculated.

The acceleration of the slave nodes are later evaluated using equation

I ( cw.5.e). ."r

It can be shown that the expression 11.5.8 is correct even when the.



S65

"slave layer (on which node 1) lies is not in direct contact with the

master layer, but is in contact with another slave layer whieh is in

contact with the master layer. The expression is correct fcr as long as

the velocity vector of the slave nodes satisfies equatJA (41.5.3), that

is, for as long as there is no slip between the fabrics or the

separation of one fabric from the rest.

11.5.2 APPLICATION TO MULTI-LA•ER ANALYSIS
U S

The layers are identically divided into elements, so nodes on the

lower layers are vertically below nodes on the top, master, layer. Once

impact occurs, slip generally takes place, and a node on a lower layer

may no longer be vertically below any node in the top layer. Therefore,

"in order to calculate the acceleration vector of a slave layer node from "%

those of Master layer nodes (using equation 11.5.3) the following steps

have to be taken:

S1. the identification of the elemont in the top layer within which

"horizontal projection the slave layer node lies.

2. the calculation of the values of the parametric coordinates of

the point in the master layer element (identified in 1) which is

. vertically below the slave layer node.

"11.5.3 IDENTIFICATION OF MASTER LAYER ELEMENT

"BELOW A GIVEN SLAVE LAYER NODE

The search scheme described here is, strictly speaking, only

suitable for elements bounded by straight edges. It can however be
!-
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"easily modified for use with other shapes.

Referring to Fig 4.10, the problem is to determiLne whether or not a

given point N lies on, or within, an area bounded by straight sides.

See Fig 4.11, also.

The nodes of the elements are numbered in an anticlockWise sense.

The coordinates of the rectangle 1234 which envelopes the master

element is found. If the coordinates of N, (Xp, Yp), do not satisfy the

conditions

Xmin.- Xp .Xmax 41.5.9

and Yhin $ Yp .< Ymax 4.5.10

then the search procedure is terminated.

If both conditions are satisfied, then the distance from. the node N

"to each of the sides of the element IJLK is calculated.

If point (Xp, Yp) lies within the element whose sides have end

points (X1 , YI) and (12, Y2) respectively, then

(Y1 - ! 2 ).Ip + (2 - 111 . +1.2 - 12.1) * 0 4.5.11

If this inequality is not satified by any side of the element, the

point (Xp, Yp) does not lie within the element. The condition given by

equation (4.5.11) follows from the choice of node numbering system.

o. -a .
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Once it has been shown that a node lies above an element, the next

step is to calculate the parametric coordinate of the vertical

projection of this node on the master element. This is the object of

the next section.

4.5.4 CALCULATION OF TPE PARAMETRIC COORDINATES

OF A POINT, GIVEN ITS CARTESIAN COORDINATES

The cartesian coordinate of a general point, A(X, Y, Z), on an

element can be calculated from the nodal values using the expression

A = A(W) N(n) (4 , 4.5.12 V

where the nodal shape functions N are evaluated at this point. (Note

that the slave node and its vertical projection on a master element have

the same x and y coordinates).

The parametric coordinates (S 1i91) of point I (XI,Yi), are

obtained from the solution of the equations

L_ (n) 11Cn) (4 ,Fr) ,.5.13

and @1

• 'I " •.. (n) W~)( )1851 '•

The equations can respectively be rewritten as

K (n)'
F1 (X'i = (n) N~n ~'i 4.5.15

and F 2 (s, rik) Y= (n7 N~n ~,l 4.5.16. -

The solution procedure used to solve functions F1 and F 2 are based

on the Newton's method for non-linear equations.
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41.5.5 ORGANISATION OF COMPUTER PROGRAM

The diagonalised mass matrix is stored in an array MASS.

At the beginning of a time step, the coordinates of all the nodes

(slave and master nodes) are known. The vector of internal nodal

forces, F, due to strains are evaluated by numerical integration and

"stored in an array FOR (NNODS, NVAR) where, NNODS z total number of

nodes in the active System, that is, the nodes of all the layers that

have not been penetrated or separated, and NVAR z number of variables at

each node.

Next the element in the master layer, above which a node on a slave

layer lies, is identified as described in Section (4.5.3). Let the

master element be called E. The contribution of the slave node to the

. equation of motion of each of the nodes of element E, given by H1, (see

* equation 4.5.6 of Section 4.5.1) is then summed. The coefficient of the

acceleration term of this contribution (first term in bracket, eqtn.

4.5.8) is added into the corresponding position of an initially null
O ,ONTR(NNOLA, NNOLA)where

NNOLA z number of free (unfixed) nodes in a layer.

The second term within the bracket (eqtn. 4.5.8) 1s added to the

coroes onding location in an array RHS (NNOLA, NVAR).

No that Fi in equation (4.5.6) is the transpose of the terms

stored in the ith column of array FOR(NNODS, NVAR).

The equations obtained after s:imming up the contributions of all

the slave layer nodes and completing the summation of equation (4.5.8)
i ----
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[-H L Q2 1,] X 0 14.5.17

where

L1-1 the modified mass matrix, no longer diagonal but sparce

(equivalent to array CONTE).

•. Q Vector of the 'acceleration of master layer nodes

(a NNOLAxNVAR).

C o) avector of modified generalised forces at master layer nodes

(a NNOLAxNVAR).

The equation is then solved for Q.

4.5.6 NODAL ACCELERATIONS WITHOUT SLIP RESTRICTION

This last part of the procedure involves the calculation of the

accelerations of each active (both master and slave nodes) with the no-

slip restriction relaxed. The acceleration vectors for the master

layer nodes, Q, calculated in equation 4.5.17 are used.

Two arrays are set up: RETOP (NNOLA, NVAR) and REBOT (NNOLA, NVAR).

the first array contains the vector of forces externally applied to the '

top surface of the layer under consideration, while the array REBOT

(NNOLA, NVAR) contains the forces externally applied to the lower

surface of the array. Initially all the elements of each of the two

arrays is set to zero.

The steps taken in order to calcul-te the acceleration of an
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unfixed node in any layer, starting from the top (master) layer are:

Note: The master layer is the topmost layer.

Two column vectors andfR% are set up. = Ryt' Rzt

contains the external reactions at the node due to the effect of the

layer just above.

2Lxb R yb, Rz; is the external reaction at the node due to the

reaction between the layer under investigation and the one below it.

SThe total external force at node If [It + E÷Rt 4.5.18

/

For a slave layer, is calculated using the expression

-. IuII (j) 451

where R are force vectors read from the array REDOT which must have

"been earlier calculated for the layer above that of node r. N (I)

NJ .is

the shape function of node J with respect to the element above which

node I lies. Generally, the node I lies within one element, but it may

lie on the boundary between elements. In the second case, node I could

be assumed to lie on any of the elements sharing the boundary.

For the master layer, is null since its top surface is

S * assumed free. ,WO.

"IThe components of are now stored in the I column of array

L..RE/P.

S /
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The forces at node I, on the lower surface of the layer, is calcul

ated using equations 4.1.17 and 4.5.8 are

'Rtl-" = z *iF -~L~b~i 14*4.5.20

U F,

For a slave node I, the acceleration vector UI is determined by

using equation 4.5.4 and the values of vector 9 which were evaluated in

equation 41.5.1T.

A check is now performed to see if the reaction vector

satisfies the frictional properties of the interface between the layer

on which I lies and the one above it.

The directional cosines of the normal at I, (1, m, n), are

calculated. The normal component, 1 of is given by

.li 1.Rxt + M.R n.Rzt R.5.21

and the components of the in-plane part of the vector Rt are:

Rxt - l.R-.

Ryt m.RN J

"" Rzt .c .

If the value of the normal reaction, RN, obtained from equation

41.5.21 is negative, then separation has occurred and the program is

terminated. Else, the satisfaction of the no-slip assumption is

*i checked:

The resultant in-plane reaction,
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Er sr2 r 2*r 2 4.5.22
x y z

while the maximum allowed in-plane reaction is/1 .

If Er <,ANthen no adjustment is needed to the vectort I and

there was no slip at the node I in that interval. If, however, this

*condition is violated, the components Of the in-plane reaction are

adjusted to the values:

RN' ri/Rr

R,.~ry/Er 41.5.23

LA. r? /Rr

The corrected reaction at the node 1, ca the top surface,[~ c

becomes:

LA.r,/Er m.* 4.5.241

The acceleration of node I is recalculated with the vector{t in

equation 41.5.18 replaced by 1[iR2 IC.
the vector ino strdnte th row of the array

Qodes in a layer, the contents of array REBOT are now replaced with

those of array RETOP in preparation for the repetition of the same

calculations for the nodes in the next layer. This completes the

solutions for one time step.
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CHAPTER 5

RESULTS ArID DISCUSSION

5.0 Introduction

In this chapter the numerical results obtained using the models

described earlier will be presented and discussed. The potential Use of

the different models in the accurate analysis of fabric menhanics will'

also be discussed and finally the results will be compared with those of

other investigations. Of paramount interest is the prediction of the

velocity of impact at which a given fabric fails, for a given projectile

mass. Many models have been proposed for fabric, yarn and fiber

failure, some of which are based on the strain energy absorbed by a unit

length of the yarn while others are based on the strain history of the

yarn. In Ref (54I) and (55) models of load shearing between the

constituen~t fibers of a yarn under tension were proposed. The loading

to which the yarns in a fabric am~ sub ject"d are mainly due to

extension, although as suggested in C.hapter 2,, failure may occur due to

local overstressing at a nodei The overstressing may be due to

nodal constraints or wave reflection. In order to minimise the

complexity of the analysis, a simple failure criterion Was chosen. This

condition 1s Waft when the strain at a point in the fabric exceeds the

maximum value allowed, the yarn breaks. The magnitude, of course,

varies from material to material. A fabric is penetrated when a yarn in

the region of impact is broken. Results were only obtained for

* materials whose mechanical properties were independent of strain rates.

This decision was taken because earlier reports (22) indicate that the

significance of such strain rate dependency on the mechanical response

of fabrics is minimal.
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"Only two yarn materials are investigated. They are Nylon and

Kevlar. This choice was based on the fact that these two materials are

"the most commonly used for weaving protective clothing and sheaths.

Different types of nylon yarns were investigated. Some had linear

stress strain relations, while the complex constitive relations of

others are represented by three linear sections. Only Kevlar 29 was

modelled.

- Input Data

Projectile

Radius 2.76 mm

Mass 1.1 g

The projectile is assumed to be rigid and the effect of its shape

was not modelled.

Impact Velocity

"Impact takes place normal to the plane of the fabric panel. A

velocity range of 100 m/s to 500 m/s was investigated.

Fabrics

Size The in-plane size of the fabric panel investigated in each

case was approximately 154 mm by 154 mm. This size was chosen to

correspond with that c the specimen used in some fabric

penetration experiments in UMIST.

'r ll
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The thickness of the fabric was assumed to be at 0.5 f.. tor

purposes of numerical work.

Yarn Materials:

"For convenience, the units of the yarn modulus is

Newton/strain/Tex.

Keviar 29

Modulus t 148.56

Breaking strain a 3.23 per cent

!zoil

Type A

Strain Range Modulus

0. 0 -0.05 1.75

0.116 -0.20 14.16

0.20 -0.214 1.75

Breaking strain 24.0 per cent

"-•' 0

• •. 0

be .o
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Strain Range Modulus

"0.0 - 0.1 0.629

0.1 - 0.11475 1.14

0.1475 -0.27 1.43

Breaking strain 24.0 per cent

Fabric Weight

Fabric Area Density Yarns per cm Tex of Tarns Weave

No units glnm2

Nylon
D305 240 11 .4 12.3 103 10.1 Biaxial

Nylon
D322 386 9.8 9.1 181 170 Biaxial

Kevlar
D236 351 10.8 9.2 175 175 Biaxial

Nylon 221 3.63 3.75 3.77 200 205 201 Triaxial

Nylon 483 Biaxial

-4I

-.5-

°9 - .

0.-
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• 5.1 SIMPLE OEL, RESULTS

Linear Model "

The strain expression used in the linear model (appendix 1) for

fabric with high prestrain is S

""•, (1 ÷2 p) dWo , 5.1.1
ds

.where Sp is the prestrain, Ho the transverse deflection at the point of

"Impact and a the length along the yarn.

It •an be shown that the maximum value of the slope, dW, occurs
ds.

immediately after impact. This fact can be observed from the graph of

the indentation against time, Fig. 5.1.

The maximum value of dW aY where Vp is the velocity of impact
ds Cs

and Cs is the wave speed along the yarn.

"Equation 5.1.1 can therefore be written as:

For a linear Hooken material, Cs 9 where is the yarn

°o,.. density and E is the modulus, hence:

(IEP) VP
_ _1__)_ 5.1.3• ': " .E
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In other words, the value of the maximum strain developed in the

- yarn is directly proportional to the impact velocity for a given

prestrain.

The impact velocity, Vf, required to produce fabric (yarn) failure

at strain e. is given by:

IsEIC3 E3'T 5L.1.
""f (T ;7E 2.

This velocity increases as the yarn material modulus, E,

increases, which means that fabrics made of strong materials are more

"efficient.

Fig. 5.2 shows the deceleration diagrams for three different

fabric densities at an impact velocity of 150 m/s. In Fig. 5.3 the

initial slopes of the indentation time curves are all the same for the

three fabrics, which is as expected. Fig. 5.14 shows the deceleration

diagrams at a lower prestrain, 0.002, for 2 nylon fabrics and one of

Kevlar. As expected, the deceleration is higher for Case (3). 'Fig. 5.5

• .shows that the use of a heavier fabric, Case (2), does not lead to a

reduction in the value of the maximum strain developed in the yarns,

although it leads to a smaller value for the maximum indentation, and a

shorter projectile arrest time than case (1).

*• The results obtained for the response of two fabrics of similar

. area densities, Fig. 5.2 for a 2140 gm 2  orthogonally woven nylonSg='2

N fabric, and Fig. 5.3 for a 221 gm triaxially woven nylon fabric, -

predict that the orthogonal weaving pattern provides a better

*" translation of yarn strength to fabric dynamic stiffness.
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"Non-linear Model

The expression for strain valid for large deflections which are

expected to occur in fabrics with low prestrains is given by:

It can also be shown that the ratio I o attains its maximum value
I Vo

of VP, Just immediately after time t = 0. Note that the magnitude of

"the sfope of the line from the origin to the curve at time t is WO"

C t. See

"Fig. 5.1.

-Hence the maximum strain, max, is given,

".�"Smax 2 (• t~p() . )- 9 5.1.6

The impact velocity, V., above which failure of the fabric occurs,

is given by

V. : Pp.E.((l ÷ 2s)/(0 ÷p .)2 5.1.7 o

The optimum value of prestrain, corresponding to the stationary

value of the variation of Vf with respect to S , is given by:

w - (1 . •s)/3w, where

w = •÷g)+ (1 s (1 /27 "
"3.'3 3
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This optimum conditions corresponds to a high prestrain which

would be higher than the breaking strain, • for most yarn materials

and is therefore not practically realisable.

The general equation for strain (eqtn. 5.1.6) predicts that:

1 the velocity at which failure occurs is indepeoadent of the density

(mass per area) of the fabric. This follows because the highest

strain occurs immediately after impact, that is before part of the

projectile energy is absorbed by the fabric as kinetic energy,

2 The value of the strain is independent of the geotuetry of the

weave. This is true for any weave in which the yarns through the

point of impact are straight (neglecting crimp).
4P

SFor equal prestrains, the value of the maximum strain is lower in a

"fabric made out of the material of higher modulus since the value

of Ca is higher. Protective clothing are, therefore, more

effective if made of high tensile modulus materials.

2
Fig. 5.6 shows indentation of 240 g/m2, orthogonally woven, fabric

as predicted by the non-linear model. The variation of impact velocity

at failure with prestrains is displayed in Fig. 5.7 for Kevlar and

Nylon. Very low values of prestrain which may, somehow, be easily

produced in cloths are used in the calculations.

777

/
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5.2 Characteristic Model results

A proporty of the characteristic solutions described in Chapter 3

is that it can only be succesfully applied to the analysis of

prestrained fabric. At low prestrains, buckling occurs and the

solutions goes unstable. The level of prestrain required to prevent

buckling increases with the impact velocity. It was noticed that in

Cases when the initial velocity of the transverse wave (which is

proportional to the root of the prestrain) is less than the velocity of

Impact, compressive strains are developed at some points in the fabrics

and the solution routine fails. The results which are discussed are

obtained with the smallest prestrains necessary to prevent buckling.

The effect of prestrain is indicated by the differences in the

graphs in Fig. 5.8. The results obtained by the finite element method

(membrane model) almost exactly coincides with experimental results

(56). Until approximately 1603s after impact, the deflection of a

fabric with 1% prestrain obtained by the method of characteristics is

indistinguishable from the finite element results. Zero pretension

was assumed in the finite element solution. Since fabric failure, when

it occurs, takes place early during motion, it may be predictable by a

method of characteristics solution with small prestrains.

Results obtained by using this method was successfully applied to

predict the maximum velocity at which layers of nylon can be impacted

before failure occurs.

Two schemes were used to model the impact. In one scheme, the

velocity of each impacted node was put equal to that of the v--6..

at time t a O, and th..
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the deceleration of the projectile. This corresponds to putting the

acceleration of those nodes equal to infinity at time t s 0.

In this second scheme, a period of acceleration of 10/?s was

assumed, and in this period~normal velocity of each node in the impacted

zone was put equal to 0

(= Vp sin 0 1
(t/ 0;00001) 4 "-2 .1

where Vp is the velocity of impact. Beyond this period, deceleration

occurs. The second scheme was successful, except in the high velocity

"ceses, when some of the yarns attached to an impacted node failed during

the period of acceleration. The first scheme was used on such occasions

to determine the correct residual velocity, and thence, the energy

absorbed by the fabric before failure.

Apart from the high velocity cases mentioned above, there was no

difference in the results obtained by using either scheme with the same

input data. While most of the results were obtained from solutions

involving the use of the first scheme, others were obtained u ing the

second. The solution converges as the number of nodes was incteased.

The results reported below were obtained using a 39 r 39 grid. For most

fabrics, this means a representation of about every 4 yarns by a ýingle

yarn.

Fig, 5.9 (a) shows the sequence of the deformation of a 386 g/m2

nylon fabric on impact by a 1.1 gm projectle at 150 m/s. The arrest of

the projectile took place in 262,A1 s during which the max4-:uM strain in

the yarns through the impact zone was 21.7%. The initial fabric

/7/ / ---
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"prestrain was 3%. Is is evident, Fig. 5.9 (b) that the out-of-plane

transverse wave reached the fixed edge of the panel before the

• projectile came to rest. This ,an also be deducted from the velocity

"profile, the absence of a second 'hump' in the curve of the strain

history shows that the reflected out-of-plane tratsverse wave did not

arrive back at the point of impact befcr- the projectile was stopped.

Fig. 5.10 shows similar graphs for a projectile velocity of 160 m/s.

The maximum strain in the yarn for an impact velocity of 170 ms", Fig.

:* 5.11, is quite close to the breaking strain of 24% and the fabric will

be penetrated at a slightly higher velocity.

MULTI-LAYERS o

In order to model the dynamics of layered fabric panels, by the

method of characteristics, the yarn and fabric properties of a single

"layer are multiplied by the number of layers. This method involves the

Implicit assumption that the deformation of each fabric in a panel of

"layers is the same as the next. Slip is presumed not to occur between

"layers.

"The prestrain required to prevent yarn buckling during motion was

found to increase with the number of layers in a panel. This makes the

analysis of the results more complex.

The results obtained for a simulated panel of two layers of

/"351 g/m2 Kevlar fabrics are plotted in Fig. 5.12 (a) and (b). The

impact velocity is 290 m/s. The two layers absorbed 33.0 J before

penetration. This amount of energy is close to the experimental results

• /• \
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obtained in UMIST when a panel of these two layers of Kevlar fabric,

free of prestrain, was impacted. With a prestrain of 0.0025, three

layers of Kevlar, modelled as described above absorbed 36.1J when

impacted by a projectile moving at 300 ms-. Again this amount of

energy falls within the range of experimental results obtained for the

three layers, under zero prestrain at impact.

The results obtained from the model of a panel made up of two e

* layers of 240 gm" 2 Nylon fabrics, with an initial prestrain of 3%,

impacted at 235 ms", predict a maximum strain of 26.8 per cent -about

Sthe average breaking strain for the size of the yarns. See Fig. 5.13.

For a panel made up of three-layers of fabrics, a maximum strain of 26

* per cent is predicted, with the same prestrain, when the impact velocity

* is increased to 245 ms"1 Fig 5.14 shows the profiles for the out-of-

plane transverse velocity along a yarn through the point of impact at

" five different times after impact. Also shown are the deformed shapes

of this yarn at these same times. From the graph of the out-of-plane

transverse velocity, the speed for the out-of-plane transverse wave can

be estimated, the wave being assumed to have just reached the point on

the yarn where the graph becomes horizontal.

Some results were also obtained for multi-layer panels made up of

higher density nylon fabric. The maximum strain developed in a panel of

three 386 gm2 Nylon fabrics, due to an impact at 255 ms- was 18 per

cent. The panel was under a imiform prestrain of 3 per cent. The

combined area density of. the panel, 1158 gm 2 is almost half as much

again as that of the panel in the last case, while the maximum strain

was reduced by only about 30 per cent.

;- 0
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Fig. 5.15 shows the shape, at different times after impact, of a
S83 gm"2 Nylon fabric impacted at 150 ms" Ag
483 gm An ,0 x 11 grid was used.

Fig. 5.16 shows the velocity variation along a yarn through the single

"impacted node and the shape of the yarn at different times. It could be

noted that the out-of-plane transverse %mve did not reach the edge of

the panel before the projectile was stopped. The results shown in

"..Fig. 5.15 are for the case in which the projectile was fixed to the

central node throughout the motion.

Fig. 5.17 shows the response of a 966 gm-2 fabric, (2x483), to a

similar impact. The arrest of the projectile, as could be expected,

occurred earlier than in the last case, and with a smaller out-of-pane

indentation.

/ -% 4I
Fig. 5.18 shows a typical variation of boundary force with time.

QUASI-LINEAR CHARACTERISTICS METHOD: RESULTS

The values of prestrain, above which numerical results could be

"successfully obtained for Nylon fabrics, is 10 per cent. Below

this prestrain, wild velocity fluctuations occurrel. For Kevlar

fabrics, prestrains greater than 0.02 per cent were required. This fact

makes this approximate model only useful for the analysis of highly

prestrained fabrics. For a given fabric prestrain, the quasi-linear

"model is much stiffer than the fully nonlinear model. For example, the

former predicts that a projectile fired at 150ms"1 into a 240gm" 2 Nylon

fabric would be arrested 100/,s after impact while the nonlinear model

predicts that a much heavier fabric, a 483gm2 fabric with the same

prestrain value of 10% would bring the project to rest only 140/is after

impact.7Y
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Fig. 5.19 and Fig 5.20 show respectively the results obtained

using the quasi-linear model to analyse the response of a 240 gm2 and a

386gm- 2 Nylon fabric to impact at 150ms" 1 .

5.3 FINITE ELEMENT METHOD RESULTS

5.3.1 Introduction

In this section, some examples of the daseretisations used in the

fi various finite element codes are mentioned and examples are given of the

. results obtained. Comparison is also made with a few experimental

results.

5.3.2 THE MEMBRAE MODEL --44
I.,

Firstly, the results obtained using constant strain, three-ncde,

triangular elements are described. 21.

Fig 5.21 (a) and 5.21 (b) show the two patterns of descretisations

investigated. With the pattern in Fig. 5.2 (a), compressive strains

are generated in some elements for all impact velocities when the yarn

directions are chosen to be parallel to the perpendicular sides of the

elements. The descretisation pattern was therefore abandoned and that

Fig. 5.21 (b) used subsequently. The results obtained with this mesh

was then compared with the experimental values of deformation obtained

in Ref (56). Even for this coarse mesh the predicted formation results

were close to the experimental. The need for a finer division of the

panel was found necessary in order to obtain accurate strain values.

The model was found to converge and the final mesh chosen for generating

results is the 800 element, 441 node mesh ishnn in V'4- C 1'
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The membrane model involving constant strain triangluar elements

was used to investigate the significance of:'

1 Initial di3tribution of impact load

2 Shear resistance and jamming

"3 Multilayer panels

It was found that for some values of input data, there were wild

oscillations in the value of strain at the point of impact. These

"oscillations were suppressed by the addition of a damping factor kMU to

the assembled equation of motion. The equation (equation 4L17) then

. becomes

1.4 ýkMIu +*FzR 5.3.1 '

where k is a fraction chosen to lie in the range .01 - .1.

I Two starting procedures were used. In the first, a single node

which was considered to be directly hit by the projectile was given an

initial displacement. In the second procedure, the impact was shared -*

between 5 nodes each of which is given the velocity of the projectile.

2 The fabric stiffness against shear,, as explained earlier, is-

assumed to be mostly due to torsiona. resistance against the rotation of

one yarn against another at their cr ssover. By changing the weft, or
warp, pitch it was possible to change the number of crossovers in a

given area and therefore the shear stiffness of the fabric. Using the

351gm-2 Keviar fabric, and also the 386 g-2 Nylon fabric, as test

"fabrics, both the pitch and the tex of the yarns were halved (area

/

/
'I
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density maintained constant). The results did not show any appreciable

change. This was inevitable as the shear stiffness of the fabric was

very low compared with the stiffness in tension in either the weft or

warp directions. In fact there was hardly any change in the strain

history at the point of impact when the shear stiffness was removed.

The value of the parameters C1 and C3 in eqtn. 4.3.6 are respectively
A3

3.5 X 10-8 and 0.0002. These values are taken in Ref. (3).

For values of shear strains less than + 0.174 rad (10%), the value

S.of the parametcr- C2 in the Kawabata equations relating shear torque and

, shear strain was set to 1.943 x 10" 5 gm. Above this value of shear
44 64

strain, C2 was increased to 1.0gm, that is by a factor of about 5 x 10

By this means, it was possible to prevent shear strain from exceeding

0.20., However the system as a whole became much stiffer than the

physical system. This method of modelling jamming was therefore

abandoned.

4
3 To model the response, to impact, of a panel made of a number of

fabrics, the panel is replaced by a single layer but the tex and the

modulus of each yarn in this model layer is put equal to that of the

yarn of a single fabric multiplied by the number of fabrics in the

panel. Of course, this approach is only possible when the fabrics are

all identical, and laid one over another with the weft yarns parallel..

Fig. 5.23 (a) shows deceleration of a projectile fired into a

483 gm"2 Nylon Fabric at 150 ms". The experimental results are from

Ref. (56). There was also remarkable closeness between the

experimental and the finite element model results for the transverse

deformation at the point of impact. In the experimental set up, the top

edge of the fabric is fixed while the lower edge is loaded by hanging
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weights. The prestrain produced in the yarn is estimated to equal

0.0022. In the finite element model, the prestrain is put equal to
-i

zero.

At the same impact velocity of 150 ms,-1 the projectile was stopped

by a 351 gm" 2 Kevlar fabric in 170 s. The maximum strain developed at 7

the impact point was 2.7 percent 135,As after impact. The maximum

transverse deflection of the fabric was 1.6 cm. It is instructive to

compare the response of this Kevlar fabric with that of a Nylon fabric

Of similar density, a 386 gm" 2 fabric. The Nylon fabric brought the

projectile to rest in 353/s. The transverse deflection at the impacted

node was 2.97 cm. The maximum strain in the fabric was 0.17 which is

about 70 percent of the breaking strain of the yarns. See Fig. 5.24.

This maximum strain is a smaller percentage of the breaking strain of

the yarn than in the previous case where maximum strain attained was

about 84 per cent of the breaking strain of the Kevlar 29 yarns. It can

be noticed from the shape of a quarter of the fabric, displayed at
-44

different times, that the faster in-plane wave was reflected from the

boundary before the projectile was stopped. Experimental results show

that the shape of the transverse indentation is rhomboidal, this is

reasonabl'y in agreement with the results, especially in the first

200, s after impact.

Fig. 5.25 (a) show the deformed shape of two layers of 240 gm" 2

Nylon fabric impacted at 200 ms- Again, it can be noticed from the

distortion of the grille drawn on the fabric that the in-plane waves

have been reflected from the boundary before this time. The strain at

the pcint of impact, Fig. 5.25 (b) shows the second 'hump' when this

reflected wave arrives back at the impact point.

/4
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The model predicts that a panel of two layers of 351 gm Kevlar

fabric will fail if impacted at 270 ms". This is an underestimation,

most likely, of the impact velocity at which failure occurs, as a single

"layer is penetrated only above 250 ms". However, the energy which is

preoicted to be absorbed before failure, 34.7 J is close to the

experimental values for the energy absorbed by the 2-layer panel at high

velocities.

Finally, a comparis.on is made between the results obtained with

the membrane model involving constant strain, triangular elements and

another model involving 8 mode quadratic elements. As will be shown

later, the results obtained using the quadratic elements are generally

' very close to the experimental results. Fig. 5.26 (a) shows the

variation of normal strain with time, at the single impacted node, using
24

the two different elements, for a 351 gm2 Kevlar fabric impacted by a

1.003 g projectile at 350 ms . The calculations involving rectangular

elements were stopped immediately the yarn exceeded its breaking strain -4.

Sof 3.2 per cent, while that involving the triangular elements were

continued. There w-s appreciable difference between the variation of

strain in t'"e two models. In Fig. 5.26 (b) the two set of results for

projectile displacement were almost coincident. These results typify

5• the general behaviour of the membrane model with triangular elements.

While it predicts the central deflection of the fabric with reasonable

accuracy, the strain values are poor. The poor strain values result

from the requirement that the strain does not vary within an element.

A second disadvantage of this model is the spurious oscillations

which have to be supressed by the addition of damping. *.-s advantage is

that, relative other codes, particularly the program based on the

method of characteristics, it uses very little computer running time.
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5.:3.3 CABLE ELE•ENTS: RESULTS

Introduction

"The results obtained using either the 2-node element or the 3-node

element showed oscillations which were damped as described in the

section on the membrane model. Only few results are therefore

presented.

The 2-node elements were used to model different fabrics of size

152 by 152 mm. A standard 39 x 39 orthogonal representation was

used.

A circular piece of fabric 152 mm diameter was modelled using the

3-node cable elements.

Single-point and multiple-point impacts were simulated.

" The simulations of crimp effect was found difficult as the

*' numerical oscillations increased rapidly when the magnitude of the
-6

crimp is increased from zero.

An attempt to allow yarn slip when using 2-node elements was

abandoned due to too numerical instability.

Fig. 5.27 shows the strain history at the centre of the 240 gm" 2

-1

fabric impacted at 150 ms"I. The projectile came to rest 3051 s after

impact, showing that the model is stiffer compared with the membrane



92

"impact of the two layers of a 152 mm x 152 MM square piece of Kevlar 29

fabric. In either model, the fabric was under a prestrain of 0.005.

While the values for the central out-of-plane deflection predicted by

the two methods are reasonably close: Fig. 5.28 (b), there are large

differences in the predicted strains. It however has to be remembered

that the yarn strain plotted in Fig. 5.28 (a) for the 2-node model is

for the maximum strain in the yarn at any given time. This maximum

value may occur in the weft yarn through the centre at one instant and

occur in the warp yarn at the next instant. However the fact that no

crimp was included in the characteristic model en3ures that the equal

strain occur in the four yarns connected to the impacted node.

*-" The results shown in Fig. 5.29 (a) and Fig. 5.29 (b) are obtained

using the 3-node cable element. Only a quarter of the fabric is

modelled, and the model has 1592 nodes. The oscillation of the strain

values could be noticed in both cases. Slip was allowed in the first

fabric, and a coefficient of frictions of 0.5 was used. The percentage

"of an incident wave which is reflected from a node is maximum when the

yarns are rigidly connected. The percentage which is reflected for any

given value of friction coefficient lies between this maximum value and

zero. This is why the strain at the point of impact is higher when

rigid crossover connections are assumed. Yarn failure and fabric

penetration is therefore likely to occur at a lower impact velocity when

the yarns are rigidly connected.

On the whole, the rod elements are stiffer compared with either the

membrane (triangular element) model or with experimental results.
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5.3.4 THREE-DIMENSIONAL ELEMENTS: RESULTS

Fig. 5.30 shows the descretisation used in a model involving the

use of 3-dimensional, 8-node parallelopiped interface elements and 4-

node membrane elements. Only a quarter of the fabric is investigated

because of the symmetry of the problem. Fig. 5.31 shows the

"discretisaticn used in another model in which the 4-node membrane

elements of the former model were replaced by 9-node rectangular

* 'elements. The details of the interface elements in this second model

are shown in Fig. 5.32. There are four interface elements covering the

surface of each membrane element such that the nodes of the membrane

element coincide with those of the interface elements. During motion,

interpenetration of the curved membrane surface by the straight edge-

of the interface element will occur away from the nodes. This

approximation should not affect the results sugnificantly as the

interface elements are only introduced to produce a resistance and do

not correspond to any physical material. A single point integration

point is used for the 3-dimensional elements; which means the

"generalised reaction forces on the nodes on the top surface are equal

Sand opposite to those of the nodes on the lower surface. 2 x 2 Gaussian

"integration scheme is used for the membrane elements.

It was not possible to successfully obtain results when any of the

three dimensional models are used to model a multilayer assembly for
-1

impact velocities higher than 160 ms , even in this range the

numerical results obtained are not reliable. The numerical

difficulties arise from the critical nature of the compressive

resistance of the interface elements to a successful code

implementation. Experimental data of the relationship between the yarn
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not available, and therefore arbitrary values were used. If the assumed

compressive modulus is too high, the projectile is prematurely

arrested. If the modulus is too low, on the other hand, the downstream

layers do not provide any resistance, and some interface elements will

flip over, that is, their depths become negative. However, the

"difficulty may not totally stem from the non-availability of

experimental data.

"A solution to this problem would be to make the marching step

iterative and treat the nodal forces due to the compression of the

interface elements as a sort of 'reaction' forces. At the beginning of

the step, a first estimate is made of the nodal acceleration at the

beginning of that step and the new nodal position vector and nodal force

vector are calculated. Generally the forces at the nodes would not

balance. The requirement that the upward reaction on a layer above an

interlayer element be equal to the downward reaction vector exerted by

the same interlayer element only the lower layer would not be satisfied,
'U

in other words. The nodal acceleration vector is then adjusted until

the magnitude of the difference between the vectors falls below a fixed

limit This modification of the code was made unnecessary by the

success of the master-slave method, described next, is modelling the

mechanics of multilayer panels.

5.3.5 MASTER-SLAVE LAYER METHOD: RESULTS

Initialy, the method was tested in a model involving 4-node

"rectangular elements. Each layer was divided identically and the

central node in a layer is given the same displacement to stimulate
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impact. The method was found to converge with an increase in the number

of elements into which a layer is divided. A test run was carried out

with a panel of two layers. One layer is a 240gm"2 Nylon fabric while the

"second is a 351 gm Nylon fabric. The panel was impacted at 500 m"-

"In the first run, the lighter fabric was put in frot (nearer to the

"2projectile) and in the second, the position of the fabrics were

\ reversed. In each run, the projictile penetrated the panel, 24/4 s after

impact, with a residuml velocity of 457 ms"I. The coincidence of the

results of the two rn=s confirms the stability of ths procedure.

The influence of the frictional resistance between the layers was

checked for values of coefficients of dynamic friction between

0.0- 0.03. Frictional resistance against interlay slip, or the

surface treatment of the fabrcs, did not significantly affect the

S•. overall structural behaviour of the panel for this range of frictional

coefficient.

For a single layer of fabric, it was found, that the membrane model

"based an 4-node element always ,redicts that fabric failure occurs

earlier than experimentally observed. The difference is, partly,

because the linear nature of the variations of variables within the

4-node element prevents an adequate variation of strains. The assumed

strain variation pattern which results from the differentations of the

". displacements cannot accurately model the rapid change of strains which

cccurs in the fabric; especially in the area close to the impact point.

The model therefore predicts higher yarn strains. The result is that,

the breaking strain is reached too early during motion and failure

occurs at low impact velocities, for example, a projectile striking a

351 am- 2 Kevlar fabric at 500 ms-1 is predicted to have penetrated with



96

To improve the prediction of fabric strains, 8-node elements were

subsequently used to obtain results comparable to the available

experimental results. Nodal strains were calculated from strains at

integration points by the use of a least square smoothing routine (59).

Still using 4 -node elements, the ability of the procedure to

model the separation of layers during motions was tested. A tuo-layer

panel of a 386 gm" 2 Nylon fabric and a 351 gm- 2 Kevlar fabric was

modelled. The resistance to interlayer slip was put at zero. In the

first run, the Kevlar fabric was put nearer to the impacting projectile.

The Kevlar fabric was penetrated ICi s after the start of motion when

the projectile speed has been reduced to 492 ms-'. For the remaining

part of the motion, the projectile was in contact with the Nylon fabric ~. °
which then moved away from the penetrated fabric. The second layer was

penetrated 14)A s later when the breaking strain of nylon was reached.

The residual projectile velocity was 459 ms"- In the next run the

nylon fabric was put nearer to the projectile so that seperation does

not occur throughout the motion, although the Kevlar fabric failed when

the strain at the centre of the panel exceeded 0.0323.

0

Fig. 5.33 shows the deceleration curve ard the change of vertical

displacement at the impacted node for a 240 gmO Nylon fabric impacted

at 150 ms" . The 8-node rectangular elements were used. Although there

are no comparable experimental results, the numerical results seem

reasonable.

The strain values were improved by the use of 8-node rectangular

elements. The residual velocity with which a 1.0 g projectile with an

initial velocity of 500 ms"- leaves a 351 gm"2 Kevlar fabric was
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predicted to be 472 ms". The energy absorbed by the fabric, 13.6 J,

"compares well with the value of 14.6 J which was obtained

experimentally in UMIST for an impact velocity of 512 ms-1. The

variation of the energy absorbed with velocity is very weak at such high

velocities.

The posibility of modelling multilayer panels as single layer

* panel was also investigated. This was achieved by multiplying the tex

of the yarns and the fabric density of a single layer by the number of

layers in panel. This implicity involves the assumption that each layer

"deforms identically to the other, which means that inter-layer slip is

insignificant. This approximation is reasonable at high velocities.

Experimental results obtained in UMIST (Textile Technology) (61) showed

that while 9 layers of 240 gm- 2 Nylon fabric are totally penetrated by a

projectile travelling at 405 ms"-, 10 layers are not penetrated even

when the projectile velocity is Increased to 407 m3-1. With the

approximate multilayer model Just explained, it was predicted that

whereas 10 layers of the fabric are totally penetrated at a velocity of

420 ms-, while the projectile is stopped when the velocity is reduced

to 400 ms

Fig 5.34 shows the variation of the energy absorbed before

penetration, for increasing numbers of 351 gm' 2 Kevlar layers. Both S
the experimental ."esults and the numerical predictions are shown.

In general it is observed that this approximate method of
-0

modelling multilayer panel produces results which are very close to the

experimental results. However the difference between the numerical and

experimental results increasesas the residual energy approaches zero.
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In this region, the si3e of fabric is Just enough to absorb all the

initial energy of the projectile. The contact time between the

projectile and the fabrics, especially the last layers, is then

relatively high and some factors, neglected in the approximation,

become significant.

"The master-slave layer method, with allowance for interlayer slip,

that is the system described in section 4.5, was successfully

implemented using 8-node rectangluar elements. However, solution time

was found to be multiples of that required for the same problem when

"slipping was suppressed. Most of the extra time was taken in the search

subroutine and in the calculation of the normal components of the

reaction between the layers. Also, as explained in section 4.5, the

modified mass matrix (eqtn. 4.5.17) is then no longer diagonal and has

to be inverted. The only condition in which the original method need be

"used instead of this more efficient approximation is when the effect of

fabric slip is under investigation or when panel is assembled from

fabrics of different materials. Under these conditions, the panel may

not be replaced by a single, equivalent, fabric.

40
"Because of the storage and execution time advantages of the

"approximate method, it is to be preferred to the complete master-slave

* layer method, except under special conditions.

Experlmen.al result. (37) show that it is more effective, in a two

layer panel, to put the denser layer upstream instead of downstream.

the difference in effectiveness cannot be predicted by this model. This

is possibly linked to the fact that influence of localised yarn

compression on yarn rupture is neglected.

\6

"-..
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On the whole, this model can predict, with reasonable accuracy,

the mechanics of the response of multilayer fabrics to iinpaat.
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CHAPTER 6

1• CONCLUSION

6.0 Introduction

The accuracy and usefulness of the different models in predicting

the VSO, which is defined as the speed at which 50% of the projectiles

fail to penetrate a test panel, is discussed in this chapter. The

computer times required to obtain numerical methods by these methods

are compared.

1• 6.1 The Simple Variational Method

Although ths computer units used in solving th3 equation is small,

results are only obtainable for fabrics with high prestrains. While the

1 method is useful for comparing different fabric weaves, it is not

suitable for obtaining the V50 of a panel.

1 6.2 Nodal Impedance Analysis

This analysis may be useful in predicting the relative advantages

of different fabric geometries, as far as their response to impact is

. concerned. However, the suggestion by two earlier investigations is

that crossover effects may not significantly magn&fy strains as

considerable slipping occurs (61), (62).

6.3 Method of Characteristics

This solution requires the maximum computer time, for a given

- fabric and projectile, of all the approaches and methods used in this

inver'tigation. Apart from this disadvantage, a high prestrain which

increases with the impact velocity is required for its successful
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"implementation. The use of this method should be restricted to

providing a basis for comparing different fabrics as it is too expensive

for regular usage.

6.4 Finite Element Solutions

* The various models are treated separately.

"(a) Rod elements - (2 node and • node)

"These produced well-conditioned results, with no oscillations for.

some fabrics. But oscillations occur, especially for Kevlar fabrics.

This model provides a means of investigating the effect of rigidity of

yarn connections at crossovers. However methods of supressing the

strain oscillations have to be introduced before the model could be used

in production. The model based on 2-node rod elements makes the most

efficient use of computer time, compared with all the other models.

. . They also provide an approximate approach to assessing the effect of

crimp.

(b) The 3 node (triangular) membrane Element

" . This is an accurate model for investigating the mechanics of a

single fabric layer. While the results are well-behaved for most input

data, oscillations have to be supressed for some input data. The model

is quite efficient in computer time usage. It is useful for different

weaves of fabric and also for knitted fabric.

(c) The 3-Dimensional Model

Further work is required to render this model usable for routine

design. The solution might be to replace the two-dimensional membrane

elements by 20-node parallelopiped and remove the interface elements.

Wd) The Master-slave layer method

This model involving 4-node rectangular elements produces poor

predictions of V50 values. However it is useful as an inexpensive way

K Of a•dvirici tho Ii 9Ah^I'q AIP 4v+4*...1Ifatw a14i'l
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Better results are obtainable by using 8-node rectangular

elements. However the running times are high# compared with either

* that involving 3-node triangular elements or 4-node triangular

elements. This code is useful for routine calculations.,

.6.5 Factors affecting overall behaviour of fabric

Only a description ratheir than a quantitative comparison of the

significance of the various yarn and fabric properties would be given.

In-Plane Shear

*Shear stiffeners, seem to have little significance on fabric

performance until its value is high enough to reduce the ability of the

yarns to absorb the pro 4ectile kinetic energy as longitudinal strain

energy. This will happen when a very stiff coating is applied to a

-. fabric. Otherwise the change in fabric shear stiffness obtained by

washing may not be significant.

Crimp interchange

The descret13ation has not been fine enough for definite

3 conclusion~s on the significance of crimp interchange. Its effect on

fabric performance may vary with the impact velocity.

Friction

Increasing the friction of yarn crossovers will increase the

percentage of reflections at nodes, and will therefore reduce fabric

effectiveness. Friction between layers does not seem to be very

significant close to the V 0 since penetration occurs before

appreciable movement of the panel can take place. The influence of

frcingeeae heat on modulus and breaking strain was not
* evaluated.

Size of yarn and pitch

The tex of a yarn seems to affect the value of its breaking strain
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while its crimp varies with pitch, for a given tex. Apart from these

indirect effects, neither the text of a yarn, nor the pitch in any

direction, seem to significantly affect fNbric performance.

Bending stiffness of yarn

Although some earlier investigations conclude that yarn bending

K"" cannot be neglected if the mechanics of fabric behaviour at low strains

is to be accurately modelled, the results obtained show that the

influence of bending may be of second order to the overall ta6ric

"effectiveness.

K
*~6

/°

I.

I.___
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6.6 Future Work

(1) The condition for yarn failure which was adopted here is the

simplest possible. Since the order of arrangements of two fabrics has

been round to affect t.eir efficiency in absorbing impact energy, it is

likely that yarn compression affects the longitudinal strain at which a

yarn ruptures. The relationship should be studied and incorporated

into the failure condition u.3ed in any numerical method for predicting

V50 values.

(2) The attempts to model a fabric with yarns which can slip. during

motion has not been very successful due to numerical oscillations of

yarn stra in. The development of an alternative method should be

investigated.

4
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APPENDIX 1

Wavefronts in Triaxial Weaves

"Prediction of Wave-Front

Leech and Mansell (31) have shown that the wave front in a

transversely impacted orthogonally woven fabrics is rhombiocal.

Below, it is shown that for a plain triaxial weave the

propagation front is hexagonal. The repeated ceLt of this fabric is

shown in Fig. A1.1(a).

The equation of the sides of the hexagonal are

31 L2 "$1 S2 ,A1.Ia
; t • - -- t 2 --C 2 'C "

t- 4 S 4 1 r 11
C 2  C3

• t• 2 ÷ 3 2 " 3-"

"3 3 3 1 -S3 31
t a- - C t -- AIcC3  1  C3  C1

where S1' S2 and 33 are the coordinate in the directions of the

yarns (Fig. A1.1b) and C1 , C2 and C3 are the transverse wave velocities

in the respective dfrectior.j.
4

A similarity type of solution W(t 1 Sl,-r2 ,s 3 ) 2 Wo(-)W ( ) is
31 S2.
~12

introduced where f rr f' the r3gion where S, > o 0,
1 2

S2 09, S3•_ 0 where Wo is the displacement at the point of impact.

See Fig A1.2.
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x

"The coordinate 1 i is perpendicular to the wavefront and V = o at

the impact and x : 1 at the wavefront Fig. A1.3.
Sq~~r t2C1C2 2 thinreta

The excited area A 2 and the incremental area,

dA J7 i2 1dj

T, the kinetic energy ot the material in area dA behind the wave

front, at any time t, is given by,

T* m ~ 4W~) dA, A1.2F P2, P3) 7bA

1' are the mass fractions of the yarn families (1, 2 and

3). The total kinetin energy for the whole deformed is

T a (C C3  *2)t1 [Wo2 1  ÷ 2 W ° I 2I -A1.3"

t".1 2;

where 1, WILd¶, and 12 3L dI

Note 1') denotes differentiation with respect to r and (")

differentiations with respect to time. 6

* The expression for the strain at one point in the yarn 3, is

2. 6

where S is the prestrain and is the slope along the yarn at

that point.

6. °



.-,'.-:- - - "

For a linearly elastic material, the resulting strain energy

"".•sh (1 s) f 1 a 1 dA, Al.4

A

Sumed up for all the familiarty strands in the area. E is the Young's

modulus of the sth strand and h5 is its average thickness.

Assuming highly stressed triaxial fabrics with small identation,

* the system is now linear , (< and the strain energy

becomes,

8U= [) A+ ,SaAl

or

'"C ICa.

whe ereI.

The initial kinetic energy of the projectile is W¶ W ihen this -

is added to the total energy of the fabric and Hamilton's principle is

II" ~~~~applied, the result is the equation ofinotion: ..... . . .i:

* j3m(C C 3 ÷+C2C + 3C 2 )t I ]Wo 2f :(C
1C3 +c2C1 CC 2 )t 1 Wo

"J3m(C1 C +C C+C C)M - 12) Wo = 0 , A1.6

where m z07, C~

.4



The equations can be nondimensionalised by introducing the factor

""s t and ,to get

_2 X1. •3 *(I1 -12)

(1 - 2 ) Wo" * 2 Wo' * I1 WO =0 A1.7

whiereu c 2 "2 C3 •iC 3 ) and

m ( + C ,Cq 
+ 

. C_ 
, _.[•.-.: ,. C~et, oI / Cot..=•t: ••

'..4

Equation 3.7 is very similar to the expression (I * • 2 )Wo" 2 7Z

.Wo' *t WO = 0 obtained for sall indentation of an orthogonally woven

"fabric (31) where

3+11 2

The only parameter which affects the response of the orthogonal

fabric for a nondimensional velocity of impact, is S which is

dependent only on the grouping of integrals while for the triaxial -I

fabric X also depends on the ratio of the yarn stresses.•

fabric is obtained by the application of Hamilton's principle with the

expressions A..3 and A1.4 incorporated and is as follows

//



(t -w ' - W0 + ~.jk:tEILl*. -.

7.°%

•" 2. no •wo' 3  W,- o

w hr Ici T

C.. C1C 2 + C 2C 3

:.)ClC 2 +C 2 C3+CCwh e 1 C2C3  , C C + CC + CaCt

S CC 2 C2 C3 -C3 C1

mass fraction of the s1, s2 and 3 strands respectively.

1 2
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APPENDIX 2

Theory of the Method of Characteristics

Theory,
Consider a single filament, Fig. A2.1, with displacement

L

functions, u, v, w relative to its initial constraint-position. The

displacements a.-e functions of x, the running coordinate along the

undisplaced length of the filament, and t the time.

To allow for large deformations, the strain, t , is defined as

°.,

(Note: hp denotes the differentiation of h with respect to x).

"The kinetic co-energy and the strain energy can be written as:

L 2 2.
Ta 1W + ,, d)( 9 A2.2

0J

L Ac 2
-U E dX

9 I 2

where A is the cross-sectional area of the yarn and E its Young's

modulus, and f its density.

Applying Hamilton's principles, the differential equations of the

motion of the string are:

-E

Utt 2 (1÷.)2 .(1 + )Ui X (1 * U,p ) =0 A2.3(a)

x xiI



V tt- ( + ()2 j9% *V .' -0 A2.3 (b)

W't E -~.2 (j1. )W,%)( + 9 Ox 0 A2.3(c)i.:. ~(1.+.)

These equations are conveniently reduced to a system of six

quasilinear hyperbolic equations by the introduction of the following

terms:

P a U,t , q V,t , r w,~t

," U, , 2 V, , w ,x

Further at a point on the filament, the vectors Z, W, and p are

defined as

Z • p , W _ a , -P
q - inA2.4
r -q

These 6 equations are now written in matrix form as

"Z t + AZ x_ O, A2.5

where A is a 6 x 6 matrix. .4

Equations A2.3 are the equations of prop,3ations of signals or -

disturbanoes along the filament.

"Equation A2.3(a) models longitudinal wave motion while A2.3(b) and

A2.3(c) are the equations of propagation of waves in the two transverse

directions.

i; 
.
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Chararteristic theory is now applied to equation A2.5 to obtain/
"the characteristic equations of the single yarn. These are:

dx C J/
"along dt e e ="alog, ." 1A2.6(a)
I U_ (W)dZ 0 ,

dx
along C- A2.6(b)

I 2(W) dZ z0 ,

• '.z 2(w) dZ . 0 ,26d
14

along = CT 7=l /p(1_a )2(e:.- .... .... .. A2.6 (c)

II* U (w•)z = 0 ,

14 (w) dZ 0 . A12.6(f)

:'" ~dx i"
• •-. along dt = CT --- e-ý7 ÷

• .. A2.6(e)"
i: f" U5 W).Z_ x 0

• :-•.U6 (W).Z =C. A2.ý(f)

In each of the equations, dZ is the change in the vector Z along

the characteristic curve see Fig A2.2, while

"1 1 U 1,2 ..... 6 are the 6 left eigen vectors of the matrix A

(equationA).. 12).

"", It is to be noticed that the velocities of propagation of the

'a trans,;erse waves Ce, CT are dependent on the strain and so vary with time.

Also Ce 13 CT for all values of e. of interest.

' - --



The eigenvectors of the matrix A, equation A2.5 are%

: U 1 = U2  [(1 e0), 0, A e(1 .o), Ae O,Ae'7T A2.7

U3 =U 5  = 0, (1 + 0), O, O to, At( 1 ÷ 0), O0j A2.8

"U" U6  0 , - +1 9 0), 0, t9 , - + 0) , A2.9

the equations A2.6 are now rewritten as

(1 + ) APi ÷j• 0A,, + + Ce(1 +) + Ce+Aei )

c. e 0 (I extensional) A2.1o

0 * 
4 Pi -(1 + 0) + Ct 0 AG0 Ct(1 0 *) i 0 A2.11

"(11" characteristies-inplane transverse).

-'Ap +-(1 0) ,i + A , i c•T 0 () 0 A2.12
ri* o C.:-0:~V~:

(11" eharacteristics-out-of-plane transverse)

4b
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Determine ZAZcby
interpolating between
the ends of each yarn

,-'.v- - - - - - -:- -. :- - --

St-

II

Put Ze 17cZO) 2!

Repeatl Zt z (ZA+ ZO)
foreach Ue Ut(Ze) I !

I Yarn I Ut-Ut(Zt) I.
I • t + A,

Repeat, I ut CZC using

each, i_ _ _ _ _ _t_"

joint i Set up characteristic It c
equations using UtUe j. I _ _ _ _ " I i

Set up equilibrium ' For e
equations using Z= (Z÷o P t

I put Pt Pt+fJt

Integrate numerically to I
obtain strains at joints end F - -.

of each yarn and the i For each yarn
velocity of the joint Pf Wt=Wt,+t

I Irem=m÷1 I•' '
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Data: Tri linear nylon. ep=0-0Q3, Vp=245 ms-'
3 layers. Area density = 3 x240 gm
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