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ABSTRACT

This paper presents a review and extension of methods for deter-
mining the effects of sting oscillations on the measurement of dynamic
moment derivatives, based on linear as well as nonlinear models. It is shown
that two of the linearized methods will reduce to the same result, applicable
to low-lift configurations and suitable for on-line data reduction. The loca-
tion of the effective axis of rotation is determined for a model executing
planar oscillations in two degrees of freedom. The equations for the effect of
plunging on the derivatives due to angular oscillation can be simplified by
relating the sting deflection parameters to the co-ordinate of this axis. There-
fore, both the correction of the measured derivatives and their transformation
to the reference centre can be accomplished after a single measurement is
made, namely the location of the effective axis. The requirements for
performing sting plunging corrections for aircraft configurations at high
angles of attack are discussed.

p.. ,

RESUME

On prdsente une revue et extension des mdthodes lin~aires et non
lin~aires qui prennent en ligne de compte l'oscillation du dard support dans
la determination des d~riv6es de moments a6rodynamiques instationnaires.
On demontre que deux methodes linearisees se confondent et peuvent etre
employe~s dans le cas de portances faibles tout en se pr6tant au ddpouille-
ment simultan6. On d6termine la position effective de l'axe de rotation d'une
maquette mue d'une oscillation i deux degr~s de liberth dans un plan. En
reportant les param~tres de la translation du dard support i cette origine on
simplifie les 6quations comportant l'effet du mouvement de pillonnement
sur les d~riv~es du mouvement angulaire. 11 s'en suit qu'apr6s une seule
d6termination, c.a.d., celle de la position effective de i'axe, on est en mesure
de purger les ddriv~es exp6rimentales et de les rattacher i l'origine. On traite
de l'importance d'extraire i'ing~rence du pillonnement lorsqu'un adronef
est i hautes incidences.
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SYMBOLS

Symbol Definition

reference length

CL lift coefficient

CL. aCL/aa

CLq aCL / a (qF/V-)

Cm pitching moment coefficient

Cme Me/(q- SJ)

Cmq aCn/a (qF/V-)

CmQ aCm / aa

°Cm aCm/a (dciV,)

D, Dz  linear damping constants

Iy pitch moment of inertia

K, Kz  linear spring constants

m model mass or effective model and balance mass

M aerodynamic pitching moment

Me harmonic excitation moment

MP moment applied to sting at the pivot

" Ms  moment measured by sting bridge
S-°,

q body axis pitch rate

q- dynamic pressure

S reference area

t time

V_ freestream velocity

* x axial body co-ordinate

Xcg centre of mass location relative to pivot axis

z wind-fixed pivot co-ordinate
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Symbol Definition

Z aerodynamic normal force

a angle of attack

a mean angle of attack

increment

szo structural plunge damping

szo = cDI/(V m)

"00  structural pitch damping

":" 600 = ZD/(V-ly)

A amplitude

*.z/

pitch perturbation angle

K [ fy(m 2) ] 1/2

P m/(p- SU)

~x/c"

p- freestream density

r = (V- /c)/t

%) phase angle between excitation moment and pitch oscillation

(DZ phase angle between translational and rotational motions

*W angular velocity

W reduced frequency D = o/V_

WZo natural frequency in pure translation

,. *, = ( /V,) (Kz/m)' /2

O, natural frequency in pure pitching

Oo. = (F'/V-.) (K/I 1l/2

frequency dependence of structural damping
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a accelerometer

"c centre of rotation

cg centre of mass

f pivot or flexure

OFF wind off
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MEASUREMENT OF DIRECT MOMENT DERIVATIVES
IN THE PRESENCE OF STING PLUNGING

L
1.0 INTRODUCTION

It has been demonstrated that appreciable errors may be present in pitch damping derivatives
determinted using sting-supported models if the effects of sting plunging are not accounted for (1 .2
This is especially true in tests involving bulbous-based bodies( 3) where very thin stings have to be used
to minimized the aerodynamic sting interference, and in high-a tests of aircraft configurations where
significant sting deflections are unavoidable. Fortunately, unlike aerodynamic sting interference, sting
plunging effects may readily be accounted for. The sting plunging phenomenon has been approached
alternatively as a one degree-of-freedom (DOF) linear 2), a 1-DOF nonlinear(I ), or a 2-DOF linearized
problem(l ,4). However, in spite of these efforts it seems that sting plunging corrections are as yet not
universally applied, perhaps as they might have the appearance of being awkward to implement. For
this reason a critical review of the available techniques is of interest.

In this paper it is shown that the analysis due to Burt and Uselton( 2 ) may be extended to
obtain equations for the effect of translational motion on measured pitch damping which are in
agreement with Ericsson's linear analysis(I ) and that both of these methods can be verified.

An expression is derived for the location of the effective axis of rotation for a model under-
going a pitch-plunge oscillation and subsequently used to simplify the equations for the correction of
the moment derivatives. The implementation of the required corrections in pitch/yaw oscillation
experiments is discussed with particular reference to testing of aircraft configurations. Methods are
suggested for determining independent corrections for the derivatives due to pitching and plunging,
Cm q and Cm &. Although the discussion is confined to the pitch plane derivatives, the analyses are
are equally valid in the case of the 0 derivatives, Cnr -C, 4 cosa and Cn,,; however, the latter is usually
less of a problem since the corresponding sting deflections are normally much smallei than in the
pitch plane.

2.0 GENERAL CONSIDERATIONS

The effects of sting translational motion on measured stability derivatives are manifested in
three different ways:

* (a) The reactions from which the moment derivatives are obtained contain translational effects.

(b) The location of the axis of oscillation is a function of the plunge amplitude.

(c) The model angular orientation changes with sting deflection.

Unless these effects are accounted for in the data reduction procedure, the quantities determined
cannot be regarded as fixed-axis derivatives. The objective is, therefore, to determine the true single-
DOF oscillatory data in the presence of sting motion.

Figure 1 illustrates the geometry of the model/sting system deflected under aerodynamic
and inertial loads. Using the terminology defined in the nomenclature, the model angle of attack is

= + 0 + tan- i(V cos&(

The question is now, how complete should the equations used in the correction process be?
Using the Lagrangian formulation, Hanff and Orlik-Riickemann( 5 ) derived the equations of motion for
a balance having two rotational DOFs and later Haberman(6 ) developed a model of a 3-DOF balance

.- . - -.-.. .-. _. . .-.. . .. . . . . . . . . . . . .. . . . . . .
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and included two DOFs of the supporting sting. Billingsley7) describes a treatment based on the
lumped parameter concept for a multi-DOF system. Since the assumption of n DOFs results in n
simultaneous second-order differential equations, which may have to be solved numerically, the
additional complexity introduced by the requirement of more than two DOFs cannot be justified in
routine corrections to conventionally measured direct derivatives; rather, a closed form expression of
the equations of motion is a prerequisite here.

Closed form solutions may be obtained for a 2-DOF system when appropriate simplifying
assumptions are made. For instance, assuming linear aerodynamics and snliall amplitudes, the differ-
ential equations of motion for a model oscillating in the pitch plane, where q = 0, may be written

IU + D0 + KO = M'" +M66 + M00 +Mi"+M; +Me(t)

(2)

mi+D z i+K z z Zb'+Z- +Z 0 +Zi +ZY

The complete 2-DOF equations may again be too complex for the present purpose. Upon
further simplification, a set of coupled 2-DOF equations may be obtained, having a solution of the
form

0 = AO0 ei( w t-(b)

(3)
z = Azoe izP-[O/AOo]

In reality, this motion has only one independent DOF. An equivalent but simplified form is obtained
by integrating the moment equation alone and assuming a coupled-z constraint in this 1-DOF system.

0 = Ao0 cos(wt)

(4)
z = Azocos(wt+ Dz)

Equation (4) represents the ultimate simplification of the dynamics of the system, in which the fact
that the sting may move independently of the model is ignored. Nevertheless, Equation (4) could give
acceptable results when the oscillation frequency is not critical (w, > 2co).

3.0 REVIEW OF EXISTING TECHNIQUES

A literature survey revealed the existence of only three publications, namely those due to
Ericsson(I ), Burt and Uoelton( 2 ) and -anu( 4 ), dealing explicitly with the analysis of sting motion in
dynamic stability tests, 6ich will Jiscussed in detail. The 2-DOF nature of experiments involving

.. sting-mounted models has rw n r. ,gnized for some time. For instance, Thompson et al( 8 ) obtained
oscillatory derivatives direcuy after treating the model motion as having two DOFs at the onset.
However, since the equations of' motion are not solved to account for the sting motion per se, this
report is not of direct interest here. Moreover, the corrections for sting oscillations in experiments
involving nonplanar motiors( 9 ) are not considered here.

A - .' " - ". . . . . .. "
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3.1 2-DOF Linear Analysis - Canu(4 )

In his analysis, Canu utilizes the linear 2-DOF equations, equivalent to Equation (2), in
operational notation. The equations are transformed to an axis in a frame of reference for which the
2-DOF system reduces to a single-DOF system. In so doing, the method accounts for the effect of
plunging on the oscillation axis in addition to its effect on the aerodynamic reactions. The point along

. the longitudinal axis for which the system reduces to a single-DOF oscillation is obtained by testing at
".* two different frequencies. Subsequently, the derivatives Cm  , Cz, Cm q + C,, and Czq + Cz are

transformed to the reference centre of rotation, implicitly assuming that the dynamic derivatives are
independent of frequency.

Although Canu appears to have correctly accounted for the effects of sting plunging on the
measured derivatives, the viability of his method has not been demonstrated, at least as far as the paper

-. reviewed is concerned. While the data reduction equations used appear to eliminate the effect of sting
plunging on the measurement of the static derivative Cm . for the AGARD-B model tested, their utility
in the case of the pitch damping Cmq + Cma is not so obvious. As might be expected, the scatter in the
damping data determined at different frequencies vanishes when the data are referred to the effective
axis of oscillation, but it is surprising that there is little or no difference between the uncorrected
(conventionally determined, 1-DOF) and corrected data.

While it is possible that the moment ascribed to the shift in the axis of rotation could balance
the moment due to sting plunging at a particular frequency, this condition is not likely to prevail over
the range of frequencies tested, particularly since the derivatives were assumed to be frequency inde-
pendent. Moreover, although the method is suited to on-line data reduction, this advantage is negated
by the requirement for testing at two frequencies. For these reasons the analysis due to Canu will not
be pursued in detail.

3.2 2-DOF Linear Analysis -- Ericsson(1 )

In contrast, Ericsson's linear analysis appeared quite sound and could subsequently be
verified in detail. Assuming linear aerodynamics, Ericsson obtains a general solution to the 2-DOF

-equations of motion (Eq. (2)) in the form of Equation (3). It is also assumed that the sting deflection
angle is small, i.e. 0 = Of (see Fig. 1). The specific form derived by Ericsson is relevant to the present
discussion, viz.

O(r) = AO ei( T-
4)

*. '(T) AO e'¢ zo(r)
AO

ACm Cm o~

me 2 52 CmaC// ) 1' A O - -O o .. /C a 2

U'K K2 ( zo2  a2)2 + Cj2 6zo _ (5)

'_j

F C 0  2 1/2

Cmq CL 0  
_K

2  (Co o2 -j
2 )

.0+ 52 0 - + -- )2

((Z ZoK (o2 - 2)2 + Cj2 +---+



, - ,: . . - _.. . o - . . . -. --.

.4-

( r CL0 Cnio. ,- ~1 Cq+*~~2 (A,o2 - p2)1
A0 C 2 - 2 )2

F sin- AO2 2 C 60 0 +

AC, l J (o_2 )+2 + )C 2
(,3 0 ZO

A0 p L - + ( + Ct)j (cont'd)

CC L" 7

cn di 2 tio ns + on +

-A)2 z + (-o2 1 2 )

iCL- CLo.

4"z = sin- )
(:32 [ 0]' -z 2  . )2 + 5,j2 ( 6z °  )+ 1 1

:" The analysis is then specialized to the case of low lift configurations, assuming that the

ftaerod ynamic a2 as mechan ical damping are negligib le compared with the critical damping, to
obtain the following expressions for the moment derivatives in terms of wind-on and wind-off
conditions

-mq Cm C'1a 15zo02 C .2) 2 + CL Z; 22

AO \ /L.

r~zo - (2 2 ~a, 2 1/2

IC2-632 + C,-2 (6z + P- 
(6)

ACO sin. "C - sin (11
'1A O _ 0o 1 A O0 C ON

t If the factor 2 is included in the nondimensional forms, e~.qE/(2V_), which is more common practice,
~corresponding factors of 2 will appear in the equations for Cmq.
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Cm 0, = Cf1Q ( ) 2 2 
1) 

2

L (CL,,/

(61

= O- O + MOS t I

In further simplifying Equation (6), a somewhat ambiguous part of Ericsson's p~aper
followed. Accordingly, a comment is included here in the interests of clarification. Returning to
Equation (5), it can be shown that

CL \L

Cos Pz = 2] ./2 t 2 (7)
1 + CL2(zo 2 

- 2)2 + W2 (Z0 +
C

Since the structural and aerodynamic damping have been assumed to be small, 6 ,) + CL /,U = 01 32

and CLq/CL. < 1.Thenfor 0(D, * W,

C ,zo2 - j2

C o s 4 z c 0 2 - C 2 2 1 / 2( 8 )CO~c~~ =[(032 _ 032)2] I/2(8

where terms of 0CV4 ] have been neglected. The Equations (6) yields

Cnq; C,q ~**ciia Cos 4f)1 (9)AO

Equations (8) and (9) will be in agreement with the results presented by Ericsson (Ref. 1,
Eq. [11]) if the signs of cos , and of the term (A'/AO)Cm a0cos 4), are changed. The net result is, of
course, the same in the two cases. The correctness of Equations (8) and (9) may be verified by re-
turning to Equations (5), whence it may be shown that

A o" = [a (o2 - 02) 1 + C 2 C2 6 + .10

C1 (c-z 0 2 - C2 C. 2,"AO cCs1. 2 (10)

?Z (C3z 2 )2 + 02 )6 +__
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When substituted in Ericsson's Equation 191 and using the above assumptions, Equation (9) is again
obtained. Also note that the values of (P, obtained from Equation (8), 4z 0 for Dzo 0 >C and
bz = ir for C3. 0 < W, differ from those given by Ericsson.

The correct form of the approximate equations for the effect of plunging on the fixed-axis
moment derivatives is then

Cnqz Cmq AO C COS4z

-... (11)

AO AO

I Izo 2 - 121

( 5 . D rCZ0<C

Thus, with the exception of the small discrepancy noted, the entire linear analysis due to
Ericsson has been corroborated. In summary, Equation (6) may be described as a solution to a coupled
pitch-plunge system applicable to low-lift configurations when the amplitudes and reduced frequencies
are small and the damping negligible. On the other hand, the approximate Equations (11) represent
the solution to a single-DOF system of a model oscillating in pitch subject to an equation of constraint
for the plunge mode, of the form of Equation (4), which is implicitly restricted to noncritical sting
natural frequencies. Implementation of Equation (11) could be based on measurements of w and

,, or preferably, A , AO and 4),, using appropriate sting instrumentation.

Ericsson's conclusions are also correct; for instance, that for subcritical sting stiffness, the
. sting plunging will increase the measured damping Cm and decrease the static stability. This observa-

*' " tion agrees qualitatively with the results presented byburt and Uselton 2 ) if the sting stiffness used
in that test was, in fact, subcritical. However, it should be noted that neither Ericsson nor Burt and

* Uselton accounted for the shift in the axis of oscillation and therefore the comparison is inconclusive.

3.3 1-DOF Linear Analysis - Burt and Uselton( 2 )

* The basic premise in this analysis is that the lift forces may be ignored so that only the
moment equation need be considered. The plunging enters this equation only in its effects on the

*. angle of attack (Eq. (1)) and in a mass unbalance term. The single-DOF solution therefore consists
of a linear pitch equation and a plunge equation of constraint similar to Equation (4). Then, setting

* in addition, M. = AM, cos(wt + (b), and assuming the sting frequency is noncritical (sin(b, 0), Burt
and Uselton solve for the derivatives to obtain

4i

).:.... . " ' ".". -,", " . : . ,,. . , : -. .:.. • i . .- "" - .. "*"
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MQ Azcos 4', AM, sin (1
::. + D -

V_ ®cosa A0 wA0
Mq + M A,

1+ -- Cos 4'
A0,

(12)
:A0 AM, Az

K AG cos z - K + -- cosIP + mx,,w- - cos(

.- M s = K ---- ) - AG
1 + - cos (b/K AGt

A term in M has been neglected in the expression for M,.
The sting oscillation parameters AG, cos 4), /AG, and Azcos 4), /AO may be expressed in

terms of the dynamic moments sensed by the sting and balance instrumentation and the sting deflec-

tion constants.

cos ---' - cos4'
\ P/M % Mp

Cos, -K am(

[ parameters in terms of the dynamic force and moment at the pivot, assuming that static force data
.* are available. Thus, in this case, the force equation of motion is introduced after the solution has been

: obtained. These expressions were verified in detail together with the foregoing analysis but, being
. quite cumbersome, the equations will not be repeated here.

#.. Since the mechanical damping, stiffness and mass unbalance terms appear explicitly in
h. Equation (12) the sting plunging corrections may be applied without additional tare measurements
"* provided appropriate calibration tests are performed. The quantities to be determined include the
*~ balance and sting calibration constants, structural stiffness and damping and the sting deflection

constants. Therefore, although this is essentially a simple method, the requirement for preparatory
measurements could be considerable. As shown in the next section, Equation (12) can be reduced to a::: form compatible with Erics son's results, which is more conveniently incorporated in an existing data

~reduction procedure.

~Strictly speaking, the method is not applicable to aircraft configurations since it is based on
a single-DOF solution which ignores lift forces. Nevertheless, for sufficiently high sting frequencies
{((o > 3wJ) the approximation could be acceptable. This should be borne in mind when considering
the AGARD-C data presented by Burt and Uselton. Moreover, as pointed out before, the analysis
under discussion does not account for the movement of the effective axis of oscillation. Therefore, the

- possibility that the good agreement reported between the corrected C, and their static test counter-
parts might be fortuitous, cannot be ruled out. Mere specifically, it is shown in the next section that

,.: urr nd seltn'sconclusion that sting plunging will lead to deficient static stability measurements is
"' circumstantial, and probably originated in the effects of a mass unbalance.

.
sam
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3.4 1-DOF Nonlinear Analysis --Ericsson( t

When the oscillation amplitude is not small and significant aerodynamic nonlinearities are
present, the analyses described above could be quite inadequate. Ericsson addresses this problem for
the case of a blunt cylinder-flare body, assuming that the lift is locally linear and the pitching moment

- can be approximated by

CII - ACre, + CI (14)

A single-DOF motion of the Form (4) is assumed and, upon evaluating the energy integral for one

oscillation cycle, the following result is obtained for the effective damping coefficient

& 2 1 2

C q -- C IIacosl, I + - - (15)AO 7T AO

where a* = AC, S/CQ and cos (b, is defined in Equation (11) (note that the same discrepancy is
present here regarding the sign of cos (II,). For obvious reasons C,,,,g, cannot be obtained in this
manner.

This result is based on the same set of simplifying assumptions common to the linear
methods; only the restriction of linear aerodynamics has been relaxed to accommodate an assumed

..-' form of the nonlinearity in CM . Therefore, when the nonlinearity is removed (ACres = 0), Equation (15)
should reduce to Equation (11), which it in fact does. However, unlike Equation (11), Equation (15)
ignores the lift forces on the model, a circumstance which has its origin in the constraint of 1-DOF as
in Equation (4). This solution is, therefore, only valid for a rather special case.

Two conclusions may be drawn from these observations. Firstly, the nonlinear approach
* •described may not have any real advantage over the approximate linear corrections (Eq. (11)) in tests

at high angles of attack, where the lift coefficient is likely to be highly nonlinear. Secondly, it is
expected that in most instances involving aircraft configurations, the 2-DOF linear equations (Eq. (6))
could be more useful than the 1-DOF nonlinear analysis in its present form. These conclusions

*notwithstanding, Ericsson's results provide a valuable demonstration that the effect of sting plunging
can be larger in the nonlinear case.

3.5 Summary of Restrictions

* In summary, the linearized analyses due to Ericsson(I and Burt and Uselton( 2 ) are particu-
larly useful within their legitimate bounds of applicability and are suitable for on-line data reduction.
Certain assumptions are common to all of the methods considered, including rigid mounting, structural
damping small and independent of static loads and frequency, and low lift and oscillation frequencies.
A summary of restrictions is presented in Table 1. Only the 2-DOF analyses of Ericsson ( ) and
Canu(4 ) are applicable at near-critical sting frequencies and, with the exception of Ericsson's nonlinear

* analysis, the methods are based on linear aerodynamics and assumed small oscillation amplitudes.
Canu's analysis determines the effective axis of oscillation but this is not discussed in the other two
papers. The effective axis of rotation may be determined geometrically(' 0); an appropriate method is
introduced below.
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4.0 EXTENSION OF THE ANALYSIS

4.1 Comparison of the 1-DOF and 2-DOF Linear Methods

The utility of the analysis due to Burt and Uselton' 2 ) can be enhanced through manipula-
tion of Equation (12). First of all, assuming that AO, < AO,-, (i.e. AO = AO), the following relations
may be written for wind-on and wind-off conditions:

M"' Azcos 4)z  /AM,
Mq + M D = sin 4)

V cos& AO

(16)
(AM,

D -- sin 4,7.-. A0 . c)0)N

since D was assumed to be unaffected by static loads. Then, writing Mq for Mq + Me;

AMC LJO 1 1
q2" ON (-A- sin ())

OFFI 0 ON

i.e.

- M. Az
M-" q q COS(b, (17)
" -V,,cos& A0

Similarly, if the variation of stiffness with applied force may be ignored, 6K = 0 and

Ma' + K F2 - w21 +m w -- Cos~ (AM Co
2o ONNo0(0 1WAOA O N

Then, since w2 = K/Iy

2 rAZ csI 7  AMC
a + ON IY + mXCg AO AO ON

W2 +cosl -K= - - cos (l)O.12Oi l y + mx '9 A O AG / o



- 10-

Then

Az

M0 mxc -Cos,co) -O IH 1: 1 IV(21 . W 2. AO ON 0-N

(AMe AMC
+ cos -\ - Cos F

01 AOON

i.e.

M = M. + mx, -- cosF (4N -Cos) (19)

IAO ( "N 01

Hence, the only contribution to M0 , - M, is that due to unbalance. The fact that Equation
(19) is independent of aerodynamic forces is the consequence of neglecting such forces in the equation
of motion. Moreover, the important conclusion drawn by Ericssson ( l ) that sting plunging will, in
general, lead to deficient static stability measurements cannot be deduced from the analysis of Burt
and Uselton.

On the other hand, in the case of the damping derivative it may be shown that there is a
measure of agreement between the two techniques. In coefficient form, Equation (17) becomes

Cmqi A0Cmq - Cn, cosz (20)

which is in agreement with, although less complete than, Ericsson's approximate equation (Eq. (11)).
• .Unlike its counterpart in Equation (11), A /AO in Equation (20) does not explicity contain CL.. The

following result is obtained from Equation (19).

Cmoz = Cma - 2/it (cg o - ; 5 2 cos *z,

(21)

2 ( ,, - O)+ (Ame ) cos 2 '01 cO)" 01: I A ON

Equation (21) reduces to the form of Equation (6) for the trivial case where t= 0 and CL, CI_ = 0.
Hence it may be concluded that the methods due to Ericsson( 1 and Burt and Uselton(2) will yield the
same results at identical levels of approximation.

4.2 Transformation to the Effective Osciulation Axis

The effective axis of oscillation in a pitch-plunge motion may be derived from the sting-
model geometry depicted in Figure 2. Using the pivot axis as the origin, the location of the axis of
rotation, x,, is obtained in terms of the angular deflection and the displacement Aza of a point x. on
the model axis (which could be the location of an accelerometer).

- -



~-11 -

,.'A z Azi,
- - A = sin(A0 r + A0') (22)

.. C Xc  - X awhence

"p.

xc = Aza/sin(AO f + AO) + xa (23)

Therefore, the rotation axis is displaced a distance xc along the model axis given by Equation (23).

Note that xc could be measured directly, for instance, by optical means. When such meas-
urements are sufficiently accurate, the following simplification becomes possible. Assuming that
"" 0, which is perfectly reasonable when the sting is relatively rigid as in most dynamic stability
testing, and since AO AOf is small, Equation (22) yields

_xC

- - (24)
-.A0

Then Equation (11) reduces to the simple form

W, < 6

Cmqi Cmq -+ .cCmc

(25)

Cmoz Cm0 1- (c )2]

Equation (25) does not involve any new assumptions since AO = AOf is already implicit in Equation (11).
It is, therefore, possible to apply approximate corrections for the effects of sting plunging, even when
no sting instrumentation is available; however, the practicability of direct measurements of xC might
be limited by experimental constraints. Consider, for instance, the expedient of visually locating a

.. nontranslating point on the model. The reading could be taken from a scale on the side of the model
to an accuracy of perhaps ±0.5 mm, provided that xc does not fall beyond the extremities of the
fuselage or wing tip. The restrictions associated with this approach are included in Table 1.

Normally, it will be possible to balance the model well enough that any residual mass offset
might be ignored. When a large unbalance has to be contented with, the effects on C," might be
estimated from the following expression derived from Equation (21)

ai Cmoz : C m 0 ± 2 ysc$ 20  - O ) 1) N (26)0 0 >C

" Subsequently, the measured moment derivatives may be transformed to the reference centre at the
pivot using the standard relations for transformations between different axes( I ). However, this

*procedure is unsatisfactory in the case of the dynamic derivatives, introducing a requirement for
additional tests at different centres of rotation.

i ; : ., ... ....... .. .- .. ... ... . , . .. . . . . . . .. - .... . .. ...
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4.3 Dynamic Testing of Aircraft Configurations

Translational acceleration and dynamic coupling forces and moments become significant in
dynamic tests of aircraft models at high angles of attack, necessitating more complete analyses of the
sting-model motion. It would appear that, in most cases, a 2-DOF solution valid for high-lift conditions
would be adequate in the data reduction for direct derivatives. This implies that, for instance, C,

* would be formulated independently of C ..q and, therefore, also individually corrected for sting
motion. In the presence of pronounced nonlinearities, such a 2-DOF solution could be inadequate and
if nonlinear aerodynamics should be incorporated, it is likely that a numerical solution would be
required. Thus, an on-line correction for sting oscillation might be ruled out in general high-a aircraft
tests, even for the case of the direct moment derivatives.

The reliability of closed-form solutions for the estimation of sting motion effects is further
impaired by other effects which cannot easily be modelled. For instance, all of these methods yield
steady state solutions where <3, A0 and A are constant for a particular test situation. This is quite far
from reality in high-a aircraft tests, where the response may be of a highly transient nature due to
dynamic flow behaviour. Such a situation could, perhaps, only be handled through real-time numerical

-. integration, to continuously correct the deflection vectors sensed by the balance.

In spite of these complications, it might still be possible to obtain reasonable estimates of
sting plunging effects from simplified expressions. For example, extending the analysis of Reference 2,
the following relationship may be derived

2 AMe
(K 1 + M + ---- cos

VCos& 2w0  A AO 2
Ma =  - 6 + xcgmw2 (27)

W2 
AZ Cos (DzAO

This suggests that a correction to Cm& could be obtained in terms of Cm. However, it is not clear
whether reasonable accuracy could be achieved with a procedure based on Equation (27).

A discussion of cross-coupling and acceleration derivative measurements is beyond the scope
of this paper. Nevertheless, it should be noted here that there is a singular lack of knowledge of sting
interference/interaction effects on such measurements. The problem could be approached using
generalized co-ordinates but since a minimum of three DOFs would be involved, closed-form solutions
will again be ruled out. Instead, the sting motion should be accounted for in the data reduction
equations obtained from a formulation such as that due to Haberman( 6 ).

• .4.4 Alleviation of the Sting Oscillation Problem

*. The complete elimination of motion of a cantilever beam subjected to oscillatory loads is
clearly impossible; nevertheless, there is considerable scope for minimizing sting oscillations. Firstly,
consider the contribution of sting plunging to the damping moment. It follows from Equation (11)
that

Cmqz_ Cmq Cm0 Ci " 1 Zo
(28)

Cmq mnq P )2 , j2 I I(Z2 (Z21
IC) 70

, . .
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For a subcritical sting and stable model, the minimum damping contribution is achieved as /o 0;
this becomes

Cmqi - Cnq Cnia CL.

Cmq Cnmq Co2

On the other hand, at an arbitrary supercritical sting frequency, Czo = cC where c > f; Equation
(28) yields

Cmqi - Cniq Cmo CLa

Cmq Cniq W2 (c 2 
- 1)

Therefore, the undamping contribution due to plunging of a supercritical sting is always
smaller than the subcritical damping contribution, provided that Zzo > ,/2C. When > > 3C),
which is fairly common in dynamic stability tests involving acceleration or cross coupling derivative
measurements, the ratio is smaller than 1/8. Thus, by designing for maximum sting stiffness compatible
with permissible sting/model base diameter ratios, it may be possible to obviate the need for sting
plunging corrections, at least in the case of the direct derivatives.

Finally, it is noted here that the application of certain new concepts for dynamic stability
testing(9 ) could, to all intents and purposes, eliminate sting oscillations in the pitch-yaw oscillation
mode. The principle of orbital fixed-plane motion makes it possible, inter alia, to generate pure pitching
and yawing motions. Under these conditions the angles of attack and sideslip are invariant, which
means that the static aerodynamic forces produce a fixed static deflection relative to body axes, and
only the second-order, dynamic forces and moments would tend to contribute to sting oscillation.
The implementation of this concept could, therefore, provide a solution to the problem of sting
oscillation effects on the cross and cross-coupling derivatives due to pitching and yawing as well as the
corresponding direct derivatives.

5.0 CONCLUSIONS

The contributions to the moment derivatives measured in small-amplitude pitch/yaw oscilla-
tion tests due to sting plunging are, in general, reliably accounted for in Ericsson's linear analysis for
low-lift configurations(' ). The more simplified analysis due to Burt and Uselton( 2 ) could also yield
acceptable results for low-lift configurations and noncritical sting frequencies (WZo > 3w). These two

* methods reduce to the same result at identical levels of approximation. The approximate form of
Ericsson's equations are particularly useful in on-line data reduction; the accuracy of the results so
obtained would be increased if the sting deflection parameters could be measured (suitable sting
instrumentation would comprise a strain gauge bridge and one accelerometer).

It is important that all of the effects due to sting motion are accounted for; namely, the
effects on the derivatives, the effective axis of oscillation and mean angle of attack for which they are
determined. The location of the effective axis of rotation of a model executing pitch-plunge oscilla-

*tions may be determined by the method described above, using the measured sting deflection param-
eters. Subsequently, the measured derivatives may be transformed to the reference centre.

'I
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It is shown that the introduction of the effective axis of oscillation into Ericsson's approx-
imate equations yields a simple form which may be implemented even when no sting instrumentation
is available. The correction of the measured derivatives, as well as their transformation to the reference
centre, can then be accomplished if an accurate external measurement of the axis of rotation can be
made.

Although the methods discussed are, strictly speaking, not applicable to aircraft configura-
tions, it is expected that, judiciously implemented, Ericsson's complete equations will be acceptable in
most test situations. Moreover, when significant nonlinearities are present, Ericsson's nonlinear analysis
might be used with an appropriate, assumed form of the nonlinear pitching moment. However, it
should be noted that most of the assumptions implicit in these techniques tend to be violated in
high-a testing and it is, therefore, recommended that further research be undertaken to obtain a more
general description of the phenomenon, even if its ultimate form is not conducive to on-line data
reduction. The altogether greater complexity of data reduction procedures based on multi-DOF
models of the sting-balance-model system must be considered necessary in future forced oscillation
experiments designed to obtain more accurate measurements of dynamic cross and cross-coupling
derivatives.
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