
ADl!-A1JI27 5 64 HARDNARE AND SOFTWARE IMPLEMENTATION OF RN INTERFACE i/i
BETMEEN THE UNrBUS AND THE GENERAL PURPOSE INTERFACE
BUS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR

UNCLASSIFIED A H BLOCHER MAR 3 F/G 9/2 N

smhhhhhmol i
EhhhhhhhhhhhhI
smhhhhhhhhhhh

I'll'

"IIIIII2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

*/0i
_ /

NAVAL POSTGRADUATE SCHOOL
Monterey, California

i 4
THESIS

ftrdwa-e and Software Implementation
if an Interface Between

the '-ibus and the General Purpose
Interface Bus

by

Ayers Haden Blocher IIIC)

C-J March 1983

Thesis Advisor: Kenneth Gray,

- Aoproved for public release, distribution unlimited.

83 ,

.~~~, .,

UNCLASSIFIED

SECURITY CILASSIVICAION, OF ThIS PAGE (Whea Data intered)
REPORT DOCUMENTATION PAGE 'READ INSTRUCTIONS
REPORT_______________PAGE_ BEFORE COMPLETING FORM

I. REPORT HUMG9PI ". GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (pdg"ePI.) 1. TYPE OF REPORT & PERIOD COVERED

Hardware and Software Implementation of an Master's Thesis

Interface Between the Unibus and the General March 1983
Purpose Interl:ace Bus r PERFORMING OMO. REPORT MER

7.-AU NO aC. S. CONTRACT ON GRANT NUMBER(J)

Ayers Haden Blocher III

9. PERFORMING OqARIZAT ON NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AREA & WORK UNT UMEERS

Monterey, California 93940

II. CONTROLLING CPFICE NAM4 AND AOORES 12. REPORT DATE

Naval P-.)stgraduate School March 1983

Montere/, California 93940 13. NUMBEROF PAGES
68

I4. MON1ITORING AGENCY -ANE & AOORESS(it diffeune from C;-relfing Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS. DECLASSIFICATION/ DOWNGRAOING
SCHEDULE

11. bIsTnIeUTIOW Sy.-TEMEk r (of se Reort)

Approvedi fzr ptblic release, distribution unlimited.

I. DISTIDUTION IT.,ITEM6[N 1" (of 2im ab~tmI enteed Am 55* 20. if diffent trom Reiprt)

Is. SUPPL9EMSTARY NOTES

to. KEy WORD$ (Cam0100in. ~er evieede tiueoea 008m O idemifi by Weekh rsner)

GPIB; HPIB; Interface; Unibus; Computer; POP-11; DR11-C; Satellite

20. AYROACT (Candemu an reverse side it meeaew amd U*Iifty by S&flonmib.)

The Satellite Communications Laboratory at the Naval Postgraduate
School uses a PDP-11/34A minicomputer to develop software in support of
a satellite signal monitoring system. The General Purpose Interface Bus
(GPIB) interconnects several general measurement devices used in support
of the laboratory. The laboratory uses these measurement devices for
diagnostic and simulation tests related to research in the satellite
signal monitoring field. This thesis discusses the development of the

DD , 1473 aw-nO OF 1 Nov ss esatayzT7 2 EDS N 0 IMOS. 014O E 6601UNCLASS I F I ED
S/N 0102- LF 0146601 I SECURITY CLASSIFICATION OF THIS PAGE (When Dote fRnterea'

UNCLASS I FIED

SIECUNITY CLAWFIPCATIOM OF TwIS PAGE (Wben Da Ent0m*0

hardware and software interface between the PDP-11/34A Unibus and the
GPIB. The interface permits high level language programs under the
control of the Unix operating system (version 6) on the PDP-11/34A to
access any device on the GPIB.

INSPECTED

5 N 0102- LF-014- 6601
UNCLASSIFIED

I 2 ECURITY CLASSIFICATION OF TMIS PAOS(ften DOWa Entetod,

* *.

Approved for public release, distribution unlimited.

Hardware and Software Implementation
of an Interface between

the Unibus and the General Purpose
Interface Bus

by

Ayers Haden Blocher III
Lieutenant Commander, United States Navy

B.S., University of Alissouri at Rolla, 1972

Submitted in partial fullfillment of the
requirements for the degree of

MtASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
iarch, 1983

Author:e4

Approved by: A4V A

Acond &eaaer

Chairman, Department of Electrical tngineering

DeaA of Sience and Engineering

3

ABSTRACT

The Satellite Communications Laboratory at the Naval Fostgzduate

School uses a PDP-11/34A minicomputer to develop software in support of

a satellite signal monitoring system. The General Purpose Interface Bus

(GPIB) interconnects several general measuremen: devices used ir. stpport

of the laboratory. The laboratory uses these measurement ae1 -.?s for

diagnostic and simulation tests related to research in the saaLlite

signal monitoring field. This thesis discusses the development of the

*hardware and software interface between the PDP-11/34A Unibus aJd the

GPIB. The interface permits high level language program. urde: the

control of the Unix operating system (version 6) on the PL*-II/3+A to

access any device on the GPIB.

4

TABLE OF CONTEN;TS

I. INTRODUCTION ------------ ----- 9

A. RATIONALE FOR INTERFACE DEVELOP1-ENT------ -----.....------ 10

B. INTERFACE DESIGN DEVELOPMENT- -------- 12

II. UNIBUS AND GPIB CHARACTERISTICS -------------------------- 13

A. UNIBUS ------------------ ------- 13

B. GPIB --------------- 13

1. Data Transfer -....------- --------------- .-- .---- 16

2. Handshaking--- 16

C. SUiMlIARY--------- -- 19

III. HARDWARE IMPLEIENTATION - -- - -------- 20

A. DR11-C INTERFACE ---------------------------- 22

"ii. Registers - - --- - - - --- 122

B. CCI BUFFER/DRIVER BOARD ------ ---- 23

1. Connectors-23

2. Signal Inversion and Feedback ----------------- 7

3. Wiring Systemn-29

C. SbU-ARY OF HARDWARL IMPLEMENTATION---- -------- 32

IV. UNIX OPERATING SYSTEM ------.------------------------ 33

A. GENERAL ----------- 33

B. Unix 1/0 - - - - - - - - - - - ---- - - 34

1. Device Drivers~----------- 34

2. I/O Support Software----------- 36

C. SYSTEI RECOFIGURATION -------- 41

1. Driver Installation ----------------- 42

2. Driver Modification ---------------------- 45

V. SOFTWARE LiPLLM ATION-- ---------- ----------- 47

A. GPIB INTEIIFACE DRIVER-- 48

1 iropeno -------- 48

"-,2. Drcilose() 49

3. Drwrite(------- 49

S4. Drread() --- - -- 51

5. brint()- - - - -- - 53

B. GPIB DRIVER SUPPORT SOFTWARE -............ ------- 54

1. Ieout.h ----- ------- 56

2. Aein.h, -- -------- - -------------- 57

C. sM1 ARY- - - 58

VI. CONCLUSIONS ---- 61

A. ADVANTAGES ------- ------- 61

B. DISADVANTAGES---- 62

C. COMPARISON WIT1 A COmiERCIAL PRODUCT -- .----------- 63

D. RECOIENDATIOS--------- 65

LIST OF REFERENCES~ 67

INITIAL DISTRIBUTIN LIST-.------ ------ 68

6

LIST OF TABLES

111 GP16 Signal Descriptions---- ----- ---------------- 15

I11.1 Interface Connector Fin Assignments -- ------------ 26

111.2 CC! Component Pin Assigns en--t--------------------------31

7

LIST OF FIGURES

1i PDP-1I Instrumentation System- -- --- -1

2 2.1 GPIB Handshake Sequence- ------ 18

3.1 GPIB interface Component Block Diagram--- 21

3.2 DR11-C Register Addresses- 24

3.3 Interface System Data Flow ------ 25

3.4 DR11-C Register Bit Assignments n 28

3.5 Condensed CCI Wiring Schematic- 30

4.1 Unix 1/0 File Tree- --- 38

5.1 Sample Program To Write To a GPIB Device 55

5.2 Sample Program To Read From a GPIB Device --- - ------- 59

8

ai

I. INTRODUCTION

The Satellite Communications (SATCOM) laboratory at the Naval

Postgraduate School utilizes a PDP-11/34A minicomputer as a research

tool for satellite signal analysis. The General Purpose Interface bus

(GPIB) interconnects instrumentation used as simulation and diagnostic

tools for the signal analyzer's computer software. Under usual

circumstances a small desk top computer such as the HP-9825 and the

attached computer interface card (HP-98034A) control the flow of signals

along the GPIB. In this configuration the GPIB devices make up a

separate system from the PDP-11/34A controlled system. Bringing the

GPIB devices under control of the PDP-11/34A requires a hardware and

software interface betweer the minicomputer Unibus and the GPIB. The

interface eliminates the need for the HP-9825 and HP-98034A. The

following sections discuss the characteristics of the hardware and

software interface between the two bus systems.

There are six main sections in this thesis. The remainder of the

introduction explains the rationale for developing the interface and

discusses development design constraints. The next section discusses

the characteristics of the Unibus and the GPIB. The following section

treats the hardware implementation and physical structure of the

interface in concert with the Unibus and the GPIB. The Unix operating

system is then discussed, especially in the areas of I/O and system

reconfiguration. The following section deals with with the software

required to drive 'he hardware under the constraints and requirements of

9

the Unix operating system. The cox.-usion summarizes the hadwae arid

software characteristics of the interface and suggests pos3! Jie

alternatives and amendments to the existing system. The conciusion aiso

provides a comparison of the developed interface with a commercially

available product.

A. RATIONALE FOR INTERFACE DEVELOPMENT

With no interface in place the PDP-11/34A system a :h tre

simulation/diagnostic device system are independent. The PDP-i1/3 ,13,- nas

no way to communicate with any of the GPIB equipment, and an indepercent

computer (e.g., the HP-9625) controls the the GPIh eviices.

Additionally, the simulation/diagnostic system is constrained to opetate

under the limited flexibility of the desk top computer software. .;ith

the interface in place an operator may control all the devices on rne

GPIB from a console on the PDP-11/34A system. The operator may irite

programs under the UNIX operating system using the higher le.- C

language and, treating the GPIB as just another peripheral device, end

or receive data over the GPIB.

In summary there are three advantages to interfacing tne rwo

systems:

I. The need for the desk top computer is deleted.
2. One Unibus console controls both systems.

• . 3. Unix operating system software drives the GPI3.

Figure 1.1 is a block diagram of an interfaced system to illustrate the

effect of the GPIB interface.

p1.

U

TTY PDP-1I L MEMORY

UN I BUS

GPIB
INTERFACE I

,~ ,

GPIB

PRINTER SPECTRUM FREQUENCY
PLOTTER ANALYZER I COUNTER

Fig 1.1 PDP-11 Instrumentation System

i.. 1 1-I

B. INTERFACE DLSIGN uLVELOF1HENT

The design of t he GPIE interface is subject to two cajor

constraints. First, the hardware Eor the interface must not take up

more than one slot within the PDP-11/34A mainframe. In other words,

total board size must not exceed a single hex-height card. Second, the

software to interface the systems must conform to the I/O requirements

of the Unix operating system.

The following sections discuss the hardware and software

implementation of the GPIB interface Dased on the needs and constraints

discussed in the preceding paragraphs. The hardware development is

* discussed first since it is incependent of the operating system of the

computer. The software development is preceded by a treatment of the

Unix operating system and in part-'cular the Unix I/0 area.

iv

II. UNIBUS AND GPIB CHARACTERISTICS

V The hardware and software interface implementation connects two

independent. bus systems, Unibus and GPIB. Discussion of the Unibus is

limited to a brief description since no hardware or software changes are

required on the DR1-C General Purpose Interface module, which initially

interfaces the '.nibus, beyond address wire jumper connections. Digital

Equipment Corporation. supplies information on the detailed operation and

characteristics of the Unibus [Ref. 1: pp. 2-201. The discussion of the

GPIB is -more descriptive since the data transfer and handshaking

requirements of that system directly govern the design of the hardware

and software needed to connect the DRII-C and the GPIB.

A. 01j3us

The ?DP-Ji Lnibus is composed of 56 bidirectional lines which carry

signals among devices on the bus (CPU, memory, I/0). Of these 56 lines,

the DRII-C uses 45 [Ref. 2: pp. 8-9]. These signals and their

respective furctions are in table 4 of the DRII-C; Instruction iHanual

[Ibid.]. A thorough analysis of the Unibus operation and signal

r7: characteristics is available in the support literature.

I "

B. GPIIN

The General Purpose Interface Bus (GPIB) is a 16 line bidirectional

bus which meets the requirements of the IEEE-488-1975 standard. It is

designed to facilitate the exchange of data among devices connected to

13

the bus. The Hewlett-Packard implementation of the GPIB is called the

jiP-IB, and thus the terms GPIB and HP-Ib have interchangeable meanings.

This section contains only a limited discussion of GPIB

characteristics. Reference material [Ref. 3 and Ref. 4] concerned with

the analysis of the bus is available which provides a thorough treatment

of the GPIB signals and capabilities. Table 11.1 describes the signal

lines on the GPIB which control activity on the bus. In addition to

those listed, there are eight lines designated to carry data among

devices on the bus. As seen in Table 11.1, all signals on the GPIS are

negative-true polarity. That is, a high signal means false, and a low

signal means true. In order to ensure clarity, subsequent discussion of

the term "DATA" (all capitals) refers to the eight lines which carry

information between devices, while "data" refers to the 16 bit contents

of the bus or a register in the system.

One device on the bus is designated as the active controller. The

active controller issues instructions to other devices and controls all

the traffic on the bus. Any device may be designated as an active

controller, but this job is usually assigned to a computer or

calculator.

One device on the bus is designated as the system controller. The

system controller is established through hardware connections and cannot

be passed to another device on the bus. The system controller

4 automatically becomes the active controller when power is turned on or

the bus is reset.

14

o0 0 0((
- 0 diIl C4. 0
Z L. -j 9) cc ul>. C

0 0 .0 to. (0 4)c
.00JC LLn(u Aa L

(0C~~4 04 . C .
mi 4) 0 0 0d. 0 a

C - Q C 41 60) 0 - -
(0 > i 0A aO 0n (A. c
u Qi Q c 0 0 -0o >4.'UI C C- Wi'. 0) m0 ~

cU Mi> .- 'a 04'i c O

0 (.C *-Cdi> 0 6-E d
m (~0 .' e4- * c.

.00~ 4A 0" C E ~ co C
N~ -D 0 CL(- O i - 0-

(Y0 CJ a0 o U -4- (0 CC c

(aC (- '.0 LLJ u 0 ~ c Q)
-M (0C 3 C u'- (

Ci~ 0i wi((0 - -

m A.. 41 C Wg Q i C . (o-
Ci iii (- 0i~i 0 0 4-0 .- *C U

0-- a0 C" (0 m
(0 -i-1 C C -- C0. 4. (0j (aU AJ
u 'm 0 i vM 4.ji OA C (0 m C) C

a- O- 0 i. C"- U 0 C -C 0
0 CJ L-. 4.3 (00 a ~ ~ C'- ai

C -U j((0 aii Ln ~ .0 C u 0 C -
-VCLa 04- AJ 0 O ~L CC O'f 00

0~ 0OUC 0i 0 i. cd ci"i C
CL- 0 CU ~ 4-1a Ai Ln C-> 0u
0 aU x- a a) m(0 t-~ " i(wG i

o- u) C.(-0 T cJi w. - C)
L~ ~~~ j~0 0j " O..-0 CC u 00

Ci~~r .0 "Ci 0i m0Li U C~ 0
-- c .CCJ "C I- 41

- U Ci0 C -17 "-)c .- ~. > IfLf L Q 00 (
0 Ai-C. 04 rOj (0 C(-- .C .-- C
L- 0i .; 0) U.C U >-d -- Ed Cn

j> 4jD -2 4
C a)i'O cC m0' ~ C L Cit/ 0 -C

a (In)0 ra ca 0C Ci L- - .- .-
U r. 0ii* -- W 4wC (0 r,- 0(0

-0* .0 c4 0 73 .0 iV C
UE LCij 3- JL. C0 0 C .- (n .- -

(11f >0 ~ 0 ai C~i' 0 u C 0 3 - Ci-
C -. 0 -- (U 0d 0 . m O (0

si(C c0 C i(- S - >-
S 03 :: Ci 0 *di (- .

0-i 0i Q"C"- 3 C~i i . ~
M- (> i C. i) ro .0 0

>-i Cl 0 -0 CiV.C Qi > 0- .0 " C

>0 ftl . I n w. (a ' ;A-n<C A 'U(0 (

EM- 0i'L(Qn m0.~ LA ". 0

L- C C j " ~ *-~- C4-1 - C
* (0 C (A- iC/I "(0 C. C. = 'o. ~ C -

4Z -.CC Ml 0 c(OC U
W -C L 0 i a' a C.- .0 0OO L.C U) 0V~(M Ci' Ci Ma-- .0 '

0 U m LW. -) -. 0 L~dC~ (aL .. Y
-((oC~m ai E. 20 0 (0 "i 4D m0
C(U0 c L 0. u- 0 - .. in EU OC) a

ci to". %-O Ci* a.C d 0.- %-- 0C

w. w (A 0. ->

0 W Q0 C 1 (0. (13
0C V) CU UJ CC Q

F 15

1. Data Transfer

Though there are eight lines available for bATA (Di t!Lrouii L;)

C • most of the GPIB instruments base their DATA on the seven bet ascii

V" code. DATA is transferred ascii character at a time, oye serial arid bit

parallel. For the GPIB interface all DATA is presumed to be ascii

coded. Therefore, only seven DATA bits are implemented on the CIU.r

interface.

Transfer of data, whether in a read or write context, is

initiated by the active controller which establishes the talker/listconcr

relationship among the devices on the bus. The active controller sencis

the talker device number and the listener device number over the DAiA

lines with the ATN signal true. While ATN is true, the devices on t:,hi

bus interpret DATA as bus control messages rather than actual da:.

messages. Once the talker and listener are designated the acti,,

controller sets ATN false which signals the talker to begin send.ing ii:

data message over the DATA lines. Designation of the tai ,er art

listener is usually preceded by an UNLISTEN bus command frt

computer which effectively resets the bus for DATA flow.

2. Handshaking

Handshaking is the term used to describe tae process whereby

controlling device and a peripheral device talk to one another curin'

an exhange of data. in the GPIB handshaking process the talker notifies

a listener of available DATA. The listener signals both readiness for

DATA and completion of DATA processing. The process on the GPIB is

asynchronous, and no restrictions are placed on the data rates of any

instrumentation on the bus. Because of the asynchronous nature of the

b..b

a1

FDATA exchange and handshaking prccess, the slowest device on the the

GPIB (e.g., a printer/plotter) controls the time required to complete

the entire procedure.

Handshaking is under the control of three signals on the bus:

DAV, NiFD, and NDAC. The talker controls the DATA lines and DAV. The

listeners control NRFD and NDAC. The following description of the

handshaking process is illustrated in Figure 2.!. rhe process is the

same for bus commands as well as for data message transfer.

DATA transfer is initiated by all the listeners on the bus by

setting NRFD high. This signifies that they are ready for DATA (Not

Ready For Data is false). When the talker senses that the NRFD line is

high it places DATA on the DATA lines and sets the DAV line low (Data

Available is true). When the addressed listener senses that DAV is low

it takes in the data, processes it and signifies when procissing is over

by setting NDAC high (Not Data Accepted is fals) vhich tells the talker

that the DATA has been accepted and it no longer need :e held on the

DATA lines. When the talker senses LDAC is high it sets DAV high

(false) while it places the next CATA byte on the D-V'A liies. When DAV

is sensed as high by the listener, it sets the NDAC line back low then

NRFD high to start the cycle over, Note that both 4'RFD and NDAC cannot

be high at the same time. Such a state is illegal.

The assertive state of NDAC and NRFD is high. Since all the

listeners have their repective bus lines tied together, all listeners

must set their corresponding signals high before that line on the GPIB

goes high. This is the wired AND situation which allows the talker to

recognize when the slowest device has taken the DATA and is ready for

17

DATA - I a

DAV

N RFD

NDAC

:I I 1 1 1 I

t1 2 t3 t4 5 6 7

tl: Listener ready for data

S2: Data placed on data lines by talker

S3 Data on data lines valid

Data accepted by listener

t: Data no longer valid and may be changed by talker

t6: Listener ready for.new data

t7: Cycle repeats-S7

Note: Curved arrows indicate interlocked signal sequence.

Fig 2.1 GPIB Handshake Sequence

I1

more. All listeners on the bus respond to the talker. Only the

addressed listener, houever, processes that DATA as a message.

C. SUH.IARY

The General Purpose Interface Bus (GPIB) is a 16 line bus system

intended for use primarily with instrumentation utilizing the seven bit

ascii code for data transfer in a serial byte and parallel bit mode. The

Unibus is a 56 line system which is driven by the PLP-l CPU. In order

for the PUP-li to communicate with a device on the GPIB the data must

pass over the LUnibus data lines, through the GPIB interface, onto the

GPIB, and into the device. As will be seen in section III, the DRII-C

handles the exchange of data and handshaking signals from the Unibus

without modification of the DRlI-C module or software assistance.

However, exhange of data between the GPIB and the DRII-C and then onto

the desired device requires additional hardware and software support.

I

4

19

--

III. HARDWARE IMPLEMENTATION

The GPIB interface hardware relationships between the Unibus and the

GPIB are illustrated in the block diagram in Figure 3.1. The hardware

for the interface consists of one DRII-C general purpose interface

module (hereafter referred to as the DRII-C), and a locally designed and

constructed buffer module, called the CCI. The LRII-C was chosen to

intially interface the Unibus since MDB Incorportated, manufacturer of

the LRII-C, specifically designed it to act "as an interface to transfer

data between a Digital Equipment Corporation PDP-11 Uni>-s and the

user's peripheral device." [Ref 2: p.1] The DRII-C is therefore

specifically designed to transfer 16 data bits. In the following

discussion the terms "data" and "data bits" refer to the 16 elements of

a word in the PDP system. When referring to the specific elements of

the GPIB which carry the ascii character (the seven least significant

bits) the term "DATA" is used. Since the GPIB is a 16 line

bidirectional bus, the DRII-C is well suited to act as the initial

transfer medium for the interface if the handshake/bus command lines of

the GPIB are treated in software as data bits. The CCI board is

required to act as a buffer between the two distinct (input and output)

registers on the DRII-C and the single bidirectional GPIB connector.

This section describes the GPIB interface hardware: DRI1-C and CCI.

The discussion of the DRII-C is limited to a functional description

since the DRI1-C instruction manual describes the interface board in

d detail, providing figures and schematics to assist in future DRII-C

20

ei

UN IBUS

DR1 1-C

CCI

GPIB

Fig 3.1 GPIB Interface Component Block Diagram

r- ,'r L
'

,-'yW . 'rrY-r '- j-- ' - -

" implementation. The CCI board is discussed in greater detail since t,.e

available documentation on it is limited.

A. DR1I-C INTERFACE

The DRII-C board functionally accepts 16 data bits from the Unibus,

sends 16 data bits to the Unibus, and performs necessary handshaking in

the process. A full description of Unibus/DR1i-C data transfer is

available in pages 10-12 of the DRII-C Instruction Ianual.

1. Registers

The DRII-C has three registers: control/status, output, anc

input. All three registers are 16 bits wide, but the control/status

register uses only six bits of the 16. The board is wired such tnat the

address of the output register is two locations greater than th

control/status register, and the input register is two locations greeter

than the output register. In other words, the three registers occupy

consecutive 16 bit memory locations in the PDP-11 memory space.

The DRII-C is manufactured with the control/status register

wired to address 767770 (all addresses are written in octal). Tbis

address may be changed by wired jumper as discussed on page 7 c.f tihe

DRII-C Instruction Manual. The address of the control/status registcr

is set to address 767730 for use in the SATCOII laboratory. This was

done in accordance with the instructions on page 15 of the DRII-C iMnual

which requires that the address of the control/status register on the

DRII-C be in concert with the associated vector address [Ref. 2: p. 15].

The vector address must be chosen such that it is higher than the vector

* address of any KL-11 in the system. Unix makes use of the KL-il drivers

tor the teletype consoles. To assign the vector address for the DR1-C

22

I'

one must check the Unix software file 'l.s' which contains the vector

address assignments for the system (Unix filenames appear in single

quotes). From this file, the KL-L1's occupy vector addresses 300

through 330. Therefore, we assign the DII-C the vector pair 340,344.

The corresponding control/status register adaress is 747730 [ibid.].

Figure 3.2 illustrates the relationship among the three DRII-C

registers and their memory locations. In the PLY-li memory structure

each word is made up of a high and low byte of eight bWAs. The register

location is identified by the low (even numbered) byte aduress. For

example, the control/status register of the DRII-C is identified with

address 767730 but includes 767731.

6. CCI BUFFER/DRIVER BOARD

The CCI board is a locally constructed interface designed to resolve

the connector mismatch between the DRII-C and the GPIL, provide logic

reversal for the negative-true GPIB from the positive-tr-e DR.1I-C, plus

provide a means for the output register of the I1-C to :eed to its

input register. These features are discussed in the following

paragraphs with a description of the CuI wiring system.

1. Connectors

The CCI board has three connectors: Two of these connect to

the input and output register connectors of the DR11-C board, and one

connects to the bidirectional GPIB. Figure 3.3 depicts the physical

makeup of the connectors and their designation together with the data

flow through the interface.

23

REGISTER RECISTER ADDRESS
(OCTAL)

1 CONTROL/STSTUS 767/ 30

OUTPUT767732

I INPT1 767734

16 BITS

2 BYTES

Fig 3.2 DR11-C Register Addresses

.2

24

UN I BUS

f-."LI SPC* SLOT

DR1 1-C

I" JINPUTI J2) i OUTPUT (Ji) I

J2 J

CCI

I NVERTERS

L 1

-GPIB

SPC: Small Peripheral Slot on PDP-11 mainframe

Fic 3.3 Interface System Data Flow

25

GPIB DR11-C CONNECTORS CCI CONNECTORS
SIGNAL i J2 Ji and J2 J3

NRFD JJ M 11 13

NDAC HH N 12 15

EOI FF P 13 9

IFC BB V 17 17

SRQ AA w i8 19

REN Z Y 19 10

DAV W Z 22 11

ATN T cc 25 21

D7 R EE 76

D6 N HH 29 4

D5 L KK 31 2

D4 u BB 24 7

D3 NN H 7 5

02 K LL 32 3

Di C T 38 1

Table 111.1 Interface Connector Pin Assignments

26

4!

- Since the DRII-C I/0 registers are 16 bits wide and the GPIB is

a 16 line bus, a one-to-one correspondence between the registers and the

GPIB is used. That is, each line of the GPIB feeds into one bit

position of the input and output registers of the DRII-C. The bit

assignments of the DRII-C registers are shown in Figure 3.4. The ground

line from the GPIB does not have a partner connection on the DRII-C

registers, since the CCI module provides grounding to the computer

mainframe. Therefore, one bit position on those registers is not used.

The bit assignment for the input register is identical to that of the

output. The assignment of bit positions is arranged so that the lower

byte of each register contains the DATA (plus the ATI bit), and the

higher byte contains the bus control/handshaking bits.

The GPIB is wired to both the input and output registers on the

DRII-C so that it may receive DATA and bus commands from the output

register and supply DATA and bus commands to the input register without

the use of a switch boards. Table III.1 shows the pin designations for

the connectors shown in Figure 3.3.

2. Signal Inversion And Feedback

The GPIB handshaking process requires that the handshake

signals on the bus be monitored as they are toggled by the talker and

listener. The Unibus will always be a either a talker or a listener

when the interface is in use, and thus requires a register to monitor

4| GPIB handshake activity. The register used for this purpose is the

DRII-C input register. Therefore, both the GPIB and the DR1I-C output

register must have means to transfer data to the input register.

42

o14

d0

to~U

0

CC L.

A--
["-

coi- I r- 2

=,,,

.,J,

,i-,,

I 28

%L

;1["- III - -| ' | - _ ,o"

However, when the GPIB transfers data tiie DRI-C output register must be

protected against having its contents altered. The inverters prevent

the undesirable feedback from the GPIB to the output register while

conveniently inverting the positive-true contents of the output register

to the negative-true GPIB (see Figure 3.3).

There exists an inconvenience in the CCI boarn as it is

currently implemented. The data returned to the input register is the

inverse of that in the output register. Although inconvenient this is

corrected in the software of the driver routine. In view of the size

limitation of the CCI board, the software method of resolving the

polarity difference is more practical than wiring on another set of

inverters to the single height board.

3. Wiring System

Figure 3.5 is a condensed schmatic of the wiring systev of the

CCI board. A full schematic [Ref. 5] is available in thle SATCOH lab.

Data flow through all lines, except the REN line, are identical and are

represented by one line labled with the indicated letters at pinout

positions. Table 111.2 lists the relationship between each line and its

associated inverter chip, resistor pin, connector designations, and pin

numbers.

The REN line has one additional inverter in its line to provide

the user with a default position of true rather than false. Two

inverters are provided so that the REN line may be made to default to

false through bypassing one of the inverters with a hardwire change.

This eliminates the need to change software in the driver routine or

install a new inverter in the CCI.

29

14I

=0

C X

a- 0

-C

c 0 C
C'-' 4.J =

4)c
4) -- C

CA-J 0 C
0.u 4)-

N ~ ~ ~ -0.-- y U
0. zj~ <n 4)c

OO C U-a-

4-.~(0C.V-

0z0 .4)U c 'U%

0 a .

4)0L- -C C

-w - 0TacC
Lim C V) 0 0 C .L

0.0 0 r

04 1 n 1 0Q 0 0 - .
-- -0. 4-. 11) C.u

c000 COL- i00 U
I+ C.' WL(a

C".)C L (0--C
LA r-. m 0)
+L L.Z 0~"~

'Jo <'U -c0 -

(0L 44 0 -E
0 EL LU,

L-

3n 0-L&

Ln CO I -Y 0-

- vr- a-

-0C

0 a. CL00

-CL 0.--

00

0inj I

00C 0 LM.

30

ar , rr-- -4C 'Nf,

Li ~ ~ r CL cL

- -- T C- (N ft

z 4 I-C C

%Dr . el i 00 r- C4 M C"% r- e

0-1

9m - <i

LfZ

oz QE
wii U.< -uC

CLa o .W w <- -- C%
ZI-.nc <O om o

31C

C. SUIEARY OF HARDWARE IMPLEMENTATION

The DRII-C and the CCI buffer/driver boards act as a single

interface card for transfer of data between the Unibus and GPIB. The

design of the interface is provided for software which treats the

handshaking/bus command lines in the same way as DATA. This design has

no hardwire connections to the control/status register of the DRII-C.

Therefore, transfer of data is independent of the interrupt system. All

bit checking and DATA transfer is accomplished through manipulation of

the DR11-C output and input registers. The input register serves dual

duty as a register to read DATA from the GPIB ana to provide a location

to monitor the status of handshaking/bus command lines on the GPIB.

Prior to the discussion of the software to support the above hardware

impiementation, the Unix operating system is thoroughly discussed to

pr'v ide the system requirements of I/0 driver software.

L
L 3

., 32

IV. UNIX OPERATING SYSTEM

This section contains a general discussion of the Unix operating

system as installed in the SATCOM laboratory. Attention is focused on

the I/O area and the procedure for reconfiguration of the operating

system when a change is made to the I/O drivers and support software.

A. GENERAL

The Unix operating system is a multi-user, interactive operating

system. A full assortment of documentation and manuals are available

which fully describe the system. These are primarily the work of Dennis

11. Ritchie, Ken Thompson, and Lrian W. Kernighan of Bell Laboratories

who developed the system through a series of versions beginning in 1969.

For the purposes of this report the user is presumed to have a working

knowledge of Unix or has access to the support manuals.

The most significant feature of Unix which impacts on the interface

between the Unibus and GPIB is that Unix treats virtually everything as

a file. Text, programs, functions, and even peripheral devices are all

associated with a file. The reader is referred to the in depth

treatment of the Unix file system by Ritchie and Thompson [Ref. 6] if

any restructuring of the operating system is planned.

Also significant is the fact that Unix is dominated by use of the C

programming language. Some files are written in the Unix assembly

language (see Ref. 7 for details of the Unix assembler) but the vast

majority are written in C. There is no attempt here to fully discuss

the C programming language. Ritchie [Ref. 8 and Ref. 9] provides a very

33

readable treatment of C in a tutorial format. Again, the reader Ls

presumed to have a working knowledge of the C language or access to the

referenced manuals.

B. UNIX I/0

In order to implement a hardware and software interface between the

Unibus and GPIB, a thorough understanding of the Unix 1/; system is

required. Though most of the following information is located in one or

more of the manuals listed in the bibliography or list of References,

there is no one source to which a user may turn without sifting throug;h

a plethora of unnecessay text. Zlore importantly there are subtle

differences in the system installed in the SATCOM laboratory which are

not reflected in the support manuals. These differences will be not.-d

as they occur in this discussion. Additionally, references to Unix I/6

devote much effort to distinguish between transfer of a block of

information and the transfer of a single character. This work will only

deal with character transfer since the GPIB interface is equipped onLy

to handle one character at a time.

1. Device Drivers

Every I/0 device on the Unibus is associated with a device

driver (sometimes called a handler) which interfaces the Unibus with the

device. The driver contains a minimum of four routines if it is capable

of both reading and writing. These routines are open, close, read, and

write. The contents of each routine varies depending on the device, but

their purpose is common to all devices. That is, they supply the Unix

calls of the same name with the instructions necessary to cause a

satisfactory interfacing between the device and the operating system.

34

I

Because of their importance to the structure of the device driver, each

6of the open, close, read, and write calls are briefly discussed in the

following paragraphs.

The open call has the form: open(argl,arg2). Open is called

each time a file is to be read from or written to. .rgi 's the full

device name and arg2 is 0,1, or 2 depending if the file is tc read from

(0), written to (1), or both (2). The file is the driver coriraining the

read and write routines. The open routine acts as a sentr to allow

only one user to access the drivers read and/or write routine at any one

time. For instance, if user A desires to write on a paper punch the

open routine checks to ensure no one else is currently using that paper

punch. If user B has already accessed the punch and is occupying the

machine at the time of A's request, tne open routine recurns an I/O

error to user A. If user B is not using the punch the open routine

returns a single digit integer called a file descriptor whic!i is used in

subsequent calls.

The close call has the form: close(fd). The close routine is

the partner of the open routine. When the user is finished reading from

or writing to the file, the close routine takes the tile descriptor

returned by open and resets the driver "or access by another user. The

close routine is called once for every call on open.

The read call has the form: read(fd,buf,nbytes). The read call

uses the file descriptor returned by a successful open call to identify

which read routine will be used to process the read request. The 'fd'

notation is commonly used throughout the Unix reference manuals to

denote the integer value for the file descriptor. 'Buf' is tne name of

35I

a buffer into which read data is placei. 'Nbytes' is the number of

characters to be placed in the buffer.

The write call has the form: write(fd,buf,nbytes). The write

call performs in the same manner as the read. The only difference is

that the read call may not actually read as many as 'nbytes' characters.

If the device supplies only 10 characters, 10 will be read, even if 100

are requested. The write call considers the number of cnaracters to be

transferred an order, not a request.

Each device capable of being read from and being written to

must have an associated driver containing an open, close, read, and

write routine. The routines determine how the open, close, read, and

write calls are handled. A device which operates with interrupts also

contains a routine to determine how interrupts are handlea.

Additionally, there may be a special functi.on routine in the driver

which performs a particular action for that device. Other routines may

appear in a driver but they are called out from within the open, read,

write, or close routines.

In the foregoing discussion it is important to distinguish

between call and routine. The call Is user generated software with user

supplied arguments. The routine is the system software residing in the

driver which determines how the call is handled. The rules assigned to

the use of the each call may be amended if the routine servicing the

* - call is changed.

2. I/O Support Software

If the GPIB interface involved only the amending of an existing

driver, little effort would be needed to edit the driver and reconfigure

366

L
the system. Unfortunately, the Unix operating system at the SATCUI

laboratory has no instailed software for such an interface. Therefore,

one must be able to create a driver and then reconfigure the system to

make the driver operational. Several files are involved with

reconfiguration and are essentially indepenident of the form of the

driver software, so long as the driver is written in the C language and

consists of the routines previously mentioned. These files will be

discussed here to simplify the description of the reconfiguration

process which follows.

Filenames in Unix follow a few important rules. Files which

are written in the C language which are to be compiled by the C compiler

must have the form 'filename.c' while their compiled code takes on the

form 'filename.o'. For the few assembly language programs the form is

'filename.s' for the source code and 'filename.o' again for the

assembled version. Fi.es with no suffix may be directories, executable

programs, or text. The following paragraphs address the files which

directly impact on i/0. Figure 4.1 is provided to assist the user in

locating the files mentioned.

The 'dev' directory contains the Unix special files for I/O.UEach device on the Unibus is associated with a special file. The

listing of dev is different from all other directories, containing the

major and minor device numbers associated with the device. Each device

has its own major device number as designated in the 'cO.c' file

discussed later. If one driver applies to several devices of the same

type (such as teleypes) the minor device number is used to identify each

member of that device type. The only way to make an entry into the

37

.

root

dev source doc

dmr sys I
ieout.h iein.h dr.c

I.1 I I I

useless dmr ken conf libl lib2

dr.c

mkconf.c mkconf l.s m40.s cO.c

Note: Only files and directories under discussion are depicted
above and represent only a small segment of the Unix
operating system.

Fig 4.1 Unix I/0 file Tree

:4

I

I

" directory 'dev' is through the mknod(VIII) command which requires the

device numbers as part of its argument list. The files in ttie 'dev'

directory are named when initiating the open call as argI in

open(argl,arg2). For example, to open the write routine of ttyl call

open(argl,2), where argl is the address of the pathname '/dev/ttyl'.

The file 'dmr' contains all the source code for drivers which

are currently used by the system. The source code for drivers which are

not being used is kept in the file 'useless' which is in the same

directory, 'sys', as 'dmr'. The source code does not directly

participate in the reconfiguration process, but serves as a workbench

area for changes in driver structure before compilation.

The directory 'ken' contains the source code for the Unix

operating system with the exception of device drivers. The source code

is all in the C language and when compiled is the contents of the file

'libl'.

The file 'libl' is one of the fundamental building blocks of

reconfiguration of the Unix operating system. 'Libl' is a library of

the compiled code in 'ken', and is therefore accessible only through the

"ar" command which permits a user to add, delete, or tabulate the

6 contents of the library.

The file 'lib2' is similar to 'libl' except that 'lib2'

contains the the object code of the driver routines. The SATUCH version

of 'lib2" contains object code of all the drivers available to Unix

including not only the contents of 'dmr' but of 'useless' as well.

There is no reason that the 'lib2' file could not be purged of the

object code which is not applicable to the SATCOM lab, but demand on

39

memory space has not yet warranted such a house cleaning operation. The

procedure to alter the contents of a library is different than thla.j for,

a simple file. Library manipulation is discussed in the foIlowing

paragraphs on system reconfiguration.

The file 'm40.s' is one of the few assembly language programs

involved in the reconfiguration process. It supplies a machine language

set of functions necessary for the reconfiguration of the operating

system. The file 'm40.o' is the compiled object code which is actually

used during system configuration.

The 'l.s' file is the other assembly language file involved in

the system configuration process. 'L.s' supplies interrupt vector

information for all the device drivers. The object code version, 'l.o',

is used in the configuration process. The Unix reference manuals label

the 'l.o' file as 'low.o' and the 'l.s' file as 'low.s'. Use of the

'l.s' file is discussed in aetail in the following reconfiguration

subsection.

The 'cO.c' file contains the tables which relate device numbers

to the driver routines. The Unix manuals refer to this file as 'conf.c'

which should not be confused with 'conf.h' which is a "header" file.

There are two tables: one for block devices and one for character

devices. The character table is of concern here, and it requires some

explanation. The character table has five columns (plus a comment

column). Each row of the table refers to a particular device driver.

The entries in the row determine which routines are contained in the

driver (open, close, read, write, special). If the driver has no open

or close routine &nulldev is entered in that position of the row. If

40

the device is missing any other routine &nodev is entered ("&" means

routine address). If there are no routines at all (the driver is not in

use) &nodev is entered in all row positions. The row number, starting

with zero, determines the device major device number. For example, the

driver for the line printer (1p) is in the third row of the table, so it

has major device number 2. It has no read or specia2 routine (&nodev)

and its remaining routines are ipopen, lpclose, and lpwrite.

The file 'mkconf.c' is the source code for the execut ible file

"mkconf'. The purpose of mkconf is to create the 'l.s' and 'cO.c' files.

Use of this method to reconfigure the operating system is limited to the

case where complete regeneration is required. As long as only one

driver iseing added to the system, the easier tact is to edit tie source

codes 'l.s' and 'cO.c' and recompile the object coce. A 'eadec to

'mkconf.c' should be added in comment form which explainS Lhat the

program has be circumvented in the event that future system ammenders

attempt to use an obsolete 'mkconf' program.

There are additional files which appear in I/O related programs

and functions called header files. These files always are suffixed by

the letter "h" (e.g., "param.h') and are picked up via "include ... " as

required by tne program. Files 'param.h', 'user.h', 'conf.n', 'tty.h',

and "buf.h' are the more recurrent header files. The reader mtay peruse

these at his convenience, but since they play no direct role in

reconfiguration, no discussion of the header files appears here.

C. SYSTEM RECONFIGURATION

The following stepwise procedure to reconfigure the operating systemI

is designed for installing a new I/O driver into the system as opposed

41

74

to amending an existing one. 'lodification, discussed in the next

subsection, uses some of tile following steps, and a knowledge of the

full reconfiguration process will make the modification process easier

to understand. Also, one must be aware that only the Super-User in Unix

is allowed to alter the operating systeu. Some files will permit

editing from any user, but most require the Super-Jser.

1. Driver Installation

The first step in reconfiguration is to develop the device

driver software. This development for the GPIB interface driver is

discussed in the next section. The driver need not have all the bugs

worked out of it to be installed in the system, since the

reconfiguration process only requires the driver to be compilable. The

effectiveness of the routines within the driver will be tested after

successfull reconfiguration and booting up of the new operating system.

In this procedure we use the driver designation "xx" so that the C

language program will be created under the filename 'xx.c' . Since the

driver consists of a set of routines not attached to a "main" routine,

it is not compiled as an executable prograin. In compiling the driver

"xx.c' use the following command:

cc -c -0 xx.C

The output of this command is the compiled file, 'xx.o'. The two flags,

"-c" and "-0", suppress the loading phase of compilation and optimize

the object code, respectively. The xx.o' file is compiled but not

executable.

Once a driver is ready for installation we need to assign it a

major device number. Adaitionally, if the driver will service more than

42

one of the same type of device, minor device numbers are required. To

obtain the major device number, edit the "cO.c' file by inserting a row

in the character table corresponding to the routines in the driver.

Placement of the row is very important. As discussed in the above

paragraph on the the 'cO.c' '.ile, the major device number depends on the

location of the row of drivec information. If the xx driver information

is placed above triat of a driver being used by the system the major

device number for the old driver will increment by one, but this will

not be reflected in the 'dmr' directory. To avoid any problems place

the driver information row below any currently used drivers or append it

to the bottom of the table. The rajor device number is now the number of

the row (the first row is number 0.)

Now that the driver's major device number is known we can enter

the name of the driver into the 'dev' directory usin the mknod(VIII)

command. Again, this command will work only for the Super-User.

"knod(VIII) has the form:

/etc/mknod xx c major minor

where xx is the name of our driver, "c" refers to a character device,

and "major" is the major device number. If there are minor device

numbers the mknod(VIIl) command is repeated for each minor device number

starting at zero.

The directory 'dev' reflects both the major and minor device

numbers which are created by the mknod(VIII) procedure. One should

check of the 'dev' directory to insure that the device name and

associated major and minor numbers are indeed present in the system.

Having taken care of the major and minor device number requirements we

I"

now place the object code of the driver in 'lib2'. The means to make

changes to a library or archive is through the "ar" command. Append the

object code of the compiled driver, 'xx.o', to 'lib2' by executing the

command:

ar r lib2 xx.o

Check the new contents of the library by typing

ar t li'j2

which will list the contents of the library. The 'xx.o' file should

appear at the end of the list of contents.

The entering of the driver's interrupt is not dependent on the

successfuil completion of all the former compilation steps. The file

'l.s' may be changed even prior to writing the driver software. The step

is placed here for convenience. The entrance of the the device

interrupt vector involves placing a pointer to a callout routine and the

device's priority level in the vector. The vector entries in 'l.s' must

be in order since the assembly language location counter may not be

moved backwards. The Unix Assembler Manual [Ref. 7] expands on the

restrictions cf the notation in 'l.s'. The second entry listed under

the comment "interface to C" saves registers as required and makes a

call on the driver's interrupt routine. When the routine returns, the

registers are restored. The syntax of making the entries into the file

'l.s' follows the same style as the other entries in the file. When the

'l.s' file has been edited to satisfaction it should be assembled and

the output moved to filename 'l.o'.

At this point the driver has been successfully compiled into

'xx.o', the character confguration table in 'cO.c' has been changed and

444

compiled into 'cO.o', the lib2' file has had -xx.o" appended to it, and

the l.s' file reflects the proper interrupt vector and routines

assembled into the However, prior to its use ensure that the argument

files supplied to "id" are in the working directory. If not, supply the

full pathname of the file rather than its ordinary filename. Type the

command:

id -x 1.o m40.o cO.o libl lib2

to create a new operating system. The 'm40.o' and -libl' files are

unaltered versions of the previous system. the "-x" flag saves some

space in the output file by preserving only external symbols. The

result of the "ld" command (if no errors are encountered) is an

executable -a.out' file, which may be moved to the name "unix" in the

final form. If there is doubt as to the accuracy of 'a.out', it may be

wise to change the name to 'xunix' to avoid confusion with the former

system.

Once the new operating system, xunix', has been created, copy

it to the 'root- directory. Once in the root, the system may be brought

down and rebooted with "xunix" instead of the usual 'unix'. If all is

well, and the old system is obsolete, rename 'xunix' to 'unix'. The

main reason for the renaming is that the command "ps" (process status)

must work on the operating system named 'unix', or else the attempt to

execute the "ps" command results in a "no swap device" response.

2. Driver Modification

If an existing driver requires modification the process

described above is quickly shortened. Following the same process, we

need only edit the driver's source code in the -dmr' directory (where it

45
4

was placed upon successfull system reconfiguration), and c mpil.

Unless there is a change in the interrupt routine, no other source code

need be altered. The changed driver is placed on the end of the 'lib2'

file ("ar r xlib2 xx" will replace the old driver code) and the "Id"

command is executed as above. The remaining file shuffling is the same

as full reconfiguration.

The driver for the GPIB was not part of the original library or

configuration table. Therefore, the full reconfiguration process was

required for the interface implementation. The next section discusses

the first step in that reconfiguration: development of the driver

software routines.

44

rI

i} 46

I

V. SOFTWARE IRPLEMENTATION

Three essential areas to the development of the GPIB interface have

been discussed: the characteristics of the General Purpose inLt:rface

Bus, the hardware design of the GPIB interface (DRlIi-C and CCI), anid the

I/O requirements of the Unix operating system. These three areas

dictate the operational requirements of the software necesA,-ly tn

implement the interface. Effective software provides the user wich the

necessary functions to be able to read from or write to a device on the

GPIB while working within the Unix operating system.

This section covers two areas of software development. The routines

in the GPIB device driver/handler are discussed in the first sub--,ctioi

followed by a treatment of the two header files ('iein.h' and 'iec.it.h')

which act as software interfaces between the user's prcgraT'. a,id the

driver. This report does noc contain a printout of tne soi ware for any

of the three functions. The software is available as files in the 'coc'

directory mounted on disk seven of the workbench FrP-1I/34.A in the

SATCOM lab. The source code for the driver is file 'dr.c , which also

resides in the 'dmr' directo.- as discussed in section IV. The object

code 'dr.o' is appended to 'lib2' in the 'sys' directory. T7he header

files 'iein.h' and 'ieout.h' also reside in the 'doc' directory. They

have no separate object code since they are compiled at the same time as

the user program which includes them.

.,

47

L

A. GPIB INTERFACE DRIVER

The GPIB driver is a file in the Unix system containing five

routines: dropeno, drcloseo, drwrite(), drreado, and drinto. Each

of these routines is discussed separately. The set of driver routines

is preceded by a set of constant definitions and structure assignments.

The constant definitions take into account the tact that output from the

DR1I-C is inverted prior to being echoed bac. to the input register,

while input from the GPIB is not inverted as it is passed to the input

register of the DRII-C (see section III). The constants prepended with

an 'X' are bit inverses of their namesakes without the prepended 'X'

(e.g., XATN is the inverse of ATN). The structure system sets up the

input and output register adcresses of tne uRlI-C relative to the

defined value for the control/status register.

1. Dropen()

The dropen() routine opens the GPIB driver for reading or

writing. It first checks to see if anyon. else has control of the

driver by determining if "drll.arstate" has a value other than zero. If

it does, dropen() sets an error and returns to the user with a "-I" file

descriptor. If "drll.drstate" is zero, dropen() clears the

control/status register which disables nterrupt.s. An integer value for

a file descriptor is returned to the user since no error bit was set by

dropeno. The assignment of the value for the file descriptor is made

by the system open call whose source code is located in the 'sys2.c'

file in the 'ken' directory. Interrupts in the context of this driver

are discussed in the paragraphs dealing with the drint() routine.

48

2. Drclose()

The drclose() routine is tae simplest of the driver routines.

It has one line of code which zeroes the "drll.drstate" to indicate that

the user has no more use of the driver and others may access it.

3. brwrite()

The drwrite() routine takes a character from the user's data

buffer (called 'buf' in section IV) and places it into the output

register of the DRII-C. It chen intiates the handshaking process with

the computer as the talker (see section II). The routine loops through

this process until one of two terminating events occur: the aumber of

characters specified by tie user to be transferred to a GPIB device is

exceeded, or the delimiting character is received signifying the end of

the character string. The 3:andard C language string delimiter is the

ascii NULL character.

The system routine cpass() is used to control the looping and

place the DATA in the DR!I-C output register. Cpass() is described in

the Unix I/0 manual [Ref 10: pp. 2-3]. The source code for cpass()

resides in the the 'subr.c file of the 'ken' directory. The arguments

of the system write call (section IV) are sensed by cpass() which uses

the 'nbytes' argument to judge how many characters should be passed and

counts down from 'nbytes' for each call on cpass(). As long as the loop

number has not exceeded the 'nbytes' limit, the routine returns the

character in the user's buffer ('buf' argument of the write call). If

an error occurs or the count becomes zero, the value "-I" is returned.

K'- The drwrite() routine uses the value returned by cpass() twice

in each loop. Initially, cpass() takes a character from the user's

49

buffer and ensures that it is an ascii character. Therefore, no bit

masking is required in drwriteo. If the value returned from cpass() is

L less than zero, there is nothing more to write and the drwrite() routine

returns. The second use of the returned value from cpass() is to check

for tne NULLL delimiter at the end of each loop. The loop in tile

drwrite() routine is of the do-while type to enable NULL to be placed on

the GPIB to reset. the DATA lines. If the character returned from tne

cpass() routine is valid it is placed on the DR-IC output buffer and

the handshaking sequence is initiated.

The GPIB handshaking in software is accomplished through a

series of bit checking and bit setting in the DRII-C input and output

registers, respectively. After the DATA is placed on the DATA lines of

tile output reg.ster, the talker (computer) tests the NRFD bit in the

input register until NRFD is high. This signifies the readiness of all

listeners to receive data. The DAV line of the output register is then

set high, wtich, through the inverters, is echoed to the input register

as DAV low (true: DATA is valid). Once AV is made true on tile GPIB,

drwritc() waits for NDAC to become high in the same manner as it waited

for "kFU. NDAC high signifies that all the listeners have accepted the

DATA, so ti-,e talker sets DAV high, places a new character on the DATA

lines, and starts the cycle over.

The method of bit setting in the input register is somewhat

complex due to the inverters between the input and output registers. To

set a bit low in the input register, the contents of the output register

are inclusive OR'd with the defined constant representing the GPIB
I

signal line to be set (e.g., DAV). To set the bit high in the input

50

register, the contents of the output register are AND'd with the inverse

of the constant (e.g., XDAV).

If the user attempts to write to a device on the GPIB which

does not exist there is no effect on the workings of drwrite(). The

wired iD characteristic of the GPIB (see section II) allows all the

listeners to respond to the talker, preventing the loop from hanging up

in an attempt to sense a signal which never comes.

The last action of the drwrite() routine is a test of the

returned value of cpass() to determine if the character returned is the

NULL delimiter. If it is not, then the loop repeats.

4. Drread()

The drreac() routine enables a user to read a string of ascii

characters from a device on the GPIB. The routine transfers characters

until the ascii character Line Feed is detected as DATA, or the EOI (End

Or Identify) bit of the GPIB is set true in the data mode (AN false).

The user may termirate the number of charaters read before one of these

two conditicns is met by the selection of an appropriate integer for the

argument %!bytes' in the system read call. Section IV provides a full

discussion of the read call and the argument 'nbytes' used by that call.

Drread() uses the system routine passc(c), the companion of

cpass() discussea above. Passc(c) is used in drread() in a similar

manner as cpass() is used in drwriteo, except that passc(c) takes data

from the DRII-C input register and passes it back to the user's buffer

named by 'buf' in the read system call. Passc(c) monitors the number of

characters transferred in the same way as cpass() but does not return

the character transferred as cpass() does. Rather, it returns the value

51

a

"0" until it's counter determines that 'nbytes' have been passea at

which time it returns "-I" as a flag.

The drread() routine uses a do-while loop similar to that of

drwriteo. Before entering the loop the computer (as active controller)

sets NRFD and NDAC both true and resets the DATA lines false. Then AMh

is set false, which tells the talker to commence sending data. The

listener/talker relationship is established prior to the call of

drread() through the drwrite() routine (see the discussion of 'iein.h'

below).

The processing of data within the drread() loop is more

complicated than that for the drwrite(). In drwrite() the cpass()

routine took care of masking off the ascii characters. Passc(c) does

rot. Second, the input from the GPIB device is negative-true which is

riot inverted prior to entering the DRII-C input register. Third, a

neans must be supplied to check to see if the addressed device to supply

the data is in fact on the bus. An infinite waiting loop is possible

and must be avoided; yet some devices may be slow to deliver data.

Therefore, a limit to the time for a device to supply data must be set.

Fourth, in the read mode the computer is the listener and must supply

two handshake signals (NRFD and NDAC) rather than one (DAV).

*." On the first pass through the do-while loop, the drread()

routine checks to determine if the device to supply data is on the bus.

Using LCNT as a counter in a bit checking loop, the computer waits for

the DAV line to be set low by the talker after setting the NRFD line

high (to signal that the computer is ready for DATA). This loop is

" repeated 3000 times or until DAV is sensed low, whichever comes first.

52
a

The value 3000 results in a time interval of approximately iulj

milliseconds and was determined through trial and error experiment using

a HP-1615A Logic Analyzer. If DAV is not detected in 100 milliseconds,

the goof() routine is called to send the character "?' to the user's

buffer and then return.

If DAV is sensed low (true) drwrite() sets NRFD high (until it

is finished reading in the DATA) and passes through a second check for

DAV (used for subsequent loops). It then processes the DATA on the input

register DATA lines to the user's buffer. The first process is the

check for a delimiter from the talker. If the Line Feed ascii character

or the GPIB End Or Identify bit is detected, the routine jumps to the

the Label "out" which supplies the NDAC handshake, sends the user's

buffer the delimiter NULL, and resets the bus prior to return. If te

delimiters are not sensed the 16 bit word on the input register is

masked off to eight and inverted. The passc(c) routine then sends the

processed data to the user's buffer. After sending the DATA to the

user's buffer, drwrite() sets NDAC high, which informs the talker that

DATA has been accepted. After the talker recognizes NDAC high and sets

DAV high, NDAC is set back to low. The loop in drread() is repeated

until the user's number of characters are passed to his buffer, or one

of the delimiters (Line Feed or EOI) is received from the device

supplying data.

5. Drint()

There is no routine for interrupts for the GPIB driver. All

exchanges of DATA and handshaking are performed by bit setting and

checking in the DRII-C output and input registers. The nature of an

53

- - -- .* '- -- V.'-- - - "-

interrupt on the GPIB is in the formi of the SRQ signal -,hicn iS !eIned

to inform the system controller of a situation in one of the de',ices on

the bus which requires service, such as a printer out of paper. The SLIU

signal is only a request to the system controller w14o must poll tLe bubi

serially or in parallel, to find out which device set SRQ true. A

routine to check SRQ is not included in the current :r.,e:

implementation since the read and write routines are not aa- ersejv

effected by it. Subsequent refinements of the driver may contain zuN a

status checking routine as a special function. (see section 11).

Since no interrupts are used during a read or write transac-,.n

in the driver, the interrupt enabling bits in the DRII-C control/st t,:-

register are disabled by clearing the register in the dropen() routPne.

The CONCLUSION section discusses possible alternatives to the abov

method of reading and writing which uses the concept of sysnt-"

interrupts in the handshaking process.

B. GPIB DRIVER SUPPORT SOFTWARE

The user has two header files, 'ieout.n' and 'iein.h', available to

assist in the transfer of data between the Unibus and the GPT. Use cf

the ieout and iein routines contained in these files eliminates the need

for the user to compound his program with separate software to set up

the talker/listener relationship required by the GPIB. Header files

'iein.h' and 'ieout.h' are appended to the user's source code (after the

'main' routine) via the 'include' method. Figure 5.1 is a simple source

code for writing the string "12345" to a GPIB printer showing the use of

the header file 'ieout.h' in the 'include' format. Note, header files

must begin with the "," character.

j4

main()

int d,L;
char *info;

L = 8; /* length of info to write is 8 */
info - "12345\r\n"; /* data to write is 12345 */
d - 06; /* device number is 06 *1

ieout(d,L,info); /* write out tihe info */

1* #include .. /ieout.h"

I

Fig. 5.1 Sample Program To Write To a GPIB Device

55

I

I. leout.h

The output support file, "ieout.h', contains the ieout routine

which sets up the computer as tn. talker and the GPIB device designated

by the user as the listpner. leout is of the form

ieout(device,length,array) where the argument 'device' is the listener

device number expressed as an -cta], number, the argument 'length' is the

length of the user's string to Oe transferred (including the implied

NULL delimiter), and 'array' is the name of the string to be written.

leout contains two write systen calls. The first sends two bus

commands to set up the talker/listener relationship following the

UNLISTEN command. The computer is designated as talker and given talk

address code and may be changed tc another value using the "Ascii

Character Set." [Ref. 3: pp. 75,761 Ascii 'U' should be avoided since

that address is supplied by Hewlett-Packard as the address for the

iP-98034A Interface for the Hewlett-Packard desk top computer, HP-9825.

[Ref 4: p. 121 The listener address consists of the argument 'device'

supplied by the user OR'd with the basic. listener designation code from

the ascii character set.

The second write system call in ieout sends the user's DATA to

the bus. In both write calls the drwrite() routine in the GPIB driver

takes the second argument to be the the address of the array or string

to be transferred. The remainder of the code in the ieout routine

supplies the open, close, and file descriptor information required to

write out DATA. These system calls are discussed in section II.

Figure 5.1 illustrates the use of ieout in a user program.

Execution of the program prints the number "12345" on the HP-7245B

56

I " • '" " " • -" ,i , -. t..A- - -"

printer/plotter whose device number is 06. If the value of 'L' in the

program was larger than 8 (the number of characters in the "info"

string) the printout would still be the same since the C language

supplies the NULL cdelimiter automatically at the end of a string. If

the value oi 'L' is smaller than 8, only the designated number of

characters are sent to the bus. Therefore, 'L' is recommended to be

assigned an integer value larger than the number of characters in the

string.

2. Iein.ft

The ioput support file, 'iein.h', contains the iein routine

which sets up the talker/listener relationship in tile same way as ieout,

except that the computer is designated as listener and the device to

supply UA'rA is designated as the talker. The computer listener address

is directly related to its talker address discussed above. The basic

address for both cases is the five least significant bits of data on the

GPIB (with ATN true). The sixth and seventh bits determine whether the

five bits refer to a talker address or a listener address [Ref 3: pp.

52-531. Iein is of the form iein(device,length,array) where the

'device' argument is used in the same way as it was in the ieout

routine. The 'length' argument is used for the same reason as the

'length' argument in ieout. Iein uses the drread() routine as discussed

in the drread() section.

The function of the iein routine is similar to ieout in that it

writes out the talker/listener relationship and then reads in the data

into the user's buffer. leout writes out the talker/listener

relationship and the contents of the user's buffer to the bus.

57

Therefore, the two support routines, ieout and iein, provide the user

with installed software to handle the talker/listener relationship

assignments. The user need only supply the required arguments to the

routines.

Figure 5.2 is a sample program that reads in data from device

number 01 into the array "store" and subsequently prints out the

contents of "store" onto the console screen using the "printf" call.

In order to read data, both the iein and ieout routines are used.

First, ieout is used to tell device number 01 to supply data from its

channel B. lein then sets up the talker/listener relationship and

receives the DATA. As with the ieout routine, the user should provide a

large enough integer for the 'length' argument to cover the amount of

* DATA anticipated from the talker device. If 'length' is larger than the

desired number the delimiters from the talker control the loop in

drread). All instrumentation on the bus use some form of ascii Line

Feed as a delimiter (some in combination with an ascii Carriage Return)

so no errors are supplied to the user in his buffer. Finally, since

both iein and ieout are used in the user's program, their respective

header files, 'iein.h' and 'ieout.h', are appended to the main routine

of the user program.

C. S M 1ARY

Three software routines implement the interface between the Unibus

and the GPIB. These routines are based on the requirements of the Unix

operating system, the GPIB bus, and the hardware used to interconnect

%5s

a"°i-5

a1

main()

char *setdev, *store;

setdev -"BI\r\n"; /* message to set up
device supplying store ~

ieout(01,4,setdev); /* write message to device 01*

iein(O1,12,store); /* ---adi 1.2 chars into "*store"~ buffer *

printf("%s",store); /* print "store" on console *

#include "iein.h"
Itinclude "ieout.h"

I.

Fig 5.2 Sample Program To Read From a GPIB Device

59

two bus systems. The three software routines are the GPI6 criver aii

two support routines, ieout and iein, which interface Ehe userc

software ana the GPIB driver.

The GPIB driver is a set of five routines with drint() remainitg

*void but available to be filled in the event that the driver is chang&d

to an interrupt driven handler. The current driver makes no use of ttke

interrupt routine since the hardware interface was not designed for

interrupt implementation. All DATA transfer and handshaking is

-. accomplished through bit setting and bit checking in the DRII-C output

and input registers.

Two user available header files are supplied to assist the user in

reading from or writing to a GPIB device. These two files convair

software which deletes the need for user generated code to ha'die

talker/listener relationships required by the GPIB.

bO

VI. CONCLUSIONS

The interface between the Unibus and the General PurposE Interface

Bus consists of two hardware modules, the UR!1-C and CCI, E.upported in

software by the GPIB driver and two support routines contained in the

header files 'ieout.h' and 'iein.h'. This hardware and software system

effectively enables a user to write to or read from a device on the GPIB

using C language software on the Unix operating system. The following

subsections discuss the advantages and disadvantages of the installed

interface plus a comparison of it to a commercially available product.

A. ADVANTAGES

One advantage of the GPIB interface is its haraware simplicity. The

DRII-C is a readily available interface to the Unibus which requires no

hardware or software changes beyond the register ana vcctor address wire

jumper connections. The CCI board is a channeling device w.th a set of

inverters between the DRII-C output register and the GPIB. One driving

force in insuring simplicity of hardware is the limited physical space

available to the CCI. Since the entire interface structure is

constrained to one hex-height equivalent card in the PDP-11 mainframe,

and the DRII-C takes up two-thirds of that room, the CCI is limited to

an effective area of a 5 by 7 inch card.

The software to support the hardware is also simple. Developed

under the requirements of the Unix I/O system, the GPIB driver conducts

all read and write data transfer, including bus commands and handshaking

between the input and output registers of the DRII-C. There are no

61

complicated jumps to interrupt routines or need to put the system to

sleep waiting for input or a handshake response.

The supporting "iein" and "ieout" routines available for the user

relieve any programming requirements specific to the GPIB. The user

need only supply the number of the device to receive or supply data, the

amount of data for transfer, and the ,uffer from which or into which the

data flows. The supporting routines handle the GPIB talker/listener

assignments and manipulate the system open, close, read, and write

routines.

B. DISADVANTAGES

Transfer of data on the GPIB is asynchronous and inherently slow.

The handshaking process is only as fast as the slowest device on the

* bus. Under the current system of handshaking through the DRII-C input

and output registers, the Unix operating system can become bogged down

waiting for data transfer to flow over the GPIB. Since Unix is a

multi-user system, the delay caused by the slow GPIB can cause

inconvenience to other users on the system.

One possible alternative to correct the slowness problem is to run

the handshaking activity through an interrupt system. Such a system

will require rewiring of the CCI since there are currently no

connections to the interrupt lines of the DRII-C control/status

register. Also, the software will require modification to enable the

DAV, NRFD, and NDAC signals to effect the control/status register.

Though the software and hardware will become more complex, the tradeoff

for a faster system may be worthwhile if the use of the GPIB is

extensive. Since some devices on the GPIB have relatively slow data

62

rates (e.g., the printer/plotter), use of the noninterrupt driven

interface is optiLmum wi-en multi-user demands are minimum, or when only

one user is on the system.

Under the current implementation the system controller and active

controller are permanently designated as the computer (Unibus). There

is no provision for the -assing of control to another device on the bus.

However, the computer acts as a nonaddressable listener if a GPIB desk

top computer (suci' as the HP-9825) takes over the bus when no users are

transferring data. The hardware and software of the GPIB interface

leave the REN line of the GPIB in the true position so that if another

computer is attached to the bus, it need not place the other devices in

remote.

Lastly, the current implementation is not able to respond to a

service request by a device on the bus. There is no provision for the

use of a serial pol or parallel poll to determine the source of the

request. This dekiciency could be corrected through a software routine

appended to the driver as a special function routine to determine the

status of the bus.

C. COMPARISON WITH A COMMERCIAL PRODUCT

Not surprisingly, there are commercially available products to

interface the Unibus and the GPIB. One of these, the GPIBII-1, is

manufactured by the National Instruments Company of Austin, Texas. As

one may expect, the GPIBI1-1 is promoted as a very effective and

efficient interface, clearly outperforming the GPIB interface discussed

in this report. The notable differences between the two interfaces are

discussed below. In order to compare and contrast the two interface

63

, .• ., -. -

systems the following definitions apply: the term "GPIB11-I" refers to

commercial product, while "the GPIB interface" refers to the subject of

this report.

The GPIBI1-1 hardware is the same size as the DRII-C alone, a single

quad height board which plugs into a slot in the PDP-11 mainframe. The

GPIB Interface hardware takes up the equivalent of a hex-height board.

The GPIB11-I software includes a Utility program and an Interactive

Control program in addition to the Driver program containing C callable

subroutines. The Unix driver is not standard equipment. However, it is

available as an option. The key differences in software are that the

GPIBII-1 is interrupt driven and will interrupt the PDP-11 when:

(1) the GPIBII-1 is the talker and is ready to send data,
(2) the GPIBII-1 is a listener which has received data,
(3) the GPIB11-1 is an active controller and a device on

the bus has set SRQ true,
(4) the GPIB1I-1 is not the system controller and the

interface is being cleared, or
(5) the GPIBII-l is a bus monitor and a command byte has

been received.

The GPIBI1-1 is capable of passing control of the bus to any other

device on the bus. The GPIB interface maintains control at all times.

The GPIBI1-1 is capable of servicing a SRQ signal from any device on

the bus via a parallel poll to determine device status. The GPIB

interface does not service SRQ.

The above differences do not list all the functions of National

Instruments' product. A full set of hardware and software

specifications are available in the National Instruments product

specification sheet on the GPIBII-1 [Ref. 12].

4There is an additional important difference between the GPIBII-1 and

the GPIB interface: cost. With the optional Unix driver software the

64

GPIBI1-1 costs $1895.00. A version which includes DMA capablities costs

$2695.00. These are costs to purchase one unit. The cost conceivably

could be lower if larger quantities are purchased. The DRII-C can be

purchased for $400.00 while the CCI is locally made. A straight dollars

and cents comparison of the two systems is somewhat misleading, since a

true cost comparison must include time and labor spent in the

development of the device and software.

If a decision is required as to the most cost effective interface to

use in a Unix system, careful analysis of the needs of the system is

necessary. There is no current need in the SATCOM lab to pass control

of the GPIB to any other device on the bus. Under the current system

there is no need to control the flow of data via an interrupt method,

unless significant inconvenience to other users is experienced. Even if

such need for interrupts arises, the current system can be hardware and

software modified to fulfil the requirement. If a need arises to poll

the devices on the bus as a result of a service request (SRQ set true),

the GPIB driver can be adapted with a special function routine to obtain

the status of the devices on the bus.

D. RLCOMMENDATIONS

The GPIB interface is recommended as the means to transfer data

between the Unibus and the GPIB under the control of the Unix operating

system. The additional features of interrupt control of the data

exchange process and a polling routine for service requests may be

incorporated into the system without purchasing a commercial interface.

The addition of the special function to poll for the device setting SRQ

may be accomplished without change to CCI hardware, since the SRQ line

65

is monitored by the input register of the DRII-C. Changing tn&, -format

of GPIB handshaking to interrupt control may create a .ore conveoient

system, but it will be faster only during times that data actualiy flows

to or from the GPIB and more than one user is on the system. The

exchange of data on the GPIB can only proceed as fast as the sl-west

listner, despite the method used to implement the handshaking. Changing

over to an interrupt driven system will require hardware changes to tha

CCI since the control/status register of the DRII-C has no input from

the current CCI design.

It is recommended that the installed system be incorporated as is

for a test period of time to be determined. During the test period the

need for changes as discussed above may be evaluated.

66

e

I

LIST OF REFERENCES

1. Digital Equipment Corporation, (no title), "PDP-1I/34 handout,"
(no date).

2. MOB Systems, Inc., DR11-C General Purpose Interface Instruc:ion
Manual, 1976.

3. Hewlett-Packard Company, Interfacing Conceots and the P825A, part
no. 09825-90060, 1976.

4. Hewlett-Packard Company, Hewlett-Packard 98C34A HF-!B Inter':ace
Installation and Service Manual, part no. 58034-9C000, 1979.

5. Naval Post Graduate School Satellite Communications Laboratcry,
IEEE 488 Bus Interface Board Schematic, drawing no. LCI-C-O:U, 1981.

6. Bell Laboratories, The Unix Time Sharinc System, by D. .M. R'tchie and
K. Thompson, 1974.

7. Bell Laboratories, Unix Assembler Reference Manual, b, D. M. Ritchie,
(no date).

8. Bell Laboratories, Proaramminc in C - A Tutorial, by B. W. ,ernighan,
(no date).

9. Kernighan, B. W. and Ritchie, 0. M., The C Proararminq Lan.agae,
Prentice-Hall, 1978.

10. Bell Laboratories, The Unix I/O System, by D. M. Rit.; ie, (io date).

11. National Instruments Corporation, GPIBll-l PDP-ll Unibis Interface to
IEEE Standard 488-1975 Instrumentation Bus, iproduct soecification),
1978.

67

.--- .

INITIAL DISTRIBUTION LIST

No. Copies

1.Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 621
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Kenneth G. Gray 5
Code 62Gy
Naval Postgraduate School
Monterey, California 93940

5. LCDR Ayers H. Blocher III
11382 Cromwell Court
Woodbridge, Virginia 22192

68

W4..

2~ Z!

:~~-x I~ ** . - lJ IIN (I 'Tt
£ Vt

"Y.

Am,

