AD-A127 S64 HARDMWARE AND SOFTWARE IMPLEMENTATION OF AN INTERFACE 11
BETWEEN THE UNIBUS AND THE GENERAL PURPOSE INTERFACE
BUSCU)> NAYAL POSTGRADUATE SCHOOL MONTEREY CAR

UNCLASSIFIED A H BLOCHER MAR 83 F/

At S PSR e at Socen s SO S Sih A A b DR IO R M v
B R e T S e - - -
L K28 u2.5
| O] =
— 32
m ,
= | X3 |u||2.2
‘",:, 36 =
e e 28
|||| _I | b
. f [
=
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAYU OF STANDARDS-1963-A
y
VPV T T T A A T e e a o ——r S B o i e

A Mgl S)
Mt

-

A

£l

DTIC FILE COPY

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

Hardwn-e and Software Implementation
2f an Interface Between
tne ‘inibus and the General Purpose
interface Bus

by
Ayers Haden Blocher 11}

March 1983

Thesis Advisor: Kenneth Gray

Aoproved for public release, distribution unlimited. -

PRy LI Ly . oA B P . - - o L3 W .) Ly -

> v w wne, .

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (When Deata Ratered)

v s W YT YT T W W % - v e

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

WO 7. GOVY ACCESSION NOJ
HE 4 2)5EY

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtirle)

Hardware and Software Implementation of an
Interface Between the Unibus and the General

5. Tvymg OF lEPOQT 4 PERIOD COVERED
Master's Thesis

March 1983

Purpose Intertace Bus

§. PERFORMING ORG. REPORT NUMBER

%7]u7=aﬁi

Ayers Haden Blocher I

TV T YTy e ————.
8. CONTRACT OR GRANT NUMBER(s)

3. PERPORMING ORZANIZAT ON NAME AND ADDRESS

Naval Postgraduate School
Montereyv, California 93940

10. PROGRAM ELEMENT. P OJECT TA
AREA & WORK UNIT NU s«

11. CONTROLLING C#2ICE N AME AND ADDRESS

Naval Poastgraduate School
Montersy, Catifornia 93940

12. REPORT DATE
March 1983

13. NUMBER OF PAGES

68

YT WONITORING ASENCY NAWE & AODRESS(i! diiferent from Centrolling Oftfice)

1S. SECURITY CL ASS. (of thts report)

UNCLASSIFIED

1Se. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Te. ES‘NW!IOH ST ATRMEN T (of this Repert)

Approved for public release, distribution unlimited.

17. DISYRIBUTION ST ATEMENT (of the sbetract entored In Block 20, I different irom Report)

18. SUPPLEMENTAAY NOTES

19. KEY WORDS (Cont/sme on reverse oide il nesocsary and identify by block number)

GP!3; HFIB; Interface; Unibus; Computer; PDP-11;

DR11-C; Satellite

P —
20. ABSTRACT (Continue en reverse side !f necossery and identify by block number)

The Satellite Communications Laboratory at the Naval Postgraduate

School uses a PDP-11/34A minicomputer to develop software in support of
a satellite signal monitoring system. The General Purpose Interface Bus
(GPIB) interconnects several general measurement devices used in support
of the laboratory. The laboratory uses these measurement devices for
diagnostic and simulation tests related to research in the satellite
signal monitoring field. This thesis discusses the development of the

‘_
yoaers M73 coimon or 1 wov 68 13 ossoLeTe

UNCLASSIFIED

$/N 0102- LF- 014- 660) |

SECURITY CLASSIFICATION “of THIS PAGE (Wh (When Dete Enterec:

R AR P PACRIE I A ARV AF A R e

I T

. EEFTE R

T TREEe s o 4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Eatered)

T W TN T Tw ™
. H

access any device on the GPIB.

0310

COPY
INSPECTED

2

hardware and software interface between the PDP-11/34A Unibus and the
GP1B. The interface permits high level language programs under the
control of the Unix operating system (version 6) on the PDP~11/34A to

5 N 0102- LF-014-6601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Date Enterea

UNCLASSIFIED

"_'_-* MEEANIRS

Cadhait et i it Al A e i i, S Y

Approved for public release, distribution unlimited.

Hardware and Software Implementation
of an Interface Letween
the Unibus and the General Purpose
Interface Bus

by

Ayers Haden Blocher III

Lieutenant Commander, United States Navy
B.S., University of ilissouri at Rolla, 1972

Submitted in partial fullfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL PGSTGRADUATE SCHOOL

darch, 1983

Author:

Approved by:

Thesis SOr

/N & 777
Vor =200

Chairman, Department of Electrical rngineering

4// y

Lbead of Séience and Engineering

éyibond KReaaer

. L W

)

"“‘\-\ 7
N
FN

..l-«‘!‘

PPy
e

ABSTRACT

v

\&he Satellite Communications Laboratory at the Naval Postgraduate
School wuses a PDP-11/34A minicomputer to develop software in support of
a satellite signal monitoring system. The General Purpose Interface Bus
(GPIB) interconnects several general measuremen: devices used ir. support
of the laboratory. The laboratory uses these measurement deviz®s for
diagnostic and simulation tests related to research in the szatcllite
signal monitoring field. This thesis discusses the development or the
hardware and software interface between the PLUP-11/34A Unibus and the
GPIB. The interface permits high 1level language programs unde: the
control of the Unix operating system (versiou 6) on the PLP-11/74A to

access any device on the GPIB.

£~

Tl e immtinsadatmadi . . PSP WO TONE TN SN PSS S T S Sl G FUAL ST, Y PR W Sy

wrgeR Tqw T W e gw_ . R N R A e—_—— BN S Ay e e Siage Siunt dieih A J v

iaa s m

II'

III.

1v.

PRy P T W 4

TaBLE OF CONTENTE

INTRODUCTION

A. RATIONALE FOR INTERFACL DEVELOPHENT

B. INTERFACE DESIGN DEVELOPMENT

UNIEUS AND GPIB CHARACTERISTICS

A. UNIBUS

B. GPIB

1. Data Transfer

2. Handshaking

C. SUMIARY

HARLWARE IMPLEMENTATION

A. DR1l1-C INTERFACE

I. Registers

B. CCI BUFFER/DRIVER BUARD

1. Connectors

2. Signal Inversion and Feedback

3. Wiring System

C. SUMHARY OF HARDWAREL IMPLEMENTATION

UNIX OPERATING SYSTEM

A. GENERAL

B. UNIX I/O

l. Device Drivers

2. 1/0 Support Software

C. SYSTEil RECONFIGURATION

l. Driver Installation

2. Driver lodification

10
12
13
i3
13
16
16
19
20

22

32
33
33
34
34

36

V. SOFTWARE LiiPLEMEMTATION

47

A. GPIB INTERFACE DRIVER 438

l. Uropen() 48

2. Drclose() 49

3. Drwrite{) 49

4, Drread() 51

5. Lrint() 53

B. GPIB DRIVER SUPPURT SOFTWARE 54

1. Ieout.h 56

2. Iein.h 57

C. SUMMARY 58

VI. CONCLUSIONS 6l
A. ADVANTAGES 61

B. DISADVANTAGES 62

C. COMPARISCN WITH A CO!MERCIAL PRODUCT 63

D. RECOMMENDATIONS 65

LIST OF REFERENCES 67
INITIAL DISTRIBUTIOGWw LIST 63

P N TP TP 1L U I

. SN W SR LLL,L_\i

LAt R AR R i

LIST OF TABLES

Aadinie Alae Sha Bati Ehate Sk

1I.1 GPId Signal Descriptions

I1T1.1 Interface tConnector Pin Assignments

IIT.2 CCI Component Pin Assignments

26

31

P

AR S A Al EE DN A as 4l .0 LN S ARC S i o e
. - . . . N LR Lt - I .

PO Sow Buals aows e mewh v g

1.1

2'1

3.1

3.2

3.3

3.4

3.5

4.1

5.1

LIST OF FIGURES

PDP~11 Instrumentation System

GPIB Handshake Sequence

GPIB interface Component Block Diagram=

DR11-C Register Addresses

Interface System Data Flow

DR11-C Register Bit Assignments

Condensed CCI Wiring Schematic

Unix I/0 File Tree

Sample Program To Write To a GPIB Device

Sample Program To Read From a GPIB Device

11

18

21

24

25

28

30

38

55
59

I. INTRODUCTION

The Satellite Communications (SATCOM) laboratory at the Waval
Postgraduate School wutilizes a PDP-11/34A minicomputer as a research
tool for satellite signal analysis. The General Purpose Interface bus
(GPIB) interconnects instrumentation used as simulation and diagnostic
tools for the signal analyzer’s computer software. Under usual
circumstances a small desk top computer such as the HP-9825 and the
attached computer interface card (HP-98034A) control the flow of signals
along the GPIB. In this configuration the GPIB devices make up a
separate system from the PDP-11/34A controlled system. Bringing the
GPIb devices under control of the PDP-11/34A requires a hardware and
software interface between. the minicomputer Unibus and the GPIB. The
interface eliminates the need for the HP-9825 and HP-98034A. The
following sections discuss the characteristics of the hardware and
software interface between the two bus systems.

There are six main sections in this thesis. The remainder of the
introduction explains the rationale for developing the interface and
discusses development design constraints. The next section discusses
the characteristics of the Unibus and the GPIB. The following section
treats the hardware implementation and physical structure of the
interface in concert with the Unibus and the GPIB. The Unix operating
system is then discussed, especially in the areas of I/0 and system
reconfiguration. The following section deals with with the software

required to drive) he hardware under the constraints and requirements of

RO VN WL Wil - 1 W AP APV TUNIK JPUS AP W WU UG IO G P

emd) 14.‘4.‘

- L an Ad
TY ¥ Tvoe

e

AAEEAN P

r 7__‘

R A e T A

the Unix operating system. The con..usion summarizes the hatdware and
software characteristics of tne interface and suggests possivie
alternatives and amendments to the existing system. The concliusion aiso
provides a comparison of the developed interface with a commercially

available product.

A. RATIONALE FOR INTERFACE DEVELOPMENT
With no interface in place the PLP-11/344 system ana the
sinulation/diagnostic device system are independent. The PLP-il/3<. nas
no way to communicate with any of the GPIB equipment, and an indepervent
computer (e.g., the HP=-9825) controls the the GPIJ devices.
Additionally, the simulation/diagnostic system is constrained to operate
under the limited flexibility of the desk top computer software. .ith
the interface in place an operator may control all the devices or <tne
GPIB from a console on the PDP~11/34A system. The operator may write
programs under the UNIX operating system using tne higher 1lev:l C
language and, treating the GPIB as just another peripheral device, .end
or receive data over tne GPIB.
In summary there are three advantages to interfacing tne c©wo
systems:
1. The need for the desk top computer is deleted.
2. One Unibus console controls both systems.
3. Unix operating system software drives the GPIB.

Figure l.1 is a block diagram of an interfaced system to illustrate the

effect of the GPIB interface.

10

. TTY PDP-11 MEMORY
. /N / /N
UNIBUS
GP!B
INTERFACE
\
GPIB
/N /N
\/ \
1 i
PRINTER SPECTRUM | FREQUENCY
PLOTTER ANALYZER ! COUNTER
] L
Fig 1.1 PDP-11 Instrumentation System
11

B. INTERFACE DLSIGWN uEVELOPIENT

The desiygn of the GPIE interface is subject to two ma jor
constraints. First, the hardware for the interface must not take up
more than one slot within the PDP~11/34A mainframe. In other words,
total board size must not exceed a single hex—height card. Second, the
software to interface the svstems must conform to the I/0 requirements
of the Unix operating system.

The following sections discuss the hardware and software
implementation of the GPLlb interface sased on the needs and constraints
discussed in the preceding paragraphs. The hardware developnent is
discussed first since it is incependent of the operating system of the
computer. The software development is preceded by a treatment of the

Unix operating system and in particular the Unix I/0 area.

r_
to

DY WS- W WRECUAL S WY WS SRUS S S U WS S YO S’ A B> & 2 a2 v &t e A A _ A M s mia oo oa

(i AE TR indi Sren el JDAN o St Seie Jasincy g - G LS L i A M I e Teoe L 2l Bl adaiagama — Ty

T
2

R bonn &

II. UNIBUS AND GPIB CHARACTERISTICS

The hardware and software interface implementation connects two
independent bus systems, Unibus and GPIB. Discussion of the Unibus is
limited to a brief description since no hardware or software changes are
requireac on the DR11-C General Purpose Interface module, which initially
interfaces the Unibus, beyond address wire jumper connections. Digital
Equipment Corporatior. supplies information on the detailed operation and
characteristics of the Unibus [Ref. l: pp. 2-20]. The discussion of the
GPIB is more descriptive since the data transfer and handshaking
requirements of that system directly govern the design of the hardware

and software needed to connect the DRiIl=-C and the GPIB.

A. UNIBUS
The PUP-Ji1 Lnibus is conposed of 56 bidirectional lines which carry

signals among devices on the bus (CPU, memory, I/0). Of these 56 lines,

the DR11-C uses 45 [kef. 2: pp. 8-9]. These signals and their
respective furctions are in table 4 of the DRII-C Instruction Manual
i{Ibid.}. A thorough analysis of the Unibus operation and signal

characteristics is available in the support literature.

i
:
3
-

B. GPI3

The General Purpose Interface Bus (GPIB) is a 16 line bidirectional

Y ITTTe

bus which meets the requirements of the IEEE-488-1975 standard. It is

designed to facilitate the exchange of data among devices connected to

13

| A ORI S R

o PP W WA W WO WG Sy I 1 LA S YD PN S Y GU U U S e G G U P, S SIPLE . Y

¥
AR

YEYEY,
R

the bus. The Hewlett-Packard implementation of the GPIB is called the
tiP-IB, and thus the terms GPIB and HP-I8 have interchangeable meanings.

This section contains only a limited discussion of GPIB
characteristics. Reference material [Ref. 3 and Ref. 4] concerned with
the analysis of the bus is available which provides a thorough treatuent
of the GPIB signals and capabilities. Table II.l describes the signal
lines on the GPIE which control activity on the bus. In addition to
those 1listed, there are eight 1lines designated to carry data among
devices on the bus. As seen in Table II.l, all signals on the GPIB are
negative~true polarity. That is, a high signal means false, and a low
signal means true. In order to ensure clarity, subsequent discussion of
the term "DATA" (all capitals) refers to the eight lines which carry
information between devices, while ''data' refers to the 16 bit contents
of the bus or a register in the system.

One device on the bus is designated as the active controller. The
active controller issues instructions to other devices and controls all
the traffic on the bus. Any device may be designated as an active
controller, but this job is wusually assigned to a computer or
calculator.

One device on the bus is designated as the system controller. The
system controller is established through hardware connections and cannot
be passed to another device on the bus. The system controller
automatically becomes the active controller when power is turned on or

the bus is reset.

14

————

uoi

g ——

aw
N1

(m

suoi1dyi4os2g [euSis 9149 1°11 d|9e]

*pP1IBA 10U S| S2Ul} ejep Oy) uo
1ewsojul 3yl ‘ybiy s1 Ayg usym *(S)JOU3ISI| 9Y) JOJ pPI|BA S| SDUI| elep Yl UO UO|jewsojul

24l ‘MOy S| AyQ UIYM °SDUL| BIep IY) UO YO[IBPWIOJUl JO AVIpI|EA DY) S31EDIpU) piBA e1eQ :AY(
‘uotjewisogul 9yl poaydodde Jou DABY SUBUDISI| (B ‘MO| SI JVQil UdYM " SIDUIIS||
|e Aq sau)| ejlep 3yl uo uollewsojul jo adueldadde ayjz ajedtpul o1 ybyy st paidasoy eieq 10N IvVaH
‘ejep Joj Apeas Jou 91P SIDUDIS|| IJ40W SO 2UO ‘MO| S| Q4YN UIYM " Saul|
eiep 3yl uo uoilewsojul 1dadoe 01 Apeas due SIUDISY| | (e eyl S21ed|pul eleq Jo4 Apeay 10N :d4YN
*awt] Aue e N3IY jo 3115 9yl dbueyd Aew a3 |osJuod waIsSAs By} ‘peo| 1015153
B Ul dui| 9yl 2ILUIWIIT YIY SN JOU Op IBY] SIUBWNAISU| "SIV [|€ 1e 11 s0)juow A3yl
pue N3y asn uotlesado ajowas jo ajqeded SJUBWNIISUL AQug °|0OJIUOD DIOWIL JIPUN SJUAWNIISUI
Buijesado 10j SUOITIPUOD BY) JO DUO S| pue UD[[0JIUOD WIISAS ay) AQ UIALSP Si I(qeu] alowdy :5NIY
*saulf elep syl uo 21Aq 3se| ayl saded 11 eyl Lwil
es ay) 1e moj |03 Burliss Ag ejep s$311 Jo pud Ayl aledipu) Aew sy el passasppe ayl ‘ybiy s
v uaym buills us93deJRYD SIUSWNIISUL UB JO pud 3Y] IIEdIpul O3 pasn aq Aew Ajjjuapy 40 pul :103
*MO| St J4) uaym 3dadoxd dwi3 Aue je MO| 195 3q Aew QYS§ 49| |041U0D
9yl jJo uoyjualle 3yl siuem 3| Jeyl 31edIpul 01 321A3p B AG MO| UIALIP St I1Ssonbay 9d1AI3§ :DYS
‘uojjesado snq ayl uo 129443 ou sey 1§ ‘ybiy s1 4] usym
491 1047U0D wWA1ISAS Yl O3 poUIN]AIL S| [04IU0D pue ‘pajqesip S| apow [(od {e143s ayy ‘paddois
3Je SJ2UD]S|I| pUB SIIN|EY ||B ‘SPUOIISOUDIW Q| ISEI| Ie J0j MO| S| J4| uoyy “abessaw
140qe 3yl ejA SNy DY) dZf{elIfu) 03 43| |041U0d WIISAs 3yl Aq Afuo pasn Sy Jea|y ddeJAIIU|)4
"paillwsuesy ase (ybry Njy) eiep so
O| NL1Y) SPUBWWOD SSUpPpPEe U3YJaYyM SDILIIPUL puUL JD|[0IIU0I DAL12E Yl AqQ UBALIP SI UOIIU3IIY :NLY
BRSO U d

A A _ S _a

15

‘d

K

PRI DS |

»
»

i

T ey

TR
-

1

P W

1. Data Transfer

Though there are eight lines available for 0LATa (U1 through D)
most of the GPIB instruments base their DATA on the seven bet ascii
code. DATA is transferred ascii character at a time, byte serial aand birt
parallel. For the GPIB interface all DATA is presumed to be ascii
coded. Therefore, only seven DATA bits are implemented on the (PI:
interface.

Transfer of data, whether in a read or write concext, is
initiated by the active controller which establishes the talker/listencr
relationship among the devices on the bus. The active controller sends
the talker device number and the listener device number over the DATA
lines with the ATN signal true. While AIN is true, the devices on the
bus interpret DATA as bus control messages rather than actual dats
messages. Once the talker and listener are designated the wuctive
controller sets ATN false which signals the talker to begin seading ii:
data message over the DATA lines. Designation orf the talker ar¢
listener 1is wusually preceded by an UNLISTEN bus command Zronm tie

computer which effectively resets the bus for DATA flow.

~

2 Handshaking

Handshaking is the term used to describe tue process wherebw =
controlling device and a peripheral device talk to one another ourinw
an exhange of data. 1In the GPLb handshaking process the talker notifies
a listener of available DATA. The listener signals both readiness for
DATA and completion of DATA processing. The process on the GPI3 is
asynchronous, and no restrictions are placed on the data rates of any

instrumentation on the bus. Because of the asynchronous nature of the

e

DU

e)

P
,

.
3

» N
[
b,
[
'<

;

Vo
E—
K
O
"
v
e
c.

S P~

PO B

DATA exchange and handshaking prccess, the slowest device on the the
GPIB (e.g., a printer/plotter) controls the time required to complete
the entire procedure.

Handshaking is under the control of three signals on the bus:
DAV, NKFD, and NDAC. The talker controls the UATA lines and DAV. The
listeners control iRFD and NDAC. The following description of the
handshaking process is illustrated in Figure 2.l1. The process is the
same for bus commands as well as for data message transfer.

DATA transfer is initiated by all the listeners ou the bus by
setting NRFD high. This signifies that they are ready for DATA (Not
Ready For Data is false). When the talker senses that the NRFD line is
high it oplaces DATA on the DATA lines and sets the DAV line low (Data
Available is true). Wwhen the addressed listener senses that DAV is low
it takes in the data, processes it and signifies when procnissing is over
by setting NDAC high (Not Data Accepted is falsz) which tells the talker
that the DATA has been accepted and it no longer need »e held on the
DATA lines. When the talker senses WDAC 1is high it s2ts DAV high
(false) while it places the next CATA byte on the DATA lines. When DAV
is sensed as high by the listener, it sets the XUAC iine back low then
NRFD high to start the cycle over. Note that both NRFD and NDAC cannot
be high at the same time. Such a state is illegal.

The assertive state of NDAC and NRFD is high. Since all the
listeners have their repective bus lines tied together, all listeners
must set their corresponding signals high before that line on the GPIB
goes high. This is the wired AND situation which allows the talker to

recognize when the slowest device has taken the DATA and is ready for

17

P AP ST VY Y P R) o A Y - PP - LIPS Al - - Al B e S A B B N S F LY

R R e (Ot e A S Sl B L i Wit A i B ™ LA Tl i S Pl T W W W W W

R

- —— - - r——-—- _—
DATA ! ! !
e e e e — 4 e - J
DAV
& —==---"
& NRFD . '
L b = == |)
e _...E;:>
m NDAC 1 :
&
SN hm e
. ! bl l I ! |
b -
s
N t;: Listener ready for data
t,: Data placed on data lines by talker
t3: Data on data lines valid
ty: Data accepted by iistener
tS: Data no longer valid and may be changed by talker
tg: Listener ready for.new cata
t7: Cycle repeats
Note: Curved arrows indicate interlocked signal sequence.
-
g
-
E{ Fig 2.1 GPIB Handshake Sequence
Ff
b
b -
.
b'.
b..'
1
4
- 18
-4

2 _;A;._LJ

Pl '-‘-'.'.‘.! b o T Xebe Rechathe ke g A
O I I T R Sate e

ALY pag

Al b e Hhate Jhatte Mtein Jtesil Mt St et el Al T it e Cllhaic AL AN A I o T - " . - N M A A S Rl g Sl
N e e - - . -

more. All listeners on the bus respond to the talker. Unly the

addressed listener, however, processes that DATA as a message.

C. SUDIARY

The General Purpose Interface Bus (GPIB) is a 16 line bus systenm
intended for use primarily with instrumentation utilizing the seven bit
ascii code for data transfer in a serial byte and parallel bit mode. The
Unibus is a 3% line system which is driven by the PLP-11 CPU. In order
for the PLP-11 to communicate with a device on the GPIB the data must
pass over the Unibus data lines, through the GPIB interface, onto the
GPIb, and into the device. As will be seen in section III, the DRIll-C
handles the excnange of data and handshaking signals from the Unibus
without wodification of the DR11-C module or software assistance.
liowever, exhange of data between the GPIB and the DR11-C and then onto

the desired device requires additional hardware and software support.

19

e o

.-
-
r.‘.‘

Py

vy
A

a ,‘V‘qv e i 2 e
P. ORI PSRN e al~ PAAPLIIN

o P S

p

N - . o e - . ., Y.L - N
PG VPPN PP LI T S W AP I SN el PSP A

III. HARDWARE IMPLEMENTATION

The GPIB interface hardware relationships between the Unibus and the
GPIB are illustrated in the block diagram in Figure 3.1. The hardware
for the interface consists of one DRlI1-C general purpose interface
module (hereafter referred to as the DR11-C), and a locally designed and
constructed buffer module, called the CCI. The LR11-C was chosen to
intislly interface the Unibus since MDB Incorportated, manufacturer of
the CR11-C, specifically designed it to act "as an interface to transfer
data between a Digital Equipment Corporation PDP-1l Unilus and the
user’s peripheral device." [Ref 2: p.l] The DRIl-C 1is therefore
specifically designed to transfer 16 data bits. In the following
discussion the terms "data" and "data bits" refer to the 16 elements of
a word in the PDP system. When referring to the specific elements of
the GPIB which carry the ascii character (the seven least significant
bits) the term "DATA" is used. Since the GPIB is a 16 line
bidirectional bus, the DR11=-C is well suited to act as the initial
transfer medium for the interface if the handshake/bus command lines of
the GPIB are treated in software as data bits. The CCI board is
required to act as a buffer between the two distinct (input and output)
registers on the DR11-C and the single bidirectiomal GPIB connector.

This section describes the GPIB interface hardware: DRll-C and CCI.
The discussion of the DRIl-C is limited to a functional description

since the DR11-C instruction manual describes the interface board in

detail, providing figures and schematics to assist in future DRI11-C

20

UNIBUS
DR11-C
/
ccl
GPIB
Fig 3.1 GPIB Interface Component Block Diagram

3

-

N

¢

-

2

':: 21

2

|

=t

.

bl

p———— .
Ta 0

>

- VJr"‘VT-Vr v
. - LR

oAt A A BB Y ut U T A AT el S i S SEND Sl Ak stk i Rl s gl dSEEESEL Sagi i n - T T T v -
Seous o .- T ~

implementation. The CCI board is discussed in greater detail since tue

available documentation on it is limited.

A. DR11-C INTERFACE
The DR11=C board functionally accepts 16 data bits from the Unibus,
sends 16 data bits to the Unibus, and performs necessary handshaking in
the process. A full description of Unibus/DR1i-C data transier is
available in pages 10-12 of the DR11-C Instruction :!lanual.
1. Registers

The DR11-C has three registers: control/status, output, anc
input. All three registers are 16 bits wide, but the control/status
register uses only six pits of the 16. The board is wired such tnat the
address of the output register is two locations greater than the
control/status register, and the input register is two locations greater
than the output register. In other words, the three registers sccupy
consecutive 16 bit memory locations in the PDP-1l memory space.

The DR11-C is manufactured with the control/status register
wired to address 767770 (all addresses are written in octal). .bis
address may be changed by wired jumper as discussed on page 7 i the
DR11~C Instruction Manual. The address of the control/status registcr
is set to address 767730 for use in the SATCOll laboratory. This was
done in accordance with the instructions on page 15 of the DRI1-C Manual
which requires that the address of the control/status register on the
DR11~C be in concert with the associated vector address [Ref. 2: p. 15].
The vector address must be chosen such that it is higher than the vector
address of any KL-1l in the system. Unix makes use of the KL=-11 drivers

for the teletype consoles. To assign the vector address rfor the ORl1~C

one must check the Unix software file "l.s’ whicn contains the vector
address assignments for the system (Unix filenames appear in single
quotes). From this file, the KL-11‘s occupy vector addresses 300
S through 330. Therefore, we assign the DR1l-C the vecrtor pair 340,344,
: The corresponding control/status register adaress is 747730 [ibid.].
Figure 3.2 illustrates the reiationship among the three DRI11-C
registers and their memory locations. In the PLP-ii memory structure
each word is made up of a high and low byte of eight bits. The register
location is identified by the low (even nunbered) byte adcdress. For
example, the control/status register of the DR1I-C is identified with

address 767730 but includes 767731.

8. CCI BUFFER/DRIVER BOARD

The CCI board is a locally constructed interface designed to resolve

the connector mismatch between the DKl1-C and the GPlL, pruvide logic
reversal for the negative-true GPIB from the positive-trie DR:.1-C, plus
provide a means for the output register of the LRII-C to ieed to its
input register. These features are discussed in the following
paragraphs with a description of the Ccl wiring system.

l. Connectors

The CCI board has three connectors: Two of these connect to
the input and output register connectors of the DR11-C board, and one
connects to the bidirectional GPIB. Figure 3.3 depicts the physical

makeup of the connectors and their designation together with the data

0 P Spoce s
P

flow through the interface.

s,

LAl

L4 oo
- s

23

N PR |

P W D WL D - S S S S - SR a PSSP VPP Oy S 2 Al . -~ PSS WP S S W

A

REGISTER RECISTER ADDRESS
(OCTAL)
CONTROL/STSTUS 767/30C
QUTPUT 767732
INPUT 767734

16 BITS =

D
fe—n 2 BYTES ———3

Fig 3.2 DR11-C Register Acdresses

24

[? S0 PUERSASIN PHRIRTINS P ARt

I U WU N W T - s [P vy PPN R WP DR W DI W W WY

"
i
r'_f;'
G
o UNIBUS
| sec* sior |
DR11-C
L INPUT (J2) [outPutr (J1)]
N |
— W
J2 | L J1 |
CCi \l{
INVERTERS
\
A | J3 i
\
cPIB
*SPC: Small Peripheral Slot on PDP-11 mainframe
3.
'-'j::_: Fic 2.2 Interface System Data Flow
o ‘-
L
-
. 25
F_».‘_
*
A AR G —— |

GPIB DR11-C CONNECTORS CCl CONNECTORS

SI1GNAL J1 J2 J1 and J2 J3
NRFD JJ M 11 13
NDAC HH N 12 15
EOI FF P 13 9
IFC B8 v 17 17
SRQ AA W 18 19
REN z Y 19 10
DAV W z 22 1
ATN T cc 25 21'
F D7 R EE °7 6
D6 N HH 29 4
E D5 L KK 31 2
P D4 U 88 24 7
03 NN H 7 5
“ D2 K L 32 3
f—’ D1 c T 38 1
:" Table 111.1 Interface Connector Pin Assignments
& :
i
&
26

? rrtrvvj

;
.
[
]

Ak
B

i S

[

w vy
‘ '.T‘ lvl . . .
f

-~

R

L e T TR T e T W T R TR W T W W WY Y e w - SR "SR Nat vv-r—wfv_-—,-v,-—;ﬁ—‘—'-w-ﬁj

- Since the DKll=C I/0 registers are 16 bits wide and the GPIb is
a 16 line bus, a one-to—-one correspondence between the registers and the
GPIB is used. That is, each line of the GPIB feeds into one bit
position of the input and output registers of the DR11-C. The bit
assignments of the DR11-C registers are shown in Figure 3.4. The ground
line from the GPIB does not have a partner connection on the DR1l=C
registers, since the CCI module provides grounding to the computer
mainframe. Therefore, one bit position on those registers is not used.
The bit assignment for the input register is identical to that of the
output. The assignment of bit positions is arranged so that the lower
byte of each register contains the DATA (plus the AIN bit), and the
higher byte contains the bus control/handshaking bits.

The GPIB is wired to botn the input and output registers on the
DR11-C so that it _may receive DATA and bus commands from the ougput
register and supply DATA and bus commands to the input register without
the use of a switch boards. Table III.l shows the pin designations for
the connectors shown in Figure 3.3.

2. Signal Inversion And Feedback

The GPIB handshaking process requires that the handshake
signals on the bus be monitored as they are toggled by the talker and
listener. The Unibus will always be a either a talker or a listener
when the interface is in use, and thus requires a register to monitor
GPIB handshake activity. The register used for this purpose is the
DR11-C input register. Therefore, both the GPIB and the DR11-C output

register nust have means to transfer data to the input register.

[
~J

A A e 4

TerYy sTvw

v

sjuawubyssy 319 493stbay J-t1ya y°¢ Big

(s o4
o~
*1ed213uap) 2ue sjuswubisse 31q 19351634 Indino pue Induy 330N
00 10 20 €0 %0 30 90 L0 Q0 6O OL 1Lzt EL wI 51 # 34
1g] zaj€a | wa | sa |90 | La | NiV]| Ava w3y [ous | 241 | 103 1ovan] ady ._<.:_:w
—— a1d
SEAVNAND, S ISHFERII S EENEEETE. 4 RN]

vav

1

—— BAd gECIu A s S
L S oo et
o . Stete e AN I .

Laet eyl

-

!

LA e 2n s 2

AN M i A7 1 il e v SR ML i aatll- A el ik pudiimn A e b Miat Hash Steih R - 3 A G ~ 0 g B

However, when the GPIB transfers data tiie LR11-C output register must be
protected against having its contents altered. The inverters prevent
the undesirable feedback from the GPIB to the output register while
conveniently inverting the positive-true contents of the output register
to the negative-true GPIB (see Figure 3.3).

There exists an inconvenience in the CCI Dboara as it is
currently implemented. The data returned to the input register is the
inverse of that in the output register. Although inconvenient this is
corrected in the software of the driver routine. In view of the size
limitation of the CCI board, the software method of resolving the
polarity difference is more practical than wiring on another set of
inverters to the single height board.

3. Wiring System

Figure 3.5 is a condensed schmatic of the wiring systewm of the
CCI board. A full schematic [Ref. 5] is available in the SATCOM lab.
Data flow through all lines, except the REN line, are identical and are
represented by one 1line labled with the indicated letters at pinout
positions. Table III.2 lists the relationship between each line and its
associated inverter chip, resistor pin, connector designations, and pin
numbers.

The REN line has one additional inverter in its line to provide
the user with a default position of true rather thaan false. Two
inverters are provided so that the REN line may be made to default to
false through bypassing one of the inverters with a hardwire change.
This eliminates the need to change software in the driver routine or

install a new inverter in the CCI.

o L Lo .. . L . - y . -
w*“"“‘w Aol R A R U G S Wa—— P RN Yy ——

o13ewsyds bujaip 139 pasuspuo) ¢ 614

*punoub 01 palIdauUU0d gi Uld "IdUBII|O0] ZZ ‘SWYO[IY Z9 :umop-||nd (g
*SI|OA G4+ O Pa23D3UU0D G| Uld -IduUea3 |03 %Z ‘swyoiy €€ :da-y|ng (e

*$)}J0MIdU 1403151594 ¢iQ uld 9{ uy paulejuod ale S103SISIS uMOp-||ngd pue dn-j|nd °Z
‘punoab 03 paidauudd Ss1 / uld -punosb 031 uojideded peaejosdiw j0°Q € ybnouayy pue
S3|0A G 03 |of|eded uj pa3dauuod sy diyd yoea uo K| ulg -sajeb gNyN Jnoy sulejuod diys yoey
"wn pue ‘gn ‘zn ‘1n poleubisap sd)yo gNYN 40193(|02 uado 3¢/ uid-y| 4noy sey pieoq [J) dYL |
:S9JON
J-114@ uo
1935163y
anduj oy $1035159Yy
umop-| |nd
anNog pue dn-|ng (423434Au))
¢| 23e) QNVN
J-1140
1 uo
91d9 : . . 19315169y
9 0 mr 3 J v 1 nding
. jurod wou

an A+

30

-)

e B e A A B

lac.a

Chail S il

[AS

he

62
X4
T4
[£4

_ O T NN -
—
™M

— N

L 14

gl
A
£l
4

Ll

OIS
e g

MW O
-

(9) Nid (0) NiId
€F 122 zr 122

sjuawubissy uid 1uauodwo) |99

St 11
fl 9
l 9
6 i
£l 4}
4! 8
81 9
ol £
8 3
8
L 9
9 8
5 i
h g !
¢ 3
4 8
(9)
(3) NuId Nid 1ndino
4015153y 31YD AGNVN

(=2 AN)
We NNWMe e = NN
- A K A A A A A a =~
AN Y= = NN N T
- g

o

-

o
-
-

€Lzt

fLfzt
A

01‘6

(8°v)
SNid LNdNI
J1VI ANVN

¢TI 2l9e]

qn
kil
on
1N
in
in
in
in
€n
qn
£n
£n
mn
£en
an
n

YOLYNI 1534
31vI ANVN

PV WY AN W We U W

[O W .

"

8¢ 1a
F4S Za
L €q
L kA 4a
L€ Sa -
Y4 94
&4 La
ST N1V
[44 Ava
Wt NIY
gl [
L1l ME
€1 103
Al JVAN
it Q48N
(1) NId TYNIIS
ir 133 g41d9
g TR e .Lr...r

EHA A YA ey JniIE A aul~ et Padit, wrw TR Vs e W T Tege———, Y t - A T L AR & -W

|

C. SUMMARY OF HARDWARE IMPLEMENTATION

‘The CR11-C and the CCI buffer/driver boards act as a single
interface card for transfer of data between the Unibus and GPIB. The
design of the interface is provided for software which treats the
handshaking/bus command lines in the same way as DATA. This design has
nc hardwire connections to the control/status register of the DRI1l-C.
Therefore, transfer of data is independeut of the interrupt system. all
bit checking and DATA transfer is accomplished through manipulation of
the DR11=-C output and input registers. The input register serves dual
duty as a register to read DATA from the GPIB ana to provide a location
to monitor the status of handshaking/bus command lines on the GPIB.
Prior to the discussion of the software to support the above hardware
implementation, the Unix operating system is thoroughly discussed to

provide the system requirements of I/0 driver software.

- v e
I

Ty Yo
. L
i de

¥ B
.'-.' e e

4
[

[

32

2

s

ke Ol .
RO]

% 15 AR AS SR AR B8) aidtd

BN B

W'Wﬁf"’—rﬁf‘*"'ﬁ - T s s s ey e T T T e T
2
i .
o

IV. UNIX OPERATING SYSTEM

This section contains a general discussion of the Unix operating
system as installed in the SATCOM laboratory. Attention is focused on

the I/0 area and the procedure for reconfiguration of the operating

system when a change is made to the I/0 drivers and support software.

A. GENERAL

The Unix operating system is a multi-user, interactive operating
system. A full assortment of documentation and manuals are available
which fully describe the system. These are primarily the work of Lennis
M. Ritchie, Ken Thompson, and Erian W. Kernighan of Bell Laboratories
who developed the system through a series of versions beginning in 19665.
For the purposes of this report the user is presumed to have a working
knowledge of Unix or has access to the support manuals.

The most significant feature of Unix which impacts on the interface
between the Unibus and GPIB is that Unix treats virtually everything as
a file. Text, programs, functions, and even peripheral devices are all
associated with a file. The reader 1is referred to the in depth
treatment of the Unix file system by Ritchie and Thompson ([Ref. 6] 1if
any restructuring of the operating system is planned.

Also significant is the fact that Unix is dominated by use of the ¢C
programming language. Some files are written in the Unix assembly
language (see Kef. 7 for details of the Unix assembler) but the vast
ma jority are written in C. There is no attempt here to fully discuss

the C programming language. Ritchie [Ref. 8 and Ref. 9] provides a very

33

A & o

‘o
ot

Sl

T T e TR OOw T YT T e oy WY oW Wy Ty N T T T T e N e e Y R Tw T WY e v & cee w

readable treatment of C in a tutorial format. Again, the reacer s
presumed to have a working knowledge of the C language or access to the

referenced manuals.

B. UNIX I/O

In order to implement a hardware and software interface vetween the
Unibus and GPIB, a thorough understanding of the Unix I/CG system is
required. Though most of the following information is located in one or
more of the manuals listed in the bibliography or list of References,
there is no one source to which a2 user may turn without sifting through
a plethora of unnecessay text. ilore importantly there are subtle
differences in the system installed in the SATCOM laboratory which are
not reflected in the support manuals. These differences will be noted
as they occur in this discussion. Additionally, references to Unix I/
devote much effort to distinguish between transfer of a block of
information and the transfer of a single character. This work will only
deal with character transfer since the GPIB interface is equipped on.iy
to handle one character at a time.

l. Device Drivers

Every 1/0 device on the Unibus 1is associated with a device
driver (sometimes called a handler) which interfaces the Unibus with the
device. The driver contains a minimum of four routines if it is capable
of both reading and writing. These routines are open, close, read, and
write. The contents of each routine varies depending on the device, but
their purpose 1is common to all devices. That is, they supply the Unix
calls of the same name with the instructions necessary to cause a

satisfactory interfacing between the device and the operating system.

34

ottt - PO S WY PP D tedemiot St B Boze . et

- em am . . .

I T ————— R ARes s St it Bt Bt S At |

~y

T

Because of their importance to the structure of the device driver, each

of the open, close, read, and write calls are briefly discussed in the

Y

- following paragraphs.

The open call has the form: open(argi,argl). Open 1is called
each time a file is to be read from or written to. aArgl is the full
device name and arg2 is 0,1, or 2 depending if the file is tc read from
(0), written to (1), or both (2). The file is the driver containing the
read ana write routines. The open routine acts as a sentrv to allow
only one user to access the drivers read and/or write routine at any one

time. For instance, if user A desires to write on a paper punch the

open routine checks to ensure no one else is currently using that paper
punch. If user B has already accessed the punch and is occupying the
machine at the time of A’s request, tne open routine recuarns an 1/0

error to user A. If user E is not using the punch the opesn 1outine

;; . returns a single digit integer called a file descriptor which is used in
subsequent calls.

t' The close call has the form: close(fd). The close routine is
the partner of the open routine. When the user is finished reading from

or writing to the file, the close routine takes the tile descriptor

returned by open and resets the driver for access by another user. The
close routine is called once for every call on open.

The read call has the form: read(fd,buf,nbytes). The read call
uses the file descriptor returned by a successful open call to identify
which read routine will be used to process the read request. The ‘fd’
notation is commonly used throughout the Unix reference manuals to

denote the integer value for the file descriptor. ‘Buf’ is the name of

35

P S YO VR TR S WY PSR Y VT T S e, [P - -_.--AAJ

Rt it

Al

GATARAAARAR A, i, DN T A

s -
.

B

o

& ie T T

a buffer into which read datua is placed. ’‘Nbytes’ 1is the numver of
characters to be placed in the buffer.

The write call has the form: write(fd,buf,nbytes). The write
call performs in the same manner as the read. The only difference is
that the read call may not actually read as many as ‘nbytes’ characters.
If the device supplies only 10 characters, 10 will be read, even if 10C
are requested. The write call considers the number of characters to be
transferred an order, not a request.

Each device capable of being read from and being written to
must have an associated driver containing &an open, close, read, and
write routine. The routines determine how the open, close, read, and
write calls are handled. A device which operztes with interrupts also
contains a routine to determine how interrupts are handlea.
Additionally, there may be a special function routine in the driver
which performs a particular action for that device. Other routines may
appear in a driver but they are called cut from within the open, read,
write, or close routines.

In the foregoing discussion 1it is important to distinguish
between call and routine. The call is user gencrated software with user
supplied arguments. The routine is the system software residing in the
driver which determines how the call is handled. The rules assigned to
the use of the each call may be amended if the routine servicing the
call is changed.

2. 1/0 Support Software

If the GPIB interface involved only the amending of an existing

driver, little effort would be needed to edit the driver and reconfigure

36

MO
-

Tv""'ﬁr—r‘T
ST

the system. Unfortunately, the Unix operating system at the SATCUI
laborzctory has no instailed software for such an interface. Therefore,
one wmust be able to create a driver and then reconfigure the system to
make the driver operational. Several files are invoived with
reconfiguration and are essentially indepeadent of the form of the
driver software, so lonz as the driver is written in the C language and
consists of the routines previously mentioned. These files will be
discussed here to simplify the description of the reconfiguration
process which follows.

Filenames in Unix follow a few important rules. Files which
are written in the C language which are to be compiled by the C compiler
must have the form "filename.c’ while their compiled code takes on the
form ‘filename.c’. For the few assembly language programs the form is
‘filename.s’ for the sourca code and ‘filename.o’ again for the
assembled version. Files with no suffix may be directories, executable
programs, or text. The following paragraphs address the files which
directly impact ov 71/0. Figure 4.1 is provided to assist the user in
locating the files mentioned.

The ‘dev’ directory contains the Unix special files for I/O.
Each device on the Uribus 1s associated with a special file. The
listing of dev is different from all other directories, containing the
ma jor and minor device numbers associated with the device. Each device
has its own major device number as designated in the ‘c0.c’ file
discussed later. If one driver applies to several devices of the same
type (such as teleypes) the minor device number is used to identify eacn

member of that device type. The only way to make an entry into the

37

PV Y. VR, S NN S SO YRGS Y Y L GNP SUNIUIE S I W G SO

fT'...
o .

T LI A A e e & e e 08 JECAR St % 4 0 Cast ey i
. x‘, G PR Sl .
o k P A S PLEL I et

Y YTy
-,

A hA o
-l

-l

-

PSR- i Aot i SVl M iar-Miniacaaierd N hadinti L s St il N 2

root

b] 1

dev source doc

| | |

dmr sys l i I
ieout.h iein.h dr.c

| I i [I]

useless dmr ken conf libt 1ib2

dr.c

l |

mkconf.c mkconf l.s mk0.s c0.c

—-—
-—d

Note: Only files and directories under discussion are depicted
above and represent only a small segment of the Unix
operating system.

Fig 4.1 Unix 1/0 file Tree

3¢

A RO i i)

" directory ‘dev’ is through the mknod(VIII) command which requires the

device numbers as part of its argument list. The files in the ‘dev’
directory are named when initiating the open call as argl in
open(argl,arg2). For example, to open the write routine of ttyl call
open(argl,2), where argl is the address of the pathname ’/dev/ttyl’.

The file ‘dmr’ contains all the source code for drivers which
are currently used by the system. The source code for drivers which are
not being used is kept in the file “‘useless’ which is in the sane
directory, ‘sys’, as ‘dmr’. The source code does not directly
participate in the reconfiguration process, but serves as a workbench
area for changes in driver structure before compilation.

The directory ‘ken’ contains the source code for the Unix
operating system with the exception of device drivers. The source code
is all in the C language and when compiled is the contents of the file
‘1ibl’.

The file ‘libl’ is one of the fundamental building blocks of
reconfiguration of the Unix operating system. ‘Libl’ is a library of

the compiled code in ‘ken’, and is therefore accessible only through the

ar command which permits a user to add, delete, or tabulate the
contents of the library.

The file “1ib2° is similar to ‘1ibl’ except that ’lib2’
contains the the object code of the driver routines. The SATCCM version
of ‘1ib2’ contains object code of all the drivers available to Unix
including not only the contents of ‘dmr’ but of ‘useless’ as well.

There is no reason that the “1ib2° file could not be purged of the

object code which {is not applicable to the SATCCM lab, but demand on

39

AL g - - P

'-,‘_"" IAENE) e

- "
e e S e
« .

v 20w 40 AR 2
£, B
d o
Letan T

N O

-

vy
3

R o

memory space has not yet warranted such a house cleaning operation. The
procedure to alter the contents of a library is different than thut for
a simple file. Library manipulation is discussed in the rfollowing
paragraphs on system reconfiguration.

The file ‘m40.s’ is one of the few assembly language programs
involved in the reconfiguration process. It supplies a machine language
set of functions necessary for the reconfiguration of the operating
system. The file ‘m40.0" is the compiled object code which is actually
used during system configuration.

The ‘l.s’ file is the other assembly language file involved in
the system configuration process. ‘L.s’ supplies interrupt vector
information for all the device drivers. The object code version, “l.0",
is used in the configuration process. The Unix reference manuals label
the ‘l.0’ file as “low.o’ and the ‘l.s’ file as ‘low.s’. Use of the
‘l.s” file 1is discussed in detail 1in the following reconfiguration
subsection.

The ‘cO.c’ file contains the tables which relate device numbers
to the driver routines. The Unix manuals refer to this file as ‘conf.c’
which should not be confused with ‘conf.h’ which is a '"header" file.
There are two tables: one for block devices and one for character
devices. The character table is of concern here, and it requires sone
explanation. The character table has five columns (plus a comment
column). Each row of the table refers to a particular device driver.
The entries in the row determine which routines are contained in the
driver (open, close, read, write, special). If the driver has no open

or close routine &nulldev is entered in that position of the row. If

40

- PRSP O S S P . N PN

the device is missing any other routine &nodev is entered ("&" means
"! routine address). If there are no routines at all (the driver is not in
‘..

- use) &nodev is entered in all row positions. The row number, starting

with zero, determines the device major device number. For example, the

driver for the line printer (lp) is in the third row of the tahle, so it
has major device number 2. It has no read or special! routine (&nodev)
and its remaining routines are lpopen, lpclose, and lpwrite.

The file ‘mkconf.c’ is the source code for the executaisle file

4

‘mkconf’. The purpose of mkconf is to create the ‘l.s’ and “cO.c’ files.

Use of this method to reconfigure the operating system is limited to the
tj case where complete regeneration 1s required. As long as only one

driver iseing added to the system, the easier tact is to edit tae source

4 ’

codes ‘l.s’ and cO.c

and recompile the object coce. A 1eadec to
‘mkconf.c’ should be added in comment form which explains that the
program has be circumvented in the event that future system ammenders
attempt to use an obsolete ‘mkconf’ program.

There are additional files which appear in I/0 related programs

éﬁ and functions called header files. These files always are suffixed by
:: the letter "h" (e.g., ‘param.h’) and are picked up via "include ..." as
Eé required by the program. Files ‘param.h’, ‘user.h’, ‘conf.n’, ‘tty.h’,
Pé and ‘buf.h’ are the more recurrent header files. The reader may peruse
:f these at his convenience, but since they play no direct role in
i! reconfiguration, no discussion of the header files appears here.

;f C. SYSTEM RECONFIGURATION

;; The following stepwise procedure to reconfigure the operating system
F- is designed for installing a new I/0 driver into the system as opposed
=

41

4

[-

| TP .

PP R ST T PP I PN . et et ---J

to amending an existing one. lodification, discussed in the next
1! subsection, uses some of the feollowing steps, and a knowledge of the
b

full reconfiguration process will make the medification process easier
to understand. Also, one must be aware that only the Super-User in Unix

is allowed to alter the operating systet. Somz files will permit

B RS

editing from any user, but most require thz Super-Jser.

l. Driver Installation

L A3 5o At a4

The first step in reconfiguration is to develop the device

l 'vi ‘
[y A .
. e L,

driver software. This development for the GPIB interface driver is

- discussed in the next section. The driver need not have all the bugs

worked out of it to be installed :in the system, since the
reconfiguration process only requires the driver to be compilable. The
effectiveness of the routines within the Jdriver will be tested after
successfull reconfiguration and booting up of the new operating systemn.
In this procedure we wuse the driver designation "xx" so that the C
language program will be created under the filename ‘xx.c’ . Since the
driver consists of a set of routines not attached to a '"main" routine,
it is not compiled as an executable program. In compiling the driver
‘xx.c’ use the following command:
cc =¢ =0 xx.c

The output of this command is the compiled file, ‘xx.0’. The two flags,
"-¢" and "-0", suppress the loading phase of compilation and optimize
the object code, respectively. The ‘xx.0’ file is compiled but not
executable.

Once a driver is ready for installation we need to assign it a

ma jor device number. Adaitionally, if the driver will service more than

P S U S - o= - - o - -

wowm Yy EGgT YT e e m e TwWOw OO Y O mFoEmTmoT T a0

}
1

one of the same type of device, minor device numbers are required. To
obtain the major device number, edit the “cO.c’ file by inserting a row
in the character table cofresponding to the routines in the driver.
Placement of the row is very important. As discussed in the above
paragraph on the the ‘c0.c’ #“ile, the major device number depends on the
location of the row of drivec information. If the xx driver information
is placed above that of a driver being used by the system the mnajor
device number for the old driver will increment by one, but this will
{i not be reflected in the ’‘dmr’ directory. To avoid any problems place
the driver information row below any currently used drivers or append it
r! to the bottom of the table. The rajor device number is now the number of
the row (the first row is number 0.)

Now that the driver’s major device number is known we can enter

the name of the driver into the ‘dev’ directory usin the mknod(VIII)
command. Again, this cowrand will work only for the Super-User.
Mknod(VIII) has the form:
/etc/mknod xx ¢ major ainor

where xx is the name of cur driver, "c" refers to a character device,
and '"major" is the major device number. If there are minor device
numbers the mknod(VIII) command is repeated for each minor device number
starting at zero.

The directory ‘dev’ reflects both the major and uwinor device
numbers which are created by the mknod(VIII) procedure. One should
check of the ‘dev’ directory to insure that the device name and

associated major and minor numbers are indeed present in the system.

Having taken care of the major and minor device number requirements we

43

RS

now place the object code of the driver in “1ib2‘. The means to make
changes to a library or archive is through the "ar" command. Append the
object code of the compiled driver, ‘xx.o0”, to "lib2’ by executing the
command:

ar r 1ib2 xx.o
Check the new contents of the library by typing

ar t 1iL2
which will list the contents of the library. The ‘xx.o0” file should
appear at the end of the list of contents.

The entering of the driver’s interrupt is not dependent on the
successfull completion of all the former compilation steps. The file
‘l.s’ wmay be changed even prior to writing the driver software. The step
is placed here for convenience. The entrance of the the device
interrupt vector involves placing a pointer to a callout routine and the
device’s priority level in the vector. The vector entries in ‘l.s’ must
be In order since the assembly language location counter may not be
moved backwards. The Unix Assembler Manual [Ref. 7] expands on the
restrictions cf the notation in “l.s’. The second entry listed under
the comment "interface to C" saves registers as required and makes a
call on the driver’s interrupt routine. When the routine returns, the
registers are restored. The syntax of making the entries into the rfile
‘l.s’ follows the same style as the other entries in the file. When the
‘les’” file has been edited to satisfaction it should be assembled and
the output moved to filename ‘l.o’.

At this point the driver has been successfully compiled into

‘kxx.0’, the character confguration table in ‘cO.c’ has been changed and

b4a

l'”\((
gk

compiled into “c0.0”, the “1ib2” file has had “xx.0” appended to it, and
the “1l.s” file reflects the proper interrupt vector and routines
assembled into the However, prior to its use ensure that the argument
files supplied to "1d" are in the working directory. If not, supply the
full pathname of the file rather than its ordinary filename. Type the
command :
1@ =x 1.0 m40.0 cO.0 1libl 1ib2

to create a new operating system. The “m40.0” and ~1libl” files are
unaltered versions of the previous system. the "-x" flag saves some
space in the output file by preserving only external symbols. The
result of the "“1d" command (if no errors are encountered) is an
executable “a.out” file, which may be moved to the name “unix” in the
final form. If there is doubt as to the accuracy of “a.out”, it may be
wise to change the name to “xunix” to avoid confusion with the former
system.

Once the new operating system, “xunix”, has been created, copy
it to the “root” directory. Once in the root, the system may be brought
down and rebooted with “xunix” instead of the usual “unix”. If all is
well, and the o0ld system is obsolete, rename “xunix” to “unix”. The
main reason for the renaming is that the command "ps” (process status)
must work on the operating system named “unix”, or else the attempt to
execute the "ps” command results in a "no swap device"” response.

2. Driver Modification

If an existing driver requires modification the process
described above 1is quickly shortened. Following the same process, we

need only edit the driver”s source code in the “dmr” directory (where it

45

o L el T e - o v, 3 ¥ v e K v -
F:ﬁv'r" o ey _- S Sl “Hie i~ T e 3 hd
R
)
y

vy
N *

was placed upon successfull system reconfiguration), and compile.

At
.

Unless there is a change in the interrupt routine, no other source code
need bhe altered. The changed driver is placed on the end of the ‘iib2’
file ("ar r x1ib2 xx" will replace the old driver code) and the "1d"
command is executed as above. The remaining file shuffling is the same
as full reconfiguration.

The driver for the GPIB was not part of the original liurary or
configuration table. Therefore, the full reconfiguration process was
required for the interface implementation. The next section discusses
the first step in that reconfiguration: development cf the driver

software routines.

P P USSP NP YU S SN SNSRI PN VEPRET SPUP U N G U S e

VA-‘_-,.‘,.-—,', .
N . PR

V. SOFTWARE IMPLEMENTATION

Three essential areas to the development of the GPIU interface hava
been discussed: the characteristics of the General Purpose Interface
Bus, the hardware design of the GPIB interface (DKli=-C and CCl), aud the
I/0 requirements of the Unix operating system. These three areas
dictate the operational requirements of the software necessary to
implement the interface. Etffective software provides the user wich tha
necessary functions to be able to read from or write to a device on tha
GPIB while working within the Unix operating system.

This section covers two areas of software development. The rcutines
in the GPIB device driver/handler are discussed in the first subs-2ction
followed by a treatment of the two header files (‘iein.h’ and ‘iecat.h’)
which act as software interfaces between the user’s pregrar. and the
driver. This report does not countain a printout of tne so!:iware Ior anv
of the three functions. The software is available as files in the ‘aoc’
directory mounted on disk seven of the workbench PLP-11/34a4 1in the
SATCOM lab. The source code for the driver is file “dr.c’, wnich also
resides in the ‘dmr’ directo. as discussed in section IV. The object
code ‘dr.o” 1is appended to ‘lib2’ in the ‘sys’ directory. The header
files ‘iein.h’ and ‘ieout.h’ also reside in the ‘doc’ directory. They
have no separate object code since they are compiled at the same time as

the user program which includes them.

47

A. GPIB INTERFACE DRIVER

The GPIB driver is a file in the Unix system containing five
routines: dropen(), drclose(), drwrite(), drread(), and drint(). Each
of these routines is discussed separateiy. The set of driver routines
is preceded by a set of constant definitions and structure assignments.
The constant definitions take into account the fact that output from the
DR11-C is inverted prior to being echoed bact to the input register,
while input from the GPIB is not inverted as it is psssed to the input
register of the DRl1-C (see section III). The constants prepended with
an ‘X’ are bit inverses of their namesakes without the prepended ‘X’
(e.g., XATN 1is the inverse of ATN). The structure system sets up the
input and output register adaresses of the LRL1=-(C relative to the
defined value for the control/status register.

1. Dropen()

The dropen() routine opens the GPI} driver for reading or
writing. It first checks to see if anyone else has control of the
driver by determining if "drll.arstate'" has a value other than zero. If
it does, dropen() sets an arror and returns to the user with a "=1" file
descriptor. If ‘'"drll.drstate" is zero, dropen() <clears the
control/status register which disables interrupts. an integer value for
a file descriptor 1is returned to the user since no error bit was set by
dropen(). The assignment of tie value for the file descriptor is made
by the system open call whose source code is located in the ‘sys2.c’
tile in the ‘ken’ directory. Interrupts in the context of this driver

are discussed in the paragraphs dealing with the drint() routine.

43

PPN, . 3 - ——— Al m e A A A & .t e T e Al o o oa - - - -

PRCNR SCRNUIA e o

:
“
3
\

~— e
-

PASSUBENETAIN |

TS

f-oor

TN TTETTETE TR CWE YOO OTEY OTYOOWOROFETSORTRTATROSTROR R O RTEIOOY TR WO OO NIRRT .

2. Drclose()

The drclose() routine is tae simplest of the driver routines.
It has one line of code which zeroes the 'drll.drstate" to indicate that
the user has no more use of the driver and others may access it.

3. Drwrite()

The drwrite() routine takes a character from the user’s data
buffer (called ’‘buf’ in section IV) and places it into the ocutput
register of the DRI1-C. It chen intiates the handshaking process with
the computer as the talker (see section II). The routine loops through
this process until one of two termicnating events occur: the aumber of
characters specified by the user to be transferred to a GPIB device is
exceeded, or the delimiting character is received signifying the end of
the character string. The siandard C language string delimiter is the
ascii NULL character.

The system routine cpiss() is used to control the looping and
place the DATA in the DR11-C output register. Cpass() is described in
the Unix I/C manual [Ref 10: pp. 2-3]. The source code for <cpass()
resides in the the ‘subr.c’ file of the ‘ken’ directory. The arguments
of the system write call {secrtion IV) are sensed by cpass() which uses
the ‘nbytes’ argument to judge how many characters should be passed and
counts down from ’‘nbytes’ for =ach call on cpass(). As long as the loop
number has not exceeded the ’‘nbytes’ limit, the routine returns the
character in the user’s buffer ('buf’ argument of the write call). 1f
an error occurs or the count becomes zero, the value "=1" is returned.

The drwrite() routine uses the value returned by cpass() twice

in each loop. Initially, cpass() takes a character from the user’s

49

P YOI JLI Y S VU Y SUNr Iy S S SR P S e e o . 5 . - PN S . A v s m it A m_ s m e a4 .mala e dm ta

- A SN RAFRL il S i At , WO . o e e e w e . e W i v

pbuffer aud ensures that it is an ascii character. Therefore, no bit
masking is required in drwrite(). If the value returned from cpass() is
less than zero, there is nothing more to write and the drwrite() routine
returns. The second use of the returned value from cpass() is to check
for tne NULL delimiter at the end of each loop. The loop in the
drwrite() routine is of the do-while type to enable NULL to be placed on
the GPIB to reset the DATA lines. If the character returned from the
cpass() routine is valid it is placed on the DR-11C output buffer and
the handshaking sequence is initiated.

The GPIB handshaking in software 1is accomplished through a
series of bit checking and bit setting in the DR11-C input and output

registers, respectively. After the DATA is placed on the DATA lines of
the output register, the talker (computer) tests the NRFD bit in tie
input register until NRFD is high. This signifies the readiness‘of all
listeners to receive data. The DAV line of the output register is then
set high, which, through the inverters, is echoed to the input register
as DLav low (true: DATA is valid). Once LAV is made true on the GPIB,
drwrite() waits for NDAC to become high in the same manner as it waited
for NikFU. NDAC high signifies that all the listeners have accepted the
DATA, so tiie talker sets DAV high, places a new character on the DATA
lines, and starts the cycle over.

The method of bit setting in the input register is somewhat
complex due to the inverters between the input and output registers. To
set a bit low in the input register, the contents of the output register

are inclusive OR’d with the defined constant representing the GPIB

signal line to be set (e.g., DAV). To set the bit high in the input

50

M VLY ST SLYY U W Y W, § SN Ny & k- . il

register, the contents of the output register are AND'd with the inverse
of the consteout (e.g., XDAV).

If the user attempts to write to a device on the GPIB which
does not exist there is no effect on the workings of drwrite(). The
wired AnU characteristic of the GPIB (see section II) allows all the
listeners to respond to the talker, preventing the loop from hanging up
in an attempt to sense a signal which never comes.

The last action of the drwrite() routine is a test of the
returned value of cpass() to determine if the character returned is the
NULL delimiter. If it is not, then the loop repeats.

4. Drread()

The drreac() routine enables a user to read a string of ascii
characters from a device on the GPIB. The routine transfers characters
until the sscii character Line Feed is detected as DATA, or the EOI (End
Or Identifv) bit of the GPIB is set true in the data mode (ATN false).

The user may termirate the number of charaters read before one of these

two conditicns is met by the selection of an appropriate integer for the
argument ‘ubytes’ in the system read call. Section IV provides a full
? discussicn of the read call and the argument ‘nbytes’ used by that call.
E‘ Urread() uses the system routine passc(c), the companion of
cpass() discussea above. Passc(c) 1is wused in drread() in a similar

manner as cpass() is used in drwrite(), except that passc(c) takes data

k,
k! from the DR11-C input register and passes it back to the user’s buffer
Z_ named by ‘buf’ in the read system call. Passc(c) monitors the number of
. characters transferred 1in the same way as cpass() but does not return
¥

the character transferred as cpass() does. Rather, it returns the value

51

FTE

[o S A oA L .

- Ao it atndichuati Anati Bhenh MR e B MRl Mt i g 28 LRl Bl Sl B S i A M s i i S

hodiness bl R SRl M) - - APl Gl el i i il SN i A A R i sl bt e o) W T T e

"0" until it’s counter determines that ’nbytes’ have been passed at
which time it returns "-1" as a flag.

The drread() routine uses a do-while loop similar to that of
drwrite(). Before entering the loop the computer (as active controller)
sets NRFD and NDAC both true and resets the DATA lines false. Then ATN
is set false, which tells the talker to commence sending data. The
listener/talker relationship is established prior to the call of
drread() through the drwrite() routine (see the discussion of “iein.h’
below).

The processing of data within the drread() loop is wmore
complicated than that for the drwrite(). In drwrite() the cpass()
routine took care of masking off the ascii characters. Passc(c) does
r.ot. Second, the input from the GPIB device is negative-true which is
not inverted prior to entering the DR11=-C input register. Third, a
neans must be supplied to check to see if the addressed device to supply
the data is in fact on the bus. An infinite waiting loop 1is possible
and must be avoided; yet some devices may be slow to deliver data.
Therefore, a limit to the time for a device to supply data must be set.
Fourth, in the read mode the computer is the listener and must supply
two handshake signals (NRFD and NDAC) rather than one (DAV).

On the first pass through the do-while loop, the drread()
routine checks to determine if the device to supply data is on the bus.
Using LCNT as a counter in a bit checking loop, the computer waits for
the DAV 1line to be set low by the talker after setting the NRFD line
high (to signal that the computer is ready for DATA). This loop 1is

repeated 3000 times or until DAV is sensed low, whichever comes first.

-

The wvalue 3000 results in a time interval of approximately iLi

milliseconds and was determined through trial and error experiment using

‘H'
.
!

: a HP-1615A Logic Analyzer. If DAV is not detected in 100 milliseconds,

(A
4

twon

the goof() routine is called to send the character to the user’s

buffer and then return.

'."" - "‘. SR
N . sl
PRI (S IR RO

If DAV is sensed low (true) drwrite() sets NRFD high (until it
is finished reading in the DATA) and passes through a second check for
DAV (used for subsequent loops). It then processes the DATA on the input

register DUDATA lines to the user’s buffer. The first process is the

check for a delimiter from the talker. If the Line Feed ascii character

"

E‘ or the GPIB End Or Identify bit is detected, the routine jumps to the
E‘ the iabel "out" which supplies the NDAC handshake, sends the wuser’s
E buffer the delimiter NULL, and resets the bus prior to return. If the
ﬁ. delimiters are not sensed the 16 bit word on the input register is

. masked off to eight and inverted. The passc(c) routine then sends the

= processed data to the user’s buffer. After sending the DATA to the
user’s buffer, drwrite() sets NDAC high, which informs the talker that
DATA has been accepted. After the talker recognizes NDAC high and sets
DAV high, NDAC is set back to low. The loop in drread() is repeated

until the user’s number of characters are passed to his buffer, or one

of the delimiters (Line Feed or EOI) is received from the device

éjg supplying data.
,! 5. Drint()

There is no routine for interrupts for the GPIB driver. All

exchanges of DATA and handshaking are performed by bit setting and

p— checking in the DR11=C output and input registers. The nature of an
b,

x 53

4

b . .
#_.... g - RN, St W Y S W W N - . FUW. N WP Gy PP . - —_—— -_—— Lot - ‘_._.QJ

interrupt on the GPIB is in the form of the SRQ signal vhich is Jecigned
to inform the system controller of a situation in one of the devices on
the bus which requires service, such as a printer out of paper. The SLu
signal is only a request to the system controller who must pell tie bus,
serially or in parallel, to find out which device set SkQ true. A
routine to check SRQ is not included in tne current drivecs
implementation since the read and write routines are not adverselw
effected by it. Subsequent refinements of the driver may contain sucrn a
status checking routine as a special function. (see section 1l).

Since no interrupts are used during a read or write transactiuvn
in the driver, the interrupt enabling bits in the DR11-C control/st -tus
register are disabled by clearing the register in the dropen() routine.
The CONCLUSION section discusses possible alternatives to the abov:
method Jf reading and writing which wuses the concept of system

interrupts in the handshaking process.

Be. GPIB DRIVER SUPPORT SOFTWARE

The user has two header files, ‘ieout.n’ and “iein.h’, avaiiable o
assist in the transfer of data between the Unibus and the GPib. Use «f
the ieout and iein routines contained in these files eliminates the need
for the wuser to compound his program with separate software toc set up
the talker/listener relationship required by the GPIB. Header rfiles
‘iein.h’ and ‘ieout.h’ are appended to the user’s source code (after the
‘main’ routine) via the “include’ method. Figure 5.1 is a simple source
code for writing the string '12345" to a GPIB printer showing the use of
the header file ‘ieout.h’ in the ’include’ format. Note, header files

must begin with the "#" character.

34

o’ m " w s A - ——— A b a . e zamiatietal e -

#

main()

{
int d,L;
char *info;

L = 8;
info = "12345\r\n";
d = 06;

ieout(d,L,info);
-}

#include "../ieout.h"

AJEULAP ZE AR antl ssat SN SN S oman amen Ladiat e e P i

/* length of info to write is 8§ */
/* data to write is 12345 */
/* device number is 06 */

/* write out the info */

Fig. 5.1 Sample Program To Write To a GPIB Device

55

[S L,LLA__j

-

R A

RO

R

._Tq,r-r'r.._ .
PR - .. .t

1. Ieout.h

The output support file, “ieout.h’, contains the ieout routine
which sets up the computer #s tne talker and the GPIB device designated
by the user as the listener, Ieout is of the form
ieout(device,length,array) where the argument ’‘device’ is the listener
device number expressed as an octal number, the argument ‘length’ is the
length of the wuser’s string to ve transferred (including the implied
NULL delimiter), and ‘array’ is the name of the string to be written.

Ieout contains two write syster calls. The first sends two bus
commands to set up the talker/listener relationship following the
UNLISTEN command. The computer is designated as talker and given talk
address code and may be changed tc¢ another value using the "Ascii
Character Set.'" (Ref. 3: pp. 753,76} Ascii ‘U’ should be avoided since
that address 1is supplied by Hewlett-Packard as the address for the
iiP=98034A Interface for the Hewlett-Packard desk top computer, HP-9825.
[Ref 4: p. 12] The listener address consists of the argument ‘device’
supplied by the user GR'd wirh the basic listener designation code from
the ascii character set.

The second write system call in ieout sends the user’s DATA to
the bus. In both write calls the drwrite() routine in the GPIB driver
takes the second argument to be the the address of the array or string
to be transferred. The remainder of the code in the ieout routine
supplies the open, close, and file descriptor information required to
write out DATA. These system calls are discussed in section II.

Figure 5.1 illustrates the use of ieout in a wuser progran.

Execution of the program prints the number "12345" on the HP-7245B

56

Ak et e e

PPN W SO Y B Ses B S B B *oa hl L. NN, YR .

RO ., ans

R il

<

printer/plotiter whose device number is 06. If the value of 'L’ in the
program was larger than 8 (the number of characters in the "info"
string) the printout would still be the same since the C language
supplies the NULL celimiter automatically at the end of a string. If
the value of ‘L’ is smaller than 8, only the designated number of
characters are sent to the bus. Therefore, ‘L’ is recommended to be
assigned an integer value larger than the number of characters in the
string.
2. Iein.n

The ioput support file, ‘iein.h”, contains the iein routine
which sets up the talker/listener relationship in the same way as ieout,
except that the computer is designated as listener and the device to
supply DATA is designated as the talker. The computer listener address
is directly related to its talker address discussed above. The basic
address for both cases is the five least significant bits of data on the
GPIB (with AIN true). The sixth and seventh bits determine whether the
five bits refer to a talker add;ess or a listener address [Ref 3: pp.
52=53}. Iein is of the form iein(device,length,array) where the
‘device” argument 1is used in the same way as it was in the ieout
routine. The ‘length’ argument is used for the same reason as the
‘length’ argument in ieout. Iein uses the drread() routine as discussed
in the drread() section.

The function of the iein routine is similar to ieout in that it
writes out the talker/listener relationship and then reads in the data

into the user’s buffer. Ieout writes out the talker/listener

relationship and the contents of the user’s buffer to the bus.

57

R e P e A A N e T T T TS

Therefore, the two support routines, ieout and iein, provide the user
with installed software to handle the talker/listener relationship
assignmerits. The user need only supply the required arguments to the
routines.

Figure 5.2 is a sample program that reads in data from device
number Ol into the array 'store'" and subsequently prints out the
contents of "store" onto the console screen using the '"printf" call.
In order to read data, both the iein and ieout routines are used.
First, ieout is used to tell device number 01 to supply data from its
channel B. lein then sets up the talker/listener relationship and
receives the DATA. As with the ieout routine, the user should provide a
large enough integer for the ‘length’ argument to cover the amount of
DATA anticipated from the talker device. If “length’ is larger than the
desired number the delimiters from the talker control the loop in
drread(). All instrumentation on the bus use some form of ascii Line
Feed as a delimiter (some in combination with an ascii Carriage Return)
so no errors are supplied to the user in his buffer. Finally, since
poth iein and ieout are used in the user’s program, their respective
header files, “iein.h’ and ‘ieout.h’, are appended to the main routine

of the user program.

C. SUMMARY
Three software routines implement the interface between the Unibus
and the GPIB. These routines are based on the requirements of the Unix

operating system, the GPIB bus, and the hardware used to interconnect

58

r-»-‘_. . s, T TTE e, W W WY T Gy TWTTWIOT W Cw oy oW ST T —imT T W e e o T W TR TR T W W TP TATE YT W W TTw S w e T L T = T = - = - =

#

main()

{ char *setdev, *store;
setdev = "BI\r\n"; /* message to set up

device supplying store */

ieout(0l,4,setdev); /* write message to device 01 */
iein(01,12,store); /* read 12 chars into "store"” buffer */
printf("%s",store); /* print "store” on console */

}

#include "iein.h"
#include "ieout.h”

Fig 5.2 Sample Program To Read From a GPIB Device

A 59

. PR . . .
@ e et e e . N . - . N e T ..
CT S S N TR Y U S0 U0 .0 W VR JUF WL TR DU Uy § o TRy SRR P e et i wea 2 oA

M7 T TSV LN WO OV Ve a9 e 7 T T T T . T R e e e T TR T AT T T TR T Yy Y Yy

two bus systems. The three software routines are the CPJt ariver aund

er’s

1]

two support routines, ieout and iein, which interface the u
software and the GPIB driver.
The GPIB driver is a set of five routines with drint() remaining

void but available to be filled in the event that the driver is changed

to an interrupt driven handler. The current driver makes no use of the
interrupt routine since the hardware interface was not desigced for
Ff‘ interrupt implementation. All DATA transfer and handshaking is
accomplished through bit setting and bit checking in the DR11l-C output
- and input registers.

?!l Two user available header files are supplied to assist the user in
“:i reading from or writing to a GPIB device. These two files contair
- software which deletes the need for user generated code to hnardie

talker/listener relationships required by the GPIB.

60

o« T e . . e et te T T - R . . - .. T
e PORP NS P W PR L. L . PR RV S, S . S ool D e

VI. COLCLUSIONS

The interface betweén the Unibus and the General Purpose Interface
Bus consists of two hardware modules, the LR!1~-C and CCI, supported in
software by the GPIB driver and two support routines contained in the
header files “ieout.h’ and ’‘iein.h’. This hardware and software system
effectively enables a user to write to or read from a device on the GPIB
using C language software on the Unix operating systex. The following
subsections discuss the advantages and disadvantages of the installed

interface plus a comparison of it to a commercially available product.

A. ADVANTAGES

Une advantage of the GPIB interface is its haraware simp.icity. The
DR11-C™ is a readily available interface to the Unibus which requires no
hardware or software changes beyond the register ana vector iddress wire
jumper connections. The CCI board is a channeling device with a set of
inverters between the DR11-C output register and the GI'IB. One driving
force in insuring simplicity of hardware is the limited physical space
available to the CCI. Since the entire interface structure is
constrained to one hex-height equivalent card in the PDP-1l mainframe,
and the DR11-C takes up two=-thirds of that room, the CCIl is limited to
an effective area of a 5 by 7 inch card.

The software to support the hardware is also simple. Developed
under the requirements of the Unix I/0 system, the GPIB driver conducts
all read and write data transfer, including bus commands and handshaking

between the input and output registers of the DR1l-C. There are no

61

LR A Rl Al it

200 2un 2ast s ad

Pl B
SRR .
DERPERT I}

complicated jumps to interrupt routines or need to put the system to

sleep waiting for input or a handshake response.

The supporting "iein' and "ieout" routines available for the user
relieve any programming requirements specific to the GPIB. The user
need only supply the number of the device to receive or supply data, the
amount of data for transfer, and tue bDuffer from which or into which the
data flows. The supporting rcutines handle the GPIB talker/listener
assignments and manipulate the system open, close, read, and write

routines.

B. DISADVANTAGES

Transfer of data on the GPIB is asynchronous and inherently slow.
The handshaking process is only as fast as the slowest device on the
bus. Under the current system of handshaking through the DR11-C input
and output registers, the Unix operating system can become bogged down
waiting for data transfer to flow over the GPIB. Since Unix is a
multi-user system, the delay caused ty the slow GPIB can cause
inconvenience to other users on the system.

One possible alternative to correct the slowness problem is to run
the handshaking activity through an interrupt system. Such a system
will require rewiring of the CCI since there are currently no
connections to the interrupt 1lines of the DRIl-C control/status
register. Also, the software will require modification to enable the
DAV, NRFD, and NDAC signals to effect the control/status register.
Though the software and hardware will become more complex, the tradeoff
for a faster system may be worthwhile if the use of the GPIB is

extensive. Since some devices on the GPIB have relatively slow data

62

()

L S S . L PR ST

rates (e.g., the printar/plotter), use of the noninterrupt driven

interface is oprimum when multi-user demands are minimum, or when only
one user is cn the system.

Under the currernt implementation the system controller and active
controller are permanently designated as the computer (Unibus). There
is no provision for the jassing of control to another device on the bus.
However, the c¢omputer icts as a nonaddressable listener if a GPIB desk
top computer (such as the 1iP-9825) takes over the bus when no users are
transferring data. The hardware and software of the GPIB interface
leave the REN line of the GPIB in the true position so that if another
computer is attached to the bus, it need not place the other devices in
remote.

Lastly, the current implementation is not able to respond to a
service request by a device on the bus. There is no provision for the
use of a serial poll or parallel poll to determine the source of the
request. This deficiency could be corrected through a software routine
appended to the driver as a special function routine to determine the

status of the hus.

C. COMPARISON WITH A COMMERCIAL PRODUCT

Not surprisingly, there are commercially available products to
interface the Unibus and the GPIB. One of these, the GPIBll-l, is
manufactured by the National Instruments Company of Austin, Texas. As
one may expect, the GPIBll-l 1is promoted as a very effective and
efficient interface, clearly outperforming the GPIB interface discussed
in this report. The notable differences between the two interfaces are

discussed below. In order to compare and contrast the two interface

63

) C ey
L - . . . ‘e

systems the following definitions apply: the term "GPIBll=-1" refers to
commercial product, while "the GPIB interface" refers to the subject of
this report.

The GPIBll-1 hardware is the same size as the DR11-C alone, a single
quad height board which plugs into a slot in the PDP-ll mainframe. The
UPIB Interface hardware takes up the equivalent of a hex-height board.

The GPIBll-l software includes a Utility program and an Interactive
Control program in addition to the Driver program containing C callable
subroutines. The Unix driver is not standard equipment. However, it is
available as an option. The key differences in software are that the
GPIBll-1 is in.errupt driven and will interrupt the PDP-11 when:

(1) the GPIBll-l is the talker and is ready to send data,

(2) the GPIBIll-1 is a listener which has received data,

(3) the GPIBIll-1 is an active controller and a device on

the bus has set SRQ true,

(4) the GPIBll-l is not the system controller and the

interface is being cleared, or

(5) the GPIBll-] is a bus monitor and a command byte has

been received.

The GPIBll-1 is capable of passing control of the bus to any other
device on the bus. The GPIB interface maintains control at all times.

The GPIBll-l is capable of servicing a SRQ signal from any device on
the bus via a parallel poll to determine device status. The GPIB
interface does not service SRQ.

The above differences do not list all the functions of National
Instruments’ product. A full set of hardware and software
specifications are available in the National Instruments product
specification sheet on the GPIBll-1 [Ref. 12].

There is an additional important difference between the GPIBll-1 and

the GPIB interface: cost. With the optional Unix driver software the

64

GPIBl1~-1 costs $1895.00. A version which includes DMA capablities costs

$2695.00. These are costs to purchase one unit. The cost conceivably
could be lower if larger quantities are purchased. The DR11-C can be
purchased for $400.00 while the CCI is locally made. A straight dollars
and cents comparison of the two systems is somewhat misleading, since a
true cost comparison must include time and iabor spent in the
development of the device and software.

If a decision is required as to the most cost effective interface to
use in a Unix system, careful analysis of the needs of the system is
necessary. There is no current need in the SATCOM lab to pass control
of the GPIB to any other device on the bus. Under the current system
there is no need to control the flow of data via an interrupt method,
unless significant inconvenience to other users is experienced. Even if
such need for interrupts arises, the current system can be hardware and

software modified to fulfil the requirement. If a need arises to poll

 Rc At A S
»

Cant Lk B .
AR I S

the devices on the bus as a result of a service request (SRQ set true),

the GPIB driver can be adapted with a special function routine to obtain

the status of the devices on the bus.

D. RECOMMENDATIONS

; The GP1B interface is recommended as the means to transfer data
%E between the Unibus and the GPIB under the control of the Unix operating
{. system. The additional features of interrupt control of the data
B exchange process and a polling routine for service requests may be
é incorporated into the system without purchasing a commercial interface.
;‘ The addition of the special function to poll for the device setting SRQ
-

may be accomplished without change to CCI hardware, since the SRQ line

65

- ‘ : .2t - . [.
Bantte, - il S T vl F WO B N LB WSIC IV P SN SUIS . N IR R NS WPEC U, WS Sper S SRS S SO Y <nj

e oW R W w T e T T YT SR T AT YT Y TR W OTRTwR, TS TR T T Y LT T e T AT e T e T -

is monitored by the input register of the DR11-C. Changing the ~format
of GPIB handshaking to interrupt control may create a more convenieat

system, but it will be faster only during times that data actually flows

A TR W Ty T ——y T T T T T
"

to or from the GPIB and more than one user is on the system. The
exchange of data on the GPIB can only proceed as fast as the sloewest
listner, despite the method used to implement the handshaking. Changiny
over to an interrupt driven system will require hardware changes to ths
CCI since the control/status register of the DR11-C has no input from
the current CCI design.

It is recommended that the installed system be incorporated as is
for a test period of time to be determined. During the test period the

need for changes as discussed above may be evaluated.

66

. - . <. .
P) i SN - - > i - W ' - K-, o P 0 kS . I WY S S . = —hmmm et ea _mNa -4;-_-J

SRk~ ACARA MO

b
[
.

[0 0.5 PRSP

\O

10.

it.

PR I N ' .
WIS e W i G G R N UL PN Il i PP

LIST OF REFEREKCES

Digital Equipment Corporation, (no title), "PLP-1i/34 Handout,"
(no date).

MDB Systems, iInc., DR11-C General Purpose Interface !Instruc-ion

Manual, 1976.

Hewlett~-Packard Company, Interfacing Concepts and tie S825A, part

no. 09825-90060, 1576.

Hewlett-Packard Company, Hewlett-Packard 98C34A HF-12 Inter-ace
Installation and Service Manual, part no. S8034-500C0, 1975,

Naval Post Graduate School Satellite Communications Lztoratory,
IEEE 488 Bus Interface Board Schematic, drawing no. ({i-C-00, 1981,

Bell Laboratories, The Unix Time Sharing Svstem, by D. M. Ritchie and
K. Thompson, 1974.

Bell Laboratories, Unix Assembler Reference Manual, 5 D. M. Ritchie,
(no date).

Bell Laboratories, Programming in C - A Tutorial!, by B. W. “ernighan,
(no date).

Kernighan, B. W. and Ritchie, 0. M., The C Programming Lana Jaqe,
Prentice-Hall, 1978.

Bell Laboratories, The Unix 1/0 System, by D. M. Ritckie, (10 date).

National instruments Corporation, GPIB11-1 PDP-11 Unibis Interface to
IEEE Standard L488-1575 iInstrumentaticn Bus, (product soecification),

1978.

67

K MARORS
g MR

.
»
Y
L]

-
.

- T T . WL WM w47 7T e T T W WU TR TN, eeegeeg—"
- % . -t . DAL AN .

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Department Chairman, Code 62
Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93940

Kenneth G. Gray

Code 62Gy

Naval Postgraduate School
Monterey, California 93940

LCDR Ayers H. Blocher {11
11382 Cromwell Court
Woodbridge, Virginia 22192

68

L-_-._“L\Agv::—“é_“.-l‘."l“‘ P P S

ey Ty T r—"

No. Copies

