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Preface

Although this study treats the propagation of light in the

vacuum of space, the problem was suggested by the similarity of random

gravitational fields with the random density variations in the atmos-

phere, and is thus closely related to propagation of light in an inhomo-

geneous medium, a topic of contemporary concern to the military with

regards to both sensor performance and laser propagation. The problem

was posed by Dr. Richard Cook, whom I thank both for suggesting a

thesis topic in line with my interests, and for his great help as my

thesis advisor. His insight into the physical processes, and his

assistance in mathematical troubleshooting were invaluable.

George E. Cipperly
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Abstract

."This thesis investigates the lens-like action of the gravita-

tional fields of celestial bodies, which can alter the apparent intensity

of more distant sources. Previous work in this area has shown that the

chance of an individual body being sufficiently well aligned with a

source to cause a very large gravitational intensity change is small.

The issue addressed in this study is the possibility of there being a

significant total change in the intensity of a source due to the com-

bined effects of the gravitational fields of all celestial bodies, and

in particular, the potential impact on intensity distance measurements,

that is, determination of the discances of celestial light sources by

means of intensity comparisons.

It is first shown that the problem can be treated in flat space

by associating an appropriate index of refraction with gravitational

fields. A wave approach is taken in deriving the total deflection of a

ray by the field of a single point mass. A statistical analysis is

then performed to determine the expression for the mean total change in

the intensity of celestial light sources due to the combined fields of

all intervening bodies This expression is evaluated using idealized

populations for the cases of deflection by stars in the Milky Way and

in other galaxies, as well as deflection by whole galaxies. Furthermore,

,A due to the rapid drop in the effects of deflecting masses with their

distance from the line of sight to a source, it is seen that any large

intensity change would most likely be due to the individual effect of a

aix
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single closely aligned mass. The probability of such large individual

effects, in agreement with previous work, is in most cases negligibly

small. In view of the level of accuracy associated with intensity

distance determinations, the mean net effect is also negligibly small.

For galactic sources, however, the typical changes may be large enough

to be observable if any rapid enough time variations occur.
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THE NET EFFECT OF MANY GRAVITATIONAL FIELDS

ON THE INTENSITY OF CELESTIAL

LIGHT SOURCES

I. Introduction

Terminology

In this report, the intensity of a celestial object refers to

the total power from it incident on a unit cross sectional area, that is,

- . its associated irradiance. Also, the word "significant" is accorded

its standard English definition rather than its special meaning in the

field of statistics.

Throughout this study, the discussion freely varies between ray

and wave terminology, as best suits particular arguments. Since rays

are uniquely defined by the normals to the wave fronts, and are thus

described by the full gradient of the phase, the entire analysis could

theoretically be accomplished using either concept.

Background

In the early 1900s, Einstein developed the general theory of

-. ~.relativity and showed that one consequence was the bending of light rays

in a gravitational field in a vacuum. Such ray bending was first veri-

fied by Eddington in 1919 when he measured the deflection of star light

passing near the sun.

For a source and a deflecting mass nearly in line with a distant

observer, this ray bending can produce a "gravitational lens" effect.



The exaggerated dipiction in Figure 1 of a ray bundle under the action

of a deflecting mass portrays the sort of lens action referred to in the

simplest case, that of a point source and a spherically symmetric mass.

(A similar bundle following a path around the opposite side of the

deflector is not shown.) The lens is astygmatic in a rather unusual

way. Ray path variation in the radial direction gives a diverging lens

effect, while path variation in the tangential direction produces con-

verging lens behavior, the result being that both a real and a virtual

image are produced. Furthermore, the lens must be considered severely

aberrated in that for a point source, both images are cast onto lines

rather than points. The virtual image line is actually a ring segment and

would be a complete ring, circling thie deflecting mass, for a perfect

alignment of the source, deflector and observer. As the alignment

degrades, the image breaks into two decreasing segments of the ring,

centered at the points where it intersects the plane determined by the

source, deflector, and observer. The image formed by those rays taking

the longer path around the defelctor becomes dimmer and closer to the

line of sight to the deflector, making it more and more difficult to

observe. (In the case of extended, and perhaps irregular, sources and

deflectors, more complex results can occur, including the production of

more than two images.)

In the case of stars, Einstein showed that while multiple imaging

* was physically possible, the number of stars in our galaxy is such that

the probability of two of them being sufficiently well aligned with the

earth for the effect to be observed is negligibly small (Ref 1).

* Zwicky, in 1937, showed that the chances are much greater of observing
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such an effect among distant galaxies (Refs 2 and 3). Later, others

considered the possible involvement of quasars in gravitational imaging

(Refs 4 and 5). Over 40 years passed, however, before the effect was

actually observed.

Finally, in the period from 1979 to 1981, observations of the

double quasar 0957+561A,B suggested that it might be the double image

of a single quasar produced by the gravitational field of an intervening

elliptical galaxy (Refs 6 through 10). The question of whether this

was indeed the correct explanation was ultimately resolved when Young,

et al. (Ref 11) developed a theory of extended deflectors consisting

of discrete masses, satisfactorily explaining all the known details of

0957+561A,B. This double quasar, then, provides additional evidence

that the gravitational bending of light rays is a real phenomenon.

Another result of ray bending, less striking perhaps than

multiple imaging, is a change in the intensity of distant objects due

to the gravitational fields of intervening masses not necessarily so

well aligned. The net effect of the combined gravitational fields of

all celestial objects is to make the vacuum of space behave like an

inhomogeneous medium with regard to the propagation of light. As a

result, intensities can be expected to deviate randomly from those

calculated solely from the inverse square distance relation. And, in

fact, Cook, using general principles of light propagation in an

inhomogeneous medium, showed that the statistical variance in the

intensity of stars in our galaxy is of the order of the mean intensity

itself (Ref 12). This suggests serious implications for the common

4
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method of determining the distance to a star by comparing its intensity

with that of similar stars at distances short enough to be measured by

other means.

Problem Statement

The problem addressed in this study is to investigate the

magnitude and statistical nature of changes In the intensity of celestial

light sources due to the combined gravitational fields of all deflecting

masses. Typical star and galaxy populations are used to determine

whether possible large intensity changes are frequent enough to be taken

into consideration when making intensity distance determinations, or

whether the large variance is essentially due only to the sizeable

contributions from very close alignments, in which case the effect can

be ignored except in cases where a deflector appears so closely aligned

with a source that a large individual effect is suggested. Such gravi-

tational intensity changes could be troublesome since, unlike multiple

' imaging, it would be difficult to prove that they are occurring unless

motion of the bodies involved produces a rapid enough time variation.

(Previous work in this area has generally been directed toward deter-

mining the probability of finding individual deflecting masses suffi-

ciently well aligned to produce multiple imaging or very large intensity

variations.)

Assumptions and Approximations

The principal assumptions made in this study involve the values

accepted for various astrophysical quantities. These quantities are

known to varying levels of accuracy, and in many cases only a reasonable

5



estimate can be made. Furthermore, in order to accomplish calculations

it is assumed that valid results can be obtained using only average

values and idealized distributions. The use of such idealizations in

worst case scenarios is in keeping with the objective of the study which

is to place a bound on the mean magnitude of gravitational effects.

Those actual values accepted for various quantities are described in

Chapter II.

Another assumption is that secondary gravitational images would

be identified as distinct sources, and so their intensities would be

measured separately. Therefore, only the intensity contribution of

primary images is considered.

Finally, it is assumed that several approximations made to

facilitate calculations are valid. These approximations are, however,

justified and discussed in Appendix C. The justifications incorporate

the astrophysical quantities given in Chapter II, as well as some of

the intermediate results of this study. The approximations are:

1. All sources are treated as point sources.

2. Gravitationally deflecting bodies are treated as point

masses.

3. Sources are considered sufficiently distant that their actual

spherical wave output can be adequately treated as plane waves in the

neighborhoods of deflectors and the observer.

4. Monochromatic radiation in the geometrical optics limit is

considered in the analysis.

5. Gravitational field effects are compressed into a thin

phase screen located in the plane containing the deflecting mass and

6



orthogonal to the propagation direction. As a result, the actual

* hyperbolic ray trajectories around individual deflectors are approximated

by their asymptotes.

6. The entire analysis is based on the weak field solution to

the gravitational field equations shown in Appendix A. Its validity is

therefore limited to weak field regions, that is, those characterized

by the condition

O4MG=F

where p is the distance from the center of the deflecting mass, M is

the total mass, G is the universal gravitational constant, c is the

speed of light, and the quantity F has been defined for convenience.

7. In the course of the analysis several paraxial approximations

are made. These approximations are based generally on the assumption

that ray deflections in weak gravitational fields are so small that in

some places the deflected rays can adequately be represented by

undeflected rays. In wave terminology, the assumption is that incident

waves are perturbed so slightly by weak fields that the resulting waves

can be considered to propagate in the original direction, but with per-

turbed phase fronts.

General Approach

Following a review of pertinent astronomical facts and figures,

the calculations in this report begin with the generally known weak

field solution to the gravitational field equations. (A summary of the

pertinent, basic results of general relativity, including the solution

7
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to the weak field equations, is found in Appendices A and B.) The first

step is to show that the behavior of light in the presence of gravity

can be accounted for in a flat, 3-space analysis by associating an

appropriate index of refraction with gravitational fields. Using this

index of refraction and a paraxial approach to light propagation, equa-

tions are derived for the phase and intensity of electromagnetic waves

passing a point mass. These equations are solved using geometrical

arguments to get an expression for the intensity of an initially uniform

plane wave after it has passed a single point mass.

A distribution of deflecting masses is then examined and

expressions for the mean intensity change and its variance are derived.

Actual populations of celestial objects are used both to justify

simplifications and to numerically evaluate the final statistical

results in some limiting cases.

8
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II. Intensity Distance Measurements

Since the objective of this study is to determine the impact of

gravitational intensity variations on distance measurements, the various

scenarios in which such intensity distance measurements are made and

the associated levels of accuracy are first reviewed. Also, the actual

* deflecting mass populations in these scenarios must be established so

that they can be used in determining the validity of certain approxima-

tions, as well as in numerically evaluating the final statistical

results.

Scenarios for Intensity Distance Measurement

Out to about 30 pc, the primary distance measurement technique

is direct measurement of parallax, or the angle of apparent motion of

the measured object against the "fixed" more distant background as the

earth moves in its orbit. A less accurate, statistical analysis of the

motions of the stars in a cluster can be used to determine distances

out to over 100 pc (Ref 13). For distances greater than this, intensity

comparison becomes the primary distance measurement technique. (inten-

sity measurements are important at closer ranges as well, however, for

determining the scale of the intensity yardstick.)

The well defined relation between spectral type and absolute

magnitude for stars on the main sequence of the Hertzsprung-Russell

diagram enables intensity comparison to be used in determining the dis-

tance of main sequence stars in our galaxy. The fixed relation between

magnitude and period for several types of variable stars allows fairly

9



accurate intensity distance determinations for galaxies out to about

4 x 106 pc in which such variables can be resolved. The less well

defined typical intensity of globular clusters or brightest stars in a

galaxy stretches this limit out to their maximum distance of resolva-

8bility of about 10 pc, which reaches the nearest, or Virgo, cluster

of galaxies. Further out still, the typical absolute magnitude of the

brightest elliptical galaxy in a cluster is used in galactic cluster

distance measurements. This is, however, a very poorly established

quantity.

8In any case, beyond about 10 pc the red shift of spectral

lines is available for distance measuring. This method is based on a

linear relation between distance and the velocity of recession resulting

from the expansion of the universe. The recession velocity of a source

is determined from the Doppler shift (toward the red) of characteristic

lines in its spectrum. (This method is not very useful below 108 pc,

where random motions mask the motion of cosmic expansion.) The distance

versus velocity relation also serves to place a boundary on the observ-

able universe at that distance at which the recession velocity goes to

the speed of light and emitted radiation is red shifted away altogether.

This distance is about 4 x 109 pc depending on the true value of Hubble's

constant of proportionality between distance and recession velocity.

Accuracy of Intensity Distance Measurements

4There are poorly defined sources at all ranges, for which inten-

sity distance measurements are not very useful (e.g., non-main sequence

stars in our own galaxy, or quasars and individual galaxies at very great

10



distances). Also, each step in the intensity distance ladder gets less

precise, partly because it is calibrated using an increasing number of

uncertain lower steps, and partly because it is based on the comparison

of sources of increasingly less well defined absolute magnitude.

At the galactic cluster distance measurement level, for example,

the following are just a few of the reasons for inaccuracy. Galaxies

are first of all not spherical, and so they present various aspects to

the observer. Also, since they have no well defined boundary, there

is a variety of possible ways of defining their intensities. (This is

discussed in the section covering point sources in Appendix C.) The

evidence is not strong that there is in fact a physical limit to the

absolute magnitude of galaxies, and that if there is, that at least one

member of every cluster can be expected to attain it. In an effort to

use a quantity more in line with those of the more meaningful mean value

type, some astronomers arbitrarily use the fifth brightest galaxy in an

attempt to avoid the statistically poorly behaved extreme values.

(Using the mean itself is problematic because in more distant clusters

fewer members are bright enough to be detected, causing a shift in the

mean value.) There is even the question of whether typical galaxies

of today are the same as their counterparts were billions of years ago

when the light received from the most distant sources was emitted. In

view of all these uncertainties, it is not surprising that beyond 108 pc

intensity methods serve mainly to offer statistical support for the

general interpretation of red shift measurements.

As stated previously, the accuracy of intensity distance

measurements is not the same in all distance regimes. In order to draw

'-" 11



any conclusions regarding the impact of calculated gravitational changes

on intensity distance measurement, then, one must make a quantitative

estimate of the accuracy otherwise involved in such measurements at

various ranges.

Precision is not considered since errors in the actual intensity

measurements are insignificant compared to the other uncertainties

involved. On the other hand, there may be theoretical errors (aside

from that considered here) in the inverse square distance relation, or

other unknowns such as absorption by dust and gas, whose magnitudes are

altogether unknown. The only factor considered in estimating the level

" of accuracy involved with distance measurements, therefore, will be the

ability to accurately characterize sources, and even therean optimistic,

limiting highest accuracy will be roughly chosen.

"* It is seen in the earlier discussion that while intensity dis-

tance measurements are made at all ranges, their accuracy decreases

with increasing distance. Therefore, the minimum fractional change in

intensity due to gravitational fields that would have a significant

impact on distance determinations increases with the distance involved.

The intensities of the nearest stars, measured for calibration purposes,

are generally not given much more precisely than to within a percent,

since there is no need to be any more accurate than the associated

parallax distance measurement. A one percent change in intensity is

therefore taken as the threshold level of significance for sources

within the Milky Way. On the other hanC', at the limits of the observable

universe, even a gravitationally induced intensity change of the order

of the intensity itself would not be especially noteworthy in view of

12



the uncertainties already present. In the intermediate range, for the

distances to other galaxies in which individual stars can be resolved,

a 10 percent change in intensity will be taken to be minimally signifi-

cant. We therefore have a rough standard for interpreting the signifi-

cance with regard to distance measurements, of the gravitational

intensity changes to be calculated.

Worst Case Scenarios

In order to place an upper limit on the magnitude of the statis-

tical intensity variations that can be expected, three "worst case"

scenarios are examined. These are those situations from across the full

range of intensity distance measurements, in which the possibility of

large statistical mean gravitational intensity variations seems the

greatest. They are:

1. Sources at or beyond the far edge of the Milky Way, observed

through the field of deflecting stars in the galactic plane.

2. Resolvable sources observed through the maximum dimension of

other galaxies. (It is assumed that it would be difficult to accurately

separate the intensity contributions of two galaxies directly in line

with the observer. Therefore, this scenario is limited to resolvable

sources within the far side of the galaxy of deflecting stars.)

3. The most remote galaxies, observed through the universal

distribution of galaxies.

The actual population of deflecting masses is examined in each of

these scenarios to determine the validity of approximations, and to

perform the numerical evaluation of the general results.

13



Pertinent Astrophysical Quantities

It is necessary for subsequent discussions to establish the

values of some astrophysical quantities. Most of these values are not

known very accurately and are subject to revision every time new data

come in. Furthermore, many have been rounded off and idealized for

this study. The exact figures, therefore, should be accepted only

roughly. This is, however, sufficient for the order of magnitude level

of accuracy required in this investigation.

The "standard" stellar mass, Ms, is assumed to be 3 x 103 3 g, or

about 1.5 times the sun's mass, M . The value of F for standard stars,

-13 10Fs, is then 3 x 10 pc. A solar radius, R0 , of 7 x 10 cm is assigned

to all stars.

The diameter of the Milky Way is taken to be 25 kpc, with the

sun located in the galactic plane but out toward one edge of the disk,

about 20 kpc from the opposite side. Twenty kpc is therefore used as

the largest possible distance of observation through the Milky Way, and

since the Milky Way is a fairly large spiral galaxy, the same value is

used as the typical maximum dimension of other galaxies. (Actually,

since galaxies have no well defined boundary, their "dimensions" are

somewhat arbitrary.)

The distribution of stars throughout the galaxy is not at all

uniform. The stellar density decreases with distance from the galactic

plane, and, in the vicinity of the sun, is down to a third of its local

value by about 350 pc. There is also a gradual increase in density

toward the galactic center, and Lequeux suggests that in a small central

core of about a hundred parsecs it may rise steeply to a value several

14

, ° - . , • .4



thousand times that near the sun (Ref 14). Furthermore, there is the

uneven distribution giving rise to the spiral arms, and the occurrence

of possibly a tenth of all stars within some sort of cluster. Neverthe-

*l less, for simplicity a uniform star density is assumed at least in the

* vicinity of the galactic plane.

Faber and Gallagher cite several calculations indicating a

stellar mass density near the sun of between 0.05 and 0.09 M pc-3

(Ref 15). (An additional mass of about 0.03 M pc- 3 from dispersed gas

and dust does not enter the treatment of ray deflection by discrete

deflecting masses within the galaxy.) For the worst case analysis,

looking across the galactic disk, only a relatively minor increase due

to the small size of the central region of much higher density is

included, and a rough mean density, a of 0.1 standard (1.5 M ) stars
s0

per cubic parsec is therefore assumed along that length, and the same

density is assumed in the planes of other galaxies. (It might be . d,

then, that most actual viewing situations will involve looking through

lower star densities in addition to looking through shorter portions

of the galaxy.)

On an extragalactic scale, the mass of a typical galaxy is taken

to be 10 44g, giving a value of 10- 2 pc for Fg. (The possible existence

of "galactic coronae," currently being theorized, has not been included.

Including such coronae, if they are determined to exist, could increase

the typical galactic mass by up to two orders of magnitude.) The group-

ing of galaxies into clusters is not considered, and 3 x 101 8 pc 3 is

used as the mean density of galaxies, a (Ref 16). Finally, the
99

4 x 109 pc taken as the radius of the observable universe, R, or that

15



distance at which the cosmological recession velocity goes to the speed

of light, is based on a value of 75km/sec/Mpc for Hubble's constant.

This value is not well determined, but Hodge summarizes about 20 recent

calculations using various methods, and most of the results are between

50 and 100km/sec/Mpc (Ref 17).

16
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III. Gravitational Index of Refraction

According to the theory of relativity, light rays travel along

null geodesics in 4-space. That is, along a light path

( L)a 9. iA CX'× = (3-1)

where ds is the 4-space path element, g8 is the metric tensor,

dx0 = cdt is the time coordinate differential and dx I , dx2 and dx3 the

spatial coordinate differentials, and where the Einstein convention of

summing over pairs of like indices, one contravariant and one covariant,

has been employed.

By the standard calculations of general relativity carried out

in Appendix A, the metric tensor in a weak gravitational potential field

is given by Eq (A-51) as

4 - 0 0 0

o o ,
".- 0 o0 - D+ -

C (3-2)0

where c is the speed of light in a vacuum in the absence of gravity,

and P is the classical gravitational potential. Inserting these values

into Eq (3-1) gives

*o :(tt ) o> (-1
aC • - ' ( 3 - 3 )
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2 1 2
and writing this in 3-space coordinates and letting (do) = (dx )

+ (dx )2 + (dx ) gives

Thus,

~(3-5)

where v is the local coordinate velocity of light in 3-space. One can,

therefore, include the gravitational effects on light propagation in a

vacuum in Euclidean flat space analyses by associating an index of

refraction, n, with gravitational fields, using the relation

2

(3-6)

Since all masses are being treated as point masses, their gravi-

tational potentials are given by

/0(3-7)

In the weak field regions considered in this analysis, condition (1-1)

is met and so the quantity 20/c2 is very small. Equation (3-6) can

therefore be approximated by truncating its series expansion to give

[. 18
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i -i. = + GM

i - 1 F

(3-8)

Some support for the validity of this index of refraction

approach is that it leads to the traditional total small angle of

2
deflection of a ray by the gravitational field of a point mass, 4MG/c r

radians, where r is essentially the distance of closest approach.

This expression is obtained in the steps leading up to Eq (4-25) of

this report by analyzing the propagation of waves in an inhomogeneous

medium with an index of refraction given by Eq (3-8). The solution of

the 4-space variational problem, giving the same result, is shown in

Appendix B.
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IV. Effect of a Single Deflecting Mass on Intensity

In this section, the index of refraction given by Eq (3-8)

is used in finding an expression for the change in intensity due to the

gravitational field of a single mass.

Paraxial Approach to Light Propagation

Due to the great distances between celestial objects;, it is

assumed that in the region being analyzed the actual incident, unper-

turbed spherical waves are closely approximated by plane waves.

Experience shows that the deflection of light rays by gravitational

fields is very small. This suggests a paraxial analysis in which a

perturbed phase front is assumed to propagate in a fixed direction, but

which allows the perturbation to vary as it propagates. Rays, as usual,

are defined as being everywhere normal to the constant phase surfaces.

Cylindrical coordinates are used to take advantage of the axial symmetry,

and the lack of angular variation results in the following simplified

definitions of the gradient, transverse gradient, Laplacian and trans-

verse Laplacian, respectively.

V r~4

L (4-1)
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As Figure 2 shows, the axes are aligned so that the deflecting mass, M,

is at the origin, and propagation is in the +. direction. The incident

plane wave is then unperturbed at z = -.

The paraxial equations to be solved are then determined as

follows. Substituting the general form of a monochromatic wave,

E( ,I)) (4-2)

-into the time dependent wave equation,

v E (4-3)

produces the time independent wave equation,

+ P(4-4)

where k . . For n nearly equal to one and propagation in the
c

+z direction we assume a paraxial solution of the form

zP( ,2 U(r,) e (45)

where U(r,z) varies slowly with z, Substituting this expression into

Eq (4-4) and performing the differentiation gives

+r U (4-6)

By the assumption of a slow change in U with z, and in the geometrical

optics limit where k-  , the second term can be neglected, and by

" 21
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writing n = 1 + n , jij<<l , the last term is approximately 2k2 nU

Thus, "

'::..v + rk "  k: 4- Q =0

(4-7)

We now rewrite the complex quantity, U, as

U rjz) =A(re) e'~' ~ (4-8)

where the amplitude A and the phase are real quantities. Substituting

into Eq (4-7) and separating the real and imaginary parts gives

)z V, V r A 01j(4-9)

and

-- = lALv A - Av,95.v, 0 4k i
(4-10)

From Eq (4-10), is evidently of order k, so the dot product is of

2 1 2order k2 , and the V A term is neglected in the geometrical opticskA T

limit, where k- o . Also, the real quantity of interest is the inten-

-7 sity, I, where

4 (4-11)

Therefore, substituting /F for A, Eqs (4-9) and (4-10) become
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(4-12)

and

.,.,, -v. -¢ vTO + K
(4-13)

We next make a thin phase screen approximation where the entire

phase change relative to an unperturbed plane wave caused by the varia-

tion of refractive index along the ray path is compressed into the

z = 0 plane, and a is set to zero elsewhere. (See discussion in

Appendix C.) Thus, denoting the uniform phase of an unperturbed plane

wave at z =0 by 4), the approximated phase immediately to the right of

z~i0"."z =0 is

z-' 4k,o z k a"(-,s)Js
coo (4-14)

where by the paraxial approximation, the integral over the ray path is

carried out at constant r. Now VT$ = 0 for z < 0 and

V,-(-,):r.{~(r~~

V: k r( r)ds (4-15)

- (4-16)
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Also, since n = 0 for z # 0 , Eq (4-13) becomes

[ "-

Partially differentiating both sides of this expression with respect to

r and rearranging terms gives

S(4-18)

We now define a variable r, where

(4-19)

Since the gradient of the phase

... v¢ =vT¢ +

;kP,4?k(4-20)

defines the direction of ray propagation, F(r,z) is seen to be the

tangent of the angle of deflection of the ray passing through (r,z).

(The angle and its tangent both always being negative.)

Substituting r(r,z) into Eqs (4-18) and (4-12), our problem

can now be stated as follows.

25
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Solve

7- r (4-21)

subject to the initial condition

1'(rC n (r1) as
J. (4-22)

where from Eq (3-8) and the relation, n 1 +

,.i"- -,-

( tS (4-23)

Finally, use this r(r,z) to solve

'.)r (4-24)

for I(r,z) where I(r,O) = I a constant.0

Solution of the Paraxial Equations

From Eqs (4-22) and (4-23) comes

)rs

_ -

0r~~- Fr- (

* (4-25)
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This is the tangent of the total ray deflection angle, but since it is a

very small quantity for most realizable conditions, it may equally well

express the deflection angle itself. Furthermore, as a result of having

made the paraxial approximation, the r in Eq (4-25) can be identified

equally well with either the impact parameter or the distance of closest

approach. (This expression is supported by the close agreement of its

calculated value of 8.5 x 10 radians with the measured deflection of

rays grazing the solar disk.)

Since all deflection is at the z = 0 plane, the rays elsewhere

will be straight lines and geometrical arguments lead to the following

solution of Eq (4-21)

(4-26)

where r (r,z) is the value of r at z 0 for the ray passing

through (r,z). Now

::i: ~r(-i) -z o (r-,), - P V(,-or,- ) 0)

-- t"-, (4-27

but this can be solved for r giving

a0
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L(4-28)

where the negative sign in the quadratic formula did not make sense for

the primary image rays. Substituting r into Eq (4-26), gives
0

___ _ -9MG

" 1 (" )-{V(4-29)

which indeed satisfies Eq (4-21).

We next look for the solution to Eq (4-24) using this value of

r. This equation too, is most easily solved using geometrical arguments

along with the conservation of energy. The power transmitted through

a cross sectional area, dA = r0 do dr , of an incident plane wave of

uniform intensity, 1 , is P = I0dA0 = I r dO dr The unequal0 0 0 0 0 0 0

deflection of the bounding rays of this bundle results in a change in

its cross sectional area as it propagates in the z direction, but the

total power remains the same. That is, P = IdA = ITdOdr . Therefore,

0o ( o4-30)

Clearly, all rays remain in the plane determined by their

inirial path and the deflecting mass. Hence, there is no change in 0

and dO dO . Equation (4-30) thus gives
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' 

" " " . . " . . . . - - . -

I I I

Ar (4-31)

Now r is given by Eq (4-28), and from it,

4"j1 + "--; (4-32)

Equation (4-31) then becomes

,.. i -- F

,i r Jr

(4-33)

an expression which indeed satisfies Eq (4-24) with r given by (4-29),

and gives the change in intensity due to the gravitational field of a

single mass.

Equation (4-33) may appear objectionable because it is always

positive, and when integrated over an infinite plane it does not appear

29



to result in conservation of energy in the whole, even excluding the

singularity at r = 0 . This is not unexpected, however, since it

arises from integrating the incident uniform plane wave over a infinite

* extent and attempting to compare infinite quantities when it is only

- locally that the plane wave approximation is justified (as in Appendix

C). In a more detailed solution using a point source and spherical

waves one would expect an increase in intensity on the side toward the

deflector to be balanced by a decrease in intensity in the direction

away from the deflector. (In obtaining such a solution one would have

to abandon the approximation of integrating rays from - to -- ,as well

* as the plane wave approximation.)
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V. Approximation of the Single Mass Intensity

Expression, and Its Validity

In this section, an approximation to expression (4-33) for the

intensity change is made and justified.

Approximation for r
2 >>4MGz/c

2

The form of Eq (4-33), in spite of all the approximations made

in deriving it, is still not suitable for a simple statistical analysis.

It can be further simplified, however, if

C- (5-1)

We recall that the first three terms of the Maclaurin expansion of

A1 + x , for small x, are

xi-~~ -x - & -'
, - ( 5 -2 )

Using this, Eq (4-33) can be expanded in terms of the small quantity,

24Fz/r 2
, to give

3L
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- .- r . - - - r ~ c r ~ .-

rAr

(5-3)

(This same expression can be obtained by assuming condition (5-1) at

any earlier point in Chapter IV. When this is done, straightforward

mathematical procedures can be employed from that point on, without

falling back on geometrical arguments. It is convenient in such calcu-

* lations to work with the log amplitude, X , where I = e2X , and discard

the first term on the right side of Eq (4-24), which is valid for

2
r >>4Fz.)

Although there is no uniformity of approach or choice of vari-

ables and approximations, the simplified expression (5-3) is function-

ally similar to expressions previously derived by otheri (e.g., Ref 18).

Looking at either this expression or expression (4-33), it woul seem

that for a sufficiently perfect alignment of source and deflector,

virtually limitless magnification of intensity could occur. The results

using real extended sources and defiecting masses would not be expected

to exhibit such perfect singularities, but very large magnifications

should indeed still be possible.

It should be noted that while both expressions (4-33) and (5-3)

give intensity amplifications that go to infinity as r goes to zero,

their behavior is quite different in this limit. As r2 becomes smaller
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relative to Fz, expression (5-3) begins to consistently err on the

2
high side. And in the limit r «<Fz , expression (4-33) approaches the

asymptotic form I ( Fz/2r), whereas expression (5-3) becomes
0

2 2 4
1 0 (F z /r ), giving results which can be many orders of magnitude too

large.

Applicability of the Condition r 2 >4MGz/c2

It is next shown that assuming condition (5-1) for deflecting

masses is reasonable in view of the actual deflector populations in

the three worst case scenarios. Clearly, for a given deflector and

incident plane wave, for any particular value of r, there is some dis-

tance down stream beyond which the intensity expression (5-3) based on

condition (5-1), is invalid.

To be more precise, one can rewrite Eq (5-1) as

>- >w F (5-4)

where the proportionality constant, w, is a parameter determined from

the minimum acceptable fractional error in the calculations of intensity.

Since each of the three scenarios has its own associated level of

accuracy, a different value of w is appropriate for each one. When

2
r = 6Fz , the difference between the intensity changes calculated from

Eqs (4-33) and (5-3) is one percent of the actual observed intensity.

In view of the one percent level of accuracy used for scenario one,

six is therefore taken as the value of w appropriate for that scenario.

A value of 2.5 for w gives a maximum relative error of 9.6 percent,

so that value is adopted for the second scenario. In the third scenario,

w is taken as one, which gives a maximum error of 56 percent.
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In each case, then, Eq (5-4) defines a paraboloid with the

deflector at the vertex, within which the errors resulting from the use

of expression (5-3) for the intensity would be unacceptably large.

The radius, at a distance z, of these "restricted" paraboloids is,

therefore,

wFz (55)

These paraboloids are also surfaces of constant change in irntensity.

Using the adopted values of w, the actual fractional changes (from

Eq (4-33)), are about 2 percent of the incident intensity in scenario
-r2 (2

one (r = 6Fz), 6 percent in scenario two (r = 2.5Fz), and 17 percent

in scenario three (r2 = Fz).

Assuming a standard mass for all deflectors within a scenario,

it can be seen (Figure 3) that for a given observer this same paraboloid

(but oppositely directed) bounds the region of possible deflector

positions for which condition (5-4) is satisfied. If it can be shown

that for a given source and observer there is a negligible chance of a

deflector lying within this paraboloid, then expression (5-3) can

reasonably be applied to all deflectors without introducing more than

the specified acceptable error in the statistical results.

The volume, Vp, of that portion of such a paraboloid within

which deflecting masses might lie, is given in general by

? 0r

(5-6)
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where z and z2 are the distances at which the line of sight enters and

exits the distribution of deflectors (with zI being no less than zero,

and z no greater than the source distance). The probable number of

deflectors, p, within the "restricted" paraboloid is then given by

where a is the density of deflectors. The validity of a blanket appli-

cation of (5-3) can therefore be demonstrated for each of the three

worst case scenarios by evaluating expression (5-7) using appropriate

distances and populations.

Observation of Distant Sources through the Milky Way. The maxi-

mum dimension of the Milky Way through which sources might be viewed is

20 kpc, the distance to the far edge of the galaxy. From Eq (5-6),

using z1 = 0, the paraboloidal volume in this worst case is

-. o (5-8)

-3*Using this and a mean density of stars within the region of 0.1 pc

in Eq (5-7) gives

cvr

* :: StrS(5-9)

That is, in this scenario there is a one in ten thousand chance of there

being any deflectors individually causing more than 1.6 percent change
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in the intensity of a given "worst case" source, and not having that

changed intensity given within 1 percent by Eq (5-3).

In considering this figure, four things should be kept in mind:

1. For more typical cases of viewing sources through a smaller

portion of the distribution of deflecting masses, the paraboloidal

volumne is apt to be orders of magnitude smaller. Also, the mean density

of stars along the line of sight is lower for sources which are not

viewed across the galactic disk. Therefore, the probability-of condition

(5-4) not holding for all deflectors will in most situations be much

smaller than the worst case probability.

2. The error arising from using expression (5-3) for the

intensity increases gradually as a deflector penetrates the paraboloid.

Therefore, the intensity changes due to many of the deflectors which

might lie within the paraboloid would still be reasonably well repre-

sented by expression (5-3). And in any case, the results of Eq (5-3)

err on the high side so that any final results obtained from it can still

be considered as an upper limit to the real results.

3. Even in those particular instances where there are deflectors

sufficiently well aligned with the source that their intensity effects

are not correctly given by (5-3), their contributions are added to the

correct contributions from billions of other deflectors in arriving at

the total effect.

4. In determining the overall mean intensity change, such pos-

7 sibly erroneous total effects are averaged in with those from cases

where no deflectors violate condition (5-4). (In this scenario, for

example, only one total effect in every ten thousand averaged in the
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mean, is apt to include any erroneous individual contributions.)

In view of these considerations, there seems to be no reason why expres-

sion (5-3) cannot be assumed for all deflecting stars in this scenario.

It might also be noted that the radius of the bounding para-

boloid at the far edge of the galaxy, from Eq (5-5), is only 1.9 x 10- 4

pc (or 38 A.U.). At that distance, a deflector on the paraboloid would

have an angular separation from the source of about .002" arc, which

would not be resolved in the photographic plates from currert tele-

scopes. In fact, using a minimum resolvable separation of .02", no

stellar mass deflector beyond about 180 pc, and only a fraction of those

closer in, which produce an intensity change in varying by more than 1

percent from that calculated from expression (5-3) (and which cause more

than a 2 percent intensity change), could be distinguished from the

source itself (Figure 4). Therefore, any error in the statistical

analysis resulting from expression (5-3) not being completely valid,

should be no larger than the more fundamental error due to unresolved

sources and deflectors being treated as single sources. (The diffrac-

tion limited nimimum resolvable angular separation, using the Rayleigh

criterion, is given by 1.22X/d. For the largest telescope diameter,

(d = 5m) and observation in violet light, (X z 4000A) this gives 10-

rad or 0.02" arc. Atmospheric effects, however, degrade actual per-

formance from this.

Actually, using other methods, it might well be possible to

recognize cases of nearly overlapping sources. Analyzing the spectrum,

which must be done in any case to identify the spectral type and thereby

determine the intrinsic brightness, and identifying the superimposed,
a
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characteristic patterns of spectral lines of different types of stars

can indicate the presence of multiple sources. Interferometric tech-

niques can also be used and procedures exist for both optical and radio

sources. Optical telescope apertures separated by fifty meters have

been used to resolve angular dimensions of 0.003" arc (Ref 19). The

much longer radio wavelengths result in vastly greater fringe separation,

but the ability to make and record simultaneous measurements thousands

of miles apart for later joint playback results in equally high resolu-

tion (Ref 10). It is not feasible however to perform such investiga-

tions on every source. And even when such methods do identify multiple

sources, it still remains to accurately separate the intensity contri-

butions of each. Furthermore, such sources would then be flagged as

appropriate cases to analyze for large individual gravitational intensity

changes.

Observation of Stars Through Other Galaxies. In the second

scenario a resolvable star is viewed through part of another galaxy.

Although such sources are most likely to be found in the outer regions

of an elliptical or an obliquely viewed spiral galaxy, the worst case,

in which a star is viewed through the full galactic diameter, is never-

theless considered.

Individual stars can be observed at a maximum range of about 108

pc. At that distance, the radius of the paraboloid bounding those

* masses with an intensity change given within .11 by Eq (5-3) is calcu-0

lated from Eq (5-5), using 2.5 for w, to be less than .01 pc. The

portion of galaxy bounded by it is very nearly a cylinder with that
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radius and a height equal to the galactic diameter. Across a diameter

-33

of 0.1 PC - suggests that there is about a 50 percent probability of

* finding a deflector within this restricted region.

* The blanket application of Eq (5-3) is certainly more question-

able here than in the previous scenario. However, it is again true that

this is a very extreme worst case, and the same four points listed in

the previous scenario should be considered. Taken together,- these

considerations suggest that the error in the final results should be in

keeping with the 10 percent level of accuracy optimistically associated

with defining the intrinsic brightness of brightest stars or typical

globular clusters of a galaxy. Therefore, in this scenario too,

expression (5-3) is assumed to adequately describe the intensity effects

of all deflecting masses. (Also, due to the greater idstances involved,

the comments under the previous scenario about errors due to unresolved

sources and stellar mass deflectors are even more applicable in this

scenario, and apply to deflectors well outside the 2 percent intensity

change paraboloid.)

Observation of Remote Galaxies Through the Universal Distribu-

tion of Galaxies. The third scenario was that in which the random

gravitational fields of entire galaxies acted on the intensities of the

most distant galaxies. Proceeding a3 before, the worst case source is

located at the edge of the observable universe (and the observer

necessarily at the center). Setting w equal to one, for a maximum

intensity change error of 5A~ percent, using the universal radius of

4 x 10 9pc for z, and setting z1 equal to zero in Eq (5-6), gives a universe
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scale paraboloidal volume, V~u of

2u

-1-10

A uniform distribution of 3 x 10 18galaxies per cubic parsec in Eq (5-7)

suggests that probably one or two deflecting galaxies would be in a

position to individually cause more than a 17 percent intensity change

in a given source, and to have those intensities, as given by Eq (5-3),

be in error by more than 56 percent.

The four considerations listed under the first scenario again

apply, however, except that the density of the distribution of galaxies

is taken to be isotropic. Since the level of accuracy associated with

this scenario is roughly only to the order of magnitude, the blanket use

of expression (5-3) for all deflectors again seems acceptable. It

might be noted, however, that in contrast to stars, deflecting galactic

masses causing up to an order of magnitude increase in intensity would be

far enough displaced from the line of sight to be resolvable, even at the

distance to the edge of the observable universe.

In summary, then, in view of the objective of this study, and

the level of accuracy associated with intensity distance measurements in

each scenario, it seems reasonable to adopt expression (5-3) as the

* gravitational intensity change due to all individual deflectors in all

scenarios, especially since any results obtained using expression (5-3)

will err on the high side in intensity, and even these too high values
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will, in most cases, be negligibly small. It is also seen that, in

the first two scenarios, large errors in intensity measurements are at

least as likely to result simply from a failure to resolve separate

sources as from the gravitational magnification associated with a nearly

aligned source and deflecting mass (although the latter offers the

possibility of much larger errors.)
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VI. Statistical Analysis

Total Intensity Change Due to Many Deflectors

It is shown in Appendix C that one can ignore the deviation

from straight line paths of real ray paths through actual distributions

* of deflecting masses. As a result of this paraxial approximation, the

* effects of each individual gravitational field on the intensity can be

considered independent. That is, each mass has the effect of multiply-

ing the intensity that would be observed in the presence of all other

deflectors, by its own individual intensity change, as given by expres-

sion (5-3). The total intensity in the fields of N deflectors, IT s' is

then expressed by the product

I N If,
TT 10  i(6-1)

where I would be the intensity in the absence of any gravitational

perturbations.

As~uming standardized deflecting masses within a scenario, so

that Fi F ,Eq (6-1) can be written out as

1:1-"1 If * J -

0I j141

(6-2)
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2 2
N F z.

If the first order term, E 1 is smaller than one by some

factor, then each higher order term will be smaller than its preceding

* term by some larger factor (larger since the sums over smaller indicial

ranges, of positive individual contributions, give smaller totals). It

is assumed that the first order correction is very small compared to one,

so that the higher order terms can be neglected. The total intensity

can then be written simply as

an expression which is easily employed in the statistical calculations.

Obviously, if the total fractional perturbation were not small, then

the simplification to expression (6-3) could not be made, but it is

shown in the end that in all real scenarios this first order total per-

turbation is indeed small, thereby justifying discarding the higher

order terms.

Mean Gravitational Intensity Change

We next consider the region of space bounded by two coaxial

cylinders as depicted in Figure 5. Their axes lie along the line con-

necting a particular source and observer, and they extend along that

portion of the line of sight passing through the region throughout

which deflecting masses are distributed. Their length, Az, is then no

larger than the source to observer distance, and may be much smaller if

deflectors are distributed throughout only a fraction of the intervening

space. The radius of the outer cylinder, R, is the radius of the largest
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cylinder that does not extend radially outward from the line of sight

beyond any boundary of the region of deflectors.

The region within the inner cylinder is excluded in order to

avoid the infinite values which result from using zero as the lower

limit in several integrals. As far as the statistics are concerned,

any nonzero inner radius, r m, will keep the results finite, so that its

value can be made small enough that no deflecting masses are apt to

lie within the excluded cylinder, and any contributions fromt the region

within it can be ignored. In order to avoid excessively, erroneously

high results, however, the regioii in which expression (5-3) for the

intensity is valid places a lower limit on suitable values of r m. This

lover limit is the parabo'.oidal radius, r, given by Eq (5-5), evaluated

at L~'e greatest distance along the line of sight from the observer, at

which deflectors occur. This distance may be as large as the source

distance, or it might be much less, depending on where the deflectors

are located. In fact, using this minimum value of rm in all real

situations the volume of the inner cylinder is only fractionally larger

than the volume of the segment of the restricted paraboloid within it.

%% Thus, since the paraboloids in each scenario have been shown to contain

* few deflectors, the same can be said of this smallest suitable inner

cylinder, and intensity change contributions from the region within it

can be either ignored or considered separately.

As an aside, one might question whether artifically excluding an

inner cylinder would have been necessary if Eq (4-33) could have been

retained in its unapproximated form throughout the calculations. And

2
in fact, looking at its asymptotic form for r «<Fz, wherein the intensity
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becomes proportional to VF/r , it is seen that there would indeed be no

problem with r being zero in evaluating the mean intensity change, since

in the calculations corresponding to those steps leading up to Eq (6-9),

letting rm equal zero when evaluating the integral would not give an

infinite result. The problem would persist, however, in evaluating the

root mean square intensity change. There would be a quantity <zI/r. 2>

to be evaluated in a calculation corresponding to that preceding Eq (6-19),

and letting r equal zero there would still produce an infirite result.
m

Furthermore, it remains to be able to perform the calculations using

expression (4-33) as it is, to give valid results for all values of r.

Using the approximate expression (5-3) is, however, sufficient

and appropriate for the task at hand, wl-!ch is to evaluate the total

effect of all poorly aligned deflectors. it has been shown that in a

given instance, there are apt to be at most a very few deflectors for

which Eq (5-3) is not sufficiently precise, and it would not be difficult

to analyze the effects of these few masses individually using expression

(4-33). We return, therefore, to the calculations, and proceed using

expression (6-3), which is itself based on Eq (5-3), for the total

observed intensity of a source with unperturbed intensity, I0

On the basis of real dimensions in the three scenarios, one can

assume that rm <<R even for values of rm much larger than the minimum

suitable ones. This simplifies several expressions, one of which

relates N to the population density, a. N, which appears in Eq (6-3), is

the total number of deflectors distributed between the cylinders, and

is given by

4
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H~Tr R T r"

-- T CT~

"- I\L)L (6-4)

The mean observed intensity for a given source, averaged over

all possible distributions of gravitational deflectors within the cylln-

ders, is the same as the sum of the mean individual effects of all the

deflectors averaged over all of their possible positions within the

cylinders. Using the symbol < > to denote a spatial mean, it can be

written

< 

2t

NF. 4 (6-5a)

TI [it rrRoa F, 4 (6-5b)

The same expression and the subsequent results are used for the

mean observed intensity averaged over all possible directions to sources

which would produce an unperturbed intensity, I and which have

deflecting masses distributed with a density, a, from zI to z2 along

the line of sight.
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II

If Pi(ri,zi) is the normalized probability of a deflector

occupying the site identified by (riz then

i- -(6-6)

where n is the total number of discrete sites which deflectors can

occupy. But there are so many deflectors that one can assume a con-

tinuous distribution and approximate expression (6-6) by the integral

expression

V

V (6-7)

where dV is the volume element and by the uniform distribution approxi-

mation the normalized probability

.::.: o-J4v
0- V

V

C-Jv
• ,-~ - TT Z -- Z7

S- - - (6-8)

is independent of position. In the present case, using the cylindrical

coordinate volume element, dV f ridOidridz i , and placing primes on

;.. 50

os



integration variables, Eq (6-7) can be written

4-.: rm

- f t-
ILI

-3 N

I For R>>rm  this becomes

__ 3

which is independent of R. This means that as long as the narrowest

dimension of the distribution of deflectors, orthogonal to the line of

sight, is much larger than r , then the actual overall shape of the". m

region containing deflecting masses is unimportant, and for convenience,

can just as well be considered to extend to infinity. (This, of course,

is a result of the rapid r drop off in intensity effects causing the

smallest ri values to dominate.)

Using the abbreviated notation Azn (z 2 )n - (Zl)n , Eq (6-5a)

* now becomes
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an expression for the mean observed intensity of sources of unperturbed

intensity, Io, viewed through a distance, L, of deflectors of mass, M,

and distribution density, oa. The mean deviation in intensities, D

'il is then7w KILT> -10

-33

- 3 r-.,

/ (6-12)

.'¢' and is evidently very sensitive to the values zI and z2 and the rather

• -. artificial value, r.
,'. m

an This expression can be specialized to the particular scenarios.

In the cases of deflection by stars of the Milky Way and deflection by

galaxies as a whole, the distribution of deflecting masses extends in

4 to the observer, so that zI :0 and Az3 = (z2)3 . For the first and

third scenarios, then, Eq (6-12) can be written
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d3

T, rra -z,

-(6-13)

In the case of deflection by stars in other galaxies, both z I and z 2

are much greater than Az = z- I . Thus, the A behaves as a dif-

ferential operator, and Az3  3z2 Az In the second scenario, there-

fore, Eq (6-12) becomes

C • (6-14)

where z is the distance to the galaxy and Az is the depth of the source

into it.

'-. Variance in the Distribution of Intensities

In describing the distribution of intensities about the mean,

it is useful to use the variance, or mean square deviation in the

intensity, (D2 1 ) . The root mean square (r.m.s.) change, D2 1 itself,

is indicative of how well the mean change represents the typical

change. In general

D <0 I> (6-15)

*| Using expressions (6-3) and (6-11) it becomes
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-i ,f ,:'f2(,- ':",' - + L)] (6-16)

and by repeating the reasoning leading up to expression (6-10) the last

two terms can be combined to give

(])zI F r (6-17)

Examining the first term on the right, one has

L4>

f"i-

"--

= N< t <

(6-18)

(Terms of this order were previously discarded, but had they been re-

tained at that point, they would have resulted only in terms of even

higher order here since the "ones" cancelled in Eq (6-16) prior to

squaring.) Looking again at the first term on the right, and following

the steps taken between expressions (6-6) and (6-9) gives
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15 N
or, ui R>r,

mr
2, )2

sp t p, r or un R

4(6-21)

- or, using Eq (6-10),

: /-oIT (A

N rT t~7

(6-22)
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Substituting expressions (6-20) and (6-22) into Eq (6-18) then gives

r--'4

___ -: ~ ,-,.. />

(6-23)

Substituting this in turn into Eq (6-17), and cancelling terms, gives

S5 ,

(6-24)

or, using expression (6-4) for N,

3j- - Ir 5- 3 Z (6-25)

As in the previous section, this expression can be simplified

and specialized for the particular scenarios. In the first and third
5,.5.. 2 z2 6/z

scenarios Az5 reduces to (z2 )
5 and (Az3 ) /Az becomes (z /Z, which

5is also equal to (z 2 )5. Equation (6-25) is then
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I -

(6-26)

which is approximated for R>>r , and is a general expression for them

variance in the intensity changes in scenarios one and three. The r.m.s.

deviation, D21 , in these scenarios is thus

215_ /'-ITo- Z, 6-

- 3 (6-27)

5 4  32 2 

In the second scenario, Az 5z4Az ,and (Az) (3z Az) =S 2

9z 4(Az) . Equation (6-25) then becomes

1F TfO- 'L

(6-28)

again, having used R>>r . The r.m.s. intensity change in the second
m

scenario is then
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.AA

(6-29)

Numerical Evaluation of Intensity Effects

Using appropriate distributions of deflecting masses, expres-

sions (6-13), (6-14), (6-27), and (6-29) can now be used to give some

insight into the gravitational intensity effects expected in each

scenario. In the case of deflection by stars of the Milky Way, the

* largest mean and root mean square deviations in intensity occur for

sources at or beyond the far edge of the galaxy, viewed through the

-13galactic plane. The pertinent "worst case" values are 3 x 10 PC

for FS,0.1 pc3 for a , and 2 x 10 4pc for z. Using the minimum

suitable rm of 1.9 x 10 (based on this z and a value of 6 for w in

Eq (5-5)), Eq (6-13) gives the mean, net gravitational intensity change

for such sources as 2 x 106 times 1I0, the unperturbed intensity itself.

This is much less than the level of accuracy associated with intensity

distance measurements at such ranges and would be even smaller under

less extreme conditions. Since all deviations are positive, the small

r.m.s. deviation of 1.7 x 10~ 10, from Eq (6-27), indicates that there

can be very few instances of large intensity deviations. It appears,

therefore, that the net gravitational effect of the stars of the Milky

Way is apt to contribute no significant error to any given intensity

distance measurement.
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In the case of sources viewed through the full diameter of other

galaxies, Az is 2 x 104 pc, the worst case (maximum) distance, z, is
L8

108 pc, and the smallest suitable r (using w = 2.5 in Eq (5-5)) is
• m

-3 1-13 -
10 pc. F and o are again 3 x0 pc and and 0.1 pc

s s

The mean and r.m.s. changes in intensity, from Eqs (6-14) and (6-29),

* . are .0751 and .061o, respectively; values which are somewhat less than
00

the level of accuracy of this scenario.

*Looking finally, at the third scenario, that of deflection by

whole galaxies, the pertinent "worst case" values are 0.01 pc for Fg,

3 x I0- i pC- 3 for ag, 4 x 109 pc for z2, and 6325 pc for rm, (the

minimum suitable value based on a value of one for w in Eq (5-5)).

The mean and r.m.s. deviations for such edge of the universe sources,

from Eqs (6-13) and (6-27), are 0.51 and 0.310, respectively. Again,
0

the typical net gravitational intensity effect is less than the level of

accuracy of values associated with this scenario.

Discussion of Results

The preceding results require some expansion and further dis-

cussion before any final conclusions are drawn. More specific, detailed

discussion of the particular scenarios will be made more meaningful,

however, if some further comment is first made concerning five items

common to each.

First, some further discussion of the quantity r is in order.
m

* The variable r is really a rather artificially introduced and evaluated
m

quantity. The results obtained are actually limited mean total effects

from which the contributions of any individual effects greater than
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some threshold, determined by r, have been excluded. As far as the

statistical analysis is concerned, the value of r is arbitrary, and

what one would like is to find some value for which the resulting

limited mean is negligibly small, while at the same time the probability

of there being any deflectors with individual effects large enough to

be excluded is also negligibly small.

Increasing rm reduces the limited mean to any desired value,

but at the expense of the excluded cases becoming less rare. On the

other hand, because of the singularity in the intensity expressions and

their integrals at r = 0, one can make the mean total intensity change

arbitrarily large by letting rm approach zero. (In fact, previous

results suggesting a large variance in the case of the stellar deflec-

tions within the Milky Way are based essentially on the use of a stellar

radius for rm, although the actual analytic approach and quantities

involved are not the same as in this study.) Such results are due to

effectively infinite intensity changes that essentially never happen,

however, and their significance in terms of the incorporation of gravity

effects into typical intensity distance measurements is not evident.

The value of r used in this study is, of course, based only on the
Im

particular form of an intermediate expression. It happens, however, to be

about the most appropriate value for producing meaningful results.

A second point is that clustering, either of stars or of galaxies,

has not been accounted for. In fact, celestial bodies are not uniformly

distributed, but oftentimes occur in clusters. This should reduce the

average effect somewhat, but for sources viewed through a cluster there

should be a much greater likelihood of large gravitational effects.
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Third, very large intensity changes are not discounted alto-

gether. They are merely shown to be improbable, and when they do occur

it is most likely due to the large individual effects of one or a few

nearly aligned deflecting masses. Assuming these masses are luminous,

their proximity to the source in photographic plates should suggest

that an individual analysis (using Eq (4-33) for example) is warranted.

If they are unresolved from the source, (which was shown to be likely in

both scenarios of stellar deflections), the error due to the source being

misinterpreted might well overshadow the error in distance determinations

resulting from gravitational effects.

Fourth, while the typical effect may be small with regards to

distance measurement accuracy, the mean effect appears large enough

under some conditions in scenarios two and three that if any time varia-

tions due to motions of the bodies involved are rapid enough, they

should be detectable.

Finally, it should be recalled that the levels of accuracy here

associated with each scenario are rough estimates and optimistically

chosen. This probably reduces the significance of the calculated

intensity changes.

We are now in a position to discuss the three scenarios

individually. In the first scenario, to the extent that the excluded

cylinder of radius r approximates the paraboloidal segment it contains,
- . m

(defined by Eq (5-5)) this inner cylinder separates the individual

deflectors causing more than about a 2 percent intensity change from

those causing less. What has been calculated, then, is roughly the

e mean total change resulting from the combined effects of all deflectors
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which individually cause less than a 2 percent intensity change. That

mean total gravitational intensity change for worst case sources at or

beyond the far galactic rim is indeed negligibly small, (2 x 10-1
0

compared to our significant error threshold of about 1 percent) while

at the same time, any larger, excluded contributions are negligibly

rare (occurring for about one in every ten thousand observed sources).

It can readily be concluded, then, that in any given intensity distance

measurement the net gravitational effect of all the stars iti the Milky

Way is not likely to be significant.

The situation is not so clear in the other scenarios. In the

second, wherein deflection by stars in other galaxies is considered, it

was shown that when individual deflectors causing more than about a

6 percent (from Eq (4-33)) change in intensity were excluded, the mean

change in "worst case" sources due to the remaining deflectors

(using Eq (5-3)) was .0751$ which is just below the level of accuracy

-. associated with this scenario. (And the r.m.s. change of .061 indi-
0

cates that this mean is fairly representative of typical instances.)

In this worst case, however, there is a 50 percent chance of an indi-

vidual deflector being well enough aligned to cause more than a 6 percent

intensity change. One might conclude that gravitational intensity

effects are, therefore, frequently important under these worst case

conditions.

This is )robably not the case, however. It is evident that the

largest contributions to the mean total change are due to well aligned

deflectors, and that their contributions are overestimated by using

Eq (5-3). This means that a mean intensity change of 10 percent would
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correctly be associated with all thos'e deflectors outside a smaller

excluded cylinder, thereby reducing the probability of there being

deflectors in a position to give excluded, large individual changes.

More importantly, however, the conditions under which most

resolvable sources in other galaxies are observed are not likely to

approach this worst case. In particular, (since resolvable stars are

most often observed in the periphery of galaxies viewed obliquely) the

portion of the galaxy through which stars are viewed is apt to be much

shorter than the galactic diameter, and the density of deflecting stars

is likely to be lower in that region. These two factors alone reduce

the probable number of deflectors c ausing more than a 6 percent intensity

change by a couple orders of magnitude. One can again conclude, then,

that at least throughout the majority of conditions under which stars are

viewed through other galaxies, gravitational intensity effects remain

negligible in terms of their impact on intensity distance measurement.

In the last scenario,'in which the effect of entire galaxies

acting on a source is considered, the mean intensity change under worst

case conditions was shown to be .510 with an r.m.s. deviation of MOP,

which is again somewhat less than the level that would impact distance

measurements. However, it was earlier shown that in every such worst

case there are apt to be one or two deflectors in a position to individ-

ually cause more than a 17 percent intensity change. Here, the possible

aavailable reduction of rs as discussed in the previous scenario, would

still leave a significant probability of there being deflectors causing

notably large intensity changes. In addition, there is no known inter-

fering matter uniquely associated with the worst case conditions to makeH 63



it unlikely that sources would be observed at such ranges, and further-

more, the number of sources at a given distance is proportional to the

square of the distance, placing many sources at great distances. Well

S."defined sources, however, are apt to be considerably less distant,

lowering the probability of large individual deflector effects quite a

bit, and it is, therefore, unlikely that many galactic distance deter-

minations have been grossly in error due to gravitational effects. On

the other hand, typical effects on the order of the intensity itself

could contribute to the uncertainty that exists in characterizing galac-

tic sources. It might well be appropriate to eliminate most gravita-

tional errors in this scenario (even though other inaccuracies are apt

to be just as large). Large total effects have been shown to be most

likely due to large individual effects, and these could be corrected for,

to any desired degree of accuracy, by using expression (4-33) to indi-

vidually analyze the effects of any deflectors appearing within some

selected angular separation from the source (approximating the para-

boloid previously discussed, by a cone).

It might also be noted that if galactic coronae prove to exist,

considerably increasing the mean galactic mass, the typical effect

could turn out to be much larger, making such gravitational corrections

definitely in order in this scenario.
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VII. Conclusion

The final results of this study show that for deflecting stars

within the Milky Way, significant gravitational changes in the intensity

of sources are rare enough, and typical changes small enough, that

virtually all intensity distance measurements can safely be made without

regard to gravitational effects. Under the extreme worst case condi-

tions of deflection by stars in other galaxies, the typical gravita-

tional intensity change might be minimally significant with regards to

distance determinations. Under most conditions, however, the effects

are again negligibly small. In the case of deflection by whole galaxies,

typical gravitational intensity changes may be on the order of the

intensity itself. However, due to the great uncertainty in characteriz-

ing the absolute magnitude of galaxies, gravitationally induced errors

in distance measurements are probably no larger than many other errors,

even in this scenario.

In any scenario, large effects are apt to be due to an individual,

closely aligned deflecting mass, rather than the net effect of the over-

all distribution of deflectors. While the final results of this study

are statistical, some of the intermediate results could be used in

evaluating such large individual effects. If greatest accuracy is

desired, carrying out such a program might be warranted in the case of

intensity distance determinations of distant galaxies. In the case of

stellar deflecting masses, those sufficiently well aligned to indiv-idually

cause a large intensity change are not likely to be resolved and
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distinguished from the source, so that there would be additional errors

in the intensity interpretations. Closely aligned bodies which are

resolved from the source, however, would thereby flag themselves as

t' being those warranting individual analyses.

Finally, gravitational intensity changes in the cases both of

deflection by stars in other galaxies, and of deflection by whole galax-

ies, are large enough that they should be detectable if any time

variations due to motion of the bodies involved occur on a short enough

time scale.

a

7.
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*i Appendix A

Summary of Pertinent Calculations from General Relativity

This appendix shows the basic calculations of general relativity

theory leading to the results used as a starting point in the main

report. Schwarzschild, in 1916, found the exact solution to the gravi-

tational field equations external to a spherically symmetric mass dis-

tribution, and the following calculations are usually based on that exact

solution (although the resulting trajectory equation must still be

solved by approximation). In this appendix, however, a perturbation

approach is taken throughout, although the specific case addressed is

the spherically symmetric point mass. In the weak field regime where

this approach is valid (and this regime includes most physically real-

izable conditions), the results are the same within the order of approxi-

mation used. For details of the calculations using the Schwarzschild

solution see, for example, Introduction to General Relativity by Adler,

Bazin and Schiffer (McGraw-Hill, 1965).

Conventions, Postulates, and Assumptions

1. The following conventions and definitions are employed in

the tensor analysis:

a. Roman indices range from one to three

b. Greek indices range from zero to three, with the zero

index belonging to the time coordinate.

c. Tji  denotes partial differentiation of the tensor T1
Pj" th

with respect to the p coordinate. (A double bar is used to denote1A
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covariant differentiation.)

ij id. The substitution tensor in any form (6ij, 61j or 6.)

has the value one when i equals j, and zero otherwise.

e. The appearance of a double index, once covariant and

once contravariant, in a single tensor term or tensor product implies

summation over the range of that index (e.g., i al a+ 2 + X3

Summation is not implied when:

(1) The indices are both covariant or contravariant.

(2) Specific numerical values are expressed for the

2indices (e.g., P2).

(3) The indices are written parenthetically (e.g.,

A(i)A(i) )

". The curvature of a Riemann space is described by its

(covariant) metric tensor gec or, equivalently, by its inverse, the

contravariant metric tensor g

g. The Christoffel symbol of the second kind, , isg.Y

defined by

9, (A- 1)

2. The following are postulates of general relativity:

a. Gravitational effects are accounted for by the curvature

of space-time. Thus, the gravitationial field equations are in fact

equations for the metric tensor g c

b. Motion of a free particle in 4-space is along a geodesic

(the Riemannian equivalent to a Euclidean straight line). A free

particle is one upon which the only forces that act are those arising
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from the choice of coordinate system (i.e., centrifugal, coriolis,

gravitational).

c. The trajectories of light rays are null geodesics.

That is, along a ray path the 4-space path element vanishes, or

=O A2
3. The following assumptions and approximations are made:

a. The self-source action of gravitational fields is

neglected.

b. A time independent situation is considered in which the

actual metric tensor is given by a constant perturbation, Cy~ to

the constant and uniform Lorentz metric,

~0 0 0 -I(A- 3)

where y vanishes at infinity and only terms to first order in e are
ox

retained in calculations.

c. The perturbation is assumed to be diagonal, the justi-

fication being that such a form works.

d. When spherical symmetry exists one can find an isotropic

coordinate system in which g,, = g2 g33 so that in this case

= Y (no sum).
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Thus

0
S(L-) ., ,,- o 01c 0

io 0

(A-4)

and, to order c,

o0 0

.0 0 C

(A-5)

In such a system, the coordinate velocity of light at a point is the

same in every direction, but varies with the radial coordinate. This

isotropic radial coordinate (P in this appendix) is not necessarily the

same as the flat space radial distance coordinate (r in this appendix),

but is some function of it.

Derivation of Euler's Equations

Since the trajectories of light rays are geodesics, it is useful

in determining ray paths to have the geodesic differential equation.

*This is obtained from the Euler-Lagrange equations of the system, which

are themselves the equations of motion of the system. The Euler equa-

tions are derived from the variational problem, which in this case is
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(A-6)

where p, and P2 are endpoints and q is a parameter which varies along

the curve (other than path length since ds = 0 along the null geodesic

light trajectories). This problem is the mathematical specification

that the integral be minimized along the actual path (that is, its

variation between "adjacent" possible paths will be zero along the true

path).

An equivalent problem is

(P2
~ Xd~ -O(A-7)

or

:i ) - 0
(A-8)

where I represents the entire integral in (A-7) and ' the integrand

alone. Following standard procedures of the calculus of variations one

considers a family of possible curves, all joining p1 and P2, and close

to the true path. Using the simple 6 notation, one then considers the

variations of the integral when evaluated along different possible

curves, and has

- P, (A-9)
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, (A-10)

Integrating the second term by parts gives

(~4) (A-il)

Since all curves connect p, and P2' there is no variation of xy at the

endpoints, thus x= 0 at p, and p2 and the middle term vanishes in

(A-Il) leaving

Since 6xy is in general not zero, Eq (A-12) can be assured by requiring

the expression in brackets to be identically zero. Thus,

:k i o =

(A-13)

which, in general form, are the Euler-Lagrange equations for the system.

Reduction to the Standard Geodesic Equations

The Euler equations together describe extremal paths, and using

our TP they can be reduced to the geodesic equations in standard form.

dxy
Using tensor notation and the fact that the derivatives, are not-. S S- -

-". whexpicit unctonea fom arxhyue-arneeqain o h ytm

Redutio to he tanard eodsic quaion



- - dX .

~ _ c~x' d~(A- 14)

Also, since g(, is not an explicit function of dq

,A

(A- 15)

since g is symmetric and the choice of summation indices is immaterial.

Then

S ~ '

V: (A-16)

But

J+c (A-17)
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simply by switching summation indices. Equation (A-16) can thus be

written

(A-18)

Changing the summation index a in Eq (A-14) to ) , substituting

Eqs (A-14) and (A-18) into Eq (A-13), and multiplying by (- ) gives

44 cxj-C

When multiplied by gV these equations can be written

L 
-

(~H~i 7~'~-(A-20)

the standard equations for a geodesic.

Having established the equivalence of the geodesic equations with

Euler's equations, it can be seen that a quick way to calculate

Christoffel symbols for a system with known equations of motion is to

equate the corresponding terms in the Euler and geodesic equations.

Linearization of the Field Equations

For present purposes, the metric tensor must be known in order

to use either the geodesic or the Euler equations. To determine the

* metric, the field equations must be solved. The empty space gravita-

tional field equations for the metric tensor, chosen by Einstein, are

- . equivalent to P = 0 , where R, is the contracted Riemann-Christoffel
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tensor of the second kind, Sax

From its definition, the field equations may be written

- I 4x\ '71 7 / (A-21)

To solve these equations, the perturbed Lorentz form is assumed for the

2
* metric and terms of order e or higher are discarded. From Eqs (A-i),

(A-4) and (A-5), the Christoffel symbols may be written

i?:'}"C /vr~l.' f3 /d"(A-22)

By the constancy and uniformity of the Lorentz metric,

.(. L) (L) .'

".-J (A-23)

Thus, to order E, the Christoffel symbols reduce to

I L\~A4~~ y(A-24)

The Christoffel symbols themselves are, therefore, of order E and the

2
last two terms in (A-21), being of order C , are dropped.

Using Eqs (A-23) and (A-24), the first term in (A-21) can be

written
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(A-25)

(L) 06
Here, by interchanging indices of the symmetric tensors g and

'YaB in the third term, and then interchanging the summation indices,

the first and third terms cancel, leaving

S(A-26)

Again using Eqs (A-24) and (A-23), the second term in (A-21)

becomes

.-- (A-27)

Using (A-26) and (A-27), the field Eqs (A-21) thus reduce to the

linearized form

(A-28)

Relation Between roo and Tzz

Looking at the Eq (A-28) for )= = 0 , the first three terms

vanish by time independence of y Those terms in the remaining sum

for which i - 0 or = 0 also vanish by time independence, leaving

(A-29)
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or, in vector notation,

V 0 C) (A- 30)

In the Eqs (A-28) for A = ,7 = i # 0 , the two middle terms are equal

by the symmetry of y Thus

Q(L) M \AVI4&)U) -c~)(D.)4 1014(A-31)

Since g (L)c is diagonal, many zero valued terms can be dropped from

these equations. Using g(LOO = 1 and g(L)ik = _ik , and distribut-

ing the Lorentz metric, leaves

(L)o (L)co ()oo

where the second and third terms vanished by time independence. Now

Ykk = 6 k9,YZZ and since 6kis uniform and constant it commutes with

the operation of partial differentiation, so that

(A-33)

a
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Using this, Eqs (A-32) can be written

o -- WOIo) ,I, k I

((A-34)

Adding Eq (A-34) for i = 1, 2 and 3 gives

(A-35)

or, using (A-29),

(A-36)

Using this result in Eqs (A-34 and combining terms, gives

,.... oo 4 ' ) 1'
06

(A-37)

These equations imply that (y - yz) is linear. Since y vanishes
00 

vnse

at infinity, (y - Y) must then be zero everywhere. Thus
00 Z

YO 6 (A-38)
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Calculation of Yoo

The perturbation Eyoo is determined by correspondence with

classical laws of motion in the limit of a weak perturbation (small 6)

and velocities much less than c (small v - ). Calculations carry
c

* only terms to first order in c or 8. We consider the motion of a free

particle and repeat here the equations of its geodesic path derived

earlier.

4 T F
• .. (A-20)

The first term can be written

A"t (A-39)

and in the second term

-JZ P (A-40)

Substituting these expressions into (A-20) and dividing through by

c2 (dt)2 gives

Ct JV '' (A-41)

. order E, and the derivatives in the second term of (A-41) equal c if
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their index is zero, and a component of the velocity (of order 3)

otherwise. Discarding terms of order c4 and E8 2 in Eq (A-41) leaves

2.
only the ?7 = T ; 0 terms. Multiplying through by c gives

"4" :

t 0 -C3 (A-42)

Using Eq (A-24) and the result of time independence that

y = 0 , the pertinent Christoffel symbols can, to order ", be

written

(A-43)

* " For a = 0 this becomes

oo ? o o06co~ (A-44)

ox 00since the only non-zero g is g , and yoo0 ° is zero by time indepen-

dence. The a = 0 Eq (A-42) thus gives

JPtt (A-45)

as it should.

For a = i # 0 , the diagonlity of g(L)a 3 leads to

--- (U
_ ~ (A-46)
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Thus

-c oo j(A-47)

or, in vector form,

I.2

(A-4 8)

*. This result must correspond with Newton's equation of motion of a mass

M in the field of a force, F, derived from a scalar potential, 1,

-' (A-49)

Therefore

(A-50)

and Eq (A-30) is now seen to be the classical gravitational potential

field equation.

The final results are thus

* 0 00 C) -)

0) 0 o C)

(A-51)

83



and

(A-5 3)

G being the universal gravitational constant and r being the radial dis-

tance coordinate. Strictly speaking, the isotropic radial coordinate,

p , was used in this appendix, but as is shown in the beginning of

Appendix B, p and r are interchangeable in these expressions, to the

level of approximation carried (first order in )in the weak field

region of concern (r -> ).

c
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Appendix B

4-Space Calculation of the Deflection of Light Rays

As stated in Appendix A, the trajectory of a light ray is a

solution to the variational problem

J(B-i)

or, equivalently,

(B-2)

where q is a parameter along the path (other than the path length, s,

since ds = 0 along a null geodesic).

In considering rays in the field of a point mass, it is most

convenient to use spherical coordinates. Using the weak field metric
4AMG

tensor determined in Appendix A, and the simplifying notation F = 4MG
c

the path element in isotropic spherical coordinates is

/10 (B-3)

It will be expedient, however, to forego using isotropic coordinates

and find the simpler, equivalent metric of the form

85
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"is

A ) f(B-4)

0;.. where r is the radial distance coordinate.

Equating the angular coefficients of (B-3) and (B-4) gives

(B-5)

and solving this quadratic for p(r) gives

"-9.(B-6)

or, to first order in F,

(B-7)

where the plus sign was chosen in (B-6) for closest correspondence

between r and p. Then by correspondence of coefficients, substitution,

and dropping second order terms in F,

L~
o

(B-8)
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and

"". 1 B6-) =( 1 +j

F
-1 -(B-9)

Thus, to our order of approximation, the metric tensor time and radial

components appear unchanged, and the angular components revert to the

(-1) values of the unperturbed Lorentz metric. This metric agrees with

the Schwarzschild metric in non-isotropic coordinates, approximated for

small F.

The variational problem (B-2) is now

(B-10)

Using Eq (A-13), the Euler equations are:

for t, ~j] 0(-l

for 0, J rseh& ] - 0 (B-13)

The Euler equation for r may be replaced by the simpler equation obtained

2
* by dividing the null line element by (dq) 2 . The fourth equation in the

system is then

,II ) ): kT)-tJ (1 (B, 1. ts-14)
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It is evident that by proper alignment of the axes, one can

establish

si"" (B-15)

"cos e c
F AG

for all q, causing Eq (B-12) to disappear. That is to say, the trajec-

tory and center of mass lie within a plane in three space, as expected.

Using (B-15), Eq (B-13) can be integrated to give

i2c'. (B-16)

Similarly, Eq (B-1i) yields

oif

(B-17)

where A and B are integration constants. Using (B-15), (B-16) and

(B-17), Eq (B-14) can be written

-r" (B-18)

or, to first order in F,

o :2 0A2 ,. AF,
A' "F r 3  (B-19)
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where, by the approximation to order F, this equation has reduced to

that obtained using the exact Schwarzschild metric.

To find the trajectory as a function r($) we write

i (B-20)

or, using (B-16),

(B-21)

Substituting this into (B-19) and making the change of variables,
1 -dr

du= 2 gives
rr"" r

2(c +A2Fu!O=C A A'F -6

(B-22)

which, by differentiating again with respect to $, becomes

d TO (B-23)

du

Cancelling the , which itself gives a circular orbit solution, the

equation for light ray trajectories is then

22*cu _ F~

ct9( (B-24)

This equation is solved by approximation where the term on the

right is considered a small perturbation of order F. The zeroth order
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solution, satisfying

)'P.i

[,.:[.(B-25)

is

L- zG oC S~ ¢ (B-26)

a straight line, or unperturbed trajectory, in spherical coordinates,

with r°  L being the impact parameter. (A constant phase term has0 uo

0
been set to zero by aligning the axes so that $ = 0 at closest

approach.) This expression is substituted into the perturbation term

of (B-24) and the resulting equation, of first order in the perturbation,

is solved by using a trial solution with undertermined coefficients.

The result is added to (B-26) to give the full solution to first order in

F, which is

I _F"" U=- -- o €- cosy
r ( r. r (B-2 7)

The total deflection of a ray traversing the field is T radians

minus the angle between the asymptotes to the trajectory at r =oo

Setting - = 0 in (B-27) leaves a quadratic equation for coso,
r 0

. which is solved to give

C o - ;0 + J -o 0

- (B-28)
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- where the minus sign was chosen since cos must be less than one.

Expanding to first order in F gives

"- (B-29)

Since this is a very small quantity, 2oo must be very near either
1!2'

where cos I ~ ,or - where cosoo2 - 2 Thus,

2 F- and ,2 = - + -1--) are the angles of the .asymptotes
0 0

and the total deflection angle, r, is

.. ~F _ L..UIG

-Cf~ (B-30)

Now, letting r' denote the distance of closest approach to the

field source, which occurs at = 0, coso = I we have,

I--0

_ F

(B-31)

Solving the quadratic equation for r gives

• " r F,

o ~ ~ r/ Fr
' - [-(B-32)

Thus, although Eq (B-30) was derived in terms of the impact parameter,

its form is the same, to first order in F, when the distance of closest
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approach is used. Equation (B-30) is the standard expression for small

deflection angle, and agrees with the expression determined in the main

report using paraxial approximations and Huyghen's principle.

I.,9
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Appendix C

Justification of Approximations

* In this appendix, the seven approximations listed in the intro-

duction and incorporated in the main report are justified and discussed.

The numerical values given in Chapter 11 and some of the intermediate

* results in the main report are used.

Stars and Galaxies as Point Sources

In regard to the first approximation, whereby all sources are

treated as point sources, it is noted that even the closest stars are

not resolvable into extended images in photographic plates. Any observ-

able size can be attributed to a diffraction pattern, with the maximum

image density being a measure of the effectively uniform intensity from

* the star across the telescope aperture. Stars, therefore, are indis-

tinguishable from point sources radiating the same total power, and can

be treated as such with regard to observable effects.

The extended nature of galaxies, on the other hand, is evident.

However, in this case, the radiation from any differential region of

the galaxy is affected by the intervening gravitational field just as

would be that from a point source in the same location. It makes some

uniform differential contribution to the intensity at the telescope

* aperture, and the brightness of the corresponding differential area of

the image is changed in the same way as that of the point source.

Since the ray bundles from different parts of the galaxy follow different

paths through the intervening gravitational fields, the resulting

93



intensity changes are not uniform across the image. However, since

galaxies do not have well defined boundaries, and since they are not

spherical and present random aspects to the observer, the most reasonable

quantity to compare in intensity distance determinations is peak

intensity (corrected for orientation effects). The mean change in such

peak galactic source intensities is the same as the mean change in

idealized point source intensities. (It is noted, however, that due to

the different magnifications of different ray bundles, one cannot really

identify the intrinsically brightest point, and it is for this reason

that background galaxies are not considered as sources in the second

scenario in this study.) It therefore appears valid to approximate

both stellar and galactic sources by point sources.

Stars and Galaxies as Point Masses

The point mass deflector approximation has two basic ways of

breaking down. First, it may not account for actual masking of a source

by the physical extent of a deflecting body. Second, the gravitational

potential, which in Appendix A is shown to be the quantity of importance

.. in the effects studied here, may not adequately be represented by that

of a point source.

Considering first the case of physical masking of stars by

stars, a standard solar radius is assumed for all stellar sources and

deflectors. Some degree of masking will occur if a deflector center

lies within the truncated cone whose surface is a standard stellar radius

outside the cone defined by the observation point and the apparent

circumference of the source (Figure 6). The probability of a given
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source being masked to any degree is given roughly by the deflector

density times the volume of that part of the outer cone lying within

the intervening distribution of deflectors. The volume of the perti-

nent portion of cone is largest in the case of deflection by stars in

another galaxy, where the cone section is essentially a cylinder of

twice the standard stellar radius. Looking through a maximum 20 kpc

of deflectors, its volume would be 101 3C.Mlilin yasa

-3density of 0.1 PC gives a worst case probability of any masking of

*a given star by an intervening star of lolli. That is, of all the

stars in another galaxy, viewed edge on, only perhaps one pair would be

sufficiently well aligned for physical masking to occur. Within the

Milky Way, using the actual conic volume reduces this probability, but

even more significantly, the lower star densities and shorter ranges

involved in most observations mak~e the chances of masking much smaller

still. Physical masking of stars by stars can, therefore, be safely

ignored. (This, of course, does not address the possibility of masking

within binary star systems).

The case of galactic deflecting masses is again rather different.

In terms of masking, however, the situation is simple, since galaxies

can be considered virtually transparent. They may appear opaque because

the individual stars cannot be resolved, but at a wavelength that can

penetrate interstellar matter, the only actual masking is that of stars

in the source by stars in the deflector, and that has been shown to be

negligeable. Therefore, even if a source directly behind a deflecting

galaxy is unresolved or undetected, its Intensity contribution Is not

masked by the deflector. (Actually, if a deflector is indeed opaque
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and hides a source behind it, then the existence of that source will be

unknown and it does not really enter into the statistics.) There

appears, then to be no reason why ignoring possible physical masking

should invalidate the statistical results based on point mass deflectors

in any of the scenarios.

The other possible source of error in the point mass approximation

is in the assumption that the expression for the gravitational potential

of a point mass adequately describes the fields of all real-deflecting

bodies. The gravitational potential at a position, Y , due to a contin-

uous distribution of mass is given by

(C-1)

where G is the universal gravitational constant, T is the curve, surface,

or volume of distributed mass, and a is the associated mass density. It

is evident that if r is much larger than the largest dimension of T,

then the denominator effectively becomes [I p , which can be brought

outside the integral. The remaining inte gral simply expresses the total

mass, so that at a large distance, p, the potential due to a total mass,

M, of any shape, approaches

-Gil (C-2)

which is the expression for the potential due to a point mass, M.

What is necessary, however, is to show that even at shorter

ranges, depending on the scenario, expression (C-2) does not differ
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greatly from the true expressions for the real deflecting masses with

respect to the level of accuracy pertinent to that scenario. In the

case of stellar deflectors there is no problem. They are spherically

symmetric bodies with a density function of the form a(p). By directing

the polar axis toward the field point, Eq (C-i) becomes

c~z~G~j~ -(C-3)

and the solution in the region external to such bodies of total mass

M is well known to be identical to the point mass expression (C-2).

(And, as shown previously, only a negligible fraction of pertinent

light rays follows trajectories which are not external to all deflecting

stars.)

Galaxies, on the other hand, are not spherically symmetric, and

so their potential fields are more complex than that of a point mass.

The general expressions for the exact fields around these bodies are

not easily calculated, even if the specific mass distribution is known,

and furthermore, they are all different. Some galaxies are ellipsoids

not greatly varying from spherical symmetry, some are rather disk-like

spirals, some have a major bar shaped component, and some are altogether

irregular. In view of the low level of accuracy involved in the galactic

deflector scenario, however, it is sufficient to consider a couple of

* easily solvable, idealized cases in order to estimate the level of error

arising from the universal application of expression (C-2).
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Consider first the potential on the axis of a disk of radius

r which might represent an extreme spiral galaxy. By a proper orien-

tation of axes, Eq (C-i) becomes

~(/~ ~o) -(C-4)

For a uniformly distributed total mass, M, the density is

Tr r6(C-5)

and the solution to (C-4) is

which in fact approaches (C-2) in the limit p>>r . By evaluating

(C-6) and (C-2) at various points, it is evident that one need not be

very far away for the two results to agree closely. At p = 2r 0

Eq (C-2) gives a value which is off by 6 percent. At p = 3r the
0

error is down to 2.5 percent, and at p = lOr , it is only 0.25 percent.0

Another, probably "worst case," idealized galaxy is one composed

of a bar of no thickness, length 2r, and a uniform, linear distribution

of total mass, M, given by M/2ro, as might represent the limiting con-

figuration of a ba.rred galaxy. For field points on the axis defined by

the bar, expression (C-1) becomes
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~ (C-7)

* The solution,

010)-

(C-8)

a inappoaces C-2 for0>>o I ths csethe values calculated

from (C-2) are off by 9 percent at p = 2r , 3.8 percent at p = 3ro00

and 0.33 percent at p =l1r P only slightly worse than the errors at

equal distances on the axis of the disk. This means that even for

rays coming 10 pc from the edge of the universe, through a uniform'

distibuton f 3 10 galaxies per cubic parsec, every one of which

is brsaewihlnt 2ra 20 kpc and no thickness, with its axis

diretedtowrd te ry pththere are apt to be about four deflectors

whose individual contribution to the net effect from all galaxies varies

by more than 9 percent from that given by expression (C-2), (i.e.,

p S r0) n bu 4wt an error in excess of 1 percent (p S 5r 0.

Now n raliy, ostwell defined intensity sources are closer

than 10 9 pc, and all galaxies (even barred galaxies) are much more

spheica thn ths iealzedworst case, always having some thickness,
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" and generally having a somewhat spheroidal central core. For a given

source, then, the expected number of deflecting galaxies whose potential

fields are inadequately modeled by that of a point mass is much lower

than these numbers suggest.

It turns out, however, that due to the rapid drop off of gravi-

tational. effects with ray/deflector separation, these few closely aligned

deflectors will make the greatest contribution to the total effect so

that any error in their individual contributions might indeed be evident

in the total effect. The contributions from such close alignments will

in fact not be correctly included in the total effect calculated in

*. this study and it would appear that such contributions should always be

individually analyzed. However, since the objective of this study is

*find the mean total effect, the random orientation of deflecting galaxies

is expected to result in some degree of cancellation among those contri-

butions from individual deflecting galaxies closely aligned with

sources, between errors on the high side and those on the low side.

Furthermore, in the case of galactic deflectors, the required level of

accuracy is only to the order of magnitude. The point mass approxima-

tion is, therefore, retained in all scenarios, recognizing that for

galaxies the errors may be larger but are in keeping with the level of

accuracy of that scenario.

Plane Wave Approximation of Celestial Radiation

The inverse square distance relation, upon which the intensity

distance measurement concept is based, arises fron the essentially

spherical wave form of clestial radiation. In this sense, then, the
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actual spherical nature of waves is fundamental to this study. However,

in studying the superimposed gravitational effects, if the spherical

nature of waves cannot be discerned from the available data, then there

can be no need for considering spherical waves rather than simple plane

waves. In this case, data collection would be confined to the region

within a telescope aperture, and even at short, optical wavelengths the

spherical waves from the nearest star deviate from a plane wave by only

about 4 x 10-10 wavelengths across the 100 inch radius of the largest

telescope aperture. This is probably at least 107 times smaller than

the tolerances in the optical surface, and under other possible condi-

* -."tions the deviation would be reduced even further. (In fact, using

a hundredth of a wavelength tolerance, and this aperture, a point source

"' would have to be closer than 0.01 A.U. for the deviation of its spherical

. waves from plane waves to exceed the surface tolerance.) It is safe to

assume, then, that the distinction between plane and spherical waves

cannot be made and that all telescopes viewing stars or galaxies are

focused at infinity.

It might seem that in an analysis incorporating deflecting

*" gravitational fields which extend to infinity, the spherical nature of

radiation would be evident and should be taken into account. However,

the only portion of these fields which actually contributes to the

observed effects, and thus should be considered, is that portion pene-

trated by the ray bundle entering an observer's telescope. For point

sources and weak fields, the cross section of this region will never be

larger than approximately the size of the receiving aperture. Thus,

even for nearly equidistant sources and deflectors, the plane wave
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approximation is appropriate. (Extended sources do -not actually,

necessarily radiate true spherical waves any way, but nonetheless, the

above arguments could be applied to differential radiating areas of the

source.)

Monochromatic Waves and the Geometrical Optics Limit

Since the gravitational index of refraction given by Eq (3-8)

is independent of wavelength, the analysis can be simplified by consider-

ing monochromatic waves. Furthermore, the geometrical optics limit can

be assumed (i.e., X + 0), since all wavelengths of interest are much

smaller than the scale size, d, in any astronomical scenario considered,

and since in each scenario the propagation distances (after deflection)

are much less than the distance at which diffraction effects become

2
important, given by d /A. (The scale size of the inhomogeneities in

the overall gravitational field should be comparable to the mean separa-

tion between masses, and using point masses there would be no diffrac-

tion effects from the deflecting bodies themselves.)

Phase Screen Approximation of Gravitational Effects

As stated in the introduction, compressing all gravitational

effects into the deflector plane amounts to replacing the true hyperbolic

trajectories by their pairs of intersecting asymptotes (Figure 7). For

rays with larger impact parameters, the curve in the hyperbola is longer,

since there is a longer distance along which the larger component of the

gradient of the index of refraction is orthogonal to the trajectory. It

is evident, then, that the phase screen approximation is pretty good in

the region in which Izi > kr where a higher value of k defines a
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region of smaller maximum error, and not as good for Jz < kr (The

true relation may not be linear, but the actual form is not important in

the following arguments which apply only within a certain radius.) The

validity of the thin phase screen in this "far field" region is also

attested to by the agreement between the total ray deflection derived

using it with that resulting from the four space geodesic approach used

in Appendix B.

In determining the total effect due to all deflectors, it may

be that for some, the condition z > kr does not hold at the observer.

(The absolute value signs have been dropped because deflectors down-

stream of the observer have not been considered in this study since as

a result of the phase screen approximation they can have no effect.)

Thus, in view of the objectives of this study, it must be shown that

individual effects associated with the condition z < kr are too rare-

and/or too small to have any impact on the total effect.

Expression (5-3) shows that the effects of individual deflecting

masses on the intensity decrease with the fourth power of their dis-

tance from the line of sight to the source, and the statistical results

of Chapter VI reflect this, in that the significant contributions to

the mean total effect are seen to be from those deflectors within some

cylinder around the line of sight. Since the radius of this "large

effect" cylinder is very small relative to its length, the region within

which a deflector might lie such that it would both be within the cylin-

der and satisfy kr > z is very small compared to the total cylinder

volume. Thus, the probable number of deflectors in that region is small.

Also, from this study it appears that measurable intensity changes under
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weak field conditions result from small differential ray deflections

being propagated over large distances. Thus, since the above region

of deflectors would necessarily be adjacent to the observer, it is

assumed that the intensity changes due to each of its very few members

would all be very small. Therefore, the phase screen approximations is

assumed valid for all significant contributions to the total gravita-

tional intensity change.

Weak Field Approximation

In the real world of extended masses, the condition for a weak

gravitational field, expression (1-1), can be assumed to be met every-

where in free space except in the vicinity of black holes and perhaps

neutron stars. In the universe of point masses treated in this study,

on the other hand, every mass is surrounded by a region of free space

of radius 6 x 10-8 A.U. for stars and 102pc for galaxies, in which

condition (1) does not hold, and through which ray trajectories might

pass. However, the numbers of idealized point stars likely to be found

within 6 x 10 -8A.U., and idealized point galaxies within 10 -2PC of

the line of sight to an appropriate source are both negligible, since

they are much smaller than the probable numbers, which were themselves

negligible, calculated in the point mass discussion for stars or galaxies

likely to cause physical masking. Therefore, the weak field assumption

should result in no errors.

Paraxial Approximations

Thte term paraxial is used here in identifying three similar

approximations introduced in this study. In the first it is assumed
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that the phase perturbations to the incident waves are small enough

that in some places the deflected rays can be adequately approximated

by undeflected rays. A specific example is the treatment of r as a

constant when integrating along deflected ray paths. This is valid if

lateral displacement of rays over the propagation distance is small

relative to the impact parameter. This lateral displacement, at a

position downstream of the deflector, is given by

41~ t if~j (-9)

where expression (4-29) has been used for r, the ray deflection. The

above condition can then be expressed as

~L'~ I-~- j(C- 10)

or

which can self-consistently be approximated by

(C-12)

* This condition is the same as that given for the intensity approximation

made in Chapter V. Thus, it is regarded as a second paraxial approxi-

mation. The detailed discussion of that section therefore covers the
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p7.

accuracy and validity of the paraxial approximations in both these

cases.

The third paraxial approximation is the assumption that the ray

paths through a distribution of deflecting masses are essentially

unchanged relative to those deflector locations when other deflecting

masses are added. Assuming that deflectors are located in random

locations around the ray path, this will be true if the maximum lateral

ray displacement within the distribution of deflectors is very small

compared to the mean separation between deflectors. That this is true

can be shown either by multiplying the maximum (grazing) ray deflection

angles around real bodies by the maximum dimension of the distribution

of deflectors (though this does not really fit into an analysis of point

masses), or by calculating the maximum displacement caused by deflectors

obeying condition (5-4), (which is appropriate for this study but gives

only statistical support).

Using a solar radius impact parameter, the maximum deflection by

a standard mass star, (i.e., 1.5M), is ralculated from Eq (4-25) to be

1.3 x 10-  radians. Over a maximum galactic dimension of 20 kpc, this

gives a displacement of .26 pc, somewhat less than the mean stellar

separation distance. The grazing deflection of rays by galaxies as a

whole, using r = 10 kpc and F = 1O- 2 pc is 10-6 radians. The

9
lateral displacement after 4 x 10 pc is then 4000 pc, which is about a

hundred times smaller than the mean galactic separation, easily satis-

fying the conditions of the approximation.

Considering only those defelctors satisfying condition (5-4),

which according to Chapter V are essentially the only deflectors which
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need to be considered, the maximum lateral displacement at a distance

z downstream is maximized subject to condition (5-4) on its bounding

paraboloid given by (5). That is

F
wFa

- (C-13)

with the overall maximum displacement occurring at the largest available

value of z. The maximum lateral displacement by stellar deflectors,

across the 20 kpc maximum galactic dimension is then 3 X 10 pc or

6 A.U. The distribution of galaxies covers the entire observable uni-

verse, so the maximum lateral displacement across its radius is 9000 pc.

Keeping in mind that these are all "worst case" numbers, the third

paraxial approximation is then also validated using either approach for

all scenarios.

It might be noted that none of these paraxial approximation

was justified solely by the fact that the maximum deflection angle

itself was "small". Nevertheless, the accuracy and validity of each

has been established.
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