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THE USE OF DYNAMIC PROGRAMMING IN
AN OCCUPATIONAL ENVIRONMENTAL PROBLEM

INTRODUCTION

The National Institute for Occupational Safety and Health (NIOSH) pro-

posal for a sampling strategy can be used to satisfy an employer's objective

to provide a work environment which can attain 95% confidence that no more

than 5% of employee exposure days are over the permissible exposure limit (3,

p.' 29). The sampling strategy was developed using a particular stochastic

model for the concentration measurements (3, p. 17). In this report, a proce-

dure for finding an optimal sampling strategy is presented, using the tech-

nique of dynamic programming (DP). The employer's objective function used in

this report is not that stated above, but instead is based on cost criteria.

* However, it will be shown that if an optimal sampling strategy does not

satisfy the requirements that no more than a certain fraction of employee

* exposure days are over the permissible exposure limit, this requirement can be

used as a constraint, and a nonoptimal sampling strategy can be used instead.

To apply DP, it was necessary to a) represent the concentration levels by

/ a stochastic model, and b) introduce a cost structure for the employer.

* Samples taken of the concentration level (and perhaps of other related varia-

bles) should- be used to identify a stochastic model, to estimate its para-

meters, and to help make decisions concerning control of the employer's pro-

-. cess. The first two uses for the samples are considered to be of a statisti-

* cal nature and will not be discussed in this report. Thus, it is assumed that

enough samples have been taken so that a stochastic model of the concentration

is known, and values for its parameters have been determined. The only use to

be made of the sampled data will be to make optimal decisions to minimize the



cost of the process. To define a cost structure, consider the employer's

process to be operating under "steadty state" conditions and consider a fixed

interval of time (such as a day). The following costs are defined:

cl is the cost of running the process (i.e., the cost of production)

over the interval of time.

c2 is the cost of making a measurement of the concentration level during

the interval of time.

C3  is the cost of not being able to use the process in a productive way

over the interval of time.

C4  is the cost of exceeding the permissible exposure limit over the

interval of time.

It is assumed that a) C4 cannot be assessed at the end of the time inter-

val unless a measurement has been made during the time interval, b) the

process can be carried out purely for the purpose of making a measurement,

with no employees subject to exposure and no penalty cost involved, and c) C3

is greater than cl.

Three decisions can be made to control the process:

Decision 1. The process will be ongoing during the next time interval,

but no measurement is made. The cost involved is equal to

c1.

Decision 2. The process will be ongoing during the next time interval,

and a measurement will be made. The expected cost is equal

to C1 + C2 + C4 P (A),

where A is the event that the concentration level exceeds the permissible

exposure limit.

2
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Decision 3. The process will be carried out solely for the purpose of

3making a measurement. The expected cost is equal to C2 +

C3-

While the above assumptions may be considered simple, they were chosen

to illustrate the use of BP as an approach to the problem of developing

sampling strategies. The statistical considerations can also be incorporated

into the model, but in the author's opinion, such a development should be

accomplished only after some time series data for the concentration levels are

made available for investigation.

L In what follows, an optimal policy will be derived, that is, rules will

be stated such that for every state of the process, one of the above three

decisions will be chosen and the expected cost will be a minimum. The rules

will be applied to some specific numerical examples.

* MARKOY DECISION PROCESSES

To illustrate the concepts involved in a DP formulation, assume that the

values of the concentration level are classified as being. in one of I ordered

intervals. The Ith interval contains only concentration levels greater than

L the permissible level, and the first interval contains the lowest values of

concentration levels. Let the concentration level which could be measured

5.1during time interval n be classified as being in one of-the I intervals, and

let Xn take the value of the interval in which the concentration level

lies. Assume that Xn is an irreducible aperiodic Markov chain with (known)

stationary transition probability matrix P. The (i, J)th element of P is

denoted by pij, and the elements of the stationary distribution fl (a row

3
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vector) by wj. By choosing the concentration level to be a Markov chain,

use can be made of the theory of Markov Decision Processes (2; 6, pp. 739-

765).

Consider finding a sequence of decisions which are optimal when the

expected cost is to be minimized for an infinite horizon (6, pp. 359-392).

The two cost criteria in common use are the expected cost per unit of time and

the present value of the expected total cost over the infinite horizon.

When choosing the latter, the equations to be solved are (2, p. 80; 6, p.

741):

yi min d + E p (jli,d)yY 0 < a < 1, icS (1)
dcD jcS -

where S is the set of all possible states of the Markov chain, D is the set of

all possible decisions, yi is the present value of the total expected cost

when the process is in state i and an optimal policy is used, Cid is the

expected cost during one interval of time when the process is in state i and

decision d is made, p(ji,d) is the probability of going to state j from state

i when decision d is made, and a is the discount factor. When the process is

in state i, decision di will always be made.

While Xn denotes the level of the concentration, the decision maker has

knowledge of the concentration level only when a measurement has been made.

It is thus necessary to expand the set of states S to be the pairs (X, Tn)

where Tn is the number of time intervals, measured from the start of time

interval n, that have passed since a measurement was made, and X is the

concentration level when the last measurement was made. It will now be

assumed that the decision as to whether or not to make a measurement is made

I; ' , " - • . " - -



at the beginning of the time interval, and that Xn represents the concentra-

tion level at the beginning of the nth time interval. When a measurement is

made, the value observed is assumed to be the concentration level at the end

of the time interval. Thus, if Tn I , X =Xn. The maximum value Tn

can take will be denoted by T. It is necessary to specify a finite value for

T, for otherwise (as will be seen below) the optimal policy would be never to

take a measurement, and thus forever to avoid a penalty cost and a measurement

cost. It is useful to think of T as the value of an interval between measure-

* ments which an inspector uses when he comes to measure the employer's com-

pliance with regulations. When Tn T, only decisions 2 and 3 will be

allowed. The augmented state (X, Tn) is still a Markov chain, and expres-

sions for the elements p (jiid) to be used in equation 1 are given in Appen-
dix A. It is possible to gain some insight from the special case where a

*measurement is made during every time interval CTzi). An important parameter

is the ratio of costs given by

h =(c 3 -cl) /c4 .(2)

The following is shown in Appendix A to be valid: When the measurement X =i,

then decision 2 is optimal for those states i for which

pil< h i1 1, 2, 1,

and otherwise decision 3 is optimal. Thus, if h > 1, decision 2 is al'ways

optimal for all outcomes i. Similarly, when Tn =T. and X =i, then

decision 2 is optimal for those states i for which

5



and otherwise decision 3 is optimal, where p(T)

goes from state I to state I in T Intervals. After having determined the

optimal decisions, equation I can be used to compute the costs.

As T increases, ( approaches w, for all i. Thus, the information gain-

ed from the measurement becomes useless for the purpose of making an optimal

decision. This result indicates that if the Markov chain were an independent

process, it is not optimal ever to make a measurement. (This conclusion can

also be extended to any time series model of the process which consists of the

sum of a deterministic process and a completely random process.) Also, as T

increases, it is shown in Appendix A that when Tn < T, decision 1 is always

optimal.

It can be seen that for any particular P, the value of wI may be larger

than allowed by regulations. However, since a decision can be made to carry

out the process without any employees present, it is still possible to achieve

sat.isfactory values for the probability that an employee will be exposed to a

concentration level above the permissible limit (denoted by P(B)). This

goal may have to be achieved at a higher cost than would be the case if such a

constraint were not present.

Some examples, solved numerically by using the policy iteration algorithm

(2, 6) will follow. A description of the program is given in Appendix B. In

the examples, small numbers are chosen for the costs, for as can be seen in

equation 2, It is the ratio of costs which is important.

Example 1. Let cl " 1, c2 - .2, c3 = 3.1, c = 2, x- .98, and let

I..

r.87 .10 .03

P .60 .25 .15 (3)

L.30 .60 .10

6
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Using equation 2, h - 1.05, and thus if T 1 1, decision 2 is always optimal.

When T > 1, the solution was such that decision 2 is always optimal when Tn

= T, and decision 1 is optimal otherwise: Table 1 shows how the expected

future cost, C, and the probability of an employee exceeding the permissible

concentration level, P(B), changes with the length of the inspection interval,

T. The stationary solution of equation 3 yields 113 = .051. If the maximum

allowable value of P(B) were set to be equal to .05, then the employer would

not be in compliance with the regulations. By using the nonoptimal decision

vector d' = (2, 2, 3) when T = 1, it can be shown that C = 70.0, and P(B) =

.046. Similarly, when T = 2, if d' = (1, 1, 1, 2, 2, 3), C = 60.0 and P(B) =

.049. This example illustrates how the constraint P(B)< .05 increases the

cost.

Example 2. The same parameters as in Example 1 are used, but the penalty

cost is increased to c4 = 105. By using equation 2, h = .02, and since Pi3

> .02 for i = 1, 2, and 3, when T = 1, decision 3 is always optimal. If T >

1, decision 3 is always optimal when Tn = T, and decision 1 is optimal

otherwise. Thus, when T = 1, the process is never used if the optimal policy

is applied. By using the nonoptimal policy d' = (2, 3, 3), it can be shown

that the cost increased to C = 207.0 and P(B) = .024. If T > 1, then P(B) <

.05, so that the process can be used. Thus, inspecting less often makes the

process "acceptable".

Example 3. Changing the penalty cost to C4 = 17.5, when T = 1, causes

P13 and P33 > h, but P23 < h. Thus, low or high values of the measured

concentration level yield decision 2 as optimal, but an intermediate value

leads to decision 3. Also P(B) = .029 < .05. Increasing T to values greater

than 1 leads to decision 2 being optimal when Tn = T, and decision 1 is

7
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optimal otherwise. However, P(B) = .051 > .05 for all T > 1. Using a

nonoptimal decision equal to 3 for state (3,2) increases the cost from 77.5 to

*: 77.7, and reduces P(B) to .049.

: TABLE 1. EXPECTED FUTURE COST AND PROBABILITY OF EMPLOYEE EXCEEDING
PERMISSIBLE CONCENTRATION LEVEL VERSUS INSPECTION INTERVAL

Example 1 Example 2 Example 3 Example 4

T C P(B) C P(B) C P(B) C P(B)

1 65.1 .051 165.0 .000 101.3 .029 4.46 .009

2 57.6 .051 107.5 .026 77.5 .051 4.10 .231

3 55.0 .051 88.3 .034 68.3 .051 3.97 .178

4 53.8 .051 78.8 .039 63.7 .051 3.87 .220

5 53.0 .051 73.0 .041 61.u .051 3.81 .218

6 52.5 .051 69.2 .043 59.2 .051 3.76 .227

Example 4. Let cl = .7, c 2 = .01, c 3 = 1, c4 = 2, a = .8 and let

.00 .49 .49 .02

.30 .02 .30 .38; P=

.20 .20 .02 .58

.18 .40 .40 .02

In this example, for T > 1 and Tn < T, decision 1 is not always optimal.

When Tn < T and decision 1 is not always optimal, the matrix p(i ji,d) con-

tains transient states. In this example, when T equals two, d' = (2, 1, 1, 2,

3, 3, 2, 3), and augmented states 5 and 8 cannot be reached because measure-

ments are made when the system is in the augmented states 1 and 4. When

evaluating C and P(B) In Table 1, the transient states were eliminated.

8



Notice that for the decision vector shown above, a measurement of concen-

tration at the lowest level yields a decision to make another measurement,

while a measurement at either of the next two highest levels yields a decision

not to make another measurement.

DP USING ARMA PROCESSES

Instead of treating the concentration level as a discrete random vari-

able, we can consider it to be a continuous random variable and use an

autoregressive-moving average (ARMA) model (1). Such models usually have the

advantage of containing less parameters to estimate than a Markov chain

model. The DP equations to be solved are (4):

y(x,t) = min { c(x,t),d + a E, fy(z,t') f(z,t' (x,t),d) dz } (4)
deD t

where the augmented state is again defined to be (X, Tn). The variable Xn

takes values x on the real line, and when Tn = t, X = Xn.t+1. In equation

4 f(z,t' (x,t),d) is the conditional probability density of (X, Tn), given

that (X = x, Tn = t) and decision d was made at time n. All other variables

are as defined in equation 1. For the autoregressive model of order 1,

defined as

Xn u (Xn..1 -iu) +an ,I 1 . (5)

where an is a normal white noise process with variance Oa2, expressions

for f are derived in Appendix C. Note that the process defined in equation 5

is also a Markov process (5, p. 11). When T = 1, the following is shown to be

valid in Appendix C:

9
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Let h be as defined in equation 2; let L be the permissible exposure

limit; and let z(h) be the solution of

P (Z > z(h)) = h o < h < 1 (6)

where Z is a normally distributed random variable with mean equal to zero and

, variance equal to 1. Then when the measurement X = x, decision 2 is optimal

.' for those states x for which

x< L - (11 (-.) -z(h) Oa , (7)

and otherwise decision 3 is optimal. Thus, if h > 1, decision 2 is optimal

for all outcomes x.

* "Further results for ARMA processes can be obtained, but one difficulty to

be dealt with is the problem of forecasting when there are missing observa-

tions in the time series when ARMA processes more complex than the above

example are used.

CONCLUSION

.. The sampling strategy proposed by NIOSH could lead to sequences of con-

secutive measurements being made, with the length of any particular sequence

being determined by the outcomes of the previous measurements. The above

properties of the sampling strategy are also true for the sampling strategies

derived in this report, but with the following differences:

* 1. A maximum interval of time between samples must be specified,

2. It is not always true that a high concentration level leads to a

decision to make a measurement, and a low concentration level leads

to a decision not to make a measurement. The opposite can be the

optimal strategy.

* 10



3. As the specified maximum interval between samples increases, the

optimal decision is to never make a measurement unless required to.

4. A minimum cost policy is being invoked.

The applicability of DP is not limited to the cost structure and set of

decisions used in this report that were chosen to illustrate in a simple but

meaningful way the concepts involved in applying the technique of DP to the

problem of developing an optimal sampling strategy.

To extend the DP approach to include the problem of parameter estimation,

it would be necessary to derive expressions for the joint probability

distribution of the parameters as a function of the number of measurements,

and hence it would be necessary to use a finite horizon DP formulation. The

problem of dimensionality could then cause computational difficulties (4, p.

65; 6).

It is possible to use ARMA models instead of Markov chains in a manner

similar to that discussed in this report, but consideration must be given to

the problem of missing observations when dealing with other than the simple

autoregressive model.

ACKNOWLEDGMENT

The policy iteration algorithm was programmed by Thomas White. The

author wishes to thank Dr. S. Samn for his helpful comments.

REFERENCES

S1. Box, G. E. P. and G. M. Jenkins. Time series analysis: Forecasting and

control, 2nd ed. San Francisco: Holden-Day, 1976.

*2. Howard, R. A. Dynamic progranmming and Markov processes. New York: J.

S Wiley, 1960.



3. Leidel, A., K. A. Busch, and W. E. Crouse. Exposure measurement action

level and occupational environmental variability, HEW Pub. No. (NIOSH)

76-131, U.S. Dept. of HEW, Public Health Service, Center for Disease

Control, National Inst. for Occupational Safety and Health, Div. of

Laboratories and Criteria Development, Cincinatti, Ohio, Dec 1975.

4. Nemhauser, G. 1. Introduction to dynamic programming. New York: J.

Wiley, 1967.

5. Ross, S. M. Applied probability models with optimization applications.

'San Francisco: Holden-Day, 1970.

6. Wagner, H. M. Principles of operations research. Englewood Cliffs,

N.J.: Prentice-Hall, 1969.

-.

,.12



APPENDIX A

DERIVATION OF COSTS AND TRANSITION PROBABILITIES

In this Appendix, explicit expressions for use in equation 1 are derived,

and some solutions are obtained.

Let the augmented states Zn = (X, Tn) be ordered lexicographically

( (1,1), (2,1), ... , (1,2), (2,2), ... , (I,T) ), where (1,1) is denoted as

state one, and (I, T) as state IT. The costs to be used in equation I are

":c11 cI  1 < i < I (T-1) ,(Al)

c12=Cl+c 2 +c 4 P -,I jI +1 _ i < (j + 1)1

0 < j <T- 1 , (A2)

and

C13 = C2 + c3 I < i_< I T (A3)

where p(j) is the probability of a transition of Xn from state i to state k.. Vl ,k

in j time intervals. (Note that cil is undefined if T = 1 or if i >

I (T-1)).

If decision one is made, then the state (X, t) goes to (X, t+1) with

probability one. Thus,

1 if j i + I, 1 < i < I(T-1),

P(J 1, 1) = undefined I (T-i) < I < I T (A4)

0 otherwise

If decisions two or three are made, the state (Xn.t+l, t) goes to (Xn+I, t)

in t time intervals. Thus,

13



(k+1) kl+l < I < (k+1)1, 0< k < T-1,
Pi-kI,j_

l<j <I(p U i,d)- (A5)

0 otherwise

Equation 1 can be solved using the value iteration or the policy

iteration algorithms (2, 6), and a computer program was written using the

policy iteration algorithm. (See Appendix B for the listing.)

Consider the special case where a measurement is made during every

interval of time (T 1). Then only decisions 2 or 3 are allowed. Since

equation A5 applies whichever decision is made, equations A2 and A3 show that

decision 2 is the optimal policy if P1,1 < h for all outcomes X - i. i = 1,

2, ... , I (see equation 2), and decision 3 is optimal otherwise. For T > 1,

when Tn - T and the result of the last measurement was X - i, decision two

is optimal if i (T) < h, and decision 3 is optimal otherwise. If the optimalI,1

decisions when in the augmented state j are found to be

1 1_(<j < (T-1) I
dj , (A6)

2 or 3 (T-1) I + 1< j< IT

then the resulting equations for the minimum costs have a simple form which

can be found by using equations Al through A6 in

Yi Cid + 0 j S p 011, d)yj 0< a <1, icS . (A7)

° °- (•i.i. d.y.

o - . . . : , _ ; , . . ... . . • , " _ _ . , 1 4
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Letting u be a column vector with components

ui Yi+(T-1)I 1 < i < I (A8)

and v a column vector with components

C a(l'aTl) + c2 + mn { cI + c4 PT) - T
=i (T). c3 1 < i < T (A9)

the solution of equation A7 is given by

u = (I OT pT) -1 v (AlO)

where I is the identity matrix. The other costs are given by

'= :T-k-l u I -T + kl l+kl < i < (k-1)I, 0 < k < T-2,
1-

1 < i < (T-1) I . (All)

If it is assumed a priori that equation A6 is the solution to equation 1,

then equations A8 though All can be used on the right-hand side of equation

1. If the solution of equation 1 is identical to that given by equations A8

through All, then equation A6 is the solution (5, p. 128). It can be shown

that equation A6 is the solution if all of the following inequalities are

satisfied:

15



"T-i (I - pi)(I - TpT)-l min tc31; c11+ C4 pT-1p1} <

min c3.; cL1 + c4P'IPI} + c2 (I.aT'i) 1 1 = 1, 2, ... , T-1
"1-T  -(A12)

where 1 is a column vector all of whose I elements equal one, PI is the Ith

column of P, and pO is the identity matrix. Equation A12 is satisfied if

* c31 < cl. + c4 pT-1 p,

for all i = 1, 2, 3, ... , T-1 or vice versa. Other combinations of parameters

for which equation A12 Is satisfied are more difficult to find. As T becomes

large, equation A12 will be satisfied, and equation A6 is the solution.

Let the probability transition matrix of the augmented states Zn under

the optimal policy be denoted by P*, and let the stationary solution for P* be

denoted by the row vector 11*. Then the present value of the total expected

cost using an optimal policy is given by

IT
C- Zl Yji* • (A13)

The probability that the process exceeds the permissible exposure limit

Is given by wI. However, since it is possible not to have employees present

when the process exceeds the permissible exposure limit, the probability that

the process exceeds the permissible exposure limit when employees are present

is given by

T-1 (J+1)I (+1)
P (B) Z z: PI-jI,I (A14)

J-o i-l+jI I
I cF

16



where F is the set of augmented states which does not yield the optimal

decision which is equal to 3.

In the special case given in equation A6, use of equations A4 and A5

yields

n* li( no soot .. ,nH T .(A15)

Finally, we note that as T becomes large, 1) u approaches v, where the

components of v approach

lim V = + c2 + mn {c I + c4 wi; c3 } (A16)
i-c

and 2)

nn

lim pT o
T* (A17)

•
go?

i . ...................................



APPENDIX B

DESCRIPTION OF THE POLICY ITERATION PROGRAM

This is a description of the capabilities of the program entitled "Policy

Iteration," a-listing of which appears below. The program computes the opti-

mal policy and the present value of the total expected costs yi by solving

equation 1 using the policy iteration algorithm (2, 6). The probability

matrices p(jIl,d) are given by equations A4 and A5, and the expected costs

cid by equations Al through A3. In addition, the stationary solution of P

and of P*, and the present value of the total expected cost C, given by equa-

tion All and P(B), given by equation A12, are also computed. If the Markov

chain defined b , P* is not irreducible, an irreducible chain is found by elim-

inating the transient states, and C* and P(B) are computed for this irreduc-

ible chain.

The output consists of a listing of the input data cl, C2 , C3 , C4, a, P

and its dimensions, T, and the initial policy vector. The computed results

displayed are p (jli,d) (if desired), cid, the optimal policy vector, P*, n,

.*, C, P(B), and the number of iterations needed for converging (ITN). A sam-

ple output appears in this Appendix.

Table Bi lists the order of the data necessary to run the program.
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TABLE BI. ORDER OF INPUT DATA FOR THE PROGRAM

Order Symbol and Description Format

1. IST; Number of states in Markov chain 12
(IST = 0 stops execution.)

. 2. IPRINT; Print option for matrices p(J i,d) 12
IPRINT - 0, no print.
IPRINT = 1, print.

3. COST(4); Costs (C1, c2, c3, c4 ). 4E 8.0

4. ALPHA; discount factor. E 8.0

5. P(IJ); Transition matrix P. of dimension (IST)E 8.0
(IST) x (IST), one row per record,
IST records.

6. TINT; Maximum value of T. If TINT - 0, 12
program reads new IST, IPRINT, etc.

7. DEC(I); Initial policy vector of length (IT) 12
(IST) x (TINT) = IT.

The source code is written for use on a VAX 11/780. The input file for the

example problem is:

02

01

O.DO .5DO 1.DO 10.DO

.95D0

.8500 .1500

.80DO .20DO

02

03030303

00

00
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C FILE PITD.FOR
C POLICY ITERATIONA.L.SWEET,AUGUST 1980

IMPLICIT REAL*8(A-H,O-Z)
INTEGER TINT,DEC,TDEC
DIMENSION COST(4),P(30,30),DEC(30),CM(30,3),R(30,30).
-PK(30,30), NC(30),PKT(30,30),PM(3,30,30),Y(30),WYE(30),
-TDEC(30),PI(30)

OPEN (UNIT=09 ,NAME= *PITDIN .DAT ,TYPE=' OLD6 ,DISP 'KEEP'I)
OPEN(UINIT=1O,NAME='PITDOUT.DAT ,TYPE='NEW ,DISP='KEEP')

C READ INPUT
C READ NO OF STATES IN MARKOV CHAIN
1000 READ(09,100) 1ST
100 FORMAT(3012)

IF(IST.EQ.O) GO TO 999
READ(09,100) IPRINT

C --- READ COSTS
READ(09,1O1 )COST

101 FORMAT(1008.O)
C -- READ DISCOUNT FACTOR

READ(09,1O1 )ALPHA
C -- READ TRANSITION MATRIX FOR MARKOY CHAIN

DO 1 I=1,1ST
1 READ(09,1O1)(P(I,J),J=1,IST)

C --- READ MAXIMUM INTERVAL BETWEEN MEASUREMENTS
2000 READ(09,100) TINT

IF(TINT.EQ.O) GO TO 1000
IT=IST*TINT

*C -- READ INITIAL POLICY COLUMN VECTOR,LENGTH IT
READ(09,100) (DEC(I),I=1,IT)

C PRINT INPUT
WRITE( 10,200) IST,TINT

200 FORMAT(1Hl,4X,29HN0 OF STATES IN MARKOY CHAIN=,I4/
- 5X,38HMAXIMUM INTERVAL BETWEEN MEASUREMENTS=,14)

WRITE(10,201)COST
201 FORMAT(1HO,4X,19HCOST OF PRODUCTION=,F7.2/

-5X,2OHCOST OF MEASUREMENT=,F7.2/
-5X,28HCOST WHEN NOT IN PRODUCTION=F7.2/
-5X,3BHCOST OF EXCEEDING MAX POLLUTION LEYEL=,F7.2)

WRITE (10,202)
202 FORMAT(1H0,5X,34HTRANSITION MATRIX FOR MARKOV CHAIN,/)

DO 2 1=1,IST
2 WRITE(1O,203)I,(P(I,J),J=-1,IST)

203 FORMAT(1HO,I4,6G12.4/(1H ,4X,6Gl2.4))
WRITE( 10,206)

206 FORMAT(1HO,4X,36HDECISION 1 -PLANT RUN FOR PRODUCTION/
-5X,46HDECISION 2 -PLANT RUN FOR BOTH PRODUCTION AND
-11HMEASUREMENT/

* . -5X,46HDECISION 3 -PLANT RUN FOR MEASUREMENT ONLY,NO
S-1OHPRODIJCTION)
C--COMPUTE R VECTORS AND POWERS OF P
C--THERE ARE TINT R VECTORS OF DIMENSION IST EACH

C --- IN R(IJ),I IS VECTOR NO,Iu1,TINT AND J IS ROW,Jsl,IST
C --- PK CONTAINS POWERS OF P
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DO 4 1- 1, S

DO 4 I- 1,1ST
PKj(IJ)wO.DO
IF ( .EQ.J) PK(I,J)-1.DO

*4 CONTINUE
C12uCOST(1)+COST(2)
C4-COST (4)
1C2-O
DO 20 KLOOP-1,TINT

DO 6 1=1,1ST
SUM-O .DO

DO 5 J-1,IST
5 SUM=SUM+PK(I,J)*P(J,IST)
6 R(KLOOP,I )uC12+C4*SUM

ICI-IC2+1
1C2-KLOOP*IST
DO 7 I=1,1ST

7 CM(IC1+I-1,2)-R(KLOOP,1)
DO 10 1-1,1ST

DO 9 J=1,IST
SUM-O.DO
D08 K-lIST

8 SUM-SUM+P(I ,K)*PK(K,J)
9 PKT(I,J)-SUM
10 CONTINUE

DO 11 I-1,1ST
DO 11 J-1,1ST
Z=PKT(I ,J)
PK (I,J)uZ
PM (2,IC1+I-1,J)-Z

11 PM(3,IC1+1-1,J)-Z
20 CONTINUE

C -- STORE REST OF COST MATRIX,CM
C23-COST (2 )+COST (3)
IT1-IT-IST
IF(ITI.EQ.O) GO TO 251
DO 25 I-1,IT1
CM(I ,3)uC23

25 CM(I,1)-COST(1)
251 IT2-IT1+1

DO 26 1u1T2,IT
CM (1,3) -C23

26 CM(l,l )-l.D06
C --- STORE REST OF P2,P3

IT3-IST+l
IF(IT3.GT.IT) GO TO 271
DO 27 I-1,IT
DO 27 J-1T3,IT
PM(2,3 I JuO.DO

21 PM(3,1:J )uO.DO
C --- MAKE UP P1

271 DO 28 I-1,IT
DO 28 Jml,IT
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28 PM(1,IJ)=O.DO
1T2=IT-IST
IF(IT2.EQ.O) GO TO 30
DO 29 I=l,1T2

29 PM(l,I,IST+I)=l.DO
*C -- PRINT P1, IF IPRINT I

30 IF(IPRINT.EQ.O) GO TO 421
WRITE(1O,212)

212 FORMAT(1HO,5X,29HTRANSITION MATRIX, DECISION 1)
DO 41 I=1,IT

41 WRITE(1O,203)I,(PM(1,I,J),Ju1,IT)
C -- PRINT P2 AND P3, IF IPRINT = 1

WRITE(10,214)
214 FORMAT(lHO,5X,36HTRANSITION MATRIX, DECISIONS 2 AND 3)

DO 42 I=1,IT
42 WRITE(1O,203)I,.(PM(2,I,J),Ju1,IT)

C -- PRINT COST MATRIX
421 WRITE(1O,215)
215 FORMAT(1HO,4X,11HCOST MATRIX,/)

DO 43 I=1,IT
43 WRITE(1O,21O)(CM(I,J),J=1,3)

210 FORMAT(1H ,4X,6Gl2.4)
C -- PRINT INITIAL POLICY VECTOR AND DISCOUNT FACTOR

WRITE(1O,204)
204 FORMAT(1H0,4X,21HINITIAL POLICY VECTOR,/)

WRITE(1O,209)(DEC(I),I=1,IT)
209 FORI4AT(IHO,IOX,3013)

WRITE( 10,205 )ALPHA
205 FORMAT(1HO,4X,6HALPHA.=,F6.4)

C ---ITERATION LOOP
DO 70 ITN=1,20

C -- COMPUTE COEFFICIENT MATRIX FOR ITERATION
DO 51 I-1,IT
DO 51 J=1,IT
Z=-ALPHA*PM(DEC(I),I,J)
IF(I.EQ.J) Z=Z+1.DO

51 PKT(I,J)=Z
C -- INVERT PKT

CALL GJR(PKT,IT,30,1.D-1O,MFLG)
IF(MFLG.NE.O) GO TO 99FC -- FIND Y(I),Iw1,IT
DO 53 I=1,IT

5SUM=SUM+PKT(I,J)*CM(J,DEC(J))
53Y(I)-SUM

C--FIND WYE(I),1-l,IT
DO 56 I=1,IT
TW-1 .D06
TDEC(I)aDEC(I)

D0 55 N=1,3
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54 StM=SUM+PM(N,I,J)*Y(J)
I. TWYE=ALPHA*SUM+CM(I ,N)

IF(TWYE.GE.TW) GO TO 55
TW=TWYE
DEC(I)=N

55 CONTINUE
56 WYE(I)=TW

ISUM=O
DO 57 1=1,IT

*57 ISUM=ISUM+IABS(DEC(I)-TDEC(I))
IF(ISUM.EQ.O) GO TO 71

70 CONTINUE
C -- END ITERATION LOOP

71 WRITE(1O,216)ITN
216 FORMAT(1I40,4X,14HOPTIMUM POLICY,5X,4HITN=,I2//5X,5HSTATE,

-4X,8HDECISION,3X,lOHMIN. COSTS)
DO 58 I=1,IT
NC(I )=I

58 WRITE(1O,219)I,DEC(I),WYE(I)
219 FORMAT(6X,12,8X,12,8X,F7.3)

C -- OPTIMUM POLICY TRANSITION MATRIX
* ITT=IT

DO 61 I=1,ITT

2DO 61 =,T
61 CONTINUE

611 WRITE(1O,220)
220 FORMAT(1H0,4X,32HOPTIMUM POLICY TRANSITION MATRIX)

* DO 62 I1,ITT
62 WRITE(1O,203)I,(PKT(I,J),J=1,ITT)

C -- FIND STATIONARY SOLUTION OF OPTIMUM POLICY MATRIX
DO 63 1=1,ITT
DO 63 J=1,ITT
R (I , J)=P KT(J ,I)
IF(I.EQ.d) R(I,I)=R(I,I)-1.DO

63 CONTINUE
ITi =1TT- 1
DO 64 I=1,IT1

64 Y(I)=-R(I,ITT)
CALL GJR(R,1T1,30,1.D-1O,MFLG)
IF(MFLG.NE.O) GO TO 680
DO 66 I=1,TT1
SUM= 0.00
DO 65 J=1,IT1

*65 SUM=SUM+R(I,J)*Y(J)
66 PI(1)=SJM

P1 (ITT)=1.DO
SUM=O.DO
DO 67 I=1,ITT

67 SUM=SUM+PI(I)
4 DO 68 I=1,ITT

68 PI(I)=PI(I)/SUM
WRITE (10,221)
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221 FORMAT(1H0,4X,35HSTATIO.NARY SOLUTIONOPTIMUM POLICY
-6HMATRIX,/)

WRITE(lO,210)(PI(I ),1=l,ITT)
GO TO 681

C -- MAKE UP REDUCED OPTIMUM POLICY MATRIX
680 WRITE(1O,217)
640 ITOG=O

DO 642 J=1,IT
IF(NC(J).EQ.O) GO TO 642
SUM=O.DO
DO 641 I=1,IT
IF(NC(I).EQ.O) GO TO 641
SUM = SUM+PKT(I,J)

641 CONTINUE
IF(SUM.NE.O.DO) GO TO 642
ITOG=1
NC(J)=O

642 CONTINUE
IF(ITOG.NE.O) GO TO 640
JN=O
DO 644 J=1,IT
IF(NC(J).EQ.O) GO TO 644
JN=JN+1
I N=O
DO 643 I=1,IT
IF(NC(I).EQ.O) GO TO 643
IN=IN+1
PKT(IN,JN)=PKT(I ,J)

643 CONTINUE
644 CONTINUE

ITT=JN
GO TO611

C MINIMUM EXPECTED COST
681 Z=O.DO

I N=O
DO 69 I=1,IT
IF(NC(I).EQ.O) GO TO 69
IN=IN+1
Z=Z+WYE(I )*PI (IN)

69 CONTINUE
WRITE(10,222)Z

222 FORMAT(IH0,4X,22HMINIMUM EXPECTED COST-,F7.3)
*C -- PROBABILITY OF WORKER BEING EXPOSED TO POLLUTION LEVELS

C --- ABOVE MAXIMUM PERMISSIBLE
DO 82 1=1,1ST
DO 82 J=1,IST
PK(I ,J)=O.DO
IF(I.EQ.J) PK(I,J)n1.DO

82 CONTINUE
B=O.DO
IN-0
DO 90 JT=1,TINT
DO 86 1=1,1ST
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0O 85 J=l,IST
SUM=O. DO
DO 84 K=1,IST

84 SUM=SUM+P(I,K)*PK(K,J)
85 PKT(1,J)=SUM
86 CONTINUE

DO 87 1=1,1ST
DO 87 J=1,IST

87 PK(I,J)=PKT(I,J)
SUM=O.
I 1=1+(JT-1 )*IST
12=JT*IST
DO 89 1=11,12
IF(DEC(I).EQ.3) GO TO 89
IF(NC(I).EQ.O) GO TO 89
IN=IN+l
13=1-(JT-1 )*IST
SUM=SUM+PI (IN)*PK(13,IST)

89 CONTINUE
B=B+SUM

90 CONTINUE
WRITE(10,224)B

24 FORMAT(1H0,4X,21HEXPOSURE PROBABILITY=,F6.3)
-- STATIONARY SOLUTION OF TRANSITION MATRIX

DO 73 1=1,IST
DO 73 J=1,IST
R(I,J)=P(J,I)
IF(I.EQ.J) R(I,1)=R(I,I)-1.DO

*73 CONTINUE
IT1=IST-1

DO 74 I=1,IT1
74 Y(I)=-R(I,IST)

CALL GJR(R,IT1,30,1.D-1O,MFLG)
IF(MFLG.NE.O) GO TO 99
DO 76 I=1,IT1
SUM=O.DO
DO 75 J=1,IT1

75 SUM=SUM+R(I,J)*Y(J)
76 PI(I)=SUM

PI(IST)=1.DO
SUM=O.Do
DO 77 I=1,1ST

77 SUM=SUM+PI(I)
DO 78 1=1,1ST

78 PI(I)=P[(I)/SUM
WRITE(10,223)

223 FORMAT(1H0..4X,37HSTATIONARY SOLUTION,TRANSITION MATRIX,/)

Go ro 2000
999 STOP
99 WRITE(1O,217)

*217 FORMAT(1H0,5X.15HSINGULAR MATRIX)
4 STOP

END
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C
C *GJR*

C
SUBROUTINE GJR(A,N,MM,EPS,MFLG)
IMPLICIT REAL*8 (A-H,O-Z) PC20805

C GAUSS-JORDAN-RUTISHAUSER MATRIX INVERSION WITH DOUBLE PIVOTING. PC20806
DIMENSION B(30),C(30),IP(30),IQ(30),A(MM,MM)
MFLG=O
DO 55 K=1,N PC20810

C DETERMINATION OF THE PIVOT ELEMENT PC20811
ABSPIV=O.DO PC20812
DO 5 I=K,N PC20813
00 5 J=K,N PC20814
ABSAIJ=DABS(A(I ,J)) PC20815
IF (ABSPIV.GT.ABSAIJ) GO TO 5 PC20816
PIVOT=A(IJ) PC20817

- ABSPIV=ABSAIJ PC20818
-: IP(K)=I PC20819

IQ(K)=J PC20820
5 CONTINUE PC20821
IF (ABSPIV.GT.EPS) GO TO 15 PC20822
MFLG=1
RETURN PC20826

3 C EXCHANGE OF THE PIVOTAL ROW WITH THE KTH ROW PC20827
15 L=IP(K)

IF(L.EQ.K) GO TO 25
DO 20 J=1,N PC20829
Z=A(LJ) PC20831
A(L,J ) =A (K,J) PC20832

20 A(K,J)=Z PC20833
C EXCHANGE OF THE PIVOTAL COLUMN WITH THE KTH COLUMN PC20834

25 L=IQ(K) PC20837
IF(L.EQ.K) GO TO 35
DO 30 I=1,N PC20836
Z=A(I,L) PC20838
A(I ,L)=A(I, K) PC20839

30 A(I,K)=Z PC20840
C JORDAN STEP PC20841

35 DO 50 J=1,N PC20842
IF (J.EQ.K) GO TO 40 PC20843
B(J)=-A(K,J)/PIVOT PC20844
C(J)=A(J,K) PC20845
GO TO 45 PC20846

40 B(J)=I.DO/PIVOT
C(J)=1.DO PC20848

45 A(K,J)=O.DO PC20849
50 A(J,K)=O.DO PC20850

DO 55 I=I,N PC20851
DO 55 J=1,N PC20852

55 A(I,J)=A(I,J)+C(I)*B(J) PC20853
C REORDERING THE MATRIX PC20854

" I DO 75 M=I,N PC20855
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K=N-M+ 1 PC20856
L=IP(K) PC 20859
IF(L.EQ.K) GO TO 65
DO 60 I=1,N PC20858
Z-A(IL) PC20860
A(I,L)=A(I,K) PC20861

60 A(I,K)=Z PC20862
* 65 L=IQ(K)PC86

IF(L.EQ.K) GO TO 75PC06
DO 70 J=1,N PC20864
Z=A(L,J) PC20866
A (L ,J)=A (K,J) PC20867

70 A(K,J)=Z PC20868
75 CONTINUE PC20869

RETURN PC20870
END PC 20871
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*NO OF STATES IN MARKOY CHAIN- 2
MAXIMUM INTERVAL BETWEEN MEASUREMENTS- 2

COST OF PRODUCTION- 0.00
COST OF MEASUREMENT- 0.50
COST WHEN NOT IN PRODUCTION- 1.00
COST OF EXCEEDING MAX POLLUTION LEVEL- 10.00

TRANSITION MATRIX FOR M4ARKOV CHAIN

1 0.8500 0.1500

2 0.8000 0.2000

DECISION 1 -PLANT RUN FOR PRODUCTION
DECISION 2 -PLANT RUN FOR BOTH PRODUCTION AND MEASUREM4ENT
DECISION 3 -PLANT RUN FOR MEASUREMENT ONLY,NO PRODUCTION

TRANSITION MATRIX, DECISION 1

1 0.OOOOE+O0 O.OOOOE+O0 1.000 0.OOOOE+00

2 O.OOOOE+OO O.OOOOE+00O0.OOOOE+00 1.000

3 O.OOOOE+O0 O.OOOOE.OO 0.OOOOE+00 O.OOOOE+OO

38
4 O.OOOOE+OO O.OOOOE+OO O.OOOOE+0O O.OOOOE+OO

TRANSITION MATRIX, DECISIONS 2 AND 3

1 0.8500 0.1500 O.OOOOE+O0 O.OOOOE+OO

*2 0.8000 0.2000 O.OOOOE+OO O.OOOOE+OO

3 0.8425 0.1575 O.OOOOE+O0 O.OOOOE+OO

4 0.8400 0.1600 O.OOOOE+OO O.OOOOE+O0

COST MATRIX

O.OOOOE+OO 2.000 1.500
* .OOOOE+00 2.500 1.500

0.1000E+07 2.075 1.500
0.1000E+07 2.100 1.500

INITIAL POLICY VECTOR

3 33 3

ALPHA-0.9500
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OPTIMUM POLICY ITN- 2

STATE DECISION MIN. COSTS
1 1 14.615
2 1 14.615
3 3 15.385
4 3 15.385

OPTIMUM POLICY TRANSITION MATRIX

IO.OOOOE+O0 O.OOOOE+0O 1.000 O.OOOOE+00

2 O.OOOOE+0O O.OOOOE+00O0.OOOOE+OO 1.000

3 0.8425 0.1575 0.OOOOE+OO O.OOOOE+0

4 0.8400 0.1600 O.OOOOE+00 0.OOOOE+OO

STATIONARY SOLUTIONOPTIMUM POLICY MATRIX

0.4211 0.7895E-01 0.4211 0.7895E-01

MINIMUM EXPECTED COST- 15.000

EXPOSURE PROBABILITY- 0.079

STATIONARY SOLUTIONTRANSITION MATRIX

0.8421 0.1579
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APPENDIX C

DERIVATION OF COSTS WHEN USING CONTINUOUS VARIABLES

In this Appendix, explicit expressions for use in equation 4 are

derived. The costs to be used in equation 4 are

C(x,t),l " Cl I< t < T (Cl)

C(x,t),2- cl + c2 + c4P(A) 1 < < T (C2)

where

P(A) inP(Xn+I>L Xn't+l x, Tn  t) 1 < t < T (C3)

and

C(x,t),3 = c2 + c3 1<t<T. (C4)

In the above, C(x,t),l Is undefined if T = 1 or if t = T. To derive an

expression for P(A), note that the solution of equation 5, subject to an

Initial value of Xn equal to x, Is

n
Xn xon + I-#.n) + # n-i at n > 1.(C5)

t11

Since the an are normal, Xn is normal with expectation given by the first

two terms on the right-hand side of equation C5, and variance

V(Xn) lOa12 (1_2n) ( 1,2) • (C6)
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Thus,

P(A) =P (Z > I-xt-)(l

V(Xt )1/2

where Z is a normal (0, 1) random variable.

* If T - 1, it is only necessary to compare equations C2 and C4, and thus

equations 6 and 7 follow, since decision 2 is optimal if P(A) < h.
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