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ABSTRACT

We consider a finite horizon inventory model where the holding, shortage,
and ordering costs are linear. The demand random variables are dependent and
average demand is described by an exponential smoothing formula. This model
can be formulated as a two state variable (inventory level, weighted past de-
mands) dynamic program. By using a procedure first developed by Scarf for a
Bayesian inventory model, we are able to reformulate the model as a one state
variable dynamic program. This, of course, results in a considerable computa-
tional saving over the two state variable formulation. We also show that this
dependent demand model orders less than or equal the amount that a comparable
independent demand model orders. This result is establishea under the assump-

tion that all demand is returned by the beginning of the next period.
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I. INTRODUCTION

The study of inventory theory is often divided into three parts: determinis-
tic models, stochastic models, and forecasting (Sections 12.3, 12.4, and 12.5
regpectively of Hillier and Lieberman [1980]). .The stochastic¢ models generally
assume that the demand distributions of inventory in the different periods are
independent. However, this indépendence assumption is at odds with the demand
forecasting methods which are éonsistent only with a dependent hypothesis. This
suggests that the assumption that inventory demands in different periods are
independent is often unrealistic, and that more attention should be given to
the dependent demand case. The computational approach to the dependent demand
problem is evident from dynamic programming concepts, and consists of adding
a second state variable pertaining to demand (the first being the inventory
level) in the equation of optimality. This greatly increases the computational
burden and helps explain why the dependent demand case had not received more
attention.

The assumption of dependent inventory demands has been made in the recent
models of Blinder [1982), Pindyck [1982], and Harpaz, Lee, and Winkler [1982].
Each paper observed that earlier related papers made the assumption of demand
independence.

Blinder [1982,p.337] writes:

"Each of the papers referred to above assumes that demand shocks
are independently and identically distributed. This assump-
tion, while it simplifies things greatly, is quite unsati-
factory. We know, for example, that disturbances at the
‘macro level are highly serially correlated, and it would be
surprising indeed if this serial correlation disappeared

wvhen wve disaggregated to the industry or firm levels."




Blinder assumed an autoregressive demand process of order 1. Pindyck repre-
sented demand as a multiplicative funetion of Brownian motion, and Harfaz, Lee,
and Winkler used a Bayesian demand model. Those papers were concerned with
the economic properties of their models, while ‘we emphasize the computational
aspects as well as qualitative properties of the inventory problem.

This paper will assume that the expected value of demand is given by an
exponential smoothing formula; and that uncertainty is multiplicative. Two
earlier efforts at combining a dependent demand model and the computation of
inventory ordering policies are Packer [1967] and Johnson and Thompson [1975].
Packer considers an exponential smoothing forecasting model. 1In that paper
several easy to compute policies are compared by simulation. Johnson and
Thompson [1975] consider a Box Jenkins forecasting model. They obtain con-
ditions on the demand parameters and cost structure such that a myopic policy
is optimal. Their approach uses the results of Veinott [1965], and consists
of showing that beginning inventory at each period cannot be larger than the
desired (myopic) level in that period. When it applies, this result is very
powerful computationally and cannot be improved upon. A two state dynamic
program has been reduced to a static model (a "zero state" dynamic program).

A main result of this paper (Theorem 1) shows how a two state variable

dynamic program can be reduced to one state variable under our demand and cost

" structure. Thus a dependent demand case becomes no more difficult to solve

than the independent demand case. To do this we use the method of Scarf [1960a],

who was able to reduce a two state variable Bayesian inventory model to one

state variable when demand is gamma. Azoury [1979] has extended Scarf's

Bayesian inventory result to the cases where demand is uniform and Weibull.
In the last section we consider the concept of flexibility. Following

Marshak and Nelson [1962) we say that an action a is more flexible than action
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b if the next period’'s set of feasible actions is lﬁrger when action a is

used. In Theorem 2 it is shown that our dependent demand model results in more
flexible actions than a comparable independent demand model. This result is
established for the case where all demand is returned by the beginning of the
next period.

II. THE MODEL

As in Scarf [1960a) we assume a linear ordering cost, a linear shortage
cost and a linear holding cost. These are standard assumptions the most re-
strictive being the linear ordering cost.

Our formulation of inventory behavior follows Cohen, Pierskalla, and
Nahmias [1980]. We allow a fixed fr#ction of stock, 1-B, held at the end of
each review period to decay. We also allow a fixed fraction of demand, 1l-a,
to be returned by the beginning of the next period. This fraction could
represent the proportion of demands that are repairable in a repairable in-

' ventory model where demand represents past failures (see the example Sherbrooke
[1968] or Miller [1974]). In military applications the times between orders
are typically longer than the repair times gso the assumption that repaired
items have returned by the next period is realistic. Cohen, Pierskalla, and
Nahaias [1980) are more general and permits a fixed fraction of demand to be
returned after a delay of ¥ > 1 periods. They allow no backlogging while this

" model permits any fraction § of backlogging. |

Let x, represent the inventory level at the beginning of period i, A
represent the inventory level in period i immediately after ordering (yi-xi) >0
units, and 2 represent the quantity demanded during period i. According to
the assumptions of the previous paragraph, for i=1,...,n,

x4y = BOgaey)  Af yg -0z, 20

Q)
= G(yi-azi) if y; -az, < 0

B PO -




"\demand cannot become negative (see Johnson and Thompson {1975,p.1306]). If the e

Our formulation of inventory demand is influenced by Brown [1959]. Let
Ai’ i=1,...,n, be the "average demand factor” in period i. The A1 evolve ac-

cording to the following exponential smoothing formula

A1 = U, anQ

2<4i<n, ()

8 = Q-e ®1-1%1 221

g-1? 834

In (2) u is an a priori estimate of average demand in period 1, e 0< e <1,
is a smoothing constant, and z;, as previously defined, is the quantity demanded
in period i. Let Z1 represent the demand random variable in period i. On p. 94
of [1959] Brown states, "You will be very likely to find that the standard devia-
tion of demand is nearly proportional to the total annual usage, or to the
average monthly usage." A formulation of demand consistent with this observa-

tion is

z, = BA 1<i<n )

vhere the Ai are independent nommegative random variables. Often E(Ai] =1 so
that 3[21] = Ai’ but if demand is expected to be‘increasing or decfeasing then
E[Ail >1or E[Ai] < 1l. We let Fi be the distribution function of Ai and

Gy (+14,) be the distribution function of Z .

Clearly A1 > 0 and hence Z, > 0. When uncertainty is additive instead of

i
multiplicative restrictions must be placed on the parameters to ensure that

S

are all ze;o then we have the standard model where the Zi are independent, while
if the e, are all one then by induction zj = “Al"'Aj and !nzj is a random walk
when the A1 are identically distributed. In this case we have a discrete time

version of the lognormal demand hypothesis in Pindyck [1982,footnote 3]. Brown
devotes Appendix C in [1959] to the lognormal distribution and its applicability

to inventory demand. .
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Let ¢ 1° hi’ and p i represent the linear 'ordering, holding, and shortage
costs in period i respectively. The value of Py will usually depend on' the
assumptions made about 8. Allowing the costs to vary with the period permits
us to incorporate any desired discounting or inflation factor into the model.
The expected holding and shortage cost is given by the familiar formula |

L (yIA) = h / (y-8) dG (slA) +pi / (s-y) dG (sIA) y>0

0
4)

© .
=Py f (s-y) dGi(slA) y < 0.
0
Let V°(-) be the piecewise linear salvage value of inventory after period

n. We assume that

Vx) = kx x>0
g (5)
-kzx x <0
where k>k1>0

The equations (1-5) enable us to write the dynamic programming equation

of optimality

yla
v, (,4) = m:.:[ci(y—x) + Li(y|A) + f V 41 (B(y-03), (1-e,) bte,5) dci(slA) +
y.
- 0

/ " Vi (S(r-as), (1-e )dte,s) dci(slA)]
y/a

with lvn_'_l(x,A) = V(x).

If & = O then y/a = = and the second integral disappears. The interpretation
of Vi(x,A) is the expected cost over periods i,...,n+l, using an optimal policy
with an inventory level x and an average demand factor A.

III. COMPUTING AN OPTIMAL POLICY

In this aection‘we will show that our model can be solved as a one state




varjiable dynamic program. This will be accomplishea by applying the method
Scarf [1960a] used to reduce a two state variable Bayesian inventory model
to one state variable. This, of coursé, represents a considerable computa-
tional saving.

The idea of the proof can be gathered from the following simple lemma.
Leuma 1. Li(ylA) - AQi(ylA) where '

£ (9 =h fy(y-c) dF, () + p, f (t-y) dF, (t) y 20

0 y

=P, f (t—y)_ dF, (t) y < 0.
0

Proof. We consider only the case y > 0 as the other case is easier. By (3)

and (4),
o Y/A ®
Li(ylA) = h, . f (y-At) dF, (t) +p, f (At-y) dF, (t)
0 y/A

y/A
- hiAf (y/4-t) dFi(t) +p,A ./n(t-y/A) dFi(t)
0 y/A

= A ?1.(y/A) . Q.E.D.

Theorem 1. For i=1,...,n, Vi(x,A) = Awi(x/A) where Wi(-) is defined by

/o
Hi(x) = min [ci(y-x) + Qi(y) + fy (1—e1+e1t) H1+1 (%éii—:%i-f) dFi(t) +

y>x 0
*® 8(y-at
f (-e te t) W, ) (T-‘Z?Z%t) ‘“’1(")]
y/a
with oy O = Vo (x).

Proof. By (5) it '~ ~lea- ..at Theorem 1 holds for i=n+l. We assume it holds

for 1+l and shows that it holds for 1. Using Lemma 1, the induction hypothesis,

and (3), (6) can be written as




: y/da
B(y-alt
Vi(x,A) = ;i: [ci(y—x) +A %(Y/A) + 6/ A(l-ei-feit) wi+1(R_]é-%Etz:-)-)dF1(t)

tad 6 (y-0lt)
+f AQl-e te t) W . (W) dFi(t)]
y/ba

In the previous equation we also use Ai

a- (l-ei) A1 + e,z = (l-ei) Ai +

i1

"is the realization of A:l'

eiAiai where a,

By factoring out A,

Vi(x,A) = A min [ci(y/A-x/A) +Qi(y/A) +
y>x :

y/ba | B(y/A-at)
6/ (1-egte t) Wy, (_].:Z_-i-eT)dFi(t) +

1%

® §(y/bo~ot)
/ (1-egtet) Wiy (1-—e1+eit: )‘“’1“)]'
y/ Ao

Let r = y/A and q = x/A. Then Vi(x,A) = A min [ci(r-q) + -Q:’l(r) +

r>q
/”“ e 4et) w. . [BE=D) ),
, B Sl Y F v Fp(r) +
0
® §(r-at) :
f (1-egte t) w1+1( 1-e te t)‘“i(t)]
r/a i1

= A Vi(q). Q.E.D.

It is well known that the solution to an inventory equation such as (7)
is not difficult and consists of solving successively for the critical levels

si, where S8, 1s the value of y which minimizes the term in brackets in (7)

i

(with x fixed at some very low level). Once these levels have been computed the
optimal ordering policy in period 1 is
if x, <S§ 1A'

orj'der siAi - x,

order nothing if x, >s 1A 4

———




On page 592 of [1960a] Scarf states but does nﬁt give a proof that his
state reduction procedure also applies to the case of a fixed lead timé of
A periods from the time of order to receipt of the goods. We now outline the
argument which shows that our model also can solve the lead time case with one
state variable. In what follows 8 and § are both one.

The arguments which result in a reduction from ) state variables to one
state variable in the lead timé case with independent demands can be found
in several places including page 201 of Scarf [1960b]. The state variable is
ugy the stock level in period i plus the amounts already ordered but not yet
delivered. The relevant demand is the sum of demands in periods i, i+l,...,i+A.

For our model with dependent demands and a fixed lead time of A periods,
it appears that two state variables may be needed in the equation of optimality,
uy and Ai' However, we can carry out the same reduction as before to one state
variable, “i/Ai’ if Zi +Z zi+j can be written as Ai times some random variable.
This is the case, as can ;; shown by an elementary but somewhat tedious demon-
étration. For example for A = 1, Zi + Z1 = A A + A1+1 141 AiAi +

[(1 -e ) A + e AA Ai(Ai+(l—ei) A + e A This last calcula-

154 1] A1 = w41+ SihiApn)-
tion suggests that the lead time model with dependent depends, although re-
ducible to one state variable, could be computaticnally formidable.

IV. THE FLEXIBILITY OF AN OPTIMAL YOLICY

The optimal policy of our dependent demand model when compared to the
optimal policy of the standard inventory model with independent demands has an
interesting property. In order to anticipate and interpret this property let
us consider sequential decision models in general and quote from Marshak and
Nelson [1962,p.42].

"Many decision problems are characterized by the following

structure: -




(a) The payoff to the decision maker is a function of
a sequence of actions taken by him, at times
tl,tz,...,tn,..., and a sequence of states of the
world beyond his control.

(b) At any point in the decision sequence, the decision
maker has less then perfect information about what
the future states of the world will be.

(c) Although before time t the decision maker is un-
certain as to what the world will be like at time
tn’ he is less uncertain at times closer to tn
than he was at times farther away. The decision
maker acquires additional information — he learns
about future states of the world — as time goes
by."

When we recall Hillier and Lieberman's partition of inventory theory, men~-
tioned in the opening sentence of this paper, we see that the deterministic
inventory models satisfy Marshak and Nelson's (a) only, the stochastic inventory
models satisfy (a) and (b) only, while the model of this paper with its demand
process given by (2) and (3) has all three characteristics (a), (b), and (c).

Marshak and Nelson (1962) point out that while many decision problems
have characteristics (a), (b), and (c), they are usually not easy to solve and
heuristics are often used. Marshak and Nelson suggest that flexibility is a
desirable property of a policy, and they give three definitions of flexible
actions. We will use their first definition which says that an action a is
more flexible than an action b if the set of feasible actions in the next
period when using action a is larger than the set of feasible actions in the

next period when usiné action b. 1In our inventory problem the feasible region in




(6) and (7) is y > x, s0 that a lower value of inventory ordered is a more
flexible decision than a higher value of inventory ordered. The feasibie
region in the next period will be larger if less inventory is ordered this
period. Marshak and Nelson (1962) show in 3 2-period examples how flexibility
becomes more important the more‘sequential decision models have characteristic
(b) and especially (c).

| Henry [1974] considered the idea of flexibility or more precisely its oppo-
site, an "irreversible decision." He showed (Proposition 1) that if a model
is simplified by replacing all random variables by their means, then the
simplified model will more readily choose an inflexible "irreversible decision"
than the original model would. Operationally the point that Henry and Marshak
and Nelson are making is that there is a danger that heuristics and simplifica-
tions in sequential decision models will bias us toward the more inflexible
decision. Another notable paper on flexibility is by Kreps [1979] who shows
in apgeneEal setting the equivalence of the desire for flexibility and future
uncertainty. Merkhofer [1977] looks at the converse issue, how greater flexi-
bility in decision making increases the desire for better information.

Our objective in this section will be to‘compare the optimal policy of

the inventory model which we have considered and will now call the Dependent

Demand Model with the optimal policy of a comparable Standard Model where

‘.demand is independent each period. The previous work on flexibility just cited

suggests that the Dependent Demand Model which satisfies Marshak and Nelson's
(c) will order less inventory (be more flexible) than the Standard Model which
does not satisfy (c). We will prove this result for the case where 1l-a, the
fixed function of demand returned at the beginning of the next period is 1.
We now turn to formulating the comparable Standard Model.

The Standard Model will, of course, have the same cost structure as the

Dependent Demand Model. The independent random variables representing demand

10




will be called Bi’ i=1,...,n; and have the same distribution as the unconditional
distribution of the Zi. Thus the distribution function of Bi equals .
EAi(Gi(-IAi)) A Gi(-). The e*pected holding and shortage cost each period for the
Standard Model is
y ®
h, f (y-s) dG,(s) +p, f (s-y) 4G, (s) y>0
0 y

which equals

E, [n y(y-s) dc, (s|A) + . /.m (s-y) dG(s|A ))

By i.},. 1351847 Py y i
0 y

- EAi(Li(y'Ai)) 4L, (8

This equation also holds for y < 0.
Let Ui(x) be the expected cost over periods 1,...,n+l, for the Standard
Model using an optimal policy with inventory level x. Recall that o is assumed

to equal 0. The equation of optimality for Ui is

Ui(x) = min [ci(y-x) + Li(y) +f U1+1(By) dGi(s)]
y>x 0
: 9)

= min [ci(y-X) +L,(y) + U +1(By)]
y2>x

with U 00 = V).

Since the cost structure and the optimal return functions Ui and Vi are
convex, (see, for example, Scarf (1960b)) the following results on convexity in
Rockafeller [1970, Theorems 23.1, 24.1, 24.2, Corollary 24.2.1] will be useful.

let f = X > R be convex where X is a convex subset of R.

Then
(a) the right-hand and left-hand derivatives of f, fl and £', exist every-

vhere on the interior of X, are fondecreasing, and satisfy f; >f'.

n
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(b) for any a, b, € X

b .b
£(b) - f(a) -/ f.;_(s)ds -/ £'(s)ds.
Ca . a

Let us assume that the minimum of f£:X+*R exists. It is clear from (a) and
(b) that f achieves a minimum at the point

x* = gup{x : £, < 0} (10)

In what follows it is understobd that if the derivative of a convex function
does not exist then we mean the right hand derivative. Thus in effect our
derivatives are really right hand derivatives which exist everywhere on the
interior of X. This use of right hand derivatives causes no problems since
our optimality condition (10) is in terms of right hand derivatives.
Let
) =10 + U, (8y), and
.o
J0) =2,6) + / (1-e te t) W, (1_—23{3—:) dF, (t)
p B §

where the J :l(Y) represent the expected value of costs over periods i, i+l,...,n,
after ordering. Let S! be the value of y which minimize ¢ i(y) + J:(y). The

i
minimum of this convex function is known to exist so that we can apply (10),

' 43y
Si-supy:‘—i-y— _ﬁ—ci .

The optimal policy in period i for the Standard Model is the si-policy

and

: ' )
order s1 x1 if x:|.<s1

order nothing 1if x 2 si.

Lemma 2 and Corollary 1 to follow are at most small deviations from known results

in inventory theory.
d

Lesma 2. Uj(x) = max{-ci, e J';(x)}.

Hi(x) - nax{-ci, -:;- J:(x)}. 2

L e




Proof. We will give the proof for the first equation only, as both equations

are proved in the same way. By the optimality of an Si—policy just mentioned,

\ - - 4
Ui(x) N if x, < S1
- d u .

o Ji(x) if x, > sl.

Thus all that is needed to conclude the proof is that J (x) f-ey for x < S'

and & (x) > -¢, for x >s. This follows from the definition of S} and the

i i

fact that dix J:(x) in increasing. Q.E.D.

Corollary 1. S; = sup{x:U:'l(x) < - ci} and S, = sup{x:w:'l(x) < - ci} where S, is
the critical level described after Theorem 1.

At this point we will assume that Ai > 0 with probability one for i=1,...,
ntl. Two sufficient conditions for this to hold are that all the ey <1, or
that all the A, > 0 with probability one.

i
Lerma 3, For i=1l,...,n, and all x,

] ]
EAi[wi(x/Ai)] > Bix).
Proof. The result holds for i=n+l by (5) and the assumption that An+1> 0. We

assume that it holds for i+l and shows that it holds for i. By Lemma 2,

EAim'i(x,Ai)] = EA:L max {-ci, -;; J:(x/Ai)}. Since T(x) A max{-ci,x} is a
* convex function, Jensen's inequality implies that E, max { 1, dx J (x/A )}

Bx
dl?i(t)']}. By Lemma 1 and (8), EAi(.Q’i(x/Ai)) = Li(x), and by the induction

hypothesis E W, i))> U!. .(Bx). Therefore E, (W}(x/A,)) is greater
_ LY ( 141 (A:l.+1 +1 | LY S i

than or equal to {-ci,Li(x) + BU‘;_+1(B::)} - nx{ s dx (x) }- U; (x).

Q.E.D.

13




§ .

Lemma 4. Let f and g be two nondecreasing functions on R into R and K be a posi-

tive constant. Let x = sup{x:£(x) < ¢}, and X, = sup{x:g(x) < c} be finite.

1f g(x/K) > £(x), for all x, then X Z_xSK.
Proof. Assume the contrary that ng > Xg, 80 that there is an € > 0 such that
x +€
xK > xf + €. We have f(x£+e) >cand ¢ > g(xg) > fl( . Those two inequali-

x f+€
ties contradict g K Z_f(xf+€). Q.E.D.

Theorem 2. Recall that o=0. The critical level for the Dependent Demand Model
in period1l, ~S:|.A‘1==l slu, is less than or equal to the critical level for the
Standard Model in period 1, Si. Therefore, the Dependent Demand Model results
in a decision at least as flexible aé the Standard Model.
Proof. By Corollary 1 Si = sup{x:Ui(x) <= cl} and §, = sup{x:Wi(x) < - cl}.
By Lemma 3 W} (x/W) > U}(x). Now apply Lemma 4 to include that S,M < S}, Q.E.D.
Theorem 2 applies to period 1. Once we get to period 2 the theorem can be
reapplied. to a reformulation of the Standard Model. 1In this reformation period
2 is interpreted as period 1, period 3 becomes perfiod 2, etc.
Theorem 2 was established under the assumption that a=0. The concept of
flexibility suggests that Theorem 2 is also true for a>0. However, an example

in Azoury [1979] for a Bayesian inventory model suggests that the result does

not hold for a>0. Thus a conjecture for the a>0 case appears ill-advised.
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