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ABSTACT

We consider a finite horizon inventory model where the holding, shortage,

and ordering costs are linear. The demand random variables are dependent and

average demand is described by an exponential smoothing formula. This model

can be formulated as a two state variable (inventory level, weighted past de-

mands) dynamic program. By using a procedure first developed by Scarf for a

Bayesian inventory model, we are able to reformulate the model as a one state

variable dynamic program. This, of course, results in a considerable computa-

tional saving over the two state variable formulation. We also show that this

dependent demand model orders less than or equal the amount that a comparable

independent demand model orders. This result is established under the assump-

tion that all demand is returned by the beginning of the next period.
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i i. iTRODUCTION

The study of inventory theory is often divided into three parts: determinis-

tic models, stochastic models, and forecasting (Sections 12.3, 12.4, and 12.5

respectively of Hillier and Lieberman (1980]). .The stochastid models generally

assume that the demand distributions of inventory in the different periods are

independent. However, this independence assumption is at odds with the demand

forecasting methods which are consistent only with a dependent hypothesis. This

suggests that the assumption that inventory demands in different periods are

independent is often unrealistic, and that more attention should be given to

the dependent demand case. The computational approach to the dependent demand

problem is evident from dynamic programming concepts, and consists of adding

a second state variable pertaining to demand (the first being the inventory

level) in the equation of optimality. This greatly increases the computational

burden and helps explain why the dependent demand case had not received more

attention.

The assumption of dependent inventory demands has been made in the recent

models of Blinder [1982], Pindyck [1982], and Harpaz, Lee, and Winkler [1982].

Each paper observed that earlier related papers made the assumption of demand

independence.

Blinder [1982,p.337] writes:

"Each of the papers referred to above assumes that demand shocks

are independently and identically distributed. This assump-

tion, while it simplifies things greatly, is quite unsati-

factory. We know, for example, that disturbances at the

macro level are highly serially correlated, and it would be

surprising indeed if this serial correlation disappeared

when we disaggregated to the industry or firm levels."



Blinder assumed an autoregressive demand process of order 1. Pindyck repre-

sented demand as a multiplicative function of Brownian motion, and Harpaz, Lee,

and Winkler used a Bayesian demand model. Those papers were concerned with

the economic properties of their models, vhile 'we emphasize the computational

aspects as well as qualitative properties of the inventory problem.

This paper will assume that the expected value of demand is given by an

exponential smoothing formula, and that uncertainty is multiplicative. Two

earlier efforts at combining a dependent demand model and the computation of

inventory ordering policies are Packer [19671 and Johnson and Thompson (1975].

Packer considers an exponential smoothing forecasting model. In that paper

several easy to compute policies are compared by simulation. Johnson and

Thompson [1975] consider a Box Jenkins forecasting model. They obtain con-

ditions on the demand parameters and cost structure such that a myopic policy

is optimal. Their approach uses the results of Veinott [1965], and consists

of showing that beginning inventory at each period cannot be larger than the

desired (myopic) level in that period. When it applies, this result is very

powerful computationally and cannot be improved upon. A two state dynamic

program has been reduced to a static model (a "zero state" dynamic program).

A main result of this paper (Theorem 1) shows how a two state variable

dynamic program can be reduced to one state variable under our demand and cost

structure. Thus a dependent demand case becomes no more difficult to solve

than the independent demand case. To do this we use the method of Scarf [1960a],

who was able to reduce a two state variable Bayesian inventory model to one

state variable when demand is gamma. Azoury [1979] has extended Scarf's

Bayesian inventory result to the cases where demand is uniform and Weibull.

In the last section we consider the concept of flexibility. Following

Marshak and Nelson [19621 we say that an action a is more flexible than action
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b if the next period's set of feasible actions is larger when action a is

used. In Theorem 2 it is shown that our dependent demand model results in more

flexible actions than a comparable independent demand model. This result is

established for the case where all demand is returned by the beginning of the

next period.

II. THE MODEL

As in Scarf [1960a] we assume a linear ordering cost, a linear shortage

cost and a linear holding cost. These are standard assumptions the most re-

strictive being the linear ordering cost.

Our formulation of inventory behavior follows Cohen, Pierskalla, and

Nahmias [1980]. We allow a fixed fraction of stock, l-0, held at the end of

each review period to decay. We also allow a fixed fraction of demand, 1-ct,

to be returned by the beginning of the next period. This fraction could

represent the proportion of demands that are repairable in a repairable in-

ventory model where demand represents past failures (see the example Sherbrooke

[19681 or Miller [1974]). In military applications the times between orders

are typically longer than the repair times so the assumption that repaired

items have returned by the next period is realistic. Cohen, Pierskalla, and

Uahmias [1980] are more general and permits a fixed fraction of demand to be

returned after a delay of y > 1 periods. They allow no backlogging while this

model permits any fraction 6 of backlogging.

Let xi represent the inventory level at the beginning of period i, yi

represent the inventory level in period i Immediately after ordering (yi-xi) > 0

units, and zI represent the quantity demanded during period i. According to

the assumptions of the previous paragraph, for iml, ...

Zi+ - 6 (y-mi) if Yi - aZi <- 0
(1)

= 6 (yi-.ui) if Yi" 0

3i
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Our formulation of inventory demand is influenced by Brown [1959]. Let

Ai, i-l,...n, be the "average demand factor" in period i. The Ai evolve ac-

cording to the following exponential smoothing formula

A jI, and

Ai =(l-eI) Ai1  + ei-1 zi1  
2 < i < n. (2)

In (2) V is an a priori estimate of average demand in period 1, ei, 0 < ei< 

is a smoothing constant, and zi, as previously defined, is the quantity demanded

in period I. Let Zi represent the demand random variable in period I. On p. 94

of [1959] Brown states, "You will be very likely to find that the standard devia-

tion of demand is nearly proportional to the total annual usage, or to the

average monthly usage." A formulation of demand consistent with this observa-

tion is

Zi M A iAi1 1 < i < n (3)

where the Ai are independent nonnegative random variables. Often E[Ai] I. so

that E[Z1 = Ai, but if demand is expected to be increasing or decreasing then

E[Ai] > 1 or E[Ai] < 1. We let Fi be the distribution function of Ai and

Gi(. IAi) be the distribution function of Zi .

Clearly Ai > 0 and hence Z, > 0. When uncertainty is additive instead of

multiplicative restrictions must be placed on the parameters to ensure that

demand cannot become negative (see Johnson and Thompson [1975,p.1306]). If the e

are all zero then we have the standard model where the Z are independent, while

if the ei are all one then by induction Z - iiA,...A and XnZ is a random walk

when the A are identically distributed. In this case we have a discrete time

version of the lognormal demand hypothesis in Pindyck [1982,footnote 31. Brown

devotes Appendix C in [1959] to the lognormal distribution and its applicability

to inventory demand.

4
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Let cl, h1, and pI represent the linear ordering, holding, and shortage

costs in period i respectively. The value of Pi will usually depend on the

assumptions made about 6. Allowing the costs to vary with the period permits

us to incorporate any desired discounting or inflation factor into the model.

The expected holding and shortage cost is given by the familiar formula

Li(yjA) = hi f. (y-s) dGi(sIA) + Pi (s-y) dGi(sIA) y > 0

o y
00 (4)

= Pi f (s-y) dGi(sIA) y < O.
0

Let V°(-) be the piecewise linear salvage value of inventory after period

n. We assume that

V°(x) - klx x > 0

-k2x x<0

where k > , > 0.

The equations (1-5) enable us to write the dynamic programming equation

of optimality

Vi(xA) -miin ci(Y-x) + Li(yIA) + fYI Vi+l((y-cs), (l-ei)A+eis) dGi(s A) +y>x f
0

Vo Vi+1((Y-aS), (1-e i),&+eisa) d i (sjA) ]

Y/a

with V+l(x,A) Vo(x).

If 6 - 0 then y/a - w and the second integral disappears. The interpretation

of Vi(x,A) is the expected cost over periods i,...,n+l, using an optimal policy

with an inventory level x and an average demand factor A.

III. COMPUTING AN OPTIMAL POLICY

In this section we will show that our model can be solved as a one state

5
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I

variable dynamic program. This will be accomplished by applying the method

Scarf [1960a] used to reduce a two state variable Bayesian inventory model

to one state variable. This, of course, represents a considerable computa-

tional saving.

The idea of the proof can be gathered from the following simple lema.

Lena 1. L (yJA) = A.7 (yHA) where

" (y) - hifY (y-t) dF (t) + p f (t-y) dFi(t) y >0

0 y

Pi f (t-y) dFi(t) y < 0.

0

Proof. We consider only the case y > 0 as the other case is easier. By (3)

and (4),

LI(y IA) - hi j Y/A (y-At) dFi(t) + Pi f1C (At-y) dFi(t)

0
y/A

= hiA f (y/A-t) dFi(t) + piA . (t-y/A) dFi(t)

o y/A

- A-1 (y/A). Q.E.D.

Theorem 1. For i-l,...,n, Vt(x,A) - AWI(xA) where Wi(-) is defined by

Vi ( l) &in i(yx) + (,(Y) + (1eiit) i+\ , /1 t) dF (t) +

1 ". ej~t)ei (t)]

with O+I(Z) V(x). (7)

rof. By (5) it '- -lea- .,4t Theorem 1 holds for i-n+l. We assume it holds

for 1+1 and show that it holds for i. Using Lema 1, the Induction hypothesis,

ad (3), (6) can be written as

-- J 6



V X ) mn=-)+A9,YA A(l~I- eit) ,i O (y-o~t) dF W,F"iC0 A(l-el+elt)]  i""

y>x O.

+ (Iee/ 6 (y-aAt) dFi W)

+/" (leaet Wi+ I ( A(l-ei+ei) 0

In the previous equation we also use A,+ f (1-e i ) Ai + eiz = (1-ei) A1 +

eiAia i where ai is the realization of A1.

By factoring out A,

VI(xA) -A min [Ci(Y/A-X/A) +'i(y/IA) +
y2 _x I

{ y/Aa "I 0 ( y/A_-ct) ) dF(t)+
(l-ei+eit) Wi+l l-ei+eit

(i-e 1 +eit, Wj 1 ((Y/A-at) dFi()].

Y/Act

Let r = y/A and q - x/A. Then V i(xA) = Amin [ci (r-q) + 9(r) +

_e t)Wil (r-at) )dF Wt +

0 11-eeeit I+ t )- ~it

(1-ye~t Wj / 6(r-at) Ftf "('ietW~ ( 1-,+eit )dit

- A W(q). Q.E.D.

It is well known that the solution to an inventory equation such as (7)

is not difficult and consists of solving successively for the critical levels

Si, where Si is the value of y which minimizes the term in brackets in (7)

(with x fixed at some very low level). Once these levels have been computed the

optimal ordering policy n period i is

order SiAI - x if xi < SIAi

order nothing if x I SiAl.

_J



On page 592 of [1960a] Scarf states but does not give a proof that his

state reduction procedure also applies to the case of a fixed lead time of

X periods from the time of order to receipt of the goods. We now outline the

argument which shows that our model also can solve the lead time case with one

state variable. In what follows 0 and 6 are both one.

The arguments which result in a reduction from X state variables to one

state variable in the lead time case with independent demands can be found

in several places including page 201 of Scarf [1960b]. The state variable is

ui, the stock level In period i plus the amounts already ordered but not yet

delivered. The relevant demand is the sum of demands in periods i, i+l,...,i+X.

For our model with dependent demands and a fixed lead time of X periods,

it appears that two state variables may be needed in the equation of optimality,

ui and A . However, we can carry out the same reduction as before to one state

variable, ui/Ai, if Zi +E Z can be written as A times some random variable.
3=1 i~

This is the case, as can be shown by an elementary but somewhat tedious demon-

stration. For example for X = 1, Z + Z,+1 = AIAi + Ai+lAi+1 - AIA i +

[(l-e i) A I + e IA IA ] A i+1 = Ai(Ai+(l-ei) A,+, + e IAA i+)' This last calcula-

tion suggests that the lead time model with dependent depends, although re-

ducible to one state variable, could be computationally formidable.

IV. THE FLEXIBILITY OF AN OPTIMAL POLICY

The optimal policy of our dependent demand model when compared to the

optimal policy of the standard inventory model with independent demands has an

interesting property. In order to anticipate and interpret this property let

us consider sequential decision models in general and quote from Marshak and

Nelson [196 2,p.42 ).

"Many decision problems are characterized by the following

structure:-

8
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(a) The payoff to the decision maker is a function of

a sequence of actions taken by him, at times

tit29,...,tn,... , and a sequence of states of the

world beyond his control.

(b) At any point in the decision sequence, the decision

maker has less then perfect information about what

the future states of the world will be.

(c) Although before time t the decision maker is un-n

certain as to what the world will be like at time

t , he is less uncertain at times closer to tn n

than he was at times farther away. The decision

maker acquires additional information - he learns

about future states of the world - as time goes

by."

When we recall Hillier and Lieberman's partition of inventory theory, men-

tioned in the opening sentence of this paper, we see that the deterministic

inventory models satisfy Marshak and Nelson's (a) only, the stochastic inventory

models satisfy (a) and (b) only, while the model of this paper with its demand

process given by (2) and (3) has all three characteristics (a), (b), and (c).

Marshak and Nelson (1962) point out that while many decision problems

have characteristics (a), (b), and (c), they are usually not easy to solve and

heuristics are often used. Marshak and Nelson suggest that flexibility is a

desirable property of a policy, and they give three definitions of flexible

actions. We will use their first definition which says that an action a is

more flexible than an action b if the set of feasible actions in the next

period when using action a is larger than the set of feasible actions in the

next period when using action b. In our inventory problem the feasible region in

9
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.1,

(6) and (7) is y > x, so that a lower value of inventory ordered is a more

flexible decision than a higher value of inventory ordered. The feasible

region in the next period will be larger if less inventory is ordered this

period. Marshak and Nelson (1962) show in 3 2-period examples how flexibility

becomes more important the more sequential decision models have characteristic

(b) and especially (c).

Henry [1974] considered the idea of flexibility or more precisely its oppo-

site, an "irreversible decision." He showed (Proposition 1) that if a model

is simplified by replacing all random variables by their means, then the

simplified model will more readily choose an inflexible "irreversible decision"

than the original model would. Operationally the point that Henry and Marshak

and Nelson are making is that there is a danger that heuristics and simplifica-

tions in sequential decision models will bias us toward the more inflexible

decision. Another notable paper on flexibility is by Kreps [1979] who shows

in a general setting the equivalence of the desire for flexibility and future

uncertainty. Merkhofer [1977] looks at the converse issue, how greater flexi-

bility in decision making increases the desire for better information.

Our objective in this section will be to compare the optimal policy of

the inventory model which we have considered and will now call the Dependent

Demand Model with the optimal policy of a comparable Standard Model where

demand is independent each period. The previous work on flexibility just cited

suggests that the Dependent Demand Model which satisfies Marshak and Nelson's

(c) will order less inventory (be more flexible) than the Standard Model which

does not satisfy (c). We will prove this result for the case where 1-a, the

fixed function of demand returned at the beginning of the next period is 1.

We now turn to formulating the comparable Standard Model.

The Standard Model will, of course, have the same cost structure as the

Dependent Demand Model. The independent random variables representing demand

10
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will be called Bi, i=,. .n, and have the same distribution as the unconditional

distribution of the Zi. Thus the distribution function of Bi equals

EA (Gi(" IA1)) = Gi(-). The expected holding and shortage cost each period for the

Standard Model is

hi ~f (y-s) dGi(s) + Pi f (s-y) dG 1(s) y > 0

0 y

which equals

EAI(hify(y-s) dG(SAi)+ P1 /f (s-y) dG(s Ai))

0 Y

= EA I(LI (yIA)) Li(y). (8)

This equation also holds for y < 0.

Let U i(x) be the expected cost over periods ,...n+l, for the Standard

Model using an optimal policy with inventory level x. Recall that a is assumed

to equal 0. The equation of optimality for Ui is

Ui(x) = min i(Y-x) + Li(Y) +f U i+l(y) dGI(s)1
y_x I

0 (9)

mini [ci( y - x) + LI(Y) + Ui+1(0Y)]

with U,+1 (X) - V° (x).

Since the cost structure and the optimal return functions U and V are

convex, (see, for example, Scarf (1960b)) the following results on convexity in

Rockefeller [1970, Theorems 23.1, 24.1, 24.2, Corollary 24.2.11 will be useful.

Let f - X - R be convex where X is a convex subset of R.

Then

(a) the right-hand and left-band derivatives of f, f+ and f', exist every-

where on the interior of X, are dondecreasing, and satisfy fj > ft.

!'



(b) for any a, b, c X
b b

f(b) - f(a) f'(s)ds f'(sds.

a -a

Let us assume that the minimum of f:X+R exists. It is clear from (a) and

(b) that f achieves a minimum at the point

x - sup{x : f' < 0) (10)

In what follows it is understood that if the derivative of a convex function

does not exist then we mean the right hand derivative. Thus in effect our

derivatives are really right hand derivatives which exist everywhere on the

interior of X. This use of right hand derivatives causes no problems since

our optimality condition (10) is in terms of right hand derivatives.

Let

J U(y) - Li(y) + Ui+i(Oy), and

Io.17 (Y) = Yiy + J (l-ei+eit) Wi.1 (le ~te

where the J (y) represent the expected value of costs over periods I, i+l,...,n,

after ordering. Let S' be the value of y which minimize c (y) + Ju(y). The

minimum of this convex function is known to exist so that we can apply (10),

and

Si - sup y: -<" i .

The optimal policy in period i for the Standard Model is the Si-policy

order Si -xi if x1 < S
i i

order nothing if x > S.

Lemma 2 and Corollary 1 to follow are at most small deviations from known results

In inventory theory.

Lemma 2. Uj(x) - uax{-c , d UXI
d w'(x)}.

WI(x) - uax{ ,-c (4).
12
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Proof. We will give the proof for the first equation only, as both equations

are proved in the same way. By the optimality of an Si-policy just mentioned,

U( i) -- c if 1i < Si

d u (x)  if x > S

Thus al that is needed to conclude the proof is that d u (x) < - c i for x < S'

and -I Ju(x) > c for x >S' This follows from the definition of S' and the
dxi i* i

fact that Ju(x) in increasing. Q.E.D.

Corollary 1. S' = sup{x:U:(x) < - c i} and Si - sup{x:Wl(x) < - ct} where Si is

the critical level described after Theorem 1.

At this point we will assume that A > 0 with probability one for iml,...,

n+l. Two sufficient conditions for this to hold are that all the ei < 1, or

that all the Ai > 0 with probability one.

Lemma 3. For i=l,...,n, and all x,

EAiIw (x/A i ) ] > U,(x).

Proof. The result holds for i=n+l by (5) and the assumption that An+l> 0 We

assume that it holds for i+l and shows that it holds for i. By Lemma 2,

%i[W'(x/Ai)] Ai a -ci, -A JV(x/A i)}" Since T(x) max{.-ci,xl is a
ii

convex function, Jensen's inequality Implies that ,imax {-c 1 , Jw(x/A >

max {C,.E% (d J(x/&,)) max(I -c,, EA& [Z 1,(x/,&:) + f O

dF It]) By Lemma I and (8), E A I(Z(x/AI)) - Lj(x), and by the induction

hypothesis EA,+ (W,'+, (.~~ A~ Ox )) +(Px). Therefore EA (Wi(X/AiL)) is greater
ii+l Iili

than or equal to {-Ci (x) + . .x)1ax , 1 Ju(x)) U(x).

Q.E.D.

13



Lemma 4. Let f and g be two nondecreasing functions on R into R and K be a posi-

tive constant. Let xf W sup{x:f(x) < i, and x - sup{x:g(x) < ci be finite.

If g(x/K) > f(x), for all x, then xf > x K.

Proof. Assume the contrary that x K > Xf, so that there is an E > 0 such that

x K > x + E. We have xf+') > c and c > g(x > • +E)_ Those two tnequali-
9 f v _r -  T t i u

ties contradict g -f--J> f(xf+). Q.E.D.

Theorem 2. Recall that ct=0. The critical level for the Dependent Demand Model

in period 1, SlA 1 - Slp, is less than or equal to the critical level for the

Standard Model in period , S . Therefore, the Dependent Demand Model results

in a decision at least as flexible as the Standard Model.

Proof. By Corollary 1 S sup{x:Ul(x) < - cl and S1 sup{x:w(x) < - cl).

By Lemma 3 W (x/Pi) > U (x). Now apply Lemma 4 to include that Slp < S1  Q.E.D.

Theorem 2 applies to period 1. Once we get to period 2 the theorem can be

reapplied to a reformulation of the Standard Model. In this reformation period

2 is interpreted as period 1, period 3 becomes period 2, etc.

Theorem 2 was established under the assumption that a-0. The concept of

flexibility suggests that Theorem 2 is also true for a>O. However, an example

in Azoury [1979] for a Bayesian inventory model suggests that the result does

not bold for o>0. Thus a conjecture for the a>0 case appears ill-advised.

i1
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