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\\\ Summary
A

The transformed coordinates devised by Mirels and Hamman have been modified in such
a way that the transformed nonstationary-boundary-layer equations become applicable to
boundary-layer flows induced by both blast and detonation waves moving with a power-law
trajectory in planar, cylindrical and spherical geometries. Investigations were made
of boundary-layer flows in air behind nonuniform strong blast waves and in the burned
gas of a stoichiometric mixture of hydrogen and oxygen behind uniform Chapman-Jouguet
detonation waves. The results show that the Prandtl number has a profound influence on
boundary-layer flow. For a blast wave and Pr less than unity it controls a boundary-
layer velocity-overshoot as one moves away from the wave. The overshoot decreases with
increasing Prandtl number. For a Chapman-Jouguet detonation wave similar results are
obtained for a Pr = 0.72. However, for an actual Pr = 2,26, a flow reversal occurs
away from the wave where the inviscid flow velocity approaches a small value., The
results also show that the viscous exponent has a significant effect on the wgll shear
stresses and heat transfer and that the effect of the wall temperature is

C;~;; order to show some of the physical features ‘of the various boundary layers,
actual velocity profiles were computed for spherical and planar detonation waves in
stoichiometric hydrogen-oxygen and for blast waves in air. , It is shown that owing to
the rapid decrease in density behind a blast wave the boundpry layer thickness becomes
very much larger than their detonation-wave counterparts the same wave velocity (but
different physical conditions). In addition, the ve y-boundary-layer thickness in
air behind a quasistationary planar shock wa Somewhat more than for a planar det-
onatxon wave at the same wave velocity (but in different gases).

(f> In order to test the validity of the analysis, the heat transfer to the wall behind
a planar detonation wave was calculated. The profile of the variation of the heat trans-
fer with time at any given position behind a C-J detonation wave is in good agreement
with the experimental data, and adds confidence to the present analyses for cylindrical
and spherical flows as well.
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Notation

speed of sound ahead of the wave front

constant used in the transformed coordinate n
molecular-weight ratio (v, -1)Cp, /Y, (Y-1)Cp

ratio pu/o M,

constant used in x_ = ct™

skin friction coefficient defined as Cf = Tw/% oeue2
specific heat at constant pressure

heat diffusivity defined as D = K/DCP

internal energy

nondimensional stream function

similarity parameter, F = p/pwusz, for inviscid flow
enthalpy ratio, g = h/he (= T/Te)

specific enthalpy

boundary-layer-thickness coefficients

integral quantity defined by Eq. (14)

thermal conductivity

energy coefficient defined by Eq. (22)

invariant defined by Eq. (31)

exponent used in xg = ct™

wave Mach number

C-J wave Mach number

number of chemical species

mole fraction of species

pressure

chemical energy released during combustion
nondimensional chemical energy, = Q/am2
heat flux on the wall

gas density ratio behind and ahead of the wave front,
R = p/o,

quantity defined by Eq. (21)

integral quantity defined in Eq. (66)
time variable

temperature

velocity component in x-directio.

velocity component in y-direction
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Subscripts

[+

velocity ratio across the boundary layer, w = fn(E,n) = u/ue
direction along the wall surface
direction normal to the wall surface

= (m-1)/m

nondimensional speed of sound
specific-heat ratio or isentropic exponent
boundary-layer thickness

geometric step-size ratio in n-direction
viscosity

density

transformed coordinate

transformed coordinate

velocity ratio, @ = u/ug

scalar stream function

geometric parameter for inviscid flow
geometric parameter for viscous flow
viscous exponent

time-transformed variable

wall shear stress

value just behind wave front, or at { = 0
conditions ahead of wave front

reference condition

wall condition

edge of boundary layer

wave front
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1. INTRODUCTION

This study was motivated by the existence of a
unique explosive-driven-implosion facility at the
Institute. Stable focussed implosions can be pro-
duced in this reliable facility yielding extremely
high-pressure and temperature conditions at the
focus. This facility has been used successfully
for the generation of hypervelocity projectile
flight and intense shock waves as well as the
production of diamonds from graphite and neutrons
and ; rays from deuterium fusion [Ref. 1]. The
performance of the implosion chamber was investigat-
ed extensively [Refs. 2-8]. 1In all these investi-
gations it was assumed that effects of viscosity
and heat conductivity were negligible. However,
it is important for a complete assessment of per-
formance for the implosion chamber to evaluate the
effects of the viscous boundary layer on the im-
plosion focus. It is necessary to consider these
aspects of flow in several stages. The first stage
concerns the induced boundary layer behind the
gaseous detonation wave in a hydrogen-oxygen mix-
ture and is the subject of the present report.

In general, all detonations or explosions fall
into two categories: structure-independent and
structure-dependent. For the former, the chemical-
reaction zone is very narrow immediately behind the
wave front and its structure has no effect on the
characteristics of the flow field behind it. For
the latter the relatively long chemical-reaction
zone and its structure dominate the properties
of the flow field. Both types of detonation were
studied extensively [Refs. 9-17]). In this study
of 2H,+0, detonations only the structure-independent
wave applies.

Mirels and Hamman [Ref. 18] made the first

attempt to solve the laminar boundary layer behind
a strong blast wave moving in a power-law path.
They used a series-~expansion method which was also
employed later by Chen and Chung {Ref. 19}. This
method is only applicable in the region near the
wave front. Sichel and David [Ref. 29] made a
modification of the shock-tube boundary-layer solu-
tion by Mirels [Ref. 21) and Hartunian et al {Ref.
¢2] to calculate the heat transfer to the wall
behind a detonation wave with the assumption that
the pressure, temperature and velocity behind the
detonation remain constant and are equal to the C-J
values. These assumptions are restrictive in
describing the actual physics of the problem.
Later on, numerical solutions were obtained by Liu
and Mirels [Ref. 23] for different one-dimensional
flows (planar, cylindrical and spherical) over the
entire flow region.

In previous analyses [Refs. 18, 19, 23] for
boundary-layer flows behind strong blast waves,
four major assumptions were made in order to sim-
rlify the analysis: (1) The explosion wave moves
with a power-law path in the time-distance plane.
Consequently, similarity solutions exist for the
inviscid and viscous flow fields. (2) The specific-
heat ratios behind and ahead of the wave front are
assumed constant and equal. This assumption is
not applicable to a chemically-reacting flow where
the specific-heat ratios for the unburned and burned
gases are different. For example, the specific-heat
ratio behind a Chapman-Jouguet (C-J) detonation wave
is smaller than that of the unburned gas. Therefore,
the previous analyses are not applicable to actual

~

boundary layers behind detonation waves. (3) The
dynamic viscosity coefficient of the gas behind

the wave front was assumed proportional to tem-
perature. This assumption affects the wall
skin-friction and heat-transfer coefficient but

not the boundary-layer structure. (4) The Prandtl
number is assumed constant across the boundary
layer. This assumption is reasonable since the
temperature dependence of the gas thermal-conduct-
ivity is similar to the dynamic-viscosity coeffi-
cient. Some of these assumptions must be removed
and the characteristics of the flow field must

be taken into account for a more realistic analysis
of nonstationary boundary-layer flows behind deton-~
ation waves. It will be shown subsequently that
the available experimental heat-transfer data

agree very well with the present analysis for
planar flow. Consequently this agreement also

adds confidence to the analyses of cylindrical and
spherical detonation boundary-layer flows.

In this work, the last three assumptions were
removed. The transformed coordinates of Mirels
and Hamman [Ref. 18) were modified in such a way
that their equations become applicable to flows
behind blast waves as well as detonation waves.

It has been shown that direct initiation of a
detonation wave requires the instantaneous release
of a finite amount of ignition energy to guarantee
a sufficiently strong shock wave for auto-ignition
in the shocked medium. When it is ignited by an
exploding wire, the detonation wave is, at least
initially, overdriven, then it decays rapidly to a
Chapman-Jouguet (C-J) detonation wave with a con-
stant velocity. Wwhen such a hemispherical C-J
detonation wave propagates outward along the major
diameter, as shown in Fig. 1, a boundary layer
forms behind it.

For C-J detonation waves, similarity solutions
exist. A complete description of the method for
solving C-J detonation waves is given in Ref. 13.
The detailed calculations are given by Saito [Ref.
8] for detonation waves in 2H,+0, mixtures for
various initial conditions. For the present
application, it was necessary to recalculate the
inviscid flow functions and their derivatives.

In doing so, the compatibility of the solution
with the boundary conditions at the outer edge of
the boundary layer was ensured.

As pointed out in Refs. 8 and 13 the detonation
wave is followed by a rarefaction wave and therefore
all the properties of the inviscid flow behind the
wave front decrease until the velocity approaches
a very small value very near the half-distance that
the detonation wave has travelled. Beyond that
point the pressure and density remain constant and
a uniform stationary state results. However, in the
viscous flow behind a detonation wave the velocity
boundary layer and the thermal boundary layer are
both stable and grow with time in the entire region,
except at the origin, where the boundary-layer
equations become singular. As, according to the
inviscid flow, three regions exist for the flow
behind a C-J detonation wave, the solution for the
boundary-layer equations must be divided into three
parts corresponding to the foregoing three regions.
Investigations were made, therefore, of boundary
layers in air behind strong blast waves and in
burned gases of stoichiometric mixtures of hydrogen-
oxygen behind C-J detonation waves for different




geometries.

The effects of Prandtl number, the viscous ex-
ponent and the wall surface temperature on the flow
structure are considered and discussed in detail.
Comparisons have also been made between planar and
spherical boundary-layer growths behind blast waves.
It is shown that owing to the rarefaction wave
profile behind the shock fronts the densities drop
very rapidly and the boundary layers become very
thick. The spherical boundary layer is thicker
owing to the more rapid expansion. This phenomenon
does not exist behind detonation waves (or constant
speed shock waves) as the densities have finite
values.

This is only a first step in trying to under-
stand the viscous effects which exist in the UTIAS
implosion facility at the focus of an implosion.
As noted previously, the effects of viscosity,
heat conduction and radiation are important for
obtaining fusion in deuterium. However, since
neutrons and Y rays have already been obtained in
this facility the foregoing effects cannot be too
limiting.

Although the motivation was primarily for this
purpose, the present analytical-numerical results
are general and can be applied to many boundary-
layer flow problems behind blast and detonation
waves.

2. INVISCID FLOW FIELD

2.1 Basic Equations

In a mixture of chemical species of a reacting
gas, a great simplification can be made in the
analysis of the inviscid flow by assuming momentum
and thermal equilibria in the system. The governing
equations are then reduced to three-flow equations
for the mixture. The only difference in the govern-
ing equations between the unburned and burned gases
is the equation of state. The basic equations des-
cribing the one-dimensional flow for the mixture
are,

Mass:
d 1 3 3, _
% Y T (pux') = 0 1
o
X
Momentum:
u du 13p _ i
at om0 ©
Energy:
dh 3h | _{ 3p .
°[3€'“3;] [at‘“ax] 0 )

where 0 is a numerical constant with values of 0,

1, 2 for planar, cylindrical and spherical symmetric
inviscid flows, respectively, p is the mixture den-
sity, u is the flow velocity, p is the mixture pres-
sure, h is the mixture specific enthalpy, t is the
time and x is the flow direction. The wall shear
stress, radiation-energy transfer and the wall heat
transfer are neglected for inviscid flows.

If the chemical reaction is assumed to occur
within a thin layer near the wave front, the un-
burned and burned gases can be treated as a perfect
gas with constant specific-heat ratios y_ and con-
stant isentropic exponent y, then =

State: p = l%l oh (4)

The isentropic exponent y of the burnt 2H,+0, is
about 1.3 at a temperature of 2,000 K and 1.04 at a
temperature of 20,000 K. The pressure effect on 4
is small and can be neglected when the pressure is
below 104 atmosphere [Ref. 24}.

From similarity considerations, it was shown
[Refs.11,13] that for a self-similar motion the
expanding wave front must either be a power law
of time or an exponential function of time. For
most explosion problems, the power-law form is of
interest. Assume that the density ahead of the
wave front, Dos is uniform and the wave front
position xg satisfies

xg = ct” )

where C and m are constants and C is determined

from the energy integral equation. The following
values of m are applied for explosive waves:

m =

- , for a strong blast wave 1
g+ 3 !
i (6)
J

m = 1, for a Chapman-Jouguet wave

Define the following dimensionles: coordinate,

and the dimensionless variables,

o)

F=—2

Dmus

_ 0
R-;; (8)

u
?®=u
s

where ug is the wave front velocity which is a
funct}on of time. The following self-similarity
equations result:

fo-1e6]R, + Ry, - X =0 9)

Fe
[‘P‘l*E]@E ‘g -op=0 (10)
ﬁP-loE]FE + yFQE - 2F - Ya ;g% =0 (11)




where { = 0 corresponds to the wave front and { =1 o v (y+1)

corresponds to the origin and y is the isentropic ° .. (18)
exponent of the gas behind the wave front. The sub- P, v [y o+ 12 -5
script £ denotes the derivative with respect to &. YoM

The parameter o is defined by

Yoo A S
a = ﬁl;—l (12) uo * { MS2 j
%o " 0D (19)
where « = 0 for a uniform wave front and o < 0 for
a decaying wave front.
Initially, we assume that a finite amount of Yt 12 + S
energy Es is released at time zero in a finite P M
volume of dimension xg in a medium at rest. From F = 2 5 = . : (20)
the energy integral, the constant C in Eq. (S) is ©° ou 1o(¥+1)
. given by [Ref.11] s
where
EO m/2
C = [ S ] (13) Y 2 1/2
mhme.I S:{(:_%I -Kl_lf} (21)
j VY M M
where K; is 1, 27 and 47 for planar, cylindrical s
and spherical symmetry, respectively, and I is 2
defined by Yo Oy ) (v+1) v S(v -1 l
o [ B ] (1-6)%at (14) o { vy 2 Y (22)
= 71 T 5 vy, ¥
[
4: =5 (23)
2.2 Boundary Conditions a
To solve Eqs. (9)-(11), the boundary conditions 2 P.
immediately behind a shock or detonation wave front a o=y, — 24)
have to be determined. Consider the case where the P
shock wave moves to the right with the velocity ug.
The gas on the left side of the shock, which was For a strong blast wave (Mg » «), the boundary
stationary before being traversed by the shock, is conditions at the wave front (£ = 0) are
given a velocity up t-» the right. The situation
illustratezd above ma- be transformed to the case 2 3
where the shock wave is stationary. In the new S R
frame of reference, “he shock wave appears to be ° R [ 25
stationary, while th: gas on the left side of the " ? (%)
shock appears to be flowing to the left with the R =< 1 J
velocity (up - ug). In this frame of reference, ° A=
the conservation equations across the shock front
are given by: For a C-J detonation wave, we have Mg = Mcy, which
is defined by
Mass: Y K [y K 1/72 7-1
= 0g(u_-u_) (1s) MZﬁ[:*TI""l 2*—1‘] ] (z6)
P = Py lu -y C. y Y
and s = 0. The boundary conditions at the wave
Momentum: front are,
2 2
Py * AU =Py * oo(us—uo) (16) Yo = YMCJ
9o * G+
Energy: ° Yo (V41
1 2 ~ 1 2 -2
h o+ Fug o+ Q= h0 3 (us—uo) 17) . Yo * MCJ 27
0 Y (y+1)
where Q is the chemical energy per unit mass re-
. leased at the shock front. With given initial Yo lY+1)
states (i.e., p,, Oy, Ny, Y, and Q) the state Ro = —
immediately behind the shock front can be expressed Y(YQ*MCJ)

conveniently in terms of the shock Mach number as:

DR TR Bt tart. oL SRR SR I PR i : |




2.3 Similarity Solutions

For a strong blast wave the shock speed is
time-dependent, hence the entropy change across
the shock front decreases with time. The similar-
ity conditions require an infinite strength wave.
However, in practice the strong-shock approxima-
tion is adequate for shock strengths above three.
The solutions for a strong blast wave can be
obtained by integrating Eqs. {(9)-(11) with the
boundary conditions at the wave front, Eq. (25).
Table 1 and Fig. 2 show the dimensionless flow
profiles for a strong spherical wave with y = y_ =
1.4. Their corresponding derivatives are shown
in Table 2 and Fig. 3. The flow is stationary
only at the origin (£ = 1), which is a singular
point. These similarity solutions are valid
because the pressure ahead of the blast wave can
be neglected compared with that behind an intense
explosion wave. The energy released by the explo-
sion and the undisturbed gas density play major
roles in a strong blast wave. It is noted that
the pressure immediately behind the wave front
decreased inversely as its radius cubed. The
total energy contained in the region behind the
blast wave is constant only if p » x~3. For
powers less than or greater than 3, energy is
being added or removed continuously with time.

As seen in Fig. 2, the pressure is highest imme-
diately behind the wave front. It then decays
as %, increases, levels off, and remains approxi-
mately constant for { - 0.5. The particle velo-
city varies in an almost linear fashion from the
wave front to the origin and vanishes at the
origin. The density approaches zero for £ > 0.5.
For the C-J detonation wave, it is more con-
venient to introduce a new variable 8 defined as

[ yF

8 = { 1{

11/2
J (28)

Then the three similarity equations (3)~(11) can
be reduced to two equations in terms of ® and 2
as follows [Ref.13]:

ogp?
o = - (29)
5 [(@-1+£)%-82) (1-£)
Y-1 _ oPB(P-1+E)
B, = 1~ (30)
£ 2 [e-1+0)%-8%1 -

In the C-J detonation wave, the shock front propa-
gates at a constant velocity and the entropy
increase is identical for all gas particles across
the wave front. The invariant then reduces to the
following form:

RY 31
T K, = constant (31)

K; can be evaluated using the boundary conditions at
the front, £ = 0.

]
Y
K
o

¥

We can see
that two solutions exist: (1) (0-105,)2-82 ¥ 0,
hence both ¢ and B; are zero, which corresponds

to a planar paston with constant speed driving

a constant velocity shock or detonation wave.

(2) (p-1+£)2-8% = 0, then both $¢ and 8 are finite.
Integrating Eqs. (29) and (30) we obtain the
solution for ¥(£) and 8(£) with the proper signs

as follows:

For the planar motion 0 equals zero.

o) s - Hne g (32)
JGIE= (33)

where (for the C-J condition)

P * So =1 (34)
The subscript o denotes the value at { = 0. Using
Eqs. (28) and (31}, we get
( EZKZ v -1
R= —= (35)
toy )
22
F = %7 R (36}

If §; and 8¢ are known, using Eqs. (32), (33), (35)
and (36), g, R, F can be calculated; q, and B, are
determined from Eqs. (27) and (28).

For the cylindrical and spherical detonation
wave, ¢ # 0, §5 + 8, = 1. This results in P > -
and 8 + - at the front, £ = 0. Therefore, we
cannot integrate Eqs. (29) and (30) directly from
the boundary of the C-J detonation wave front. To
overcome this difficulty, the perturbation method
is used [Ref.13). The solution, in the form of a
perturbation series, in the immediate neighbourhood
of the C-J front is given by the following expres-
sions (with proper signs):

209 B 11/2
2 =9 - [ -2 ] g2 (37)
_ 200 8 11/2
80) = 8, - DL [ e |02 (38)

With Eqs. (37) and (38) the values @(o+Af) and
B(o+4E) can be calculated from the values ¢, and 8o,
where Af is very small. From these values, ¢ (o+Af)
and B(o+AE), Eqs. (29) and (30) can then be inte-~
grated to obtain @(£) and B(E). Using Eqs. (35)

and (36), R({) and F(£) are also obtained.

A stoichiometric mixture of hydrogen and oxygen
was used. The specific heats, specific-heat ratios,
isentropic exponent and equilibrium sound speed for
the unburned and burned gases are given by Benoit
[Ref. 24].

In the Chapman-Jouguet detonation wave the shock
front propagates at a constant velocity and the
entropy increase for all gas particles across the

ey "2:;"&!!:‘*~"'N s - = o L o _
ii"'i“‘ ﬂ!‘!‘t?!!'s’* - 1;fﬁ;~ -;’IEilv




wave front are identical. Table 3 and Figs. 4-6
show the dimensionless pressure, velocity and
density profiles behind the planar, cylindrical

and spherical C-J detonation waves with initial
conditions of p, = 13.6 atm, 1, = 1.4 and T = 300 K.
The corresponding derivatives which are needed in
the boundary-layer analysis are shown in Table 4
and Figs. 7-9. [t is noted that there are three
regions. From the wave front (£ = 0) to £ = 0.48
is the expansion region and from ¢ = 0.48 to the
origin is the stationary zone. The particle
velocity decreases sharply from its maximum value
at f, = 0 to zero at f = 0.48. Similar to the blast
wave, the pressure behind the wave front decreases
as £ increases and then remains constant for

£ ~ 0.48. However, the gas density resembles the
pressure profile and does not approach zero close
to the wave midpoint. It can be seen from Figs.
7-9 that a discontinuity exists in the flow deriva-
tives at the position where the particle velocity
is zero. The flow derivatives also approach an
infinite value at the detonation-wave front. As
ment ioned previously, at the origin the basic
equations are singular.

3. VISCOUS FLOW FIELD

3.1 Governing Equations for lLaminar Boundary-layer

Flows

The laminar boundary layer behind a strong
blast wave moving with nonuniform velocity was
investigated by Mirels et al [Refs.18, 23] and
Chen and Chang [Ref. 19]. The laminar boundary
layer behind a detonation wave has not been solved
as yet. As mentioned in the Introduction, the
last three assumptions made by Mirels et al [Ref.
18] are not applicable to a detonation-wave induced
boundary layer. In order to generalize the analysis,
these assumptions are modified: (1) The specific
heats and the specific-heat ratios behind and ahead
of the wave front are different, but constant in
each region. (2) The Prandtl number may be variable
across the boundary layer. (3) The temperature
dependence of the dynamic-viscosity coefficient
of the gas behind the wave front has a power law
variation with temperature. Other assumptions are
made that the chemical reaction takes place only at
the C-J detonation-wave front and that the gases
behind and ahead of the detonation wave are perfect.
Therefore, the equations governing the laminar
boundary-layer flow induced by a wave front are as
follows:

3 .1 3 o ? B
3¢ ;3 3% (Pux7) ¢ Iy (ov) = 0 (39)
Dy, dp 3 (,
Dﬁ?‘ax'ay[”ay] (40)
Dh _Dp_ 3 [ u 3k 2 )
°ﬁ'm=a—y[v*r“7]‘“[67] “n
where
D tiouiovi
[T T 3x 3y
and 0 is a boundary-layer-type parameter, with a

value 0 for plane flow and 1 for axisymmetric
flow. The pressure p is constant in the y-direc-

tion, which is normal to the surface or flow-
The velocities u and v are along

direction x.

the x and y-dire ‘tions, respectively, and Pr is the

Prandt]l number. The temperature dependence of the
dynamic-viscosity coefficient u is assumed to be of
the form:

(42)
T

b [ L
- I
\Tr
where the subscript r denotes a reference value and
v is the viscous exponent.

3.2 Transformed Boundary-Layer kquations

The following transformed coordinates were used
by Mirels et al.
(43)

5=

X
L%
s
y
¥’ { f~ dy
. S — 44
(DT 172 (44)

where A = ZmFOCZ(O’I)vaw/pw, Vo T bgf/P  As men-
tioned previously this set of transformed coordi-
nates cannot be used in chemical-reacting flows.
By defining the transformed coordinate n as

x° J £ dy
ooo
[
n = ——— (45)
[At2m0¢2@(m 1)*1511/2

) 2w- ) . .
where A = 2C2(0‘“)m w 1uw(bFoow/p )“/ow, C is given

by Eq. (13), Fo is given by Egs. ?25) or (27) and
b = [y(\w-l)/ym(Y—l)]pr/Cp is the molecular weight
ratio of the gases behind and ahead of the wave
front, then n is applicable to chemical-reacting
flows as well as non-reacting flows. It can be
shown that when w = 1, b = 1 and vy = y, then A and
n become identical to those given by Mirels and
Hamman [Ref.18].

Define the following dimensionless variables:
n

£(5, n) = [‘—,‘i dn
e
° (46)
h

g€, n) = o
e

where the subscript e denotes the edge of the boun-

dary layer. Since the pressure is constant in the
y-direction, the density ratio is given by

Pe

5 g€, n) (47)

If a scalar stream function y is now introduced
such that

pw aw
-2 a8
u OXO 3y (48)
n y
v=__[-g%»%[xolap—dy]] (49)
PxX °°°




fhe continuity equation is then satisfied automati-
cally. [t is not difficult to show that the rela-
tionship between the scalar stream function ¢ and
the dimensionless variable f(f, n) is given by

Jm\N.Zm(.U-l)olr 1/2

vosou | At (&, M

Applying the transformed coordinates, dimension-

less variables and the relationship between { and
f to Eqs. (39) to (41), the transformed boundary-
layer equations are then obtained,
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where a is defined by Eq. (12), the values F, R,
@ and their derivatives Fe, Ry and qt are obtained
from Eqs. (9) to (11), the subscripts n and §
denote the derivatives with respect to n and £,
and B is defined by

B =R - g (52)

It can be shown that if w = 1 (i.e., B = 1) and
Pr = constant, Eqs. (50) and (51) reduce to those
derived by Mirels and Hamman {Ref.18). (The
details can be found in Appendix A.)

The required boundary conditions are given by

y = 0: ulx, 0, t) =0
vix, 0, t) = 0
h(x, 0, t] = h (x, t} (53)
y = = u(x, =, t) =u (x, t)

hix, =, t) = h (x, t) (54)
After the transformation, they become
ns=0: £(£, 0) = fn(ﬁ. 0) =0

86, 0) = g (8) (s5)

r = o fr=l

g =1 (56}

where the subscript w denotes the wall surface. It
should be noted that from the definition of gy

h T - RP T X
g M ¥ = ] . ( R (57)
YR T borow ? Te Loy 7
the value
[ UL
T, o2 T w2
S S

should be a function of £ only, for a self-similar
boundary-layer flow. Therefore, two cases exist:

(1) For a strong blast wave, according to its
definition, we have

so that g, = 0.
2

(2) For the C-J detonation wave, we have Mg? = Mcj” =

constant. Consequently, gy is a function of

& only.

It should be noted that for the strong blast wave
or for the so-called cold-wall model (i.e., Ty = 0)
the viscous exponent w has to be unity. Otherwise,
Eqgs. (50) and (51) will be singular at the wall.

3.3 Numerical Method and Procedure

The nonlinear equations, (50) and (51), with
the boundary conditions given by Eqs. (55) and (56),
were solved numerically by an implicit six-point
finite-difference scheme developed in Ref. 25. The
initial profiles are required for a finite-differ-
ence method. Consequently, the solution at the
start of the boundary layer has to be obtained
first. At £ = 0, the partial-differential equa-
tions, Eqs. (50) and (51), become a set of ordinary-
differential equations as follows:

RO (r/p )0 (Be, ), ¢ (nf)E, = 0 (58)
2
(1-w) w B y-1 R 2
R (F/F,) [[ P, gn]n YR Bfrm]
+ (19f)g, = 0 (59)

Equations (58) and (59) were solved using the
Newton-Raphson method, or a shooting method.

Equations (50) and (51) are linearized in a

form suitable for an iteration scheme by introducing
the following function

3f
W (60)

It is really only required for the momentum equa-
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tion and not for the energy equation. “he momentum
equation in terms of W can be written as

(-£) 2%

(£/F )N P)
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and the energy equation in the linearized form is
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where superscript p denotes the order of the itera-
tion process and the quantities without the super-
script denote those evaluated at the (P-1) itera-
tion order.

A computer program was written based on the
numerical scheme outlined in Ref. z5 and Eqs. (61)
and (62) were solved for four cases of practical
interest. The results are presented in Section 4.
In this method, either equal intervals or nonequal
intervals can be used in the n-direction. The
interval in the n-direction is increased in a geo-
metric progression as

Mia

Ani

where A is a constant set with a value slightly
greater than unity and i is the index of the n-
coordinate for the difference net. There are two
differences in the numerical procedure between
the present work and Liu and Mirels [Ref. 23].
First, in this work the momentum equation (50) is
transformed into a second-order differential equa-
tion through a function defined by Eq. (60). The
numerical method of Blottner [Ref. 26], which was
applied by them, introduced a transformed normal
velocity and retained the continuity equation in
order to avoid third-order derivatives in the
momentum equation. Second, Liu and Mirels used
an interpolation method in the inviscid flow
values which appear in the coefficients of the
boundary-layer equations. Consequently, the com-
patibility conditions at the edge of the boundary

-

layer are not satisfied. In order to avoid a dis-
continuity in the gradients of the dependent
variables at the edge of the boundary layer, they
were forced to select a curve for ne in their num-
erical procedure. The boundary-layer profiles were
then recalculated using the selected n, distribution.
However, in the present work the inviscid flow
equations, Eqs. (9)-(11), and the boundary-layer
equations, Eqs. (50) and (51), are solved simul-
taneously with the same step size Af. No inter-
polation errors are introduced and the compatibility
conditions are satisfied. The selection of an ng
distribution is not necessary in this work. The
advantage of the present numerical procedure is the
reduction of the number of convergent iterations

for the nonlinear differential equations and the
consequent computation costs.

In the calculations, 80 mesh points were used
in the n-direction with X = 1.02 and an initial step
size An = 0.026. The step size Af = 0.002 was
applied. Normally two or three iterations were
requirgd to converge the solution within an error
of 10-2.

3.4 Boundary-lLayer Characteristics

The relations between the transformed coor-
dinates (£, n) and the physical coordinates (x,y,t)
are given by Eqs. (43) and (45),

x = x (1-€)
(63)
y = Hl(t)HZ(E)SO(ﬁ.ﬂ)
where
- uzw'lxs 0, wil/2
= _— — 4
e | ) S
1/2
H =&6_ (65)
(1-£)"R
n
S, = J gdn (66)
e}
The boundary-layer thickness e, displacement
thickness §* and the momentum thickness 6 are
expressed by
ne
8, = HH) I gdn 67
o
= ——O-u— =
s r[l = ]dy H H,S, (68)
ee
o
- | P -y -
0 rou 1 -2 ]dy HyH,S,
eel e
0
where n,
Sl = I (g-fn)dn (69)
o
e
S, = I fn(l-fn)dn (70)
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and ne is the value of n at the edge of the boun-
dary layer.

From the definition of the shear stress t_ and
the skin-friction coefficient cg:

du
o= U [—] (71)
w w { Jy w
Tw
cf = I - 3 (72)
7 Pele
the dimensionless skin friction coefficient is
expressed by
1 w 1
5 3 3(1-w)
. 2 )2 F |2 ,2 o
¢ % = (&) [i} B a-0° 85, (6.0
(73)
where the Reynolds number Re is given by
pr w pm
Re = [ — ] — Ru x § (74)
quust Vo €8

The heat transfer at the wall is given by

aT 1 an
= -K [ e ] = -5 [ = ] h g (£,0) (75)
Y w | dy W Prw w | dy w &n
where K is the thermal conductivity of gas. With
the definition of Stanton number St:
St = ¥ (76)
puH
eee

where Hg = he + (1/2)ug?.
for wall heat transfer is
o
(-8 4 g, (£,0)
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The ncrmalized expression
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3.5 Properties of Hydrogen-Oxygen Stoichiometric
Mixtures

A stoichiometric mixture of hydrogen and oxygen
is taken as the working fluid. The properties of
the unburned and burned gases, i.e., the gases
behind and ahead of the detonation wave, are taken
from Ref. 24. The chemical-reaction equation is
as follows:

-
2H24~02 bd NIHZO + NZOH + N3H2 + N“O2 + NSH + N60

where Ny, N3, ..., denote molar concentrations of
H20, OH, ..., in the burned gases.

The initial conditions of the stoichiometric
mixture of hydrogen and oxygen are p, = lssé atm,
To = 298.15°K, Yo = 1.4 and ug = 2.9815x10° cm/sec.

The thermal conductivity and kinetic viscosity
for the unburned and burned gases are calculated
using the semi-empirical relations outlined in

Ref. 30:

(78)

L Nug
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el

o (79)
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for the viscosity of burned gas, where
. Y172 M. y1/4 72
uj (M
55 * M 3172 (80)
/B [l + ﬁi ]

J

and N, u, K, M are the mole fraction, viscosity,
conductivity and molecular weight of the species,
respectively. Subscripts i and j denote the ith
and jth species. The details of the calculation
are given in Appendix B.

3.6 Discussion of Boundary-Layer Equations

As stated before, three regions are considered
in treating the boundary layer behind a C-J detona-
tion wave. For the expansion region from £ = 0 to
£ = 0.5, the inviscid flow plays a significant role
in the development of thc boundary layer. Equa-
tions (50) and (51) are applied directly. For
the stagnation region from £ = 0.5 to § = 0.95,
because the velocity approaches a very small value,
Eqs. (50) and (51) become

W
(1-5) 2% [Fi] (Bf, ), nf

(]

= 26 {- g [20va(20-1)]f, + af + (1-€)fng}... (81)
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In the region from £ = 0.95 to § = 1, the solution
is given by

T(y,t) = (Te-Tu)erf(y//iﬁ) * T, (83)

where T is temperature, erf(y//dDt) is the error
function and

D= (84)

X
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where C, is the specific heat of the gas. The tem-
peraturg gradient at the wall decreases in propor-
tioh to t-1/2, In the initial phase, the tempera-
ture gradient is so large that a temperature jump
exists at the wall. Details of the derivation of
Eq. (83) are given in Appendix C.

Three interesting observations may be made
regarding Eqs. (50) and (S1). First, as mentioned
above, the equations are singular at £ = 1. The
solution near £ = 1 is more of analytical interest,
as the boundary-layer concept is not valid. Second,
the effect of the viscous exponent w on the boun-
dary layer depends on the inviscid solutions R
and (F/Fo). When w < 1, the gas viscosity and
thermal-conduction effects increase as w increases.
Third, the coupling between the momentum and
energy equations is through B and the last term on
the right-hand side of Eq. (50) and the second
term on the right-hand side of Eq. (51).

It is convenient to rewrite Eqs. (50) and
(51) in the general form

alwnn + azwn + a3W ta, = aswC (85)

where the a, are the coefficients and W stand for
fr, and g. Equation (85) has the same form as the
heat conduction equation. The coefficient ag,
which plays the same role as the thermal diffus-
ivity in the heat-conduction equation, is negative
in regions of reverse flow. For axisymmetric
boundary-layer flows (i.e., o = 1), aj becomes
very small when § = It means that the viscosity
and thermal conduction effects become very small
when oy = 0. When a1 = 0, Eq. (85) is no longer
parabolic, but hyperbolic. Consequently, all
numerical methods for solving the boundary-layer
equations fail in this case. The simple heat-
conduction equation can then be applied.

The unsteady effect on the boundary-layer
development can be estimated as follows. Consider
the boundary layer induced by a uniform wave (i.e.,
wave velocity is constant, or m = 1}. The steady-
state boundary-layer equations are:
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Comparing Eqs. (50) and (51} with m = 1 and Eqs.
(86) and (87}, it can be shown that the unsteady
effect can be neglected only when the following
conditions are satisfied:

1) (1+2€0)n << IW*ZC(&EWE)I

2) 1-€ << gf

The nonuniformity of the wave front increases
the unsteady effect on the boundary-layer structure.
The order of magnitude for the unsteady terms depends
on the inviscid flow characteristics and it is dif-
ficult to estimate.

4. BOUNDARY-LAYER DEVELOPMENT BEHIND EXPLOSIVE
WAVES

4.1 Boundary Layer Behind Strong Blast Waves

Three sets of solutions were obtained. The
first set was for the boundary layer induced by a
spherical strong blast wave. In order to check
the numerical procedure applied here, the case with
Y= Yy=1.4, w=1,b=1, gg =0 and Pr = 0.72
behind a spherical blast wave was examined. Re-
sults were obtained beyond £ = 0.95. Figures 10
and 11 show the normalized velocity and temperature
profiles. For comparison, the corresponding results
obtained by Liu and Mirels [Ref. 23} are shown in
Fig. 12. It can be seen that agreement between
the two sets of results is excellent. Further
tabular comparisons are given in Tables 5 and 6.
Agreement of the present results with the series
expansion results ([Ref.18] for the wall derivatives
at £ = 0 is better than those obtained by Liu and
Mirels [Ref. 23].

The thermal boundary-layer thickness is larger
than the velocity boundary-layer thickness since
Pr < 1 was applied. As { increases, the velocity
gradient increases at a rate which is larger than
that for the temperature gradient. Consequently, a
velocity overshoot occurs. Results of other cases
with different Pr indicate that (1) the velocity
overshoot decreases as Pr increases, (2) there is
no flow reversal when the Pr is varied from 0.72
to more than 3, because the density decreases
rapidly with £. It can be seen from Figs. 10 and
11 that the velocity and thermal boundary-layer
thicknesses decrease with ne as £ increases (the
actual thickness increases with £). They become
zero at the origin (§ = 1). Therefore, f, = |
for all n at & =

4.2 Boundary Layer Behind C-J Detonation Waves

A second set of solutions was determined for
the C-J detonation wave in a stoichiometric mixture
of hydtogen oxygen with w = 0.75, Pr = 2.26, Ty =
T = 300°K, vy = 1.14, Yy = 1.4 and p. = 13.6 atm
for dxfferent flow geometrles The distance used
from the origin to the wave front is 10 cm (corre-
sponding to the implosion chamber wall) and the
wave velocity is 2982 m/s. Figures 13 to 20 show
the normalized velocity and temperature distribu-
tions across the boundary layer for the planar,
cylindrical and spherical inviscid flows. The wall
derivatives are shown in Table 7 and in Figs. 21 to
24. From the results presented above, the following
observations are made: (1) Flow reversal occurs for
all cases with Fr = 2.26 when £ is greater than 0.4,
The magnitude of the flow reversal increases as o
and o increase. As a result, it has a maximum flow
reversal for the spherical flow geometry, i.e., for

= 2and o0 = 1, (2) The velocity gradient at the
wall increases as £ increases and reaches a maximum
value at £ between 0.2 and 0.25 and then decreases
with £ increasing. (3) For the case with o = 1,
the wall temperature gradient increases at a rate




(4) The
thickness of the velocity boundary layer is greater
than that of the thermal boundary layer.

greater than for 0 = 0, as £ increases.

A third set of solutions was obtained for a
spherical C-J detonation wave in a stoichiometric
mixture of hydrogen-oxygen (T_ = 300°K, vy = 1.14,
Y, = 1.4 and p_= 13.6 atm) with different thermal
properties.

As mentioned before, for Pr > I, flow reversal
exists when £ > 0.3. In order to examine the
effect of the Prandtl number on the flow structure,
other cases with Pr = 1.5, Pr = 1.0 and Pr = 0.72
were also studied. Figures 25 to 30 show the
normalized velocity and temperature for different
Prandtl numbers. From these figures, including
Fig. 19, it can be seen that for Pr > 1, the mag-
nitude of the flow reversal decreases with Pr
decreasing, whereas for Pr < 1, the flow reversal
disappears and a velocity overshoot occurs. The
magnitude of velocity overshoot increases as the
Pr decreases. It is clearly shown in Fig. 27 that
for Pr = 1 neither a flow reversal nor a velocity
overshoot exists. Figures 31 and 32 show the wall
derivatives of velocity and temperature, respec-
tively. It can be seen from Fig. 31 that when
Pr <1, fnn(i,o) increases monotonically with §
increasing. However, when Pr “ 1, fnq(£,0)
increases at first and reaches a maximum value
at about £ = 0.23, then decreases to a negative
value. Separation is said to occur when the
derivative f,,(£,0) changes from a positive to a
negative value. The boundary-layer thicknesses
of velocity and temperature are shown in Fig. 33.
It is shown that when Pr > 1, the velocity boundary
layer thickness increases slightly as Pr increases,
whereas the thermal boundary-layer thickness de-
creases considerably. It implies that when Pr > 1,
more kinetic energy of flow is lost from the main-
stream than when Pr < 1. Due to imbalance between
the velocity and thermal boundary-layer thicknesses,
the flow is forced to separate at the wall or to
have a velocity overshoot at the edge of the boun-
dary layer. This separation is not observed in
the blast-wave case.

Table 8 shows the variation of the thicknesses
of velocity and temperature with Pr. It was found
that the ratio of the velocity boundary-layer thick-
ness to the thermal boundary-layer thickness is
proportional to the square root of the Prandtl
number, as shown for a steady plane boundary-layer
flow [Ref. 27]. For the spherical C-J detonation
wave, it can be seen from Table 8 that when Pr > 1,
the velocity boundary-layer thickness is greater
than for the temperature layer. When Pr < 1, the
converse statement is true and when Pr = 1, the
two thicknesses are identical.

The effect of the viscous exponent and the
surface iemperature on the boundary-layer flow was
also investigated. The normalized velocity and
temperature profiles are shown in Figs. 34 and 35
for the case of w = 1, and in Figs. 36 and 37 for
the case of Ty = 0, respectively. The effects of
w and Ty on the velocity and temperature gradients
are shown in Table 9 and in Figs. 38 to 41. It
can be seen from Table 9 and Figs. 38 to 41 that:
(1) when w changes from 0.75 to 1, the velocity
and temperature gradients on the wall increase by
a factor of nearly 1.8. (2) The wall-temperature
effect on the wall gradients is not significant.

The thermal boundary-layer thickness growing
on the wall of the major diameter of the UTIAS
hemispherical implosion chamber was obtained numer-
ically from Eqs. (50) and (51), and analytically
from Eq. (83). Figure 42 shows the variation of
the thermal boundary-layer thickness with £ just
when the detonation wave reaches the hemispherical
wall of the implosion chamber at 34 usec from init-
iation, and Fig. 43 shows the variation with time
at the origin for the case of T, = 300°K, b = 1.26,
F = 0.1511, R = 0.67, us = 2982 m/s and xs = 10 cm.
The predicted thermal boundary-layer thickness
using the analytical solution is about 0.054 mm at
the origin, which is very close to 0.058 mm predicted
numerically.

4.3 Some Discussions on Boundary-Layer Thickness

Figure 44 shows the variation of boundary-layer
thicknesses for C-J spherical and planar detonation
waves in 2H2+02, and strong spherical and planar
blast waves in air under the same initial conditions
and wave velocity ug and wave position xs. For a
comparison, the constant speed nonstationary planar
shock-wave case in air is also shown in Fig. 44.

The initial conditions are: p, = 13.6 atm, T, =
300°K, wave speed ug = 2981.7 m/sec, and wave
position xg = 10 cm. It can be seen from Fig. 44
that the variation of the boundary-layer thickness
with distance behind the wave behaves quite differ~
ently for a C-J detonation wave, a strong blast wave
and a constant speed planar shock wave. It is help-
ful to recall the relation for the boundary-layer
thickness, Eq. (67),

2w-1 n,

u X O, w 71/2 172 /'€

§ = l——s——o—s ™ [b = F } Z) [ gdn (67)
b @ (1-€)"R

in order to understand these variations. We can see
from Eq. (67) that the density ratio plays a very
important role in the development of the boundary
layer behind a given wave front. For a C-J detona-
tion wave when £ > 0.5, the velocity of the inviscid
flow becomes very small, but it does not matter
because the density and pressure remain at reason-
able levels. For a constant spged planar shock
wave, g = 0, R = constant and /[ '® gdn is also con-
stant (that is, similarity exists and the boundary-
layer profiles are identical anywhere), therefore
the boundary-layer thickness § can be expressed

as

6=c/§

where ¢ is a constant. For the strong blast wave,
however, when § > 0.5, the density ratio becomes
very small (as shown in Table 1 and Fig. 2). It
means that when £ > 0.5, the inviscid flow is so
rarefied that the boundary layer gets comparatively
thick (as shown in Fig. 44). Consequently, the
assumptions made in derivation of the boundary-
layer equations would cease to apply and the plots
in Fig. 44 for these cases for larger distances from
the wave are no longer of physical interest.

4.4 Heat Transfer to the Wall behind a Detonation

Wave in 2H,+0, Mixture

The relation for calculating wall heat transfer
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behind a C-J detonation wave moving into a station-
ary mixture of 2H,+0, is given by (see Appendix D)

- _m. -0.5
q, = -B;-B,(t) (68)
where
w-1
g (g) wyl/2
V2 Pr o
2 0.5
By = uc () o)
It can be seen that Bj is a function of § only. It
decreases as £ increases from 0 to 1. For planar

flow with 0 = 0 it reduces to the following form

(- ()1

while By represents the effects of the initial
conditions. For the structure-independent detona-
tion Ucy is a function of the initial conditions
only. From the expression for B, it can be seen

-1
g, (g,
V2 Pr

T

R R
o

(71)

that qy is also a function of position. For a
given position x, £ can be expressed as
u..t
CJ
&= xtu . t (72)
CcJ

where x is the distance of the point considered
from the initiation position. Figure 45 shows the
variation of heat transfer to the wall with time t,
at different positions for plane flow. Also shown
in Fig. 45 are the experimental results from Ref.
28. The agreement between the analytical-numerical
results and the experimental data is satisfactory.
A better relation for the temperature-viscosity
might even improve the agreement.

To check the influence of the initial conditions
on heat transfer, calculations were also done for
the variation of the average heat transfer over
given periods of time for different pressures p_,
and is shown in Fig. 46. The crosses, closed and
open circles shown in Fig. 46 represent similar
experimental results from Ref. 29. It can be seen
from Fig. 46 that the relation between heat transfer
and initial pressure is not linear and does not
justify the conclusion in Ref. 29 that it is linear.

As shown in Ref. 8, the structure-independent
detonation inviscid flow properties in a 2H,+0
mixture are very insensitive to the initial condi-
tions. For example, the detonation speed changes
from 2.59 km/sec to 3.08 km/sec, the temperature
from 2934 K to 4645 K, and the pressure ratio from
16 to 21.8 even when the initial pressure changes
from 0.01 atm to 100 atm at an initial temperature
of 298.15 K. To simplify the procedure of calcula-
tion an average value of B) was taken in calculating
the heat transfer with reasonable approximation.
Figure 47 shows a comparison of the present results
with experimental and other analytical results from
Ref. 15. It can be seen that present analysis is
in very good agreement with the experimental data

11

of Ref. 27 over the entire 200 usec.
only agrees well with the data of Ref. 15 from

However, it

about 150 to 200 usec. For structure-independent
detonations, as shown in Fig. 49, velocity, pressure
and density behind the wave front decrease rapidly,
then the values of p and ¢ level off to a finite
value at about £ = 0.5. However, the velocity
after £ = 0.5 becomes so small that only conduction
heat transfer becomes dominant. That may be the
main reason why the present laminar boundary-layer
analysis gives a good representation of the varia-
tion of heat transfer to the wall with time behind
C-J detonation waves.

5. CONCLUSIONS

A modification to the transformed coordinates
of Mirels and Hamman [Ref. 18] makes it possible

to apply the transformed equations to flows behind
either blast or Chapman-Jouguet detonation waves.
It was shown that the Prandtl number controls a
reversed-flow phenomenon at the wall and a velocity
overshoot near the edge of the boundary layer. No
flow reversal occurs in the blast-wave case. The
effect of Prandt]l number on flow reversal in the
blast-wave case is not as significant as in the
detonation-wave case. The magnitude of the velocity
overshoot for the Chapman-Jouguet detonation-wave
case is larger than that for the blast-wave case.
The viscous exponent w has a significant effect on
the wall skin friction and heat transfer. For

w < 1, the value of wall derivatives reduces by a
factor of (F/RFo)l‘” as w decreases. The effect of
wall temperature Ty is found to be small. At lower
wall temperatures the flow reversal is delayed to
some extent, compared to the higher wall tempera-
ture.

To test the analysis, the results of heat
transfer to the wall behind a planar detonation
wave moving into a stationary mixture of 2H;+0;
were computed and the variation of heat transfer
with time was compared with experimental data at
different positions from the initiation point.
Very good agreement was obtained between the
present numerical results and the experimental
data. This lends confidence to the present ana-
lytical-numerical work which is less restrictive
in its assumptions and models the actual flow more
realistically than has been done previously.

The boundary layer behind a detonation wave
may undergo transition to a turbulent one. Conse-
quently, a complete boundary-layer solution through
the transition and turbulent flow is very difficult
and must be done in stages, as noted in the Intro-
duction. For the strong blast wave, the density
behind the wave front decreases so rapidly that the
inviscid flow becomes very rarefied and the boundary-
layer thickness increases very quickly in a short
distance (say, 0 < £ < 0.3) away from the wave front.
Consequently, the boundary-layer concept may no
longer be valid in the region beyond £ > 0.3. To
illustrate this poiat several boundary-layer profiles
have been plotted (Fig. 44) and discussed. The
present report represents the first of several
stages as noted above in the solution of the boun-
dary layer in the UTIAS implosion chamber. Never-
theless, the results are applicable to many other
problems.
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Table 1 y
Inviscid Flow Solution Behind a Strong Spherical Blast Wave
g =2, B = 2/5
£ 9 F R
' —— i
' 0.00 0.8333 0.8333 | 6.0000
} 0.10 0.68486 0.4231 1.2318 |
i 0.20 0.58374 0.33714 0.39251 |
0.30 0.50309 0.31324 0.13251
0.40 | 0.42927 0.30656 0.40661x1071
. 0.50 0.35738 0.30495 0.10284x107}
0.60 , 0.28596 0.30464 . 0.19214x107%
0.70 : 0.21472 0.30460 0.22055x1073
0.80 i 0.14384 0.30460 0.10238x107%
0.90 0.075392 0.30460  © 0.40588x10°’
Table 2
Flow Derivatives Behind a Strong Spherical Blast Wave
o=2, m=2/S
F
£ e £ Re
0.00 1.8056 13.028 125.000
0.10 1.1956 2.2153 15.560
0.20 6.87500 0.58514 4.2368
0.30 0.75925 0.16773 1.4782
0.40 0.72435 0.43694x107} 0.51333
0.50 0.71549 0.9187x107 2 0.15468
0.60 0.71326 0.13726x107° 0.36112x107}
0.70 0.71136 0.11818x107> | 0.55426x10°2
0.80 0.70435 0.36594x10"> | 0.39075x10°3
0.90 0.63478 | 0.73131x107° 0.35366x10"°
' |

The derivatives are all negative.
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Solution for Inviscid

Table 3

Flow Field

Behind C-J Detonation Wave

o, m=1 ; 1, m=1 = 2, m .
4
‘ ¢ F R ’ P F R P F R
0.00 0.4544 0.47752 1.8328 0.4544 0.47752 1.8328 0.45440 0.4775 1.8328
0.05 0.40772 0.43301 1.6821 0.34050 0.36820 1.4595 0.3078) 0.33779 1.3534
0.10 0.36105 0.39234 1.5430 0.28650 0.32261 1.3000 0.24717 0.28807 1.1773
0.1s5 0.31437 0.35527 1.4146 0.24088 0.28807 1.1773 0.19961 0.25350 1.0527
0.20 0.26769 0.32151 1.2962 0.19917 0.25966 1.0750 0.15871 0.22697 0.9556
.25 0.22101 0.29077 1.1870 0.15984 0.23552 0.98700 0.12222 0.20576 0.8769
0.30 0.17434 0.26281 1.0865 0.12234 0.21474 0.71035 0.089251 0.1885) 0.8122
0.35 0.12766 0.23738 0.99388 0.086556 0.19684 0.24356 0.059572 0.17450 0.7591
0.40 0.08098 0.21428 0.90866 0.052765  0.18155 0.78591 0.033490 0.16146 0.7092
0.45 0.034304{ 0.19329 0.83026 0.021685£ 0.16881 ‘ 0.73742 ) 0.012032 G.15504 G.6845
Table 4
Derivatives of Inviscid Parameters Behind C-J Detonation Wave
3=0, m=1 o0=1, m=1 G=2, m J
- % Fe Re % Fe Ry % Fy Ry '
10.00 0.93356  0.93355  3.1361 ol o oz g3 (180.92) (75.720)  (75.702) (254.51) |
0.05 0.93356 0.85156 2.8958 1.2399 1.1030 3.8274 1.4515 1.2615 4.4247
0.10 0.93356 0.77633 2.6727 0.97132 0.77469  2.7328 1.0467 0.8045 2.8783
0.15 0.33356 0.70735  2.4655 0.86560 0.62075 2.2208 0.87356 0.59808 2.1741
0.20 0.93356 0.64412 2.2732 0.80745 0.52153 1.8902 0.76941 0.47150 1.7377
0.25 0.93356 0.58620 2.0949 0.76743 0.44701 ; 1.6399 0.69293 0.38147 1.4232
0.30 0.93356 0.53317 1.9295 0.73318 ‘ 0.38556 ; 1.4309 0.62663 0.31085 1.1725
0.35 0.93356 0.48465 1.7763 0.69719 0.33137 1.2432 0.55954 0.25079  0.95509
0.40 0.93356 0.44028 1.6344 0.65220 0.28050 \ 1.0630 : 0.48058 0.19507 0.74903
0.45 0.93356 0.39972 171.5030 0.58542 0.22807 | 0.87216 ; 0.36919 : 0.13595 0.52541

The derivatives are all negative.
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Table S

Comparison of Wall Derivatives Obtained by

Three Different Numerical Methods

fnn(E,O) Gn(C.O)
Liu ' Liu ]7
Series and | Series and ;
Expansion Mirels ' Expansion Mirels
£ Method Solution Present | Method Solution . Present
T T
0.0 0.66141 0.66198 . 0.66147 0.89693 0.89864 0.89735
Table 6

Comparison of Wall Derivatives of Liu and

Mirels (1980) and Present Work

for a Boundary Layer Behind a

Strong Blast Wave

£ ,(€,0) £,(£.0)
Liu and Liu and
£ Mirels Present Mirels Present
0.00 0.66198 0.66147 0.89864 0.89735
0.10 0.99598 0.99520 0.71326 0.70950
0.20 1.4215 1.4210 0.6506 0.6486 |
0.30 2.0170 2.0170 0.67915 0.6789 '
0.40 2.8813 2.8800 0.8664 0.8692
0.50 4.03096 4.0240 1.,2942 1.2980
0.60 ' 5.52177 5.5090 1.8290 1.8400
0.70 7.94119 7.9040 2.61496 2.6490
0.80 12.7369 ' 12.570 4.0957 4.3220
0.90 27.2309 " 25.26 9.0235 ' 9.770
15
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Table 7

Comparison of Wall Derivatives for Different Cases Behind a Chapman-Jouguet Wave

(T, = 300 Ky 120,75, Px = 2.26)

G=0 3 =0 o= 1 =0 a=1 a=1 | g=2 g =1
e SO P - _ J—
£, f,m(r,.O) gn(e’,.O) f”n(ﬂ.O) ’ gn(t',.o) | £, (60 gn((,‘o) j fnn(F,,O) g”(F_O) ‘
S S e
0.0 0.4023 0.6354 0.4023 ' 0.6354 0.4023 0.6354 0.4023 0.6354
0.05 0.4149 0.6506 0.4421 0.6883 0.4673 0.7269 0.4800 0.7482
0.10 0.4292 0.6699 0.4586 0.7191 0.5145 0.8043 0.5275 0.8369
0.20 0.4467 0.7101 0.4656 0.7742 0.5943 0.9806 0.5882 1.0330
0.30 0.4293 0.7587 0.4083 0.8314 0.6069 1.2120 0.5190 1.2830
0.40 0.2145 0.8194 0.05685 0.8947 0.1353 1.53:0 ~0.3740 1.6190
0.45 -0.5084 0.8537 -0.9738 0.9248 ~-1.7140 1.7410 -3.6520 1.8320
0.50 -0.1279 0.8895 ~0.4341 0.9596 -0.8039 1.9860 -2.3680 2.0820
0.60 0.2235 0.9310 0.04352 0.9994 0.2114 2.6110 -0.9636 2.7320
0.70 0.4271 0.9585 0.3287 1.0270 1.2560 3.6320 0.3380 3.7980
0.80 0.5605 0.9783 0.5208 1.0470 2.9270 5.7040 2.2290 5.9640
0.90 0.6513 0.9933 0.6577 1.0620 . 7.6860 ©12.1500 «7.3090 12.690
0.95 0.6836 0.9996 0.7111 1.0690 ' 17.360 24.350 y 17.430 . 25.250
Table 8

Ratios of Boundary Layer Thicknesses for Different Prandt] Number, Pr

Pr=0.72 Pr=1.0 Pr=1.5 Pr=2.256
g 8y/6; L Y W | S/ 8¢ E
I 0.00 ' '

0.10 0.8644 | 1.000 & 1.377 1.791
0.20 0.7695 ' 1.000 1.303 1.749
0.30 0.6486 1.000 1.364 1.702
0.40 | 0.3456 1.000 1.454 1.833
0.50 . 0.2129 1.000 1.541 1.862
0.60 0.2676 1.000 1.490 1.858
0.70 0.2677 1.000 1.522 1.812
0.80 0.4186 1.000 1.514 1.941 |
0.90 0.6416 1.000 1.278 2.263
0.95 0.7407 1.000 1.5120 2.158
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Table 9

Wall Derivati. . s for Different Flow Conditions Behind a Chapman-Jouguet Wave

(r=2,0=1)
€ V-—‘-l\_;-A-»'V CTTTmTTTTTT T T 7“"-7-- T 1 - ! T T T T
! T =300 K T =300 K i T =300 K ! T =0.0
w L w w w
N S . -
=0.75 Pr=2.256 | w=0.75 [:}r=0.72 w=1.00 Pr=2.256 w=1.0 | Pr=2.25¢
P ———— - ——— S - e ! -
: . (F T £ £, g : £,0
£, (50 ‘ B, (5,00 £ (5,0 g (£,0) £,50 | g (5,0 £,(8.0) 1 g (£,0)
e — s e _,,.,,__,_.--1___-“,‘ r - ‘ —
0.0 . 0.4023 t 0.6354 . 0.4171 0.3352 0.7281 1.115 0.7281 | 1,195
i :
9.05 0.4800 0.7482 ' 0.529 0.4038 0.8675 ' 1.309 0.8774 1.412
0.10 0.5275 | 0.8369 Poole12s 0.4558 0.9505 | 1.456 0.9716 1.577
0.20 0.5882 1.0330 ' 0.7985 0.5699 1.061 ©1.785 1.123 1.941
0.30 0.5190 1.2830 1.058 0.7147 0.9547 2.199 1.123 2.400
0.40 -0.3740 1.6190 1.567 0.9091 ~0.5231 2.751 0.0631 3.007
0.45 -3.652 1.8320 2.540 1.032 ~0.6002 3.1010 ' -0.4284 3.389
0.50 ~2.368 2.0820 3.138 1.172 ~4,079 3.500 - =3.203 3.821
0.60 | -0.9636 2.7320 3.541 1.525 -1.834 4.526 i -1.318 4.935
. 0.70 1 0.3380 3.7980 4.152 2.101 0.2729 6.161 ! 0.6444 6.714
{ 0.80 i 2.2290 5.9640 5.533 3.67 3.247 9.322 3.538 10.161
0.90 | 7.3090 12.690 10.15 6.928 10.52 18.08 10.76 19.70
0.95 17.430 25.250 | 19.72 14.57 | 22.85 31.75 | 23.04 34.59
17
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FIG. 1 SKETCH OF BOUNDARY LAYER INDUCED BY HEMISPHERICAL DETONATION
WAVE ON THE MAJOR DIAMETER OF UTIAS IMPLOSION CHAMBER,




FIG. 2 NORMALIZED INVISCID FLOW PROFILE "™ ..~ .A STRO:.i. SPHERICAL
BLAST WAVE FOR DENSITY R, PRESSUR:® © .uiD FLOW VELOCITY P
WITH DISTANCE ¢,
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FIG. 3 NORMALIZED PRESSURE DERIVATIVE Fg, VELOCITY DERIVATIVE @
AND DENSTTY DERIVATIVE R¢ FOR INVISCID FLOW BEHIND A STRONG
SPHERICAL BLAST WAVE WITH DISTANCE & AT € = O, P = 1.8056,
F¢ = 13.028, Ry = 1.25.
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FIG. 4 NORMALIZED INVISCID FLOW VELOCITY PROFILES ¢ BEHIND C-J DETONATION
WAVES WITH DISTANCE ¢ FOR PLANAR (& = 0), CYLINDRICAL (& = 1) AND
HEMISPHERICAL (G = 2) FLOWS.
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FIG. 5 NORMALIZED INVISCID FLOW DENSITY PROFILES R BEHIND C-J DETONATION
WAVES WITH DISTANCE ¢ FOR PLANAR (G = 0), CYLINDRICAL (G = 1) AND
SPHERICAL (G = 2) FLOWS.
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FIG. 6 NORMALIZED INVISCID FLOW PRESSURE PROFILES F BEHIND C-J _DETONATION
WAVES WITH DISTANCE & FOR PLANAR (5 = O), CYLINDRICAL (o = 1) AND
SPHERICAL (G = 2) FLOWS.
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FIG. 7 NORMALIZED INVISCID FLOW DERIVATIVES ®¢ FOR VELOCITY BEHIND
C-J DETONATION WAVES WITH DISTANCE ¢ FOR PLANAR (T = 0),
CYLINDRICAL (T = 1) AND SPHERICAL (¢ = 2) FLOWS.




FIG. 8 NORMALIZED INVISCID FLOW DERIVATIVES R¢ FOR DENSITY BEHIND C-J
DETONATION WAVES WITH DISTANCE ¢ FOR PLANAR (G = O) CYLINDRICAL
(c = 1) AND SPHERICAL (o = 2) FLOWS.
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FIG. 9 NORMALIZED INVISCID FLOW DERIVATIVES F; FOR PRESSURE BEHIND C-J
DETONATION WAVES WITH DISTANCE ¢ FOR Pi.A.NAR
(¢ = 1) AND SPHERICAL (G = 2) FLOWS.

(o = 0), CYLINDRICAL
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FIG. 10 NORMALIZED VELOCITY PROFILES fy OF BOUNDARY TAYER WITH DISTANCES
n AND € FOR A STRONG SPHERICAL BLAST WAVE, Pr = 0.72, 7= 1.k,
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FIG. 13 NORMALIZED VELOCITY PROFILE f, OF BOUNDARY LAYER WITH DISTANCES
n AND ¢ BEHIND PLANAR C-J DETONATION WAVE, Pr = 2.26, w = 0,75,

Tw = 300 K, 0 = 0, ¢ = 0,
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FIG. 15 NORMALIZED VFTOCITY PROFILES fy, OF BOUNDARY LAYER WITH DISTANCES
n AND € BEHIND "YLINDRICAL C-J DETONATION WAVE. Pr = 2.26,

w =0.75, Ty =300 K, ¢ = 1, ¢ = O,
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FIG. 16 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY [AYER WITH DISTANCES
n AND ¢ BEHIND CYLINDRICAL C-J DETONATION WAVE. Pr = 2,26,
w=0,75, Ty = 300K, ¢ =1, ¢ = 0,
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FIG, 17 NORMALIZED VELOCITY PROFILES f‘n OF BOUNDARY LAYER WITH DISTANCES
n AND & BEHIND CYLINDRICAL C-J DETONATION WAVE. Pr = 2.26,
w=0.75, Ty =300 K, 0 =1, 0 = 1,
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FIG. 18 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY LAYFR WITH DISTANCESD
n AND § BEHIND CYLINDRICAL C-J DETONATION WAVE. Pr = 2.26,
w=0,75, Ty = 300K, 0 =1, ¢ = 1.
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FIG. 20 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY LAYER WITH DISTANCES

n AND & BEHIND SPHERICAL C-J DETONATION WAVE. Pr = 2,26, = 0,75,
Tw =300 K, & =2, 0 = 1.
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FIG, 21 VARIATION OF NORMALIZED VELOCITY DERIVATIVE f"] (&,0) AND TEMPERATURE
DERIVATIVE gn(g,O) WITH DISTANCE ¢ FOR PLANAR E-J DETONATION WAVE,
Pr = 2,26, w = 0,75, Ty = 300 K, 0 = 0, 0 = O,




FIG. 22 VARIATION OF NORMALIZED VELOCITY DERIVATIVES fpn(¢,0) AND TEMPERATURE
DERIVATIVE gn(t,0) WITH DISTANCE & FOR chINDR?BAL C-J DETONATION
WAVE. Pr = 3.26, w=0.75, Ty =300K, 6 =1, 0 = 0.
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FIG. 23 VARIATION OF NORMALIZED VELOCTTY DERIVATIVES fyq
DERIVATIVES gy(,0) WITH DISTANCE ¢ FOR gYLINDR?c
WAVE. Pr =2.26, w = 0.75, Ty = 300 K, 3 = 1, o

£,0) AND TEMPERATURE
AL C~J DETONATION
= 1.
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FIG. 24 VARIATION OF NORMALIZED VELOCITY DERIVATIVES fyp(&,0) AND TEMPERATURE
DERIVATIVES g, (&,0) WITH DISTANCE € FOR §PHERI§RL C-J DETONATION
WAVE. Pr =2,26, w = 0.75, Ty, = 300 K, ¢ = 2, 0 = 1.
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FIG. 25 NORMALIZED VELOCITY PROFILES f, OF BOUNDARY LAYER WITH DISTANCES
€ AND n BEHIND SPHERICAL C-J DETONATION WAVE. Pr = 1.5, w = 0.79,
Ty = 300K, 0 =2, 0 = 1.
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FIG. 26 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY TAYFR WITH DISTANCES
¢ AND 1 BENIND SPHERICAL C-J DETONATION WAVE. Pr = 1,50, 4 = 0,70,
Tw =300K, 6 =2, 0 = 1.




FIG. 27 NORMALIZED VELOCITY PROFILE f; OF BOUNDARY LAYER WITH DTSTANCES
& AND n BEHIND SPHERICAL C-J DETONATION WAVE., Pr = 1, w = 0,75,
Ty = 300K, 0 =2,0 = 1.
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FIG. 28 NORMALIZED rEMPERATURE PROFILES .1 OF BOUNDARY LAYER WITH
DISTANCES 7 AND & BEHIND SPHERICAL C-J DETONATION WAVE.
Pr=1,w =0.75, Ty = 300K, 0 =2, 0 = 1.
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“IG. 29 NORMALIZED VELOCITY PROFILES f, OF ROIMDARY LAYFR WITH DISTANCES
n AND & BEHIND SPHERICAL C-J DETONATION WAVE, TIr = 0.72, w = ».75,
Ty = 300 K, @ =2, ¢ = L.
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FIG. 30 NORMALIZED TEMPERATURE PROFILES g€ OF BOUNDARY LAYER WITH DISTANCES
N AND & BEHIND SPHERICAL C-J DETONATION WAVE. Pr =0.72, w = 0.75,
Ty =300 K, 0 =2, 0=1.




FIG. 31 EFFECT OF Pr ON NORMALIZED VELOCITY DERIVATIVES f‘ (§ 0) WITH
DISTANCE ¢ FOR SPHERICAL C-J DETONATION WAVE. w O 75, Tw = 300 K,
G = 2, 0 = 1.
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FIG. 32 EFFECT OF Pr ON NORMALIZED TEMPERATURE DERIVATIVES g&,‘(g,O)

WITH DISTANCE & FOR C-J DETONATION WAVE. w = 0.75, Tw = 300 K,
c=2,0-=1,
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FIG. 33 BOUNDARY-LAYER THICKNESS RATIO OF VELOCITY by AND TEMPERATURE by
WITH NORMALIZED DISTANCE & FOR DIFFERENT Pr AND FOR SPHERICAL
C-J DETONATION WAVE. w = 0.75, ¢ =2, ¢ = 1.
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DISTANCES n AND & BEHIND C-J SPHERICAL DETONATION WAVE,

FIG. 35 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY LAYER WITH
Pr=2.25,w=l,Tw=3OOK,U=2,0=1.
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FIG. 37 NORMALIZED TEMPERATURE PROFILES g OF BOUNDARY LAYER WITH

DISTANCES 7n AND ¢ BEHIND SPHERICAL C-J DETONATION WAVE,
Pr =2.26,w =1, Ty =0K, 0 =2, 0 = 1.
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FIG. 38 VARIATION OF NORMALIZED VELOCITY DERIVATIVES £, (&0) WITH DISTANCE
¢ FOR SPHERICAL C~J DETONATION WAVE. Pr = 2.2, Tw = 300 K, 6 = 2,
g = 1 (FOR DIFFERENT VISCOUS EXPONENT, w).




FIG. 39 VARIATION OF NORMALIZED VELOCITY DERIVATIVES f,,(&,0) WITH DISTANCE
¢ FOR SPHERICAL C-J DETONATION WAVE. Pr = 2.23, w = 0,75 6 =2
o = 1 (FOR DIFFERENT WALL TEMPERATURE, Ty).
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FIG., 4O VARIATION OF NORMALIZED TEMPERATURE DERIVATIVES gu(ﬁ,O) WITH
DISTANCE ¢ FOR SPHERICAL C~J DETONATION WAVE. Pr = 2.26,

Ty = 300 K, ¢ =2, ¢ = 1 (FOR DIFFERENT VISCOUS EXPONENT. wy.




FIG, 41 VARIATION OF NORMALIZED TEMPERATURE DERIVATTVE gy (&,0) WITH
DISTANCE € _FOR SPHERICAL C-J DETONATION WAVE. Pr = 2.26,
w =0.7, 0 =2, 0 =1 (FOR DIFFERENT WALL TEMPERATURE, Tw) -
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FIG. 42 VARIATION OF THERMAL BOUNDARY-IAYER 5
- THICKNESS 57 WITH DISTANCE
¢ FOR UTTAS HEMISPHERICAL IMPLOSION CHAMBER. Pr = £.26, w = . . -
Tw = 300 K, X5 = 10 cm, Ug = 2981 m/sec, 6 = 2, ¢ = 1.
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FIG. 45 VARIATION OF ANALYTICAL HEAT TRANSFER aw (
WALL WITH TIME b (ns) AT

GASEQUS DETONATION WAVE
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FIG. 46 COMPARISON OF EXPERIMENTAL ( o, ® AND o FROM REF. 29) AND
ANALYTICAL (——, ~ .= AND — —, PRESENT RESULTS) VARIATIONS
OF AVERAGED HEAT TRANSFER, Ty, (BIU/ft2 sec) TO THE WALL,
OVER 50, 100 AND 150 ps, RESPECTIVELY, WITH INTTIAL PRESSURE
Po (TORR) BEHIND A HYDROGEN-OXYGEN GASEOUS DETONATION WAVE.







APPENDIX A

DERIVATION OF TRANSFORMED BOUNDARY-LAYER EQUATIONS

The unsteady, compressible laminar boundary-layer
equations for a perfect gas are:

Continuity:
%*f&a(puio) +P_§§L)= (A1)
Momentum:
Energy:
State:
p = [(y-1)/y]oh (a%)

To eliminate the explicit dependence on time,

Mirels and Hamman [Ref.18] devised a similarity
transformation for the lamina boundary-layer induced
by a strong blast wave. Only a small modification

to their transformation was needed to make it applic-
able either to blast waves or for detonation waves.
The modified transformed coordinates become

T=t (AS)
£ - (1 - X ] (A6)
X5
Yy
g Y
~ L i )
n =
[AthU*Zw(m—l)+l£]I77

For the new variables £, n and 1, the derivatives
with respect to x, y and t become

b %D D
3 "3t 3w T3 (A8)
b 2D 2
3 " 3x 3E ' 3 on (A9)
3 _9n 3
3 "3 (Al0)

For the inviscid flow, we are interested in self-
similar motions in the form of

_Gm

xg = ct (All)

Then
. ug = eme™! (A12)

Using Eqs. (All) and (Al12) the derivatives are as
follows:

91

3 " 1 (A13)

' i it
bl S ‘II“I E W’ e O Y -
" - F

£
g; - _Tﬁ», (Al4)
S
g
o o {A1S}
3y ) o(m-1)+ 2
3 T [ p2morZe(mT) 15117—
%% = (1-{,)mz'1 (Alb)
y .
3 [ 5 { I J
=~ |X —~ dy
an at o w v mt—l cer(2.-1)s
bAL — 5 - 5 2 2.- 7
ot [At2m0+2m(m 1;+1€]1/~ 2 ;
(A17)

Introducing a scalar stream function defined by

0
u = — X (A18)
G 3y
3.4
y
Y hl
© Y 3 o b ]
= - { ¥, + gy
v 5 {-ax 3t X o dy J (A19)
Px °

substituting Eqs. (Al3) to (Al9)} into fqs. (A8) to
(A10), and adding Eqs. (Al10) to (A9), the following
derivatives are then obtained

3 d )
¢} £

= |x — dy:

at [ JO &) y_)

52 e 3 e
3T AT oAy 172 A MO LU
no_-1 1709
-3 m [Zo+a(2w-l) ‘7 j = (A20)
1.1-&1@1&[&@-1@1
x "W T o8y & (3L
y
3 o] )
ﬁ [X [ -‘;— dy}
J
- o_® 2 (A21)
[At2m042m(m—l)01£]l/2 an
Introduce the similarity parameters
pe
F(E) = — (A22)
(:wus
ue
W) = 5> (A23)
S
R(E) = = (A24)
[27%

VS g S -
24 ~
-

[




and the temperature ratio

T 0
e o 2 F
= =b-—u°‘= (A25)
T, P, s R
where
N Y0y,-1)Cp,,
- Y,iv—l)cp

for the inviscid flow. The dimensionless stream

function is defined as

£(E,m) = Wl [ac2m0r 2o (@)L 172y (A26)
The total derivative is defined by
o LI o 3 3 (A27)

Bt- Pt MV

Substituting Eqs. (A22) to (A24) and (A206) into (A20)
and (A21), then Eq. (A27) becomes

[¢} %% = —pmt_l {[ % f20+a(2w-1) - (¢f£+¢£f)
1 ] ) 3
* 3 (”“Pf):] g (l-ﬁ'q’fn) 3% } * O (A28)

For the momentum equation, Eq. (A2}, the transform-
ation can be done term by term. For p(Du/Dt), we
have

©
Rl

¢£f)

= —pmt'lusw {[ % (20+a(2w~-1) - (?fé*

&=

of)| £ % I

(n )] . (l-&Jan) [ 7 ?;— ] fn - afn}
(A29)

For ape/ax, using Eqs. (A22) to (A24), the following

expresSion is obtained:

ape

_ -1
S s eme §

(A30)

of"

where g = h/he = T/Te is the enthalpy or temperature
ratio. A new dependent variable is defined as
follows:

(A31)

With the transformed coordinates, £, n, the term
9/3y[u(3u/3dy)] can be expressed in the following
form

20 p

, " X" o ug PP
37 [“ 37] T oz DT,y *fnndn (As2)
(At €]
Define
262(0¢w) l.Zw--l ", o, w
A E’ [ Fo]

and note that

x20 ) (l_ﬁ)z
T TE

[At2m0~2(m-l)mol£]t—l

o CZ(oow) me

AuZw
s

Substituting Eqs. (A29), (A30) and (A32) into the
momentum equation and dividing both sides by
pmug@t™ ", the following equations are obtained:

20 J1-w w
(1-§)°" R (F/FO) (Bfnn)n + (n-qY)fnn

= 2 {l:fcpg . 9f, - 3 [20+a(2w-l)]] £

? f Frg
£, 0k o
loacery [ ?‘H Wowe | W

for the momentum equation.

The same procedure can be applied to the
energy equation, Eq. (A3), term by term:

(1)
Dh _ -1 n 5 _
Pt = pmt “he {[ 5 {20+a(2w-1)} (@f€¢¢£f)
F g R
LS. - ia- A Y
rqx 0 cvf)}gn [(1 Evof ) [ F'g R
. Zc;] g} (A34)
(2)
Dpe -l y-1 FE 2
T -pmt he y [(I-Edvfn)g F°* Qé] (A35)
(3)
20,
3 [ U sh ] _ x Ohepe“e [ B g ]
3y | Pr 3y [;;ImG#Z(m-l)mol ) m2 Pr ®n n
(A36)
(4)
20 22
2 X pu o @Pou
Ju ] e'e 2
u[ ] = — Bf (A37)
3y [AthOOZ(m l)molEIQGZ nn
Noting that
p_u u 0, w
ee _pa=2f{bv =2, ,2F
;—2— R pm [ - us R (ASB)
“s2 -1 R
ot » F (A39)
e
the transformed energy equation becomes
a2 wo (E1° (8, ), (Contd.)
Fo Pr &n n )




y-1 R -0 { F ¥ .2
’ 22 g [Q] Bf,m}wn-q:f)gn

F
=2 {[f(p{)«q)f{ -’-2‘ [20.a(zw-1)]] g,

2a .73 £ £
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APPENDIX B

THERMAL CONDUCTIVITY AND VISCOSITY FOR MULTICOMPONENT GAS MIXTURES

The viscosity u and thermal conductivity K
contained in the momentum and energy equations are
estimated by using the following semi-empirical
relations given in Ref. 30.

B it
we §o—i1 (81)

n :
K=} ——— (82)

M. 1 1 1
o= - U, y= ( M. y+ 12
1) /B Mj Lj Mi

and n is the number of chemical species in the
mixture; Nj and Nj are the mole fractions of species
i and j; uj and U5 are the viscosities of species

i and j at the sy5tem temperature and pressure; and
Mj and M; are the corresponding molecular weights.
Note thag i j is dimensionless and when i = j,

¢35 =1 Basically, Eqs. (Bl) and (B2) are adequate
oniy at low density. As shown in Figs. Bl and B2,
the viscosity and thermal conductivity of a gas
approach a definite limit (the low-density limit) as
the temperature reaches a very high value at a given
pressure. The temperature of the gas mixture behind
a C-J wave is about 4000 K. Taking water-steam as
an example, the critical temperature is 400 K and
the critical pressure is 1 atm. In the region
behind a C-J wave, the average pressure is less than
10 atm. Hence, its reduced pressure is less than

10 and its reduces temperature is 10. From Figs.

Bl and B2, it can be concluded that the low-density
limit is still a good approximation.

APPENDIX C

BOUNDARY LAYER THICKNESS CLOSE TO THE ORIGIN

As pointed out before, the origin is singular
for the boundary-layer equations. Near the origin,
the solution becomes divergent. Therefore it is
necessary to find an alternate way of evaluating
the thermal boundary-layer thickness at origin.
Since the gas velocity is very small in the middle
of the wave behind a C-J detonation, the boundary-
layer equations reduce to

oh 3 u dh
"’E'W["P:W] b

Assuming that the Py and C, are constant, Eq. (Cl)
can be rewritten in the foglowing form

2

19T _ 3°T

=R el (€2)
Yy

where a = K/pcp. The corresponding boundary condi-
tions are

(C3)

The UTIAS implosion chamber is made of steel.
Because the thermal conductivity of steel is much




greater than that of the gas and the flow duration
of interest is very short, it is reasonable to
assume that Ty = constant, that the gas thickness
is infinite in the y-direction, its temperature is
uniform in the x-direction, and the natural convec-
tion heat transfer is negligible. Definining the
temperature difference,

T=T-T, (C4)

Eq. (C2) can be expressed as

2

19T _ 3°T
i T (€5
dy
The boundary conditions of Eq. (C3) become
y = 0, T=7,=0
(Ce)
y + =, T=T,=7,-T,
The solution of Eq. C5) is [Ref. 31)
7= (ie)erf—l— (€7)

vdat

Using the relation of Eq. (C4), the temperature
within the thermal boundary layer is

T(y,t) = (T_-T )erf L£—+ T (C8)
o e v vYdat w

For convention, we define the thermal boundary-layer
thickness as 81 = yg at which

T(yrt)

T
e

= 0.99 (C9)

According to the previous results for the inviscid
flow, the temperature outside the thermal boundary
layer can be expressed as

P 2
ag (C10)
Pm S

where T_ = 298.15 K, b = 1.2594, F = 0.051135,

R = 0.669363, ug = 2981.5 x 102 cm/sec, then the
temperature is

T =T, - { b

=T

Te = 12.25 Tm
Using these data, the thermal boundary-layer thick-

ness is obtained approximately by

Sp=v, = 1.8 /3ot (c1y

According to the definition of a = K/DCP, a simple
relation holds:

APPENDIX D

DERIVATION OF HEAT TRANSFER EXPRESSION

According to the definition of the heat transfer

rate to the wall, we can express it as follows:

aT
= -K [—— ] (D1)
U y W
Using the transformed coordinate it then becomes
-1 an
a, * -y 37] he8,(£,0) (02)
r w
where o Pu

an P
[ dy ]w ) lAt2“°’§“i“'lj“5)I77 (3}

8, = 0.94 /t cm (C12)
where t is given in usec.
x20+l 2w-1
2mo+2w(m~1)+1 _ s S
t T T2(ovw) 2w-1 (D4)
c m
2c2(o¢m) me-l ", o, w
N [v., o (03)
Y _,2F
he * -1 Y% R (D6)
T
2 F
TT = 5= = Y OM . ¢ (07)
[




u P X
S‘“"S

Re = (D8}

w5 uw
Putting Egs. (D3)-(D8) into (D2) and after rearrang-
ing, we can get

o109 [2ew {11__ ]“’ ke ]”2
W ONTR 5072 R oy

(26) ¥
TG 2
w-1 g
o 3 (5,0)gn(£,0) X, (b9)

If £ and Reoos are replaced by

ust
= yTax
s
upx
_ sw's
Rems = i

we can get

w-1
o - v ¢ (€,0)g,(£,0) [FZ‘“‘ [i}m}x/z
W -1 J3p | FOR
r
(-6 u ® o (y70® (010
Let
w-1
v 8GR (E,0) p o e /2
By = - oy ————— |F R (§-€)
M 72 p [
T
and

p J—
By = ug” Vo

Finally the heat transfer rate to the wall can be
expressed as

a, = -ByB,(1)"" (p11)
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FIG. Bl  VARIATION OF NORMALIZED VISCOSITY py = u/ue WITH PRESSURE

AND TEMPERATURE T, = T/Tg, Pr = p/pe (FROM REF. 30).
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