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INTRODUCTION

In the past 2 decades the approach outlined by St. Denis and

Pierson (Reference 1)* for the estimation of oscillatory ship motion

statistics in irregular seas has become firmly established in engineer-

ing practice. This approach applies strictly only to ship responses

which can be assumed to be linear functions of wave height. The

credibility of the approach was established by exercising experimen-

tally as many as possible of the mathematical consequences of the

basic mathematical model. In particular it was found possible to

a) synthesize observed responses in irregular waves in both time and

frequency domains by means of responses obtained in regular waves,

and b) identify the fundamental linear response functions from obser-

vations in both irregular and transient waves (Reference 2)*.

In general, when non-linear responses become of importance

there is no agreed universal model for dealing with the irregular

sea case. However, when the non-linearities may be considered

"weak" in some sense one of the conceptual approaches which have

been proposed has considerable attraction. This is the functional

series model. Among the attractions are that the model is suitable

for any reasonably well behaved wave input (regular, transient or

random) and since the model contains the completely linear system

as a special case it appears to be a logical extension of present

practice. In addition, prediction methods for scalar response

spectra are available and it appears that the statistics of maxima

may be approximated. Finally, it is possible to closely relate the

functions required by the model to deterministic hydromechanical

analyses and experiment because the effects of hydrodynamic "memory"

which complicate the usual analysis are automatically accounted for.

1. St. Denis, M. and Pierson, W.J., "On the Motions of Ships in
Confused Seas," SNAME Vol. 61, 1953.

p *2. Dalzell, J.F., "The Input-Output Approach to Seakeeping Problems:
Review and Prospects," T.&R. Symposium S-3, Seakeeping 1953-1973,
Society of Naval Architects and Marine Engineers, October 1973.

"'S" j
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References 3* through 7* represent a contracted bibliography of some

of the fundamental mathematical background to the model and References

8* and 9* discuss some of the potential for application to seakeeping

problems.

In practical use the functional series must be truncated at

some degree of non-linearity, thus becoming a functional polynomial.

Within the last decade the functional polynomial model of degree two

has been applied with some success to the non-linear ship responses

in the un-restored modes of motion, in particular to added resistance,

slow drift oscillations, etc. By drawing upon the analytical background

3. Weiner, N., "Non-Linear Problems in Random Theory," The Technology
Press of MIT and John Wiley and Sons, Inc., 1958.

4. Barrett, J.F., "The Use of Functionals in the Analysis of Non-
Linear Physical Systems," Journal of Electronics and Control,
15, No. 6, December 1963.

5. George, D.A., "Continuous Non-Linear Systems," Doctoral Disser-
tation, Department of Electrical Engineering, MIT, July 1959.

6. Ku, Y.H., and Wolf, A.A., "Volterra-Weiner" Functionals for the

Analysis of Non-Linear Systems," Journal of Franklin Insitutute,
281, No. 1, January 1966.

7. Bedrosian, E. and Rice, S.O., "The Output Properties of Volterra
Systems (Non-Linear Systems with Memory) Driven by Harmonic
and Gaussian Inputs," Proceedings of the IEEE, Vol. 59, No. 12,
December 1971.

*8. Vassilopoulos, L.A., "The Application of Statistical Theory of

Non-Linear Systems to Ship Motion Performance in Random Seas,"
Ship Control Systems Symposium, Annapolis, November 1966.

9. Bishop, R.E.D., Burcher, R.K., and Price, W.G., "The Uses of
Functional Analysis in Ship Dynamics," Proceeding, Royal
Society of London, A. 332, 1973.

2
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afforded by References 10* through 13* it was possible to develop

practical means of doing cross-bi-spectral analyses of towing tank

observations of added resistance, Reference 14*, and following this

a demonstration, Reference 15*, that a) the non-linear added resis-

tance frequency response function can be identified from irregular

wave experiments via cross-bi-spectral analysis, b) the mean added

resistance and the spectrum of resistance can be synthesized from

the linear and non-linear frequency response functions, c) that

time histories of added resistance can be synthesized according to

the functional polynomial model, and, d) that hydrodynamic theory

can be developed for the required frequency response functions

(Reference 16)*.

10. Tick, L.J., "The Estimation of the "Transfer Functions" of
Quadratic Systems," TECHNOMETRICS, 3, No. 4, 1961.

11. Hasselman, K., "On Non-Linear Ship Motions in Irregular Waves,"
JSR 10, No. 1, 1966.

12. Shaman, Paul, "Bi-Spectral Analysis of Stationary Time Series,"
Scientific Paper #18, Statistical Laboratory, School of
Engineering and Sciences, N.Y.U., January 1964.

13. Rosenblatt, M. and Van Ness, J.W., "Estimates of the Bi-Spectrum
of Stationary Random Processes," Technical Report 11, Nonr
562(29)/1l, Division of Applied Mathematics, Brown University,j Providence, R.I., March 1964.

14. Dalzell, J.F., "Cross-Bi-Spectral Analysis: Application to

Ship Resistance in Waves," Journal of Ship Research, Vol. 18,
No. 1, March 1974, pp. 62-72.

*15. Dalzell, J.F., "Application of the Functional Polynomial Model

to the Ship Added Resistance Problem," Eleventh Symposium on
* Naval Hydrodynamics, University College, London, 1976.

*16. Dalzell, J.F. and Kim, C.H., "An Analysis of the Quadratic

Frequency Response for Added Resistance," Journal of Ship
Research, Vol. 23, No. 3, September 1979.

II
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It is becoming clear that even when the functional polynomial

model is not explicitly assumed the results of many investigations of

the second order forces on ships (References 17* and 18* for example)

are compatible with the functional polynomial model of the second

degree. It is equally clear that this "linear+quadratic" model will

not suffice for non-linear response problems where the non-linearity

affects the amplitude at excitation frequency of oscillatory response

to harmonic excitation. (In the "linear plus quadratic" or second

degree system the non-linearities only produce new response frequency

components.) Thus it is logical to consider applying the functional

polynomial of degree three to some seakeeping problems. It is

realistic to consider whether this is necessary since the theoretical

hydrodynamicist would consider the non-linearities of the added (cubic)

degree to be "third-order". Despite the implications of the words

"third-order", "third-order" forces on heaving cylinders have been

found (Reference 19)* not to be negligibly small for large heave

amplitudes and in fact magnitudes approaching those of "first-order"

or linear forces have been reported. The work of References 20* and 21*

17. Newman, J.N., "Second Order Slowly Varying Forces on Vessels in
Irregular Waves," International Symposium on the Dynamics
of Marine Vehicles and Structures in Waves, University College,
London, April 1974.

'18. Pinkster, J.A. and van Oortmerssen, G., "Computation of the First
and Second Order Wave Forces on Bodies Oscillating in Regular
Waves," Proceedings of the Second International Conference
on Numerical Ship Hydrodynamics, University of California,
pp. 136-156, September 1977.

19. Tasai, F. and Koteratama, W., "Non-Linear Hydrodynamic Forces
Acting on Cylinders Heaving on the Surface of a Fluid," Reports
of the Research Institute for Applied Mechanics, Vol. XXIV,
No. 77, 1976.

20. Dalzell, J.F., "A Note on the Form of Ship Roll Damping," SIT-DL-
76-1887, Davidson Laboratory, Stevens Institute of Technology,
May 1976, (Also: Journal of Ship Research, Vol. 22, No. 3,
September 1978).

21. Dalzell, J.F., "Estimation of the Spectrum of Non-Linear Ship
Rolling: The Functional Series Approach," SIT-DL-76-1894, Dav-
idson Laboratory, Stevens Institute of Technology, May 1976,
AD-A031 055/7G1.

I ___________________________4
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has shown that if some of the long accepted ideas about non-linear

ship rolling are to be accommodated by the functional polynomial

approach, the polynomial must be at least of degree three. Thus

there was encouragement in prior work to consider further the applic-

ability of the third degree model to seakeeping problems.

The main avenue of establishing credibility in the cases of

linear and linear+quadratic systems was through the capability of

decomposing observations in irregular seas by analysis. In the

linear case this has been through cross-spectral analysis. In the

linear+quadratic case this has been through cross-bi-spectral

analysis. In the linear+quadratic+cubic case (the functional poly-

nomial of degree three) the analysis approach is not established.

The objectives of the present work were to further explore

the applicability of the third degree functional polynomial to

seakeeping problems and to attempt the development of an analysis

approach by which third degree non-linearities in the response of

ships to random waves might be interpreted and characterized.

O
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THE FUNCTIONAL SERIES MODEL

Generalities

The mathematical applications involved in the present work were

first expressed by Wiener, Reference 3, and have since been slowly

amplified and simplified for engineering purposes to a point that

specialized text book coverage has begun to appear (Reference 22* for

example). All the fundamental mathematical development has taken

place in the context of system or communication theory where typically

a "system" has a single "input" or excitation and a single "output"

or response. Clearly, the general seakeeping problem is more com-

plicated since in that case the physical ship system is conceptually

excited by elemental wave components arriving simultaneously from a

continuous range of headings--the ship in short crested seas may at

the very least be considered a multiple input system. For present

purposes however the single excitation assumption must be made, and

this translates into the case of long crested seas. In the event that

the ship has forward speed, additional specializations must be made

in order that the available mathematical background be utilized. These

are that the mapping of wave frequency into encounter frequency be

essentially single valued, and that the excitation be defined at a

point which translates with the ship. These specializations correspond

to what is usually done in towing tank experiments as well as the

specializations customary in hydromechanical analyses. Essentially,

the restrictions imposed by the available systems background suggest

applicability to a useful (but not all inclusive) sub-class of sea-

keeping problems.

The Functional Series

Within the class of problems so defined it will be possible to

identify a response, Y(t), of interest (a function of time, t) and

an excitation, X(t), which is typically identified as a wave

22. Rugh, W.J., "Nonlinear System Theory; The Volterra/Wiener Approach,"
Johns Hopkins Un .-ersity Press, 1981.

6
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elevation. Thus for present purposes it is reasonable to assume that

the excitation, X(t), is a zero mean function whether it be random or

deterministic. Thus, following References 14, 15, 21, as a first step

it is hypothesized that the response, Y(t), is a sufficiently regular

function that it may at least be expanded in an infinite functional

series:

Y(t) = Z f f ** In(tt2''tn)X(tt1)*°.X(t-tn )dt dt -"dt n (1)

0 no n

(Omission of limits on integrals here and throughout this report signify

limits of -- and +- .)

Each term in the series as written above is homogeneous func-

tional of degree n. The terms are said to be homogeneous because a

change in X(t) to c X(t) (where c is constant) results in multiplication

of the term of degree n by (cn). The kernels, g n (t .t n), are "time

invariant", since they are ccnsidered to be functions only of time

differences, In the present application, the wave system varies with

time, but not the ship. Consequently the properties of the ship are

contained wholly within the kernels.

Reference 4 indiciates that the series expansion is unique if

all kernels are completely symmetrical in the variables; that is

gn(t ,t ... tn) = gn (t2,t3 .. t ,t ).-. (2)

for any rearrangment of the variables t.. (No loss of generality

results from this restriction.)

According to Reference 6, the functional series converges for

bounded excitation so long as the sum of integrals of the absolutep
value of all kernels is less than +-. The same is true with stochastic

excitation, if in addition the input is strictly stationary with

bounded moments of all orders. One physical way of looking at the

convergence restrictions on the kernels is that the "memory" of

the ship must not be enormously long, a restriction intuitively

|7
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acceptable for most if not all seakeeping responses. The restrictions

on the excitation are those which have been tacitly accepted for some

time in seakeeping research.

So long as the series, Equation 1, converges, its value is that

of the kernel of zeroth degree (g0 ) when the excitation, X(t), is zero.

In the present context, responses in the absence of waves are not of

interest so that the first term in the series may be dropped in all

subsequent development.

Impulse and Frequency Response Functions

The kernels in Equation 1 may be considered as describing the

system through a series of nth degree impulse response functions. It

is presumed that each impulse response function is sufficiently smooth

and integrable so that there is no trouble about existence of an n-fold

Fourier transform. Accordingly, it is assumed that to each nth degree

impulse response function there corresponds an nth degree frequency

response function, Gn (Wj1W2--n). The transform pairs relating impulse

and frequency response functions may be defined as follows:

1 I I .
n t

gn(t ,t ...t n) = ( n f .f- f G n(p 1' 2 ) Exp Z W t dw dw ..-dw (3)'t "( n  1 2 (21T n  j=1 i L 2 n

G n(W ' W ... ) = f f f gn ( t,t2..-tn) Exp Z W cu.t] dt dt 2.-dtn (4)
n 12 n 1  nL j=1 l ' 1

(where the w. are circular frequencies).
J

The first degree frequency response function is the familiar

linear one. The second degree frequency response function is the one

treated in References 14, 15, and 16 in an application to added resis-

tance. Regardless of the degree, the basic importance of the trans-

form of the impulse response function is the same; that is, convolution

in the time domain usually corresponds to multiplication in the fre-

quency domain, and (perhaps more importantly in the present context)

the typical hydromechanical seakeeping analysis ends up in the

frequency domain.

fi
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As a consequence of the assumed symmetry of the impulse response

functions and the transform, Equation 4, the n th degree frequency

response function is also symmetric in its arguments. That is,

n n n z I n

for any and all rearrangements of the w.. Additionally, because the

impulse response functions are real:

G ( , , - - ) - G'*(w . - n
n n n 1 2 n

where the star denotes the complex conjugate, and all arguments on the

left hand side are negative.

I9

p

I,

* . ..- -.. . .... . . . .. . . . , .. ~
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THE THIRD DEGREE FUNCTIONAL POLYNOMIAL

It is clear from the form of Equation 1 that the complexity of any

answer which might result would increase geometrically with the order

of the term. Consequently, it is hoped that the non-linearities in

any given system are weak enough that the series may be truncated at

a relatively few terms, in which case it is termed a "functional poly-

nomial". The objective of the present work is to investigate the

applicability of the functional polynomial of the third degree to

seakeeping problems. Truncating Equation 1 at n = 3 results in the

fundamental time domain mathematical model for present purposes:

Y~)-fg(t )X(t-t )dt
il) l 1 1

* f f g(t1,t )X(t-t )X(t-t )dt dtJf 2 2 1 2 1 2

+ f f f g3(t2 't2't 3)X(t-t )x(t-t )x(t-t )dt dt dtJ J J 1 3 1 2 3 1 2 3 (5)

This model is the same as that of References 14 and 15 with the func-

tional of third degree added. Though it may seem physically and

intuitively justifiable to accept convergence of the series, Equation 1,

the acceptance of the functional polynomial, Equation 5, as an adequate

engineering p;,roximation hinges purely upon how well it works in

practice with whatever problem is at hand. The series itself, Equation 1,

is thought applicable only to weakly nonlinear systems. If the system

responds critically to a given level of excitation (as for instance

a "jump" or an instability in the sense of the Hill equation) many

terms in the series would be necessary for even a rough approximation

and practical application is doubtful. On the other hand (apart from

the added resistance /slow drift phenomina which are quadratic non-

linearities) inmany seakeeping situations where nonlinearities might

be expected a purely linear treatment often yields results which

appear within reason, and the model of Equation 5 may represent an

improvement.

10
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DETERMINISTIC IDENTIFICATION OF FREQUENCY RESPONSE FUNCTIONS

Given the polynomial, Equation 5, and the Fourier transform

definition, Equation 4, there are three frequency response functions

of interest in the present problem:

(Linear) - GI(w)

(Quadratic) - GL(Wi, 2 )
(Cubic) - G3 (w1 ,W2 ,w3 )

0 The interpretation of G () is of course identical to that of pure

linear theory, it is simply the normalized amplitude and phase of

linear steady state system response to sinusoidal excitation. The

quadratic response, G2 (w1 ,w2), has been interpreted in References 14 and

015, and what nominally remains is to interpret the cubic frequency

response function. In words, G2 (w1 ,±w2) expresses the normalized

steady state response at frequencies (w1±W2 ) to two cosinusoids of

frequencies w 1 and w2 ' due to interaction of the two frequency com-

p n ponents. The units of G2 (W1 9,w2 ) are (response unit)/(excitation unit)
2.

Similarly, G3 (W1,± 2 ,±u) expresses the normalized steady state response

at frequencies (w1± 2±3) to three cosinusoids of frequencies wi, W

and w 3 due to interaction of the three frequency components. The

units of G3 (W1, 2,w 3 ) are (response unit)/(excitation unit)
3.

When the polynomial of third degree, Equation 5, is considered

to be the system there arise some serious complications not present

in the second degree model considered in References 14 and 15. For

this reason it is thought best to clarify the contents of the last

paragraph in stages which correspond to "experiments" of increasing

complexity.

If the system is completely linear [g2 (tl,t 2) and g3 (tl,t 2 ,t3)

- 0 in Equation 5] experimental characterization takes the form of

exciting the system with

X(t) - A cos(wt -c) (6a)

and interpreting the steady state response as:

Y(t) - A Re [G M Exp (itw - ie (6b)

, , _ _ .....
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from which the linear frequency response function G(w) may be derived

by a frequency analysis. It should be noted that e is an arbitrary

phase angle inserted in Equation 6a to reflect the situation which is

normally inherent in the reduction of observations from a physical

experiment. In linear theoretical analyses much the same process is

followed except that "All is customarily taken to be unity, "i" as

zero, and the excitation written as

X(t) - Exp tw]

with the understanding that the real part of the resulting complex

solution for Y(t) is to be taken. The result is identical in form

to Equation 6b, and the theoretical expression for Gl(w) may be

extracted. It should be remarked before proceeding further that

the customary theoretical representation of excitation as'a complex

quantity with the real part of the resulting response "understood"

is a completely valid procedure only for linear systems. Application

of this procedure to nonlinear systems of the present type results

in an incomplete answer at best. In order to produce theoretical

analyses compatible with physical experiment for the present nonlinear

system the excitation must be carried as an explicitly real quantity,

or as sums of complex quantities and their conjugates.

Returning to the nonlinear system, Equation 5, the simplest

"experiment" is to excite the system with a single cosinusoid just as

in the characterization of the fully linear system. Thus, as before:

X(t) - Excitation - A cos (wt - c) (7a)

Expressing Equation 7 a as (A/2)[Exp (itw - c) + Exp (-itw + c,

substitution into Equation 5, application of the Fourier transform

definition, Equation 4, and consideration of symmetries, results in

the following expression for the response of the nonlinear system to

the single cosinusoid, Equation 7a:

Response Y(t) AG + 3A3G3(,w,-w)Exp(it- ic
Re{A(w) 3 2  (

+ - A2ReI2(w-w
2 LG2 ''

+ I A2Re 2 (w,w) Exp(it2w - i2E (7b)

+ A3Re[G (w,w,w) Exp(it3w - i3j

12
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The complication mentioned earlier is immediately apparent in the first

term of Equation 7b. The cubic nonlinearity may produce response at

the excitation frequency as well as at the third harmonic of the exci-

tation. While the values of the functions G2 (w,w) and G2 (w,-w), and

the values of G.(W,W,W) may in principle be inferred by a frequency

analysis of a single experiment, more than one experiment is required

to separate Gl(w) and G3 (w,w,-_w). The complication, however, may not

arise in theoretical analysis because G3(ww,-w) is the component

which varies as excitation amplitude cubed.

Continuing the discussion of Equation 7b, the quantity most

reduced and extracted in seakeeping experiments in waves corresponds

to the ratio of amplitude of response at frequency w to amplitude of

a regular wave of frequency w. In terms of Equation 7b this ratio is:

R(=) G1 (w) + " A
2G3 (W,W,-W)1 (8)

When G 3(W,W,-W) is zero,R(w) is IG1(w)l and is invariant with excitation

amplitude as would be expected for a system of second degree. When

the cubic nonlinearity is present the amplitude can vary with excitation

amplitude in a variety of ways,since in general both G1( ) and G3 (,W,-W)

are complex and this must be taken account of prior to performing the
absolute value. If the ratio of real and imaginary parts of GI( ) is

the same as the corresponding ratio for G3(w,w,-w), R(w), (an "equivalent"

linear response ratio) could be quadratic in excitation amplitude.

Because the single cosinusoid experiment involves only specialized

portions of the quadratic and cubic frequency response functions it is

clear that more complicated "experiments" must be carried out to define

the remaining portions, and these take the form of dual and triple

"tone" experiments where the excitation is taken as the sum of 2 and

3 cosinusoids.

Because of the cubic term the dual tone experiment outlined in

Reference 15 takes a more complicated form. In particular the excitation,

X(t), is assumed to be composed of two cosinusoids of different amplitudes

Al and A2, and different frequencies w and w2 as shown at the top of

13
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Table 1. In order to be consistent with physical experiments, arbitrary

phases E and e2 are included. The response, Y(t), to the dual tone

excitation, X(t) is shown in the lower part of Table 1. The result is

derived exactly as indicated for Equation 7b, the assumed excitation

is substituted in Equation 5 in complex form, the transform definition,

Equation 4, is applied, and as much advantage as possible is taken of

symmetry. A further complication about the response at the excitation

frequencies is evident from the first three terms in the expression for

Y(t), Table 1. To illustrate, the response at frequency wl is written

out as follows:

Re[{A G (W ) + 3 AG (j 'W)+ IA2 2G 2' w2,w1) }
1 1 ' 1 3( 1  1  2 1 .A 2 3 ('W21 Ex~t 1  is

The first two terms inside the curly brackets are the same as in the

corresponding term of the single cosinusoid experiment, the third

represents a third degree interaction between the two frequency com-

ponents. The fourth through seventh lines of the response in Table 1

are the same as the quadratic terms described in Reference 15.

The eighth line involves the third harmonics of the two excitation

frequencies as would be expected from the single tone experiments,

Equation 7b. The last four lines involve a frequency of a new form;

that is,

2w. ± w.
I j

and the corresponding special values of quadratic frequency response

function, G3 (WiWi,±W).

Table 2 indicates the response of the system of Equation 5 to

a three tone excitation. In this case all the types of frequency

components noted in the two tone experiment reappear. Essentially,

the results of Table 1 are repeated for all the possible combinations

of two of three frequencies. The last four lines of the response

shown in Table 2 involve four new frequencies:

(W1+W2+W3)

(W1 +W 3)

(W + 3 "W1 )

14
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TABLE 1

RESULTS OF THE TWO COSINUSOID EXPERIMENT

Excitation a X(t) - A Cos (w t - e + A~cos (wt - E

Response - Y(t)

- ReLA G (wJ. + 3 w W) Exp(itw~ ice)

+ 1 2 eG(wPWO Exp~itw, - i

+ ARe[G (wl,w,'wl Exp(iti -~ .ic
2 2 1 L 3  2  1  1 1)

+ .1A2G (w -w) + I~ A2 G (w-w)
21 21' 1 22 22

+ -1 .1ARe [G w.,w.) Exp (it2w. - i2e

=1 2eF1 2 ) r1

+ A IAa [ L 2 wiW Exp {tw 1 + W 2 ) - i(Cl + 2

+ +A A Re[G (w -W) Exp f{it (w w - -~c - C

+ 1~ .ARe[G( ww) Exp (it3wj - i3cj)}

+ 3 A2A Re [G (wilowa)w Exp (it(2w1 + W)- it(2c + £

+ .~A-A Re[G (wiWi,-w) Exp {it(2w1  w)- it(2E -j

+ ~A A2Re[G.,(w w2.w Exp {it(2w, +w)-i(e

+ 3 A A2Re[G (w2 w -W) Exp {it(2w2  W it(2 2  E i)

15
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TABLE 2

RESULTS OF THE THREE COSINUSIOD EXPERIMENT

-3

Excitation - X(t) : A ACos (tw. .
jai J

Response aY(t)

2 al~ AAk G 3(.9' E EXPiitwit

jul L

+* I. A 4:(A Re [) E(ic-W.4 Expi i i

2 k. .Akft[6 u Jk 3k w kx{T( k kn)]

2 3

J+ I I J4G

jal jJ

1 -A4 2[ f.lw.w,) Epi2 .- )U£ -~
kul AJ k J R~ Exj~ ki

I IA1 A2 J3 A k(i Re ,w2,. w) xp(w Jw 3 )z{ic

Ij12 AR~ A A Ro (w - Exp~it(w-w,* 3 )Epic - *

j+ k 2 k' k - *j £,~c - £

*ja1AARI 3( 1l, 3 k- I -

1 16
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The first is the triple sum frequency which is associated with the value

of G3 ( 1,w2 ,W3 ) in the positive octant of tri-frequency space (and by

symmetry the negative octant). The three remaining frequencies are

associated with the cubic frequency response functions in the remaining

six octants of tr-frequency space.

Thus in principle the three tone experiment, repeated for enough

combinations of the three frequencies, can completely define the cubic

frequency response function. If the frequencies chosen are incornen-

surate a very precise frequency analysis can in principle allow the

identification of G3(W1,1w2,1w3) by picking out only the response at

the sum frequency. This is the attitude expressed in the systems

literature, Reference 22 for example.

The results in Table 2 suggest how an analytical identification

of the various frequency response functions may be made. Essentially

the analytical problem amounts to the consideration of the response

to three superimposed cosinusoids, and the comparison of the resulting

complex coefficients of each of the various time factors with the

corresponding terms in Table 2.

In the experimental case of interest here (towing tank experi-

ments) finite tank length tends to limit the overall length of experi-

ment, and the incommensurate frequency approach might well be very

difficult. If it is possible to choose excitation frequencies such

that a complex periodic wave form results, relatively simple fre-

quency analysis might serve as a data reduction procedure. To indicate

the dimension of the problem in a more concrete way, all the expected

frequencies in the response to 1, 2 and 3 cosinusoids have been listed

in Table 3. In the single tone experiment there are 4 expected fre-

* quencies, in the two tone case there are 13, and in the three tone

case 32.

Tables 1 through 3 together suggest how the deterministic

identification problem might be approached. The first step would

* be to run single tone experiments to isolate Gl(w), G2 (w,-w), G2 (ww),

G3(ww,-w) , and G3(u,W,W) as noted in the discussion of Equation 7b

1' 17
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TABLE 3

FREQUENCIES PRESENT IN THE RESPONSE TO THE p COSINUSOID EXPERMENT

p I p 2 P 3

Frequency Interaction Frequency Interaction Frequency Interaction

Linear&Cubic LinearSCubic w1  Linear&Cubic

0 Quadratic 2 t2

2wl  0 Quadratic W3 "

3wl Cubic 2w" 0 Quadratic

2w2  2w1
w 1+w2  2w"
, I', 2 " 2 3"

3w1  Cubic l+w2

3w, w +W3

2wl+w 2  " 2 +W 3  "

2w -W2  " 2 - l "

2w2 +w, 1  W3-wl "

2w2 -w1  If w3-W2 ,,

3w1  Cubic

3w2

3w3
3(

2w 2 +w1  if

2w3 +W 1
2w 1 +W 2

2w 1 +W

2w,+w3  "

2w2 -wl "

3 :.1
2wl- 2  of

2w-3 w2  "

2w,w 3  
"

2w2-w 3  "
w I +W2 +W 3  It

oafS2-, 
3 "

, I- - 2+W 3"

3 + W 2 -u J o f"
18
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(Experiments with more than one excitation amplitude would be required

to separate G 1 (w) and G3 (w,w,-w).) In principle, once these special

cases are identified it would be possible to progress to the two tone

experiment. It will be noted from Table 3 that in the two tone exper-

iment seven of the 13 frequency components involve values of response

functions derivable from the single tone experiment. Thus the concen-

tration would be upon the quadratic sum and difference frequencies

and the cubic terms arising from two tone interactions. The object

of the two tone experiment would thus be to identify G2 (Wl, W2),

G (W1,-W2). the special values of the cubic response function of the

form G (w ,j,±w k), and to separate the excitation frequency response

G3 (Wj,-wjWk) from the linear and cubic response obtained in the single

tone experiment. Again in principle, the one and two tone experiments

would serve to identify all but the last four frequency components of

the three tone experiment so that there would be a reduction of the

problem of selecting three excitation frequencies such that all the

32 frequencies shown for the three tone experiments would be distinct.

19

C--- -

4



TR-2275

FREQUENCY DOMAIN SIMULATION

OF A CUBIC SYSTEM

In order to proceed much further with the present work it was

desirable to produce a specific example of a system of the third

degree in order to see what qualitative features a cubic nonlinearity

might introduce into the response to random waves, and to enable the

simulation of the "data" which would be necessary in a later attempt

at identification. A reasonable course of action was suggested by

the work of Reference 21 where a modified form of the classic single

degree of freedom roll equation was expanded in a functional series.

Thus for present purposes it was assumed that the response,

Y(t), and the excitation, X(t), of the simulated system were related

by the following differential equation:

I A Y(Ct).}j  + Bj {(t))j  + C]{Y(t) X(t) (9)3Jj=l

where Aj, B. and C. are constants and A,, B and C1 are not zero so that

the system can contain a significant linear response. In Reference 21

the constants corresponding to j-2 were taken to be zero so that no

quadratic nonlinearities were present, the equation was expanded in a

functional series to fifth degree and the frequency response functions

were derived by the incommensurate frequency technique of Reference 7.

For present purposes an expansion up to the third degree was wanted

and thus most of the work required for the present case is documented

in Reference 21. Applying the incommensurate frequency approach of

Reference 7 to Equation 9, and truncating the results at the third

degree to be consistent with the cubic model, Equation 5, results in

the following expressions for the simulated linear, quadratic and cubic

frequency response functions:

G (W) = l/D1 (i) (0)

G ( W,92 2 -D 2(-W 1 ) GI (W I) G ( 2) GI (W + W2) (11)

20
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G( -G1 (w1 + 2 + 3) LDw(i i ) G (W) G (w,) G$()

32 1 ( + 3)) G 1 3 3) G ( 1 2

3 - 3 1

+ -1 D (-W (W + W2)) G (J, w ) G (W (12)
3 2 2 1 32 1 1 2

where the auxiliary function is defined:

D (a) = A a2 + B a + C (13)n n n n

Some remarks are perhaps in order before proceeding further. It

may be noted in Equations 11 and 12 that the expressions for the quad-

ratic and cubic frequency response functions involve all the response

and auxiliary functions of lesser degree. Unfortunately, this continues

on for frequency response functions of higher degree so that, despite

the fact that the exponent, j, of Equation 9 is limited to 3, frequency

response functions of all degrees may be derived for Equation 9. In

effect, Equations 10 through 12 are not a complete solution. This is

not too bothersome in the present context since the postulated model,

Equation 5, assumes that all response functions of greater degree than

three are zero, and since all that is wanted here are a set of response

functions which have the required symmetry, and which may be evaluated.

Given the coefficients of Equation 9, numerical evaluation of

Equations 10 through 12 is straightforward. What was wanted for the

present work was one fairly reasonable system, and the selection of the

coefficients was partly arbitrary and partly trial and error. The

coefficients Al, B1, C1 were arbitrarily fixed as follows:

*A = 1I/(2v) 2

C = 1

These choices define a simple linear single degree of freedom system in

which the response amplitude ratio is unity at zero frequency and 2.0

* 21
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at resonance. The resonant frequency is 27 radians/second. Thus the

linear subsystem was made generally similar to a lightly damped heave

response to waves or a relatively heavily damped roll response to wave

slope. The implied time scale (resonant period of I second) is typical

of small model testing. It may be noted in Equations 10 through 12

that if G1 (W ) is zero, G2(Wk, 2 ) and G3 (Wk,&2,'l) will also be zerok zero
for any choice of w3 and w2" For the numerical work to be later

described it was thought to be of advantage to make sure that the

quadratic and cubic frequency response functions would go to zero if

the absolute value of any frequency argument exceeded some cutoff value.

Accordingly, in the numerical evaluation of G1 (w), provision was made

to multiply the computed value of G (w) in the range 7 < jwl < 87 by a1A

factor decreasing linearly from unity to zero. In effect, G (w) was

computed in accordance with Equation 10 in the range -77 < w < 77, the

computed value outside this range was attenuated to zero at Iwi = 8-,

and GI(w) was set equal to zero for Iwi > 87.

The next step was to select the quadratic coefficients A2 B", C2,

in Equation 9. For lack of better information, the intention -z !i

produce a quadratic frequency response function qualitatively similar

to those shown in References 15 and 16. Qualitatively, the functions

in those references are double humped in the bi-frequet.cy plane. Gener-

ally, the maximum absolute value of G2(w,w) defines the maximum of one

hump and G2(w,-w) the maximum of the other. The function tends to2

zero for bi-frequency (0,0) and to be small for large values of either

frequency component. Given the values of Al, B1, C1 established pre-

viously, G2 (w1,w) and G2 (w1,-_w) were evaluated in accordance with Equ-

ation 11 for trial and error selections of A2, 82 and C2. The first

conclusion was that C2 should be zero if G2(0,0) was to be zero. With

an initial selection of A2 and B2 which yielded reasonable qualitative
behavior of G2(w,w) and G2(w,-w), the entire function was computed. It

was found that the A coefficient produced relatively significant values
2

of response at large values of frequency argument (wIwl 0 1w2D) which

made the function qualitatively dissimilar to that desired, and this

coefficient was finally also zeroed. The final selection of quadratic

coefficients was as follows:

22i
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A, C. = 0

B= -0.265 Al

This choice yielded the overall qualitative behavior desired, a maximum

value of G-(w,-) of about unityat I 2,T, and a maximum value of

GG(, w)I of Z0.33 at the same frequency. Noting Equation 7b, for

single tone excitation of unity amplitude, these values imply a shift

in the mean of about 1/2 and a second harmonic of about 1/6.

Given the linear and quadratic frequency response functions, the

coefficients A3, B3, C3 were to be selected in order to complete the

simulated system. In this case there was no previous qualitative

guidance available since no mapping of the cubic frequency response

function for any system was available. It seemed reasonable to select

these coefficients upon the basis of the single tone response, Equation 7b;

that is, to compute IG1(2r) + 0.75 G3 (2n.27,-2n)I, which is the ampli-

tude of the response at the resonant frequency to unity amplitude

excitation at resonance. The objective was to select coefficients which

would make this result about 4/3, (2/3 of the linear response amplitude)

on the assumption that this might yield an "equivalent" linear frequency

response resembling something which might have been experienced in ship

motions experiments. Initial trial and error numerical work showed

that the A3 coefficient had to nearly vanish in order to achieve the

desired result. It was suspected, as in the quadratic case, that a

non zero A3 coefficient would produce significant values of G3(W1,w2,W 3)

for high frequency arguments. A preliminary mapping of the function

with non-zero A tended to confirm this and the final values of coeffi-3

cients selected were:

A3=0

B 3 = 0.0032 B1

C3 = 0.0075 C1

With this selection the maximum absolute value of G3 (w,w,-w) was 0.92I3

and the maximum absolute value of G 3(w,w,w) was about 0.11; that is,

the third harmonic response to single tone excitation would be about

* 23
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1/9 the amplitude of the contribution to the fundamental frequency.

This last is not inconsistent with ship motions experiments where

significant third harmonic response is rare or un-noticed. The non-

zero C3 coefficient produces a slight static softening effect which

is also not inconsistent with ship hydrostatics.

As has been previously implied, one of the main motives for the

present work has been the experimental situation where the normalized

response amplitude is not invariant with excitation amplitude as it

should be for a purely linear system. It was thus of interest to

evaluate the normalized response ("equivalent" linear response) for

the simulated system. R(w) of Equation 8 was evaluated for a number

of excitation amplitudes ("A" of Equation 7a) and the results are

plotted in Figures I and 2. The evaluations were carried out at fre-

quency steps of 7/10, the actual results are plotted as points and

straight lines are drawn between. The amplitude range chosen was

A = 0 to 5. The somewhat surprising range of the results suggested

the presentation in Figures 1 and 2. The frame at the top of

Figure 1 covers the range 0 ' A ' 2, the frame at the bottom extends

the range to 3, and Figure 2 extends the amplitude range to 4 and 5.

It is clear from the figures that the cubic nonlinearities which would

be noticeable in an experiment with the simulated system are concen-

trated about the linear resonance. Normalized response above w = 12

is essentially invariant with excitation amplitude. That below

w 3.5 is weakly dependent on amplitude. The decrease of the normal-

ized response near resonance is about as might be expected from the

method of choosing coefficients, up to an excitation amplitude of 2.

Above this amplitude the trend of response reverses and the normalized

response grows steadily with excitation amplitude. The radical trends

shown In Figure 2 probably have no qualitative parallel in known sea-

keeping experiments. On the otherhand the qualitative and quantitative

behavior shown at the top of Figure 1 for an excitation amplitude range

up to about 1.0 has been seen quite a lot, and it is conceivable

physically that nonlinearities could produce inflections in the normalized

response at a given frequency, as implied in the lower frame of Figure 1.

24
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Two interim conclusions arise. First, the simulated system

may be reasonably representative of some nonlinear seakeeping situations

so long as the magnitude of excitation amplitude is two or less. Second,

the cubic model seems capable of reflecting far more complicated quali-

0tative behavior than had been imagined at the outset.

I

I

I
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SIMULATED IMPULSE RESPONSES

The next step in the simulation was to invert the frequency

domain simulation into the time domain; that is, to derive digital

linear, quadratic and cubic impulse response functions. The time

domain operation intended was to carry out a discrete version of

Equation 5 which may be written as follows:

Y(t) -Y(n) - Yl(n) + Y2(n) + Y3(n) (14)

w h e r e : Y ~ ) 7( 

5L1n g1.X(n - j) (5

Y2(n) I g gX(n - j) X(n - k) (16)
k k

Y3(n) I I g X(n - j) X(n - k) X(n Z .) (17)
j k 9Z -k

where in terms of Equation 5:

n - t/At

j = t 1/At

k = t2/At

Z. = t 3/At

At - a sampling interval

Y(n) - Y(nAt) - the sampled response

X(n) - X(nAt) - the sampled excitation

and the digital impulse response functions are:

g! g 1(JAt) * At (18)

g -=g (jAt, kAt) . At2  (19)

gI m g (jAt, kAt, ZAt) *At
2  (20)

jkR. 3

(for integer j, k and Z.).
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The domain of the summations in Equations 15 through 17 is over

non-zero values of the digital impulse response functions. The sampling

interval must be chosen small enough that the implied trapezoidal inte-

grations are reasonable, and for the system defined in the previous

section a sampling interval of 0.0625 = At was chosen.

Computation of the impulse response functions, as in Reference 15,

amounts to carrying out numerically the applicable Fourier transform,

(Equation 3) for each of the frequency response functions for a range

of j, k and Z sufficient to allow eventual truncation of the function.

The required numerical operations were carried out with the Fast

Fourier Transform. In particular let:

1 At N

27rq
2 t N

21t r
3 = At N

and assume trapezoidal integration of Equation 3, with integer values of

p, q and r within the following ranges:

-N/2 < p 4 N/2

-N/2 < q < N/2

-N/2 < r < N/2

Then:

1 - G (2rp/AtN) Exp(i2Tjp/N) (21)gj N=
p

= I I I G2 (27p/AtN,2Tq/AtN) Expfi2Tr(jp+kq)/N} (22)igk N2 p q2

g I II I G3 (2np/AtN,2nq/AtN,2rr/AtN) Exp{i21T(jp+kq+tr)/N} (23)
ki N3 p q r3

In these equations numerical values of G(w), G2 (W1, 2) and G3 (W1 ,w 2 , 3 )

were computed in accordance with Equations 10 through 13 and the values

of the coefficients of Equation 9 which were given in a previous section.

29
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Equation 21 is exactly what the inverse Fast Fourier Transform

does, apart from the leading factor of 1/N, and that values of Gl(- )

must appear as if aliased in the second half of the complex N point FFT

frequency domain array. An additional numerical complication is that

the inverse FFT yields a "circular" time function which corresponds

properly to positive and negative values of time only if the frequency

function presented to it is zero for N/4 < 1pj < N/2. With the provision

discussed previously that G (w) = 0 for jwj > 8-n, and the value of At

selected, this requirement is satisfied for N = 128, which was the value

used throughout the computations. Once the inverse FFT is performed

g! is defined for (-N/2 + 1) < j < N/2. The value for j = -N/2 is not

defined, but the omission is not crucial since if the computation para-

meters have been selected properly the function must be negligible at

the ends of the j range.

The computation of Equation 22 is equivalent to first doing

Equation 21 N times for constant q, {(-N/2 + 1) < q < N/2}. This yields

a partial transform of G2(w,, 2 ) which is a function of j and q

(t and w ) , and N additional inverse transforms with respect to q( 2)1 2'

complete the computation.

The computation of Equation 23 is equivalent to doing Equation 22

N times for the range of r, which yields a mixed function of j, k and r

(t1, t2, and w3), and N
2 inverse transforms with respect to r(W3) complete

the work. It should be noted in this connection that with N = 128 the

computer memory requirements for Equations 21 and 22 are quite modest.

To accomplish Equation 23 with all elements in memory at once requires

of the order of four million words of memory so that in the present

instance the computation of Equation 23 was made in stages with storage

of intermediate results.

As a practical matter minimization of the necessary range of

j, k and t is advantageous in the application of the discrete impulse

responses, Equations 15 through 17. The results of the computations of

Equations 21, 22 and 23 were, in all three cases, quite small relative

to the maximum for negative values of j, k and Z. This is the result

expected from the form of Equation 9. Since the coefficients are

30
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fixed constants, the system should be realizable in real time. This

implies that g (t ,t) and g,(t,,t-,t_) should be exactly zero

if any time argument is negative, because negative time arguments imply

that the "future" must be known in order to predict the "present". The

fact that the values of the computed impulse responses were negligible

but not exactly zero is probably attributable to the truncation of

G () described previously and to rounding error in the computations.

Truncation of the computed values of g for negative j resulted
in a 65 element kernel for use in Equation 15. Figure 3 indicates the

shape of this kernel. The horizontal scale is noted in terms of time

(t, a jAt). The simulated linear subsystem appears to have a memory

of about 3 seconds. Convolution of this kernel with cosinusoidal input

and harmonic analysis of results yielded correspondence with the analy-

tical simulation, Equation 10, to about 3 significant figures.

Truncation of the computed values of the quadratic kernel, 91k#

was also carried out for negative values of the indices. This resulted

in a 65 x 65 element kernel (j,k - 0...64). Convolution of this kernel

with cosinusoidal input and harmonic anlaysis of results also yielded

correspondence to three significant figures with the analytical simu-

I lation, Equation 11, for G 2(w,), and G 2(,-w). Figure 4 is an "iso-

metric" picture of the significant part of the quadratic kernel. The

intersections of the lines denote the actual values of the kernel,

and the values for j and k greater than 49 have been omitted from the

0 picture because they are very small. The "horizontal" scales are

given in terms of time (t1 a jAt and t2 = k~t), the point 0,0 being

at the "near" corner. Though the horizontal rotation of the surface

was made slightly beyond 45 degrees to improve the appearance, the

right to left symmetry (exact in the numerical work) is apparent.

The quadratic sub-system also has a memory of about 3 seconds.

Because the third term of the discrete time domain prediction

Equation 17 involves on the order of 3N3 multiplications per response

point it was of considerable practical importance to truncate gk

as much as reasonably possible. Omitting the small values computed for

negative values of j, k and Z results in a 65 x 65 x 65 matrix for g "

31
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4.-

FIGURE 3 TRUNCATED LINEAR DISCRETE KERNEL, g1

FIGURE 4 TRUNCATED QUADRATIC DISCRETE KERNEL, g
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Examination of the computed values of this discrete kernel for large

values of the indices suggested that it would be reasonable to truncate

the kernel at j, k and X of 49 so that the final truncated kernel became

a 50 x 50 x 50 matrix (j, k, Z = o...49). Convolution of this truncated

kernel with cosinuisoidal input, and analysis per Equation 7b, yielded

estimates of G3 (w,w,-W) and G3(w,,) which compared with the analytical

values from Equation 12 to between I and 2 significant figures. This

was less precision than was desired and it was suspected that the error

was due to the truncation. However, a 65 x 65 x 65 kernel requires more

than twice the number of multiplications in Equation 17 as a 50 x 50 x 50.

The less than desired precision was accepted for the present exploratory

study in return for a significant economy.

It was of considerable interest to see what a cubic impulse

response function looks like. The function, g3 k ' is four-dimensional

so that the best approach appeared to be to look at the three dimensional

functions which can be formed if one of the three time delay arguments

is held constant. Figure 5 shows nine of the 50 possible surfaces which

may be examined by holding Z(t3) in gJkk constant. The quasi-isometric

projection is the same for each surface and is almost the same as that

used in Figure 4 for the picture of the quadratic frequency response

function. The "vertical" scales in each surface are the same. The

"horizontal" scales in each case are annotated in terms of time delays

tI and t2 , and the constant value of t 3 is noted to the right of each

surface. The surface for t3 = 0 is essentially flat to the resolution

shown, as is that for t3 = 3.0625 (Z = 49). Between t3 = 2 and 3 the

"ripples" shown in the surface at the top of the figure gradually die

out, so that the surfaces shown include the significant parts of the

cubic impulse response. Since by assumption:
I

g 3 (t 2 ,tit3) g3 (tl t t3)

there is exact right to left symmetry in each of the surfaces. The numer-

ical results show the required symmetry in the t3 direction as well, so

that the same pictures would have been obtained had tI or t, been held

constant and the surfaces drawn as functions of the remaining two time

delays. It appears that the cubic sub-system has about a 3 second memory.
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Qualitatively, there appears to be no feature of any of the surfaces

shown in Figure 5 which are different than might be expected in a

quadratic impulse response.
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TIME DOMAIN COMPUTATIONS: PRACTICAL MATTERS

As is easily appreciated, direct implementation of the time domain

computation of Equation 14 with a (50 x 50 x 50) cubic kernel is relatively

expensive, and is in fact wasteful of time and computer memory because of

the symmetries of the impulse functions. (The convolut;ons mentioned in

the last section were carried out with the methods to be described.)

There is nothing which can be done to speed up the linear part of

the computation (Y1(n), Equation 15) and in practice it is implemented

as-is. Some re-organization, and the two-fold symmetry of the quadratic

frequency response function, g^k' allows the number of multiply-add

operations in Equation 16 to be reduced by a factor of something more

than two. If the limits of the j and k summations in Equation 16 are

defined as:

p j < r

the Equation 16 may be re-written as:

Y2(n) = g2 X2 (n - r)
rr

r-1 f r
+ I X(n - J) X(n - j) + Z 2gik X(n - k)1 (24)

j=p k=j+l

In practice it is advantageous to "triangularize" the quadratic kernel

for use in Equation 24. This just takes the form of creating a one

dimensional array of values of g2 in the order required by the details

of the formula. Equation 24, and absorbing the factor of two in each of

the elements wnere j # k.

It is clearly most important to take advantage of the six-fold

symmetry of 3 in Equation 17:

j JZk

3

= gjk

-- gkj
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As in the quadratic case the limits on the summations in Equa-

tion 17 may be defined as:

p k< r

p~ k' < r

With these conventions Equation 17 may be re-written as:

Y3(n) _ X2(n-p) gp3 X(n-p) + 3g3 X(n-P-1)j
(ppp p~~

+ X(n-p-1) rX(n-p-i) [g3 X(n-p-1) + 3g3  X(n-p
tp+,p+1,p+1 p p+,p+1

r _
+ I X(n-j) y(n-j) X(n-j) + 3gj X(n-k

j=p+2 LJJJ k=p jk

j-1
+ 1 3gk X2 (n-k)

k=p kk

j-I k-I
+ I X(n-k) I 6gk X(n-)

k=p+l Z=p JkZ (25)

"Triangularization" of the kernel in this case reduces the size of the

kernel by a factor of 6 and allows the factors of 3 and 6 to be absorbed.

The scheme is the same as for the quadratic kernel, a one dimensional

array of values of g3  is created in the order required by the detailsjkZ
of the formula, Equation 25. This approach, Equation 25, reduces the

number of multiply-add operations per response point required for Y3(n)

with a 50 x 50 x 50 kernel from 375000 for Equation 17 to 24600, a

reduction by a factor of 15.

In actual programming account has to be taken of the memory of

the system, and the result is that the first valid point of the response

to X(n), n=1,2... is Y(1+r), and the excitation must be available for

p points past the last response point computed. In the present instance

only the valid range of response and excitation was retained.
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SIMULATION OF RESPONSE TO RANDOM EXCITATION

Within the objectives of the present work it was as important to

obtain a qualitative idea of the nature of cubic response to random

excitation as it was to generate samples with which to work later on.

Accordingly, given the kernels of the simulated system, and the algorithms

just described, it remained to generate random excitation sequences and

turn on the computer.

For this purpose it was convenient to use a subroutine left over

from some previous work, Reference 23 . What the subroutine does is to

generate digital sequences from a pseudo random band passed Gaussian zero

mean process. In the routine utilized the numerical band pass filter is

configured so that the resulting sequence nominally has the spectral

form:

Ux( = 5a2 W 4 Expf-.25(o /w)}I,5 (26)xx x 0 0

where U (w) = the single sided spectrumxx
a2 = spectrum area

x
= variance

w = modal frequency

and the values of variance and modal frequency may be specified. This

spectral form is the same as those of the ITTC two parameter, Pierson-

Moskowitz, and Bretschneider wave spectra. The algorithm is not unusual.

Random numbers from a uniform distribution are first generated by a

standard computer system utility. These numbers are conceptually assumed

to represent a Gaussian probability and a numerical approximation is then

used to generate zero mean Gaussian deviates with unity variance and a

"white" spectrum. The approach has been checked statistically with very

large samples and found to reasonably represent the required zero mean

white Gaussian process within 5 standard deviations. The next step is

to filter the sequence numerically to shape the signal, and finally to

carry out time wise interpolation to generate a sequence with the required

sampling interval.

23. Dalzell, J.F., "A Note on the Distribution of Maxima of Ship Rolling,"
Journal of Ship Research, Vol. 17, No. 4, December 1973.
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In the present case the sampling interval was fixed at 0.0625

seconds by the previous derivation of the impulse responses. It seemed

reasonable for a first attempt to set w = 27r so that the peak of the

spectrum and the linear resonance would be aligned. For present purposes

it was desirable to compute response for various excitation levels, and

it made sense to take account of the homogeniety property. In particular,

if Yl(n), Y2(n) and Y3(n) (Equations 15 through 17) are computed for

some nominal level of excitation and stored, then the response to an

excitation which is a factor "f" times the nominal is:

fYl(n) + f2 y2(n) + f3y3(n)

which is to say that once the computation of Equations 15 through 17 is

made for one excitation level, Equation 14, the total response, may be

evaluated for any number of linearly proportional excitations with

trivial extra expense. On this basis it was decided the nominal vari-

ance, 12, of Equation 25 should be 0.0625 so that a is 0.25 and thex x
"significant height" of the basic excitation would be unity.

What remained to be settled was the sample duration. The routine

used had provision for 11 widely separated entry points into the under-

lying pseudo random number sequence. It seemed realistic then to gener-

ate 1i samples of a duration similar to that ordinarily achieved in

towing tank work. Thus 2100 point (131 second) durations were chosen

for each sample. (This choice results in about 150 "wave" encounters,

and broadly corresponds to what is often achieved in towing tank exper-

iments at zero ship speed.)

Figures 6a and b indicate the time histories resulting for

Sample I with the basic excitation level (a = 0.25). The entirex
sample is shown in two figures so that individual flucuations are more

visible. At the top of each is the excitation, X(t). The three frames

in the middle show the three components of the response, Y1(t), Y2(t)

and Y3(t). Finally, at the bottom the sum, or total response Y(t),

Equation 14, is shown. It should be noted that the vertical scales

for the response components are different; the scale choice was made

so as to show the nature of each component.
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Qualitatively, the linear and quadratic components are exactly

as expected. The linear response appears statistically symmetric and

contains a narrower band of frequency components than the excitation.

The quadratic response is quite asymmetric, includes a non zero mean,

and response at very low frequencies as well as a visible high frequency

response which is predominately twice the typical linear response

frequency.

No ideas about the qualitative nature of the cubic component,

Y3(t), were available, and it was this question which occasioned the

plotting of time histories. As is clear from Figure 6, the simulated

values of the cubic component contain "bursts" of response which appear

symmetric and largely to have the same frequency content as the linear

response. These bursts of significant cubic response appear to be

associated with groups of waves in the excitation, and with significant

excursions of the quadratic response, Y2(t). No obvious high frequency

components appear in Y3(t). In retrospect, some of this qualitative

behavior of the cubic component of response might possibly have been

predicted. The simulated cubic frequency response function, G3 (tw"2,),

Equation 12, contains the quadratic frequency response function. Thus

some qualtiative relationship should result. It was found in the pre-

vious numerical evaluations that the cubic response at the third harmonic

of excitation frequency was an order of magnitude smaller than the cubic

response at the excitation frequency, and a general absence of high

frequencies from the cubic response could have been expected on this

basis.

It was of interest to see if the qualitative features of the sim-

ulated nonlinear response held from sample to sample. To this end a

number of the remaining samples were also plotted. Figures 7 and 8 are

examples. Sample 4 was found to contain the highest excursion of

cubic response of all the eleven samples. This largest excursion of

Y3(t) is shown at about t=5 seconds in Figure 7. Sample 11 was found

generally to have the lowest level of cubic response, and half of this

sample is shown in Figure 8. The qualitative nature of the simulated

cubic response to random excitation appears to hold throughtout the

simulated data.
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A general comparison of the total response, Y(t), in Figures 6

through 8 with the corresponding linear component, Y1(t), indicates

almost no qualitative difference. At the basic excitation level the

nonlinearities are too small to have much effect. Those quantitative

changes which are visible are most easily seen in the first part of

Figure 7. There the largest nonlinear responses in the entire simu-

lation produce a non symmetric response and perhaps slightly increase

the amplitude of the fluctuations relative to those of the linear

component.

It was also of interest to see the qualitative effect "Don the

total response, Y(t), of an increase in the excitation leve,, .

Figures 9a,b, 10 and 11 indicate this for an excitation four times the

nominal (a = 1.0) for the cases shown in Figures 6 through 8. Inx

accordance with the previous discussion, the synthesis of these results

amounts to multiplication of the basic excitation and linear response

by 4, multiplication of quadratic response by 16, and multiplication

of cubic response by 64 before making the summation for Y(t). Thus

the time histories in the top four frames of Figure 9a for instance

are exactly the same as those in Figure 6a except for a scale change.

The qualitative difference is in the bottom frame, Y(t). It is clear

from Figures 9 through 11 that once the excitation level is high enough

there are significant qualitative differences between the linear and the

the nonlinear response to random excitation, and the differences center

about occasional non symmetric large amplitude excursions which change

the general appearance of the time history.

Though some of the features of the total simulated response in

Figures 9 through 11 may be a bit more extreme than some response his-

tories obtained in towing tank experiments, some of the same behavior

is occasionally seen.
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THE SPECTRUM OF RESPONSE TO RANDOM EXCITATION

Regardless of the possibility of nonlinearities, the scalar spectra

of excitation and response are the fundamental state of art approach to

the characterization of the random case. The theoretical form of the

spectrum for the present model, EQ'tation 5, may be written down from

References 4 and 7. For subsequent purposes it is convenient to cite

the results fir,t in a particular two-sided form. If,

S (2 = excitation spectrumxx

S () = response spectrumYY

where both are double sided and normalized so that their integral over

frequency is equal to (2r) times variance, then the response spectrum

for the linear+quadratic+cubic model may be written in terms of frequency

response functions as follows:

Syy(W) =S1(W) + S'(W) + S ( (L7)

and:

i (w)=S (w)2 G1  + G3 (W,v,-v) S (v)dvi2  (28)
1i = xx( 2G7) ,_... xx

S(W) I JIG (w-u u) S (w-u) S (u)du (29)2( r , xx xx

3(W) ff SxIG,(-v-uvu)2 S (w-v-u) S (v) S (u)dudv (30)3 = j 3 xx xx xx

By way of comment, if the cubic frequency response function is zero

the form of the spectrum is the same as that for the linear plus quadratic

system of Reference 15. If both cubic and quadratic frequency response

functions are zero, the result is the conventional linear estimate.

In practice, as opposed to theoretical manipulations, the one

sided realizable spectrum with area equal to variance is required, and

the above equations may be written in terms of one sided spectra by

50
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replacing S xx( and S yy( by -U (2 and -U () where

U () = the single sided excitation spectrumxx

Uyy(M = the single sided response spectrum

Carrying this and some simple variable changes out results in expressions

for the single sided spectra which are analogous to Equations 27 through 30:

U yy() = uW(w) + U2(w) + U3(M (31)

where (w > 0) and:

UI() = Uxx(w) IG () + 3 f G3(a'v,-v) U xx(v)dvl2  (32)

0

co

u3(w) = 1.5 IG3(W-v-u,vu)l2 U xx(IW-v-ul) Uxx(ivl) Uxx(lul)dudv

(34)

Implicit in Equation 34 is a failure to find a change of variables

which would allow reduction of the range of integration. Given the
excitation spectrum and expressions for the frequency response functions,

Equati.,ns 32 through 34 are computable, though Equation 34 is tedious.

If, as in the present case, there is interest in response spectra for
excitation which is linearly proportional to some nominal excitation,

the integrations in Equations 32, 33 and 34 need only be done once.

(Once the integrations are performed for a given Uxx(w), the integrals
for an excitation a factor "~f" times the original are the initial results

times (f2k) where k is the number of times U xx(M appears in the integrand.)

It was of interest both to see if all the above works and to

obtain some idea of the relative influence of the various terms. Thus

it was decided to compose simulated time histories for various levels

I of excitation, carry out conventional spectral analyses, and finally

do the computations implied in Equations 31 through 34 for comparison.
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The first step in this operation was to produce time histories of

X(t) and Y(t) for excitations 1/2, 1, 2, 3 and 4 times the nominal

excitation specified in the last section. As explained previously,

given the stored time history components Yl(t), Y2(t) and Y3(t) for

the nominal excitation, the production of X(t) and Y(t) for each excit-

ation level is a trivial exercise. Once it is done, the resulting time

series appear more or less like any samples of random input and output,

and conventional data reduction techniques can be employed.

Spectrum analysis of each time history was first carried out by

the conventional Fast Fourier Transform frequency smoothing technique

noted in Reference 24". Each time series was truncated from 2100 to

2048 points, corrected to zero mean, tapered with the Tukey 10% cosine

taper and directly transformed with the FFT. The raw spectral estimates

resulting were averaged in groups of 13 at intervals of 7 to result in

spectral estimates with 26 degrees of freedom and a frequency resolution

of 0.344 rad/sec. For each excitation level there were 11 such spectra

resulting from this operation on excitation and response. Since each

time history is a sample from a stationary random process it was con-

sidered reasonable to also carry out ensemble smoothing over the 11

samples for each excitation. Thus the final result for each of the

five excitations was a single smoothed "observed" excitation spectrum

and a single "observed" response spectrum. Each of these spectra had

286 degrees of freedom per spectral estimate, which implies 90% con-

fidence bounds on the estimates of +15% and -12%. Total degrees of

freedom for the excitation spectra were in excess of 3000, which implies

90% confidence bounds on variance of ±4%, and in fact the estimated

variance was within 2% of the theoretical value specified in the original

time domain simulation. Total degrees of freedom for the "observed"

response varied between 1500 and 2500, which would result in confidence

bounds on variance of ±5% if the response could be considered Gaussian.

Table 4 summarizes the "observed" standard deviations from the data re-

duction procedure. It should be noted that the "observed" values of

24. Bendat, J.S. and Piersol, A.G., "Random Data: Analysis and Measure-
ment Procedures," John Wiley & Sons, 1971.
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TABLE 4

"OBSERVED" STANDARD DEVIATIONS OF EXCITATION

AND RESPONSE FOR VARIOUS NOMINAL EXCITATION LEVELS

Factor on
Nominal Excitation 0.5 1.0 2.0 3.0 4.0

Nominal a 0.125 0.25 0.50 0.75 1.00

"Observed" a 0.124 0.248 0.496 0.744 0.992

"Observed" a 0.181 0.356 0.673 0.971 1.396Y

C /a 1.46 1.44 1.36 1.30 1.41
y5x

I
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standard deviation, o , march upward exactly as expected--the operations

carried out on the excitation time histories can only result in an in-

crease in standard deviation proportional to the assumed factor on

nominal excitation. The "observed" response standard deviations are

not exactly proportional to the assumed factor on excitation as must

be expected for nonlinear systems.

The next step was to carry out the "prediction" operations of

Equation 31 through 34. The frequency response functions for the sim-

ulated system, Equations 10 through 12, had been programmed for earlier

operations to that numerical values for the functions could be obtained

easily. Apart from carrying out the operations, the only other question

was whether to use the theoretical expression for U (w), Equation 26,xx

or the "observed" excitation spectrum from the data reduction procedure.

It was guessed that use of the "observed" excitation spectrum might

wash-out some of the residual effects of statistical variability and

the results of the data reduction were used as the excitation in the

evaluation of Equations 31 through 34 for the five cases of interest.

Figures 12 through 16 summarize the results of the comparison.

Each figure has four frames with frequency the abcissa and spectral

density the ordinate. The "observed" excitation spectrum is shown in

the uppermost frame, and the "observed" response spectrum in the lower

most, both plotted as boxed points connected by straight lines. The

"predicted" response spectrum, Equation 31, is overplotted in the

lower frame. The middle frames indicate the Ul(W), U2(w) a'ed U3()

components of the prediction, Equations 32 through 34. Finally, as

an aid in interpretation, the purely linear estimate of tOe spectrum

is indicated. This is just what would be obtained if both quadratic

and cubic nonlinearities were ignored, or:

Uxx( ) IG1(W)I?

In Figure 12, for the lowest excitation level, it is clear that

the nonlinearities would be of no practical importance. U2(,) and U3(,,)

are invisible and the influence of the cubic nonlinearity upon tlC.) is

very slight. The agreement between observed and predicted response spectra

54
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is almost embarrassingly good. Very much the same situation appears in

Figure 13 for the nominal excitation, -x = 0.25. The very low frequency

response spectral density due to quadratic interactions, U2(_), just

starts to appear, and the influence of the cubic nonlinearity on UI(-)

is slightly greater than in Figure 12.

In Figure 14 the influence of the U3(w) component, Equation 34,

just starts to appear. Figures 15 and 16 for o = 0.75 and 1.0 indicate

the form of the contributions to the spectrum of all three components.

The nonlinear part of UI(w), Equation 32, can significantly change what

might be expected from purely linear considerations. U2(w), the quad-

ratic part, make. a contribution to very low frequency response,

perhaps to frequencies in the excitation range, and contributes some

high frequency response at frequencies about a factor of 2 above the

excitation peak. U3(w), the pure cubic part, is only significant at

the highest excitation level, and makes a contribution in the range

of the peak of the spectrum.

It is impossible to generalize, but if the simulated system is

representative, it may be that in many practical seakeeping problems

only the first component of the spectrum, uI(w), will be of importance.

One of the most common operations in analysis of random wave

experiments is to estimate the modulus of the linear frequency response

function by taking the square root of the ratio of observed response

and excitation spectra:

1G1(w)iestimated = [Uyy(W)/Uxx(W)1

This operation was performed using the "observed" response and excitation

spectra just presented. The results are shown in Figure 17. In accor-

dance with usual practice no results are given for frequencies where

the excitation spectrum was less than 10% of its peak.

The equivalent linear response appears to vary systematically

with excitation level a . As excitation level increases the results
x

deviate more and more from the form of the simulated linear response
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function, until finally there is no resemblence. The changes at the

ends of the frequency range shown in Figure 17 are clearly due to quad-

ratic response (U2(.)). The changes in midrange resemble those noted

in Figure I for the influence of the cubic nonlinearity on the response

to single tone excitation.

As in the discussion of the qualitative features of the response

to random excitation of the simulated cubic system, the response spectra

for excitations of c = 0.75 and 1.0 deviate from linear expectations by
X

amounts which might be considered extreme by comparison with towing

tank experiments. However, the magnitudes of nonlinear distortion for

values of o up to 0.5 is in line with what has been occasionally ex-

perienced. It thus appeared that the simulation was reasonably realistic.
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IDENTIFICATION THEORY FOR THE RANDOM CASE

It is clear from the preceding section that the ordinary scalar

spectrum analyses of random excitation and response provides no means

of identification of frequency response functions. What scalar spectrum

analysis can provide is an indication if nonlinearities are serious or

not in the case where data is available for a range of excitation levels.

The problem of interest here is whether or not the three postulated

frequency response functions arising from the basic model, Equation 5,

may be identified from samples of random excitation and response.

To begin, the assumptions about the excitation previously noted

should be re-stated. It is accepted that the excitation is strictly

stationary with bounded moments of all orders. For present purposes

the conventional further assumptions about a wave process will also

be made; that is, the excitation will be assumed to be an ergodic

Gaussian zero mean process. The autocorrelation function of the

excitation will be denoted:

R (T) = X(t) X(t- T) (35)xx

where the overbar denotes the temporal mean, and by assumption the

statistical expectation. The two sided spectrum of the excitation will

be defined as:

Sxx (W) = Rxx(T) Exp (-iwT)dT (36)

where, as before, the integral of the spectrum is 2 7 times the variance,

R xx(0). Given the Gaussian zero mean assumption, all the expectations

of higher order products are either zero or are defined in terms of

R xx(T), Equation 35. Appendix A summarizes the expectations of up to

sixth order products from Reference 25*.

The general analytical approach in the present section of the

report will be to hypothesize certain statistical time domain moments

25. Laning, J.H., and Battin, R.H., "Random Processes in Automatic
Control", McGraw-Hill, 1956.
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of response and excitation, and then invert the resulting expressions

to the frequency domain. In this operation frequert use is made of

an n-dimensional form of Parseval's formula as given in Reference 4.

For convenience this formula is given in Appendix B.

The first response moment of interest of the cubic model, Equa-

tion 5, is just the temporal mean. Taking the temporal mean of

Equation 5:

Y(7t = g (t, ) X(t - t)dtt

+ g2 (tlvt ) R (t, - t-)dt,dt-3 1' 2xx -

+ JTg(t1,t2,t3 ) X(t -t 1  X(t -t,) X(t -t.,)dt,dt-dt,

= g2 (tilt 2 ) Rxx(t1  - t,)dt1dt,

- - f G,(w,-w) Sx (w)dw (37)

where the derivation follows that of References 8, 14, and 15. It may be

noted that this result for the cubic model is exactly the same as that

for the quadratic model, Reference 15, because the odd order temporal

means are zero for the assumed Gaussian excitation process.

Because cross-spectral analysis is a very common technique in

the analysis of linear random processes, it is of interest to look at

the cross spectrum between excitation and the nonlinear response model.

The two sided cross spectrum may be defined as:

S yx() = (T) Exp (-iwT)dT (38)

where the cross correlation function between X(t) and Y(t) is defined:

R( F(Y yt) - '77t) X(t + T k39)

Substituting the model for Y(t), Equation 5, into Equation 39, elimin-

ating temporal means of odd products of Gaussian variables, applvyng
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the expression for fourth order expected values, Appendix A, and taking

advantage of the symmetry of the impulse functions results in a further

expression for the cross correlation:

Rx() = g, (t,) R (- + t.)dt,
yx xx

+ 3 ,,'' t:P ) )Rxx(t -t )R ( + t )dt dt -

+ 3 g t 1 _ xx
(40)

Now substituting Equation 40 into Equation 38, and applying the n-

dimensional Parseval formula, Appendix B, results in the following exp-

ression for the cross spectrum:

3

Syx(W) = Sxx(W) iG1(U') + - G3(w,v,-v) S xx (v) d (41)

Just as in the linear+quadratic case, Reference 14, the quadratic con-

tributions drop out. The result in Equation 41 is similar to the first

(and possibly most important) component of the scalar spectrum, Si( ,

Equation 28.

The ordinary coherency between excitation and response is defined

as:

yx2 (w) = Is (w)12/{S ( ) S () (42)
YX yx yy xx

Now substituting Equation 27 and Equation 41 into Equation 42, and

noting Equation 28, the theoretical expression for the coherence becomes:

2 () -1 -- (43)
yx s,( 7 + s77;

1 + - SI()-S ( )

where Sl(w), S2(.) nd S3 (,;) are defined in Equation 28 through 30.

Clearly, the theorttical coherence cannot be exactly unity as in the

fully linear case. However it will approach unity as the excitation

level decreases. In the discussion of the spectra of the simulated

process of the last section it was noted that at intermediate levels of
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excitation S,( ) and S3() may be negligible in comparison with S1 (-)

while at the same time Si(w) does not correspond to the linear

(negligible excitation) case. Relative to the interpretation of

actual data, this suggests that there may be situations where the

sample coherency may appear reasonable at many excitation levels

(suggesting a linear response), yet the apparent frequency response,

Syx ())/S xx(), varies with excitation level (suggesting a nonlinear

response). Something like this can be inferred from some of the

results in Reference 26, though effects of short samples therein

makes the conclusion tenuous.

It is clear from the theoretical form of the cross spectrum,

Equation 41, that if the system of interest has a significant cubic

response, the identification of the linear frequency response function,

GI) , by conventional cross spectrum analyses would require a very

large number of independent experiments at various excitation levels.

For example, if it was thought reasonable to discretize the integral

in Equation 41, and if S (w) could be represented by 20 discretexx

values, Equation 41 might be written as an algebraic equation in 21

complex unknowns for each value of w, and reasonable results niyht

perhaps be obtained with data from 40+ independent experiments.

Clearly, Equation 41 is unsatisfactory as a basis for identification

of the linear function unless an approach for G3 (w,v,-v) can be found.

In previous work with the linear+quadratic model an identifi-

cation technique called cross-bi-spectral analysis was used to identify

quadratic frequency response functions. The cross-bi-spectrum may be

defined as follows:

S Yxx (WIW 2 ) = ff RYx x (t4 ' t S) Exp (-iwlt4 - iw2 t t4 dt 5  (44)

where the third order correlation function R yxx(t 4,t5) is written:

R yxx(t 4,t5) = (Y(t) - YT7} x(t - t) X(t - t5) (45)

26. Dalzell, J.F., "Some Further Experiments on the Application of Linear
Superposition Techniques to the Responses of a Destroyer Model in
Extreme Irregular Long-Crested Head Seas," Davidson Laboratory
Report 918, September 1962.
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It should be noted that this definition corresponds to that of Refer-

ence 10, and that the definitions given in References 14 and 15 are

for a "modified" cross-bi-spectrum which is defined in terms of sum

and difference frequencies ( + I.:) and (,j - U) " (The "modified"

cross-bi-spectrum has some computational advantage.)

When the basic model for the response, Y(t), is substituted into

Equation 45 there results:

Ryxx(t 4't5 f 9 (t) X(t - t 'X(t' - t 5 )dtI

+JJ9 _(i~ )Xt t 1 )Xt t2 ) 1 -t4 )X -t5) d 12

+ f 93 g(t 1 t 29,t3).

fX(t - t) X(t - t 2 ) X(t - t3 ) X(t - t 4) X(t - ts5 dt1 dt2dt3

- 'X)"Rx(t4 - t ) (46)

Under the assumptions given for the excitation the expectations of

products of an odd number of excitation variables are zero, Appendix A.

Thus the terms involving linear and cubic impulse response functions

drop out, and the quadratic impulse response is isolated.

Applying the expressions for the fourth order expectation,

Appendix A, and noting Equation 37, Equation 46 becomes:

R Yx x (t 4 t) = 2 ff g2(tl't2) R xx(t - t ) Rxx (t 2- t )dt dt2 (47)

Finally, applying the Parseval formula, Appendix B to Equation 47, and

noting the defintion of the cross-bi-spectrum, Equation 44:

Syxx(, 2 ) - 212(WW 2 ) S xx (W 1 ) S xx(W 2 )  (48)

From this result an estimator for the quadratic frequency response

function becomes:

SyxX (( W 2 )32(w' 2) "2 S XX (w S XX (w2 )  (49)

67

MI



TR-2275

This estimator is analogous to that of References 14 and 15. The impor-

tant point relative to the present investigation is that, with the

Gaussian assumption on the excitation, cross-bi-spectral analysis iso-

lates the quadratic frequency response whether or not a cubic non-

linearity is present.

Now if a third order correlation function Rx2 (t,,t 2 ) is formed

by replacing the response in Equation 45 by the square of the

excitation:

Rx2xx(tlt 2) = {X2 (t) - x(T)- x(t - ti ) X(t - t 2 ) (50)

and the double Fourier transform is taken as in Equation 44, there

results the cross-bi-spectrum between excitation and excitation

squared:

Sx2x(w 1 'w2 ) = ff Rx2xx(t 1 't2 ) Exp(-iwltl - iw 2 t 2 )dtldt 2

- 2 S ( ) Sx( (51)

where the derivation follows that in Reference 15. Accordingly an

alternate identification technique may be written:

S yxx(lI 2 )

G2 (w,') = S (52)Sx2xx( , 2 )

Thus the quadratic frequency response function may in principle be

estimated by the ratio of cross-bi-spectra, and this approach was noted

in Reference 15 as resulting in improved estimates.

The theoretical approaches to the reduction of random data which

have just been discussed have been available for some time. The next

logical step in the present work was to look for an approach with which

there might be hope of isolating the cubic frequency response function,

or at least parts of it. It seemed reasonable to proceed by analogy

with cross and cross-bi-spectral theory and postulate a fourth order

correlation function of the form:

Y(t) X(t- t 4 ) X(t - t 5) X(t - t 6 )
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It should be clear from a comparison of this form with Equations 45

and 46 that the quadratic contributions to such a correlation will drop

out and the linear and cubic parts will stay. Substituting the model,

Equation 5, into the postulated form, expanding the expected values in

accordance with Appendix A, and taking advantage of symmetry results

in the following:

Y(t) X(t - t4 ) X(t - t s) X(t - t6) =

SJ glt LRxx(t - t) Rxx(t - t)

+1t Rxx(tl t4 ) Rx6 4  o

xx 1 5 xx 4~ 6

+ Rxx(t i - t6 ) Rxx(t4 - t5)]dt1

+ g(tFt'Q Rx(t - t ) R (t - t ) R (t - t )
1'f 2' 3 x 2 xx 3 4 xx 5 6

+ Rxx (t I - t) R xx(t 2 - t4) R xx(t 5 - t6)

+ Rxx(t 2 - t3) Rxx(t i - t4 ) Rxx (t5 - t6)

+ Rxx(t t2 ) R xx(t 3 - t5) Rxx(t 4 - t6)

+ R xx (tI -t 3) Rxx(t 2 - t5) Rxx(t 4 - t6)

+ Rxx(t 2 - t3 R xx(t I - t5) R xx(t 4 - t6)

+ Rxx(t 1 - t2) Rxx(t 3 - t6) Rxx (t4 - t5)

+ Rxx(tl -t 3) Rxx(t2 - t6) R xx(t 4 - t5)

+ R(t 2 - t) Rxx(t i - t) R xx(t 4 - t 5 dt dt 2dt3

+ 6 93(tit 2t 3) R xx(t -t 4 R x(t 2 t 5 R xx(t 3 t 6)dt 1dt 2dt3

(53)

The problem with the expression, Equation 53, is that it contains a

linear contribution just as in the cross spectrum, Equation 40. An
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apparently workable approach to this problem is provided by Reference 4

in a treatment of partially orthonormal functional expansions. By this

means a fourth order correlation function was postulated as follows:

R (t ,t5,t) = EIIY(t) - YT IT !X(t - t ) X(t - t X(t - t)

- x(t - t) x (t - t) -x-t -- t7)

x(t - t') X(t - t x(t - tj)

-X(t - t 6) X(t - t 4 X(t - tS5T (54)

where the expection operator implies that temporal means are to be taken.

Now expanding Equation 54 and eliminating terms involving the expecta-

tions:

X(t - tj) and X(t - Q X(t - Y5 ) X(t - t6)

according to the Gaussian zero mean assumption:

Ryxxx(t ,t5,t 6  Y(t) X(t - t4) X(t - t5 ) X(t - t6 )

-R (t - t 6 ) Y(t) X(t - t5)

-Rxx (t 5 - t6) Y(t) X(t - t4)

Rxx(t - t5) Y(t) X(t - TT' (55)

Now considering terms of the form of the last three terms of Equation 55:

Rxx(t j - tk ) Y(t) X(t t

= f g1 (t1 ) Rxx(t1 - tZ R xx(t. - tk)dt1

g3 (t19t,t 3) [Rxx(tI - t) R(t -t 9)R xx (t j tk)

+ a(t - t 3) Rxx(t. tz) Rxx(tj k)

+ Rxx (t, - t 3) Rxx (t1 - t ) Rxx (tj tk)]dt dtdt3

(56)

70



TR-2275

where as before, the model, Equation 5, has been substituted and the

expected values expanded. Comparing Equations 55 and 56 with Equa-

tion 53 it may be seen that the effect of the last three terms of

Equation 55 is to cancel out the first two integrals in the expression

for Y(t) X(t - t ) X(t - t 5 ) X(t - t 6), Equation 53. Thus the postu-

lated fourth order correlation function comes down to:

Ryxxx(t4 ,t5,t) = 6 f/f g3 (t1 ,t2,t 3 )_

R xx (t 1 - t4 ) Rxx(t 2 - t5 ) R xx(t3 - t 6 )dtI dtt3

(57)

Now applying the Parseval formula, Appendix B, to Equation 57:

R yxxx(t 4,t ,t6 )

6 rrG (WIPW2 ) S (W ) S(W) S (W

77, " J G3 S2 ' 3  xx 1 xx 2 xx 3

Exp{(w1 t4 + W 2 t5 + W3t6)}dwIdw2dw3 (58)

Equation 58 is in the form of a triple Fourier transform of a function

of frequency. Inverting, the cross-tri-spectrum will be defined as:

Syxx(w I 9w 3 = 6 G3( lV2,w ) Sx(WI Sxx(W 2 ) Sxx(W 3

fJ{ Ryxxx ( t t 5 3 (t ) Expiw It - i2 t - iw t )dt dt dt

(59)

Thus, if the cross-tri-spectrum can be evaluated,an estimate for the

cubic frequency response function becomes:

G Syxxx (W1 , 2 ,W3 )
G3 ' 2 6 Sxx(W ) S (W) xx (3) (60)

This estimator is clearly analogous to that for the quadratic response,

Equation 49. As in the case of the cross-bi-spectrum, the cross-tri-

spectrumn cannot be appreciable unless the excitation spectrum is

appreciable at all three frequencies.
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By analogy with the development of Equations 50 through 52, a

special fourth order correlation function may be formed by replacing

the response, Y(t), in Equation 54 with the cube of excitation:

- x(t - t I)  X(t - t 2)  x(t - t 3)

- x(t - t 1 )(t - t)) x(t - t )

- X(t - t3) X(t - t2) X(t - t 1)f (61)

Taking the triple Fourier transform and reducing:

Sx3xxx(wl,w 2,w3) = JJJ Rx3xxx(tlt 2,t3)

Exp (-iwlt- iw2 t2 - {L'3 t3)dtldt2 dt3

= 6 S Sx (w)SX(2) Sxx(W 3) (62)

Accordingly, an alternate identification form for the cubic frequency

response function becomes:

'9 Sx x(l'2 )yxxx (Wl'W2' 3) (63

G3 (i , 32,n3) = xw1 u 2  T (63)

Thus, as in the quadratic case, the cubic frequency response function

may in principle be estimated by the ratio of cross-tri-spectra.

It may be noted that there is a very significant difference in

form between the fourth order correlation, Ryxxx(t4 t5,t6), Equation 54,

and the second and third order correlations, R yx(T) and Ryxx(t4,t5) ,

Equations 39 and 45. This is the presence of the terms of the form:

Rxx(t - tk ) Y(t) X(t - 7

which is expanded in Equation 56. When the triple Fourier transform of

72

frm



TR-2275

Equation 56 is taken and a reduction by means of the Parseval formula,

Appendix B is carried out the results are of the form:

jk Sxx S xx ".

[G (W) + -L G G(v,-VIW ) S (v )d v]

where rjk = 1 if wj = k

= 0 otherwise.

Thus the triple transform of the fourth order correlation analagous to

the second and third order correlations, Equation 53, contains delta

functions and the subtractive terms in the correlation function expressed

in Equation 54 are for the purpose of canceling them out. With respect

to the tri-frequency space in which the cross-tri-spectrum is defined

the delta functions lie in the planes:

WI =-w

W 1 -W3
W1 -W3

W = -W
2 3

and if they are not removed somehow cross-tri-spectral estimates of

the form S (v,-v,w) will be distorted, perhaps very badly.yxxx

If the qualitative results from the simulation are applicable

in general, the surface defined by tri frequencies of the form (v,-v,w)

would involve the portion of the cubic frequency response function

of most practical importance. Accordingly this portion of the

function must be dealt with,whatever unpleasant turns the delta functions

make in the numerical analysis.

The foregoing was about as far as identification theory could

be pushed in the present work. Several similar avenues of approach

(other forms of correlation functions) were attempted, but with no

better success, and in general the same form of result. Most impor-

tantly, no relatively clean approach to the identification of the linear

response function could be developed. The conclusion with respect to

making further progress was to postulate the following identification

strategy:
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a) Cross-bi-spectral anlaysis for the quadratic frequency

response function, Equation 49 or 52.

b) Cross-tri-spectral analysis for the cubic frequency

response function,especially the values of

G3(v,-v,w), Equation 60 or 63.

c) Carry out a standard cross-spectral analysis and make an

estimate of G1 (w) with a transposed form of Equation 41:

Sy(w) - - fG3(w,v,-v) S (v)dv

G (S) = (64)i Sxx(W )

where the estimates of G 3 (v,-v,W) from step b are used

to "correct" the cross spectrum.
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CROSS-TRI-SPECTRAL ESTIMATION

With the tentative strategy just noted the only non-trival new

computational problem was the cross-tri-spectrum, Equation 59. The

approach followed in the development of procedures for the cross-bi-

spectrum in References 14 and 15 followed the approach in Reference 12

which was in turn analagous to the Tukey autocorrelation approach to

scalar and cross spectral estimation. The Fast Fourier Transform

approach of Reference 13 was by-passed then because it was initially

desired only to probe specialized parts of the cross-bi-spectrum, and

because the writer better understood the former approach. In retro-

spect, the decision was probably unwise. In the event, it was desir-

able to compute the entire cross-bi-spectrum, an operation which was

computationally inefficient with the methods developed in Reference 14.

However, some thought was given to an adaptation of the autocorrelation

approach to the cross-tri-spectrum. The attraction of this approach for the

cross-bi-spectrum had been that a simple transformation of frequency

variables realigned the computation along and normal to the lines of

symmetry of the cross-bi-spectrum. The new frequency co-ordinate

system was orthogonal and the result was a third moment function which

was easier to organize than that indicated in Equation 45. Accordingly,

some effort was given over to a search for a frequency transformation

for tri-frequency space such that the new frequency axes would lie in

the planes of symmetry of the cross-tri-spectrum. A number of simple

transformations were found, but none were orthogonal, and thus no

approach was found to the minimization cf the computational problems

that Equations 54 and 59 imply.

There was thus reason to consider the methods of Reference 27

more closely than had been the case previously. This reference was the

only one known which considers spectra of higher order than the bi-

spectrum, and in which some tri-spectral estimates were presented.

* 27. Brillinger, D.R. and Rosenblatt, M., Two Papers: "Asympotic Theory
of Estimates of kth Order Spectra," and ''Computation and Interpreta-
tion of kth Order Spectra," Proceedings of an Advanced Seminar on
Spectral Analysis of Time Series, Edited by B. Harris, October 1966,
John Wiley & Sons, New York.
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The description in Reference 28' of a more recent application of the

methods to bi-spectral computations illuminated some parts of the

procedure which seemed unclear in the original reference. No explicit

mention of cross-bi or cross-tri-spectra is made in Reference 27.

However the basic assumptions involve a real, stationary vector process

(Xa(t); a = 1,...) in which all moments are assumed to exist. In

terms of the present notation it is thus possible to put:

X1 (t) = Y(t)

Xi(t) = X(t)

so that the methods of Reference 27 appeared to apply to the present

problem, with a minor redefinition of terminology.

The basic idea of the higher order spectral estimates of Ref-

erence 27 is that a k th order spectral estimate is a weighted smoothing

of a kth order periodgram over a (k-1) th order frequency space. In

terms of Reference 27:

Cross and scalar spectra are second order (k=2)

Cross-bi-spectra are third order (k=3)

Cross-tri-spectra are fourth order (k=4)

The adaptation made of the methods of Reference 27 for present

purposes will be outlined in the order in which the computations would

be carried out. First it is assumed that digital samples (N-1)At seconds

in length are available for the excitation, X(t), and the nonlinear

response, Y(t). It is common in experimental work that the actual

level of zero excitation or response is not known to high precision.

Thus correction of time series to zero sample mean (and removal of

evident trends) is a normal first step in spectrum analyses and was

assumed also to be important in higher order analyses. The response,

Y(t), in all the correlations of the last section appears in the form

of an implied correction to zero sample mean. Accordingly, the first

step in the process is to remove trends and correct the response to

28. Lii, K.S., Rosenblatt, M., and Van Atta, C., "Bi-spectral Measure-
ments in Turbulence,'' Journal of Fluid Mechanics, Vol. 77,
Part I, 1976.
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zero sample mean so that the resulting time series may be defined:

Y(t) - Y7tT- Y'(n), n = 0 ... N - 1

Similarly, correcting the excitation to zero sample mean defines the

series:

X(t) - X '(n), n = 0 ... N - 1

There are two other simple functions of excitation noted in the last

section, the squared excitation less its expectation and the cubed

excitation less its expectation. It appeared reasonable in these

cases to square and cube X'(n) for n = 0 ... (N - 1) and to correct

the resulting series to zero sample mean so that the time series

corresponding to the squared and cubed functions of excitation will

be defined:

X.(t) - -T - W'(n), n = 0 ... N - 1

X3 (t) - X (t - Z' (n), n = 0 ... N - 1

It may be noted that the four operations just described are exactly

those which would first be carried out in an implementation of an

autocorrelation approach to cross, cross-bi, and cross-tri-spectral

analyses.

One of the subsequent steps in the procedure is to perform the

direct Fast Fourier Transform on each of the time series defined

above. "Tapering" the data to improve the shape of the FFT spectral

window and to prevent "leakage" from high to low frequencies and

vice versa is fairly conventional in scalar spectrum analysis using

the FFT, is recommended in Reference 27, and was assumed to be

worthwhile in the present instance. Thus the next step in the procedure

was to taper each of the four time series just described with the

Tukey 10% cosine taper as described in Reference 24. The effect, on

average, of applying this taper function is a "loss" of 12 1/2% of

variance. To make an approximate correction for this effect the

tapered time series were finally multiplied by 1.069. At this stage

in the procedure the four time series may be respresented as follows:
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Y(t) - Y(t) Y(n), n = 0, 1 ... N - 1

X(t) -. X(n), n = 0, 1 ... N - 1

X- ( t) -77t)- W(n), n =0, 1 . .. N - 1

X ( t) -' (t ) Z(n), n = 0, 1 . . . N - I

where each time series is corrected to zero sampie mean, tapered, and

compensated for loss of variance.

The next step in the procedure is to perfo-m the direct Fast

Fourier Transform on each series. The FFT algorithm used in the

present instance performs the following operations:

1N-i
7(k) = Y(n) Exp (-i2-nk/N) (65)

1N-i
X(k) ' X(n) Exp (-i2-nk/N) (66)

N-i
W(k) = 7~ W(n) Exp (-i27nk/N) (67)

n0O

1N-i
T(k) = ' Z(n) Exp (-i2mrnk/N) (67)

n0O

where the transforms are defined for:

!!-1 ) < k <N/ 2

circular frequency is related to the index k by:

2-k

and the transform for negative k is the complex conjugate of that for

positive values:

7 (- k) = ' 7(k)

7(k T (k)

i(-k) =W W(k)

T(-k) = zIk)
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Apart from the sequence of the compensat'on for variance loss, the oper-

ation thus far is exac ly that which would be carried out in deriving

scalar spectra of X(t), Y(t), x (t) and X;(t) by the FFT method.

It is necessary next to define the periodograms required by

the methods of Reference 27 in present notation. Starting with the

second order case, an obvious estimate of the cross correlation function,

Equation 39, for an N point sample may be written:

R (p) = 1- Y(n) X(n + p) (69)yx N n=D,

where the domain of the summation is:
0 < n <N - 1

D 0 < n - p < N- I

The second order periodogram is the discrete Fourier transform of

Equation 69:

N-1
P yx(j) = At I R yx(p) Exp(-i2Trpj/N)

yx ~p=-N+l y

= NAt 7 X Y(n) Exp(+i2mnj/N)j•
n=D 2 p=-N+l N

X(n+p) Exp{-i2 j (n+p)/N (70)

= NAt f(-j) 7(j)

The result, Equation 70, is, apart from notation, the ''raw'' cross

spectrum of Reference 24.

The third order periodogram may be approached similarly by

defining an estimate of the third order correlation function of

Equation 45 as:

Ryxx (p,q) " j Y(n) X(n-p) X(n-q) (71)
Yxx Nn--D

3
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where the domain D is defined:

< n< N- 1

O<n- p< N- 1

:0 < n - q < N - 1

The corresponding third order periodogram is the double Fourier transform

of Equation 71:

N-I N-i

P (j,k) = (Lt)2  Y T R (p,q) Exp(-i27pj/N-i27qk/N)
p=-N+1 q=-N+1 yxx

= (NAt)2 Y(j + k) X(-j) X(-k) (72)

where the derivation is similar to that of the second order case. The

third order periodogram corresponding to the squared excitation correla-

tion, Equation 50, may be written by analogy:

PwxX (j,k) = (NAt) 2 W(j + k) -X(-j) X(-k) (73)

Next, the fourth order periodogram is approached by defining a

fourth order correlation estimate analogous to the first term of

Equation 54:

1

R (p,q,r) ti - Y(n) X(n - p) X(n - q) X(n - r) (74)
yxxn=D 4

where the domain D4 is defined:

O<n<N- 1

0<n - p<N -I
0<n- q<N- I

0<n - r<N- 1
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The corresponding fourth order periodogram is the triple Fourier transform

of Equation 74:

N+1 N+1 N+1
Pyxxx(J,k,) = (t)- R p,q,r).

p=-N+l q-N+l r=-N+l yxxx

Exp i 2-pj/N- i 2qk/N- i2-r ;/"

= (Nt)3 Y(j + k + Z) X(-j) X(-k) X(-) (75)

and the periodogram corresponding to the first term of the cubed

excitation correlation, Equation 61, may be written:

Pzxxx(J,k, ) = (N~t) 3 Z(j + k + k) X(-j) X(-k) X(-) (76)

It may be noted that the frequency indices in the final expressions

for the perfodograms (Equations 70, 72, 73, 75, 76) sum to zero. That

is, in Equation 75 for example,

(j + k + ) + (-j) + (-k) + (-Z) = 0II
This is a property required by the definition of the kth order periodogram

of Reference 27.

It was shown in Reference 27, for the strictly stationary processes

presently assumed, that the expected value (or temporal mc.n) of the kth

order periodogram equals the kth order spectrum, but with an important

provision. The provision has to do with the presenceof delta functions

discussed in the last section. Essentially, as sample length approaches

infinity, the periodogram approaches the spectrum except in those

particular regions of frequency space where delta functions are expected.

However it was suggested that reasonable estimates may be made by a

multi-dimensional frequency smoothing operation on the periodograms if

the problem regions are avoided.
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As in lower order spectrum analyses from finite samples it is

possible only to estimate higher order spectral averages of the form:

S 'f. W - 21' W2 - sLO ,, )dW(d.

where the weighting function W(a±, i...) peaks at frequency vector

(0,0,...), falls off to zero in every direction, and has the property:

1 JJ..{W(act1 ,2 .) dai dci-...

No specific guidance is given in Reference 27 as to what the discrete

analog of the weighting function ought to be for the higher order case.

By analogy with conventional frequency weighting (smoothing) techniques

for scalar and cross spectra, Reference 24, a reasonable solution was

anticipated if W(iot...) was zero everywhere except within some

region:

-E E

and a constant otherwise (essentially a multiple dimension block

average). This was found to be the case in the analysis of Ref-

erence 28, and thus encouraged, the block average technique was

adopted for the present.

With this decision, the estimating forms for the various cross

spectra of present interest could be translated from the basic

developmen* of Reference 27. The cross-spectral estimate correspond-

ing to Equation 38 becomes:

sy (J) NAt j+m 
(

Sy j)= -H (-h) X(h) .i(h) (77)

h=j-m

where, as before, circular frequency is defined as:

NAt
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"im" is the block size parameter corresponding to t, "H" equals the number

of terms summed, and

Dj(h) = 0 if h = 0

= I otherwise

The switch function *1 (h) suppresses a delta function at zero frequency.

Otherwise, the estimate, Equation 77, is exactly the conventional

FFT frequency smoothed cross spectral estimate.

Cross-bi-spectral estimates correspondin9 to Equations 44 and 48

become:

yxxJ~k ) (NAt)2 j+m k+m _
H f= -mH hIk-Y(f + h) XT(-h) X(-f) q2 (h,f) (78)

f=j-m h=k-m

S 2x (j,k) (N t) I- h~-w(f + h) X(-h) iX(-f) 2 (h, f) (79)

The switch function 2 (h,f) is defined:

2(hf) = 0 if: h = 0

or: f = 0

or: h+f =0

2(h,f) I otherwise

In this case it may be noted that the development of Reference 27 predicts

delta functions along the line j = -k in the bi-frequency plane, and

the switch function suppresses the periodogram estimates along this line.

This is in contrast to the autocorrelation based methods of Reference 14

and 15 with which no such problem appeared to exist.

Finally, cross-tri-spectral estimates corresponding to Equations 59

and 62 become:

yxxJ k, ) (NAt) 3 j m k+m Z+m

" y (jk, H ( k T(e+f+h)X(-e)X(-f)X(h) 3(e,f,h)
xH e-j-m f=k-m h=Z-m

(80)

S 83

Ia



TR-2275

S k) (Nkt) j+m k+m +m
S? (kZ) 7 Z(e+f+h)(-e)(-f)X(-h):;(e,f,h)

e=j-m f=k-m h=,-m (81)

The switch function I-,(e,f,h) is defined:

13 (e,f,h)= 0 if: e = 0

or: f = 0

or: h = 0

or: e+f+h 0

or: e+f = 0

or: e+h = 0

or: f+h = 0

P3 (e,f,h) = I otherwise

As would be anticipated from the discussion of the last section,

the switch function suppresses the delta functions in the periodogram

which lie exactly in the planes of the cross-trf-spectrum which may be

of considerable practical importance. As previously noted, itvyashoped

that averaging over (2m) adjacent periodogram estimates would provide

reasonable results in these cases.

As in conventional spectrum analyses it is expected that there

is little point in producing estimates of any of the cross spectra for

frequencies spaced at intervals less than 27(2m + 1)/N~t. The analysis

parameter "Im" controls the extent of frequency smoothing and must be

chosen in accordance with the problem at hand and the frequency resolu-

tion of the basic Fast Fourier transforms. So long as the minimum

frequency incremenzs correspond to (2m + 1) there appears no disadvant-

age in basic programming suitable for probing the cross-bi and cross-tri-

spectra as opposed to a complete computation for all combinations of

frequency.

The primary reason for the frequency smoothing operations is

to reduce the variance of the estimates. There appears no reason in

References 27 and 28 why simple ensemble averaging of estimates should

not also be carried out to the extent that multiple independent time

domain samples are available.
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CROSS-8I-SPECTRAL IDENTIFICATION OF THE QUADRATIC

FREQUENCY RESPONSE FUNCTION

The last objective of the present work was to attempt the appli-

cation of the approaches described in the last two sections to the

simulated random data. As noted previously, the simulated response data

had been produced in such a way that response could easily be computed

for various excitation levels. Accordingly, the first decision to be

made was what excitation level to employ. It appeared from the analysis

of scalar spectra that the response of the simulated system to excitation

twice the nominal was in line with nonlinear response which might be

observed in towing tank experiments, and this level (o = 0.5) wasx

selected. (The corresponding scalar spectra are shown in Figure 14.)

For convenience, the initial basic steps noted in the previous

section were carried out on each of the eleven samples of excitation

and response which were available, and the results were stored for sub-

sequent use. In particular, the processing steps carried out were:

1. Compose the samples to be analyzed by multiplying the

nominal excitation series and response component Yl(n)

by two, Y2(n) by 4, and Y3(n) by 8. Summing the

response components in accordance with Equation 14,

there resulted 11 sets of time history of response,

Y(n) and excitation X(n).

2. Correct both series to zero sample mean, and derive

W'(n) and Z'(n) as previously described.

3. Taper each series and correct for variance loss.

4. Perform the direct Fast Fourier Transform on each

series, so that T(k), 7(k), W(k) and Z(k) were avail-

able as in Equations 65 through 67.

The first step of the analysis strategy previously noted is to

perform cross-bi-spectral analyses to define quadratic response. Since

this type of analysis has been done previously, there was no particular
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question of feasibility involved. However, in the present instance it

was though worthwhile to perform the cross-bi-spectral analysis with the

FFT based method to gain some experience and to see if the switch func-

tion shown after Equation 79 would adequately cope with the delta functions

expected along the line w2 = --1 in the bi-frequency plane. To this

end Equations 78 and 79 were programmed together in order to save some

complex multiplications, and applied to the 11 sets of transform data

previously described. The block averaging parameter "Im" was set at 4;

that is, 81 adjacent values of the third order periodogram were averaged

to form the cross-bi-spectral estimate at frequencies w1 = j1w, o- = k:

where

A = 1 = 0.422 rad/sec
SNAt

The result was a set of cross-bi-spectral estimates for each of the 11

samples of data, and the final estimates were made by ensemble smoothing;

that is, by averaging the 11 sets of cross-bi-spectral estimates.

Qualitatively, the resulting cross-bi-spectral estimates appeared

reasonable, and it appeared that the most sensitive way to check the

result would be to form an estimate of G2 (wl,w) and compare the results

with the known theoretical quadratic frequency response function. To

this end the quadratic frequency response function was estimated by:

S (W
G0 (w,w 2 ) = yxx

Sx2xx (lW 2 )

where the cross-bi-spectra were the final ensemble smoothed values.

Previous experience with this type of analysis has suggested that such

estimates cannot be good outside the range of bi-frequency where the

product Sxx(w ) Sxx(w2) is appreciable. Inspection of Sxx(WlW1)

suggested that only in the range:

5 < wK < 10

5 < I < 10

would this be reasonably satisfied, and accordingly attention was paid

only to this range of bi-frequency. For comparison, theoretical values

of G2 (wlw 2 ) were computed by means of Equations 11 and 13 for the discrete

bi-frequencies of the estimates from the simulated samples.
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The resulting comparisons are shown in Figures 18 through 20.

Figure 18 involves the modulus of Gi(w1 ,'2 ), Figure 19 the real part

and Figure 20 the imaginary part. These figures are essentially

plotted tables. In the region of the bi-frequency plane where both

frequencies are positive and the frequencies are between 5 and 10 rad/sec

the procedure just described results in a matrix of 121 estimates.

Because of the symmetry of the function it suffices to show only the

65 estimates where w1) 2, and these are plotted at their location

in the plane in vertical lettering. Just below each of the estimates

the corresponding theoretical value is shown in slanted lettering.

Similarly 65 unique estimates of G2( I, 2 ) result for the case that

w1 and w 2 differ in sign and these are shown in the lower part of the

figures along with the corresponding theoretical values.

In general, the correspondence between theoretical and estimated

G,i,w 2 ) shown in Figures 18 through 20 seems quite good, in fact,

better than might have been expected on the basis of past experience

with samples of about the same size and the cross correlation approach,

References 14 and 15. Signs and magnitudes of real and imaginary parts

are in quite reasonable agreement except for the values shown at

wl,w2 = (9.7, -9.7). In this instance Sx2xx(wlw 2) is very much smaller

than adjacent estimates, and it was suspected that the bad result was

largely a matter of division by noise. It is along the Tine w2 = -W

in the lower part of the figures where wild disagreement due to the

presence of delta functions would be expected. With the exception just

noted, percentage differences between estimate and theory along this

line do not seem greatly different from those off the line. The net result

of the cross-bi-spectral exercise was to suggest that cross-tri-spectral

estimation should next be attempted since the switch function in

* Equations 78 and 79 appeared to be coping with the anticipated problem

area.

I
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TRIAL CROSS-TRI-SPECTRAL IDENTIFICATIONS

Since the main objective was to identify the cubic frequency response

function from simulated data, -nd the theoretical response function was

all that was known, the trial analyses followed the general approach of

the last section. That is; the estimates defined by Equations 80 and 81

were programmed together so as to allow computation of the cross-tri-

spectral estimates S , and S , and then the
yxxx x xxx -

cubic frequency response function was estirated by:

3 S (')

SyxxxSx-xxxa',, )

in accordance with Equation 63. Trial computations of theoretical values

oF G3 (ilw 2 ,W 3 ) suggested that the frequency resolution of the analysis

should not be coarser than that of the quadratic analysis of the last

section and the same block averaging parameters were picked. The block

averaging parameter "m" was thus set at 4, and accordingly 729 adjacent

estimates of the fourth order periodograms were to be averaged in order

to form the cross-tri-spectral estimates at tri-frequencies which would

be multiples of Aw = 0.442. The same basic transform data (7(k), f(k)

and 7(k)) produced for the cross-bi-spectrai analysis was required for

the cross-tri-spectral. Thus the starting point for the present analysis

was the eleven sets of transforms previously used which correspond to

the simulations for , = 0.5 (spectra in Figure 14). As in the cross-bi-

spectral case,ensemble smoothing was performed over the cross-tri-spectral

estimates formed from each of the 11 simulated data records.

It is clear from the basic identification theory that cross-tri-

spectral estimates cannot be appreciable outside the range of tri-

frequency where the product:

S (W ) Sx (.) Sx×(- )
xx I xx xx

is appreciable. Estimates of G (, ,, ,. )  outside this range are apt to

be seriously corrupted by noise, Some preliminary comDutations of
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S x3xxx (W,2, 3 ) and inspection of the excitation spectrum of Figure 14

suggested that only in the range

5 < 111 < 8 radians/second

5 < 1w,1 < 8
5 < 1wjl < 8

would there be hope of reasonable results.

Since an analysis over even a restricted region of tri-frequency

space would require appreciable computation time, it was determined to

start slowly and first examine some simple cases. The simplest case is

just to estimate G3 (w,w,w), the third harmonic response function. In this

case delta function problems are not of concern. Accordingly, estimates

of cross-tri-spectra along the line (w = 2 = w) were formed from

each of the eleven s3mples, averaged, and from these results estimates

of the cubic response function G3 (w,w,w) were made. The results are

shown as circled points in Figure 21. In the figure the real and

imaginary parts as well as the modulus of G3 (w,w,w) are plotted for the

restricted range of frequency just noted. The corresponding theoretical

values of G3 (w,w,w) are shown as dashed lines. It will be noted that

arrows have been drawn to indicate the direction of the estimates made

for a frequency just below 5 rps (the positions of these points are off

the plotting field).

It may be noted from Figure 21 that the results of this first

cross-tr-spectral identification (circled points) were at least recog-

niszble as an estimate of the theoretical values of the function.

Clearly, significant deviations were present. Those at the ends of the

freauency range are typical of what can happen when the excitation cross-

tri-spectrum gets small. However the deviations in mid range gave rise

to the thought that perhaps the sample size (11 records) was too small.

There is no theory of sampling variability available for cross-tri-spectral

estimation of cubic response functions. (There is none for cross-bi-

spectral Identification either.)
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THEORETICAL VALUES OF THE

CUBIC FREQUENCY RESPONSE FUNCTION

ALONG THE LINE w- w2  W3aW
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An obvious next step was to generate significantly more sample and

repeat the identification. It was relatively convenient to modify the

programs described in conjunction with the basic simulation so that an

additional 20 statistically independent time domain sample records of

excitation could be generated. Computation of the time domain responses

for each of these was carried out as before, with the result that the

simulated data set was increased from 11 to 31 records--roughtly tripling

the available sample. The cross-tri-spectral analysis was repeated with

ensemble smoothing over the 31 records, and the results are shown in

Figure 21 as triangles.

The results in Figure 21 for 31 records are clearly an improvement

over the first analysis. Agreement between estimate and theory is

reasonably good at the high end of the frequency range. At the low end

of the range the deviations between estimate and theory were reduced,

but not by a great deal. The results of varying sample size suggest

that the point of diminishing returns may be somewhere between 11 and

31 records so that the idea of generating even more sample was discarded.

It has been noted that the third harmonic response of the present system

is quite small. In this light the results in Figure 21 might be considered

not too bad for a first attempt.

The next set of trial identifications were for the cubic response

function along the line:

W= W 2 aW

This, according to the speculations previously made may generally be the

most practically important part of the cubic frequency response function.

G3(u,w,-w) expresses cubic nonlinear response at excitation frequency,

and is part of the special case, G3(w,v,-v), which must be identified

If the linear response function is to be separated. Cross-tri-spectral

identification was carried out as before for this case with the results

shown in Figure 22. This figure indicates the real and imaginary parts

as well as the modulus of estimated and theoretical values of G3 (,w,-W).
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Ensemble smoothed estimates for 11 and 31 records are shown by circular

and triangular symbols. As in the previous trial the differences

between estimates for 11 and 31 samples imply that sample size is

acceptable.

Comparing the estimates and the theory in Figure 22, it is

clear that something is wrong. The magnitude of the estimates are in

the ballpark but the signs of the real and imaginary parts are consis-

tently opposite what they should be.

An obvious diagnostic step was to see if the presence of a quad-

ratic component (Y2(n), Equation 14) was upsetting things. To this end

new time domain samples with quadratic component suppressed were made

up for a few records and the identification repeated. Omitting the

quadratic component had little effect on the estimates from the cross-

tri-spectral identification. This is of course what is expected from

the theory.

Continuing the diagnosis, new time domain samples which contained

only the cubic component (Y(3) of Equation 14) were constructed and the

cross-tri-spectral identification repeated. The results are shown by

rectangular symbols in Figure 22. (Ensemble smoothing over all 31

time domain samples was involved.) The estimates of G3(w,w,-w) for

the case where only the cubic component is involved in the data are quite

reasonable relative to the theoretical values.

It is obvious from this evidence that there is a problem with

the delta functions, since they will be involved in this case. The

theory of Reference 27 says essentially that reasonable results should

be obtained for averages near, "but not too near" the delta function tri-

frequencies. It was thought possible that the influence of the deltas

was spread out over a few more periodogram estimates than those which

are exactly on the critical tri-frequencies. Accordingly, the switch

functions, Equations 80 and 81, were modified so that periodogram

estimates close to but not at the critical points could also be neglected.

The modified program was exercised so as to do the identification with
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neglect of successively wider bands of periodogram estimates. No

essential change in the character of the estimates was noted up to a

neglect bdnd which amounted to almost half the delta frequency of the

analysis. At this point the scatter of estimates increased radically

since far fewer periodogram estimates were being averaged. The con-

clusion is that the influence of the delta functions "spreads out"

considerably from the exact critical tri-frequencies.

Clearly, the presence of the linear component in the data strongly

influences the importance of the delta's (see discussion after Equation 63).

It appeared that the cross-tri-spectral identification method developed

would only yield reasonable results for G3 (w,w,-w) when the linear com-

ponent was relatively small; that is, for excitation levels in which the

* major part of the response was cubic. This is not likely to happen

in practical ship seakeeping problems so that the method as developed

appears unsatisfactory for G3 (w,w,-w). Since G 3(,w,-w) is probably

the most important part of G3(w,v,-v) the method is almost certainly

* an unsatisfactory approach to the latter case. There seemed no point

in proceeding further until a method which was satisfactory for

G3(w,w,-w) was in hand, since indentification of the linear frequency

response function depends upon success with the identification of cubic

response function of this type.
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CONCLUDING REMARKS

The objectives of the present work were to explore the applicability

of the third degree functional polynomial model to nonlinear seakeeping

problems, and to attempt the development of analysis approaches by which

third degree nonlinearities in the respinses of ships in waves might be

interpreted and characterized.

It appears that the functional polynomial of third degree (which

contains linear, quadratic and cubic terms) may be capable of representing

a wide variety of the relatively weak nonlinearities which can be antici-

pated in the response of ships to waves. Conceptually, the ship dynamics

would be represented by a series of frequency response functions--linear,

quadratic and cubic. These functions can be interpreted in terms of the

responses to the superposition of one, two and three periodic excitations.

Thus in principle the functions may be identified by deterministic

experiments. It appears that extension of hydrodynamic theory to

include cubic nonlinearities may be accomplished at the expense of

systematic development to "third order" just as it was found possible

to include quadratic nonlinearities with a development to "second order".

Within limits, the functional polynomial model is compatible

with the random excitation case. Past work has shown the qualitative

and quantitative influence of quadratic nonlinearities upon the response

to random excitation. A significant part of the present work was to

explore the influence of cubic nonlinearities. This was done by means of

a simulation of a relatively arbitrary nonlinear system so that the

indications are hardly general. However in many respects the response

of the simulated system reflected some types of nonlinear behavior which

has been seen in experiment so that some reasonable conjectures can be

made. The first is that the most significant aspects of cubic nonlinear

time domain response to random waves may be associated with wave groups,

just as has been noted In the quadratic case. The second is that the

most important influence of cubic nonlinearities on the scalar spectrum

of nonlinear response appears to be dependent upon a special portion of

the cubic frequency response function. This special portion of the
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function involves third degree nonlinear interactions between two

frequency components as well as a self interaction involving a single

frequency.

It was important in the development of credibility of both the

* linear and the quadratic functional models as applied to ship response

that means be developed of identifying linear and quadratic frequency

response functions from samples of random excitation and response.

Accordingly, a considerable part of the present work was given over to

the development of theoretical identification methods for the cubic

response function. The theoretical developments in this direction

included the definition of an entity named the cross-tri-spectrum,

which is simply related to the cubic frequency response function, and

thus in principal to an identification method.

The theoretical development disclosed a complication with cubic

systems not present in the linear plus quadratic model. This is that

the linear and cubic responses are mixed together in such a way that

* the results of a conventional cross spectrum identification cannot be

simply related to the linear response function. To the extent that

it was possible to progress the theory, it appears that in analyzing

linear plus cubic systems a portion of the cubic response function

S must be identified first. The theory also disclosed that the cross-

tri-spectrum is not a simple extension of cross and cross-bi-spectra

theory. The difference is related to the problem with the cross

spectrum. Essentially, unless special provision are made, a cross-trn-

I Sspectrum will contain delta functions which are strongly influenced

by the linear components of response. Unfortunately, the location

of these delta functions corresponds exactly to that of the portion

of the cubic frequency response function thought to be of most practical

S importance.

The last part of the present work was to attempt the cross-tri-

spectral identification of the cubic response functions from simulated

random excitation and response data. There were two avenues of approach
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available for cross-tri-spectral estimation, a correlation function

approach thought to be extremely expensive, and a Fast Fourier Transform

approach. The FFT approach was opted for and both cross-bi and cross-tri-

spectral estimating methods were developed. Identifications of the

quadratic frequency response function were reasonably successful with

this approach. However when trial identifications of cubic frequency

response functions were carried out troubles surfaced immediately.

Essentially, the methods developed appear workable for those portions

of the cross-tri-spectrum where no delta functions are expected, and

for the portions which have delta functions when no linear component

of response is present. Thus the FFT methods developed were found un-

satisfactory for the portion of the cubic frequency response function

of most practical importance, so that there appeared little point in

further pursuit of the FFT based cross-tri-spectral analysis method.
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RECOMMENDAT IONS

Clearly, the FFT cross-tri-spectral estimating approach attempted

in the present work appears a failure in the case of most practical

* importance. This does not necessarily mean that the basic identification

theory is incorrect or unusable, because the FFT approach was selected

largely upon economic grounds. If the third degree functional model is

to achieve credibility some means of identification from random wave

data will be required. The obvious next step in the development of

cross-tri-spectral analysis is to go back to the theoretical correlation

function approach and to develop numerical estimation methods on that

basis.

* Most of the qualitative results obtained herein are relative to

a simulated system which may or may not be reasonable relative to ship

motions problems. An experimental or analytical investigation of

the nature of cubic frequency response functions fora realistic ship

* seakeeping situation is recommended.

The "bottom line" in all seakeeping predictions is usually certain

statistics of response maxima, and only when this is possible can a

complete theory of seakeeping be claimed. Efforts should thus be made

to develop an approach to the probability density function of the

maxima of a cubic system.

ft
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APPENDIX A

EXPECTED VALUES OF PRODUCTS OF

ZERO MEAN GAUSSIAN EXCITATION

The autocorrelation function or second moment of the zero nean

Gaussian excitation, X(t), is defined in Equation 35 as:

Rxx () = X(t) X(t - )

By definition of a zero mean process:

xT) = o (A-i)

From the development of Reference 25, pages 82-85:

X(t) X(t2 ) -.. X(tn ) = 0 for n odd (A-2)

In the present work occasion is found for the manipulation of

up to sixth order expectations. Equations 35 of the text and Equa-

tions A-1 and A-2 define all but the fourth and sixth order expecta-

tions. The fourth order case is given in numerous texts including

Reference 25, and may be written:

X(t1 ) X(t ) X(t3 ) X(t4) = R (t - t2 ) R (t - t )
1 2 3 4 xx 1 2 xx 3 4

+ Rxx (t1 - t 3) R xx(t 2 - t)

+ Rxx (tI - t4 ) R xx(t 2 - t3) (A-3)

where the zero mean assumption has been utilized.

The sixth order expectation as derived from the general treat-

ment in Reference 25 for the zero mean process may be written in

present notation as:

S
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= t x x(t1 - t2 ) Rx (t-) - t6)

+ Rxx (t 1 - t2 ) Rxx (t3 - t ) R~x(t 4 - t6 )

+ R xx(t 1 - t2) Rx (t3 - t ) Rx(t4 - t5)

+ Rxx(t - t3) R x(t 2 - t ) Rxx(t 5 - t6 )

+ Rxx(tI - t3) R xx(t 2 - t ) RXX(t4 - t6 )

xx(t- t3) Rxx(t 2 - t6) Rxx(ts - t5)

+Rxx(ti - t4) R(t 2 - t3) Rx(t 3 - t6 )

+ Rxx(ti - t ) Rxx (t2 - t ) Rxx(t 3 - t6)

+ R xx(t - t ) Rxx(t 2 - t ) Rxx(t3 - t5)

SR xx(t 1 - t 5) Rxx(t 3 - t ) Rxx(t 2 - t6)

" R xx(t 1 - t5) R xx(t 3 - t2) Rxx(t 4 - t 6

" Rxx(t 1 - t5) Rxx(t 3 - t6 ) Rxx(t 2 - t4 )

+ Rx(tI - t6) Rxx (t3 - t) R xx(ts - t2)

" Rxx(t 1 - t6) Rxx(t 3 - t5) Rxx(t 4 - t2 )

" Rxx(t- " t6) Rxx(t 3 - t2) Rxx(t 4 - t5 ) (A-3)
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I APPENDIX B

THE n-DIMENSIONAL PARSEVAL FORMULA

The n-dimensional form of Parseval's formula finds application

* in the present work. It is as follows (Reference 4):

l '"f f(ti't2' ... tn f,(tl't2 ... tn)dt dt2 ... d t n

1 (27 wn) F2 ( 1 2,w2 , n.. )dwd 2 ". d

(B-i)

where the (*) denotes complex conjugate and f.(t, .. ) and F.(t, .. )

* are Fourier Transform pairs defined:

r n
F.(w V,, .. Wn) . .. f (t,t2, .-. tn) Exp(-i I rtr )dtdt2  dtn

~n

f (t ,t , . . t ) F ( Wipi 29 -J 2  )Exp(i II Wrtr)dw ... d nn (21)nJJ Jn rn

(8-2)

1
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PRINCIPAL NOTATION

A, A Constants
J

B. ConstantsJ

C Constants+

D n(a) Auxilliary function - An a
2 + Bn a Cn

g1 (t) Linear impulse response

92(tpt 2) Quadratic impulse response

g3 (t1' 2.f t,3) Cubic impulse response

g; Digital impulse response (linear)

g; Digital impulse response (quadratic)gjk

gk Digital impulse response (cubic)

G (w) Linear frequency response function

G 2(w ,w 2) Quadratic frequency response function

G3(w1 w,2,w3) Cubic frequency response function

j,k,9, Time increments

N Number of points in a time series

p,q,r Frequency increments

Py(j) Second order periodogram

P yxx(j,k) Third order periodogram

Pyxxx(J,k,e) Fourth order periodogram

R it) Autocorrelation functionxx

R yx(t) Cross correlation function

Ryxx(t,t 2) Third order correlation

R yxxx(t1,t2,t3) Fourth order correlation
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(W) Two sided spectrum, excitation

S y(W) Two sided spectrum, response

S y(4) cross spectrum

S yxx (W1'W2) Cross-bi-spectrum

S (w,w,w) Cross-tni-spectrum

t't. Time

U X(4) One sided spectrum, excitation

U yy(W) One sided spectrum, response

W (k) FFT of squared excitation

X(t) Excitation

X(t) Periodic excitation

7 (k) FFT of excitation

V(t) Response

Y(t) Response to periodic excitation

7 (k) FFT of response

T(k) FFT of cubed excitation

At Sampling interval

* £,e~Phase angles

W,'. Circular frequency
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