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The cylindrical pipe is composed of a number of concentric layers of

4 elastic solids and fluids. It is excited by time—harmonic mechanical

point forces or acoustic sources. The exact linear equations of elasto—

i1 dynamics, visco-dynamics and acoustics are solved to obtain. via the finite
] element method. a matrix equation which connects intertace displacements
and external forces in the spectral domain. Far-field sound radiation and
the wavenumbers of free—waves are obtained from this relation. Numerical
resuits include a comparison of sound radiation leveis obtained from the
exact theory and a shell theory,
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INTRODUCTION

The mathematical analysis of wave propagation in and sound radiation
from a single-layered uniform pipe is usually based on a shell theory to
represent the pipe vibrations and the wave equation to represent the
interior and exterior acoustic pressures. Recent work using shell theory,
of reievance to the problem to be considered here. inciudes that of Fuller
& Fahy [1] who have increased understanding of the physics of wave
propagation in fluid-filled pipes through their discussions of wavenumber
versus frequency plots and the energy distribution of free~waves between
fluid and shell. and that of James [2.3) who has shown that the dispersion
relation helps to promote a qualitative understanding of vibration and sound
radiation. Only a limited amount of work which uses the exact linear theory
of elasticity to represent the vibrations of a fluid-filled pipe has been
published: in particular, Lester’'s derivation [4) of the dispersion relation
of thick walled pipes is central to the approach adopted here.

Whilst there is a considerable amount of literature available on wave
propagation in and sound radiation by plane layered media. the literature on
layered pipes is less extensive. Included in the former is the work of
Pestell & James (5) and Spicer (6] who use the exact linear equations of
elasto-dynamics, visco—dynamics and acoustics. Included in the latter is
the work of Yeh & Chen [7] who study the dynamics of two coaxial shells
which are separated by a viscous fiuid. and that of Avilova & Rybak (8]
who develop the dispersion reiation for a thin multi-layered shell.

In this Memorandum. the methods of Lester [4) and Pestell & James (5]
are combined to give a matrix relation from which far-field sound radiation
and the wavenumbers of free-waves may be calculated numerically by Fortran
programs. In addition to being a valuable tool for studying free—-wave
propagation in and sound radiation from coaxially layered pipes. the
programs are useful for studies to determine the range of applicability
of shell theories.

2. PROBLEM FORMULATION

(a) General

The layered system shown in Figure 1 is composed of an arbitrary
number of conceniric elements each of which satisties the exact linearised
equations of acoustics. elasto-dynamics or visco-dynamics. {t is excited
by time-harmonic point sources which are located in the acoustic fluids. or by
time-harmonic point forces applied at the interfaces of the elastic elements.
The time factor exp(-iwt) Iis omitted from all equations.

(b) Fourier Transtorms

It Is convenient 10 represent the variables as Fourier transforms.
For example. the displacement components are represented by

7
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ru,(r.o.z)? - cos(ng)| » |up(r.n. a
uptr.w.2) | = (1/72m 3 | sintne) | [ |Tptr.n. @) | exptiazdda (2. 1)
uz(r.v.2) n=g |cos(ny)|~®liuy(r.n, a)
_ 3 - - - = -

where the spectral displacement components are given by the inverse transform

. - ~ - r N

r-u,(r,n.a) 2n cos(ny) | @ |up(r.v.2)

Up(r.n.a)| = (ep/2m J‘ sin(nyw) j Up(r.v.2) |exp(-iaz) dzde (2.2)
Uz(r.n. @ 0 Lcos(mp) - Luz(r.v.z)J

The Fourier transforms facilitate the solution of linear ditferential
equations by reducing them to algebraic equations.

(c) Construction of the System Matrix Equation

The spectral dynamic stiffness of the layers and the interior and
exterior media are matrices which relate spectral stresses to spectral
displacements at the interfaces. These matrices

(Stn.a)], (S%n.a)] and IS'(n. a))
626 323 3%3

are obtained for the acoustic. viscous and elastic media in Sections 3-7.

The assembly of the element matrices to form the 'systom dynamic
stiffness matrix relation

ISM(n. ) {U(n. @) = [EM(n.a)) (2.3)
MM M=1 M=)

is a standard finite element procedure which reflects continuity of
displacement and equilibrium of stresses at the interfaces. Computer
implementation is straightforward. The matrices (U(n.a)] and
(EM(n.a)] are column vectors of interface displacements and externally
applied interface stresses. respectively. of dimension M=(3N+3) for a
system of N layers. The external spectral stresses are defined to be
positive when acting in the positive direction of the coordinate axes.

With reference to Figures 2 and 3, this sign convention requires changes
of sign before assembly to the elements of (i) the last three rows of all
matrices (S(n.a)] and (ii) the matrix (S®(n.a)). An example of an
assembied systorn matrix for a two-layered system is shown in Appendix B.

(d) Free-Wave Propagation

in the absence of external forces or sources. the system of homogeneous
equations (2.3) has a non-trivial solution if and only if detiSM(n.a)]
vanishes. For given values of n and of w there will be real and compiex
values of a at which the determinant vanishes. Real values of a are the
wavenumbers at which free-waves propagate. Complex values of a represent
evanescent waves. whose amplitudes decrease exponentially with distance.
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Here. the real branches only are of interest. and plots of real wavenumber
a against frequency for selected circumferential harmonics n are called
wavenumber-frequency or dispersion plots.

(@) Far-Field Pressure

in the special case of the exterior medium being an acoustic fluid.
the far-tield pressure in spherical polar coordinates is found from the
stationary phase approximation to be (9)

* U,_(n. k. cos@) exp(-inm/2) cos(ny)
p(R.8.p) = -iwpc exp(IkR) /TR 3 (2.4)
n=90 sin@ Hp’'(ka. 8ind)

where U,_(n.k. cos8), the radial spectral displacement of the outermost
interface is obtained trom the solution of the matrix equation (2.3),
evaluated at a=k. cosf. :

3. THE ACOUSTIC FLUID LAYER

Figure 2 shows a section through an acoustic fiuid layer whose
inner and outer boundaries. r=a and r=b respectively. are subject
to spectral pressures [(p(n.a)]l which produce spectral radial
displacements (U,(n.a)].

The pressure in the acoustic fluid layer satisfies the scalar
Helmholitz equation

V2p+k2p = 0 i3.n
whose general spectral solution is
plr.n.a@ = A (n. @) Jplyr) + Az(n @)Y, (¥r) (3.2)
Evaluation of the preasure and the pressure-displacement relation
p(r.n.a)/3r = pwii,(r.n a) 3.3

at the boundaries gives the matrix relations

p(b.n. a Jn(7b) Yn(rb) Ay(n.a)

(3. 4)
pla.n @ Jn(7a) Yn(ya) A in.a)

Ur(b.n. @ v Jn’ (YD) Yn'(Yd) Ay(n.a)

(3.5
ug(a.n pwi dn'(va) Yn'(7va) Ag(n, a)
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from which (A (n. @ .A,(n.@)7 may be eiliminated. This gives. after
making use of the Wronskian relation

Jn() Y () = Jp'GOYa(x) = 2/mx .

the matrix relation connecting spectral pressures and displacements at
the acoustic fluid layer boundaries as

pb.n. @ pw2 | Jn (YD) Y ' (va) =Y (YD) Jp' (va) ~2/myb Ur(b.n. a)
= —— (3.6)
pta.n.a@){ YW | 2/mva Yn(va)dn (YD) =dn(va) Yo' (¥Y0) || Upa.n. @)

where
W = Jp(yb) Yo' (va) - Jp'(ya) Y (YD)

it is convenient when assembling the individual layer matrices into the
system matrix to write equation (3.8) in terms of the fluid stresses as

(S(n.a@)u(n.a)] = (T(n,a)) 3.7
6*6 6= 6%

where the elements of (S(n.a)l are identically zero except for

S31 = pwip (7a)Yp(¥b) =dp(Yb) Y, (va)) /W
Si14a = 2pw?/mybwW

Sa1 = -2pw?2/myawW

Sea = PwiWp(va)Yp' (YD) =Jdp'(Yb) Yp(va)) /W

4. THE ELASTIC LAYER

Figure 3 shows a section through an elastic layer whose inner and
outer boundaries, r=a and r=b respectively. are subject to speciral
stresses [T(n.a)) which produce spectral displacements [u(n.a)l.

The displacements in the layer satisly the vector equation of
motion (10]

(A+R)V(V.w) + uv3y = pd2u/a1? 4.1)
which may be reduced by using a Lamé substitution
u=9VF + Vn!. ! = (0,0,Q) + 9vA(0,0.H) (4.2)
to the three scalar Heimhoitz equations

V2F+k 2F = 0, V2Q@+k72Q@ = 0, VIH+kTIH = 0 (4.3)

10




Lester (4] has shown that the Fourier transform solutions of
equations (4.2-4.3) together with the transforms of the stress—displacement
relations
T'r = (V. !) +2“60r/ar
Tro = pu(3uy/dr=(1/r)ug+(1/r) du,/dy) (4.4)
Trz =  p(dup/dz+duyx/arn

allow the construction of the matrix equation

(Sin.aHi(n.a)] = (P(n.a@)i{R(n. @) )" {G(n.a)] = [T(n,a)] (4.5)
6*6 6*1 6*6 6*6 6*1 6*1

connecting spectral displacements and stresses at the boundaries of the

elastic layer. The eiements of the matrices (P(n.a)] and (R(n.a)}
are given in Appendix A.

5. THE VISCOUS FLUID LAYER

Figure 3 is also applicable to a viscous fiuid layer whose inner and
outer boundaries. r=a and r=b respectively. are subject to spectral
stresses (T(n,a)] which produce spectral displacements [G(n.a)].

The linear equations of motion satisfied by the particle velocities
and the fluid pressure within the viscous layer (11}

=Vp + uvIy + (u/3)V(V.4) = pdi/at

b 3p/dt + pv.u = 0 (5.1
dp/at = c23p/at

may be reduced by means of the substitution

j U = VF + Vay. 2 = (0,0.G) + Va(0.0.H) (5.2

i to three scalar Heimhoitz equations, together with an expression for the
,& fluid pressure, viz,

ViF + Ww2/(c2-4iwn/3p)IF = 0

732G + (ipw/w)@ = 0 (5.9
& . V3K (ipw/@)F = O
p=- p,0)v. 40 (5.4
1}

P
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The stress-velocity relations in the viscous fiuid layer are

Tee = -p-(2u/3)V.u + 2u3ly/dz
Tre = W(3iy/3r = (1/Nuy +(1/r) du,/39) (5.5
Trz = wu(3U,/3z + 3uz/an

from which, using equation (5.4). p may be eliminated to give the
strgss-velocity relations for the viscous fluid layer in a form simiiar
to the stress-displacement relations for the elastic layer

Ter = (ic2p/w-2u/3) (V. 0) + 2ud0,/ar
Trp = MK(3Up/dr = (1/r)Uy + (1/r)3hg/3p) (5.6
Trz = u(3up/3z + 3uy/an
By identifying
A= Cie2p/w - 2u/3)
k12 = ipw/n (5.7
k?2 = w2/(c? - diwu/3p)

in equations (5.3) and (5.6) it is evident that the matrix relation

between spectral velocities and stresses at the boundaries of the viscous
fluid layer is of the same form as that between stresses and displacements
at the boundaries of the elastic layer. It is

P(n.a)IR(n. &))" {u(n.a)) = [FT(n.a)] (5.8)
6*6 6*6 6*1 6*)
or
-iwlP(n, @) HR(n. &)1~ Hiu(n, &)1 = [F(n.a]
6*6 6*6 6*1 6*1

where. subject to equations (5.7), the elements of the matrices ([P(n.a))
and [R(n.a)) are given in Appendix A.

8. THE INTERIOR MEDIUM

(a) Acoustic Fluid

Figure 2 shows a section through a cylinder of acoustic fluid whose
boundary. r=b, is subject to the spectral pressure p(b.n.a) which
produces the spectral radial displacement G,(b.n.a).

The pressure in the fluid satisfies the scalar Heimholtz equation
(3. 1), whose general spectral solution equation (3.2) is subject to the
condition that the pressure at the origin remains finite. requiring that

Aj(n.a) = 0.

12
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~ Evaluation ot the pressure equation (3.2) and pressure-displacement
relation equation (3.3) at the fluid boundary gives the relations

p(b.n.a) = A;(n.a)dpl(rb)
(6. 1)
Up(b.n.a@ = (¥/pwDA;(n. addg’ (b

from which A,(n.a) may be eliminated to give the relation connecting
spectral pressure and displacement at the boundary

P(b.n. @ = pwiidn(¥b) /¥Jn' (YD) 1Tr(b.n. @) (6.2

It may be convenient when assembling this element into the system matrix
to write equation (6.2) in terms of the fluid stresses as

(Sictn, @ )Gi(n. @)1 = (Fi(n. )] (6.3)
3*3 3% 3%

where the elements of the matrix (Sitn.a))1 are identically zero except for

sh, = -pwin(yb) /74y (yb)

(b) Elastic Solid or Viscous Fluid

Figure 3 shows a section through an elastic cylinder whose boundary.
r=b, is subject to spectral stress (F(n.a)) which produces spectral
displacement [U'(n.a)l.

The displacement in the elaslic cylinder salisfies the veclor equation
of motion (4.1) which may be reduced. by means of the Lamé substitution
equation (4.2)., to the three Heimholtz equations (4.3) whose spectral
solutions, after imposing the requirement that the displacement al the
origin remains finite, are

F(r.n.a) = A,(n, a)dp(y N
G(r.n.a) = Ag(n. @ dplyn (6.4
Hir.n.@) = Ay(n. @ Jdplyn

Evaluation of the displacement equation (4.2) and stress-displacement
relations equations (4.4) at the cylinder boundary gives the matrix equations

A,_(n,a)1

Wn.av) = Rn. 1A (n.a (6.5)
3% 3*3  |Ay(n.@
(A, (n. @

Fn.) = Plnaoil|ainm (6.6)
3% 33 |As(n. @)

13




from which [A;(n.a). A(n a), A,(n.a)]T may be eliminated. This resuits
in the matrix equation relating spectral stresses and displacements at the
cylinder boundary

(Sin. G (n. a1 = Pl(n. @ 1RI(n, )17 2T (n. )] = (F(n.a)) (6.7)
3*3 3~ 3%3 3*3 3*1 3%)

where the elements of the matrices (Pl(n.a)] and (Ri(n.a)] are given
in Appendix A,

In the case of a cylinder of viscous fluid, it follows from Section §
that the matrix equation relating spectral stresses and displacements at
the boundary is

—iwlPi(n. @ )R (n. )1~ (@I(n, @) = [Ti(n.a)] (5.8)
3*3 323 3. 3%]

where. subject to equations (5.7), the elements of the matrices iPlcn, a1
and (R'(n.a)) are given in Appendix A.

7. THE EXTERIOR MEDIUM

(a) Acoustic Fluid

Figure 2 shows a section through the region whose boundary, r=a. is
subject to the spectral pressure p(a.n.a) which produces the spectral
radiai displacement Ur(a.n.a).

The pressure in the fluid satisfies the scalar Helmholtz equation
(3.1). whose genaral spectral solution equation (3.2) is subject o the
radiation condition that at large values of r the pressure consists of
outgoing waves only. requiring that

Ay(n.a) = IA;(n. ).

Evaluation of the pressure equation (3.2) and pressure displacement relation
equation (3.3) at the fluid boundary gives the relations

plta.n.a) = A;(n.a)Hp(va)
(7. N
ur(a.n.a = (v/pwA,(n. a)Hu (va)
from which A,(n.@) may be eliminated to give the relation connecting
spectral pressure and displacement at the boundary
pla.n. @) = pwilH,(ya)/yHp (va)lirla.n, @ (7.2

It may be convenient when assembling this element into the system matrix
to write equation (7.2) in terms of the fluid stresses as

14




1S9(n. )% (n.@)) = 1T®(n. )] (7.3
33 3x| 3=

where the elements of the matrix [S®(n.a)) are identically zero except
for

$f, = -pw?Hp(va)/yHp'(va) ‘ (7.4

(b) Elastic Solid or Viscous Fluid

The case of an exterior elastic or viscous fluid medium is nol
relevant to the problem of far-field radiated sound. but it is included for
completeness. Figure 3 shows a section through the region whose boundary.
r=a. is subject to spectral stress (T9(n.a)] which produces spectral
displacement [U9(n,a)].

The displacement in the elastic region satisfies the vector equation
of motion (4.1) which may be reduced. by means of the Lamé substitution
equation (4.2), to the three Helmhoitz equations (4.3) whose spectral
solutions after imposing the radiation condition of outgoing waves only
are

Flr.n.a) = A,(n.a@)Hply N

G(r.n. @

H(r.n, Ay(n, @ Ha(yr)

Evaluation of the displacement equation (4.2) and stress-displacement
relations equations (4.4) at the boundary resuits, as in Section 6. in
the matrix equation relating spectral stresses and displacements at the
boundary .

(S9n.a) Hu®(n. )] = (P®(n.a)I(R®(n. @) 1" 1l®(n,. a)] = (T®(n.a)] (7.6)

3*3 3" 3*3 3*3 3*1 3*1

where the elements of the matrices [P®(n.a@)) and (R®(n.a)) are given in
Appendix A.

In the case of an exterior viscous fluid it follows trom Sections 5
and 6 that the matrix relation between spectral stresses and displacements
at the boundary Iis

~IwlP®(n. ) IR®(n. @) 1”1 [U®(n. @)1 = [TO(n,. )] (7.7

3*3 3*3 3" 3*

where. subject to equations (5.7), the elements of the matrices (P®(n.a)l
and [R9(n.a)) are given in Appendix A.

Ax(n, @)Hp(yTn (7.5

| X




8. POINT FORCE EXCITATION

A point force excitation. of magnitude F,. appiied in either the
radial or axiat direction at cylindrical coordinates (r;.0.25) on an
elastic layer interface may be represented mathematically as the external
stress

E(p.2) = Fqa0(z-2p)0(p) /1y 8.1

from which the spectral excitation is obtained via the inverse Fourier
transform equation (2.2) as

E(n.@ = (e Fqo/2mry) exp(-iazy) (8.2

The addition of this spectral force into the right-hand-side of the system
matrix equation (2.3) is a straightforward finite element procedure.

9. POINT SOURCE IN ACOUSTIC FLUID

(a) Green’'s Function

The effect of a point source. located at cylindrical coordinates
(rg.0.24) in the acoustic fluid, is best developed via the expansion of
its free—space Green’s function [12]

poexp(ikRg) /Ry = (lpo/2)iencos(nw) fJn('yro)H,,('yr)exp[la(z-zo)lda rarg
n=o - (9.
P ®
= (Ipg/2)Y eqcos(ng) [ Jn(¥r) Hp(yry) expliatz-z4) lda rerg
n=o - (9.2)

which is augmented when boundaries are present by a scattering term which
satisfies the homogeneous Heimhoitz equation (3.1). Thus the total pressure
is

pr,p.2) = pyexplikRy) /R,y + pga(r.v,2) (9.3

where the amplitude of the scattered wave pg Is determined by the boundary
conditions.

(b) The Fiuid Layer

The spectral form of equation (9.3), representing a source in an
acoustic fluid layer. is obtained from equations (9.1), (9.2) and (3.2) as

16
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p(r.n. a (ipg/2)epdn(Yrg) Hp(yr) exp(-iaz,)

* Ajyin.addptrn) + Aj(n.a)Ya(yr) nry (9.4

ptr.n. a) (ipg/2)epdn (Y Hp(yry) expl-iazgy)

+ Aj(n.addp(rr) + Az(n.adYp(yr) rery (9.5)

Evaluation of the pressure equation (9.4) or (3.5) and pressure-
displacement relation equation (3.3) at the layer boundaries results in the
matrix equation relating spectral displacements and stresses at the fayer
boundaries _

IStn. @) ){TG(n. ad} = |F(n,a)] + [E(n, a)) (9.6)
6*6 6*1 6* 1t 6*1

where the elements of [E(n.a)] are identically zero except for

E,

2ipgepexpl~iazy) (Ha(yrgl)dp'(va)=da(yry) Hy'(va) 1/ Wyb
(9.7

E, 2ipgepexp(—iazg) (HR(Yrg)dn (YD) =dn(yrg)Hp ' (YD) 1/ Wya
Equations (9.6) and (9.7) together with the sign convention for external
stresses show that the point source in the acoustic fluid layer has an
effect on the right—hand-side of the system matrix equation equivalent

to external radial spectral stresses of E, and -E, at the upper and
lower boundaries respectively.

(c) The interior Fluid

The spectral form of equation (9.3). representing a source in the
interior acoustic fluid. is obtained for the region rrg from equations
(9.1) and (6.1) as

plr.n.a) = (ipg/2)epdplyrgdHp(ryr)exp(—iazy) + A (n.a)dplyr) (9.8)
Evaluation of the pressure and pressure-displacement relation. as in
Section 68, results in the matrix equation relating spectral displacements
and stresses at the boundary as

(sitn. ) NGH(n. @) = (Fn. ] + 1E(n. @) (9.9)
323 32) 321 3=

where the elements of (E!(n.a)) are identically zero except for

E{ = 2pjenexp(-iazy)dn(yrg) /¥bip (VD) (9.10)
Equations (9.9) and (9. 10) show that the point source in the interior
acoustic fiuid has an effect on the right-hand-side of the system matrix

equation equivaient to the external radial spectral stress E; at the
boundary.
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(d) The Exterior Fluid

The spectral form of equation (9.3). representing a source in the
exterior acoustic fiuid. is obtained for the region r<«, from equations
(9.2) and (7.1) as

plr.n.a) = (ipg/2)epdn(YrIHp(yrglexpl-iazy) + A (n.a@)Hp(Yr) 9.7
Evaluation of the pressure and pressure-displacement relation, as in
Section 7. results in the matrix equation relating spectral displacements

and stresses at the boundary as

(S®(n. @) HT®(n.a)] = [T®(n.a)) + [E®(n.a)) (9.12)
3%3 3= 3*1 3%

where the elements of (E®(n.a)) are identically zero except for

ES = -2pgenexp(-iazg)Hn(yrg) /vaHp'(va) (9.13)
Equations (9.12) and (9.13) show that the point source in the exterior
acoustic fluid has an effect on the right-hand-side of the system matrix

equation equivalent to external spectral radial stress of -Ej at the
boundary.

10. NUMERICAL RESULTS

(a) QGeneral

Fortran programs have been written to caicuiate and plot the axial
wavenumbers of free-vibration and the far-tield sound level due to point
source or point force excitation. The programs are written in double
precision complex arithmetic which is simulated (61 by the use of double precision
variables of leading dimension 2. They were run on a PDP-11/34A computer
for which the arithmetic word length of 32 bits used for single precision
complex arithmetic is inadequate in this type of problem.

The material and geometric constants in S| units which are used in the
calculations. involving a single pipe and two coaxial pipes separated by
water, are as follows:

Steel Inner Pipe: A=10.44 x 1010 4=7.56 x 1010 p=7700.0
a=0.2096 b=0. 2350

Steel Outer Pipe: A=10.44 x 1010 =7 56 x 1010 p=7700.0
a=0.2700 b=0. 3000

Water: p=1000.0 ¢=1500.0
Air; p=1. 21 c=343.0

Damping Iin the pipe walls is inciuded by setting A and x4 to the compiex
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values A(1-im,) and u(l-in,). respectively. where the numerical values
of the hysteretic loss factors. 7, and 7,. are chosen as 0.02.

(b) Wavenumber Plots

Figure 4 shows the real branches of the wavenumber versus frequency
piots. for the ftirst three circumferential harmonics. of the inner pipe
containing water and surrounded by a vacuum. The plots are identical to
those obtained by Lester (4] who has also superimposed plots obtained from
a shell theory. The physical interpretation of the plots is given
eisewhere [1].

Figure 5 shows the plots for the composite pipe consisting of the inner
and outer pipes separated by a 3.50cm layer of water: again the interior
is water and the exterior a vacuum. The plots contain many more branches
than the previous piots because of the partial independence ot waves in the
solids and fluids.

(c) Sound Radiation Spectra

Figures 6-11 show the variation of far-fieild ‘airborne’ sound pressures
(dB ref. 1 micropascal at 1m) with frequency. The piots (all at w=0°)
consist of straight line joins which connect levels computed at 15Hz spacing:
hence. the sharp peaks are uniikely to have been resolved fully. The
excitation is either a IN rms radial force applied to the inner pipe at
the cylindrical coordinates (0.2096.0.0). or it is an interior point source.
located at (0.1482,0.0), whose free-field pressure is 120dB.

(d) Radiation from Inner Pipe

Figure 6a shows the airborne sound radiation from the inner pipe at
6=90° due to point force excitation. Figures 7a. 8a and 9a show the
sound radiation, at 8=90°, 80° and 70°. respectively. due to point-source
excitation. The corresponding (b) Figures contain the sound radiation
caliculated from a shell theory. There is good agreement between the (a)
and (b) spectra up to the ‘ring frequency’ of 3.6kHz, the differences
thereafter being mainiy attributable to the reiatively increasing density
of the peaks in shell theory.

James (2] has demonstrated. using shell theory. that the frequencies
at which ‘peaks’ appear in the sound spectra depend on the location (8)
of the observation point. These frequencies are the frequencies at which
the lines a=k.cos(8) cross the wavenumber branches. where k is the
wavenumber in air. The same is true when exact linear theory is used.
in tact. the difference between the (a) and (b) plots is reflected in the
ditferences between the dispersion plots of the shell and exact theories.

9
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(@) Radiation from Composite Pipe

Figure 10 shows the airborne sound radiated at 6=980° for the cases
of (a) point force excitation: and (b) point source excitation. Figure 11
shows the sound radiation due to point-source excitation caiculated at
(a) 6=80" and (b) 6=70°.

Again. the frequency at which ‘peaks’ appear in the spectra may be
tound from the dispersion plots as the frequencies at which the lines
a=k.cos(8) cross the wavenumber branches. The dispersion relation is
equally useful in interpreting the spectra from layered pipes.

E A Skelton (SO)
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APPENDIX A

The Elastic Layer Matrices [P(n.a)) and [R(n.a)]

6%6 66 ?
- 25u - 2 - 1, - 2
P~ 2y IA (7 B)-AKIT, (7, b) P, .= 247 Y5 (7 b)-AK]Y (7, b)
P o= (2un/B%) (7,03, (v40)=3, (7gb)] P, = (2un/b®) (v bY} (Yab) =¥, (V.b)] |
P, " ~2iauvpdn(v4b) P, = ~2iauyg¥s (v.b) ‘
P,,= (2nu/b®)(J (7, b)=7 BI (¥, b)] P, = (2nu/b?) (¥ (7, D)=, BY! (v, D) ]
P,,= (#/B") (29503 (7b) P, = (&/B%)[270Y. (v,b)
+(rgp-2n")3 (v b)) +(vgpi-2n") ¥ (vb) ]
P,y (21aun/b™ )by J! (o) =3 (Vb) ] " (Ziaun/b’)[vara(va)-Yn(VTbﬂ
Pu' Ziau'rLJ;,(va) P"- ZiauvLY;‘(va)
P, ;= (lanu/D)J (v.b) P =~ (ianu/b)Y¥ (7.b) l
P, o= #7p(2a7-k2) 3! (70D) P, ~ uvp(2a’-k3)Y} (v,b) i

Rows 4. 5. and 6 are obtained by setting b=a in rows 1, 2. and 3.

Rii™ 7o (7LP) Ri2® "pYn(7®)

R,,= (n/B)J_ (74b) R, = (n/B)Y (7o)

R, = -iavgd) (v4b) R, = ~iav Y. (v.0)

R,,= -(n/)J (7 b) R,,= -(n/B)Y (7,b)

Ry "7 (P Rye™ “7¥n(7p®)

R, = (ian/b)J_ (vpb) R, = (ian/b)¥ (7.0)

R“- iaJn('rLb) R”- xa!n(vnb) 1
Rli- 0 Rid. 0 1
R, = (a’-kp)J, (v.D) R,,= (a’-KD)Y, (7D)

Rows 4. 5. and 6 are obtained by setting b=a in rows 1. 2. and 3.
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The Elastic Interior Matrices (Pi(n.a)] and [Ri(n.a)]
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3*3 3*3

2uv] 3% (v, B)=AKL I (7, D)

(2un/b?) [74b3* (740) =T (Vb))

—Ziauv; ;(va)
(2nu/b?) [, (v, D) =7 bI; (7, D) ]

(1/D%) [27,b3 ) (7g0) +(vgb?-2n?) 3 (v,D))
(2iapn/b?) [0y} (Ygb) =3, (V4b) ]

2iauy, I (7 b)

(iaun/b)Jn(va)

wyg(2a*-k0) I} (V,b)

v In (7L P)
(n/b)JI_ (7,b)
-iavgJp (v4b)
=(n/b)J (7 b)
~7pd (Vb))
(ien/b)J_(74b)
iad (v, b)

0

(a®~Xkp)J, (7ob)
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The Elastic Exterior Matrices (P9(n.a)] and (R®(n,a))

3*3 3*3

Zuvzﬂa(vLa)-xkiun(vLa)
(2un/a?) [vgaH} (vpa) -H (vpa) ]
-ZiauV;H;(yTa)

(2nu/a®) [H (via)-v aH} (v, 2)]

(u/a®) [2vgaH! (vpa) +(vqa®-2n")H (vpa) ]

(2iaun/a®) [avgH! (vga)-H (7))
2iauy; Ho (7 a)
(ianu/a)H (vpa)

uvT(Zaz-k;)HA(vTa)

v Hp(712)
(n/a)H (7q3)
-iavTHA(vTa)
—(n/a)Hn(vLa)
-7TH$(7T‘)
(ian/a)Hn(vTa)
1aHn(7La)

o

(a’-kg)H, (va)
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APPENDIX B

(SM(n.a)]
9=9

for a 2-layer Pipe

exterior matrix [S9(n.a))
3*3
layer matrix (Sl(n.a)
6*8
layer matrix [S2(n. )
6*6
interior matrix (Sitn, )]
33
st - s -¢ s: st s 0 0 o ]
i1 12 13 13 1s 18 16
1 _o® 1 _ 1
822822 823 23 s:d s;! sl. 0 0 0
1 _o® 1 _ 1
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-l _al 2 _ql 2 _gqt 2 _ql 2 2 2
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gl _al 2 _gl 2 _al 2 o1 2 2 2
sn %1 s!l s!i sl: sll s!: s!i sll 2s sli
sl _al 2 _al 2 _al 2 _gd 2 2 2
s.: %3 s.'ll s‘l 832 s‘l sll s‘i s!‘ s:ll s!i
_a? el a2 i _a? i _a? i _o2
0 0 sll sll S‘J s&l s&‘ 13 s(l 313 sQC
-al -al -al i a? [ i el
d 0 ssl sl! sl! 821 Si‘ 532 s:! SI) sll
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