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Summary

The cylindrical pipe Is composed of a number of concentric layers of
elastic solids and fluids. It is excited by time-harmonic mechanical
point forces or acoustic sources. The exact linear equations of elasto-
dynamics. visco-dynamics and acoustics are solved to obtain, via the finite
element method, a matrix equation which connects Interface displacements
and external forces In the spectral domain. Far-field sound radiation and
the wavenumbers of free-waves are obtained fron, this relation. Numerical
results Include a comparison of sound radiation levels obtained from the
exact theory and a shell theory.
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LIST OF SYMBOLS

ix. y. z) Cartesian coordinates

Cr. %. z) cylindrical coordinates

(R. 9. P) spherical coordinates

Ur(r, io. z) , up. uz radial. circumferential and axial displacements

;r(r, n.a). etc. transforms of displacements

a. n axial and circumferential harmonic wavenumbers

Trr(r. fo. z), Trrp . 
T rz stresses within layer

frr( r. n. a). etc. transforms of stresses

p(r. .z) pressure in fluid

(r. n. a) transform of pressure

P 0  amplitude of point source

Fo amplitude of point force

E(w. z) external stress

E(n. a) transform of external stress

(r. . 0 . z 0 ) location of point source/force

"radian frequency of vibration (=2wf)

p density

c sound velocity of acoustic fluid

X,/ ALame constants of elastic layer

* dynamic coefficient of viscosity of fluid

k acoustic wavenumber = w/c

kL  longitudinal wavenumber - (P/(X+2=A))112

kT torsional wavenumber a w(p/l.) 1/2

V -(k 2-a3) lm(T) )0 0

TL I(kL3-a 2 ) Im(7L) O 0

CT (kT 2 -a 2 ) lm(7T) O 0
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a, b Inner and outer radii of layer

8 Dirac delta function

en -1 when n=O. and 2 otherwise

Ro~-(Cro 2 -2rro. cos(p) +rz4Z-z,) 2)1/ 2

Jn' - n'4 Yr' Yn' Hn - H ~ Bessel functions and their derivative Hn-uJr,+iyn

A,.(n. a) to A6 (n. a) unknown constants of Integration

Is] a matrix. I rows and I columns

ii (b,n,a) 7,r (b,n,a)

6* %0 (a,n,a) F r %9J (a,n,a)

z (bn~a)f r (a,n,cx)

(a,rl,a) 7 (a,ri,a)

i(a., n, a) F (bn,a)
L L z
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INTRODUCTION

The mathematical analysis of wave propagation In and sound radiation
from a single-layered uniform pipe is usually based on a shell theory to
represent the pipe vibrations and the wave equation to represent the
interior and exterior acoustic pressures. Recent work using shell theory.
of relevance to the problem to be considered here, includes that of Fuller
& Fahy E1 who have Increased understanding of the physics of wave
propagation In fluid-filled pipes through their discussions of wavenumber
versus frequency plots and the energy distribution of free-waves between
fluid and shell, and that of James (2.3) who has shown that the dispersion
relation helps to promote a qualitative understanding of vibration and sound
radiation. Only a limited amount of work which uses the exact linear theory
of elasticity to represent the vibrations of a fluid-filled pipe has been
published: In particular, Lester's derivation [4] of the dispersion relation
of thick walled pipes is central to the approach adopted here.

Whilst there is a considerable amount of literature available on wave
propagation in and sound radiation by plane layered media, the literature on
layered pipes is less extensive. Included in the former is the work of
Pestell & James 15) and Spicer 16) who use the exact linear equations of
elasto-dynamics. visco-dynamics and acoustics. Included in the latter is
the work of Yeh & Chen [7) who study the dynamics of two coaxial shells
which are separated by a viscous fluid. and that of Avilova & Rybak (8
who develop the dispersion relation for a thin multi-layered shell.

In this Memorandum. the methods of Lester [4) and Pestell & James (51
are combined to give a matrix relation from which far-field sound radiation
and the wavenumbers of free-waves may be calculated numerically by Fortran

programs. In addition to being a valuable tool for studying free-wave
propagation in and sound radiation from coaxially layered pipes, the
programs are useful for studies to determine the range of applicability
of shell theories.

2. PROBLEM FORMULATION

(a) General

The layered system shown In Figure 1 Is composed of an arbitrary
number of concentric elements each of which satisfies the exact linearised
equations of acoustics, elasto-dynamics or visco-dynamics. It Is excited
by time-harmonic point sources which are located in the acoustic fluids. or by
time-harmonic point forces applied at the Interfaces of the elastic elements.
The time factor exp(-kt) Is omitted from all equations.

(b) Fourier Transforms

It Is convenient to represent the variables as Fourier transforms.
For example. the displacement components are represented by

7



Ur(r. . " rcoscn%) r r ,rna))
u Cr.q.z) - (1/2w) ! sin(n,) f U,(r.n.) exp(iaz)da (2.1)uz(r.e.Z) Jn=o Lcos(np)- U[,r.n.a=.

where the spectral displacement components are given by tie inverse transform[rr n . a) 1 27r FcosnP n ur(r. V.z) 1
,,(r.n.a)] = (,n/2,) f [.in(() V u"(r,'P.z) Iexp(-iaz)dzdv (2.2)

iz(r.. ) j 0 -co n, ULu(r.,v. z) J
The Fourier transforms facilitate the solution of linear differential
equations by reducing them to algebraic equations.

(c) Construction of the System Matrix Equation

The spectral dynamic stiffness of the layers and the interior and
exterior media are matrices which relate spectral stresses to spectral
displacements at the interfaces. These matrices

[S(n.a)). [Se(n.a)) and [Si(n.a)]
6:6 3*3 3"3

are obtained for the acoustic. viscous and elastic media in Sections 3-7.

The assembly of the element matrices to form the system dynamic
stiffness matrix relation

[SM(na)](U(n.a)J = [EM(n,a)) (2.3)
M3 M Mal MAI

is a standard finite element procedure which reflects continuity of
displacement and equilibrium of stresses at the interfaces. Computer
implementation is straightforward. The matrices (U(n.a)) and
[EM(n.a)) are column vectors of interface displacements and externally
applied Interface stresses. respectively, of dimension M=(3N+3) for a
system of N layers. The external spectral stresses are defined to be
positive when acting In the positive direction of the coordinate axes.
With reference to Figures 2 and 3. this sign convention requires changes
of sign before assembly to the elements of (i) the last three rows of all
matrices (8(n.a)] and (i) the matrix CSe(na)]. An example of an
assembled system matrix for a two-layered system is shown in Appendix B.

(d) Free-Wave Propagation

In the absence of external forces or sources. the system of homogeneous
equations (2.3) has a non-trivial solution if and only if det(SM(n.a)]
vanishes. For given values of n and of w there will be real and complex
values of a at which the determinant vanishes. Real values of a are the
wavenumbers at which free-waves propagate. Complex values of a represent
evanescent waves, whose amplitudes decrease exponentially with distance.

S



Here. the real branches only are of Interest. and plots of real wavenumber
a against frequency for selected circumferential harmonics n are called
wavenumber-frequency or dispersion plots.

(e) Far-Field Pressure

In the special case of the exterior medium being an acoustic fluid.
the far-field pressure in spherical polar coordinates is found from the
stationary phase approximation to be (9)

U 1 (n. k. cosG)exp(-inr/2)cos(np)
p(R.9,j) = -, ipc exp(ikR)/WR (2.4)

n=o sine Hn'(ka. *in&)

where U L (n. k. cos9). the radial spectral displacement of the outermost
Interface Is obtained from the solution of the matrix equation (2. 3).
evaluated at ak. cosS.

3. THE ACOUSTIC FLUID LAYER

Figure 2 shows a section through an acoustic fluid layer whose
Inner and outer boundaries. r-a and r-b respectively, are subject
to spectral pressures [(n. a)] which produce spectral radial
displacements [Ur(n. a) ].

The pressure in the acoustic fluid layer satisfies the scalar

Helmholtz equation

V 2p+k2 p w 0 (3.1)

whose general spectral solution is

f(r.n.a) = A],(n.a)Jn(Vr) + A2(n.a)yn(Vr) (3.2)

Evaluation of the pressure and the pressure-displacement relation

8a(rn.a)/ar = pW2 Ur(r, n.a) (3.3)

at the boundaries gives the matrix relations

FCb~n.a) jJn(7b) Yn(vb) A ]L(n. a)(.)
= (3.4)

F(a~n.a) [Jn(a) Yn (1ya) A 2 Cn.a)

U~r an,:J ~ [Jn'7a) Yn'(Vab)]L2A(n.a)] (8.5)
~rbn. a) Jn&Cvb) Yn'(7a) A 1 (n.a)

9



from which 1A(n.a).A 2 (na)]T may be eliminated. This gives, after
making use of the Wronsklan relation

Jn(x)Yn'(X) - Jn'(X)Yn(x) = 2/ix

the matrix relation connecting spectral pressures and displacements at
the acoustic fluid layer boundaries as

~(b. n. a) pc. 2  Jn( b) Yn(7a) -yn(Vb)Jn (a) -2/ "~b r(b. n. a)
-PP a. . a 'yW 2 /wva Yn Oya) Jn'7b) -Jn a) Yn(,b)][ ru(a. n. (K)](.)

where

W = Jn'(7b)Yn'(VYa) - Ln'(,Ya)Yn'(7b)

It is convenient when assembling the Individual layer matrices into the
system matrix to write equation (3.6) in terms of the fluid stresses as

(S(n.a)I[u(n.a)I = Ef(n.a)) (3.7)
6m dal dal

where the elements of (S(n. a) I are identically zero except for

811 = pwa(Jn'(7Ya)yn(b)-Jn(,Yb)yn'(V/a))/W

S1 4  = 2pu2 /7rybW

S41 z= -2pw 2 /wyaW

S 4 4  = pU2 (Jn(VYa)yn'(.Yb)-Jn'(VYb)yn(VYa))/W

4. THE ELASTIC LAYER

Figure 3 shows a section through an elastic layer whose Inner and
outer boundaries, r-a and r-b respectively, are subject to spectral
stresses M(n, a) ] which produce spectral displacements (u(n. a)).

The displacements in the layer satisfy the vector equation of
motion (10J

(O,+/')V(V.U) + V 2 U = pa 2 u/l 2  (4. 1)

which may be reduced by using a Lam" substitution

u - VF + VA P, - (0,0, G) + VA(0,0.H) (4.2)

to the three scalar Helmholtz equations

V2 F~kL 2 F - 0. V2G+kT 2 G ,. 0, V2 H+kT2H 0 0 (4.3)

10



Lester (41 has shown that the Fourier transform solutions of
equations (4. 2-4. 3) together with the transforms of the stress-displacement
relations

7*rr = kCM u) +2aaur/ar

7Trz 32 Laur/az~auz/ar)

allow the construction of the matrix equation

(S(n~a)IW9(n.c0I = (P(n.a)I(R(n.a)r-1 (G(n~a)1 = ff(n~a)] (4.5)
one 61%1 One 6*6 6X1 6^1

connecting spectral displacements and stresses at the boundaries of the
elastic layer. The elements of the matrices E(n. a) and (R(n. a) I
are given In Appendix A.

5. THE VISCOUS FLUID LAYER

Figure 3 is also applicable to a viscous fluid layer whose inner and
outer boundaries. r-a and r--b respectively. are subject to spectral
stresses (1( n. a) which produce spectral displacements ((n.a) I.

The linear equations of motion satisfied by the particie velocities
and the fluid pressure within the viscous layer (111)

-p+ V26+ (I3)VM jg) = Paig/at

ap/at +. pv. a = 0o51

ap/at - c2 apIat

may be reduced by means of the substitution

*VF + VArP. r (0. 0. 0) + VAC(0,0. H) (5.2)

to three scalar Helmholtz equations, together with an expression for the
fluid pressure, viz.

V2 F + k. 2 /(c 2 -4iwg/3p)1F -0

V 2G + (IpW1A&)G - 0 (5.3)

V2 H (ipIj)" - a0

p - p' m (5.4)



The stress-velocity relations in the viscous fluid layer are

T rr = -p-(2,u/3)V. U + 21,Ir/aZ

T rp = /(86/ar - (1/r)aO +(1Ir)a8rl'p) (5.5)

Trz = (arlaz + a8z/ar)

from which, using equation (5.4). p may be eliminated to give the
stress-velocity relations for the viscous fluid layer in a form similar
to the stress-displacement relations for the elastic layer

rrr = (ic 2 p/,-21L/3) (V.0) + 2Ua8Ir/ar

Tri = L(8O/ar - (1/r)6 + (1/)8ar/8ap) (56)

'rz = w(airIaz + 8 zl/r)

By identifying
S= (ic 2 p/w - 2a//3)

kT2 = ipw/Is (5.7)

kL2  W2/(c2 - 4lWI/A3p)

in equations (5,3) and (5.6) it is evident that the matrix relation
between spectral velocities and stresses at the boundaries of the viscous
fluid layer is of the same form as that between stresses and displacements
at the boundaries of the elastic layer. It is

[P(na)1(R(na)i- 1 u(na)J = [7(n.a)] (5.8)
6*6 66 61 6al

or
-iw[P(n. a) ]JR(n. a) 1-161(n. a) I = [(n, a)]

also one 6"1 Gal

where, subject to equations (5.7). the elements of the matrices (P(n, a)]
and [R(n.a)] are given in Appendix A.

6. THE INTERIOR MEDIUM

(a) Acoustic Fluid

Figure 2 shows a section through a cylinder of acoustic fluid whose
boundary. rib. is subject to the spectral pressure P(b. n. a) which
produces the spectral radial displacement gr(b. n.a).

The pressure in the fluid satisfies the scalar Helmholtz equation
(3. 1). whose general spectral solution equation (3. 2) Is subject to the
condition that the pressure at the origin remains finite, requiring that

A 2 (n.a) a 0.

12



Evaluation of the pressure equation (3. 2) and pressure-displacement
relation equation (3. 3) at the fluid boundary gives the relations

P(b, n. f) = A 1 (n.a)Jn(yb)
(6. 1)

Ur(b. n. a) = ("//PW)AL(n,a)Jn'(VYb)

from which A(na) may be eliminated to give the relation connecting
spectral pressure and displacement at the boundary

P(b.n. a) = pW2 Jn(b)/7Jn('Yb)10r(bn. a) (6.2)

It may be convenient when assembling this element into the system matrix
to write equation (6.2) in terms of the fluid stresses as

(SI(na)j[5i(n.z)] = Ifi(na)] (6.3)
3*3 3 1 3*1 I

where the elements of the matrix (Si(n.a)) are identically zero except for

S I = -pC 2Jn(b)/7Jn'(VYb)

(b) Elastic Solid or Viscous Fluid

Figure 3 shows a section through an elastic cylinder whose boundary,
r=b, is subject to spectral stress [P(na)) which produces spectral
displacement [i(n. a) I.

The displacement In the elastic cylinder satisfies the vector equation
of motion (4. 1) which may be reduced, by means of the Lame' substitution
equation (4.2). to the three Helrnholtz equations (4. 3) whose spectral
solutions, after imposing the requirement that the displacement at the
origin remains finite, are

F(rn.a) = Al.(na)Jn(Lr)

6(r.n.a) = A 2 (n.f)Jn(7Tr) (6.4)

H(rn.a) = A3 (n,a)Jn(vTr)

Evaluation of the displacement equation (4.2) and stress-displacement
relations equations (4.4) at the cylinder boundary gives the matrix equations

[Al(n. )
Mu(n. a)I = [R(na)) A 2 (n.a) I1(.5)

3*1 33 LA (n,)

FA j(n.0)1
Pi1 n. a) = [pi(n.a)J jA 2( n. a) (6.6)
31 3*3 LA3 (n. a)

13



from which (A(n.a). A 2 (na). A 3 (n,a)]T may be eliminated. This results
in the matrix equation relating spectral stresses and displacements at the
cylinder boundary

(Si(na)]JW(n.a)] = [Pi(n.a)1(Ri(na)]-1(lP(n.a)I = [-i(n.a)] (6.7)
3x3 3x1 3x3 33 31 3x1

where the elements of the matrices (Pi(na)] and [Ri(na)] are given
in Appendix A.

In the case of a cylinder of viscous fluid. it follows from Section 5
that the matrix equation relating spectral stresses and displacements at
the boundary is

-iw[Pi(na)I[Ri(n.a)-L[ui(n.a)] = [fi(n.a)] (,.8)
3x3 3x3 3x1 3R1

where. subject to equations (5.7). the elements of the matrices (Pi(n.a)I
and [Ri(na)) are given In Appendix A.

7. THE EXTERIOR MEDIUM

(a) Acoustic Fluid

Figure 2 shows a section through the region whose boundary. r=a. is
subject to the spectral pressure A(a.n.a) which produces the spectral
radial displacement Ur(a, n. a).

The pressure in the fluid satisfies the scalar Helmholtz equation
(3. 1). whose general spectral solution equation (3. 2) is subject to the
radiation condition that at large values of r the pressure consists of
outgoing waves only. requiring that

A 2(n.a) = IA,(n.).

Evaluation of the pressure equation (3.2) and pressure displacement relation
equation (3.3) at the fluid boundary gives the relations

(an.a) = Ai(nG)Hn(ya)
(7.1)

6r(a. n. a) = (,y/pw2)Al(n.a)Hn'(vYa)

from which Al(n.a) may be eliminated to give the relation connecting
spectral pressure and displacement at the boundary

P(an,a) = pw2Hn(a)/IHn'(a) ir(a.n.a) (7.2)

It may be convenient when assembling this element Into the system matrix
to write equation (7.2) In terms of the fluid stresses as

14



[Se~~a)[ e~~a) = Ie~na)](7.3)

3*3 3*1 3"I

where the elements of the matrix [Se(n.a)) are identically zero except
for

Sf I = -pul 2 Hn(vYa)/vYHn'(va) (7.4)

(b) Elastic Solid or Viscous Fluid

The case of an exterior elastic or viscous fluid medium is not
relevant to the problem of far-field radiated sound. but it is included for
completeness. Figure 3 shows a section through the region whose boundary.
r-a. is subject to spectral stress (fe(n. a)] which produces spectral
displacement [1e(n. a) .

The displacement in the elastic region satisfies the vector equation
of motion (4. 1) which may be reduced. by means of the Lame substitution
equation (4. 2). to the three Helmholtz equations (4. 3) whose spectral
solutions after imposing the radiation condition of outgoing waves only
are

F(r,n,a) = Al(na)Hn(YLr)

G(r.n,a) = A 2 (na)Hn('YTr) (7.5)

H(r.na) = A3(na)Hn('YTr)

Evaluation of the displacement equation (4.'2) and stress-displacement
relations equations (4.4) at the boundary results. as in Section 6. in
the matrix equation relating spectral stresses and displacements at the
boundary

(se(n.a)Je(n.a)I = fPe(n a)JIRe(na)1-l-ge(na)] = ffe(n.a)] (7.6)
3%3 3*1 3*3 3x3 3*1 31 1

where the elements of the matrices [pe(n,a)) and IRe(na)) are given in
Appendix A.

In the case of an exterior viscous fluid It follows from Sections 5
and 6 that the matrix relation between spectral stresses and displacements
at the boundary is

-iW(P(n.a)](Re(n.a)]-[ e(n.a)] = [Te(na)! (7.7)
3*3 323 311 3*1

where, subject to equations (5. 7). the elements of the matrices IPe(n.a)I
and fRe(na)) are given In Appendix A.

is



8. POINT FORCE EXCITATION

A point force excitation, of magnitude F 0 . applied in either the
radial or axial direction at cylindrical coordinates (ro .0. z 0 ) on an
elastic layer interface may be represented mathematically as the external
stress

E(p.z) = F 0 8(z-z0 )6(.p)/r 0  (8.1)

from which the spectral excitation is obtained via the Inverse Fourier
transform equation (2. 2) as

E(n.a) = (enFa/27rr0)exp(-iazo) (8.2)

The addition of this spectral force into the right-hand-side of the system
matrix equation (2.3) Is a straightforward finite element procedure.

9. POINT SOURCE IN ACOUSTIC FLUID

(a) Green's Function

The effect of a point source, located at cylindrical coordinates
(r0 .0, z 0 ) in the acoustic fluid, is best developed via the expansion of
its free-space Green's function (121

P0 exp(ikR 0 )/R0  = (Ip/2) 'encos(np) f Jn(7ro)Hn(Yr)exp(i(z-zo)Ida r)ro
n=o -

(9.1)

= (ip0/2)iencos(no) f Jn(7r)Hn('ro)explia(z-zo)]da r~ro

(9.2)

which is augmented when boundaries are present by a scattering term which
satisfies the homogeneous Helmholtz equation (3. 1). Thus the total pressure
Is

p(r,%o,z) = p 0 exp(ikR0 )/Ro + ps(r,.z) (9.3)

where the amplitude of the scattered wave ps Is determined by the boundary
conditions.

(b) The Fluid Layer

The spectral form of equation (9.3), representing a source In an
acoustic fluid layer. is obtained from equations (9. 1). (9. 2) and (3.2) as

16



p(r. n. a) = (ipo/2)enJn (7re)Hn(r)exp(-iuzo)

+ Al(n.a)Jn(7r) + A2(na)Yn(oyr) rr o  (9.4)

'(r, n. a) = (ipo/ 2 )enJn(,Yr)Hn(vro)exp(-iazo)

+ Al(n.a)Jn(VYr) + A 2(na)Yn(vr) r4r 0  (9.5)

Evaluation of the pressure equation (9.4) or (9. 5) and pressure-
displacement relation equation (3. 3) at the layer boundaries results in the
matrix equation relating spectral displacements and stresses at the layer
boundaries

IS(n.a)J(U(n.a)J = IF(noa) + 1E(na)i (9.6)
6"6 61%I 6*XI 6l I

where the elements of (E(n,a)] are identically zero except for

El. = 2 1poenexp(-iazo) [Hn(')ro)Jn'('Ya)-Jn(v)ro)Hn'(7a)]/Wb
(9.7)

E4 = 2 1PoenexP(-iazo) (Hn(7ro)Jn'(,Yb)-Jn(7ro)Hn'(7b)]/Wya

Equations (9. 6) and (9. 7) together with the sign convention for external
stresses show that the point source in the acoustic fluid layer has an
effect on the right-hand-side of the system matrix equation equivalent
to external radial spectral stresses of E1  and -E 4 at the upper and
lower boundaries respectively.

(c) The Interior Fluid

The spectral form of equation (9.3). representing a source in the
interior acoustic fluid, is obtained for the region r>r o from equations
(9.1) and (6.1) as

;(r~n~a) = (lpo/ 2 )enJn(vYro)Hn(r)exp(-iazo) + AI(n.a)Jn(Vr) (9.8)

Evaluation of the pressure and pressure-displacement relation, as In
Section 6. results in the matrix equation relating spectral displacements
and stresses at the boundary as

(Si(n,a)])t 1(n.a)] = ffi(n.@)J + IEi(n.a)l (9.9)
3*3 3R1 3%1 301

where the elements of (E'i(n.a)) are identically zero except for

El = 2poenexp(-iaoZ)Jn(Vro)/VYbJn'(7b) (9.10)

Equations (9. 9) and (9. 10) show that the point source In the Interior
acoustic fluid has an effect on the right-hand-side of the system matrix
equation equivalent to the external radial spectral stress Er at the
boundary.

17



(d) The Exterior Fluid

The spectral form of equation (9.3). representing a source In the
exterior acoustic fluid. is obtained for the region r<r 0 from equations
(9.2) and (7. 1) as

(r.n.a) = (ipo/2)enJn(vYr)Hn(vra)exp(-iaz.) + AI(n.a)Hn(vr) (9.11)

Evaluation of the pressdre and pressure-displacement relation, as in
Section 7. results In the matrix equation relating spectral displacements
and stresses at the boundary as

(Se(n.a)][Ue(n.a)] = [fe(na)) + (Ee(na)] (9.12)
3m3 3"11 301 3K1

where the elements of [Ee(n.a)] are identically zero except for

-eI = -2poenexp(-Iazo)Hn(,Yr,)/vaHn'('Ya) (9.13)

Equations (9. 12) and (9. 13) show that the point source in the exterior
acoustic fluid has an effect on the right-hand-side of the sstem matrix
equation equivalent to external spectral radial stress of -E. at the
boundary.

10. NUMERICAL RESULTS

(a) General

Fortran programs have been written to calculate and plot the axial
wavenumbers of free-vibration and the far-field sound level due to point
source or point force excitation. The programs are written in double
precision complex arithmetic which Is simulated [6 by the use ot double precision
variables of leading dimension 2. They were run on a PDP-*11/34A computer
for which the arithmetic word length of 32 bits used for single precision
complex arithmetic is inadequate In this type of problem.

The material and geometric constants In SI units which are used In the
calculations. Involving a single pipe and two coaxial pipes separated by
water, are as follows:

Steel Inner Pipe: )=10.44 x 1010 It=7 .56 x 1010 p,,7700.0
a-0. 2096 b-0. 2350

Steel Outer Pipe: )-10.44 x 1010 g=7.56 x 1010 p-7700.0
a=0.2700 b=0. 3000

Water: p-1000.0 c=1500.0

Air: p-1.21 c=343.0

Damping In the pipe walls is Included by setting ), and 1L to the complex
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values ).A 1-17ik) and /L 1-1771L). respectively, where the numerical values
of the hysteretic loss factors. 71), and 71,. are chosen as 0.02.

(b) Wavenumber Plots

Figure 4 shows the real branches of the wavenumber versus frequency
plots, for the first three circumferential harmonics. of the inner pipe
containing water and surrounded by a vacuum. The plots are identical to
those obtained by Lester (41 who has also superimposed plots obtained from
a shell theory. The physical interpretation of the plots is given
elsewhere (1).

Figure 5 shows the plots for the composite pipe consisting of the inner
and outer pipes separated by a 3.50cm layer of water: again the interior
Is water and the exterior a vacuum. The plots contain many more branches
than the previous plots because of the partial independence of waves in the
solids and fluids.

(c) Sound Radiation Spectra

Figures 6-11 show the variation of far-field 'airborne' sound pressures
(dB ref. 1 micropascal at im) with frequency. The plots (all at %p==00)
consist of straight line joins which connect levels computed at 15Hz spacing:
hence. the sharp peaks are unlikely to have been resolved fully. The
excitation is either a IN rms radial force applied to the inner pipe at
the cylindrical coordinates (0. 2096.0.0). or It is an interior point source.
located at (0. 1482.0, 0). whose free-field pressure is 120dB.

(d) Radiation from Inner Pipe

Figure 6a shows the airborne sound radiation from the inner pipe at
9=90" due to point force excitation. Figures 7a. 8a and 9a show the
sound radiation, at 9-900. 80" and 700. respectively, due to point-source
excitation. The corresponding (b) Figures contain the sound radiation
calculated from a shell theory. There Is good agreement between the (a)
and (b) spectra up to the 'ring frequency' of 3.6kHz. the differences
thereafter being mainly attributable to the relatively increasing density
of the peaks in shell theory.

James (21 has demonstrated. using shell theory. that the frequencies
at which 'peaks' appear in the sound spectra depend on the location ()
of the observation point. These frequencies are the frequencies at which
the lines a-k. cos() cross the wavenumber branches. where k is the
wavenumber in air. The same is true when exact linear theory Is used.
In fact. the difference between the (a) and (b) plots is reflected in the
differences between the dispersion plots of the shell and exact theories.
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(e) Radiation from Composite Pipe

Figure 10 shows the airborne sound radiated at e=900 for the cases
of (a) point force excitation: and (b) point source excitation. Figure 11
shows the sound radiation due to point-source excitation calculated at
(a) 9-800 and (b) 0-700.

Again. the frequency at which 'peaks' appear in the spectra may be
found from the dispersion plots as the frequencies at which the lines
a--k. cos() cross the wavenumber branches. The dispersion relation is
equally useful in Interpreting the spectra from layered pipes.

E A Skelton (SO)
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APPENDIX A

The Elastic Layer Matrices (Cn. a) and (Cn.a) I
one 606

11 L n2 Lyn kkJCyb L &i 2

p 13 (2An/b 2 )['JA(vTb)-Jn('Tb)l P1 4- (2Anf/b
2) fTbAT b)rfln(7Tb)]

p21- (2ng/b 2 ) )(Y L b) -n L b7)] P2 2 - (Znx/b2 ) )EYL ~b ) PL bYA(-YLb)]
P 2 3 - (Alb 2) [27TJA(r.b) p 24- (A/b:2 )(2y hA(vyTb)

+22n 2 )n ,bl+(Y 2-2 2)yn/T]

P31 .-Z@LLJA(-tL b) P 32 ' 21g iasL YACLb)

p3.(iang/b)j~ n. 1.b) P234 ' (ianA/b)! n(,ih

P35. iST (
2 a kTC)JAC7Tb) A i~T (a2_ 2 C b

36 y nA -T)

Rows 4. 5. and 6 are obtained by setting b=a in rows 1. 2. and 3.

R 1- Y3J(7b) R12' Ln7 L)

R 13 Cn/b)J n (7b) R 14 (n/b)Y C T b)

R Is icryT JA CyTb) R 6- ±i"T A(vTb)

R 3- -Cn/b)3J nCY b) R22 - fi)Yn( L b
R231 L7TJA7 R 2- -(_/7 TY ( b)

R2 ' - Coaf/b)J n (,fTb) R 2 6 - (ian/b)Y n (7Th)

R 31 iai n (7 L b) R3- lay C 7 b)

31 32 nY Ln(Yb

Rows 4. S. and 6 are obtained by setting b=a In rows 1. 2. and 3.
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The Elastic Interior Matrices (PI(n. a)J and 1Ri(n. a)i
3A3 3X3

U;w7J(vYLb)-'k~Jn(7YLb)

12 - 2t/ 2 )7Tbjn(7Tb)Jn(7Tb)]

p 1 -2 iaIL72J,(,yb)
13 j T

P - (2nA/b 2)[J (7 b)-7 bJ'(Yb)
21 n L L nv~)

p i -(I/b
2 ) [27 bjA(,Y b)+(v,b 2 -2n 2 )P (7 b)]

22TnT

p 2 1 (21aun/b 2 ) [b7TJ vb)Jn(~
-2 iJZLV (7Lb)

i
p (iaian/b)J (7 b)
32nT

33 Tn

R (n/b)J~ (Vb)

R -ia 1GV (nTb)

R - (n/b)J (vyLb)

R 2  - VTJA(?YTb)

R - (ian/b)J (7YTb)
22

31i iai (vYLb)
31 0

32

R 3 (a24)Jn(7T)
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The Elastic Exterior Matrices (P@(n.a)I and (R*(n~a)I
3*3 3*3

P72 -(2tan/a.')[7,aHA(7Ta- n ( Ta)

P:3 _ 2iaL'4Hw(yTa)

P:,1  (2ng/a.2 )Hn (yLa) -yLaHA (V&)]
22 TA a )[ a) + ,2a _2n2)HflCv a)]

P: -THAY Ta/ nLi TYT

- (2icam/a 2)(aTHA va)-H(a)

:,- 2laA7HA(7La)

P -(icxnIL&)H (
32 2 2
p 3  v( 2a -T);Hl a)

R,- vL0Al(7La)

R 2 - (n/a)HT)
!1 2  Hnv~I(7Ta)

R,--(n/&)H n(7La)

R3- (ian/a)H~ nVTa)

R: -iaHfl(?La)

R -)H
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APPENDIX B

The System Matrix (SM(n.a)I for a 2-layer Pipe

exterior matrix ISO ( n, a)I

3R3

layer matrix IS I(n, a)]I
6*6

layer matrix IS 2 (n. a) I

Interior matrix LSi (n a) I
323

s1-SI s- elS 5i Si S0o a
ii1 1 113 2 1 Si

S1 0 0
S-S S-SA S-35 S 21  Si 1 1 0

1 2 1 22 22 2C 223 24 1 2 600
31 310 3

_ 1 _1 _ 1 2 222 S2
41 42 43 i 44 8:2-S41 S13 S46 S14 is is

1s I _1 X.q 2 ~ 2 12 S2

-s a 1 S2  -1 3 S21 -914 833 S~ 55 3 3 8 5 51 S 24 2 3 2 6

_SI - 62 3 S316S4 3:266: S33 S66 S24 3 6 S36

0 0 0 -S a' -S 2 _S2' s s 5
41 42 43 i 4 2 5 1 46

41 1 3 21 1S4 22 S13 2 6

oS aa..2 -2 2 _S 2 2 2 Si sz
61 62 63 21 64 2~i2 66 33 66

aw UAISI nM
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