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I. INTRODUCTION 

Secondary muzzle flash results from the reignition of a mixture of fuel­
rich exhaust gases and entrained air. Three kinds of factors affect secondary 
muzzle flash. The first, chemical factors, include the presence of flash 
suppressant in the charge, the flame temperature of the propellant, and the 
chemical composition of the propellant. Physical factors include the exit 
condition of the propellant gas (temperature, pressure, and velocity) and the 
location and strength of shock in the muzzle flow. Mechanical factors which 
affect secondary muzzle flash include both the intentional effects of flash 
hiders and the unintentional effects of muzzle brakes. The work of Carfagno1 

and his coworkers did much to identify the causes of secondary flash. 

Secondary muzzle flash has always been viewed as undesirable because it 
identifies the location of the gun and because it reduces the night vision of 
the gun crew. More recently, however, it has been realized that the 
combustion which leads to the release of optical energy (IR, visible, and/or 
UV) also leads to acoustic energy release - noise. The suppression of 
secondary flash thus becomes an important means of reducing the blast noise of 
the weapon. 

Historically, flash has been suppressed (when it was possible) using 
mechanical "flash hiders" (slotted, cone shaped, etc.) or chemical salts 
(usually a potassium or sodium compound). The former method is effective for 
small arms, but it is considered too cumbersome for large caliber weapons. 
The latter works sometimes, but yields an accompanying smoke cloud, which can 
be quite detrimental in some situations. The use of propellants with lower 
flame temperatures has worked to reduce flash, when the chamber of the weapon 
is large enough for the increased charge weight. Rece~tly, cases of 
inadvertant secondary flash initiation by muzzle brakes have been documented.2 

The tescing of a number of candidate low-vulnerability (LOVA) propellants 
ir. our laboratory - the tests primarily for measuring interior ballistic 
performance- afforded an opportunity for flash and blast observations for 
several propellants with different chemical compositions. This paper 
discusses those flash and blast measurements in detail, some of the surprises, 
and our conclusions. 

1. S. P. Carfagno, "Handbook on Gun Flash," Franklin Institute Report, 
Contract No. DA-36-034-514-0RD-78RD, Nov 1961 (AD327051). 

2. E. M. Schmidt, "Gun Muzzle Flash and Associ a ted Pressure Dis turba nee s, n 

AIAA Paper 81-1109 (1981). 
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We recently acquired a new flash prediction code, the Muzzle Exhaust Flow 
Field (MEFF) code,3 It incorporates detailed, time-dependent chemistry, so we 
were interested to see what it would predict for applications of these cool 
LOVA propellants, with their different chemical compositions, in artillery 
situations. These predictions are compared with flash predictions by the May/ 
Einstein method.4 

II. FLASH AND BLAST MEASUREMENTS 

A. General 

The interior ballistic evaluation of the candidate LOVA propellants was 
principally conducted at BRL's Large Caliber Firing Facility (Range 18) using 
a highly instrumented 105-mm M68 tank gun. Our approach was to establish 
baseline performance with a reference lot of M30 propellant and then evaluate 
each candidate LOVA propellant, using the M30 performance as a standard. The 
test series for each LOVA candidate began with charge establishment to arrive 
at 420 MPa maximum pressure at ambient temperature. Candidate LOVA 
propellants evaluated included PU/HMX, CTBN/HMX, HTPB/HMX, CAB/RDX, CA/RDX, 
Kraton/RDX, and EC/NC/RDX. Details of the propellant compositions are in 
Appendix A. Some detailed ballistic data are listed in Appendix B. 
Additional details of the measurements are available in a previous JANNAF 
paper. 5 

Figure 1 shows the experimental setu~ The principal flash measure~ent 
which we employed was the measurement of the luminous intensity of the flash. 
It was monitored with an EG&G Model 450 Photometer set to measure the 
luminance of the secondary flash directly. The photometer was fitted with a 
CIE standard filter, so the wavelength response of the instrument was 
approximately that of the human eye. High- speed color photography was also 
used to document the flash. The camera was set to one side of the gun muzzle, 
with a field of view approximately perpendicular to the flight of the 
projectile. The framing rate was set at 1000 frames per second. Blast 
overpressures were measured with a PCB 113A21 gage installed flush with the 
top surface of a lead brick, which was itself set flush with the surface of 
the ground. The gage was 1.2 meters to the front and 3.4 meters to the side 
of the 1 05-mm gun muzzle. 

3. V. Yousefian, "Muzzle Flash Onset," ARI-RR-236, Aerodyne Research, Inc., 
Billerica, MA, Nov 1980. Also available as ARBRL-CR-00477, USA ARRADCOM, 
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Feb 82 (AD B063573L). 

4. I. W. May and S. I. Einstein, "Prediction of Gun Muzzle Flash," ARBRL-TR-
02229, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, 
MD, March 1980 (AD A083888). 

5. R. W. Deas, G. E. Keller, and J. J. Rocchio, "The Interior Ballistic 
Performance of Low Vulnerability Ammunition (LOVA)," 1981 JANNAF Propulsion 
Meeting, 26-28 May 1981, New Orleans, LA, CPIA Pub. 340, Vol III, pp 437-477. 
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Both CA/RDX and CAB/RDX contained flash suppressant. Secondary flash 
occurred only once in the CA/RDX tests and only about half the time in the 
CAB/RDX tests. Secondary flash was observed for all the firings of all the 
other candidates, even CTBN/HMX, which had some suppressant. All of these 
propellants have low flame temperatures; secondary flash should be able to be 
suppressed by adding sufficient chemical suppressant to any of them, We 
believe that unsuppressed, they would all flash most of the time in tank gun 
firings, and that the flash of any could be suppressed with chemicals. This 
section of the paper will deal entirely with the intensity of the secondary 
flash, and not with flash suppression. 

B. Flash 

Figure 2 illustrates the visible illuminance due to a CAB/RDX firing 
which flashed. Figure 3 shows the dramatic difference when a CAB/RDX round 
had no secondary flash, but rather dense white smoke. The data recording 
system sensitivity was set to cope with a bright flash, but the smoke was only 
slightly brighter than the background radiation, so the signal is low and 
noisy. Figure 4 illustrates the much brighter flash of Kraton/RDX round. The 
data acquisition system establishes the zero time for each round, so that the 
times of any particular event (auch as the flash) should not be compared for 
different rounds, while the times for different measurements made on the same 
firing can be compared. Table 1 summarizes the flash characteristics of the 
candidates, with M30 included as a reference point. The flash intensities 
(and standard deviations) have been transformed from illuminance (lux) into 
luminous intensity (candelas) by taking into account the size of the detector 
(in this case, 1 cm2) and its distance from the line of travel of the 
projectile, about 30 m. Since not all CA/RDX or CAB/RDX rounds flashed, and 
since the number of rounds for which good records were obtained varied widely, 
the last co~umn of the table shows the number of observations included in the 
statistical analysis. Note the absence of a correlation between intensity and 
flame temperature. 

TABLE 1. A COMPARISON OF FLASH INTENSITIES 

Peak Secondary Total Number Number of 
Flash Luminous of Observations 

Propellant Flame Temp (K) Intensity (Mcd) Observations of Flash 

Kraton/RDX 2283 18.2 ± 1 . 2 11 11 
CTBN/HMX 2379 13.8 ± • 72 8 8 
HTPB/HMX 2363 10.5 ± 1.6 4 4 
CA/RDX 2438 >6 9 1 
CAB/RDX 2499 3.95 ±. .84 11 7 
PU/HMX 2434 3.76 ±. .64 8 8 
M30 3010 2. 79 ±. .48 8 8 
EC/NC/RDX 2536 2.69 ±. .40 12 12 

The gain settings of the measuring equipment was appropriate for CA/RDX 
rounds that did not flash, but when the one CA/RDX round did flash, the 
illuminance record was clipped .. These records are sufficiently complicated 
that prediction of the peak height from a clipped record is risky; in this 
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case, it is safe to say that luminous intensity for the CA/RDX round that 
flashed was greater than 6 Mod and surely less than 10 Mcd. 

From time to time, incompletely burned propellant, exiting the gun tube 
behind the projectile, has been blamed for initiating secondary flash. It is 
argued that if there were still-burning propellant grains in the muzzle 
gas/air mixture, they would provide ignition sites. In the case under 
consideration here, however, all the propellants which did not contain flash 
suppressant flashed, and those with flash suppressant flashed at least 
occasionally. Thus, there is no need to invoke still-burning propellant as an 
ignition source. It was interesting to note that our lumped-parameter 
interior ballistic calculations, some details of which are included as 
Appendix B, suggested that two of the three bright flashers had significant 
amounts of incompletely burned, and perhaps still-burning, propellant in the 
exit flow. Particles in the flow may lead to a brighter flash, as we shall 
see. Note that much effort is expended to be sure that fielded charges are 
designed so that all the propellant in a tank-gun charge or an artillery 
charge is burned in the tube, so that, when working with a fielded charge, 
unburned propellant should never be a problem. 

The compositio.ns of the candidates suggested the possibility of other 
correlations, however. We examined the expected products of each propellant 
using BLAKE,6 first at the gun tem2erature and pressure associated with a 
typical gun loading density (0.2 g/cm3) and then at the mean pressure and mean 
temperature predicted for the time of shot ejection for each separate propel­
lant by a lumped-parameter interior ballistic model. The results of these 
calculations are included as Appendix C. While we found no correlation at all 
between bright flash and available fuel (CO, H2 , or CH!I), we did find a very. 
strong correlation bet~een the expected presence of solid carbonaceous residue 
and the peak flash intensity. Table 2 illustrates the calculated mole 
percentages. 

Propellant 

Kraton/RDX 
CTBN/HMX 
HTPB/HMX 
CA/RDX 
CAB/RDX 
PU/HMX 
M30 
EC/NC/RDX 

TABLE 2. FLASH INTENSITY SOLID/CARBON CORRELATION 

Peak Secondary Flash 
Luminous Intensity (Mcd) 

18.2 
13.8 
10.5 

>6 
3.95 
3.76 
2. 79 
2.69 

Solid Carbon at 
Gun Conditions 
(mole percent) 

3.2 
0.8 
1.3 
o.o 
o.o 
0.0 
0.0 
0.0 

Solid Carbon at 
Time of Shot Ejection 
(mole percent) 

19 .o 
18.!1 
12.9 
1.0 
!j • 1 
7.7 
0.0 
6.5 

6. E. Freedman, "BLAKE - A Thermodynamic Code Based on TIGER: User's Guide 
and Manual," ARBRL-TR-02!111, USA ARRADCOM, Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD, July 1982 (AD Al21259). 
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It should be noted that the "real" amount of solid carbonaceous residue 
is probably between the two percentages calculated; surely the reactions have 
continued beyond the gun conditions, but just as surely they have not reached 
equilibrium at the time of shot ejection. Nonetheless, the evidence suggests 
that a propellant which BLAKE predicts will have solid carbon present even 
under gun conditions is very likely to have a bright flash. 

The idea that a fuel-rich flame burns more brightly is not new, of 
course. Even the fact that particles in the gun muzzle flow produce a 
brighter flash has been reported before. See, for example, the work of 
Klingenberg and Mach.7 

c. Blast 

Figure 5 illustrates the blast overpressure due to a CAB/RDX firing which 
did not flash (the same firing as for Figure 3). The primary blast 
overpressure is cleanly displayed, as is the rarefaction which follows. 
Absent from this trace, and all the others from this test series, are 
significant contributions from reflections from the weapon, the barrier, or 
the ground (which often complicate measurements made by gages mounted above 
the surface of the ground). The basic shape of the blast overpressure curve 
shown in Figure 5 is duplicated by all traces for CAB/RDX or CA/RDX for which 
there was no secondary flas~ 

Figure 6 shows the difference when a CAB/RDX firing flashed (the same 
firing as for Figure 2). After the primary overpressure peak and most of the 
rarefaction, there is a secondary positive overpressure (the maximum strength 
of which occurs at about 52 ms) and a secondary negative rarefaction (the 
maximum strength of which occurs at about 62 ms). The secondary positive 
overpressure and rarefactions are even clearer in Figure 7, which is for the 
same flashiug Kraton/RDX shot that was illustrated in Figure 4. 

The question has been raised as to whether the blast curve deviation 
which is here attributed to secondary blast could have been caused in whole or 
in part by radiative or convective heating of the blast gage as the burning 
cloud of exhaust gases sweeps by. Definitive tests have not, as of this 
writing, been done to exclude this possibility. However, if heating were a 
problem, it would have caused the largest effect for Kraton/RDX, for which the 
flash was brightest. Figure 4 shows that the radiative heating would not have 
peaked until just after 80 ms, but Figure 7 shows that the "secondary 
overpressure rarefaction recovery" is well advanced by then. For this reason, 
we believe that heating did not influence these results significantly, but the 
point remains to be proved. 

The unusually clean pressure traces permitted quantifying the secondary 
blast overpressures. Several methods were considered, and the following 
method was chosen. A flashless CAB/RDX firing was traced for essential 

7. G. Klingenberg and H. Mach, "Investigation of Combustion Phenomena 
Associated with the Flow of Hot Propellant Gases - I: Spectroscopic 
Temperature Measurements Inside the Muzzle Flash of a Rifle," Combustion and 
Flame, 21.., 163-176 (1976). 
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features (less the noise). Each record was then compared to this tracing, and 
the area of the overpressure curve above the flashless curve due to the second 
secondary blast was measured. Also, the area below the flashless curve, due 
to the rarefaction caused by the secondary blast, was measured. The data 
obtained are shown in Table 3, including standard deviations of the mean 
areas. 

TABLE 3. SECONDARY BLAST 

Peak Total 
Secondary Area Area Area 
Flash due to due to due to 
Luminous Secondary Secondary Secondary 
Intensity Overpressure Rarefaction Blast, Number Blast 

Propellant (Mod) (Pa s) (Pa s) ( Pa s) Observations 

Kraton/RDX 18.2 80 ± 18 879 ± 164 959 ± 152 12 
CTBN/HMX 13.8 93 ± 23 540 ± 118 633 ± 99 13 
HTPB/HMX 10.5 66 ± 1 537 ± 34 603 ± 33 2 
CA/RDX >6 54 205 259 1 
CAB/RDX 3.95 68 ± 17 1 41 ± 61 209 ± 74 7 
PU/HMX 3.76 76 ± 11 238 ± 40 315 ± 34 5 
M30 2.79 59 ± 11 166 ± 45 225 ± 42 8 
EC/NC/RDX 2.69 50 ± 6 152 ± 25 203 ± 22 11 

Note the very strong correlation between the luminous intensity of the 
secondary flash and the total area due to the corresponding secondary blast. 
The same three candidates that probably have more solid carbon in their muzzle 
exit flows have both enhanced flash and more intense secondary blast. 

The blast gage used in this study was not located in the crew area, nor 
could it have been so located, because of the protective barricades at our 
firing site. Thus,our data cannot be related directly to the effect that the 
observed secondary blast would have on the gun crew. However, it is safe to 
say that the secondary blast would increase the B-duration (MIL-STD-
1474B8) of the entire blast envelope, and that would prolong its effect on the 
crew. 

D. Proposed Mechanistic Link 

The strong correlations interrelating the probable presence of 
carbonaceous residue in the muzzle flow, the luminous intensity of the 
secondary flash, and the strength of the secondary blast led us to look for 
possible mechanisms which would link them all together, and indeed, such a 
mechanism has been proposed. 

8. "Military Standard Noise Limits for Army Materiel," MIL-STD-1474B(MI), 18 
June 1979. 

21 



Moore and Weinberg9 were seeking to account for the level of damage 
observed following unconfined vapor cloud explosions. The flame speeds needed 
were too slow to be due to detonations but too fast to be due to 
deflagrations. Moore and Weinberg suggested that radiation from a large 
enough body of particles in the flow could be sufficient to provide an 
extended ignition source, so that the deflagration would proceed much faster 
than usual, helped along by propagation of the ignition stimulus at the speed 
of light. Our observations of a larger-than-expected secondary blast being 
linked to the probable presence of particles in the flow could certainly be 
explained by just such a deflagration enhanced by extended ignition. 

In any case, enhanced secondary flash and enhanced secondary blast, to 
the extent that they are caused by solid carbon particles in the muzzle flow, 
are problems that can be avoided by performing a relatively simple BLAKE 
calculation when the propellant composition is first proposed. If 
carbonaceous residue is predicted, the proposed composition should be changed. 

III. FLASH PREDICTION CALCULATIONS 

A. General 

Having made observations of the flash of these candidate propellants in 
tank-gun firings, we were then curious to see what some of the available 
flash-prediction codes would have predicted for their flash performance. We 
were especially interested to see what the latest code, the Muzzle Exhaust 
Flow Field (MEFF) code,3 would predict, since its advanced features include 
the handling of detailed chemistry. 

We would liked to have applied MEFF directly to predictions of flash for 
tank-gun firings for the best comparison with the observations. However, we 
could not. MEFF uses the results of Corner10 for calculating the flow out of 
the gun tube after the ejection of the projectile. Unfortunately, Corner 
neglects terms of the order of (C/W)2, where C is the weight of the propelling 
charge and W is the weight of the projectile. In the case of tank guns, the 
ratio C/W is about 1, so that it cannot be neglected. Other multipliers may 
make these terms grow smaller even if C/W is not negligible, but we do not 
know of a solution to the equations which retains all the terms. Thus, we 
opted to do a study of flash prediction for these candidate propellants in 
artillery situations, a study which MEFF handled easily. 

B. MEir Calculations 

The version of MEFF that we used is very close to that documented in Ref. 
3, ARI- RR-236. Thirteen ( 13) atomic and molecular species are considered, 
including K02 and H02. These are linked by the "extended kinetics" reaction 

9. s. R. Moore and F. J. Weinberg, "High Propagation Rates of Explosions in 
Large Volumes of Gaseous Mixtures," Nature, ~' 39-40 (1981). 

10. J. Corner, Theory of Interior Ballistics Qf. ~' John Wiley & Sons, New 
York ( 1950). 



set of 25 reactions. After the work of Schmidt~ 1 we have increased the 
diameter of the Mach disk, so that the multiplier in the equation which 
calculates the fraction of the propellant gases which pass through the Mach 
disk is 0.96 instead of the original 0.52 in MEFF. We have compared the 
results of several calculations with calculations done by V. Yousefian, who 
developed MEFF, to insure that our results are identical to his) 2 

MEFF has been quite successful in its predictions of secondary flash for 
several systems. It was exercised for a wide range of firings, from 8-in. 
howitzers down to 81-mm mortars, for situations in which no muzzle brakes were 
in use. For cases for which it had been observed that the system always 
flashed or never flashed, MEFF successfully predicted the flash/no flash 
condition. For a case for which it had been observed that the system 
sometimes flashed and sometimes did not, MEFF predicted that the case was 
borderline.13 

We standardized on an interior ballistic calculation for the M109A1 
howitzer, using the M203 charge (less its added salt bag) to fire an M483A1 
projectile. We used the same burn rates for the propellants that had been 
used for the tank-gun work~ Grain dimensions and charge weights were chosen 
to match the peak pressure and muzzle velocity (808 m/s) of our "standard" 
calculation. It should be noted at the outset that these cooler propellants 
have less impetus, so that it would take larger charges to achieve the same 
ballistics, so that it might prove difficult or even impossible to load the 
calculated amounts into the chambers of available weapons. Nonetheless, the 
results are interesting. 

Table 4 shows the results of MEFF calculations for four propellants, M30 
with 1% suppressant (M30A1), M30 with 2% suppressant, Kraton/RDX with no 
suppressant, and PU/HMX with no suppressant. The two LOVA candidates were 
chosen from among all the LOVA candidates based on their chemical composition; 
for these two, no significant molecular species were generated that were not 
on the list of the 13 species that MEFF treats. 

11. E. M. Schmidt, "Secondary Combustion in Gun Exhaust Flows," ARBRL-TR-
02373, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, 
MD, Oct 1981 (AD Al07312). 

12. V. Yousefian, personal communication. 

13. V. Yousefian, "Muzzle Flash Onset: An Algebraic Criterion and Further 
Validation of Muzzle Exhaust Flowfield Model," ARI-RR-296, Aerodyne Research, 
Inc., Billerica, MA, July 1982. 
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TABLE 4. MEFF FLASH PREDICTIONS 

Propellant Flash? 

M30, 0% suppressant yes, promptly 

M30, 1% suppressant yes, late 

M30, 2% suppressant no 

Kraton/RDX (0% suppressant) no 

PU/HMX (0% suppressant) no 

These results are quite easy to see in Figure 8, which shows the 
centerline temperatures predicted for the several propellants by MEFF. The 
temperatures are plotted with respect to the distance downstream of the 
"initial plane," which corresponds roughly to the plane of the Mach disk and 
the reflected shocks. The huge temperature rises for M30 with O% and with 1% 
suppressant are indicative of reigni tion of the propellant gases, now mixed 
with some air and shock heated. Note that by the time the flow has progressed 
10 or 15 meters, there is no doubt that the M30 (0%) case is going to flash. 
For the case of M30 with 1% suppressant, the flow has progressed more than 25 
meters before the result is obvious. Realistically, that is longer than one 
should probably believe the results of a steady calculation. On the other 
hand, observations of this system show it to be a borderline flasher. Fairly 
clearly, none of the other three propellants should lead to flash. 

The curve on Figure 8 labeled "Kraton/RDX from a hot gun" is an attempt 
to compare Kraton/RDX "With M30 as to their tendency to flash, given roughly 
similar initial conditions. For the calculation, the mean gas temperature "Was 
assumed to be the same as it had been for M30 "With no suppressant, 1813 K (as 
could take place for a "Weapon "With a much shorter barrel, for example). The 
result is that the Kraton/RDX/air mixture reignites as readily as M30/0%/air. 
Perhaps this is not surprising, for the LOVA candidates are fuel-rich, so that 
if the LOVA propellant gases leave the gun hot, they should ignite and flash. 

It should be noted that all of these are calculations of systems "Without 
muzzle brakes. Schmidt has sho"Wn that the installation of a muzzle brake can 
exacerbate a flash problem, transforming a marginal flasher into a system that 
flashes every time? 

C. May/Einstein Calculations 

We have compared the MEFF predictions "With predictions made using the 
flash-prediction technique of Carfagno~ as corrected and improved by May and 
Einstein~ This procedure calculates the temperature of the muzzle gas/air 
mixture as a function of the fraction of entrained air in the mass of the 
mixture. When this tern perature exceeds experimentally determined ignition 
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limits, flash is likely to occur. Table 5 is a guide for predicting whether 
reignition of' the mixture will lead to secondary flash)4 After a 
May/Einstein calculation is performed, so that the peak predicted mixture 
temperature is established, one looks on Table 5 at the row corresponding to 
the given percentage of' suppressant and notes in which column the calculated 
temperature best fits. 

TABLE 5. FLASH CRITERIA FOR ARTILLERY WEAPONS 

Flash Suppressant Occurrence of' Secondary Flash 

Regularly Marginal Never 

0 900 K Boo K 700 K 

1125 K 1025 K 925 K 

2 1225 K 1125 K 1025 K 

The results of the May/Einstein flash prediction calculations are shown 
in Table 6. 

TABLE 6. MAY/EINSTEIN FLASH PREDICTIONS 

Peak Predicted 
Propellant Mixture Temperature Flash? 

M30, O% suppressant 1079 K yes 

M30, 1% suppressant 1067 K marginal 

M30, 2% suppressant 1057 K no 

Kraton/RDX (0% suppressant) 790 K marginal 

PU/HMX (0% suppressant) 819 K marginal 

D. Comparisons 

Considering the differences in the two predictive codes, their agreement 
is impressive for M30, and it is quite acceptable for the LOVA candidates. 
The May/Einstein analysis suggests that Kraton/RDX and PU/HMX are not cool 
enough to be completely safe from secondary flash in artillery applications, 
while MEFF would predict that they would never flash. Lacking data, one 
cannot yet say which prediction is correct. One could infer, however, that a 
small amount of suppressant added to either LOVA candidate would eliminate any 
tendency to flash if they were used in artillery situations with no muzzle 
brake installed. 

14. G. E. Keller, "Secondary Muzzle Flash and Blast of the British 81-m m, 
L16A2, Mortar," ARBRL-MR-03117, USA ARRADCOM, Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD, July 1981 (AD A104324). 
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IV. CONCLUSIONS 

Extensive tank-gun firing data have been used to study the flash and 
blast characteristics of candidate low-vulnerability (LOVA) propellants. 
Three of the candidates exhibited a significantly brighter visible secondary 
flash than the others. This brighter visible secondary flash could be 
correlated with a more intense secondary blast. Both brighter flash and 
enhanced secondary blast could be correlated with larger predicted amounts of 
solid carbon particles in the muzzle exit flows for those propellants. 
Enhanced secondary flash and secondary blast from this source need not be 
tolerated, however, for a BLAKE calculation for the propellant candidate at 
the time that its chemical composition was being proposed would identify 
potential problems in this area. 

Both the Muzzle Exhaust Flow Field (MEFF) flash prediction code and the 
May/Einstein flash prediction technique were used to predict the secondary 
flash potential of two of the LOVA candidates in artillery applications. It 
was found that there was little chance of their flashing, and that if they 
did, a little chemical suppressant would suppress the flash. These 
conclusions are valid for situations in which no muzzle brake is installed on 
the weapon; muzzle brakes are known to enhance the possibility of secondary 
flash. 
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APPENDIX A 

CHARACTERISTICS OF THE PROPELLANTS 



For each propellant, BLAKE6 was used to calculate the thermodynamic 
quantities from the propellant composition. 

M3U Reference Propellant 

Manufacturer: Radford Army Ammunition Plant 
Lot: RAD 67878 

Composition, % by wt.: 
Nitrocellulose (12.6%) 
Nitroglycerin 
Nitroguanidine 
Ethyl Centralite 
Cryolite 

27.61 
22.67 
47.96 

Total 

1.49 
o.....zz.. 

100.00 
0.17 
0.21 

Graphite (Added) 
Residual Volatiles 

Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

3010 K 
1076 J/g 
1.24 
1.05 ml/g 

PU/HMX Candidate Propellant 

Manufacturer: Thiokol-Elkton 
Lot: PVI-1909 

Composition,% by wt.~ 
L-35 (polyether) 
TMP 
IPDI 
HMX 

Total 

Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

13.00 
1.43 
5.57 

.ruwm. 
100.00 

2434 K 
1038 J/g 
1.28 
1.23 ml/g 
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EC/NC/BDX Candidate Prooellant 

Manufacturer: Naval Ordnance Station, Indian Head 
Lot: Mix No. 890 

Composition, % by wt.: 
Ethyl Cellulose 
Nitrocellulose (12.6%N) 
Dibutyl Phthalate 
Ethyl Centralite 
RDX (Ground) 
RDX (E) 

Total 
Tullanox (added) 

Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

11.7 
7.4 
6.7 
0.7 

55.1 
.ta..lL 

100.0 
0.515 

2536 K 
1056 J/g 
1.28 
1.21 ml/g 

CAB/BDX Candidate Propellant 

Manufacturer: Naval Ordnance Station, Indian Head 
Lot: Mix No. 891 

Composition, % by wt.: 
Cellulose Acetate Butyrate 16.0 

8.0 
1 • 0 

1.5......Q. 

Triacetin 
K SO 
Rfix ~Ground) 

Flame Temperature: 
Impetus: 

Total 100.0 

Ratio of Specific Heats: 

2499 K 
1018 J/g 
1.27 

Covolume: 1. 18 ml/g 

Kraton/RDX Candidate Propellant 

Manufacturer: Naval Ordnance Station, Indian Head 
Lot: Mix Nos. 1059/1072 

Composition, % by 
Kraton G1652 
Tufflo 6065 
AO 2246 

wt.: 
9.95 
9-95 

• 10 
~ 

100.00 
RDX (Ground) 

Total 

Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

2283 K 
971 J/g 
1. 25 
1 .30 ml/g 
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CA/RDX Candidate Propellant 

Manufacturer: Naval Ordnance Station, Indian Head 
Lot: Mix Nos. 893/894 

Composition, % by wt.: 
Cellulose Acetate 16.0 

8.0 
1.0 

15......Q. 

Triacetin 
K SO 
Rfix ~Ground) 

Flame Temperature: 
Total 100.0 

2548 K 
999 

Heats: 1.27 
1.15 

Impetus: 
Ratio of Specific 
Covolume: 

CTBN/HMX Candidate Propellant 

J/g 

ml/g 

Manufacturer: Naval Ordnance Station, Indian Head 
Lot: Mix 8221A 

Composition, % 
CTBN 
Vanox 13 
Graphite 
Lecithin 
TP-95 
KNO 
ERL30510 
Fomrez C-2 
HMX 

Total 

by wt.: 
14.94 

.60 
1.00 

.40 
1.20 
1.00 
1.80 

.06 
1..9..&® 

100.00 

Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

2379 K 
1005 J/g 
1.27 
1.28ml/g 
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• 

HTPB/HMX Candidate Propellant 

Manufacturer: Naval Ordnance Station, Indian Head 
Lots: Mix 8228 and Mix 8232 

Composition, 
Fi45M 
618 
AO 2246 
L-14 
Graphite 
XB 2826 
IPDI 
PAPI 901 
HMX 

Total 

% by wt.: 
14.04 

.25 

.25 
2.85 

.50 

.50 
1.24 

.37 
8...0.....QQ 

100.00 
Flame Temperature: 
Impetus: 
Ratio of Specific Heats: 
Covolume: 

2363 K 
1008 J/g 
1.27 
1.29 ml/g 
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APPENDIX B 

BALLISTIC DATA 
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For each candidate propellant, lumped-parameter interior ballistic 
calculations were performed to match the mean performance. Some significant 
results from those calculations follow: 

M30 PU/HMX EC/NC/RDX CAB/RDX 

Charge wt (kg) 5.62 5.53 5.58 5.94 

Maximum breech pressure (MPa) 432 421 420 418 

Muzzle velocity (m/s) 1505 1475 1487 1l.l85 

% of propellant burned 100. 100. 100. 99.7 

Kraton/RDX CA/RDX CTBN/HMX HTPB/HMX 

Charge wt (kg) 5.76 4.99 6.03 6.12 

Maximum breech pressure (MPa) 409 427 432 418 

Muzzle velocity (m/s) 1420 1424 1489 1438 

% of propellant burned 95.2 100. 99.2 96.9 
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APPENDIX C 

PROPELLANT PRODUCT CONSTITUENTS 



For each of the candidate LOVA propellants and for M30, this appendix 
lists the concentrations of the constituents CO, H2, CH 4, and solid carbon 
(soot or smoke), as calculated by the BLAKE6 code, in the burning propellant 
gas/solid mixture. They are first calculated for the pressure and temperature 
that result from a "standard" charge loading density of 0.2 g/cc; these 
calculations are referred to as "gun" calculations. Then they are listed for 
the pressure and temperature at the muzzle at the moment of shot ejection when 
that particular propellant was used; these calculations are referred to as 
"muzzle" calculations. 

co 

PU/HMX 

co 

EC/NC/RDX 

co 

Gun Calculations 

moles/kg 
of compound 

11.8756 

5. 59868 

.000510 

0.0 

19.4297 

1. 55467 

.287487 

o.o 

20.3137 

14.5202 

.174395 

o.o 

mole % 
of total 

27.63 

13.02 

0.00 

0.00 

37.87 

3-03 

0.01 

o.oo 

40.56 

29.00 

0.35 

0.00 

Muzzle Calculations 

moles/kg 
of compound 

10.8591 

6.51051 

.026724 

0.0 

8.76015 

5.94253 

3.74545 

3.41606 

10.9060 

6.32216 

3-23304 

2.86014 

mole % 
of total 

25.32 

15. 18 

0.06 

o.oo 

19.66 

13.34 

8.41 

7.67 

24.73 

14.34 

7-33 

6.49 



Gun Calculations Muzzle Calculations 

moles/kg mole J moles/kg mole % 
ot compound of total of compound of total 

CAB/BDX 

co 19.3556 39.48 11.1743 25.95 

H2 13.2611 27.05 6.18049 14.35 

CH4 .113754 0.23 3.10807 7.22 

C(S) o.o o.oo 1. 74856 4.06 

Kraton/BDX 

co 20.0278 37.46 7.11660 14.32 

H2 16.3990 30.68 6.50579 13.09 

CH4 2.82724 5.29 4.97603 10.01 

C(S) 1.70017 3 .18 9.46400 19.04 

CA/RDX 

co 18.4082 39.03 12.1359 28.95 

H2 11 • 16 40 23.67 6. 26384 14.94 

CH 4 .044517 0.09 2.66328 6.35 

C(S) o.o 0.00 .409566 0.98 

CTBN/HMX 

co 21.2010 41 • 40 7.58801 15.85 

H2 15.2872 29.85 5. 7 4668 12.01 

CH 4 1.95237 3.81 3-99536 8.35 

C(S) .415417 0.81 8.80655 18.40 
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Gun Calculations Muzzle Calculations 

moles/kg mole % moles/kg mole % 
of compound of total of compound of total 

HTPB/HMX 

co 20.8712 40.15 11.5245 23.51 

H2 15.8320 30.46 8. 27901 16.89 

CH4 2.15373 4.14 3.99111 8. 14 

C(S) . 67 4326 1.30 6.32798 12. 91 
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