
-'AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ

UNCLASSIFIED DC8 AI-9 N884 iK094F/G 9/2 N

EhEmohhohhoiEEhhmohhhhhhhhhE
mhhhhhhmhhhhhI
EhhhhhhhhhhhhI

-ILI
*1

4 II*** II *11111-10,
1.25 111 L4 111.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.

o7 7-

UNCLASSIFIED
- " SECURITY CLASSIFICATION OF TuIS PAGE Wb4?an Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

1. REPORT NUMBER j2. GOVT ACCESS ON 0. RECIPIENT'S CATALOG NUMBER

* a ~AIM 698 R a is
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Robot Programming Memorandum

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMB ER(@)

N00014-81-K-0494

Tomas Lozano-Perez N00014-80-C-0505
N00014-82-K-0334

4M S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS

,. 545 Technology Square
Cambridge, Massachusetts 02139

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency _December 1982
1400 Wilson Blvd M. NUMBER OF PAGES

Arlington, Virginia 22209 57
14. MONITORING AGENCY NAME & AOORESS(It different from Conlrollinil Office) IS. SECURITY CLASS. (of thia report)

Office of Naval Research UNCLASSIFIED
Information Systems

17. Arlington, Virginia 22217 IS.. S- rA s ICATIONOwNGRAING

" s4IS. OISTRIBUTION STATEMENT (of thla Report)

* *~ Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of to abstrct efntered In Block 20. it differen trm iRe "R

Distribution is Unlimted

.. SUPPLEMENTARY NOTES

None

1. KEY WORDS (Continue on r verea aide ii neeaortm and Identify by block number)

*Q. Robotics
Robot Programming

,msJ 20. ABSTRACT (Continue on reverse aide I neceaary and Identify by block number)

LA. The industrial robot's principal advantage over traditional automation is
programmability. Robots can perform arbitrary sequences of pre-stored motion

14 or of motions computed as functions of sensory input. This paper reviews
requirements for and developments in robot programming systems. The key,
requirementsfor robot programming systems examined in the paper are in the
areas of sensing, world modeling, motion specification , flow of control, an
programming support. Existing and proposed robot programming systems fall inj
three broad categories: guiding systems in which the user leads a robot (COm

DD F? 1 14 E0ITgNAFINVGt(6SA SOLETE UNCLASSIFIED
P11 4.S/N 1o04. _

SECURITY CLASSIFICATION OF T,415 PAGIE 001119 Doo S

. /

MASSACIIUSIETTS INSTITUTE OF TECIINOLOGY
AR'I'IHCIAI. INTE.LIGENCE LABORATORY

A. I. Memo No. 698 December, 1982

Robot Programming

Tom.s Lozano-P6rez

Abstract. The industrial robot's principal advantage over traditional automation is
programmability. Robots can perform arbitrary sequences of pre-stored motions or
of motions computed as functions of sensory input. This paper reviews requirements
for and developments in robot prograuiming systems. The key requirements for
robot programming systems examined in the paper are in the areas of sensing, world
Modeling, motion specification, Ilow of control, and programming support. Existing
an]d proposed r(,oot programming systems fall into three broad categories: guiding
systems in which the user leads a robot through the motions to be performed,
robot-level programming systems in which the user writes a computer program
specifying motion and sensing, and task-level programming systeLnms in which the
user specifies operations by their desired effect on objects. A representative sample
of systems in each of these categories is surveyed in the paper. -

Acknowledgements. This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the
Laboratory's Artificial Intelligence research is provided in part by the Office
of Naval Research tinder Office of Naval Research contract N00014 81 -K-0494 and
in part by the Advanced Research Projects Agency under Office of Naval Research
contracts N00014--80-C-O505 and N00014-82-K-0334.

.' MASSACHUSETTS INSTITUTE OF TECHNOLOGY

7o -
.4

0

.

. - - - . -- - - - - - - - - - - - - - - .- - - -.-

1. Introduction

The key characteristic of robots is versatility; they can be applied to a large
variety of ta.4ks without significant re-design. This versatility derives from the
generality of the robot's physical structure arnd control, but it can be exploited
only if the robot can be programmed easily. In some cases, the lack of adequate
p~rogramming tools can make some tasks impossible to perform. In other cases,
the cost of programming may be a significant fraction of the total cost of an
application. For these reasons, robot programming systems play a crucial role in
robot development. This paper outlines some key requirements of robot programming
and reviews existing and proposed approaches to meeting these requirements.

1.1. Approaches to robot programming

The earliest and most widespread method of programming robots involves
inanually moving the robot to each desired position, and recording the internal joint
coordinates corresponding to that position. In addition, operations such as closing
the gripper or activating a welding gun are specified at some of these positions. The
resulting "program" is a sequence of vectors of joint coordinates plus activation
signals for external equipment. Such a program is executed by moving the robot
through the specified sequence of joint coordinates and issuing the indicated signals.
This mnethod of robot programming is usually known as teaching by showing;
in this paper we will use the less common, but more descriptive, term guiding

[G;rossmian 77].
Robot guiding is a programming method which is simple to use and to

implement. Because guiding can be implemented without a general purpose
computer, it was in widespread use for many years before it was cost-effective
to incorporate computers into industrial robots. Programming by guiding has
some important limitations, however, particularly regarding the use of sensors.
During guiding, the programmer specifies a single execution sequence for the
robot; there are no loops, conditionals, or computations. This is adequate for some
applications, such as spot welding, painting, and simple materials handling. In other
ap~plications, however, such as mechanical assembly and inspection, one needs to
specify the desired action of the robot in response to sensory input, data retrieval,
or computation. In these cases, robot programming requires the capabilities of a
general- purpose computer programming language.

Some robot systems provide computer programming languages with commands
to access sensors andl to specify robot inotions. We refer to these as explicit or
robot-level languages. The key advantage of robot-level languages is that they
enable the data from external sensors, such as vision and force, to be used in
modifying the robot's motions. Through sensing, robots can cope with a greater

4 degree of uncertainty in the position of external objects, thereby increasing their
range of application. The key drawback of robot-level programming languages,
relative to guiding, is that they reqluire the robot programmer to be expert in
computer prograrnming and in the design of sensor-based motion strategies. Hence,
robot-level languages are not accessible to the typical worker on the factory floor.

Many recent approaches to robot programnming seek to provide the power of
robot-level languages without requiring programming expertise. One approach is
to extend the basic philosophy of guiding to include decision-making based on
sensing. Another approach, known as task-level programming, requires specifying
goals for the positions of objects, rather than the motions of the robot needed
to achieve those goals. In particular, a task-level specification is meant to be
completely robot- independent; no positions or paths that depend on the robot
geometry or kinematics are specified by the user. Task-level programming systems
require complete geometric models of the environment and of the robot as input; for
this reason, they are also referred to as world-modeling systems. Neither of these
approaches is as developed as the guiding and robot-level programming approaches,
however.

1.2. Goals or this paper

The goals of this paper are twofold: one, to identify the requirements for
advanced robot programming systems, the other to describe thc major approaches
to the design of these systems. The paper is not meant to be a catalog of all existing
robot programming systems.

A discussion of the requirements for robot programming languages is not
possible without some notion of what the tasks to be programmed will be and
who the users are. The next section will discuss one task which is likely to be
representative of robot tasks in the near future. We will use this task to motivate
some of the detailed requirements later in the paper. The range of computer

sophistication of robot users is large, ranging from factory personnel with zero
programming experience to PhD's in computer science. It is a fatal mistake to
use this fact to argue for reducing the basic functionality of robot programming
systems to that accessible to the least sophisticated user. Instead, we argue that
robot programming languages should support the functional requirements of its
most sophisticated users. The sophisticated users can implement special-purpose
interfaces, in the language itself, for the less experienced users. This is the approach
taken in the design of computer prograrnming languages; it also echoes the design
principles discussed in [Taylor, Summers, and Meyer 821.

* 2

Figure 1. A representative robot application

IACI

- .-

ES r.C&A

2. A robot application

Figure I illustrates a representative robot application. The task involves two
robots cooperating to assemble a pump. Parts arrive, randomly oriented and in
arbitrary order, on two moving conveyor belts. The robot system performs the
following functions:

1. Determine the position and orientation of the parts, using a vision system.

2. Grasp the parts on the moving belts.

3. Place each part on a fixture, add it to the assembly, or put it aside for
future use, depending on the state of the assembly.

The following sequence is onc segment or the application. The task is to grasp a
cover on the moving belt, place it on the pump base, and insert four pins so as to
align the two parts. Note the central role played by sensory information.

1. Identify, using vision, the (non-overlapping) parts arriving on one of the

If's belts, a pump cover in this case, and determine its position and orientation
relative to the robot. During this operation, inspect the pump cover for
defects such as missing holes or broken tabs.

2. Move ROBOTi to the pre-seiied grasp point for the cover, relative to the
cover's position and orientation as determined by the vision system. Note
that if the belt continues moving during the operation, the grasp point

* will nieed to be updated using measurements of the belt's position.

3. Grasp the cover using a programmer-seiied gripping force.

3

LosAiju- A1cs itubuL I'I uSi duhiffln &

4. Test the measured finger opening against the expected opening at the
grasp point. If it is not within the expected tolerance, signal an error.
This condition may indicate that the vision system or the control system
are malfunctioning.

5. Place the cover on the base, by moving to an approach position above
the base and moving down until a programmer-specified upward force is
detected by the wrist force sensor. During the downward motion, rotate

the hand so as to null out any torques exerted on the cover because of
misalignment of the cover and the base. Release the cover and record its
current position for future use.

6. In parallel with the previous steps, move ROBOT2 to acquire an aligning
pin from the feeder. Bring the pin to a point above the position of the first
hole in the cover, computed from the known position of the hole relative
to the cover and the position of the cover recorded above.

7. Insert the pin. One strategy for this operation requires tilting the pin
slightly to increase the chances of the tip of the pin falling into the hole
[Inoue 71, 74]. If the pin does not fall into the hole, a spiral search can
be initiated around that point [Goto 80, Taylor 76]. Once the tip of the
pin is seated in the hole, the pin is straightened. During this motion, the
robot is instructed to push down with a pre-specified force, to push in
the y direction (so as to maintain contact with the side of the hole), and
move so as to null out any forces in the x direction [Inoue 74]. At the end
of this operation, the pin position is tested to ascertain that it is within
tolerance relative to the computed hole position.

8. In parallel with the insertion of the pin by ROBOT2, ROBOTI fetches another
pin and proceeds with the insertion when ROBOT2 is done. This cycle is
repeated until all the pins are inserted. Appropriate interlocks must be
maintained between the robots to avoid a collision.

This application makes use of four types of sensors:

1. Direct position sensors. The internal sensors, e.g. potentiometers, or
incremental encoders, in the robot joints and in the conveyor belts are
used to determine the position of the robot and the belt at any instant of
time.

2. Vision sensors. The camera above each belt is used to determine the
identity and position of parts arriving on the belt and to inspect them.

3. Finger touch sensors. Sensors in the fingers are used to control the
magnitude of the gripping force and to detect the presence or absence of
objects between the fingers.

4. Wrist force sensors. The positioning errors in the robot, uncertainty in
part positions, errors in grasping position, and part tolerances all conspire
to make it impossible to reliably position parts relative to each other
accurately enough for tight tolerance assembly. It is possible, however, to

4--. ,

~usainu-Pdres Robot P'iUS2I1II& k am h

use the forces generated as the assembly progresses to suggest incremental
motions that will achieve the desired final state; this is known as compliant
motion, e.g., [Mason 811.

,': Most of this application is possible today with commercially available robots and
vision systems. The exceptions are in the use of sensing. The pin insertion, for
example, would be done today with a mechanical compliance device [Whitney
821 specially designed for this type of operation.. Techniques for implementing
compliant motion via force feedback are known, e.g., [Paul 81, Raibert and
Craig 81, Shimano 78]; but current force feedback methods are not as fast or as
robust as mechanical compliance devices. Current commercial vision systems would
also impose limitations on the task, e.g., parts must not be touching. Improved
techniques for vision and compliance are key areas of robotics research.

*4

,4

!! 5

Loaao- 114ims I tUbIju l oi(gi.1 dil 111 Ilia

3. Requiremeits of robot programming

The task described above illustrates the major aspects of sophisticated robot
programming: sensing, world modeling, motion specification, and flow of control.
Tfhis section discusses each of these issues and their impact on robot programming.

3.1. Sensing

The vast majority of current industrial robot applications are performed using
position control alone without significant external sensing. Instead, the environment
is engineered so as to eliminate all significant sources of uncertainty. All parts are
delivered by feeders, for example, so that their positions will be known accurately
at programming time. Special purpose devices are designed to compensate for
uncertainty in each grasping or assembly operation. This approach requires large
investments in design time and special-purpose equipment for each new application.
Because of the magnitude of the investment, the range of profitable applications is
limited; because of the special-purpose nature of the equipment, the capability of the
system to respond to changes in the design of the product or in the manufacturing
method is negligible. Under these conditions, much of the potential versatility of
robots is wasted.

Sensing enables robots to perform tasks in the presence of significant
environmental uncertainties without special-purpose tooling. Sensors can be used to
identify the position of parts, to inspect parts, to detect errors during manufacturing
operations, and to accomodate to unknown surfaces. Sensing places two key
requirements on robot programming systems. The first requirement is to provide
general input and output mechanisms for acquiring sensory data. This requirement
can be met simply by providing the I/O mechanisms available in most high-level
computer programming languages, although this has seldom been done. The second
requirement is to provide versatile control mechanisms for using sensory data
to determine robot imotions. This need to specify parameters for sensor-based
motions and to specify alternate actions based on sensory conditions is the primary
motivation for using sophisticated robot programming languages.

Sensors are used for different purposes in robot programs; each purpose has
a separate impact on the system design. The principal uses of sensing in robot
programming are:

I1. Initiating and terininating motions.

2. Choosing among alternative actions.

3. Obtaining the identity and position of objects and features of objects.

4. Complying to external constraints.

The most common use of sensory data in existing systems is to initiate
and terminate motions. Most robot programming systems provide mnechanisms for
waiting for an external binary signal before proceedling with execution of a program.
This capability is used prinmarily to synchronize robots with other machines. One

'6

commron application of tUhis capability arises when acquiring parts fromn feeders; tile
robot's grasping motion is initiated when a light-beam is interrupted by thle arrival
of a new part at the feeder. Another application is that of locating an imprecisely
knowni surface by moving towards it and terminating the approach motion when
a micro-switch is tripped or when the value of a force sensor exceeds a threshold.

-~~ This type of motion is known as a guarded miove [Will and Grossman 751. Guardcd
moves can be used to identify points on the edges of an imprecisely located object

4. such as a pallet. The contact points can then be used to determine the pallet's
position relative to the robot and supply offsets for subsequent pick-up motions.
Section 4.1.2 illustrates a limited form of this technique available within some
existing guiding systems. General use of this techniquie requires computing new
positions on the basis of stores values; hence it is limited to robot-level languages.

The second major use of sensing is in choosing arnong alternative actions in
a program. One example is deciding whether to place an object. in a fixture or
a disposal bin depending on the result of an inspection test. Another, far more
common, example arises when testing whether a grasp or insert action had the
desired effect and deciding whether to take corrective action. This type of error
checking accounts for the majority of the statements in many robot programs.
Error checking requires the ability to obtain data from multiple sensors, such as
visual, force, and position sensors, to performn computations onl the data, and to
make decisions on the results.

- The third major use of sensing in robot systems is in obtaining the identity
and position of objects or features of objects. For example in tile application
described earlier, a vision module is used to identify and locate objects arriving
on conveyor belts. Because vision systems are sizable programs requiring large
amounts of processing, they often are implemented in separate processors. The
robot program must be able, in these cases, to interface with the external system
at the level of symbolic data rather than at thle level of "raw"~ sensory data. Similar
requirements arise in interfacing to manufactu ring data bases which may indicate
the identity of the objects lit different positions of a pallet, for example. Fromn these

* considerations we can conclude that robot programming systems should provide
general input/output interfaces, not just a few binary or analog channels as is the
rule in today's robot systems.

Once the data from a sensor or database module is obtained, some computation
must be performed on the module's output so as to obtain a target robot position.
For example, exisiting commercial vision systems can be used to compute the
position of the center of area of an object's outline and the orientation of the line
that minimizes the second moment. These measurements are obtained relative to
the camera's coordinate system. Before the object can be grasped, these data must
be related to the robot's coordinate system and combined with information about
the relationiship of'the desired grasp point to the measured data (see section 3.2).
Again, this points out the interplay betwecen the requirements for obtaining sensory
data and for processing it.

* The fourth mode of sensory interaction, active compliance, is necessary in

7

*°.o

Lu ,.aao- ie'tgz, I (u but]' u~, .,,, ,Ii

situations requiring continuous motion in response to continuous sensory input.
Data from force, proximity, or visual sensors can be used to modify the robot's
motion so as to maintain or achieve a desired relationship with other objects.
The force-controlled motions to turn a crank, for example, require that the target

position of the robot from instant to instant be determined from the direction
and magnitude of the forces acting on the robot hand, e.g., [Mason 81, Paul and
Shiniano 76]. Other examples are welding on an incompletely known or moving
surface, and inserting a peg in a hole when the position uncertainty is greater
than the clearance between the parts. Compliant motion is an operation specific to

"- robotics; it requires special mechanisms in a robot, programming system.

. There are several techniques for specifying compliant motions, for a review see
[Mason 83]. One method models the robot as a spring whose stiffnesses along each
of the six motion freedoms can be set [lanafusa and Asada 77, Salisbury 80]. This
method ensures that a linear relationship is maintained between the force which
is sensed and the displacements from a nominal position along each of the motion
freedoms. A motion specification of this type requires the following information:

1. A coordinate frame in which the force sensor readings are to be resolved,
known as the constraint frame. Some common alternatives are: a frame
attached to the robot hand, a fixed frame in the room, or a frame attached
to the object being manipulated.

2. The desired position trajectory of the robot. This specifies the robot's
nominal position as a function of time.

3. Stiffnesses for each of the motion freedoms relative to the constraint frame.
For example, a high stiffness for translation along the x axis means that
the robot will allow only small deviations from the position specified in the
trajectory, even if high forces are felt in the x direction. A low stiffness, on
the other hand, means that a small force can cause a significant deviation
from the position specified by the trajectory.

The specification of a compliant motion for inserting a peg in a hole [Mason 83] is
as follows:

The constraint frame will be located at the center of the peg's bottom surface,
with its z-axis aligned with the axis of the peg. The insertion motion will be a
linear displacement in the negative z direction to a position slightly below the
expected final destination of the peg. Figure 2 illustrates the coordinate system
and planned insertion motion.

'tie stiffnesses are specified by a matrix relating the robot's position parameters
t o force sensor inputs:

f =KA
where f is a 6 X 1 vector of forces and torques, K is a 6 X 6 matrix of stiffnesses, and
A is a 6 X I vector of deviations of the robot from its planned path. While inserting
a peg in a hole, we wish the constraint fraine to follow a trajectory straight downi
the middle of the hole, but complying with forces along the x-- and y axes and

8

,. A..10- i't:rea iL, t ,,.

Figure 2. Peg-in-hole insertion illustrating coordinate system and nominal path.

N-ot IIjk

,F Z-. '

PATHI

with torques about the x- ard y--axes. The stiffness matrix K for this task would
be a diagonal matrix

K = diag(ko, ko, ki, ko, ko, ki)

where k0 indicates low stiffness and k, a high stiffness1.

The complcxity of specifying the details of a compliant motion argues for
introducing special-purpose syntactic mechanisms into robot languages. Several
such mechanisms have been proposed for dilffrent compliant motion types %Mujlaba
and Goldman 79, Paul and Shirnano 76, Paul 81, Salisbury 801.

One key difference between the first three sensor interaction mechanisms
and active compliance is extensibility. The first three methods allow new sensors
and modules to be added or changed by the user, since the semantics of the
sensor is determined only by the user program. Active compliance, on the other
hand, requires much more integration between the sensor and the miotion control
subsytem; a new type of sensor may require a significant system extension. Ideally,
a user's view of compliant motion could be implemented in terms of lower-level
procedures in the same robot language. Sophisticated users could then modify this
implementation to suit new applications, new sensors, or new mnotion algorithms.
In practice, efficiency considerations have rulei o,.. this possibility since compliant
motion algorithms must be executed hundreds of times a second 2 . This is not a
fundamental restriction, however, and increasing computer power, together with
sophisticated compilation techniques, may allow future systems to provide this
desirable capability.

'Unfortunately, the numerical choices for stiffnesses are dictated by detailed considerations of
characteristics the environment and of the control system [Whitney 77, llanafusa and Asada
77]

.- [Geschke 78 describes a robot system architecture that enables different sensors to be interfaced
into the motion control subsystem from the user language level. See also [Paul 811 for a different
proposal.

In summary, we have stressed the need for versatile input/output and
computation mechanisms to support sensing in robot programming systemns. T he
most natural approach for providing these capabilities is by adopting a modern
high-level computer language as the basis for a robot programming laniguage. We
have identified one sensor-based mechanism, namely compliant. motion, that requires

spcfclanguage mechanisms beyond those of traditional computer languages.

In addition to the direct mechanisms needed to support sensing within robot
programming languages, there are mechanisms needed (lue to indirect effects of the
reliance on sensing for robot programming. Some of these effects are:

1. Target positions are not known at programming time; they may be
* obtained from an external database or vision sensor or simply be defined

by hitting something.

2. The actual path to be followed is not. known at programming time; it may
- . be determined by the history of sensory inputs.

3. The sequence of motions is not known at programming time; the result of
sensing operations will determine the actual execution sequence.

These effects of sensing have significant impact on the structure of robot programming
systems. The remainder of this section explores these additional requirements.

3.2. World modeling

Tasks that do niot involve sensing can be specified as a sequence of desired
robot configurations; there is no need to represent the geometrical structure of the
environment in terms of objects. When the environment is not known a priori,
however, some mechanism must be provided for representing the positions of objects
and their features, such as surfaces and holes. Some of these positions are fixed
throughout the task, others must be determined from sensory information, and
others bear a fixed relationship with respect to variable positions. Grasping an
object, for example, requires specifying the desired position of the robot's gripper
relative to the object's position. At execution time, the actual object position is
determined using a vision system or on-line database. The desired position for
the gripper can be determined by composing the relative grasp position and the
absolute object position; this gripper position must then be transformed to a
robot configuration. A robot p)rogrammning system should facilitate this type of
computation on object positions arid robot configurations.

The most common representation for object positions in robotics and graphics is
the homogeneous transform, represented by a 4 X 4 matrix [Paul 81]. A homogeneous
transform matrix expresses the relation of one coordinate frame to another by
combining a rotation of the axes and a translation of the origin. Two transforms can
be composed by multiplying the corresponding matrices. Thle inverse of a transform

* which relates frame A to frame B is a transform which relates 13 to A. Coordinate
frames can be associated with objects and features of interest in a task, including
the robot gripper or tool. Tfransforms can then be used to express their positions
with respect to one another.

to

Coa.luJ@le Iubolt l'rugr ,iiuiiirig ,

Figure 3. World model with coordinate fraines

"/K

/f

/ HOLE 4
/. I

.:. G I SP /

-. //

WOPID

oZ

A simple world model, with indicated coordinate frames, is shown in Figure 3.
The task is to visually locate the bracket on the table, grasp it, and insert the pin,
hcld in a stationary fixture, into the bracket's hole. The meaning of the various
transforms indicated in the figure are as follows. Cam is the transform relating the
camera frame to the WORLD frame. Grasp is the transform relating the desired
position of the gripper's frame to the bracket's frame. Let Bracket be the unknown

transform that relates the bracket frame to WORLD. We will be able to obtain
from the vision system the value of Bkt, a transform relating the bracket's frame
to the camera's frame 3 . Hole is a transform relating the hole's frame to that of the
bracket. The value of Hole is known from the design of the bracket. Pin relates

* the frame of the pin to that of the fixture. Fixture, in turn, relates the fixture's
frame to WORLD. Z relates the frame or the robot base to WORLD. Our goal is
to determine the transform relating the end-effector's (gripper's) frame, E, relative
to the robot's base. Given E and Z, the robot's joint angles can be determined

" (see, for example, [Paul 811).

The first step of the task i determining the value of Bracket, which is simply
Cain tLkt. The desired gripper position for grasping the bracket is:

_ ".
3" 'Using only one camera we cannot determine the distance from the camera to the bracket

directly. We assime instead that the distance to the table is known.

: _,, (3 . ' : ' . ' , ." L < l ~i i l i il i l l l i - , - :

Z E =Bracket Grasp

Since Cam is relative to WORLD, fBkt relative to Cam, and Grasp relative to
Bkt, the composition gives us the desired gripper position relative to WORLD, i.e.,
Z E. At the target position we want the location of the hole relative to WORLD

- to be equal to that of the pin; this relationship can be expressed as:

Bracket Hole = Fixture Pin
From this we can see that

Bracket = Fixture Pin Iole -

.Hence, the new gripper location is:

Z E = Fixture Pin Hole- 1 Grasp

The use of coordinate frames to represent positions has two drawbacks.
One drawback is that a coordinate frame, in general, does not specify a robot
configuration uniquely. There may be several robot configurations that place the
end-effector in a specified frame. For a robot with six independent motion freedoms,
there are usually on the order of eight robot configurations to place the gripper at
a specified frame. Some frames within the robot's workspace may be reached by
an infinite number of configurations, however. Furthermore, for robots with more
than six motion freedoms, the typical coordinate frames in the workspace will be
achievable by an infinite number of configurations. The different configurations
that achieve a frame specification may not be equivalent; some configurations, for
example, may give rise to a collision while others may not. This indeterminacy needs
to be settled at programming time, which may be difficult for frames determined
from sensory data.

Another, dual, drawback of coordinate frames is that they may overspecify
a configuration. When grasping a symmetric object such as a cylindiical pin, for
example, it may not be necessary to specify the orientation of the gripper around
the symmetry axis. A coordinate frame will always specify this orientation, however.
Thus, if the vision system describes the pin's position as a coordinate frame and
the grasping position is specified likewise, the computed grasp position will specify
the gripper's orientation relative to the pin's axis. In some cases this will result
in a wasted alignment motion; in the worst case, the specified frame may not be
reachable because of physical limits on joint travel of the robot. Another use of
partially specified object positions occurs in the interpretation of sensory data.
When the robot makes contact with an object, it acquires a constraint on the
position of that object. This information does not uniquely specify the object's
position, but several such measurements can be used to update the robot's estimate

"- of the object's positions. This type of computation requires representing partially
constrained positions or, equivalently, constraints on the position parameters [Taylor
76, Brooks 81].

.4 Despite these drawbacks, coordinate frames are likely to continue being
the primary representation of positions in robot programs. Thereforc, a robot
programming system should support the representation of coordinate frames arid
computa'ions on f:ames via transforms. But this is not all; a world model also should

12

i"u4|, oitq I t.re J.LJUut i'l u4r..IiiIhZI

provide rnechanisins for describing the constraints that exist between the positions.
The simplest case or this requireinent arises in managing the various features on
a rigid object. If the object is moved, then the positions of all of its features
are changed in a predictable way. The responsibility for updating all of this data
should not be left with the prograimnr; the programning system should provide

imechanisms for indicating the relationships between positions so that updates can
be carried automatically. Several existing languages provide mechanisms for this,
e.g., AL (Mujtaba and Goldman 79] and LM [Latombe and Mazer 811.

Beyond representation and computation on frames, robot systems must
provide powerful mechanisms for acquiring frames. A significant cornponent of the
specification of a robot task is the specification of the positions of objects and
features. Many of the required frames, such as the position of the hole relative to
the bracket frame in the example above, can be obtained from drawings of the

*. part. This process is extremely tedious and error prone, however. Several iriethods
.- for obtaining this data have been proposed:

. 1. Using the robot to define coordinate frames.

2. Using geometric models from CAD databases.

3. Using vision systems.

. The first of these methods is the most common. A robot's end-effector defines a
known coordinate frame, therefore guiding the robot to a desired position provides

*the transform needed to define the position. Relative positions can be determined

. from two absolute positions. Two drawbacks of this simple approach are: some of
the desired coordinate frames are inaccessible to the gripper, also, the orientation
accuracy achievable by guiding and visual alignment is limited 4 . These problems

-. can be alleviated by computing transforms from some number of points with known
relationships to each other, e.g., the origin of the frame and points on two of
the axes. Indicating points is easier and more reliable than aligning coordinate
systems. Several systems implement this approach, e.g., AL [Grossman and Taylor
78, Mujtaba and Goldman 79] and VAL [Shimnano 79, Unimation 80).

A second method of acquiring positions, which is likely to grow in importance,
is the use of databases from Computer Aided Design (CAD) systems. CAI) systems
offer significant advantages for analysis, documentation, and management of
engineering changes. Therefore, they are becoming incrasingly common throughout
industry. CAD databases are a natural source for the geometric data needed in
robot programs. The descriptions of objects in a CAD database may not be in a
form convenient for the robot programmer, however. The desired object features
may not be explicitly represented, e.g., a point in the middle of a parametrically
defined surface. Furthermore, positions specific to the robot task, such as grasp

'A common assumption is that since the accuracy of the robot limits execution, the same
accuracy is suflicient during task specification. This assumption neglects the effect of the robot's
limited repeatability, however. Errors in achieving the specified position, when compounded with
the specification errors, might cause the operation to fail. Furthermore, if the location is used as
the basis for relative locations, the propagation of errors can make reliable execution impossible.

.1

"o13

Figure 4. Symbolic specification of positions

f3

points, are not represented at all, and must still be specified. Therefore, the effective
use of CAD databases requires a high-level interface for specifying the desired

positions. Pointing on a graphics screen is one possibility, but it suffers from the
two-dimensional restrictions of graphics [Ambler, Popplestone, and Kempf 82].
Another method [Ambler and Popplestone 75, Popplestone, Ambler, and Bellos 80]
is to describe positions by sets of symbolic spatial relationships that hold between
objects in each position. For example, the positions of Block 1 in Figure 4 must
satisfy the following relationships:

(f3 Against f 1) and (f4 Against f2)

One advantage of using symbolic spatial relationships is that the positions they
denote are not limited to the accuracy of a light-pen or of a robot, but that of
the model. Another advantage of this method is that families of positions such as
those on a surface or along an edge can be expressed. Furthermore, people easily
understand these relationships. One small drawback of symbolic relations is that
the specifications are less concise than specifications of coordinate frames.

Another potentially important method of acquiring positions is the use of
vision. For example, two cameras can simultaneously track a point of light from a
laser pointer and the system can compute the position of the point by triangulation
[llasegawa 82]. One disadvantage of this method and of methods based on CAD
models is that there is no guarantee that the specified point can be reached without
collisions.

We have focused on the representation of single positions; this reflects the
emphasis in current robot systems on end-point specification of motions. In many
applications, this emphasis is misplaced. For example, in arc-welding, grinding,
glue application, and many other applications, the robot is called upon to follow
a complex path. Currently these paths are specified as a sequence of positions.
The next section discusses alternative methods of describing motions which require
representing surfaces and volumes. A large repertoire of representational and

14

' iLusanu l'6res hoo I ammi,,g

computational tools is already available in CAD systems and Numerically Controlled
(NC) machining systems, e.g., [Faux and Pratt 79].

In summary, the data manipulated by robot programs is primarily geometric.
Therefore, robot programming systems have a requirement to provide suitable
data input, data representation, and computational capabilities for geometric data.
Of these three, data input is the most amenable to solutions that exploit the
capabilities of robot systems, e.g., the availability of the robot and its sensors.

3.3. Motion specification

The most obvious aspect of robot programming is motion specification. The
solution appears similarly obvious: guiding. But, guiding is sufficient only when
all the desired positions and motions are known at programming time. We have
postponed a discussion of motion specification until after a discussion.of sensing
and modeling to emphasize the broader range of conditions under which robot

: motion must be specified in sensor-based applications.

Heretofore, we have assumed that a robot motion is specified by its final
position, be it in absolute coordinates or relative to some object. In many cases,
this is not sufficient; a path for the robot must also be specified. A simple example
of this requirement arises when grasping parts: the robot cannot approach the

grasp point from arbitrary directions; it must typically approach from above or risk
colliding with the part. Similarly, when bringing the part to add to a sub-assembly,

4the approach path must be carefully specified. Paths are commonly specified by
indicating a sequence of intermediate positions, known as via points, that the robot
should traverse between the initial arid final positions.

The shape of the path between via points is chosen from among some basic
repertoire of path shapes implemented by the robot control system. Three types of
paths are implemented in current systems: uncoordinated joint motions, straight
lines in the joint coordinate space, and straight lines in cartesian space. Each
of these represents a different tradeoff between speed of execution and "natural"
behavior. They are each suitable to some applications more than others. Robot
systems should support a wide repertoire of such motion regimes.

One important issue in motion specification arises due to the non-uniqueness
of the mapping from cartesian to joint coordinates. The system must provide
some well-defined mechanism for choosing among the alternative solutions. In some
cases, the user needs to identify which solution is called for. VAL provides a set
of configuration commands that allow the user to choose one of the up to eight
joint solutions available at some cartesian positions. This mechanism is useful,
but limited. In particular, it cannot be extended to redundant robots with infinite
families of solutions or to specify the behavior at a kinematic singularity.

Some applications, such as arc-welding or spray-painting, can require very
fine control of the robot's speed along a path, as well as of the shape or the
path [Brady 83, Paul 81]. This type of specification is supported by providing
explicit trajectory control commands in the programming system. One simple set

15

S. - '

of commriands could specify speed aiid acceleration bounds on the trajectory. AL
provides for additional specifications such as the total time of the trajectory. Given
a wide range of constraints, it is very likely that the set of constraints for particular
trajectories will be inconsistent. The programming system should cither provide a
well-defined semantics for treating inconsistent constraints5 or make it impossible to
specify inconsistent constraints. Trajectory constraints also should be ap~plicable to
trajectories whose path is not known at programming time, for example, compliant
motions.

The choice of via points for a task depends on the geometry of the parts, the
geometry of the robot, the shape of the paths the robot follows between positions,
and the placement of the motion in the robot workspace. When the environment is
not known completely at programming time, the via points must he specified very
conservatively. Tfhis can result in unnecessarily long motions.

An additional drawback of motions specified by sequences of robot configurations
is that the via points are chosen, typically, without regards for the dynamics of the
robot as it moves along the path. If the robot is to go through the via points very
accurately, the resulting motion may have to be very slow. This is unfortunate,
since it is unlikely that the programmer meant the via points exactly. Some robot
systems assume that via points are not meant exactly unless told otherwise. The
system then splines the motion between path segments to achieve a fast, smooth
motion, but one that does not pass through the via points [Paul 81]. The trouble
is that the path is then essentially unconstrained near the via points; furthermore,
the actual path followed depends on the speed of the motion.

A possible remedy for both of these problem is to specify the motion by
*a set of constraints between features of the robot and features of objects in the

environment. The execution system can then choose the "best" motion that satisifics
these constraints, or signal an error if no motion is possible. This general capability
is beyond the state of the art in trajectory planning, but a simple form has been

implemented. The user specifies a nominal cartesian path for the robot plus some
allowed deviation from the path; the trajectory planner then plans a joint space

- trajectory that satisfies the constraints [Taylor T91.

Another drawback of traditional motion specification is the awkwardness
of specifying complex paths accurately as sequences of positions. More compact
description of the desired path usually exist. An approach followed in NC machining
is to describe the curve as the intersection of two mathematical surfaces. A recent
robot language, MCL [McDonnell Douglas 801, has been defined as an extension to
APT, the standard NC language. The goal of MCL is to capitalize on the geometricF (databases and computational tools developed within existing APT systems for
specifying robot motions. This approach is particularly attractive for domains, such
as aircraft manufacture, in which many of the parts are numerically machined.

5'A special case occurs when the computed path goes through a kinematic singularity. It is
V. impossible in general to satisfy trajectory constraints such as speed of the cnd-cffcctor at the

singularity.

16

L.

F: Lu 6 , l-u-| ,P6s |obut |rogmmi,

Another very general approach to trajectory specification is via user-supplied
procedures parameterized by time. Paul [77, 811 refers to this as functionally
d(fined motion. The programming system executes the function to obtain position
goals. This method can be used, for examnplc,. to follow a surface obtained from
CAD data, turn a crank, and throw objects. 'The limiting factor in this approach
is the speed at which the function can be evaluated; in existing robot systems, no

flethod exists for executing user procedures at servo rates.

A special case of functionally defined motion is motion specified as a function
of sensor values. One example is in compliant motion specifications, where some

degrees of freedom are controlled to satisfy force conditions. Another example is a
motion defined relative to a moving conveyor belt. Both of these cases are common

:. enough that special purpose mechanisms have been provided in programming
systems. There are significant advantages to having these mechanisms implemented
using a common basic mechanism.

In summary, the view of motion specification as simply specifying a sequence
of positions or robot configurations is too limiting. Mechanisms for geometric
specification of curves and functionally defined motion should also be provided. No
existing systems provide these mechanisms with any generality, however.

3.4. Flow of control.

In the absence of any form of sensing, a fixed sequence of operations is the only

0possible type of robot program. This model is not powerful enough to encompass
. ~sensing, however. In general, the program for a sensor-based robot must choose

among alternative actions on the basis of its internal model of the task and the
data from its sensors. The task of section 2, for example, may go through a very
complex sequence of states, because the parts are arriving in random order and
because the execution or the various phases of the operation is overlapped. In each
state, the task program must specify the appropriate action for each robot. The
programming system must. provide capabilities for making these control decisions.

The major sources of information on which control decisions can be based are:
sensors, control signals, and the world model. The simplest use of this information
is to include a test at fixed places in the program to decide which action should
be taken next, e.g., If i < j) then Signal X else Moveto Y. One important
application where this type of control is suitable is error detection and correction.

Robot operations are subject to large uncertainties in the initial state of the
world and in the effect of the actions. As a result, the bulk of robot programming is
devoted to error detection and correction. Much of this testing consists of comparing
the actual result of an operation with the expected results. One common example
is testing the finger opening after a grasp operation differs from the expected value,
indicating either that the part is missing or a different part is there. This type of
test can be easily handled with traditional IF-THEN tests after completion of the
operation. This test is so common that robot languages such as VAL and WAVE [Paul771 have made it part of the semantics of the grasp command.

17

Luy.aiu- k ere, itubut I'iu lam IA

Many robot applications also have other requirements that do not fall naturally
within the scope of the IF-THEN control structure. Robot programs often must

interact with people or machines, such as feeders, belts, NC machines, and other
robots. These external processes are executing in parallel and asynchronously;
therefore, it is not possible to predict exactly when events of interest to the robot

" program may occur. In the task of Section 2, for example, the arrival of a part
* within the field of view of one of the cameras calls for immediate action: either

one of the robots must be interrupted so as to acquire the part, or the belt must
be stopped until a robot can be interrupted. The previous operations may then be
resumed. Other examples occur in detecting collisions or part slippage from the
lingers; monitor processes can be created to continuously monitor sensors, but they
must be able interrupt the controlling process and issue robot commands without
endangering ongoing tasks.

It is possible to use the signal lines supported by most robot systems to
coordinate multiple robots and machines. For example, in the sample task, the
insertion of the pins into the pump cover (steps 6 through 8 in Section 2) requires
that ROBOTI and ROBOT2 be coordinated so as to minimize the duration of the
operation while avoiding interference among the robots. If we let Roboti be in
charge, we can coordinate the operation using the following signal lines:

1. GET-PIN?: ROBOT2 asks if it is safe to get a new pin.

2. OK-TO-GET: ROBOTI says it is OK.

3. INSERT?: ROBOT2 asks if it is safe to proceed to insert the pin.

4. OK-TO-INSERT: ROBOTI says it is OK.

5. DONE: ROBOTi says it is all over.

The basic operation of the control programs could be as follows:

:-1

-. 18

bL~u~aao- i erez Robut IrgrL AImfl

ROBOTI ROBOT2
Wait for COVER-ARRIVED 3: Ifsignal DONE Goto 4

Signal OK-TO-GET Signal GET-PIN?

i -x1 Wait for OK-TO-GET
Call Place-Cover-in-Fixture Call Get-Pin-2

1: Wait for INSERT-PIN? Signal INSERT-PIN?

Signal OK-TO-INSERT Wait for OK-TO-INSERT

if (i < np) then do Call Insert-Pin-2

(Call Get-Pin-1 Goto 3
i := i+l] 4:

else do

(Signal DONE

Goto 2]
Wait for GET-PIN?
if (i < np) then do

[Signal OK-TO-GET
i :: i+1]

Call Insert-Pin-1

Goto I
2:

This illustration of how a simple coordination task could be done with only binary
signals also serves to illustrate the limitations of the method.

1. The programs are asymmetric; one robot is the master of the operation.
If the cover can arrive on either belt and be retrieved by either robot,
then either an additional signal line is needed to indicate which robot
will be the master or both robot systems must be subordinated to a third
controller.

2. If one of the robots finds a defective pin, there is no way for it to cause
the other robot to insert an additional pin while it goes to dispose of the
defective one. The program must allocate new signal lines for this purpose.
In general, a large number of signals may be needed.

3. Because one robot does not know the position of the other one, it is
necessary to coordinate them on the basis of very conservative criteria,
e.g., being engaged in getting a pin or inserting a pin. This will result
in slow execution unless the tasks are subdivided very finely and tests
performed at each division, which is cumbersome.

4. The position of the pump cover and the pin-feeder must be known by each
process independently. No information obtained (luring the execution of
the task by one robot can be used by the other robot; it must discover
the information independently.

The difficulties outlined above are the due to limited communication between the
processes. Signal lines are a simple, but limited, method of transferring information
among the processes. In practice, sophisticated tasks require efficient means for
coordination and for sharing the world model (including the state of the robots)

' between processes.

19

*; . .. - ". .-..

The issue of coordination between cooperating and competing asynchronous
processes is one of the most active research areas in Computer Science. Many
language mecchanisms have been proposed for process synchronization, among these

4 are: semaphores IDiikstra 68], events, conditional critical regions [Iloare 1972],
monitors and queues [Brinch Hansen 75], and comunicating sequential processes
Ihloare 78]. Robot systems should build upon these developments, perhaps by
using a language such as Concurrent Pascal [IBrinch H-ansen 75] or Ada [lchbiah
801 as a base language. A few existing robot languages have adopted some of
these mechanisms, e.g., AL and TEACH [Ruoff 79, 80]. Even the most sophisticated
developments in computer languages do not address all the robot coordination
problems, however.

When the interaction among robots is subject to critical real-time constraints,
the paradigm of nearly independent control with periodic synchronization is
inadequate. An example occurs when multiple robots must cooperate physically,
e.g., in lifting an object too heavy for any one. Slight deviations from a pre-planned
position trajectory would cause one of the robots to bear all the weight, leading to
disaster. What is needed, instead, is cooperative control of both robots based on
the force being exerted on both robots by the load [Ishida 77, Mason 81, Nakano
et al. 74]. The programming system should provide a mechanism for specifying the
behavior of systems more complex than a single robot. Another example of the need
of this kind of coordination is in the programming and control of multi-fingered
grippers (Salisbury and Craig 821.

In summary, existing robot programming systems are based on the view of a
robot system as a single robot weakly linked to other maclines, I practice, many
machines including sensors, special grippers, feeders, conveyors, and several robots
may be cooperating during a task. Furthermore, the interactions between them may
be highly dynamic, e.g., to maintain a force between them, or may require extensive
sharing of information. No existing robot programming system adequately deals
with all of these interactions. In fact, no existing computer language is adequate

* to deal with this kind of parallelism and real-time constraints.

3.5. Programming support

Robot applications do not occur in a vacuum. Robot programs often must access
external manufacturing data, ask users for data or corrective action, and produce
statistical reports. These functions are typical of most computer applications
and are supported by all computer program inimig systems. Many robot systems

* neglect to support themi, however. In principle, the exercise of these functions can
be separated from the specification of the task itself but, in practice, they are
intimately intertwined. A sophisticated robot programminig system must first be a
sophisticated programming system. Again, this requirement can be readily achieved
by embedding the robot programming system within an existing programming
system. Alternatively, care must be taken in the design of new robot programming
systems not to overlook the "mundane" programmiing functions.

* 20

A similar situation exists with respect to program development. Robot program
development is often ignored in the design of robot systems and, consequently,
complex robot programs can be very difficult to debug. The development of robot
programs has several characteristics which merit special treatment:

I. Robot programs have complex side-effects and their execution time is
usually long, hence it is not always feasible to re-initialize the program
upon failure. Robot programming systems should allow programs to be
modified on-line and immediately re-started.

2. Sensory information and real-time interactions are not usually repeatable.
One useful debugging tool for sensor-based programs provides the ability
to record the sensor outputs, together with program traces.

3. Complex geometry and motions are difficult to visualize; simulators can
play an important role in debugging, for example, see [Ileginbotham,
Dooner, and Case 79, Soroka 80, Meyer 81].

These are not minor considerations, they are central to increased usefulness of
robot programming systems.

Most existing robot systems are stand-alone, meant to be used directly by a
single user without the mediation of oomputers. This design made perfect sense
when robots were not controlled by general-purpose computers; today it makes
little sense. A robot system should support a high-speed command interface to other
computers. Therefore, if a user wants to develop an alternate interface, he need not
be limited by the performance of the robot system's user interface. On the other
hand, the user can take advantage of the control system and kinemaoics calculations
in the existing system. This design would also facilitate the coordirration of multiple
robots and make sophisticated applications easier to develop.

4. Survey of Robot Programming Systems

In this section, we survey several existing and proposed robot programming
systems.

4.1. Guiding

All robot programming systems support some form of guiding. The simplest
form of guiding is to record a sequence of robot positions that can then be "played
back"; we call this basic guiding. In robot-level systems, guiding is used to define
positions while the sequencing is specified in a program.

The differences among basic guiding systems are (a) in the way the positions
are specified and (b) the repertoire of motions between positions. The most common
ways of specifying positions are: by specifying incremental motions on a teach
..1pendant, and by moving the robot through the motions, either directly or via a

master-slave linkage.

21

Lusaao- heres Itubot Prgratiming

The incremental motions specified via the teach-pendant can be interpreted
as: independent motion of each joint between positions, straight lines in the joint-
coordinate space, or straight lines in cartesian space relative to some coordinate
system, e. g., the robot's base or the robot's end-effector. When using the teach-
pendant, only a few positions are usually recorded, on command from the instructor.
The path of the robot is then interpolated between these positions using one of the
three types of motion listed above.

When moving the robot through the motions directly, the complete trajectory
can be recorded as a series of closely spaced positions on a fixed time base. The
latter method is used primarily in spray-painting, where it is important to duplicate
the input trajectory precisely.

The primary advantage of guiding is its immediacy: what you see is what
you get. In many cases, however, it is extremely cumbersome, as when the same
position (or a simple variation) must be repeated at different points in a task or

when fine positioning is needed. Furthermore, we have indicated repeatedly the
importance of sensing in robotics and the limitations of guiding in the context
of sensing. Another important limitation of basic guiding is in expressing con")l
structures, which inherently require testing and describing alternate sequences.

4.1.1. Extended Guiding

The limitations of basic guiding with respect to sensing and control can be

abated, though not completely abolished, by extensions short of a full programming
language. For example, one of the most common uses of sensors in robot programs
is to determine the location of some object to be manipulated. After the object
is located, subsequent motions are made relative to the object's coordinate frame.
This capability can be accomodated within the guiding paradigm if taught motions
can be interpreted as relative to some coordinate frame that may be modified
at execution time. These coordinate frames can be determined, for example, by

*: having the robot move until a touch sensor on the end-effector encounters an object.
.This is known as a guarded motion or a search. This capability is part of some

Scommercial robot systems, e.g., ASEA [ASEA], Cincinatti Milacron [ltolt 77], and
IBM [Grossman 77, Summers and Grossman 82]. This approach could be extended
to the case when the coordinate frames are obtained from a vision system.

Some guiding systems also provide simple control structures. For example, the
instructions in the taught sequence are given numbers. Then, on the basis of tests
on exteirnal or internal binary signals, control can be transferred to different points
in the taught sequence. The ASEA and Cincinatti Milacron guiding systems, for
example, both support conditional branching. These systems also support a simple
form of procedures. The procedures can be used to carry out common operations
performed at different times in the taught sequence, such as common machining
operations applied to palletized parts. The programmer can exploit these facilities
to produce more compact programs. These control structure capabilities are limited,
however, primarily because guiding systems do not suport explicit computation.

22

--.

LU~d1O-I'eesRobot I ogrAuIIIIIIg

Figure 5. Palletizing Task

PtcKuP OPEtATION)
COET~t L)

L

&gAW ~ ~ S Ps P2

To illustrate the capabilities of extended guiding systems, we present a simple
*task programmed in the ASEA robot's guiding system 6 . The task is illustrated in

Figure 5; it consists of picking a series of parts of different heights from a pallet,
moving them to a drilling machine, and placing them on a different pallet. The
resulting program has the following structure:

'This program is based on two program fragments included in the ASEA manual [ASEAJ

* 23

LAA1.IPeres HOWLu P r"K .11iiii'.I

LNo. Instruction Remarks

10 OUTPUT ON 17 Flag ON indicates do pickup
20 PATTERN Beginning of procedure

30 TEST JUMP 17 Skip next instruction if flag is on

40 JUMP 170

50 OUTPUT OFF 17 Next time do put down

* 60 .. Pickup operation (see below)

100 MOD End of common code for pickup

110 .. . Positioning for first pickup

130 MOD Execute procedure
140 ... Positioning for second pickup

160 MOD Execute procedure
170 .. Machining and put down operation

200 OUTPUT ON 17 Next time do pickup

210 MOD End of common code for put down
220 ... Position for first put down
230 MOD Execute procedure

240 .. Position for second put down

Note that the MOD operation is used with two meanings: (1) to indicate the
end of a common section of the PATTERN, and (2) to indicate where the
commion section is to be executed. The sequence of instructions exected would be:
10, 20, 30, 50, 60, ... , 100, ... , 130, 30, 40, 170,.. 200, . 230, 30, 50,..

The key to the pickup operation is that we can use a search to locate the top
surface or the part, so we need not, know the heights exactly. The pickup sequence
could be programmed as follows (fingers are assumed closed initially).

Programmer action Remarks

1. Position robot to P2. P2 is on top the shortest part.
2. Position vertically to P1. P1 is above the highest part, this motion

insures that P1 is directly above P2.

3. Select speed for motion

to P1.

4. PTPF Point-to--point motion with fine position
control at the end of the motion.

5. Position vertically to P2. This marks the end of the search.
6. Select speed to P2.

7. Key code for search and This code indicates that the motion that
vertical operation, follows is a search in vertical direction.

8. PTPF Fine positioning
9. Set grip opening and Specify finger opening

select waiting time.
*10. GRIPPERS Insert command to actuate grippers.

11. Position to P3. Grasping position (relative to P2).
12. Select time for motion.

24

. ~~-. ...~ - -

*, .4 -. * -.. " -. -• °- U -.

, "." l~utno L' ;e L.,boL ir, gr,.iiu i

13. PTPL Coordinated joint motion, relative to the

14. .position after the search.
14. Set grip opening and Specify finger closing

select waiting time.
15. GRIPPERS Insert command to actuate grippers.

The putdown sequence would be programmed in a similar fashion.

4.1.2. Off-line guiding

Traditional guiding requires that the workspace for the task, all the tooling,
and any parts be available during program development. If the task involves a
single large or expensive part, such as an airplane, ship, or automobile, it may
be impractical to wait until a completed part is available before starting the
Sprogramming; this could delay the complete manufacturing process. Alternatively,

the task environment may be in space or underwater. In these cases, a mockup of
the task may be built, but a more attractive alternative is available when a CAD
model of the task exists. In this case, the task model together with a robot model
can be used to define the program by off-line gut g. In this method, the system
simulates the motions of the robot in response to L program or to guiding input
from a teach pendant. Off-line guiding offers the adaitional advantages of safety and
versatility. In particular, it is possible to experiment with different. arram:, e1cnnts
of the robot relative to the task so as to find one that, for example, minimnies task
execution time [Ilcginbotham, Dooner, and Case 791

4.2. Robot-level programming

In section 3 we discussed a number of important functional issues in the design
of robot programming systems. The design of robot-level languages, by virtue
of its heritage in the design of computer languages, has inherited many of the
controversies of that, notoriously controversial field. A few of these controversial
issues are important in robot programming:

1. Compiler vs. interpreter. Language systems that compile high-level
languages into a lower-level language can achieve great efficiency of
execution as well as early detection of some classes of programming
rrors. Interpreters, on the other hand, provide enhanced interactive

environments, including debugging, and are more readily extensible.
These humnian factors issues have tended to dominate; most robot language
systems are interpreter based. Pcrformance limitations of interpreters
have sometimes interfered with achieving some useful capabilities, such as

K--'" furctionally defined notions.

2. New vs. old. Is it better to design a new language or extend an old one?
A new one can be tailored to the need of the new domain. An old one
is likely to be more complete, to have an established user group, and to
have sipporting software packages. In practice, few designers can avoid

" the temiptation of starting de novo; thcrefore most robot languages are

25

, n-| l - . . m i -n nn- -.,. ua . -

4 Lusao-Pires lubcA i'rIr4u.61ihfll

"new" languages. There are, in addition, difficulties in acquiring sources
for existing language systems. One advantage of interpreters in this regard
is that they are smaller programs than compilers and, therefore, easier to
build.

In the remainder of the section, we examine some representative robot-level
programming systems, in roughly chronological order. The languages have been
chosen to span a wide range of approaches to robot-level programming. We use
examples to illustrate the "style" of the languages; a detailed review of all these
languages is beyond the scope of this paper. We close the section with a brief
mention of some of the many other robot-level programming systems that have
been developed in the past ten years.

4.2.1. MHI 1960-1961

The first robot-level programming language, MHI, was developed for one of
the earliest computer-controlled robots, the MI4-1 at MIT [Ernst 61]. As opposed
to its contemporary the Unimate, which was not controlled by a general-purpose
computer and used no external sensors, MII-1 was equipped with several binary
touch sensors throughout its hand, an array of pressure sensors between the
fingers, and photo-diodes on the bottom of the fingers. The availability of sensors
fundamentaly affected the mode of programming developed for the MH-1.

MHI (Mechanical Hand Interpreter) ran on an interpreter implemented on
the TX-0 computer. The programming style in MHI was framed primarily around
guarded moves, i.e., moving until a sensory condition was detected. The language
primitives were:

1. move: indicates a direction and a speed.

2. until: test a sensor for some specified condition.

3. ifgoto: branch to a program label if some condition is detected.

4. ifcontinue: branch to continue action if some condition holds.

A sample program, taken from [Ernst 61], follows:

a, move x for 120 Move along x with speed 120
until si 10 rel lol ; until sense organ I

indicates a decrease of 10, relative
to the value at start of this step
(condition 1)

until si 206 lol abs stp or until sense organ I indicates
206 or less absolute, then stop.

(condition 2)
ifgoto fl,b if condition 1 alone is fulfilled

go to sequence b
ifgoto t f2 ; if at least condition 2 is fulfilled

go to sequence c
ifcontinue t,a in all other cases continue sequence a

26

L~oaguo- Peres ~oijul l'Iudr a1uILL&

MHI did not support arithmetic or any other control structure beyond sensor
monitoring. The language, still, is surprisingly "modern" and powerful. It was to
be many years before a more general language was implemented.

4.2.2. WAVE 1970- 1975

The WAVE [Paul 77] system, developed at Stanford, was the earliest system
designed as a general-purpose robot programming language. WAVE was a "new"
language, whose syntax was modeled after the assembly language of the PI)P-10.
WAVE ran off-line as an assembler on a lIDP-10 and produced a trajectory file
which was executed on-line by a dedicated PDP-6. The philosophy in WAVE was
that motions could be pre-planned and that only small deviations from these
motions would happen during execution. This decision was motivated by the
computation-intensive algorithms employed by WAVE for trajectory planning and
dynamic compensation. Better algorithms and faster computers have removed this
rationale from the design of robot systems today.

In spite of WAVE's low-level syntax, the system provided an extensive repertoire
of high-level functions. WAVE pioneered several important mechanisms in robot
programming systems; among these were:

1. The description of positions by the cartesian coordinates of the end-effector

(x,y,z, and three Euler angles).

2. The coordination of joint motions to achieve continuity in velocities and
accelerations.

3. The specification of compliance in cartesian coordinates.

The following program in WAVE, from [Paul 771, serves to pick up a pin and insert
it into a hole:

TRANS PIN ... Location of pin

TRANS HOLE ... Location of hole

ASSIGN TRIES 2 Number of pickup attempts

MOVE PIN Move to PIN. MOVE first moves in +Z,
then to a point above PIN, then -Z.

PICKUP:
CLOSE 1 Pickup pin

SKIPE 2 Skip next instruction if Error 2 occurs
(Error 2: fingers closed beyond arg to CLOSE)

JUMP OK Error did not occur, goto OK

OPEN 5 Error did occur, open the fingers
CHANGE Z,-I,NIL 0,0 - Move down one inch

SOJG TRIES.PICKUP Decrement TRIES, if not negative

jump to PICKUP
WAIT NO PIN Print "NO PIN" and wait for operator

JUMP PICKUP • Try again when operator types PROCEED

27

LoaAno- PIres itubuL Progtramming

OK:
MOVE HOLE ; Move above hole
STOP FV NIL ; Stop on 50 oz.

CHANGE Z,-l,NIL,0.O ; Try to go down one inch

SKIPE 23 Error 23, failed to stop

JUMP NOHOLE Error did not occur (pin hit surface)
FREE 2,XY ; Proceed with insertion by complying

with forces along x and y
SPIN 2,X.Y Also comply with torques about x and y
STOP FV,NIL ; Stop on 50 oz.
CHANGE Z,-2,NILO,O Make the insertion

NOHOLE:
WAIT NO HOLE Failed

Note the use of compliance and guarded moves to achieve robustness in the presence
of uncertainty and for error recovery.

WAVE's syntax was difficult, but the language supported a significant set of
robot functions, many of which still are not available in commercial robot systems.

4.2.3. MINI 1972-1976

MINI [Silver 73], developed at MIT, was not a "new" language, rather it was an
extension to an existing LISP system by means of a few functions. The functions
served as an interface to a real-time process running on a separate machine. LISP has
little syntax; it is a large collection of procedures with common calling conventions,
with no distinction between user and system code. The robot control functions of
MINI simply expanded the repertoire of functions available to the LISP programmer.

Users could expand the basic syntax and semantics of the basic robot interface at
will, subject to the limitations of the control system. The principal limitation of
MINI was the fact that the robot joints were controlled independently. The robot
used with MINI was cartesian, which minimized the drawbacks of uncoordinated
point-to-point motions.

The principal attraction of "The Little Robot System" [Silver 73, Inoue
74 in which MINI ran was the availability of a high-quality 6-degree-of-freedom
force-sensing wrist [Inoue 74, Minsky 72] which enabled sensitive force control of
the robot. Previous force-control systems either set the gains in the servos to control
compliance [Inoue 71], or used the error signals in the servos of the electric joint
motors to estimate the forces at the hand [Paul 72]. In either case, the resulting
force sensitivity was on the order of pounds; MINI's sensitivity was more than an
order of magnitude better (approx. 1 oz.).

The basic functions in MINI set position or force goals for each of the degrees of

freedom (SETM), reading the position and force sensors (GETM), and waiting for some
condition to occur (WAIT). We will illustrate the use of MINI using a set of simple
procedures developed by Inoue [74]. The central piece of a peg-in-hole program
would be rendered as follows in MINI:

28
S%

• i .u ++o- Perem lh.oboL i'(ur ~u t i l

(DEFUN MOVE-ABOVE (P OFFSET)

set xy.z goals and wait till they are reached

(X= (X-LOCATION P))
(Y= (Y-LOCATION P))

(Z= (PLUS (Z-LOCATION P) OFFSET))
(WAIT '(AND (?X) (?Y) (?Z))))

(DEFUN INSERT (HOLE)
(MOVE-ABOVE HOLE 0.25)
define a target 1 inch below current position

(SETQ ZTARGET (DIFFERENCE (GETM ZPOS) 1.0))
move down until a contact force is met or until
the position target is met.

(FZ= LANDING-FORCE)
(WAIT '(OR (?FZ) (SEQ (GETM ZPOS) ZTARGET)))
(COND ((SEQ (GERM ZPOS) ZTARGET)

. if the position goal was met, i. e. no surface encountered

. comply with lateral forces
(FX= 0) (FY= 0)

* and push down until enough resistance is met.
(FZ= INSERTION-FORCE)
(WAIT '(FZ)))

(T if a surface was encountered
(ERROR INSERT))))

MINI did not have any of the geometric and control operations of WAVE built
in, but most of these could easily be implemented as LISP procedures. The
primary functional difference between the two systems lay in the more sophisticated
trajectory planning facilities of WAVE. The compensating advantage of MINI was
that it did not require any pre-planning; the programs could use arbitrary LISP
computations to decide on motions in response to sensory input.

4.2.4. AL 1974-present

AL [Finkel, et al. 74, Mujtaba and Goldman 791 is an ambitious attempt to
develop a high-level language that provides all the capabilities required for robot
programming as well as the programming features of modern high-level languages,
such as ALGOL and PASCAL. AL was designed to support robot-level and task-level
specification. The robot level has been completed and will be discussed here; the
task level development will be discussed in section 4.3.

AL, like WAVE and MINI, runs on two machines. One machine is responsible for
compiling the AL input into a lower-level language that is interpreted by a real-time
control machine. An interpreter for the AL language has been completed, as well

4[Binford 791. AL was designed to provide four major kinds of capabilities:

1. The manipulation capabilities provided by the WAVE system: cartesian
specification of motions, trajectory planning, and compliance.

29

Lusaa- Pete. ItouL P'rogra1111i1kiu

2. The capabilities of a real-time language: concurrent execution of processes,
synchronization, and on-conditions.

3. The data and control structures of an ALGOL-like language, including data
types for geometric calculations, e.g., vectors, rotations, and coordinate
frames.

4. Support for world modeling, especially the AFFIXMENT mechkiiism for
modeling attachments between frames including temporary ones such as
formed by grasping.

An AL program for the peg-in-hole task is:

BEGIN "insert peg into hole"

FRAME peg-bottom, peg-grasp, hole-bottom, hole-top;

{ The coordinates frames represent actual positions of object features,
not hand positions }

peg__bottom - FRAME(nilrot,VECTOR(20,30,O)*inches);

hole-bottom - FRAME(nilrot,VECTOR(25,35,0)*inches);
{ Grasping position relative to peg-bottom }
peg-grasp FRAME(ROT(xhat,180*degrees),3*zhat*inches);
tries *- 2;

grasped - FALSE;

{ The top of the hole is defined to have a fixed relation to the bottom }
AFFIX hole__top to hole-bottom RIGIDLY

AT TRANS(nilrot,3*zhat*inches);

OPEN bhand TO peg-diameter + 1*inches;

{ Initiate the motion to the peg, note the destination frame }
MOVE barm TO peg-bottom * peg-grasp;
WHILE NOT grasped AND i < tries DO

BEGIN "Attempt grasp"
CLOSE bhand TO 0 * inches;

IF bhand < peg-diameter/2

THEN BEGIN "No object in grasp"
OPEN bhand TO peg-diameter + 1 * inches;
MOVE barm TO ® - 1 * inches; { ® indicates current location }

END

ELSE grasped ' TRUE;
'T.'"i 4- 1 + 1;

END
IF NOT grasped THEN ABORT("Failed to grasp the peg");

4 Establish a fixed relation between arm and peg }
AFFIX peg bottom TO barm RIGIDLY;
{ Note that we move the peg_._bottom, not barm }
MOVE peg -bottom TO hole-top;

{ Test if a hole is below us
MOVE barm TO I - * inches

ON FORCE(zhat) > 10 . ounces DO ABORT("No Hole");

30

1.t |u4s.iiU- i'eres itubot ihugrdjiliulg

{ Exert downward force, while -omplying to side forces }
MOVE peg-_bottom to hole_ bottom DIRECTLY

' WITH FORCEFRAME station IN WORLD

WITH FORCE(zhat) = -10 * ounces
WITH FORCE(xhat) = 0 * ounces

WITH FORCE(yhat) = 0 * ounces
SLOWLY;

END "insert peg in hole"

AL is probably the most complete robot programming system yet developed; it was
the first robot language to be a sophisticated computer language as well as a robot
control language. AL has been a significant influence on most later robot languages.

4.2.5. VAL 1975 present

VAL [Shimano 79, Unimation 801 is the robot language used in the industrial
robots of Unimation Inc., especially the PUMA series. It was designed to provide
a subset of the capabilities of WAVE on a stand-alone mini-computer. VAL is an
interpreter; improved trajectory calculation methods have enabled it to forego any
off-line trajectory calculation phase. This has improved the ease of interaction with
the language. The basic capabilities of the VAL language are:

1. Point-to-point, joint-interpolated, and cartesian motions (including ap-
proach and deproach motions);

i 2. Specification and manipulation of cartesian coordinate frames, including
the specification of locations relative to arbitrary frames;

3. Integer variables and arithmetic, conditional branching, and procedures;

4. Setting and testing binary signal lines and the ability to monitor these
lines and execute a procedure when an event is detected.

VAL's support or sensing is limited to bi.ary signal lines. These lines can be
used for synchronization and also for limited sensory interaction as shown earlier.
VAL's support of on-line frame computation is liritrd to composition of constant
coordinate frames and fixed translation offsets on existing frames. It does support
relative motion; this, together with the ability to halt a motion in response to a
signal, provides the mechanisms needed for guarded moves. The basic VAL also has
been extended to interact with an industrial vision system [Gleason and Agin 791
by acquiring the coordinate frame of a part in the field of view.

As a computer language, VAL is rudimentary; it most resembles the computer
language BASIC. VAL only supports integer variables, not floating point numbers or
character strings. VAL does not support arithmetic on position data. VAL does not
support any kind of data aggregate such as arrays or lists and, although it supports
procedures, they may not take any arguments.

- A sample VAL program for the peg-in-hole task is shown below. VAL does not
support compliant motion, so this operation assumes either that the clearance
between the peg and hole is greater than the robot's accuracy or that a passive

31

bui~uto i~irelItubUL .guraLummn

compliance device is mounted on the robot's end-effector [Whitney 82]. This limits
the comparisons that can be made to other, riore general, languages. In the
example, we assume that a separate processor is monitoring a force sensor and
communicating with VAL via signal lines. In particular, signal line 3 goes high if the
Z component of force exceeds a pre-set threshold.

SETI TRIES 2

REMARK If the hand closes to less than 100 nu, go to statement labelled 20.
10 GRASP 100, 20

REMARK Otherwise continue at statement 30.

GOTO 30

REMARK Open the fingers, displace down along world Z axis and try again.

20 OPENI 500
DRAW O,0,-200
SETI TRIES = TRIES - 1

IF TRIES GE 0 THEN 10
TYPE NO PIN

STOP

REMARK Move 300mm above HOLE following a straight line.

30 APPROS HOLE, 300
REMARK Monitor signal line 3 and call procedure ENDIT to STOP the program
REMARK if the signal is activated during the next motion.
REACTI 3, ENDIT

APPROS HOLE, 200
REMARK Did not feel force, so continue to HOLE.

MOVES HOLE

VAL has been designed primarily for operations involving pre-defined robot positions,
hence its limited support of computation, data structures, and sensing. A new
version of the system, VAL-2, is under development which incorporates more support
for computation and communication with external processes.

4.2.6. AML 1977-present

AML [Taylor, Summers, and Meyer 82] is the robot language used in IBM's robot
products. AML, like AL, is an attempt at developing a complete "new" programming
language for robotics that is also a full-fledged computer language. The design
philosophy of AML is somewhat different from that of AL, however. Where AL focuses
on providing a rich set of built-in high-level primitives for robot operations, AML has
focused on providing a systems environment where different user robot programming
interfaces may be built. For example, extended guiding [Summers and Grossman
82] and vision interfaces [Lavin and Lieberman 82] can be programmed within the
AML language itself. This approach is similar to that followed in MINI.

AML supports operations on data aggregates, which can he used to implement
operations on vectors, rotations, and coordinate frames, although these data types
are not part of the language. AML also supports joint-space trajectory planning
subject to position arid velocity constraints, absolute and relative motions, and
sensor monitoring that can interrupt motions. AML does not support cartesian

32

motion, comupliant iiiotionl7, afixmerit of frames, or multiple processes. An AML
- .. program for peg-in-hole might be:

PICKUP: SUBR (PART-DATA. TRIES);
MOVE(GRIPPER, DIAMETER(PART-DATA)+O.2);

MOVF.(<1,2.3>. XYZ-.POSITION(PART _DATA).O0,O,1>);

TRY -PICKUP(PART- DATA, TRIES);
END;

TRY-PICKUP: SUBR(PART-DATA, TRIES);
IF TRIES LT 1 THEN RETURN('NO PART*);

DMOVE(3-1.0);
IF GRASP(DIAMETER(PART-DATA)) ='NO PART'

THEN TRY-.PICKUP(PART--DATA. TRIES - 1):

END,

GRASP: SUBR(DIAMETER, F);
FMONS: NEW APPLY($ MONITOR, PINCH-FORCEF);

MOVE(GRIPPER, 0, FMONS);

RETURN(C IF QPOSITION(GRIPPER) LE DIAMETER/2
THEN 'NO PART'

ELSE 'PART')

END;

INSERT: SUBR(PART-DATA, HOLE);
FMONS: NEW APPLY($ MONITOR, TIP-FORCE(LANDING-FORCE));

MOVEC<1,2,3>, liOLE+<O,O. .25>);
DMOVE(3 -1.0, FMONS);
IF QMONITOR(FJONS) =I

THEN RETURN(C'NO HOLE');

MOVEMa HOLE(3 + PART-LENGTH(PART-DATA));
END;

PART-IN-HOLE: SUBR(PART-DATA, HOLE);
(PICKUP PART--DATA 2.);
(INSERT PART--DATA HOLE);

END;

This example has shown the implementation of low-level routines such ag GRASP,
that are available as primitives in AL and VAL. In general, such routines would
be incorporated into a programming library available to users and would be
indisti ngu ish able from built-in routines. The important point is that such programs
can be written in the language.

The AML language design has adopted many decisions from the designs of the
LISP and APL programming languages. AML, like LISP, does not make distinctions
between system and user programs. Also AML provides a versatile uniform data
aggregate, similar to LISP's lists, whose storage is managed by the system. AML,
like APL and LISP, provides uniform facilities for manipulating aggregates and for
mapping operations over the aggregates.
7Compliant motions at low-speed could be written as user programs in AML by using its sensor

1/0 operations. For high-speed motions, the real time control process would have to be extended.

33

''The languages, WAVE, MINI, AL, VAL, and AML are well within the mold of
traditional procedural languages, both in syntax and the semantics of all except a
few of their operations. The next three languages we consider have departed from
the main-line of computer programming languages in more significant ways.

4.2.7. TEACH 1975 - 1978

The TEACH language [RuofT 79, 80] was developed as part of the PACS system
at Bendix Corporation. 'The PACS system addressed two important issues that have
received little attention in other robot programming systems: the issue of parallel
execution of multiple tasks with multiple devices, including a variety of sensors;
and the issue of defining robot-independent programs. In addressing these issues
TEACH introduced several key innovations; among these were:

1. Programs are composed of partially ordered sequences of statements that
can be executed sequentially or in parallel.

2. The system supports very flexible mapping between the logical devices,
e.g., robots and fixtures, specified in the program and the physical devices
that carry them out.

3. All motions are specified relative to local coordinate frames, so as to enable
simple re-location of the motion sequence.

These features are especially important in the context of systems with multiple
robots and sensors, which are likely to be common in future applications. Few
attempts have been made to deal with the organization and coordination problems
of complex tasks with multiple devices, not all of them robots. Ruoff 1801 reports

* . that even the facilities of TEACH proved inadequate in coping with very complex
applications and argues for the use of model-based programming tools.

4.2.8. PAL 1978-present

PAL [Takase, Paul, and Berg 79] is very different in conception from the
languages we have considered thus far. PAL programs consist primarily of a sequence
of homogeneous coordinate equations involving the locations of objects and of the
robot's end-effector. Some of the transforms in these equations, e.g., those specifying
the relative location of a feature to an object's frame, arc defined explicitely in the
program. Other coordinate frames are defined implicitly by the equations; leading
the robot through an cxecution of the task establishes relations among these frames.
Solving for the implicitly defined frames completes the program.

PAL programs manipulate basic coordinate frames that define the position of
key robot features: Z represents the base of the robot relative to the world, T6
represents the end of the sixth (last) robot link relative to Z, and E represents the
position of the end-effector tool relative to T6. Motions of the tool with respect to
the robot base are accomplished by specifying the value of Z * T6 + E, where +
indicates composition of transforms. So, for example, Z + T6 + E = CAM + BKT +
GRASP specilies that the end-efrector should be placed at the grasp position on the
bracket whose position is known relative to a camera, as discussed in Section 3.2.

34

Losno- Peres Robot qoi At 1111ig

The M0V <exp> command in PAL indicates that the "generahzed" robot tool
frame, ARM + TOL, is to be moved to <exp>. For simple motions of the end-eirector
relative to the robot base, ARM is Z + T6 and TOL is E. We can rewrite ARM to indicate
that the motion happens relative to another object, e.g., the example above can be
rewritten to be

- BKT- CAM + Z + T6 + E GRASP

In this case ARM can be set to the transform expression

- BKT - CAM + Z + T6
MOV GRASP will then indicate that the end-effector is to be placed on the grasp
frame of the bracket, as determined by the camera. Similarly, placing the pin in
the bracket's hole can be viewed as redefining the tool frame of the robot to be at
the hole. This can be expressed as

- FIXTURE + Z + T6 + E - GRASP + HOLE = PIN
By setting ARM to - FIXTURE + Z + T6 and TOL to E - GRASP + HOLE, MOV PIN will
have the desired effect. Of course, the purpose of setting ARM and TOL is to simplify
the expression of related motions in the same coordinate frame.

PAL is still under development; the system described in [Takase, Paul, and Berg
791 deals only with position data obtained from the user rather than the robot. Much
of the development of PAL has been devoted to the natural use of guiding to define
the coordinate frames. Extensions to this systems to deal with sensory information
are suggested in [Paul 81]. The basic idea is that sensory information serves to
define the actual value of some coordinate frame in the coordinate equations.
4.2.9. MCL 1979 - present

MCL [McDonnell Douglas 80] is an extension of the AP'T language for

Numerically Controlled machining to encompass robot control, including the

following capabilities:

1. data types, e.g., strings, booleans, reals, and frames;

2. control structures for conditional execution, iterative execution, and
-. multi-processing;

3. real-time input and output;

4. vision interface, including the ability to define a shape to be located in
the visual field.

Extending APT provides some ease of interfacing with existing machining facilities
including interfaces to existing geometric databases. By retaining APT compatibility,
MCL can also hope to draw on the existing body of skilled APT part programmers.
On the other hand, the APT syntax, which was designed nearly 30 years ago, is
not likely to gain wide acceptance outside of the NC-machining community.

4.2.10. Additional systems

Many other robot language systems are reported in the literature, among these
are:

•4 35

i Lus; nu- l'er'ea I (ubot {I i I|fI

1. ML [Will and Grossman 75] is a low-level robot language (eveloped at 113M,
with operations coml)arable to those of a computer assembly language.
The motion commands specified joint motions for an (almost) cartesian
robot. The language provided support for guarded iroves by means of
SENSOR commands that enabled sensor monitors; when a monitor was
activated by a sensor value outside of the specified range, all active motions
were terminated. ML supported two parallel robot tasks and provided for
simple synchronization between the tasks.

2. EMILY [Evans, Garnett, and Grossman 76] was an ofT-line assembler for
the ML language. It raised the syntax of ML to a level comparable to
FORTRAN.

" 3. MAPLE [Darringer and Blasgen 75] was an interpreted AL-like language,
also developed at IBM. The actual manipulation operations were carried
out by using the capabilities of the ML system described earlier. MAPLE
never received significant use.

4. SIGLA [Salmon 78], developed at Olivetti for the SIGMA robots, supports
a basic set of joint motion instructions, testing of binary signals, and
conditional tests. It is comparable to the ML language in syntactic level.
SIGLA supports pseudo-parallel execution of multiple tasks and some

S.: simple force-control.

* . 5. MAI. [Gin|, et a]. 79], developed at Milan Polytechnic, Italy, is a BASIC-like
language for controlling multiple cartesian robots. The language supports
multiple tasks and task synchronization by means of semaphores.

*.-. 6. LAMA-S [Falek and Parent 80], developed at IRIA, France, is a VAL-like
language with support for on-line computations, for arrays, and for
pseudo-parallel execution of tasks.

7. LM [Latombe and Mazer 81], developed at IMAG, Grenoble, France, is
a language that provides most of the manipulation facilities of AL in
ia mini-computer implementation. LM also supports affixment, but not
multi-processing. LM is being used as the programming language for a

.- -recently announced industrial robot produced by Scemi, Inc..

8. RAIL [Franklin and Vanderbrug 821, developed at AUTOMATIX Inc.
- .:. RAIL includes a large subset of PiA.CAL; it supports computations on

a variety of data types, as well as providing high-level program control
mechanisms. RAIL provides interfaces to binary vision and robot welding
systems. The language has a flexible way of defining and accessing input

S.: or output lines, either as single or multiple bit numbers. RAIL statements
are translated into an intermediate representation which can be executed
efficiently while enabling interactive debugging. RAIL is syntactically more

* sophisticated than VAL; it is comparable to AML and LM. RAIL does not
support multi-processing or aflixment.

* . This i. not a complete list, new languages arc being developed every year, but it is
representative of the state of the art.

36

- ...i . - --

Luimo-lI'Les ltoboL Vrograiw io,

4.3. Task-level programming

Robot-level languages describe tasks by carefully specifying the robot actions
needed to carry it out. The goal of task-level programming systems [Park 77],
on the other hand, is to enable task specification to be in terms of operations on
the objects in the task. The peg-in-hole task, for example, would be described as:
INSERT PEG IN HOLE, instead of the sequence of robot motions needed to accomplish
the insertion.

A task planner transforms the task-level specifications into robot-level
specifications. To do this transformation, the task planner must have a description
of the objects being manipulated, the task environment, the robot carrying out
the task, the initial state of the environment, and tile desired final state. The
output of the task planner is a robot-level program to achieve the desired final
state when executed in the specified initial state. If the synthesized program is to
reliably achieve its goal, the planner must take advantage of any capabilities for
compliant motion, guarded motion, and error checking. Hence the task planner
nmiust synthesize a sensor-based robot-level program.

Task-level programming is still a subject of research; many unsolved prol)lems
remain. The approach, however, is a natural outgrowth of ongoing research and
development in CA)/CAM and in artificial intelligence.

Task planning can be divided into three phases: modeling, task specification,
and robot program synthesis. These phases are not computationally independent,
but they provide a convenient conceptual division of the problem.

•1.3.1. World Modeling

The wolld model for a task must contain the following information:

1. geometric descriptions of all objects and robots in the task environment;

2. physical description of all objects, e.g., mass and inertia;

3. kinematic descriptions of all linkages;

1. descriptions of robot characteristics, e.g., joint limits, acceleration bounds,
arid sensor capabilities.

Models of task states also must include the positions of all objects and linkages in
the world riodel. Moreover, the model must specify the uncertainty associated with
each of the positions. The role that each of these items plays in the synthesis of
robot programs will be discussed in the remainder of the section. But first, we will
explore the nature of each of the descriptions and how they may be obtained.

The geometric description of objects is the principal component. of the world
"lo(lel. The major sources of geometric models are computer-aided design (CAD)

Wsy .teIs, although computer vision may eventually becorne a major source of models
B"1rady 82). There are three major types of commercial CAD systems, differing on

. their representations of solid objects:
I. line - objects are represented by the lines and curves needed to draw

them,

37

.4 LusM.l~o- |'ere i{.uut I r,;,IDtfii

Figure 6. Madels obtained by set operations on primitive volumes

CI

(AUBUC)- D

2. surface - objects are represented as a set of surfaces, and

3. solid - objects are represented as combinations of primitive solids.

Line systems and some surface systems do not represent all the geometric information
needed for task planning. A !ist of edge descriptions, for example, is not sufficient to
describe a unique polyhedron, e.g., [Markowsky and Wesley 801. In general, a solid
modeling system is required to obtain a complete description. In solid modelers,
.moels are constructed by performing set operations on a few types of primitive

volumes. The objects depicted in Figure 6, for example, can be -described as the
union of two solid cylinders A and B, a solid cube C, and a hollow cylinder D. The
descriptions of the primitive and compound objects vary greatly among existing
systems. For surveys of geometric modeling systems, see [Braid 78, Baer, Eastman,
and Ilenrion 79, Requicha 80].

The legal motions of an object are constrained by the presence of other objects
in the environment and the form of the constraints depend in detail on the shapes
of the objects. This is the fundamental reason why a task planner needs geometric
descriptions of objects. There are additional constraints on motion imposed by
the kinematic struct.ure of the robot itself. If the robot is turning a crank or
opening a valve, then the kinematics of the crank and the valve impose additional

restrictions on the robot's motion. The kinematic models provide the task planner
a with the information required to plan robot motions that are consistent with

external constraints. Examples of kinematic models and their use in planning robot
motions can be found in [Mason 81].

The bulk of the information in a world model remains unchanged throughout
the execution of a task. The kinematic descriptions of linkages are an exception,
however. As a result of the robot's operation, new linkages may be created and old
linkages destroyed. For example, inserting a pin into a hole creates a new linkage
with one rotational and one translational degree of freedom. Similarly, the effect of

6 38
.4

V . -|'rea Jtuu o g'rAgr.1a,,1

inserting the pin inight be to restrict the motion of one plate relative to another,
thus removing one degree of freedom froi a previously existing linkage. Tfie task
planner must be appraised of these changes, either by having the user specify
linkage changes with each new task state, or by having thc planner deduce the new
linkages froin the task state description.

In planning robot operations, many of the physical characteristics of Objects
play important roles. The mass and inertia of parts, for exarimple, will determine
how fast, they can be tioved or how much force can be applied to them before
they fall over. Also, the coeflicient of friction between a peg and a hole affects the
jam rinig comd itions during insertion (see, e.g.,]Ohwovoriule and R ot h Sl, Whitney

82]). Hence, the world model must include a description of these characteristics.

The feasible operations of a robot are not sufficiently charactcrized by its
geometrical, kinematical, and physical descriptions. We have repeatedly stressed
the importance of a robot's sensing capabilities: touch, force, and vision. For
task planning purposes, vision allows obtaining the position of an object to some
specified accuracy, at execution time. Force sensing allows performing guarded and
compliant motions. Touch information could serve in both capacities, but its use
remains largely unexplored [llarmon 821. In addition to sensing, there are many
individual characteristics of robots that riuist be described in the world model:
velocity and ac(€eleration bounds, positioning accuracy of each of the joints, and

workspace bounds, for example.

Much of the complexity in a world model arises from modeling the robot, which
is done once. Geometric, kinematic, and physical models of other object's must

be provided for each new task, however. The underlying assumption in task-level
langauges is that this inforniation would have been developed as part of the design
of these objects. If this assumirption does not hold, the modeling effort required for
a task-level specification, using current modeling methods, might dwarf the effort
needed to generate a robot-level program to carry out the task.

4.3.2. Task Specification

Tasks can be specified to the t'.sk planner as a sequence o' models of the
world state at several steps during execution of the task. An assembly of several
parts, for example, might be specified by a sequence of models as each part is
added to the assembly. Vigure 7 illustrates one possible sequence of models for a
simple task. All of the models in the task specification share the descriptions of
the robot's environmet and of the objects being manipulated; the steps in the
sequence difrer only in the positions of the objects. llence, a task specification is,
at first approximation, a model of the rolot's world together with a sequence ofKi ihanges in the positions of the model components.

A model state is given by the positions of all the objects in the environment.
Hence, tasks may be defined, in principle, by sequences of states of the world
.model. The sequen('e of model states needed to fully specify a task depends on

the capabilities of the task planner. The ultimate task planner might need only
a description of the initial and final state of the task. This has been the goal of

39

Lo'* ai-]eres
Ib. iu r1kxn

Robt rogr~lamni

Figure 7. Task Description as a sequence of model states.

Bearing 2 Nut
S.aD< Wrsher

Bearing I

much of the research on automatic problem solving within artificial intelligence
(see, e.g., [Nilsson 80)). These problem solving systems typically do not specify the
detailed robot motions necessary to achieve an operation 8 . These systems typically
produce a plan where the primitive commands are of the form: PICKUP(A)
and MOVETO(p) without specifying the robot path or any sensory operations.
In contrast to these systems, task planners need significant in~ormation about
intermediate states, but they can be expected to produce a much more detailed
robot program.

The positions needed to specify a model state are essentially similar to those
needed to specify positions to robot-level systems. The option of using the robot to
specify positions is not open, however. The other techniques described in Section
3.2 are still applicable. The use of symbolic spatial relationships is particularly
attractive for high-level task specifications.

We have indicated that model states are simply sets of positions and task
specifications are sequences of models. Therefore, given a method such as symbolic
spatial relationships for specifying positions, we should be able to specify tasks.
'[his approach has several important limitations, however. We noted earlier that
a set of positions may overspecify a state. A typical example J1,inkcl 76] of this
difficulty arises with symmetric objects, for example a round peg in a round hole.
'The specific orientation of the peg around its axis given in a model is irrelevant to
the task. This problem can be solved by treating the symbolic spatial relationships

is themselves as specifying the state, since these relationships can express families of

-'lhc most prominent exception is STRIPS [Nilsson 69], which included niechanismns to carry
out the plan in the real world.

U 40

.L,ru, -Pc-rea Uubot h|IU r i 1g

positions. Another, more funrdamental limitation, Is that geori.tr ic an(kilicitatic
niodels of an operation's tinal state are not always a complete spei fic Iin of the

* desired operation. One example of this is the need to specify how hard to tighten
a bolt during an assembly. In general, a complete description of a task may 1eed
to include parameters of the operations used to reach one task state froni another.

'fie alterriative to task specification by a sequence of model states is specificat ion
by a sequence of operations. Thus, instead of building a miodel of ail object in
its desired position, we can describe the operation by which it can be achieved.

The description should still be object-oriented, not robot-oriented; for example,
the target torque for tightening a bolt should be specified relative to the bolt and
riot the robot joints. Operations will also include a goal statement involving spatial

relationships between objects. The spatial relationships given in the goal not only
specify positions, they also the physical relationships between objects that
should be achieved by the ol)eration. Specifying that two surface are Against each

other, for example, should produce a compliant motion that moves until the contact
is actually detected, not a miotion to the position where contact is supposed to
occur. For these reasons, existing proposals for task-level programming languages
have adopted an operation-centered approach to task specification [Lieberman and
Wesley 77, lozano-1PNrez 76].

The task specified as a sequence of model states in Figure 7 can be specified

* by the following symbolic operations, assuming that the model includes names for
objects and object features:

PLACE BEARINGI SO (SHAFT FITS BEARINGI.HOLE) AND
(BEARING .BOTTOM AGAINST SHAFT.LIP)

PLACE SPACER SO (SHAFT FITS SPACER.HOLE) AND
(SPACER.BOTTOM AGAINST BEARINGt. TOP)

PLACE BEARING2 SO (SHAFT FITS BEARING2.HOLE) AND
(BEARING2.BOTTOM AGAINST SPACER. TOP)

PLACE WASHER SO (SHAFT FITS WASHERHOLE) AND
(WASHER.BOTTOM AGAINST BEARING2. TOP)

SCREW-IN NUT ON SHAFT TO (TORQUE to)

The first step in the task planning process is transforming the symbolic spatial
relationships among object features in the SO clauses to equations on the position

parameters of objects in the model. These equations must then be simplified as far
as possible to deterinine the legal ranges of positions of all objects [Ambler and

'Iopplestone 75, Popplestone, Arribler, and [ellos 80, Taylor 76]. The symbolic form

of the relationships is used during program synthesis also.

We havc mient tioned that the actual positions of objects at task execution

time will differ froal those in the model; among the principal sources of error are

" part variation, robot position errors, and modeling errors. Robot programs must

tolerate sorne degree of uncertainty if they are to be useful, but programs that

41

, L"°l~i-" ¢rel IobTL R'rorraI1n,

guarantee success under worst case error assumptions are dillicult to write and slow
to execute. lence, the task planner must use expectations on the uncertainty to
choose motion and sensing strategies that are efficient and robust [Inoue 74]. If the
uncertainty is too large to guarantee success, then additional sensory capabilities
or fixtures may be used to limit tile uncertainty [Brooks 82b, Taylor 76]. For this
reason, estimated uncertainties are a key part of task specification.

It is not desirable to specify uncertainties numerically for each position of
each state. For rigid objects, a more attractive alternative is to specify the initial
uncertainty of each object and use the task planner to update the uncertainty as
operations are performed. For linkages, information on uncertainty at each of the
joints can be used to estimate the position uncertainty of each of the links and of
grasped objects [Brooks 81, Taylor 76].

4.3.3. Robot Program Synthesis

lThe synthesis of a robot program from a task specification is the crucial
phase of task planning. The major steps involved in this phase are grasp planning,
motion planning, and plan checking. The output of the synthesis phase is a
program composed of grasp commands, several kinds of motion specifications,
sensor commands, and error tests. This program is in a robot-level language for a
particular robot and is suitable for repeated execution without re-planning.

Grasping is a key operation in robot programs since it affects all subsequent
motions. The grasp planner must choose where to grasp objects so that no collisions
will result when grasping or moving them [Laugier 81, Lozano-Prez 76, 81, Mathur
74, Wingham 77]. In addition, the grasp planner must choose grasp positions so
that the grasped objects are stable in the gripper [Brady 82, Hanafusa and Asada
76, Paul 72]. In particular, the grasp must be able to withstand the forces generated
during motion and contact with other objects. Furthermore, the grasp operation
should be planned so that it reduces, or at least does not increase, any uncertainty
in the position of the object to be grasped [Mason 82].

Once the object is grasped, the task planner must synthesize motions that will
achieve thle desired goal of the operation reliably. We have seen that robot programs
involve three basic kinds of motions: free, guarded, and compliant. Motions (luring

. an assembly operation, for example, may have up to four sub-motions: a guarded
departure from the current position, a free motion towards the destination position
of the task step, a guarded approach to contact at the destination, and a compliant

motion to achieve the goal position.

. During free motion, the principal goal is to reach tile destination without
collision; therefore, planning free motions is a problem in obstacle avoidance. Many
obstacle-avoidance algorithms exist but none of them are both general and efficient.
The type of algorithm that has received the most attention are those that build an
explicit description of the constraints on motion and search for connected regions
satisfying those constraints; see, e.g., [Brooks 82a, Brooks and Lozano-PNrez 82,
Kuntze and Schill 82, Lozano-Prez 81, Lozano-Prez and Wesley 79, Schwartz and
Sharir 81, 82, Udupa 771. A simple example of this kind of technique is illustrated in

42

Loaano-k'ires Robot Ptugramming

Figure 8. Two Equivalent Obstacle Avoidance Problems

11*..-. -. -

L ?'L

1ST-. 1L

Figure 8. A moving polygon A U,. A, with distinguished point, VA, must translate
among obstacle polygons B,. This problem is equivalent to the problem in which
VtA translates among transformed objects C,,. Each Ci,) represents the forbidden
positions of VA arising because of potential collisions between A, and B). Any curve
that does not overlap any of the C,,, is a safe path for A among the 13,. Extensions
of this approach can be used to plan the paths of cartesian robots [Lozano-P6rez
81, Lozano-PNrz and Wesley 79].

Compliant motions are designed to maintain contact among objects even in
the presence of uncertainty in the location of the objects; see [.Mason 83] for a
review. The basic idea is that the robot can only control its position along the
tangent to a surface9 without violating the constraints imposed by the surface. In
the direction normal to the surface, the robot can only control forces if it is to
guarantee contact with the surface. The planning of compliant motions therefore
requires models that enable one to deduce the directions which require force control
arid those that require position control. ''his planning is most complicated when
the robot interacts with other mechanisrns [Mason 811.

Compliant motions assume that the robot is already in contact with an object;
guarded motions are used to achieve the initial contact with an object [Will and
Grossman 75]. A guarded motion in the presence of uncertainty, however, does

not allow the program to determine comnpletely the relative position of the objects,
several possibilities may be possible as a result of the motion (see Figure 9). A
strategy, composed of compliant motions, guarded motions, and sensing, must be
synthesized to reliably achieve the specified goal. In particular, for the example in
Figure 9, the strategy must guarantee that the desired final state is achieved no

- Surface in this context actually means a configuration space surface, i.e., the manifold of position
and orientation parameters that ensure a particular kind of contact between two objects, see
[Lozano-i',rez 81, Mason 811

43

I ..

, 'Lom~uo- Pcese ihobut I'y6L ,LuhiLIlg

Figure 9. Ambiguous Results of a Guarded Motion under Uncertainty

matter which of the possible states actually is reached. [Brooks $2b, Latombe 82,
Lozano-Pirez 76, Lozano-Pirez, Taylor, and Mason 82, Taylor 761.

Most of the difficulty in doing motion synthesis stems fromi the need to operate
under uncertainty in the positions of the objects arid of the robot. These individual
uncertainties can be modeled and their combined effect on positions computed.
The requirements for successful completion of task steps can be used to choose
the strategy for execution, e.g., an insertion with large clearance may be achieved
by a positioning motion, while one with little clearance might require a guarded
motion to find the surface followed by a compliant motion [Brooks 82b, Taylor
76J. In general, the uncertainty in the position of objects may be too large to
guarantee that some motion plan will succeed. In these ca-ses, non-contact sensing
such as vision may be used at run-time to reduce the uncertainty. The task planner
must decide when such information is likely to be useful, given that the sensory
information also will be subject to error. This phase of task planning has been
dubbed pian checking; it is treated in detail by [Brooks 82b].

Task planning, as described above, assumes that the actual state of the world
K.will differ from the world model, but only within known bounds. This will not
L always be the case however; objects may be outside the bounds of estimated

uncertainty, objects may be of the wrong type, or objects may be absent altogether.

r In these cases and many others, the synthesized programs will riot have thle expected
result; the synthesized program should dctect the failure and either correct it or
discontinue the operation. Error detcction will avoid possible damage to the robot

44

""Lusazno-Perei Robot Prgraoini,

and other parts of the environment. Hence, an important part of robot program
synthesis should be the inclusion of sensory tests for error detection. Error detection
and correction in robot programs is a very difficult problem. but one for which very
little research is available [Brooks 82b, Gini, Gini, and Somalvico 81, Lozano-P6rez

,..'::76].

4.3.4. Task-level systems

A number of task-level language systems have been proposed, but no complete
system has been implemented. We saw above that many fundamental problems
remain unsolved in this area; languages have served primarily as a focus of research,
rather than as usable systems.

The MOVE-INSTANCE system [Feldman, et al. 71] was the first of the task-level
system proposals. A subset of this proposal was implemented [Paul 72], namely, a
program that chose stable grasping positions on polyhedra and planned a motion
to aproach and move the object. The planning did not involve obstacle avoidance
(except for the table surface) or the planning of sensory operations.

The initial definition of AL [Finkel, et al. 74] called for the ability to specify
models in AL and to allow specification of operations in terms of these models. This
has been the subject of some research [Binford 79, Taylor 76], but the results have
not. been incorporated into the existing AL system. Some additional work within the
context of Stanford's Acronym system [Brooks 81] has dealt with planning grasp
positions [Binford 79], but AL has been viewed as the target language rather than
the user language.

Taylor [76] discusses an approach to the synthesis of sensor-based AL programs
from task-level specifications. Taylor's method relies on representing prototypical
motion strategies for particular tasks as parameterized robot programs, known as

procedure skeletons. A skeleton has all the motions, error tests, and computations
needed to carry out a task, but many of the parameters needed to specify motions
and tests remain to be specified. The applicability of a particular skeleton to a task
depends on the presence of certain features in the model and the values of parameters
such as clearances and uncertainties. Choices among alternative strategies for a
single operation are made by first computing the values of a set of parameters
specific to the task, such as the magnitude of uncertainty region for the peg in
peg-in-hole insertion, and then using these parameters to choose the "best", e.g.,
fastest, strategy. Having chosen a strategy, the planner computes the additional
parameters needed to specify the strategy motions, such as grasp positions and
approach positions. A program is produced by inserting these parameters into the
procedure skeleton that implements the chosen strategy.

The approach to strategy synthesis based on procedure skeletons assumes that

task geometry for common sub-tasks is predictable and can be divided into a
manageable number of classes each requiring a different skeleton. This assumption
is needed because the sequence or motions in the skele' ,,n will only be consistent
:: with a particular class of geometries. The assumption does not seem to be true

in general. As an example, consider the tasks shown in Figure 10. A program for

45

,'= -''': ,,, " : ','','," ;.,"','' - , •---....-.-......

b°" --

iusaa~oizo-e Rijobot P'ru.raimmng

. Figure 10. Similar Peg-in-Hole Tasks Which Require Different Strategies

A--B. c.

task A could perhaps be used to accomplish tasks B and C, but it could not be
guaranteed to work reliably. In particular, the presence of additional surfaces in
tasks B and C may generate unexpected contacts, leading to failures. This approach
contrasts to an approach which derives the strategy directly from consideration of
the task description [Lozano-Pdrez, Taylor, and Mason 82]. In advanced systems,
both types of approaches are likely to play a role.

The LAMA system was designed at MIT [Lozano-Prez 76, Lozano-Pdrez
and Winston 77] as a task-level language, but only partially implemented. LAMA
formulated the relationship of task specification, obstacle avoidance, grasping,
skeleton-based strategy synthesis, and error detection within one system. More
recent, work at MIT has explored issues in task planning in more detail outside of the
context of any particular system [Brooks 82a, 82b, Lozano-Pdrez 81, Lozano-Pirez,
Taylor, and Mason 82, Mason 81, 821.

AUTOPASS, at IBM [Lieberman and Wesley 77], defined the syntax and semantics
of a task-level language and an approach to its implementation. A subset of the
most general operation, the PLACE statement, was implemented. The major part of
the implementation effort focused on a method for planning collision-free paths for
cartesian robots among polyhedral obstacles [llozano-P~rez and Wesley 79, Wesley,
et al. 80].

RAPT [Popplestone, Ambler, and Bellos 78] is an implemented system for
transforming symbolic specifications of geometric goals, together with a program
which specifies the directions of the motions but not their length, into a sequence of
cnd-effector positions. RAPT's emphasis has been primarily on task specification; it
does not deal with obstacle-avoidance, automatic grasping, or sensory operations.

Some robot-level languagc systems have proposed extensions to allow some

task-level specifications. LM-GEO [Mazer 82] is an implemented extension to LM
[Latornbe and Mazer 81] which incorporates symbolic specifications of destinations.

* The specification of ROBEX (Weck artu Zuhlke 81] includes the ability to automatically
plan collision-free motions and to generate programs that use sensory information
available doing execution. A full-blown ROBEX, including these capabilities, has

not been implemented.

46

Lomno-Pirez Itubot P'rogramming

The deficiencies of existing methods for geometric reasoning and sensory
planning have prevented implementation of a complete task-level robot programming
system. There has, however, been significant progress towards solving the basic
problems in task planning; see [Lozano-PNrez 83] for a review.

47

Loaso- P res Hobot Prugr.mining

5. Discussion and Conclusions

Existing robot programming systems have focused primarily on the specification
of sequences of robot configurations. This is only a small aspect of robot
programming, however. The central problem of robot programming is that of
specifying robot operations so that they can operate reliably in the presence of
uncertainty and error. This has long been recognized in research labs, but until
very recently has found little acceptance in industrial situations. Some key reasons
for this difference in viewpoint are:

1. The lack of reliable and affordable sensors, especially those already
integrated into the control and d agramming systems of a robot.

2. Existing techniques for sensory processing have tended to be slow when
compared to mechanical means of reducing uncertainty.

Both of these problems are receiving significant attention today. When they are
effectively overcome, the need for good robot programming tools will be acute.

The main goal of this paper has been to assess the state-of-the-art in robot
programming compared with the requirements of sophisticated robot tasks. Our
conclusion is that all of the existing' robot systems fall short of meeting the
requirements we can identify today.

The crucial problem in the development of robot programming languages is
our lack of understanding of the basic issues in robot programming. The question
of what basic set of operations a robot system should support remains unanswered.

Initially, the only operation available was joint motion. More recently, cartesian
motion, sensing and, especially, compliance have been recognized as important
capabilities for robot systems. In future systems, a whole range of additional
operations and capabilities are to be expected:

1. Increasing integration of sensing and motion: More efficient and
complete implementations of compliant motions are a key priority.

2. Complete object models as a source of data for sensor interfaces and
trajectory planning: Existing partial models of objects are inadequate for
most sensing tasks; they are also limited as a source of path constraints.
Surface and volume models, together with appropriate computational

tools, should also open the way for more natural and concise robot
programs.

3. Versatile trajectory specifications: Current systems overspecify trajec-
tories and ignore dynamic constraints on motion. Furthemore, they severely
restrict the vocabulary of path shapes available to users. A mechanism
such as functionally-defined motion can make it easy to increase the
repertoire of trajectories available to the user.

4. Coordination of multiple parallel tasks: Current robot systems have
almost completely ignored this problem, but increasing use of robots with

48

*i' " " " '" " - " "

Lozano- iPres Robot Progr, tinn

more than six degrees-of-freedom, grippers with twelve or more degrees-
of-freedom, multiple special-purpose robots with two or three degrees-
of-freedom, and multiple sensors will make the need for coordination
mechanisms more severe.

5. The 1/0, control, and synchronization capabilities of general-purpose
computer programming languages: A key problem in the development
of robot languages has been the reluctance, on the part of users and
researchers alike, to accept that a robot programming language must be
a sophisticated computer language. The evidence seems to point to the
conclusion that a robot language should be a superset of an established
computer programming language, not a subset.

These developments should be matched with continuing efforts at raising the level
of robot programming towards the task-level. By automating many of the routine
programming functions, we can simplify the programming process a(l thereby
expand the range of applications available to robot systems.

One problem that has plagued robot programming research has been the
significant "barriers to entry" to experimental research in robot programming.
Because robot control systems on available robots are designed to be stand-alone,
every research group has to re-implement a robot control system from the ground up.
This is a difficult and expensive operation. It is to be hoped that commercial robots
of the future will be designed with a view towards interfacing to other computers,
rather than as stand-alone systems. This should greatly stimulate development of
the sophisticated robot programming systems that we will surely nced in the future.

Acknowledgements

Many of the ideas discussed in this paper have evolved over the years through
discussions with many people, too numerous to mention. I have benefited, especially,
from extensive discussions with Matthew Mason and Russell Taylor. I thank both
of them for their time and their help. The initial motivation for this paper and
many of the ideas expressed herein arose as a result of the "Workshop on Robot
Programming Languages" held at MIT in January 1982, sponsored by ONR. I am
indebted to all the participants of the workshop. The following people read drafts
and provided valuable comments: Michael Brady, Rodney Brooks, Eric Grimson,
John llollerbach, Berthold Iorn, and Matthew Mason.

49

i.oLanu-Petes IRobuL P rogrmming

References

Ambler, A.P., and Popplestoue, R.J. "Inferring the positions of bodies from
specified spatial relationships," Artificial Intelligence 6, 2 (1975), 157-174.

Ambler, A. P., Popplestone, R. J., and Keinpf, K. G. "An experiment in the
Oliline Programming of Robots," Twelfth International Symposium on Industrial

Robots, Paris, France, June, 1982, 491-502.

ASEA "Industrial Robot System," ASEA AB, Sweden, YB 110--301 E.

Baer, A., Eastman, C., and]Ienrion, M. "Geometric Modeling: A Survey,"
Computer Aided Design I1, 5 (September 1979), 253--272.

Binford, T. 0. "The AL Language for Intelligent Robots," IRIA Seminar
on Languages and Methods of Programming Industrial Robots, Rocquencourt,
France, June 1979, 73-87.

Brady, J. M. "Parts Description and Acquisition Using Vision," Proceedings
of SPIE, May 1982.

Brady, J. M. "Trajectory Planning," in Robot Motion: Planning and Control,
Brady, M. et al. eds., MIT Press, 1983.

Braid, I. "New Directions in Geometric Modelling," CAM-I Workshop on
Geometric Modeling , Arlington, Texas, 1978.

Brinch Hansen, P. "The programming language Concurrent Pascal," IEEE
Transactions on Software Engineering 1, 2 (June, 1975), 199-207.

Brooks, R. A. "Symbolic Reasoning Among 3-I) Models aud 2-D Images,"
Artificial Intelligence 17 (1981), 285-348.

Brooks, R. A "Solving the find-path problem by representing free space as
generalized cones," Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Al Memo 674, May, 1982a.

Brooks, R. A. "Symbolic Error Analysis and Robot Planning," Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Al Memo 685,
September, 1982b.

Brooks, It. A. and Lozano-Perez, r. "A Subdivision Algorithm in Configuration
Space for Findpath with Rotation," Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Al Memo 684, December, 1982.

Darringer, J. A. and Blasgen, M. W. "MAPLE: A high Level Language for
Research in Mechanical Assembly," 1IM T. J. Watson Research Center, RC 5606,
September 1975.

Dijkstra, F. W. "Co- operating sequential processes," in Programming Languages,
F. Genoys, Ed., Academic Press, New York, 1968, 43-112.

Ernst, If. A. A Comiputer-Controlled Mechanical 11and, Sc. I). Tlic.is, Massa-
chusetts Institute of Technology, 1961.

50

Lozano- Perez Robot Programnoing

Evans, R. C., Garnett, l). G., and Grossman, D. D. "Software System for a
-.Computer Controlled Manipulator," IBM T. J. Watson Research Center, RC 6210,

May 1976.

Falek, D. and Parent, M. "An Evolutive Language for an Intelligent Robot,"
Industrial Robot (September 1980), 168 171.

Faux, I.D., and M.J. Pratt Computational Geometry for Design find
Manufacture , Ellis llorwood Press, Chichester, 1979.

Feldman, J., et al. "The Stanford lland-Eye Project," First IJCAI, london,
England, September 1971, 350 -358.

Finkel, R.A. "Constructing and debugging manipulator programs," Artificial
Intelligence Laboratory, Stanford University, AIM 284, August 1976.

Finkel, R., Taylor, R., Bolles, R., Paul, R., and Feldman, J. "AL, A
programming system for automation," Artificial Intelligence Laboratory, Stanford
University, AIM-177, November 1974.

Franklin, J. W. and Vanderbrug, G. J. "Programming Vision and Robotics
Systems with RAIL," SAIE Robots VI, March 1982, 392-406.

Geschke, C. C. "A System for Programming and Controlling Sensor-Based
Manipulators," Coordinated Science Laboratory, University of Illinois, Urbana,
RI-837, December 1978.

Gini, G., Gini, M., Gini, R, and Giuse, D. "Introducing Software Systems
in Industrial Robots," Ninth International Symposium on Industrial Robots

* Washington D. C., March 1979, 309-321.

Gini, G., Gini, M., and Somalvico,M. "Determininstic and Nondeterministic
Programming in Robot Systems," Cybernetics and Systems 12 (1981), 345-362.

Gleason, G. J. and Agin, G. J. "A Modular Vision System for Sensor-Controlled
Manipulation and Inspection," Ninth International Symposium on Industrial
Robots , Washington 1). C., March 1979, 57-70.

Goto, T., K. Takeyasu, and T. Inoyarna "Control algorithm for precisi(;n insert
.operation robots," I1.E'. Trans. Systems, Han, Cybernetics SMC-10, 1 (January,

1980), 19-25.

Grossman, D. D. "Programming a Computer Controlled Manipulator by
Guiding Through the Motions," IBM T. J. Watson Research Center, Research
Report RC6:)3, 1977 (I)cclassified 1981).

Grossman, D. 1). and Taylor, R. H. "Interactive Generation of Object Models
with a Manipulator," IEEE Transactions on Systems, Man, and Cybernetics
SMC-8, 9 (September 1978), 667-679.

Ilanafusa, HI., and Asada, I. "Mechanics of gripping form by artificial fingers,"
*. . 7'ransactions of the Society of Instrument and Control Engineers 12, 5 (1976),

536--542.

51

Fjj Losamo- Peres Rtobot Progrrnimmm

llanafusa, II., and Asada, H. "A robotic hand with elastic fingers and its
application to assembly process," IFAC Symposium on Information and Control
Problems in Manufacturing Technology, Tokyo, 1977,

Harmon, L. D. "Automated Tactile Sensing," Robotics Research 1, 2 (Summer
1982),3-32.

Hasegawa, T. "A New Approach to Teaching Object Descriptions for a
Manipulation Environment," Twelfth International Symposium on Industrial
Robots , Paris, France, June, 1982, 87-97.

Ileginbotham, W.B., Dooner, M., and Case, K. "Robot Application Simulation,"
Industrial Robot (June 1979), 76-80.

Hoare, C. A. R. "Towards a theory of parallel programming," in Operating
Systems Techniques, Academic Press, New York, 1972, 61-71.

Hloare, C. A. R. "Communicating Sequential Processes," Communications of
the ACM 21, 8 (August, 1978), 666-677.

Hlolt, I. R. "Robot Decision Making," Cincinnati Milacron Inc., MS77-751,
1977.

'-" Ichbiah, J. D. (Ed.) "Reference Manual for the Ada Programming Language,"
US Department of Defense, Advanced Reasearch Projects Agency, 1980.

Inoue, 11. "Computer controlled bilateral manipulator," Bulletin of the JSME
14, 69 (197t), 199-207.

Inoue, 1I. "Force feedback in precise assembly tasks," Artificial lntelligenc,
Laboratory, Massachusetts Institute of Technology, AIM-308, August 1974.

Ishida, T. "Force control in coordination of two arms," Fifth International
Conference on Artificial Intelligence Cambridge, Mass., August, 1977.

Kuntze, II. B. and Schill, W. "Methods for Collision Avoidance in Computer
-' Controlled Industrial Robots," Twelfth International Symposium on Industrial

Robots, Paris, France, June, 1982, 519-530.

Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d'avancement
des recherches," Laboratoire IMAG, Grenoble, France, R 291, February 1982.

. Latombe, J. C. and Mazer, E. "LM: a ttigh-Level Language for Controlling
*-Assembly Robots," Eleventh International Symposium on Industrial Robots

Tokyo, Japan, October 1981.

Laugier, C. "A program for automatic grasping of objects with a robot
arm," Eleventh International Symposium on Industrial Robots, Tokyo, Japan,
October 1981.

Lavin, M. A. and Lieberman, L. I. "AML/V: An Industrial Machine Vision
Programming System," Int. J. of Robotics Research 1, 3 (1982).

Lieberman, L.I., and Wesley, M. A. "AUTOPASS: an automatic programming
system fur computer controlled mechanical assembly," IBM Journal of Research
Development 21, 4 (1977), 321-333.

52

Lozano-Pires Robot Prograinning

Lozano-Perez, T'. "The design of a mechanical assembly system," Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Al 'I 397, 1976.

Lozano-Perez, T. "Automatic Planning of Manipulator Transfer Movements,"
IEEE Transactions on Systems, Man, and Cybernetics SMC-II, 10 (October
1981), 681-698.

Lozano-Perez, T. "Task Planning," in Robot Motion: Planning and Control,
Brady, M. et al. eds., MIT Press, 1983.

Lozano-Perez, T., and Winston, P. 11. "LAMA: a language for automatic
mechanical assembly," lifth International Joint Confercncc on Artficia!
Intelligence , Massachusetts Institute of Technology, Cambridge, Mass., August
I977, 710-716.

Lozano-Perez, T., and Wesley, M. A. "An algorithm for planning co.llision-free
paths among polyhedral obstacles," Communications of the A CM 22, 10 (October
1979), 560-570.

Lozano-Perez, r., Taylor, R. II. and Mason, M. T. "Automatic Synthesis of Fine-
Motion Strategies for Robots," Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, December 1982.

McDonnell Douglas, Inc "Robotic System for Aerospace Batch Manufacturing,"
McDonnell l)ouglas, Inc, February 1980.

Markowsky, G. and Wesley, M. A. "Fleshing Out Wire Frames," IBM Journal
of Research and Development 24, 5 (September 1980).

Mason, M.T. "Compliance and force control for computer controlled manipulators,"
IEEE Transactions on Systems, Man and Cybernetics SMC-1i, 6 (June, 1981),
418-432.

Mason, M. T. Manipulator Grasping and Pushing Operations, Ph. D. thesis
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Tech nology, 1982.

Mason, M. r. "Compliance," in Robot Motion: Planning and Control,
Brady, M. et al. eds., MIT Press, 1983.

* . Mathur, D. "The grasp planner," Department of Artificial Intelligence,

University of Edinburgh, DAI Working Paper 1, 1974.

" Mazer, E. "LM-Geo: Geometric Programming of Assembly Robots," Laboratoire
IMAG, Grenoble, F'rancc, 1982.

Meyer, J. M. "An Emulation System for Programmable Sensory Robots," IBM
Journal of Research and Development 25, 6 (November 1981).

Minsky, M. "Manipulator 1)esign Vignettes," MIT Artificial Intelligence
.* Laboratory, 267, October 1972.

Mijtaba, S., anrd Goldman, R. "AL user's manual," Stanford Artificial
Intelligence LaboraLory, AIM 323, January 1979.

* 53

Lusano- Pees obot irograr ing

Nakano, E., S. Ozaki, T. Ishida, and I. Kato "Cooperational control of the
anthropomorphous manipulator 'MELARM'," Proc. 4th Int. Symp. Industrial
Robots, Tokyo, 1974, 251-260.

Nilsson, N. "A mobile automaton: an application of ;rtificial intelligence
techniques," Proc. Int. Joint Conf. Artificial Intelligence , .)69, 509-520.

Nilsson, N. Principles of Artificial Intelligence, Tioga Publishing, California,
1980.

Ohwovoriole, M. S., and Roth, 13. "A theory of parts mating for assembly
automation," Ro.Man.Sy.-81 , Warsaw, Poland, 1981.

Park, W.T. "Minicomputer software organization for control of industrial
robots," Joint Automatic Control Conference , San Francisco, 1977.

Paul, R. P. "Modelling, trajectory calculation, and servoing of a controlled
arm," Stanford University, Artificial Intelligence Laboratory, AIM 177, November
1972.

Paul, R. P. "WAVE: A model-based language for manipulator control," The
Industrial Robot (March 1977).

Paul, R. P. Robot Manipulators: Mathematics, Programming, and Control
MIT Press, Cambridge, 1981.

Paul, R. P., and Shimano, B. "Compliance and control," 1976 Joint Automatic
Control Conference ,, 1976, pp. 694-699.

Popplestone, R.J., Ambler, A. P., and Hellos, 1. "RAPT, A language for
describing assemblies," Industrial Robot 5, 3 (1978), 131-137.

Popplestone, R.J., Ambler, A. P., and Bellos, I. "An interpreter for a language
for describing assemblies," Artificial Intelligence 14, 1 (1980), 79-107.

Raibert, M.H., and Craig, J. J. "Hybrid position/force control of manipulators,"
ASME Journal of Dynamic Systems, Measurement, and Control 102, (June,
1981), pp. 126-133.

Requicha, A. A. G. "Representation of Rigid Solids: Theory, Methods, and
Systems," Computing Surveys 12, 4 (December 1980), 437- 464.

Ruolf, C. F. "TEACH - A Concurrent Robot Control Language," IEEE
*COMPSAC, Chicago, Illinois, November 1979, 442- 445.

Ruoff, C. F. "An Advanced Multitasking Robot System," Industrial Robot
(June 1980).

Salisbury, J. K. "Active Stiffness Control of a Manipulator in Cartesian
Coordinates," IEEE Confrence on Decision and Control , Albuquerque, New
Mexico, November 1980.

Salisbury, .J.K., and Craig, J. J. "Articulated hands: force control and kinematic
issues," Robotics Research 1, 1 (1982), 4-17.

* 54
J.:

.. rRobot Prograing

Salmon, M. "SIGLA: The Olivetti SIGMA Robot Programiring Language,"
Eigth International Symposium on Industrial Robots, Stuttgart, West Germany,
June 1978.

*.W Schwartz, J. T. and Sharir, M. "On the Piano Movers Problem f: The Case

of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers,"
Department of Computer Science, Courant Istitute of Mathematical Sciences,

NYU, Report 39, October 1981.

Schwartz, J. T. and Sharir, M. "On the Piano Movers Problem I: General
Properties for Computing Topological Properties of Real Algebraic Manifolds,"
Depart ment of Computer Science, Courant Institute of Mathematical Sciences,
NYU, Report 41, February 1982.

Shimano, B. "The kinematic design and force control of computer controlled
manipulators," Artificial Intelligence Laboratory, Stanford University, Memo 313,
March 1978.

Shimano, B. "VAL: An Industrial Robot Programming and Control System,"
IRIA Seminar on Languages and Methods of Programming Industrial Robots

Rocquencourt, France, June 1979, 47-59.

Silver, D. "The Little Robot System," MIT Artificial Intelligence Laboratory,
AIM 273, January 1973.

Soroka, B. [. "Debugging Robot Programs With a Simulator," SME CADCAM-

8, Dearborn, Michigan, November, 1980.

Summers, P. D., and Grossman, D. D. "XPROBE: An Experimental System

-" for Programming Robots by Example," IBM T. J. Watson Research Center, 1982.

Takase, K., Paul, R. P., and Berg, E. J. "A Structured Approach to Robot

Programming and 'reaching," IEEE COMPSAC , Chicago, Illinois, November
1979.

Taylor, R.1. "The Synthesis of Manipulator Control Programs from Task-

level Specifications (Ph.1). Thesis)," Artificial Intelligence Laboratory, Stanford
University, AIM-282, July 1976.

Taylor, R.I1. "Planning and execution of straight-line manipulator trajectories,"
IBM Journal of Research and Development 23 (1979), 424-436.

Taylor, R. H., Summers, P. D., and Meyer, J. M. "AML: A Manufacturing

Language," Robotics Research 1, 3 (Fall 1982).

Udupa, S.M. "Collision detection and avoidance in computer controller

manipulators," Fifth International Joint Conference on Artificial Intelligence
., , Massachusetts Institute of Technology, 1977.

Unimation Inc. "User's Guide to VAL: A Robot Programming and Control

System," Unimation Inc., Danbury, Conn., Version 12, June 1980.

Week, M. and Zulilke, D. "Fundamentals for the Development of a High-
Level Programming Language for Numerically Controlled Industrial Robots,"

AU'OI"ACT West, Dearborn, Michigan, 1981.

' 55

"' ." - • * * - " -' - - -- . . " " " .. ' . . ,'- ' . -- , ' . -. . - • , . , ." . - L , ,

Iuzano- 'cres Robot Programming

Wesley, M. A., et al. "A Geometric Modeling System for Automated Mechanical
Assembly," IBM Journal of Research and Development 24, 1 (January 1980),
64-74.

Whitney, D.E. "Force feedback control of manipulator fine motions," Journal
of Dynamic Systems, Measurement, and Control.

Whitney, D.E. "Quasi-static assembly of compliantly supported rigid parts,"
Journal of Dynamic Systems, Measurement, and Control 104, 1 (March, 1982),
65-77.

Will, P.M., and Grossman, D.D. "An experimental system for computer
-.. controlled mechanical assembly," IEEE Transactions on Computers C-24, No. 9

(1975), 879-888.

Wingham, M. Planning how to grasp objects in a cluttered environment, M.Ph.
Thesis, Edinburgh University, 1977.

.X,

.5

h56

. ...

