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SECTION I
INTRODUCTION

1. GENERAL

Performance prediction for a ramjet propulsion system requires
a detailed analysis of the flow through each of its major components:
the inlet, the combustor, and the exhaust nozzle. The objective of
this research was to develop a procedure for calculating the flow
field within the converging-diverging nozzle of a high-speed (M=6)
ramjet propulsion system.

Initial data (at the nozzle inlet) for the nozzle flow field
analysis is provided by the results of the combustor analysis. Ramjet
combustors are generally axisymmetric in shape with slowly-varying or
constant cross-sectional area. Techniques for analysis and performanca
prediction for a high-speed ramjet combustor are still under develop-
ment. One technique [Reference (1)] is based on a one-dimensional
compound flow analysis of the combustor flow field. The flow is broken
into a number of coaxial flow streams and the one-dimensional flow
equations are solved within each stream. The static pressure is
matched radially across each of the streams resulting in a uniform
static pressure distribution across the combustor exit. The fuel
injection processes, fuel droplet dynamics, atomization, mixing, vapor-

jzation, and combustion kinetics are all included in the flow model.
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The final result of the combustor analysis is a complete set of known
flow properties and chemical species concentrations at the nozzle
entrance where the converging geometry begins to introduce two-
dimensional flow effects. The flow at the combustor exit will not
necessarily be in chemical equilibrium. At high speeds, the stagna-
tion temperature within the flow will be large and the effects of
finite-rate chemical kinetics become important. Also residence times
within the combustor may not be sufficient for the flow to reach chem-
ical equilibrium. The technique developed in the subject research
will accept a nonuniform, nonequilibrijum, distribution of initial con-
ditions at the nozzle inlet.

The analysis within the nozzle can be divided into two parts:
the analysis of the subsonic and transonic flow fields in the axisym-
metric nozzle entrance and throat regions, and the analysis of the
supersonic flow field in the nozzle divergence. The effects of finite-
rate kinetics must be included in both parts of the analysis. If the
nozzle divergence is axisymmetric, Reference (2) can be used for
analysis of the supersonic flow field. If the divergence is not axi-
symmetric, due to integration with the airframe, then a three-
dimensional analysis is required. A highly accurate, three-dimensional,
method-of-characteristics scheme for supersonic flow, including finite-
rate chemical kinetics effects, has been developed by Cline and Hoffman
(3). The subject research has been concerned with the analysis of the
subsonic and transonic flow regions. Both axisymme*ric and planar
nozzle geometries are considered and the nozzle may have a centerbody.

Though the present discussion focuses on ramjet propulsion, the

..........................
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technique which is described is applicable to any subsonic-transonic
flow field analysis where the effects of finite-rate chemical kinetics
must be considered. The computer program which evolved from this work

is an extension of that developed by Cline (4).

2. LITERATURE REVIEW

The literature surveyed for this research can be divided into
three groups: 1) one-, two-, and three-dimensional, steady, chemically
reacting nonequilibrium flow, 2) two-dimensional, unsteady, nonreacting
flow, and 3) unsteady, chemically reacting, nonequilibrium flow. Each

of these groups is considered in turn in the following discussion.

Steady, Chemically Reacting, Nonequilibrium Flows

There is a very large amount of literature concerning this topic.
Most of the literature deals with one- and two-dimensional flows. For
the one-dimensional case, the solutions can be categorized as analyti-
cal, semiempirical, and numerical. Analytical solutions are possible
only for the very simplest nonequilibrium processes and often approxi-
mations such as linearization and the assumption of a high Mach number
are introduced. Reference ( 5) provides examples of analytical solu-
tions. Perhaps the most often used semiempirical method is the "sudden
freezing" approximation ( 5) where equilibrium flow is assumed upstream
of an empirically chosen "freezing point," and frozen flow is assumed
downstream of that point. Accurate numerical solutions are also avail-
able and have been computed by a number of investigators. Examples

include the work by Emanual and Vincenti (6 , 7 ), Sarli (8), Lordi
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et al. (9), and Frey et al. (10). Reference (10) is widely used by the
propulsion industry.

Two-dimensional, steady, supersonic flows with chemical nonequili-
brium have been computed by Widawsky (11), Zupnik et al. (12), Craig
(13), BartIma (14), and Kliegel et al. (2). Reference (2) considers
the elements C, H, 0, N, F, and C1, 19 gaseous species containing
those elements, and 48 chemical reactions that may occur between those
species. A method-of-characteristics procedure is used. The super-
sonic initial-data line required to start the characteristic calcula-
tions can be input or it can be calculated by a transonic analysis
within the program. The characteristic equations governing the fluid
dynamic variables are integrated by a second-order (modified Euler)
explicit method. The species continuity equations are integrated using
a first-order, implicit method. It is significant to note that the
authors of Reference (2) state that even small interpolation errors
in species concentrations cause severe stability and accuracy problems
in the numerical integration of the species continuity equations. This
fact will be discussed more fully in Section III. |

Cline and Hoffman (3) extended an isentropic flow three-
dimensional method-of-characteristics scheme, developed by Ransom et
al. (15), to include the effects of finite-rate chemical kinetics.
Their analysis uses the same chemical kinetics model as used in Refer-
ence (2). Initial-value plane data can be obtained from the results
of an analysis using Reference (2), but in that case, no account is
made for two-dimensional effects upstream of the throat. The subject

research provides a two-dimensional, nonequilibrium initial-value
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plane for use in the analysis of Reference (3). Cline and Hoffman (3)
note the importance of using correct initial data. They found that
incorrect data may result in thermal compressions and shocks due to the
rapid change in chemical composition just off the initial-value
surface. As in Reference (2), the fluid dynamic equations are inte-
grated using a second-order explicit method, but the species continuity
equations are integrated using a second-order, implicit scheme. This
particular scheme was chosen after an extensive review of various
explicit and implicit methods for integrating the species continuity

equatijons.

Unsteady, Nonreacting Flow

The time-dependent technique for the solution of steady-state
Bl converging-diverging nozzle flows has been used by a number of inves-

tigators [References (4) and (16) to (23)]. References (16) to (22)
provide generally good results for typical problems but the techniques

yield relatively long computational times. Cline (23) attributes this

- .
thair}
. MU
‘L. PN

to "inefficient numerical schemes and poor treatment of the boundaries

S

- resulting in the requirement for excessively fine computational meshes."

R i,
S -
*t

Cline (4, 23) uses MacCormack's method for interior points with the
governing equations of motion in nonconservation form. Implicit arti-
ficial viscosity is present within this method so explicit artificial

viscosity is added only for flows with shock waves. The boundary

points are computed using a reference-plane characteristic scheme.

Solutions to representative, inviscid, nozzle problems are obtained

in approximately one minute using a CDC 6600 computer.
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Unsteady, Chemically Reacting, Nonequilibrium Flow

Vamos and Anderson (24) have used a time-dependent scheme to com-
pute the one-dimensional, nonequilibrium flow of reacting gas mixtures.
They cite several advantages of their approach as compared to steady,
one-dimensional analyses:

1) the use of relatively few grid points with relatively large
spatial increments through the nozzle, including the near
equilibrium subsonic portion of the nozzle.

2) the straightforward manner in which completely nonequilibrium,
subsonic, supersonic flow can be treated. In particular, the
usual singularity in the throat region associated with steady
flow analyses is not present in the unsteady approach.

MacCormack's method (which is explicit) was used in this work for all
the governing equations (including the species continuity equations).
Very long computation times were reported (%1 hour on a CDC 6400) but
the results were quite good. No general computer programs have been

developed to treat multidimensional, reacting flows by an unsteady

approach.

3. REMARKS ON COMPUTATIONAL TIME

Stability, accuracy, and computational time are generally the
most important factors used in determining the merit of a particular
numerical method. In the subject research, computational time has
been especially important for several reasons. First, the flow field
to be modeled in the nozzle entrance and throat regions is a two-

dimensional, subsonic and transonic flow. For steady subsonic flow,
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the governing partial differential equations are elliptic while, for
steady supersonic flow, those equations are hyperbolic. In the tran-
sonic flow regime, the equations change from elliptic to hyperbolic
(i.e., they are mixed). Techniques for solving mixed flow problems
are not well developed, but hyperbolic problems have been studied and
solved for many years. The mathematical difficulties associated with
a mixed flow problem can be avoided by solving the unsteady flow equa-
tions which are hyperbolic in both subsonic and supersonic regions.
Then the steady flow solution can be obtained as the asymptotic
solution to the unsteady equations, with steady flow boundary conditions
applied, for large time. The disadvantage of this approach is that
another independent variable is introduced into the analysis and the
unsteady solution may have to be advanced through many time steps to
achieve the steady state. If the allowable time step is small, and/or
the time to compute each solution plane is large, then long computa-
tional times can result. The time step size is determined from
stability considerations for the given equations and numerical methods
used. Introducing finite-rate chemical kinetics into the analysis
significantly increases the time required to compute each solution
plane. This is because the number of equations in the mathematical
model increases by the number of chemical species considered, and the
calculations required to compute the species source function and to
integrate the species continuity equations are very time consuming.
The nature of the species continuity equations must also be con-

sidered in a discussion of computational time. For flows near
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equilibrium, the species continuity equations are "stiff,"” and as a
result, they are difficult to solve numerically (see Appendix D).
Standard explicit integration techniques, when applied to stiff
differential equations, are unstable except for very small step sizes.
This problem occurred in the work of Vamos and Anderson (24). The use
of implicit methods, however, removes the stability problems and allows
more reasonable time steps. In addition to obtaining a solution to

the subject problem, a significant objective of this research has been

to achieve the solution in reasonable computational times.
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SECTION II

)
i

MODELING THE PROBLEM

1. PHYSICAL MODEL

In Section I it was noted that the initial data for the nozzle
flow field analysis is provided by the results of the combustor
analysis. Within the combustor, the fuel injection processes, fuel
droplet dynamics, atomization, mixing, vaporization, and combustion
kinetics may all be considered. However, by the time the flow has
reached the combustor exit, it is assumed in this analysis that it is
a mixture of thermally perfect gases with no condensed phases. The
distribution of fluid dynamic properties and the species concentrations
may or may not be uniform across the exit. Also, the flow may be in
chemical nonequilibrium at the combustor exit. The flow within the
nozzle is treated as continuous, inviscid, and adiabatic. Body forces
are neglected. No provisions have been made for diffusion or turbu-
lence modeling within the flow. Finally, only chemical nonequilibrium
is treated in this analysis; the flow is assumed to be everywhere in

instantaneous translational, rotational, and vibrational equilibrium.

2. MATHEMATICAL MODEL

The equations which correspond to the physical model described

above are given in Reference (25) and are discussed in Appendix A.

.
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These equations are the global continuity equation, the momentum

equation, the energy equation, the species continuity equations, and

=
C
L

the thermal and caloric equations of state. In vector form, they are:

g_g+v-(pV)=o (1)

p% +UP =0 (2)
2

D(h Etv /2) ! 2% =0 (3)

8]

'c)pi _

- * v . (in) = o, (i=1,...,n) (4)
n

P=pT I C.R, (5)
i=1

n T o
h = 121 C;h;  where h, = fTo cpi dT + h, (6)

where p is the fluid density, V is the velocity, P is the pressure,
h is the system enthalpy, T is the temperature, py are the species
densities, Ci are the species mass fractions, o; are the species source
functions, hi are the species enthalpies, Ri are the species gas con-
stants, Cpi are the species specific heats at constant pressure, and
hi° are the species energies of formation.

In Appendix A, equations (3) and (4) are manipulated to forms
which are more convenient for analysis and the entire set of governing

equations is written for two-dimensional axisymmetric or planar flow.
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The resulting equations are:

Py +up + voy +ou + bV, + e(pv/y) = 0 (7)

up +uu, + vuy + Px/p =0 (8)

Ve tuvy +owv 4 Py/p =0 (9)
2 -

P, +uP + va - ag (P, +up + voy) = ¥ (10)
9

where
n
Ve = 2O DRT - (veDhgloy

i=1

The subscripts in these equations denote partial differentiation and
€ in equation (7) is zero for planar flow and one for axisymmetric
flow. The terms ac and Yg are the frozen speed of sound and the ratio
of frozen specific heats respectively. Note that the species conti-
nuity equations (11)are coupled to equations (7) to (10) by the energy
equation source term wk.

Since the interior points in this analysis are to be treated by
a fixed grid technique, it is convenient to transform the physical
(x,y,t) plane to a rectangular (Z,n,T) plane in which the differencing
is performed. The following coordinate transformation is used (see

Figure 1):
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Figure 1. Physical and computational planes.
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=t

L =X (12)
AR AL

MO

where yc(x) and yw(x) represent the nozzle centerbody and wall coor-
dinates, respectively, as functions of x. Applying this transformation
to equations (7) to (11) yields the forms of the continuity, momentum,

energy, and species continuity equations which are used in this analy-

sis.
Py * Up, Vpn +pu tpau + BV + epv/n = 0 (13)
u_ + uu, + Vun + Pc/p + aPn/p =0 (14)
v, + uv, + an +8P /o =0 (15)
P, +uP + VPn - afz(p_[ *up, + Vpn) =¥ (16)
jp Y UGy * Vcin = a;/p (i=1,...,n) (17)
where
a = —g% = -8 a:;c - nB(a;;w - a;(c)

W Yyt Y

<|
m
Q
c

+ Bv

+ n/B
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Note that equation (17) may be written as

DC

. ag.
o R (i=1,....n) (18)

where DCi/DT is the change in Ci following a particle path in the com-

putational plane.

3. CHEMICAL KINETICS

The species source function appears in the forcing terms of both
the energy equation (16) and the species continuity equations (18).
Before the species source function can be computed, a reaction mechan-
ism must be specified. The reaction mechanism used in this research
is the same as that used in Reference (3) with the addition of the
hydrocarbon reaction discussed in Appendix B. Unburned hydrocarbons
may be present in the gas mixture at the combustor exit and therefore,
provision for these species must be made in the chemical kinetics model.
Edelman, et al. (26) and Edelman and Harsha (27) have developed a
kinetics model for use in combustor analyses which includes a "sub-

global" partial oxidation step:

n m
CnHm + 7 02 +> 7 HZ + nCO (19)

Note that this reaction proceeds in the forward direction only. The
reaction rate coefficient for equation (19) is determined empirically
and is given by (Ref. 27):

aj = 6.0 x 1014 p0-3 ¢} (20)

c C
CnHm 02

14




where P has units of atmospheres and ¢ represents species concentra-
tions in g-moles/cc. For a nonequilibrium, chemically reacting flow

of a system of thermally perfect gases composed of the six elements

carbon, hydrogen, oxygen, nitrogen, flourine, and chlorine, Gold and
Weekly (28) have shown that 19 species and 48 chemical reactions should
be considered. Tables B-I and B-II of Appendix B show these species
and reactions. Experience with this and other reaction mechanisms has
indicated that there may be cases when not all of the reactions corres-
ponding to a given set of chemical species should be included in the
analysis. The number of reactions in the reaction mechanism is a sig-
nificant parameter affecting execution time. Therefore, no more reac-
tions than are necessary should be included in the reaction mechanism.
A general reaction equation which is used to represent any reac-

tion mechanism is

n ' kfj
L wv,. X, =

ioq 13 T«
i=1 krj i

2 v, . X, (j=1,...,m) (21)

where v;j and vzj are the stoichiometric coefficients of the reactants
and products respectively, Xi denotes the ith chemical species, and kfj
and krj are the forward and reverse reaction rate coefficients, respec-
tively, for the jth reaction of the m reactions in the reaction
mechanism.

Reaction rate coefficients are not readily predicted at the

present time and therefore, they are generally found experimentally.

The form for the reverse reaction rate coefficient which is used in

this analysis is




- J exp(-b./R
kpj = 335 7 7 exp(-b;/RT) (22)

where aij’ "j’ and bj are empirical coefficients, R is the universal
gas constant, and T is the local gas temperature.

Expressions for the species source function for both dissociation-
recombination reactions and binary exchange reactions are developed in
Appendix B. For dissociation-recombination reactions, the species

source function is:

3= (23)
; M: K,
- I (c1) ! n v'l
i=1 1 (I—“-i) 1]
i=1
where n VY.
I
K - _P,J i:l 5
J _ e _ P
D-R RT I (m1) ij
i=1
For binary exchange reactions the species source function is:
— 2 m " 1 n \)%J
o, =m, p- I (vy;.=-v::)|K, I (C,)
‘Bg ' j=1 WU [J i=1
(24)
n v;. k..
- .Hl(Ci) J n_LL.“_
1=

T (m,)"

i=1

16
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where

KjB-E = Kp,j ;11 (fn_i)v%j

i=1

In equations (23) and (24), Kp’j is the equilibrium constant based on
partial pressures, Mj is the third body reaction rate ratio, Ci are
the species mass fractions, and ﬁ} are the species molecular weights.

The effect of different third bodies on dissociation-recombination
reactions is accounted for through the use of third body reaction rate
ratios Mj as in equation (23). Appendix B contains a discussion of
these ratios.

Note that the difficulties in making accurate measurements for
the determination of reactions rate coefficients, the necessity of
extrapolating experimental data from one situation to another, and the
uncertainty as to the reaction mechanism, are all significant factors
limiting the accuracy of the analysis presented in this research. How-
ever, experience with one-dimensional analyses of reacting flows

indicates that the chemical kinetics model used here is adequate for

performance prediction.
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SECTION III
THE UNSTEADY AND INCONSISTENT SCHEMES

1. GENERAL

The governing equations presented in Section II can be thought
of as being composed of two groups: 1) the equations governing the
fluid dynamic variables (i.e., the global continuity, momentum, and
energy equations), and 2) the species continuity equations. For
convenience, the first group will hereafter be called the fluid
dynamic equations. Two approaches to the solution of the complete
set of governing equations have been considered and are discussed
below. The first approach is called the "unsteady scheme" and, though
it has not been implemented, it is helpful in understanding the second
approach. The second approach is called the "inconsistent scheme" and
it has been used successfully in the overall numerical algorithm of

this research.

2. THE UNSTEADY SCHEME

Consider an initial-data surface for the subject problem at time
level N. Figure 2 illustrates the unsteady scheme at an arbitrary
grid point within the computational mesh. The fluid dynamic variables
uN, vN, PN, and pN and the species mass fractions CiN are known at all

mesh points. The superscripts denote the time level. In the unsteady

scheme, the solutions of the fluid dynamic equations are advanced one

18
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time step by the methods of Reference (38) to give uN+l, vN+1, PN+1,

N+1. The CiN are held constant during this step. In words, the

and o
species continuity equations given by equation (18) require that the
total change in mass fraction along a particle path, for each of the
chemical species, is equal to °i/p' Therefore, using the solution for

uN+l and vN+1

and the time step size, the particle path is traced back
from the grid point at time N+1 to its origin in the initial data sur-
face (time level N). Then, by interpolation in the two-dimensional

N’ V*Ns P*Ns D*Ns and Ci*N at the

initial-value surface, values of u,
origin are determined. The subscript * indicates values at the parti-
cle path origin which will generally not be at a computational mesh

N N’ T*N N N+1 vN+1 N+1 N+1

point. Given u, , v, s Py s Ci*N, u , s T “,and p ~, it is

possible to integrate the species continuity equations forward along
the particle path and to compute CiN+1. When the steady state is
achieved, the same particle path and * values will be computed for each
additional time step and therefore, the solution will not change with
time. There are a variety of unit processes which might be imple-
mented with this approach. For example, one might predict the solution

for uN+1, vN+1, PN+1 N+1

» and p , generate the particle path and inter-
polate in the initial-data plane, integrate the species continuity
equations forward to give C?;l, and then repeat these same steps in
a corrector procedure.

The unsteady approach suffers several serious drawbacks. Time
consuming interpolation for 4+4n variables in the two-dimensional
initial-data surface is required. Also, as noted in Reference (2),

interpolation for species concentrations is likely to produce numerical

20
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difficulty. Values of the forcing term wk in the energy equation for
high temperature, near equilibrium conditions are found to be very
sensitive to variations in the syecies mass fractions. Therefore, any
interpolation error in the values of Ci could produce dramatic errors
in Vi Recall that wk couples the fluid dynamic equations and the
species continuity equations. The unsteady approach is useful because
it is conceptually straightforward and provides a clear picture of
convergence at the steady state. Also, it provides a basis from which

the inconsistent approach can be understood.

3. THE INCONSISTENT SCHEME

Consider the ordinary differential equation

D = fly,t) (25)

The finite difference form of this differential equation is "consistent"
if the finite difference equation approaches the differential equation
as At » 0. The overall algorithm used in this analysis is inconsis-
tent because of the treatment of the species continuity equations.
Specifically, in the inconsistent approach, the solutions for the fluid
dynamic variables are advanced one time step from an initial data sur-
face in the same manner as for the unsteady approach while the species
mass fractions are held constant. Then, the flow at time level N+l

is assumed to be steady and as many as four streamlines are traced
through the flow field with origins at selected locations along the
nozzle inlet. The species continuity equations are then integrated

along these streamlines from the nozzle inlet to the exit. This

21
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process of advancing the fluid dynamic variables and then integrating
the species continuity equations along streamlines is repeated until
convergence at the steady state is achieved. This approach is incon-
sistent because the finite difference form of the species continuity
equations does not approach equation (18) as At+ 0 (aci/at is
neglected).

Figure 3 is helpful in understanding the inconsistent approach
and its relationship to the unsteady approach. Note that it corres-
ponds to the special case of v equal to zero and a streamline passing
through computational mesh points. Advancing the fluid dynamic var-

N+1 VN+1, PN+1 N+1

jables one time step gives values of u -, at

, and p
point C in Figure 3. It would be possible to trace a particle path
back to point A, corresponding to L-1 in the computational mesh,

where values of u, v, P, p, and Ci could be determined by interpola-
tion (between values at L-1, M, N and those at L-1, M, N-1). Then,
just as in the unsteady approach, the species continuity equations
could be integrated forward; in this case, from point A to point C.
The proper time step for integration of the species continuity equa-
tions would be found from the velocities at A and C and the distance
between those two points. This time step would, in general, not be
equal to the time increment between N and N+1. In the inconsistent
scheme, the species continuity equations are integrated between points
B and C with the time step determined by the velocities at B and C

and the distance between those two points. If the values of u, v, P,

p, and Ci are the same at points A and B, then the inconsistent approach

gives the same result as the unsteady scheme. Also, in the limit of
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steady state, the values of the fluid dynamic variables and species
concentrations do not change between points A and B.

The benefit of using the inconsistent scheme is that integration
of the species continuity equations always proceeds from the computed
values at B to yield new values of the species mass fractions at point

C. Interpolation for the species mass fractions is not required.
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SECTION IV

SOLUTION OF THE FLUID DYNAMIC EQUATIONS

1. GENERAL

In Section III, the fluid dynamic equations were defined as those
equations which govern the fluid dynamic variables u, v, P, and p.
These equations are the global continuity equation, the component
momentum equations, and the energy equation. Recall from Section III
that in the inconsistent scheme, the solutions to the fluid dynamic
equations are advanced one time step while the distributions of the
species mass fractions throughout the nozzle are held constant. This
section describes specifically how the solutions to the fluid dynamic
equation: are determined.

The mesh points in the computational plane may be categorized into
four groups: interior, inlet, wall, and exit points (see Figure 4).
The inlet, wall, and exit points are know. collectively as boundary
points. In the following discussion, tha numerical treatment used for

each type of mesh point is presented.

2. INTERIOR POINTS

Interior mesh points are computed using MacCormack's method
(Ref. 29); an explicit, second-order accurate, two-step finite dif-
ference scheme. The fluid dynamic equations are employed in non-

conservation form. Moretti (30) showed that using the conservation
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form decreased computational efficiency. Backward differences are
used on the first step and forward differences are used on the second
step.

As an example, consider the partial differential equation
up = -uu, where u = u(x,t) (26)

Application of MacCormack's method yields the following finite differ-

ence equations:

Lot _oon At non N

Step 1: U = uy - 5 usluy - ug_q) (27)
.oon+l _ rn At andlndl ondd ~Nn+]

Step 2: wy = [uy - 3005 (Ugyy - 057) + 05 1/2

or

W2 0L A Gt My W - W )T (28)
i+1 i-1
where i denotes mesh points along x, n denotes the time step, and the

tilde denotes values calculated by the first step. Similarly, appli-

cation of MacCormack's method to equation (7) for planar flow yields

N N N N
N#1 N N PLMPL-1,M N PLMPL M-
Pum = eLm m Al w0 v )
uN UN N VN -VN
N LML LML, M1
+ L M(_L—AX ) + QL,M(_T)] (29)

SN N N4 N+
N+1 _ 1} N At[~N+1( L+1,M7°L, My ~N+1( L,M+17PL M
oLM=Z|PLM" — & thunT 5

N+] N+] : ~N+1 - ~N+]
i t N+ L M+ L!M ~N+1
-..ﬂ"';ld( L‘” M L !M+ pL M( Ay )] +p0 |. M} (30)

Ax
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Pt! where L and M denote axial and radial mesh points, respectively, N
N
denotes the time step, and the tilde denotes values calculated by the

first step.

When the nozzle does not have a centerbody, the centerline points
are treated as interior points and solutions at these points are com-
puted by requiring symmetry about the centerline. The velocity com-
ponent v and derivatives of u, P, and p with respect to n are all set
to zero. The derivative of v with respect to n is evaluated by a

one-sided, second-order accurate formula.

3. BOUNDARY POINTS

A11 boundary points in the present research are computed using a
second-order accurate reference-plane characteristic scheme. A
reference-plane scheme is used rather than a bicharacteristic scheme
because the increased complexity and computational time of the bichar-
acteristic scheme is not warranted in view of the accuracy limitations
associated with the chemical kinetics model. In reference-plane char-
acteristic schemes, derivatives with respect to one of the independent
variables are approximated and treated as forcing terms, thus reducing
the number of independent variables in the problem by one. For example,
in the constant n reference-plane scheme, all derivatives with respect J
to n are approximated (by MacCormack's method) and are placed on the
right-hand side of the equal sign in equations (13) to (16). Charac-
teristic relations are then derived for the resulting equations. A
constant n reference-plane method is used for inlet and exit points

while a constant ¢ reference-plane method is used for the wall points.
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The characteristic relations for these reference-plane methods are

%

§§f derived in Appendix C. Figures 5 and 6 summarize the results of that
gé Appendix.

&

Cline (4, 23) computes exit points by linear extrapolation from
the first and second adjacent interior points. In the subject problem,
the computational mesh extends only a short distance into the super-
sonic flow field (just far enough so that an accurate initial-
data surface for a steady flow, method-of-characteristics scheme can
be computed). The constant n reference-plane scheme is used at the
exit because it has been found to be more accurate than extrapolation
in the "just supersonic" conditions at the exit.

In the following paragraphs, the boundary conditions and unit

processes for inlet, wall, and exit points are described in turn.

Inlet Points
Figure 5 illustrates the characteristic relations which apply for
subsonic flow at the nozzle inlet. Note that in this case, only one
characteristic curve is contained within the flow field. The com-
patibility and characteristic equations which apply to the subsonic

inlet case are (see Appendix C)

_ 2
dP - pacdu = (w4 tacy, - pafwz)dt (31)
along dg = (u-af)dr
where

¥y = -Vp, - pou_ - BV, - €pV/n (32)

by = -vu_ - oP /p (33)
|
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{
dr _ |
d¢ u 3
¢ dr, _I_
] -
dg u+ag
J/;
A 2 B ¢
dv = w3 dt
dP - afz dp = Vg dt along dg = udt
dCi = ws dt
dP + pacdu = (g + a2, + pagh,)de along dg = (u+a)de
dP - pacdu = (w4 + afzwl - pafwz)dr along dg = (u-af)dr
compatibility equations characteristic curves

Figure 5. Constant n reference-plane characteristic relations.
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Bdu - adv = (ew2 - oup3)dr

2

dP - ac"dp = pedu along dn = vdt

dC_i = wsdT

pod ¢
U.*

pBaf
du + o dv =

poa pBa
(g + a2y + 55 ¥, + a:%)dT

dp +

along dn

(v + afa*)dT

i pOA ¢ PBag

podcy,  pBaLYq

a* =~ a*

(v - afa*)dT

dt

2
(g + ag™y -

compatibility equations characteristic curves

Figure 6. Constant ¢ reference-plane characteristic relations.
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NG Since there are 4+n unknowns at the inlet (u, v, P, p, and C,

R

i i=1,...,n) and only one compatibility equation, 3+n additional condi-

tions must be specified.

The "correct" specification of steady flow inlet boundary condi-
tions is a difficult problem; a generally preferred choice is not
known at the present time. Of the several different sets of inlet
boundary conditions which have been tested during this research,

specification of 6, Ho’ P , and Ci appears to give the best results.

0
Here, 6 is the inlet flow angle, Ho is the total enthalpy (h + V2/2),
P0 is the total pressure based on frozen composition at the combustor
exit, and C,i are the species mass fractions. The specification of
total conditions at the inlet places an upper limit on the energy of
the flow and still allows flexibility in the solution for the static
properties at the inlet. The inlet flow angle is determined by exper-
iment or from the following procedure:

1. Determine representative values of the ratio of frozen speci-
fic heats Yf and the gas constant at the combustor exit.

2. Generate a "long inlet" geometry by adding six to ten mesh
points upstream of the nozzle inlet, simulating a constant-
area duct.

3. Using the program of the subject research for isentropic
constant specific heat ratio flow, compute the solution to

the long inlet problem described in the preceding two steps.

Inlet boundary conditions for the long inlet problem are:
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a uniform distribution of zero flow angle, and total pressure

P0 and total temperature T0 based on combustor exit conditions.
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The flow angles at the nozzle inlet for the converged long
inlet problem can be used as the inlet flow angles for the

reacting flow problem.

Note that the arbitrary specification of zero flow angle at the nozzle
inlet has been found to produce unreasonable velocity profiles at the
nozzle inlet for some nozzle geometries.

Examination of equation (3) shows that for séeady flow, the total
enthalpy (h + V2/2) is constant along streamliines. Therefore, the dis-
tribution of total enthalpy at the inlet is required to match that at
the combustor exit.

A uniform distribution of static pressure at the combustor exit
is one of the results expected from the combustor analysis. The
specification of 9, Ho’ Ci, and uniform static pressure was one of the
inlet boundary condition sets tested during this research. For the
cases tested, the velocity distributions at the inlet were unreasonable
with very low (or negative) velocities at the inlet wall point. The
use of total pressure, determined from conditions at the combustor exit
and based on stagnation with frozen composition, has proved effective

in computing the inlet points.

The species mass fractions C_i are specified at the inlet. Their
values are determined by the relaxation of the species continuity
equations between combustor exit conditions and the static conditions
r: at the inlet. This relaxation process is described in detail in Sec-

tion V and Appendix E.

33

P T S T e e ce T ‘. . - . - . . a DS
IR JURPC IR, WP IR T, BRI, I . Y. S S LI T L YU TV WS UM W S VDT W W S0 M UYL Uy W W SO R G G s e WSS NSRS SR S SR S -




L

l@

i o A A R e e i

For the case of supersonic flow at the inlet, values of velocity,
pressure, density, and the species mass fractions are all specified
since downstream conditions do not propogate upstream in a supersonic
flow.

The unit process at the inlet for subsonic flow is based on a
two-step, predictor-corrector method. The compatibility equation (31)
and the specified inlet boundary conditions are used together in an
iterative procedure to compute values of the fluid dynamic variables
at the solution point. The iterative procedure is described first.

Recall that o, Ho, Po’ and C,i are all known at the solution point
(point 3 in Figure 5). To begin the iterative procedure, the static
temperature T3 is assumed. Then the following sequence of calculations
is performed to calculate the values of the fluid dynamic variables:

1. Given the values of stavic temperature and the species mass
fractions at the solution point, compute the gas constant R3,
the enthalpy h3, the frozen specific heat at constant pressure
Cp3, and the ratio of frozen specific heats Y¢3-

2. Using the definition of total enthalpy and its specified

value at the inlet, compute the velocity magnitude at the

solution point

Q; = [2(Ho, - hy)1t (35)

Then compute the frozen speed of sound ac and the Mach number
3
at the solution point.
3. Use the relation between total and static pressure at the

solution point to compute P3:
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(ve-1) Y
P, = Poy/[1 + f2 M32] £3/(Yg5-1) (36)

Now, use P3, R3 and T3 in the thermal equation of state to
compute P,.

4. Compute ug and v from the velocity magnitude at the solution
point 03, and the given flow angle.

5. Use the compatibility equation as a check on the results of
the preceeding steps [i.e., compute P3 using the compatibility
equation (31) and compare with P3 computed in step 3 above].

6. Iterate on T3 using the secant method until P3 computed in

steps 3 and 5 agree to within a specified tolerance.

This iterative procedure is used as part of each predictor and corrector
step in the overall unit process at the inlet. The predictor-corrector
steps are described next.

In order to use the compatibility equation, as described in step
5 of the iterative procedure, the characteristic curve must be con-
structed and the compatibility equation must be written in finite
difference form. This is done by replacing the differentials in equa-
tion (31) with differences along the characteristic curve. In the
predictor step, all coefficients and derivatives are evaluated in the
initial-value plane. Given the time step and the estimate for (u- af),
the intersection of the characteristic curve with the initial-value
line (in the constant n plane) is determined using the finite differ-
ence form of the characteristic curve equation. This intersection is

point 2 in Figure 5. A1l coefficients in equations (31) to (34) are
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evaluated at the intersection point by linear interpolation between
points A and B in Figure 5. In the predictor step, the derivatives
with respect to n (in the y terms) are evaluated using backward differ-
ences in the initial-value plane. When all coefficients and deriva-
tives are evaluated in equations (31) to (34), the iterative procedure
is accomplished and the predictor step is complete. This is done for
all inlet points before the corrector step is started.

In the corrector step, the characteristic curve must be con-
structed again. Now, the coefficient (u- af) is an average of the
values at the solution point (from the predictor step) and values at
point 2. Also, all coefficients in equation (31) are computed as the
averages of values at the solution and intersection points. Values
at point 2 are again determined by 1inear interpolation. Derivatives
with respect to n in the ¢ terms are evaluated by forward differences
at the solution point and are averaged with the backward difference
approximations in the initial-value plane. When all coefficients and
derivatives in equations (31) to (34) have been determined by the
averaging process described above, the iterative procedure is accom-

plished and the overall unit process at the inlet is complete.

Wall and Centerbody Points

The wall and centerbody mesh points are computed using the con-
stant ¢ reference-plane scheme described in Appendix C. For this
scheme, all derivatives with respect to ¢ in equations (13) to (16)
are placed on the right-hand side of the equal sign and treated as

forcing functions. The characteristic and compatibility equations
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are summarized in Figure 6.

The wall slope is specified at each mesh point along the wall
(or centerbody) for the given flow geometry. This slope provides the
single boundary condition necessary for the solution of the fluid
dynamic equations at the wall (centerbody) mesh points. For example,
consider a wall point. From Figure 6, the appropriate characteristic

and compatibility equations are

Bdu - adv = (sz - dw3)dT (37)
) along dn = vdrt
podg pBRa 2 poa pBa ¥
P+ —L du v L dv = (U +aVt ot ot )T (39)
along dn = (v + aco*)
v=utan o (40)

These four equations in the four fluid dynamic variables are written
in finite difference form and are solved in a predictor-corrector pro-
cedure like that for the inlet points. Specifically, equation (40) is
substituted into equation (37), which is then solved for uy at the
solution point. Then V3 is obtained from equation (40) and P3 is com-

puted using equation (39). Finally, equation (38) is solved for Py

Exit Points
Exit points are computed for both subsonic and supersonic flow by
the constant n reference-plane procedure (see Figure 7). For subsonic

flow, the exit pressure is given and is equal to the ambient pressure.
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Figure 7. Subsonic and supersonic exit points.
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The characteristic relations in this case are

dv = w3d'r (41)
along d¢ = udrt

dr - afzdp = Y,dt (42)

dP + pacdu = (b, + a V +pag,)dr (43)

along dg = ﬁ1+af)dT

Equation (41) is solved for V3, equation (42) is solved for P4, and
equation (43) is solved for us.

For supersonic flow at the exit, all characteristic curves are
within the flow field and so, another compatibility equation is added
to equations (41) to (43) above.

dP - pacdu = (b, +ay, - pag ¥,)dt

(44)
along dz = (u- af)dT

Equations (41) to (44) are four equations in the four fluid dynamic
variables. Equation (41) is solved for v3 and equations (42) to (44)
are solved iteratively for Uss P3, and P3-

For both subsonic and supersonic flow, a predictor-corrector
procedure, analogous to tha*t for the inlet mesh points, is employed.
Coefficients and derivatives in the characteristic relations are eval-
uated in the initial-value plane for the predictor step. Derivatives

in the y terms are approximated by backward differences. In the

corrector step, coefficients and derivatives are evaluated in the
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solution plane and averaged with results from the predictor step.
Derivatives in the ¥ terms at the solution point are approximated
by forward differences.
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SECTION V

SCLUTION OF THE SPECIES CONTINUITY EQUATIONS

1. GENERAL

Recall from Section III that in the inconsistent scheme, the
solutions to the fluid dynamic equations are advanced one time step
while the distributions of the species mass fractions throughout the
nozzle are held constant. Section IV provides the details of this
part of the overall numerical algorithm. Then, the new flow field is
assumed to be steady and the species continuity equations are inte-
grated along as many as four streamlines from the nozzle inlet to the
exit. This section describes specifically how the integration of the
species continuity equations is accomplished.

It is well known that integration of the species continuity equa-
tions for flows near chemical equilibrium requires special care because
the equations become quite "stiff" (Refs. 3, 5, and 31). The concept
of a stiff differential equation and a physical explanation for the
stiffness of the species continuity equations are provided in Appendix
D. Many numerical techniques have been proposed for the solution of
the species continuity equations in near equilibrium flows (Refs. 32
and 33). Cline and Hoffman (3) analyzed and tested a number of pro-
posed schemes ir their analysis of three-dimensional, steady, non-

equilibrium f.ow. They concluded that explicit schemes and

41




predictor-corrector methods are stable only for very sma!' step sizes.
Also, only some of the implicit methods they tested gave adequate
results. A method proposed by Lomax and Bailey (34) was chosen as the

preferred method and it is this scheme which has been used in the

subject research. The method is second-order accurate, implicit, and
1 is based on a Taylor series expansion of the species continuity equa-
?‘ tions.

A

- 2. SECOND-ORDER, IMPLICIT, TAYLOR EXPANSION

=

The second-order, implicit Taylor expansion method, as applied

to the species continuity equations, is derived in Appendix D. The

resulting finite difference equation is

v of ; of ;
= _h_ _ el i2 - ig -
Cian = Cig "o UipB-y 450" (oggmeg) ¥ 1 (T Ty)
(45)
AT B )
t I g (G, q1-Cs i=1,...,n
where h = Sg41 = Sg» S is the position along the streamline, f. = o./p,

V is the velocity magnitude, and the subscripts g and g+l denote

points along the streamline. The partial derivatives in equation (45)
are determined analytically. When expanded, equation (45) becomes a
system of n simultaneous, linear, algebraic equations in the n unknowns

k. =C,

j g+l " cig' This system of equations is solved using Gauss eli-

mination with scaling and partial pivoting.
[ For flows which are not near chemical equilibrium, a modified

b Euler method is available for integration of the species continuity
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equations. The adequacy of this explicit integration method must be

determined on a trial-and-error basis.

3. STREAMLINE TRACING

The species continuity equations are integrated along streamlines
in the inconsistent scheme. Since streamlines will not pass through
computational mesh points in general (except along the wall and cen-
terbody/centerline), it is necessary to trace streamlines through the
flow field before the species continuity equations are integrated. The
computer program developed during the subject research allows the user
to trace as many as four streamlines through the flow field. The two
streamlines along the wall and centerbody/centerline must be used and
one or two more can be used with origins at arbitrary mesh points along
the nozzle inlet. The use of more than four streamlines in the over-
all algorithm would lead to prohibitively long computational times.

Figure 8 illustrates the streamline tracing procedure. A
predictor-corrector method is used. Starting at the point (1,M,N)
at the nozzle inlet, the values of u and v at this point are used to
project a streamline to the intersection with the line of mesh points
at L=2. Then, values of (“*2’ v*z)p at the intersection point are
found by linear interpolation between known values at the adjacent
mesh points at L=2. In the corrector step, the values of (u*z, V*Z)p
are averaged with u and v at (1,M,N) and the streamline is again pro-
jected to the intersection at L=2. Linear interpolation is used to
find (”*2’ V*z)c' This predictor-corrector method is applied at each

L station until the streamline has been traced to the nozzle exit.
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4. ERROR CONTROL

The implicit scheme described previously has been found to be
stable for even large step sizes in both Cline and Hoffman's work (3)
and in the subject research. However, the method is subject to
truncation error, and thus consideration must be given to step size
control.

In the derivation of equation (45), third- and higher-order terms
have been neglected. The objective of the error control scheme is to
estimate the third-order term and (by adjusting the step size) to
insure that the ratio of this term to the computed term [the right-
hand side of equation (45)] is less than a specified tolerance. An
expression for this ratio is derived in Appendix D and is restated

here:

RATIO = |2l o 12-1 (i=1,...,n) (46)

Note that RATIO has distinct values for each of the chemical species
in the gas mixture at each step in the integration. Also, RATIO can
be computed only after three integration steps have been taken.

The error control scheme is implemented by placing intermediate
points between grid points along the streamlines (see Figure 9). An
estimate is made of the number of intermediate points (NINT) required
between L, and L+1,. Values of temperature, density, and velocity at
L, and L+1, are determined by linear interpolation between known
values at adjacent mesh points at each L station. The values of these

same variables at the intermediate points are determined by linear
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interpolation between the corresponding values at L, and L+1,. Then,

the species continuity equations are integrated through the inter-

mediate points from L, to L+1, and RATIO is computed for each of the
chemical species. If, after the last intermediate integration step,
the maximum value of RATIO is less than a user specified tolerance,
then the integration proceeds. If the required tolerance is not
achieved, then the number of intermediate points is doubled and the
integration procedure is restarted from L,. Also, if the maximum
value of RATIO is two orders of magnitude less than the specified
tolerance, then the number of intermediate points is halved before the
integration from L+1, to L+2, proceeds.

Numerical experiments have been performed to illustrate the use of
the error control scheme. Details are provided in Appendix D and the
results are summarized here.

1. Most of the computational time required to solve the subject
problem is related to integration of the species continuity
equations. Therefore, the total execution time is nearly
directly proportional to the number of intermediate points
(NINT).

2. Failure to use intermediate points will, in general, yield
poor results for species mass fractions Ci and the energy
source term wk.

3. Integrating from equilibrium conditions with very small
gradients in temperature and density and a small value of the
specified tolerance on RATIO can yield very large numbers of

intermediate points.




4. For equilibrium initial conditions, NINT is not particularly
sensitive to the sign or magnitude of temperature, density,
or velocity gradicnts between L, and L+1, as long as the
conditions in conclusion (3) do not occur.

5. For nonequilibrium initial conditions, NINT is sensitive to
gradients in temperature and velocity while it is only mildly
sensitive to the density gradient between L, and L+1,. If
the property gradients between these points do not match the
corresponding gradients between L-1, and L,, more intermediate
points are likely to be required to achieve a specified
tolerance.

6. Conclusions 1 to 5 appear to be valid for the several chemis-

try systems investigated in this research.

Because of conclusion 3, an upper limit of 20 intermediate points
is used in the computer program for the subject problem. Experience
indicates that a relatively large tolerance (5 to 10%) should be used
until the solution is near convergence and then the tolerance can be
reduced to the desired level. Also, the user has the option of speci-
fying the number of intermediate points thereby overriding the error

control scheme.

5. RELAXATION AT THE INLET

The choice of inlet boundary conditions was described in Section
IV. Recall that the flow angle g, the total enthalpy Ho’ the total
pressure based on combustor exit conditions and frozen composition Po’

and the species mass fractions Ci are all specified at each inlet mesh
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point. The use of total conditions as inlet boundary conditions
establishes the energy level of the flow and allows some flexibility
in the distribution of static properties across the inlet. As a
result, the distributions of the static properties across the inlet
will not necessarily match those across the combustor exit. Discon-
tinuities in static properties between the combustor exit and the
nozzle inlet create the need for a relaxation of the species mass
fractions between these two points. A detailed description of the

relaxation process is provided in Appendix E. Here, the justifica-

tion for the relaxation and the relaxation process are summarized.
Consider a particle (a small mass of the reactive mixture of
gases) at the combustor exit. Also, note that in functional form

(see Appendix A)

Q
[

o.(p,T,C;) (i=1,...,n) (47)

b = 0 (T:05,60) = ¥, (0,1,C) (i=1,...,n) (48)

Since all the static properties and the species mass fractions are

known at the location of the particle, the species source functions

Oi and the energy source term wk can be computed at this point. In

(X akakind

a real flow, there can be no discontinuities in the streamwise dis-

tributions of the static properties and species mass fractions at the
;; junction between the combustor exit and the nozzle inlet. Therefore,
Lf from equations (47) and (48), the distributions of o; and y, along the
i! flow direction must also be continuous at this junction. The dis-

continuities in the static properties described in the preceding

49
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paragraph are a consequence of the problem model; that is, an attempt
to link a two-dimensional nozzle analysis to a quasi-one-dimensional
combustor analysis. Since the discontinuities do not represent reality,
their effect should be manifest at the inlet before the species con-
tinuity equations are integrated through the flow field. This is
accomplished by allowing the species mass fractions at the combustor
exit to adjust to the static conditicns at the nozzle inlet. The
species continuity equations are rélaxed between conditions at the
combustor exit and those at the inlet for a period of time that mini-
mizes the change in wk between these two points. In effect, a short
distance is spliced into the junction between the combustor exit and
the nozzle inlet so that the discontinuities in static properties
produced by the mathematical model can be replaced with linear grad-
jents. The distance is chosen so that the chemical nature of the flow
at the combustor exit (as represented by the energy source term wk)
is preserved at the nozzle inlet to the extent possible. Figure 10
illustrates the effect of relaxation time on Y for an H-F propellant
system. The initial conditions are near equilibrium and curves for
several different temperature gradients are shown. Figure 11 shows
relaxation curves for the same propellant system and gradients but
with nonequilibrium initial data. Several important conclusions
regarding wk relaxation curves from Appendix E are restated here:

1. A1l curves of | versus relaxation time approach zero as

relaxation time increases. This is because the chemical

systems move toward an equilibrium condition (where the

50
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species source functions go to zero) with increasing relaxa-
tion time.

2. At high temperatures and near equilibrium conditions, Vi is
quite sensitive to variations in temperature and density.

For example, a 20°R temperature perturbation, with no relaxa-
tion, can change the computed value of wk by several orders
of magnitude (see Figure 10).

3. For the chemistry systems and static property gradients
studied in this research, relatively small changes in composi-
tion occur during the relaxation from combustor exit to
nozzle inlet conditions. Typically, species mass fractions

change by less than two percent.

Failure to relax the species mass fractions at the inlet leads to
numerical difficulties for two primary reasons. First, without relax-
ation, the data set (p,T,Ci, j=1,...,n) at the inlet is inconsistent.
As noted above, the energy source term Vi (and species source function)
can then differ by several orders of magnitude from its value at the
combustor exit. This causes a "hard start" condition in integration of
the species continuity equations away from the inlet. Second, if
the species continuity equations are not relaxed before the inlet,
they will relax within the computed flow field. This can produce dis-
tributions of ¥y within the flow with dramatic oscillations near the
inlet; this Ve distribution, in turn, distorts the flow field.

The proper relaxation time is determined as part of the overall

numerical algorithm. The scheme is illustrated in Figure 12 which
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;!! shows a typical ¥, versus relaxation time curve. In that figure, VKR

3 is computed for the conditions at the combustor exit, YKo is computed

i _ for the species mass fractions at the combustor exit and density and

ii. temperature at the nozzle inlet with zero relaxation time, and Ykt

E ‘ is computed for the same conditions as y, 4 but with a relaxation time

E At. The values cof YkR corresponding to each inlet mesh point are

ji computed as part of the initialization procedure for the overall algo-
rithm. They are only computed once and then are stored. Consider
time lTevel N in the solution of the subject problem. Yko is computed

T'.. at each streamline origin for the static conditions prevailing at the
inlet. There is a minimum relaxation time and if |y o] < |4l >
then the minimum relaxation time is used. This is because y, is known

:!i to approach zero with increasing relaxation time. Otherwise, the

| species continuity equations are relaxed through time Atl (see Figure

12) which is the relaxation time computed for a given streamline

hll during previous time steps. Then the species continuity equations are

Ei? integrated along the given streamline to the nozzle exit. Nev%, a

?JG check is made:

@

» | :W: < .05 (49)
;. If the check is satisfied, then Atl is not changed and it is saved for
‘ use during the next time step in the overall algorithm. However, if
the check is not satisfied, then a straight line is extended fromxbko
through katl to intersect ka. The relaxation time At2 corresponding

:
t

-
3

to that intersection is used during the next time step. The same
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procedure continues for subsequent time steps as shown in Figure 12

until the check is satisfied.
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SECTION VI

OVERALL NUMERICAL ALGORITHM

1. GENERAL

The overall numerical algorithm consists of the repetitive and
alternate application of the procedures described in Sections IV and
V; the solutions to the fluid dynamic equations are advanced one time
step for a given distribution of the species mass fractions throughout
the nozzle, and then the flow field is assumed to be steady while the
species continuity equations are integrated along as many as four
streamlines from the nozzle inlet to the exit. Note that for some
problems, the fluid dynamic equations may be advanced more than one
time step before the species continuity equations are integrated. If
this is possible, the total computational time may be reduced signifi-
cantly (see Section VII). As discussed in Section III, this overall
scheme is inconsistent in time in the treatment of the species con-
tinuity equations, but it becomes consistent at the steady state limit.
Also, it is necessary to relax the species mass fractions between the
specified static conditions at the combustor exit and those at the
nozzle inlet before integrating the species continuity equations
through the flow. Discontinuities in static properties at the junction
between the combustor exit and the nozzle inlet occur because of the

choice of inlet boundary conditions for the problem model. An error




control scheme, which 1imits the size of the truncation error in the
integration of the species continuity equations, is available. Con-
vergence is achieved when the computed values of the fluid dynamic
variables and the species mass fractions no longer change with time.
Two sets of mesh points are used in the overall algorithm, as
illustrated in Figure 13. During the first part of the algorithm, the
solutions for u, v, P, and p are advanced one time step at all compu-
tational mesh points in a predictor-corrector procedure (see Section
IV). Then, the flow is assumed to be steady, and streamlines are
traced through the flow field to locate the streamline mesh points.
The values of static properties at the streamline mesh points which
are required for integration of the species continuity equations are
determined by interpolation between adjacent computational mesh points
at each L station. In addition to computing the distributions of the
species mass fractions along streamlines when the species continuity
equations are integrated, the energy equation source term wk, the ratio
of frozen specific heats Yes the gas constant R, and the total
enthalpy Ho are also computed and stored for each streamline mesh
point. The variables Yo R, and wk are all needed for the solution of
the fluid dynamic equations. The total enthalpy distribution is used
as a check on the validity and accuracy of the converged solution.
The values of these variables at the computational mesh points are
determined by linear interpolation between adjacent streamline mesh

points at each L station.

58

il PR S I I - CA S O U U A I S S P S RN




B A SRl Al ot

"Sjutod ysauw JuL|wesd3s pue [BUOLIRINAWOD e PIUO0IS SI|QRLUBA "€l 94nby 4

‘ an

o
I

-
n
"
-l
"
-l

-
jSsean

—— ey

.

(U121 19Oy Ap Ny L\C I0d YSON aujwpalsS X
(9°d'A'n) uiod yseW |puoypyndwo) e

59

A e B a4 as. s 8.4 s oz s

Eee e e i e e 4 m A m o aA__a_

a.a’ oo a e




(. | 2. INITIAL-VALUE SURFACE

The initial-value surface must be a smooth distribution of the
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fluid dynamic variables u, v, P, and p throughout the computational

mesh. It can be read in or computed internally within the computer

program for the subject research. Three different methods have been
investigated for internal generation of the initial-value surface:

1. Obtain a one-dimensional solution to the problem of interest using
the program of Reference (10). Then, use the results of this
analysis to provide the axial distributions of pressure, density,

Ei temperature and velocity magnitude for the initial-value surface.

{f The local flow angle 6 and velocity components at any point in the

initial-value surface are estimated from the given geometry (i.e.,

interpolate between wall and centerbody values for g at each L
station).

2. Obtain a one-dimensional, isentropic, constant specific heats
solution for pressure, density, and velocity magnitude. Values of
R and v for this analysis are representative values at the combus-
tor exit. The local flow angle and velocity components are esti-

mated as in method 1.

3. Using R and v as in method 2, compute the two-dimensional, isen-

tropic, constant specific heats solution for the subject problem

ii and use it as the initial-value surface.

[? For all three methods, the distributions of species mass fractions are
i? determined by integrating the species continuity equations through the
. given flow field from the known conditions at the nozzle inlet.
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Method 1 requires the use of two computer programs and the trans-
fer of data from one to the other. Also, there is no provision in the
program of Reference (10) for nonuniform data at the nozzle inlet.
Methods 2 and 3 can be accomplished using only the computer program of
the subject research and can be used for any set of data at the nozzle
inlet. Method 2 is simpler to implement than method 3 and, since there
appears to be little difference in overall computational time to con-
vergence for the two methods, method 2 is preferred. Al1 three methods
have yielded essentially the same converged solutions for the cases

tested.

3. BOUNDARY CONDITIONS

The choice of steady flow boundary conditions has been discussed
previously in Section IV. Recall that for subsonic flow, the flow
angle 6, the total enthalpy Ho’ the total pressure based on combustor
exit conditions Po’ and the species mass fractions Ci are specified
at the inlet; the flow angle 6 is specified along the wall and center-
body; and, the exit pressure is set equal to the ambient pressure.

For supersonic flow, all static conditions and species mass fractions
are specified at the inlet and the flow angle is specified along the
wall and centerbody.

It is essential that the data at the combustor exit be consistent
with the chemical kinetics model that is employed. This fact has been
noted by Cline and Hoffman (3) and has been established again in the
subject research. An inconsistent set of data will yield computed

values of the species source functions which can be several orders of
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magnitude in error. As a result, an attempt to integrate the species
continuity equations away from the combustor exit yields immediate

numerical difficulty.

4. STEP SIZE AND STABILITY

No attempt has been made to perform a stability analysis for the
overall numerical algorithm as applied to the governing equations for
two-dimensional, unsteady, nonequilibrium, chemically reacting flow.
The stability of the treatment of the equations governing the fluid
dynamic variables and the stability of the species continuity equation
scheme are treated separately. The stability of the overall numerical
algorithm has been verified by numerical experiment.

The scheme used to advance the solutions for the fluid dynamic
variables is subject to the CFL stability restriction. This requires
that the finite difference domain of influence must be at least as
large as the continuum domain of influence. It ensures that the speed
of propogation of numerical disturbances (truncation error for example)
everywhere exceeds the speed of propogation of disturbances in the
flow (i.e., the speed of sound in a compressible flow). Application

of the CFL criterion to two-dimensional, unsteady flow yields

1
AT S (50)
1.4
[(v+a) 25+ L)}
In practice, the step size is computed as
At = A (51)

[<v+a)(i7+A—lf)*1
n
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!: where A ranges from 0.4 to 1.6 depending on the geometry of the flow
[Reference (23)]. Any study of the time step multiplier A should be
performed for a nonreacting flow similar to the flow with finite-rate
-' kinetics. The proper choice of A can accelerate convergence. The
author's experience indicates that the value of A used for a represen-
tative nonreacting flow will also work for the reacting flow problem.
The second-order, implicit scheme used for integration of the
species continuity equations has been found to be stable for all step

sizes. Note that the step size for integration of these equations is

not related to At in equation (51) since the species continuity equa-
tions are integrated along streamlines in space while the fluid dynamic

equations are integrated from one time plane to the next.

5. THERMOCHEMICAL MODELS
In addition to the chemically reacting flow of a mixture of ther-

mally perfect gases, two other thermochemical models can also be

analyzed using the computer program of the subject research. These

models are:

1. Isentropic flow of a thermally and calorically perfect gas
(constant v).

2. Isentropic flow of a gas whose equation of state is input in tabu-

O ¢ SRR

lar form. Two-dimensional frozen and equilibrium solutions can

be obtained using this model.

e ‘?—.{ ﬁ?"'._‘.
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SECTION VII
VERIFICATION AND RESULTS

1. VERIFICATION

At the present time, there are no other methods available for the
analysis of two-dimensional, nonequilibrium, chemically reacting sub-
sonic and transonic nozzle flows. Therefore, it is not possible to
make comparisons with existing results. However, a number of tests
have been performed to verify the results of the subject research
as discussed in the following paragraphs.

The scheme for integration of the species continuity equations
must generate accurate concentration profiles for given distributions
of the fluid dynamic variables along the nozzle axis. In order to
test this capability in the subject computer program, one-dimensional
analyses of several kinetics problems were performed using the prbgram
of Reference (10). These problems are discussed in Appendix E. Then,
using the distributions of p, T, and V from the results, the species
continuity equations were integrated through the given flow fields by
the technique of the subject research. The resulting concentration
profiles were compared with those computed by Reference (10). For the
C-H-0-N system, an "error" of 0.35 percent in the mass fraction of
monatomic hydrogen at the nozzle throat constituted the most signifi-

cant deviation from the Reference (10) solution. Applying the same
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procedure to the H-F system yielded "errors" at the throat which were
typically less than two percent. The worst case was a 3.4 percent
deviation in the mass fraction of monatomic flourine. Figure 14
illustrates the species mass fraction profiles for the H-F system as
computed by the integration technique of the subject research.

There are four results which must be true of a converged solution
to the subject problem and which are therefore useful in determining
the validity of the computed results. First, the law of conservation
of mass requires that the mass flow at each axial position along the
nozzle must be constant. Values of mass flow at the nozzle inlet,
throat, and exit are computed and made available as part of the program
output. Second, in the steady state limit, the total enthalpy Ho
must be constant along streamlines in the flow. A “total enthalpy
error" has been defined so that this fact can be used as a measure of
the accuracy of the solution.

H, Error = gg%{}gg% (52)
E I
2
where HOL is the total enthalpy at axial position L along a given
streamline, HOR is the total enthalpy at the combustor exit for the
same streamline, and VE and VI are the velocity magnitudes at the
nozzle exit and inlet, respectively, along the streamline. Profiles
of total enthalpy error for the cases studied are presented with the
discussion of results. Third, the sum of the species mass fractions

must be one throughout the flow. This fact i1s not used explicitly
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Figure 14. Concentration profiles for the H-F system.
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in the problem formulation or in the numerical algorithm. However, the
sum of the species mass fractions at each axial mesh point along the

kinetics streamlines is computed and output. The fourth result which

must be true of the converged solution is that the finite-rate kinetics
h results must lie between the equilibrium and frozen solutions since

7 those cases correspond to infinite and zero reaction rates, respec-

[‘ tively.

= As a further test, the results of the subject technique have been
= mass-averaged (in the radial direction) and compared with an accepted
f! one-dimensional solution [Reference (10)]. Mass-averaged temperature

: profiles are compared with one-dimensional temperature profiles in

the discussion of results.

In the final verification step, the subject technique has been
applied to a z:.personic problem and the results have been compared

with those from a two-dimensional method-of-characteristics solution

[Reference (2)]. The results of an H-F system subsonic-transonic
analysis were used to generate the initial data 1ine for both the
method-of-characteristics solution and the solution by the subject

method. Eight equally spaced mesh points were used along the initial

4

data line. A comparison of the results is presented in Figure 15 (TDK

e
et et

PPy

corresponds to the char- “teristics solution). Note the excellent
agreement in the temperature and concentration profiles along the

wall and the fair agreement of the centerline temperature profile.
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2. RESULTS

Several different nozzle geometries and chemistry systems have
been analyzed during this research. The details of the nozzle geo-
metries and reaction mechanisms for the systems discussed here are

presented in Appendix E.

C-H-0-N System

The C-H-0-N system corresponds to a realistic application of the
subject technique to a ramjet nozzle problem. The composition of the
reactive mixture of gases at the nozzle inlet results from an equili-
brium calculatior for the combustion of a hydrocarbon fuel in air.
The nozzle size and shape is appropriate for a ramjet application. It
is a circular-arc conicual nozzle with a 7.5 inch inlet radius, « 4.75
inch throat radius, a 45 degree angle in the convergence, and & 15
degree angle in the divergence. There are 12 chemical <pecie . and 8
reactions in the chemistry model. Figure 16 presents the results of
the analysis for this problem. Note that the mass-averaged tempera-
ture fer the finite-rate kinetics solution does fall between the
equilibrium and fiozen solutions and that it matches the 0DK solution
[Reference (10)] quite well. Also note that in this case, there is
only a small departure from the frozen solution. For both the isen-
trop:c (y = constant) and kinetics solutions, a mass flow difference
of 0.8 percent between tne inlet and the throat values occurred in
the converged results. For the kinetics solution, the sum of the
species mass fractions deviated by less than 1x 10'6 along both the

center and wall streamlines. The profiles of total enthalpy error
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are presented in Figure 17. Note that the error was less than one
percent at all mesh points except for the isentropic solution at the
last wall point. This particular point is just downstream from the
junction between the circular arc in the throat region and the conical
section in the nozzle divergence. The author's experience indicates
that the discontinuity in the second derivative of the wall coordi-
nates at this junction can cause distortions in the total enthalpy
profile. Adding three more mesh points in the axial direction

(L=16 to L=18) and recomputing the isentropic solution reduces the
total enthalpy error at L=15 to one percent. Note in Figure 17 that
the addition of finite-rate chemical kinetics to this problem has not
significantly affected the H0 profiles with respect to the isentropic
(y = constant) results.

With 18 mesh points along the axis, two chemical kinetics stream-
lines, and five intermediate points specified, each integration of the
species continuity equations for the C-H-0-N system required approxi-
mately 11 seconds on the CDC 6500 computer. The addition of a third
streamline increased that time to 16 seconds. Using the error control

scheme with a ten percent tolerance on the truncation error yielded an

integration time of 13.75 seconds (for two streamlines) while a one
percent tolerance increased the integration time to 23 seconds.
Integration of the species continuity equations after each time step,
with two streamlines and five intermediate points, yielded an accep-
table solution in an overall computational time of nearly one hour.
However, for this system, it is possible to integrate the species

continuity equations as infrequently as once every 30 time planes.
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This reduces the computational time to approximately five minutes.

C-H-0-N With CpHy, System
It is possible that unburned fuel may be present in the reactive
mixture at the nozzle inlet due to incomplete combustion in the ramjet.
A five percent mass fraction of propane (C3H8) was added to the C-H-0-N
chemistry system described above (for the same nozzle geometry) to
‘, investigate the effect of the unburned fuel and to provide initial
conditions at the nozzle inlet which were not the result of an equi-
librium calculation. Al11 mass fractions of the species present in
the C-H-0-N system were reduced by 5 percent to allow for the incor-
poration of propane. The solution with the addition of propane did
not differ greatly from the C-H-~0-N solution; the mass-averaged tem-
‘- perature at the throat increased by approximately 70°R while the
‘ mass-averaged velocity magnitude decreased by 55 ft/sec. The mass
fraction of propane remained almost constant from the nozzle inlet
to the exit. The addition of one chemical specie and one reaction
slightly increased the computational time required for integration of

the species continuity equations (about 0.5 seconds per integration).

H-F System
The H-F system was analyzed because it contains only five chemi-

cal species and six reactions; relatively short computational times

1 - S

per time plane can be achieved with this system. Also, since the
C-H-0-N system results were near the frozen solution, the H-F system

(at a high temperature) provided the opportunity to investigate a

system near equilibrium. A small nozzle geometry was chosen for this




case so that some departure from equilibrium might occur before the
throat. As shown in Appendix E, the nozzle is circular-arc conical
with a two inch inlet radius, a one inch throat radius, a 45 degree
angle in the converging section, and a 15 degree angle in the diver-
gence. Figure 18 shows the results of the H-F system analysis. The
mass-averaged temperature profile falls between the equilibrium and
frozen solutions and matches the ODK [Reference (10)] solution very
well. Note that this system is near equilibrium upstream of the
throat but departs significantly from equilibrium downstream of the
throat. A difference of approximately one percent in the inlet and
throat mass flows occurred for both the isentropic (y = constant) and
kinetics solutions. The species mass fractions deviated by less than
1x 10'10 along the center and wall streamlines. Figuré 19 presents
the total enthalpy profiles for the H-F system. For this particular
problem, the solutions for the fluid dynamic variables along the
centerline (upstream of the throat) were still oscillating slightly
after more than 700 time planes for both the kinetics and isentropic
solutions. This accounts for the sign difference in the total
enthalpy error along the center in Figure 19. Figure 20 illustrates
the two-dimensional character of the solution for the H-F system.
Note the significant differences in temperatures and species mass
fractions between center and wall values which develop in the solu-
tion. Also note the compression along the wall just downstream of
the throat. This occurs at the junction between the circular arc of
the throat region and the conical divergence. The effect is present

in both the isentropic (y = constant) and kinetics solutions.
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E!‘ For the H-F system, with 25 mesh points along the axis, two
chemical kinetics streamlines, and five intermediate points specified,
each integration of the species continuity equations required five

u seconds on the CDC 6500 computer. The use of four streamlines

2 increased that time to 10 seconds per integration. Using the error

ﬁf~ control scheme with a ten percent tolerance on the truncation error

i'l yielded an integration time of 5.8 seconds (two streamlines) while a

_ one percent tolerance increased the integration time to 10.4 seconds.

; By adjusting the time step multiplier A [see equation (51)] it was

#ﬁé possible to integrate the species continuity equations only every-

[?4 other time plane for the H-F system. However, after more than 800

ifj time planes, the values of the fluid dynamic variables at the center-

line were still oscillating with little evidence of damping. Inte-
grating the species continuity equations after each time step yielded

an acceptable solution in a total computational time of one hour.

3. RECOMMENDATIONS CONCERNING COMPUTATIONAL TIME
Recall from the discussion of the overall numerical algorithm
that the solution to the subject problem is advanced in a two-step

procedure; the fluid dynamic variables are advanced, and then the

species continuity equations are integrated along streamlines through
the flow. The second step is much more time consuming than the first

and thus, any attempt to reduce or minimize computational time should

T
LA

focus on the integration of the species continuity equations. The
most significant factors regarding the time required for this inte-

gration are:
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1) the number of chemical species and reactions in the chemical
kinetics model.

2) the use of the truncation error control scheme for integration
of the species continuity equations.

3) the number of chemical kinetics streamlines used.

4) the frequency of integration of the species continuity equa-

tions as the solution is marched forward in time.

Controls for these four factors are available to the program user but
experience to date indicates that the proper set of controls is prob-
lem dependent. Some guidance is provided in the following discussion.

The chemical kinetics model should be as simple as possible.

The technique of screening reactions for inclusion in the chemical
kinetics model, as presented in Reference (38), is recommended.

The error control scheme is valuable for setting up the trunca-
tion error control parameter NINT and for refining the solution, but
it is generally too costly to use throughout an entire calculation.
The user should begin the analysis by computing several time planes
with error control and a relatively loose tolerance (5-10%). Then,
recompute the same time steps with a fixed number of intermediate
points. Adjust that fixed number of points until satisfactory agree-
ment with the solution using error control is achieved. The error
control scheme should also be used to refine the solution after con-
vergence with a fixed number of intermediate points.

For the cases studied, the addition of chemical kinetics stream-

lines to a two streamline solution does not make dramatic changes in
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the computed results. The use of more than two streamlines signifi-
cantly increases execution time and thus, should be reserved for
refining the solution.

The C-H-0-N system results illustrated the dramatic computational
time savings which can be realized if it is not necessary to integrate
the species continuity equations after each time step. Again, some

experimentation in this regard should be performed for each new problem. -
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SECTION VIII
CONCLUSIONS

A numerical method has been developed for solving the equations
governing two-dimensional, unsteady, chemically reacting flow in
propulsive nozzles. The unsteady equations are hyperbolic in sub-
sonic, transonic, and supersonic flow regions and thus can be solved
by well developed marching techniques. The steady state solution is
obtained as the asymptotic solution to the unsteady equations, with
steady flow boundary conditions applied, for large time. The overall
numerical algorithm .s inconsistent in time in the treatment of the
species continuity equations but becomes consistent at the steady
state 1imit. Interpolation for species mass fractions is not required
as part of the scheme for integration of the species continuity
equations.

The primary contribution of this research is the development of a
production-type computer program suitable for application to a variety
of nozzle problems. Verification of the results of the subject analy-
sis for two-dimensional subsonic and transonic flows is difficult
because, at present, there are no other methods available for the
solution of this problem. However, for the cases studied, the solu-
tions are quite reasonable and agree well in a mass-aiaraged sense

with accepted one-dimensional finite-rate chemical kinetics solutions.
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Also, when applied to two-dimensional supersonic flow, the results
of the subject analysis compare favorably with an accepted method-
of -characteristics solution,

Computational time has been found to be highly problem dependent.
It is especially sensitive to the number of chemical species and reac-
tions in the problem model, the use of the truncation error control
scheme in the integration of the species continuity equations, the
number of chemical kinetics streamlines used, and the frequency with
which the species continuity equations are integrated through the
flow field as the solution is marched forward in time. Appropriate
controls for these factors are available to the program user. For
the cases which have been analyzed to date, solutions have been
obtained in times ranging from five minutes to one hour using a CDC
6500 computer.

The primary value of t.e subject technique is that it provides
the analysis of the subsonic and transonic portions of the nozzle flow
field, including two-dimensional and finite-rate chemical kinetics
effects, and starting from nonuniform, nonequilibrium conditions at
the nozzle inlet. Also, it provides consistent chemical kinetics data
in the supersonic flow region which can be used to generate the
initial-value line (surface) for accurate, multidimensional method-of-
characteristics techniques. The method of the subject research, when
coupled with a method-of-characteristics scheme for the nozzle diver-

gence, should provide a highly accurate analysis of the entire nozzle

flow field.
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APPENDIX A
GOVERNING EQUATIONS

1. STATEMENT OF THE GOVERNING EQUATIONS

The governing equations for fluid flow within the nozzle of a
propulsion system are derived from the application of the law of con-
servation of mass, Newton's second law of motion, and the first law
of thermodynamics to an appropriate fluid model. For analyses per-
formed for the purpose of performance prediction, the assumption of
a continuous, inviscid, nondiffusing, and adiabatic fluid is generally
adequate to accurately model the flow.

The macroscopic conservation equations, which can be developed
from the laws stated above, are derived in detail in many basic gas
dynamics texts (Ref. 35 for example). These equations are merely
stated here. Applying the law of conservation of mass to the flow
through a fixed volume element yields the continuity equation.

%0 o
—a-t‘ +V . (DV) =0 (A"l)

where p is the density of the fluid and V is the velocity. When
Newton's second law is applied to an element of unit mass moving with
the fluid (for the fluid model described above), Euler's equations of

motion are derived.

p%% +VW =0 (A-2)
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(- where P is the fluid pressure, and for unsteady, two-dimensional

flow

. Dt ot X oy

This vector equation provides two scalar component equations in a
two-dimensional flow. Note that body forces have been assumed to be
i negligible in equation (A-2). Finally, the energy equation is derived
{é from the application of the first law of thermodynamics to an adia-
batic element of unit mass moving with the fluid. One possible form
. of this equation is as follows (Ref. 25).

Qﬁﬂ.i.!f[gl _13P (A-3)

Dt pat

where h is the fluid enthalpy. This form of the energy equation
shows that for steady flow, the total enthalpy (h + V2/2) is constant
along streamlines. This fact serves as a useful check on the validity

of computed results for steady flows.

e

In a two-dimensional flow, equations (A-1) to (A-3) provide four
scalar equations in the five unknowns u, v, p, p, and h, where u and
g v are the velocity components. In equilibrium and frozen flows, an
equation of state of the form h » h(p,p) is added to provide a fifth
equation and to complete the formulation of the problem. In flows
with chemical nonequilibrium, equations (A-1) to (A-3) are still valid
provided that the thermodynamic variables are given an "extended"
definition (Ref.25). It is assumed that the nonequilibrium system

of fixed volume is in mechanical and thermal equilibrium and therefore
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has a definite pressure and temperature. Also, it is assumed that
the system is homogeneous in space and therefore its composition
can be specified by giving the number of moles of each chemical
species present. Finally, it is assumed that pressure, temperature,
and the number of moles of each of the chemical species are not
independent, but are related to one another through an equation of
state. To insure that the equations of state for a nonequilibrium
situation reduce to the equilibrium form when the equilibrium compo-
sition is substituted into those equations, the following requirement
is made (Ref. 25). "The state equation for any property of a system
in chemical nonequilibrium as a function of any other two properties
and all the mole fractions of the constituent species is identical in
form to the corresponding equation for the system in thermodynamic
equilibrium." For example, it is this requirement which allows the
use of the familiar thermal equation of state for a mixture of perfect
gases in a flow with chemical nonequilibrii .

Consider an equation of state of the foliowing form for the

nonequilibrium flow.

h = h(p,D,Cl,...,Cn)

where C, (i = 1,...,n) are the mass fractions of each of the n chemi-
cal species in the reacting fluid. The addition of this equation of
state to equations (A-1) to (A-3) provides a set of five equations

in five plus n unknowns. A1l additional n equations are provided by
the application of the law of conservation of mass to the flow of
each of the chemical species through a fixed volume element. This

yields the species continuity equations.
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3 -
stV (V) =0 (i=1.....n) (A-5)

where Py is the mass density of species i and o is the species
source function.

As suggested above, it will be assumed in this analysis that the
working fluid is a mixture of thermally perfect gases. Then the

thermal equation of state is:

n
P=pT L ciRi = pRT (A-6)
i=1

The caloric equation of state is:

n T 0

h= % Cih. where h, = [/ C._. dT + h, (A-7)
. i i pi i

j=1 To

In equations (A-6) and (A-7), R, are the species gas constants, R is
the gas constant for the mixture, h1 are the species enthalpies,

cpi are the species specific heats at constant pressure, To is the
reference temperature, T is the fluid temperature, and hi0 are the

species energies of formation.

Sumary of major assumptions and governing equations

Major assumptions:

continuum

inviscid

adiabatic

nondiffusing

negligible body forces

chemical nonequilibrium only

fluid is a mixture of thermally perfect gases
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Governing equations: (vector form)

.a_p . V) =

Global continuity: 3t ' v:(eV) =0 (A-1)
_ Momen tum: p2€'+VP =0 (A-2)
( 29)
i‘ Energy: D{h Etv 2) . %g_P =0 (A-3)
i; Species 30§ _
53 continuity: =t + V. (in) = o, (i=1,...,n) (A-5)
Si Thermal equation n
!! of state: P=pl & CiR' (A-6)
5 i=1 '

Caloric equation n T o

of state: h= 3% C,h, where h, =5 C_. dT + h, (A-7)

i=1 Yo, P 1

2. REARRANGEMENT OF THE SPECIES CONTINUITY EQUATIONS AND THE ENERGY
EQUATION

The species continuity equations (A-5) can be simplified by
expressing them in terms of species mass fractions rather than species
mass densities. Substituting C. = p./p into equation (A-5) and using
*he global continuity equation (A-1) yields:

OC; oy

Bt - ry (i =1,...,n) (A-8)

In this characteristic form, the species continuity equations are
one-dimensional equations which apply along a particle path. They

are integrated in this form in the computational scheme.
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The energy equation (A-3) can also be manipulated into a form
which is more convenient for analysis. In this form the species
source function o, appears directly. The species source function
contains within it the set of chemical reactions and appropriate
reaction rates for the assumed chemistry model (see Appendix B).

By forming the dot product of the velocity vector V with equation
(A-2), it is possible to develop an expression for 21!%%21 .
< . DV v2

pV'—+V‘VP=pD(—2—)+

DP 3P
Dt

Dt "5t (A-9)

Solving equation (A-9) for D(V2/2) and substituting into equation
(A-3) yields

oh 1 DP _ (A-10)

Introducing the thermal and caloric equations of state, equations

(A-6) and (A-7), respectively, and the species continuity equation
(A-8), yields the desired form of the energy equation. Taking the
substantial derivative of equation (A-7) gives

DC. o7 n

hoom ;i N ;o
== C, = ¢+ h, s = C.C .=+ h, 4./
t . ot L pt - I, vivpi Dt L, Vi oife

(A-11)

Logarithmic differentiation of equation (A-6) provides an expression
for DT/Dt in equation (A-11). Equation (A-11) can then be used to

replace Dh/Dt in equation (A-10). The result is
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where y, = = yeR;T - (Yf'l)hiloi (A-13)

i=1

and ac and g are the frozen speed of sound and ratio of frozen speci-

fic heats, respectively.

3. THg GOVERNING EQUATIONS FOR TWO-DIMENSIONAL PLANAR OR AXISYMMETh
FLOW

The geumetries of interest in this research include two-dimen
sional planar and axisymmetric flows. The equations governing two-
dimensional axisymmetric flow are normally expressed in cylindrical
coordinates, but they can be transformed to the notation of a Cartesian

coordinate system by means of the following transformation equations.

(A-14)

N 5 < <
N
n o1
x < £ <

Comparing the equations for two-dimensional planar flow with the
transformed set of equations [by equations (A-14)] for a two-dimensional
axisymmetric fiow, it is seen that the equations are identical except
for the additional term pv/y in the global continuity equation for
axisymmetric flow. Therefore, the following set of equations, in
Cartesian coordinate notation, applies to both two-dimensional planar
and two-dimensional axisymmetric flows.

Py + upy + Vo, *pu, + oV 4 elpv/y) =0 (A-15)

y
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up +uu 4 vuy + Px/o =0 (A-16)
Vi tuy, t vv_y + Ry/p =0 (A-17)
2 -
P, +up + va -ac (e, tup ¥ vpy) = ¥ (A-18)
Y%
C.it+uc1-x+vc1-y =‘5' (1'_'1,---,") (A'lg)

where the subscripts denote partial differentiation. In equation

(A-15), € is zero for planar flow and one for axisymmetric flow.

4. TRANSFORMATION OF THE GOVERNING EQUATIONS TO THE COMPUTATIONAL PLANE

Since the interior points in this analysis are to be treated by
a fixed grid technique, it is convenient to transform the physical
(x,y,t) plane to a rectangular (z,n,t) plane in which the differencing

is performed. The following coordinate transformation is used (see

Figure A-1)
T=t
C = x (A-20)
y - y.(x)
n

V' X) = ¥ (x)

where yc(x) and yw(x) represent the nozzle centerbod, and wall coor-
dinates, respectively, as functions of x. Application of this trans-

formation yields:

at 9T

agx) - a(ac) + aaén) (A-21)
) _83()

3y an
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Figure A-1. Physical and computational pianes.
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an . 1
3y ¥,x) -y (x)
For convenience, the following two variables are defined:

au + Bv (A-22)

v

nsy,+n/8 (A-23)
Applying the transformation in (A-21) to equations (A-15) to (A-19)
and introducing the definitions given by equations (A-22) and (A-23)
yields the following forms of the continuity, momentum, energy, and

species continuity equations, which are used in this analysis.

Summary of the governing equations in the computational plane

ot up, + v, + pu, +-m:un+pevn +gpv/N=0 (A-24)
u, + uu, + vu, + Pc/p + aPn/p =0 (A-25)
vt uv, + Wy + BPn/p =0 (A-26)
—_ ? — _
P+ uPC + an - ag (pT *up, + von) = wk (A-27)
Cip +uCy, *+VCy = 03/p (i=1,...,n) (A-28)
n
P=pT I C,R,=pRT (A-6)
NP B
i=1
n T o
h= % C,h, where h, =/ C_.dT + h, (A-7)
jap 11 i T M i
0
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Note that equation (A-28) may be written as

DC. o,
R R | i <
Bt =3 (i=1,...,n)

where DCi/DT is the change in Ci following a particle path in the

computational plane.

97

PP I, PP TP PURIUE WAL AR JPE PURPE W WDURE U YRG WA Iy gy B et BB e — [P PPN



Sy R e - ————— L Zafh SRS Jens enm ms sues e e on

APPENDIX B
THE CHEMICAL KINETICS MODEL

1. REACTION MECHANISM AND THE SPECIES SOURCE FUNCTION

In Appendix A, it was noted that for the nonequilibrium flow of
a gas mixture, a third variable (the species concentrations) must be
introduced into the equation of state to specify the chemical state of
the reactive mixture. This, in turn, required the addition of n species
continuity equations to complete the set of governing equations. In
this section. an equation for the source term in the species continuity
equations is presented.

Implicit within the equation for the species source function is
a reaction mechanism (i.e., a set of coupled elementary reactions whose
reaction rates are functions of temperature only). As an example of
a reaction mechanism, consider the overall reaction between hydrogen

and flourine:
Hy, + ¢F, = al, + bF, + cHF + dH + eF (B-1)

where ¢ is the molar oxidizer to fuel ratio, and a through e are the
moles of the various species in the completed reaction. The science
of chemical kinetics is concerned with the determination of a suitable
reaction mechanism for overall reactions like that specified by equa-

tion (B-1). The reaction mechanism should give an overall effect
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which is in agreement with experimental observations. For the overall
reaction given by equation (B-1), Cherry (36) has proposed the follow-

ing reaction mechanism:

Fp+ M2Z2F+M (B-2a)
Hy + M 2 2H + M (B-2b)
HF +MTH+F+M (B-2c)
HF + F < H + F, (B-3a)
HE + H ZH, + F (B-3b)
2HF T H, + F, (B-3c)

Reactions (B-2) are called dissociation-recombination (or third body)
reactions, while reactions (B-3) are known as binary exchange reac-
tions. The symbol M in equation (B-2) represents the third body
involved in the reactive collision and it can be any of the chemical
species present in the reaction mechanism. A general reaction equa-

tion which will be used to represent any reaction mechanism is

k

n o fi n )
E \).i\.' x.i Z .§ \).ij x.i (J=19~~-sm) (8'4)
1"‘1 krj 1-1

[]
where “ij and v;j are the stoichiometric coefficients of the reactants

and products respectively, X,i denotes the ith chemical species, and
kfj and krj are the forward and reverse reaction rate coefficients,
respectively, for the jth reaction of the m reactions in the reaction

mechanism.
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The law of mass action (Ref.25) states that “the rate at which

an elementary reaction proceeds is proportional to the product of the
molar concentrations of the reactants each raised to a power equal to
its stoichiometric coefficient in the reaction equation." Using this
law together with equation (B-4), it is possiﬁle to develop an expres-
sion for the net production of the ith chemical species due to the jth

reaction in the reaction mechanism (Ref. 31 ). Thus,

n [} n \)ij n V.ij
a5 J = (\)13 - \)'IJ) [ka 11;[1 [X'l] = er 'inl [X'l] ] (B'S)

Converting equation (B-5) to a mass basis and summing over all m reac-
tions in the reaction mechanism yields the equation for the species
source function.

) 1]
" ' n AV n pC; V.
= pC.y iJ iy 1]
- - 3 z ° o - . o - - . H —
o =y (g i) kg 1T -k TG P
i

(B-6)
where ﬁ} is the molecular weight of the ith species. Note that the
species source function is the forcing term in the species continuity
equations (A-8) and that o, is also present in the forcing term of the i
energy equation (A-13). Therefore, equation (B-6) provides the link
between the chemical kinetics model and the governing equations for

the problem of interest.

2. REACTION RATE COEFFICIENTS

Reaction rate coefficients are not readily predicted at the

present time and therefore, they are generally found experimentally.
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The form for the reverse reaction rate coefficient which is used in

this analysis is

= J -b./R -
krj a5 T exp( bJ/RT) (8-7)

where aij’ "j’ and bj are empirical coefficients, R is the universal
gas constant, and T is the local gas temperature. The forward and
reverse reaction rate coefficients for a given reaction are not indepen-
dent but are coupled through the equiiibrium constant for that reaction.
Using the equilibrium constant based on partial pressures (Kp,j)’ it

is found that (Ref. 31)

Kes
_fl = . = Av;
krj Kpn] (RT) J (B-8)
where
n 1] ] .
A\)‘j = iil (\)i - \)1.),] (8-9)

Note that the difficulties in making accurate measurements for the
determination of reaction rate coefficients, the necessity of extrapo-
lating experimental data from one situation to another, and the uncer-
tainty as to the reaction mechanism, are all significant factors
limiting the accuracy of the analysis presented in this research. How-
ever, experience with one-dimensional analyses of reacting flows
indicates that the chemical kinetics model used here is adequate for

performance prediction.
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3. TREATMENT OF HYDROCARBONS

Unburned hydrocarbons may be present in the gas mixture at the
combustor exit and therefore, provision for these species must be made
in the chemical kinetics model. Edelman, et. al. (26) and Edelman and
Harsha (27) have developed a kinetics model for use in combustor

analyses which includes a "sub-global" partial oxidation step:

n m
CnHm + §-02 -+ §-H2 + nCO (B-10)

Note that this reaction proceeds in the forward direction only. The
reaction rate coefficient for equation (B-10) is determined empirically

and is given by (Ref. 27):
aj = 6.0 x 1014 p0.3 (B-11)

where P has units of atmospheres and c represents species concentra-
tions in g-moles/cc.

4. THE SPECIES SOURCE FUNCTION FOR DISSOCIATION-RECOMBINATION REAC-
TIONS AND BINARY EXCHANGE REACTIONS

Equation (B-6) for the species source function is simplified for
dissociation-recombination and binary exchange reactions in the follow-

ing discussion.

Dissociation-Recombination Reactions

Dissociation recombination reactions are of the form

A+MIB+C+M (B-12)

From equation (B-9), Avj = 1 for all these reactions. Substituting
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equation (B-8) into equation (B-6) yields

K
_ 2 m " ' n Ci i
g, =m, p° L (v v..)I:—P-'-ln (=)
CiVij
-p I () M. k
i=1 ™ b
or 1
= 2™ r ij
O’D_R m-' o] J§ (\’.iJ v'lJ) LKJ 15 (c.')
n \)'.I. M. k_.
o 1) V|
i=1 .H (E]) 1)
where 1=1
n
1] AV
n (m) 9
Kp,j i=1 |
K. = tal B — N
J T "= \Vij
i=1

(B-13)

(B-14)

(B-15)

The effect of different third bodies is taken into account through the

use of third body reaction rate ratios Mj (see section 4).

Binary Exchange Reactions

Binary exchange reactions are of the form
A+BEC+D

In this case, Aoy = 0. Thus, equation (B-6) becomes
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-0 (2N Yk, (B-17)
=1 My r
or 1
_ o2 ™ n Yij
o =m, P z (\) - V. .) K I (C-)
B_E i jep o 13 1] [: Jj=1 1
n \);.'J. kr"
U e v (B-18)
i=] il (ﬁ"']) 1]
i=1
where
n v, .,
1 (m) "
ki = Kp g = : (B-19)
B-E I (m,)"
i=1

The Hydrocarbon Reaction

The hydrocarbon oxidation as shown in equation (B-10) can be
treated as a special case of a binary exchange reaction. Rewriting
equation (B-10) in the form of (B-16), and so that it proceeds from
right to left, gives

0
"H,+nC0 2 CH +%0 (B-20)
7 "2 « “YYmT2 Y%

Since K is equal to the ratio of the {orward and reverse reaction

P,J
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rates, then KP j is zero for the reaction in equation (B-20). There-

fore, the species source function for the special case of equation

(B-10) becomes

v'.'. k..
(c,) N1 ——  (8-21)
AT
‘|=

- 2 " ' n
o = my et vy - vy L- o

5. THIRD BODY REACTION RATE RATIOS

Each dissociation-recombination reaction has a different reverse
reaction rate depending upon the particular third body involved in the
collision. This effect is taken into account in the chemical kinetics
model by the use of third body reaction rate ratios. It is assumed
that the overall reverse reaction rate coefficient for the jth disso-

ciation-recombination reaction is given by

n
Mj k. .= 5 Cy Kk (B-22)

ri g red
where the summation over 2 represents all possible third bodies and
Cz is the mass fraction of the gth third body. Implicit in this
equation is the assumption that the overall reverse reaction rate is
a mass weighted average of the reverse reaction rates for each differ-
ent third body. According to References (36) and (37), the temperature
dependence of recombination rates can be reasonably assumed to be

independent of the third body so the recombination rate associated

with the gth species (third body) can be expressed as

-n _
reg = g T J exp(-b /R T) (B-23)
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where azj is dependent on the third body. Substituting this expression

into equation (B-18) yields

n -Nn.

= J -5 ./R -
M.k . 251 Cz 3 T exp( bJ/RT) (B-24)

a,. n.
(&) c oa,. T Jexp(-bj/ﬁT) (B-25)

1 245 AW

1]
M3

or, using equation (B-7),

n a.
Mk .= £ (&) Cck.. (B-26)
jrj g=1 3ij gri
Therefore, Mj is defined by
n a_.
Moz oz (M) g (B-27)

I =1 24

Physically, Mj is the mass weighted ratio of different third body
reaction rate premultipliers, azj’ to the known reaction rate pre-
multiplier aij'
6. REACTION MECHANISM USED IN THIS RESEARCH

The reaction mechanism used in this research is the same as that
used in Reference (3) with the addition of the hydrocarbon reaction dis-
cussed in Section 3. For a nonequilibrium, chemically reacting flow
of a system of thermally perfect gases composed of the six elements

carbon, hydrogen, oxygen, nitrogen, flourine, and chlorine, Gold and

Weekly (28) have shown that 19 species and 48 chemical reactions should
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be considered. The chemical species are shown in Table B-I and the
48 reactions are shown in Table B-II. Note that 13 reactions are
shown in Table B-II. Note that 13 reactions are of the dissociation-
recombination type while the remaining 35 are binary exchange reac-
tions.

Experience with this and other reaction mechanisms has indicated
there may be cases when not all of the reactions corresponding to a
given set of chemical species should be included in the analysis. The
number of reactions in the reaction mechanism is a significant para-
meter affecting execution time. Therefore, no more reactions than are
necessary shouid be included in the analysis. Reference (38) provides
a grading of the various reactions appropriate for CHON and HF pro-

pellant systems as follows:

A - Important reaction between important species with reliable
rate data from a competent review

B - Energetically less significant reaction or rate data of
doubtful quality

C - Reaction between minor species which may be of significance
in some nozzle flows

X - Possibly significant reaction with estimated rate data

(not recommended for use)
Guidelines for the selection of reactions from the overall graded set

of reactions are provided in Reference (38).
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TABLE B-1

CHEMICAL SPECIES CONSIDERED

T W W YW W%

Chemical Species

CnHm
o,
co
e,
F

2
HC1
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Chemical Species

OH
0,
CIF

a1

PP S
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TABLE B-2

T ————————————————— L JREEL SR e el g

CHEMICAL REACTIONS CONSIDERED

Chemical Reaction

CH +5 0, > 5 Hy + nCO
CO2 +M>CO+0+M

Hy0 + MZ OH + H + M
CO+MIC+0+M

Cl, +MZ 2C1 +M

Fo + MZ2F + M

HCT + MZH+C1+M

HF + MTH+F+M

Hy + MZ 2H + M

No + MZ 2N + M
NO+MIN+O0+M
OH+MZO0O+H+M

0 +MZ 20 +M
CIF+MZCI +F+M

C0, + HZ CO + OH

€0, + 0 2 CO + 0

H20 + C1 2 OH + HC1

H20 + HZ OH + H2
H20 + 0 < 20H

CoO +CO0 < CO2 +C
CO+HZTC+OH
CO+NZC+NO
CoO + NO 2 o, + N
CO+0%C+ 0,
HC1 + C1 2 H + C1

2

2

A o - ot LA S e Ay

LA o .
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Chemical Reaction

HC1 + HC1 2 H, + C1,
HC1 + 0 2 OH + C1

HF + C1 2 HC1 + F

HFE + FZH+F,

HF + HZ H, + F

2
HF + HF 2 H, + F

2 2
HF + 0 T OH + F
HF + OH < H20 +F
H2 + C1 2 HC1 +H
Hy +0 ZO0H+H
H, + 0, < 20H
N2 +0ZNO+N
N, + 0, < 2N0
NO+HZN+OH
NO+0 %N+ 0,
02 +HIOH+0
Cl + CIF 2 C]z + F
F+CIFZCl + Fs
HF + C1 T CIF + H
HC1 + FZ CIF + H
HC1 + HF Z CIF + H2
HF + CIF 2 F2 + HC1
HF + C]z Z CIF + HCI

>
CIF + CIF £ F2 + C12
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APPENDIX C

REFERENCE PLANE CHARACTERISTIC RELATIONS

1. GOVERNING EQUATIONS

The equations that are employed in this analysis to model unsteady,

é two-dimensional, chemically reacting, nonequilibrium flow are developed
F ? and transformed to the computational (z,n,t) plane in Appendix A.
*!: These equations are restated here for convenience.
Py +up, + Vo +pou. + pou + pBV_ + epv/n =0 (c-1)
up tuu, + Vun +P/otaP /p=0 (C-2)
v tuv, ¢+ VVn +BP /0 =0 (C-3)
P+ uP. + VPn - afz(pT *up, + Vpn) = ¥ (C-4)
Cig T uCy # Vcin = 0./p (i=1,...,n) (c-5)
h = h(P,p,Ci) (C-6)

The subscripts 1, £, and n in these equations denote partial differen-
tiation and i denotes the ith chemical species. Equation (C-6) is the
general form of the equation of state and since it is an algebraic

equation, it is not stated again in the remainder of this appendix.
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2. CONSTANT n REFERENCE PLANE

When the method of characteristics is applied to unsteady, two-
dimensional flow, the characteristic surfaces and corresponding com-
patibility equations are determined. Hoffman (39) shows that the
characteristic surfaces for this case are of two types; stream surfaces
and wave surfaces. The envelope of the stream surfaces is the pseudo-
pathline (the particle trajectory in Znt space), and the envelope of
the wave surfaces is the Mach cone. The curves of tangency between the
wave surfaces and the Mach cone are the bicharacteristics. One com-
patibility equation is valid on each wave surface, one compatibility
equation is valid on each stream surface, and one compatibility equa-
tion is valid along the pseudo-pathline. Figure C-1 illustrates the
Mach cone, bicharacteristics, and pseudo-pathline as discussed above.

A reference-plane characteristic scheme is used in this analysis rather
than a bicharacteristic scheme because the increased complexity and
computational time of the bicharacteristic scheme is not warranted in
view of the accuracy limitations associated with the chemical kinetics
model (see Appendix B).

In reference-plane characteristic schemes, derivatives with res-
pect to one of the independent variables are approximated and treated
as forcing terms, thus reducing the number of independent variables
in the problem by one. For example, in the constant n reference-plane
scheme, all derivatives with respect to n are approximated (by
MacCormack 's method or some other suitable method) and are placed on

the right-hand side of the equal sign in equations (C-1) to (C-5).
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This yields

Py * Up, +oup = ¥ (C-7)
u tuu + P /o = (c-8)
iE Vot uv, =y, (c-9)
‘! ‘ P+ uP, - afz(pT +up) =y, (C-10)
8 Cip + UC;, = Vg (i=1,...,n) (C-11)

where
¥ = -Vpn - pou - DBVn - epv/n
Yy = -th - oﬂh/o
¥y = -an - 8P /0o

- 2
W4 = -an + ag v pn + wk
¢5 = ‘Vcin + Gi/p

Characteristic Curves

A linear combination of the governing equations can be formed by
multiplying equations (C-7) to (C-11) by 25 (j=1,2,...,44n), respec-
tively, and then summing them. The notation is simplified if 25 through

La4n 2T replaced by Lg- The resulting linear combination is

ll(pT +up + Ouc - wl) + zz(ur + uuc + PC/D - wz)

4
+93(v, 4wy, = yg) + [P+ wP - aB(o +up) -y (C-12)

Hg(Cyp + UGy - ¥5) = 0

13




Rearranging equation (C-12) yields
pc(uIL1 - af2u24) +pT(!L1 - af224)
+u(pgy +ugy) +u (2,)
+ vc(u23) + vT(2,3) (C-13)
+ P (2y/0 + ugy) +P_(2,) 1
+ Cyplutg) + €y (2g) = Ryby+ 290p *+ 2303 * Lgvy * s

The following set of vectors can be defined where the components are

the coefficients of the partial derivatives in equation (C-13).

Wi = (ugy - af?'um4 ' 2 - af224) (C-14)
Wy = (o2 +uty 4 4p) (C-15)
Wy = (wgy,2,) (C-16)
Wy = (ylo +ug, 4 2,) : (C-17)
We = (ubg , %) (C-18)
Now, introduce the notation that dwlp is the derivative of p in the )

direction of'Wl, dwzu is the derivative of u in the direction of Wé,
etc. Recall that the directional derivative of a function f in the
direction of W is found by taking the dot product of the gradient of
f with the vector W. Therefore, with the notation above, and the
vectors defined by equations (C-14) to (C-18), equation (C-13) can be

written as
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219y * ¥y * Agvg * ¥y * Ls¥s

If the L (j=1,2,...,5) can be chosen so that the vectors Wj
(j=1,2,...,5) are linearly dependent (1ie in one direction), then the
curve which contains the vectors ﬁs is called the "characteristic
curve," its normal N is called the "characteristic normal," and equa-
tion (C-19) is called the "compatibility equation." If N = (Nc’NT)
is the characteristic normal in the (¢,t) plane, then N and W& must

be related by

N . Ws =0 (j=1,2,...,5) (C-20)

Expanding equation (C-20) yields

(uty - a Ut N, + (&) - aPL N, = 0 (c-21)
(p2q + ub, N + 2N =0 (c-22)
(Ut3)N, + 2N =0 (C-23)
(2,/p + “24)Nc + 4N =0 (C-24)

Il
o

(URIN, + 2N = (c-25)

Note that the subscripts z and t in equations (C-21) to (C-25) denote
the components of the characteristic normal in directions of ¢ and 7,
respectively. In matrix form, equations (C-21) to (C-25) can be

written as follows:
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2
uNC+NT 0 0 'af(UN;+Nr) 0 2

1

pNC uNC+NT 0 0 0 Lo
0 0 uNC+NT 0 0 24 =0 (C-26)

0 Nc/p 0 uNC+NT 0 N

0 0 0 0 UNC+NT L

Equation (C-26) is a system of homogeneous equations and therefore, if
it is to have a nontrivial solution, the determinant of the coeffi-

cient matrix must be zero. Setting that determinant to zero yields

(uN, + NT)3[(uNC + NT)Z - 2N 1 = 0 (C-27)

Equation (C-27) has two possible solutions. Setting the first factor

to zero yields

uNC +N. =0 (C-28)
If the term in square brackets is set to zero, the solution is

uNC +N_ =3 ach (C-29)

From Figure C-2 it is clear that the following relationship is true
along the characteristic curves:

. | (c-30)
& W
Substituting equation (C-30) into equations (C-28) and (C-29) yields

the characteristic curves in the constant n reference plane.

[=N

a.TE. =u (C'sl)

16
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B n=Const
de _ |
prrefiialiony 3
@ v dr _ _|
-a
’-" d'r = l d; u f
dg utag
h /
A 2 B ¢
dv = 433 dt
dP - af2 dp = Vs dt .along dg = udt
dC,' = ws dt
dapr + pafdu - (w4 + afzvpl + pafwz)dr along dg = (u+ &f)d‘t
P - pacdu = (w4 + afzwl - pafwz)dr along dg = (u-af)d1
compatibility equations characteristic curves

_] b 0 ALEN L v
. A L
A I P

N r ot ut uf INE AEIREN -4 MBI

Figure C-2. Constant n reference plane characteristic relations.
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dJ.:u;a

dn (C-32)

f

Equation (C-31) corresponds to the equation (C-28). It is the projec-
tion of the two-dimensional flow pathline onto the constant n plane.
Fyuation (C-32) corresponds to equation (C-29). It is the projection

of the two-dimensional Mach cone onto the constant n plane.

Compatibility Equations

e tmhe mi a et e e s aa Al A halat s lal e

The requirement that the determinant of the coefficient matrix in
equation (C-26) be identically zero has led to the determination of
the characteristic curves. Now, substituting those solutions, equa-
tions (C-28) and (C-29), into equation (C-26) and solving for the 24
(j=1,2,...,5) yields the compatibility equations which correspond to
the characteristic directions. Specifically, substituting equation

(C-28) into equation (C-26) yields the matrix equation

0 0 0 1
pNC 0 0 0 011%
0 0 0 0 0 L4 =0 (C-33)
0 NC/p 0 0 0 L4
0 0 0 0 011%

Here the order of the coefficient matrix is five and its rank is two,

so there are three independent solutions. Three possible solutions are

B =0y = 8y =2 =05 25 =1 (C-34)
zl = 12 = 13 = 25 =0; 14 =1 (C-35)
By =8y =8y =2, =0; &g =1 (C-36)




Substituting equations (C-34) to (C-36) into equation (C-13) in turn

yields, respectively

Vo tuv, =g (C-37)

PT + uPC - afz(pT + upc) =Y, (C-38)

CiT +u Cic = Vg (C-39)
or

dv = V3 dt (C-40)

dP - afzdp = w4dT along dz = udt (C-41)

dC_i = wsdt (c-42)

Now consider the characteristic curve given by equation (C-29).

Substituting equation (C-29) into equation (C-26) yields the matrix

equation
tagh, 0 o w0 ||y
pNC tach 0 0 0 L,
0 0 tafNC 0 0 L =0 (C-43)
0 N /p 0 iafNC 0 24
0 0 0 0 tach Le

The order of this coefficient matrix is five and its rank is four so

there is one independent solution. Equation (C-43) yields

= = . = 2 = - . = X
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If 24 = 1, one possible solution is

o =0 o =a&. T nma - 0 =
Ly = &g = 0; %y = ag; Ly =¥ pag; L4 = 1 (C-45)

Substituting equation (C-45) into equation (C-13) yields

2
+
ag (o, +up, +opu

g teu - ) £ paglu +uu + P /o - uy)

(C-46)
2 =
*PotuP - ag (o, + upc) Yy =0
or
dP + pacdu = (w4 + af%wl + pafwz)dr along dc=(u+af)d1 (C-47)
dpP - pafdu = (¢4 + afzwl - pafwz)dr along dc=(u-af)dr (C-48)

3. CONSTANT ¢ REFERENCE PLANE

For the constant ¢ reference~plane scheme, all derivatives with
respect to ¢ in the governing equations are approximated and treated as
forcing terms. The development which follows is entirely analogous to
the derivation of the constant n reference-plane relations in the pre-
vious section of this appendix. Therefore, the corresponding steps in
the development of the equations will all be shown, but the arguments
will be abbreviated. Moving all derivatives with respect to ¢ to the

right-hand side of the governing equations yields

o + Vpn+paun+ van =¥ (C-49)
u tvu o+ Py /e = ¥, (C-50)
Vo + Vv, +BP /0 = Uy (c-51)
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— 2 ——
P+ VP - a(p Vpn) = U (C-52)
CiT + vC, = ¢5 (C-53)

where

= -up, - pu, - €pV/M

<
—
|

4 4

wz = ’uuc - Pc/p

w3 = ’UVC

Y, = -uP_+ a 2up + Y
4 4 f 't Yk

Vg = -uCy + oy/e

Characteristic Curves

Forming a linear combination of equations (C-49) to (C-53) yields
2.(o + Vo +pou + pBV, - ¥p) + fy(u . + vu + aP /o - ¥,)

_ _ 2 _
+,Q,3(vT + w, + BPn/p - w3) + 2,4[PT + an - a (pT + Vpn) - ¢4]

Hg(Cip + VCip - 4g) = 0 (C-54)
Rearranging equation (C-54) gives
Pp(Thy = 3¢ Vag) + p (8 - ag’sy)
+ un(pazl + 722) + uT(zz)
+ vn(pB 2, + 723) + vT(23) (C-55)

+ Pn(agz/p + 323/9 + 724) + PT(E4)
+ G (V) +Cu(Re) = R0y + R, + RaUy + 20, + Leyc
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Define the vectors Wj (j=1,2,...,5) as follows

W= (Ve - alvey . ag - agiey) (c-56)
Wy = (pag; + vnz ' 1) (C-57)
Wy = (pBRy + V&g, 23) (C-58)
Wy = (ay/0 + BLa/o + V8, 44) (C-59)
WS = (725, 25) (C-60)

Then, using the directional derivative notation introduced in Section 2:

dw1° +d,,u+d.v+d Ci =

ot * 3Vt dyP * dyg

(C-61)
LWy ¥ ¥y * g3 * L4Uy * LgUsg

Now, determine if the zj (j=1,2,...,5) can be chosen so that the Wj
are all linearly independent. If N is the characteristic normal, then

ﬁlws =0 (j=1,2,...,5). This gives

(V2) - agZwy N+ (1) - aZeg N = 0 (c-62)
(o + V’zz)Nn N =0 (C-63)
(oBR, + 713)Nn + 2N =0 (C-64)
(a2,/p + BLy/p + V’JL4)Nn + N =0 (C-65)
(VegIN_ + 2N =0 (C-66)
or, in matrix form:
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an+NT 0 0 -af(an+NT) 0 24
OC!Nn an+NT 0 0 0 22
DBNn 1] an+NT 0 0 23 =0 (C-67)
0 aNn/o BNn/p an+NT 0 24
0 0 0 0 VN_+N 2
n T 5

Setting the determinant of the coefficient matrix to zero yields
- 3r o 2 2y 2, 2 2\ _
(an + NT) [(an + NT) - A Nn (@ +87)]) =0 (C-68)

Equation (C-68) has two possible solutions:

V'Nn + NT =0 (C-69)
v Nn + NT =+ aana? (c-70)
where o* = sz + 82)i

Noting from Figure C-3 that dt/dn = 'Nn/NT’ equations (C-69) and (C-70)

can be rewritten as

%3 =7 (c-71)
%? =V I ag a* (C-72)

respectively. Equations (C-71) and (C-72) are the characteristic curves

in the constant ¢ reference plane.
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- c;lcx
3

-dT) - V+of¢*

gdu - adv = (sz - aw3)d1

dP - afzdp = Yl along dn = vdt

dP + o du + o dv = _

along dn = (v + aca*)dr
2 paaf DBafw3

(g + agW) + —F ¥, + —F)dt

poa ¢ pBaf

- dut g dv= along dn = (V - aa*)dt
' 2 podcy,  PRacY,

(g +agy - —g— - —g)dt

compatibility equations characteristic curves

¢ Figure C-3. Constant ¢ reference plane characteristic relations.

3 124
e

Lv....k..,_,.,.'t PO i




Compatibility Equations

Consider the characteristic curve given by equation (C-69). Sub-

stituting equation (C-69) into equation (C-67) yields

0 0 0 0 0 21

paNn 0 0 0 0 Lo

pBNn 0 0 0 0 23 =0 (€c-73)
0 aNn/p BNn/p 0 0 2,4
0 0 0 0 0 25

Three possible solutions to equation (C-73) are

By =8g=25=0; ,=1; 25= -a/ (c-78)
21 = 9,2 = 243 = 2,5 = 0; 24 = 1 (C‘75)
zl=22=z3=z4=0; 25=1 (C~76)

Substituting equations (C-74) to (C-76) in turn into equation (C-55)

yields, respectively

Vu +u +aP/p +'V(-a/8)vn -a/g v +8/o(-a/g)P

(c-77)
= 'bz = (0/8)\“3
2V -aly +VP 4P = (c-78)
f pn f Pt n T ¢4
v c1.n *Co =g (C-79)

which may be written as
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gdu - qdv = (sz - oup3)d1 (c-80)
P - afzdp = yydt along dn=vdr (C-81)
dc.l = ws dt (c-82)

Now consider the characteristic curve given by equation (C-70).

Substitution of this result into equation (C-67) yields

taana* 0 0 -ag(iaana*) 0 21
paNn iaana* 0 0 0 22
pBNn 0 iaana* 0 0 L =0 (c-83)
*
0 aNn/p BNn/p iaana 0 24
0 0 0 0 :aanu* 25
Equation (C-83) has one independent solution:
= al, . =0 , . - ) -
B T A s fp T g g afp * By = Fpagatlys 45 = 0 (C-84)

1 is chosen, then

oy

-4
&
n

29 = afz; 5 = ¥ padg/a*; 23 = ¥ pRAg/a*}

(C-85)

24 1 25=0

Substituting equation (C-85) into equation (C-55) yields the compati-
bility equations

prdg pBag 2 pade pga
P+t du kv = (yy +agtyy ¢ w Uy gl

(C-86)

along dn = (v +ago¥)dt
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and

dP - = du +

DBaf
(l*

byl

L Ty W SO U G

pBa ¢

a*

2 pad g
dv = (‘p4+ afd’l '_a*_q’z

along dn = (v-aca*)dr
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APPENDIX D
THE SPECIES CONTINUITY EQUATION INTEGRATION SCHEME

1. STIFF EQUATIONS AND IMPLICIT VS. EXPLICIT INTEGRATION METHODS

It is well known that integration of the species continuity equa-
tions for nonequilibrium, chemically reacting flow, when the flow is
near equilibrium, requires special treatment because the equations
become quite "stiff" (Refs. 3, 5, and 31). In order to understand
the concept of a stiff differential equation, consider the following
general form for an ordinary differential equation.

& - f(xy) (p-1)

The existence of a unique solution to this equation requires that
f(x,y) must be continuous and that it satisfy a criterion known as the
Lipschitz condition (Ref. 40). The Lipschitz condition is stated in
terms of the Lipschitz constant, L, which is defined by

| 2flear) (0-2)

-
(11}

If the ordinary differential equation is stiff, it will have a large
Lipschitz constant while its solution behaves like a polynomial (i.e.,
the solution has little exponential growth or decay).

The relevance ot the Lipschitz constant to the species contin-

uity equation can be understood from the following discussion. The
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species continuity equation can be written in functional form as

A v ~
. . ’ A ‘. et b
L AP
ooy RN “_‘_ -

Dc'i O'i .
o = 7 = fe.TuCy) (i=1,...,n) (D-3)

Note that fi(p;LCi) in equation (D-3) has dimensions of C; divided by
time and therefore, the partial derivative (afi/aci)p 7 Must have
dimensions of (time)‘l. Following Ref. (25), a Tocal characteristic

time for the rate process can be defined by

A 1
L €191y (0-4)
F3/9Ci)0, 1

Now, equation (D-3) can be written as

bC; x(0,T,C5)

Dt = {[\@ T c (‘i=1,...,n) (D-S)
] Q-i
where
( ) i (D-6)
x(0.T,C;) = TaF7atT— D-6
LS CLVATR NS

Using equation (D-3) and the definition of the Lipschitz constant
(D-2), the Lipschitz constant for the species continuity equation
becomes

aof . (0,T,Cy)
L=|— i 1.l - %- (D-7)

Consider the change in Ci according to equation (D-3) for an increment

of time equal to the local relaxation time.

DC, c,-C
-DTL s 21 (D-8)
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In equilibrium flow, the local characteristic time, T, for the chemi-

DC.
cal reaction approaches zero and since Tﬁ} must remain finite for any

real physical process, the change in mass fraction also approaches
zero. Thus, the Lipschitz constant becomes large while the solution
behaves 1ike a polynomial and the differential equation is stiff. For
the case of frozen flow, the mass fraction does not change and T
approaches infinity, so Dci/Dt goes to zero.

Many numerical techniques have been proposed for the solution of
the species continuity equations in near equilibrium flow. Among these
techniques are linearized approaches, conversion of the differential
equations to integral equations, modified Range-Kutta techniques,
higher-order predictor-corrector methods, and implicit methods. Curtiss
and Hirshfelder (32) and Seinfield (33) provide useful reviews of the
various numerical methods that have been used for stiff differential
equations. Cline (41) analyzed and tested a number of proposed schemes
in his analysis of three-dimensional, steady, nonequilibrium flow.

It is possible to categorize the numerical methods he tested into two
groups: explicit and implicit methods. In an explicit method, the
solution at the unknown point is expressed entirely in terms of known
points, while in an implicit method, the solution at the unknown point
is expressed in terms of both the known points and the unknown point.
Cline concluded that explicit schemes, and predictor-corrector methods,
were stable only for very small step sizes (which would lead to exces-
sive computational time). Tyson and Kliegel (42) show that a step
size of the order of the relaxation time T is necessary to insure

stability when the first-order Euler method (explicit) is applied to
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the species continuity equations. Cline also found that only some of
the implicit methods he tested gave adequate results. He concluded
that a method proposed by Lomax and Bailey (34) provided the best
results. It is this technique, which could be called a second-order,

implicit Taylor expansion, which is used in this analysis.

2. DERIVATION OF THE SECOND-ORDER, IMPLICIT, TAYLOR EXPANSION SCHEME
To illustrate the derivation, consider the ordinary differential

equation:

%% = f(x,y) (D-9)

Here, f(x,y) may be nonlinear in y and y(x) is assumed to be continuous
and differentiable so it can be expanded in a Taylor series. Expanding

through second-order terms yields

¢° (X041 = % )2
Yn+41 © I (Xpyy = %p) # ——%'l
(D-10)
+ o(ax°)
where
B (—%)Xﬂ( y=y
n*” Jn
and n denotes the nth mesh point. Note that
9% | =4 (_1| [f (x,y)] (D-11)
i dx Vdx 4

n
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Substituting equation (D-12) into equation (D-10) yields

2 of of
= b - 3 -
Ypep S¥n Pt 0t f 1+ 0(h) (D-13)

n gy
where h = Xpe1 = %n° Now, fn inside the square brackets in equation
(D-13) is replaced as follows
_Yn+1 "0 _ Yne1 T 9n

f = = (p-14)
N Xee1 T % h

Substituting equation (D-14) into equation (D-13) yields the desired

result.

2 of of  (y -y)
- h™ —'n n “n+l n 3
Yner “Ya Pt T 0ty R ] + 0(h”) (D-15)

The derivation for the species continuity equations is entirely
analogous to the above derivation. The species continuity equations

are restated here for convenience.

DC,i 95
-D-t— = ? = fi(p,T,C,i) ('i=1,...,ﬁ) (D-lﬁ)
Note that equation (D-16) is a first-order, ordinary differential equa-
tion when applied along a particle path in unsteady flow or along a
streamline in steady flow. Along the one-dimensional trajectory, the

substantial derivative can be written as D( )/Dt = Vd( )/ds where s

is an elemental path length and V is the velocity magnitude. Thus,
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equation (D-16) becomes

dC

N PX'A S B (R NI (0-17)

The i subscript is temporarily dropped in the following development for

clarity. Expanding C in a Taylor series through second-order terms
yields
dc o sy’
Cna1 = Cn * G5 | (Spag = 850 # ds? ln
(D-18)
+ 0(as”)
But
COp L@ d g o0 (0-19)
dS2 ds ‘ds I 1P ¥
n
n
so
4 39 a9 9 39
dC) _SFndp, Ondv, Fndr, 3 dc -
G2 T dstaVds T ds T & (D-20)
n

Note that the last term in equation (D-20) will become a summation over
all species when the i subscript is re-introduced. Substituting equa-

tion (D-20) into equation (D-18) yields

3y g . 9 dv . 3% dT . 3% K
=G thg It wwastar &t il
+ o(n’) (0-21)
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where h = Sn+1 " Sp- Now, let ds = Sntl = Sp? dT = Tn+1 -Tn, etc.,

and let 9 inside the square bracket be replaced by

TR (0-22)

Substituting into equation (D-21) yields

_ h 39n a9,
Che = Cp ¥ h9y * 7 E?ﬂf (°n+1 - Pp) * ?ﬂr'(vn+1' vn)
9 39y, 3 .
+'§T'(Tn+1 - Tn) + TRT'(Cn+1 - Cn)] + 0(h”) (D-23)
Re-introducing the i subscript yields
3g, 995
=h —in - __mn -
Kin = 7 (294, * 30 (pn+1 Pp) + 3V (Voep = V)
YT (Tn+1 - Tn) AT (KJ)] (D-24)
j=1 7]
3 . a
+0(h ) (1_1".o,n)
where
Kin = Cin+1 = Cin.

The partial derivatives in equation (D-24) are determined analytically.
When expanded, equation (D-24) becomes a system of fi simultaneous,

linear, algebraic equations which is easily solved by standard methods.
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(| 3. ERROR CONTROL
E: The implicit scheme derived in the previous section has been found

to be stable for even large step sizes in both Cline's work (41) and in

the subject research. However, the method is subject to truncation
errar and thus consideration of step size control must be given.

Equation (D-24) is of the form

3
d”C. 3
h i h 4
K. =3[ 1+ < +o0(h") (D-25)
in = 2 43 1, 6
"computed term"  "third order
term"

The objective in the error control scheme is to estimate the third-
order term and require that the ratio of this term to the computed
term be less than a specified tolerance. The third-order term is esti-

mated as follows.

dC. K,

—1 | = 1IN (D-26)
ds n hn
then
3
ds3 ; 4s2 as 0 oasT dsl =~ dsi 4 (D-27)
(ds)2
Kin+1 2 Kin + K1.n-l
her "M Py
n+ -
= (D-28)
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where h is the average step size.

Assuming equal step sizes, h ., =h =h , =h,
ac.  Ki,. - 2K +Ki
t . _ntl in n-1 (D-29)
3" 3 )
ds™ h

K1n+1 B 2Kin + K1n-1 . QE
3 6
RATIO = . (D-30)
in
Ki o - 2K. +Ki
RATIO = —n* - n-1 (D-31)
in

Note that RATIO has distinct values for each of the chemical species in
the gas mixture at each step in the integration. Also, RATIO can be
computed only after three integration steps have been taken. To reduce
the truncation error to the desired level, intermediate points are
placed between grid points along particle paths in the computational
mesh.

Figure D-1 illustrates how the error control scheme is used in
practice. An estimate of the number of intermediate points (NINT)
required between L and L+1 is made. The values of temperature, density,
and velocity at the intermediate points are determined by linear inter-
polation between the known corresponding values at the end points.

Then the species continuity equations are integrated from L to L+1
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Points
(NINT=3)

Figure D-1. The use of intermediate points.

137

L+l

2277
Intermediate

PL+

T+

Vi+




and RATIO is computed for each of the chemical species. If, after the
last intermediate integration step, the maximum value of RATID is less
than a user specified tolerance (TOL), then the integration proceeds.
I[f the required tolerance is not achieved, then the number of inter-
mediate points is doubled and the integration procedure is restarted
from L. Also, if the maximum value of RATIO is two orders of magni-
tude less than TOL, then NINT is reduced by one-half before the inte-
gration from L+]1 to L+2 proceeds. Figures D-2 and D-3 show the effect
of NINT in integrating between given end conditions for equilibrium
and nonequilibrium conditions at L. In the first two sections of the
tables in those figures, NINT has been specified, while in the last
section, TOL has been specified and NINT has been determined by the
error control procedure described above. Note that in both figures,
failure to use intermediate points yields poor results for the species
mass fractions and wK. However, for the cases shown here, even a small
number of intermediate points improves the results significantly.
Computational time for the subject problem is almost directly propor-
tional to NINT. Experience indicates that a loose tolerance (5 to 10%)
should be used until the solution is near convergence and then TOL can
be reduced to the desired degree.

Figure D-4 illustrates the effect of variable property gradients
between L and L+1 on the number of intermediate points required to
achieve a tolerance of one percent. Part (a) of the figure corres-
ponds to equilibrium conditions at L. Case 1 indicates that for small

gradients in density and temperature, the integration from equilibrium
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"NINT" Intermediate Points

p L
T TV L+ ]
e, S PLHiteL
- 'At=1x10"5 sec 1 TLntTL- 20°R
CiL+l

NINT 0 2 5
F2 6.67002079E-07 6.67088240E-07 6.67008047E-07
C; _ HF 9.16541128E-01 9.16630067E-01 9.16633003E-01
L¥l W2 1.44297673E-02 1.44407872E-02 1.44405314E-02
F 5.27127187E-02 5.26282603E-02 5.26254722E-02
H 1.63157192E-02 1.63002183E-02 1.63003262E-02
Y, o1 14.231 E 05 9.669 E 05 9.456 E 05
NINT 10 20. 40
F2 §.67113862E-07 §.67116594E-07 6.67116342E-07
C, K 9.16632195E-01 9.16632155E-01 9.16632141E-01
L+1 H2 1.44406072E-02 1.44406089E-02 1.44406096E-02
F 5.26262396E-02 5.26262778E-02 5.26262907E-02
H 1.63002910E-02 1.63002915E-02 1.63002914E-02
Y, 41 9.515 E 05 9.518 E 05 9.519 E 05
TOL 10% (NINT=2) 5% (NINT=4) 1% (NINT=4)
F2 6.67088240E-07 §.67110031E-07 6.67110031E-07
C,  HF 9.16630067E-01 9.16631423E-01 9.16631423E-01
L+1 H2 1.44407872E-02 1.44407117E-02 1.44407117E-02
F 5.26282603E-02 5.26269729E-02 5.26269729E-02
H 1.63002183E-02 1.63002255E-02 1.63002255E-02
Y, 9.669 E 05 9.575 E 05 9.575 E 05
Figure D-2. The effect of NINT intermediate points - equilibrium

Tm"a a'Aa'alatatemtaSato s shona

initial conditions (H-F system).
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'3.f
F.T
[ "NINT" Intermediate Points
o L e
| T *~
(;“_ I PL+I" PL

U At=1x10-% sec |  TL+=TL"20°R
CiL+1

NINT

0 2 5
F2 9.26174224E-09 9.71138822E-09 9.74977520E-09
Ci HF 9.60158784E-01 9.59517223E-01 9.59466462E-01
L+1 H? 1.71175668E-02 1.71761786E-02 1.71807494E-02
F 1.12932851E-02 1.19025221E-02 1.19507258E-02
H 1.14303552E-02 1.14040668E-02 1.14020535E-02
]
kL+l, ] 7.053 E 05 9.444 E 05 9.634 E 05
NINT 10 20 40
F2 9.73446971E-09 9.73981717E-09 9.74361901E-09
Ci HF 9.59464704E-01 9.59464162E-01 9.59464011E-01
L+1 H2 1.71807895E-02 1.71808019E-02 1.71808054E-02
F 1.19523952E-02 1.19529095E-02 1.19530531E-02
H 1.14021020E-02 1.14021168E-02 1.14021210E-02
'l’kL+1 9.640 E 05 9.642 E 05 9.642 E 05
TOL 10% (NINT=4) 5% (NINT=4) 1% (NINT=64)
F2 9.73637961E-09 9.73637961E-09 9,.74374805E-09
Ci HF 9.59467656E-01 9.59467656E-01 9.59463979E-01
L+1 H2 1.71807148E-02 1.71807148E-02 1.71808061E-02
F 1.19495923E-02 1.19495923E-02 1.19530838E-02
H 1.14020279E-02 1.14020279E-02 1.14021219E-02
ka+1 9.630 E 05 9.630 E 05 9.643 E 05
Figure D-3. The effect of NINT intermediate points - nonequilibrium

.......

initial conditions (H-F system).
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"NINT" Intermediate Points

L L+
—+ + ®
L+1
Case Number
L 1 2 3 4 5
T 7377.1 7376.8 7370.8 7397.1 7376.8 7370.8
p .01730 .01729 .01729 .01729 .01830 .01729
v 840 840 840 340 280
NINT 129 5 5 5 9
a) Equilibrium Conditions at L.
L+1
Case Number
L 1 2 3 4 5
T 6908 6812 6908 6812 6812 6812
P .01079 .00983 .00983 .01079 .00983 .00983
v 5373 5612 5612 5612 2806 1871
. NINT 8 32 8 16 32

b) Nonequilibrium Conditions at L.

Figure D-4.

PSP W VR "

(TOL
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The effect)of property gradients on intermediate points




conditions may require a large number of intermediate points to achieve
a one percent tolerance. However, cases 2 and 4 show that even modest
gradients in temperature in density reduce NINT dramatically. In com-
paring cases 2 and 3 note that NINT is not sensitive to the sign of

the temperature gradient. Case 5 corresponds to tripling the relaxa-
tion time between L and L+1.

In part b) of figure D-4, the conditions at L are not in equili-
brium. The gradients represented by case 1 are the same as those that
existed between L-1 and L in the data from which this information was
taken. Cases 2 and 3 show that NINT is sensitive to a change in the
temperature gradient but that it is not affected by a change in the
density gradient. Cases 4 and 5 illustrate the effect of the velocity
gradient (or relaxation time) on NINT. In general, discontinuous
gradients in temperature and velocity between the L-1 to L interval
and the L to L+1 interval will require a higher value of NINT to achieve
the specified tolerance than for the case of continuous gradients.

NINT is also affected by the density gradient but to a lesser degree
than for temperature and velocity. The significant results concerning
the use of erreor control are summarized as follows:

1. Most of the computational time required to solve the subject problem

is related to the integration of the species continuity equations.

Therefore, the total execution time is nearly directly proportional
to NINT.

2. Failure to use intermediate points in integrating the species con-
tinuity equations will, in general, yield poor results for species

mass fractions and Yy

142




3. Integrating from equilibrium conditions with very small gradients
in temperature and density and a small value of TOL can yield very

large numbers of intermediate points.

4. For equilibrium initial conditions, NINT is not particularly sen-
sitive to the size or magnitude of temperature, density, or velo-
city gradients as long as the conditions in conclusion 3 do not
occur.

5. For nonequilibrium initial conditions, NINT is sensitive to grad-
jents in temperature and velocity while it is only mildly sensitive

to the density gradient. If the property gradients between L and

3 CX on aub e s gl 4 . T T
. e s P
P LI A N P L P

L+1 do not match corresponding gradients between L-1 and L, then

more intermediate points are likely to be required.
6. Conclusions 1 to 5 appear to be valid for the several chemistry

systems investigated in this research.
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APPENDTX E
TREATMENT OF SUBSONIC INLET POINTS

1. IMPORTANCE OF COMPUTATIONAL BOUNDARY CONDITIONS

Roache (43) remarks that all the flow patterns of common gases
and liquids are solutions to the same partial differential equations.
The flows are distinguished only by boundary and initial conditions
and by similarity parameters like the Reynolds number. He concludes:
"It is therefore not surprising that the specification of computa-
tional boundary conditions, besides affecting numerical stability,
greatly affects the accuracy of the FDE solution." Cline (23) attri-
butes long computational times in time-dependent solutions of con-
verging-diverging nozzle problems to poor treatment of the boundaries
and inefficient schemes for the interior points. Moretti (44) and
Abbett (45) have shown that reflection, extrapolation, and one-sided
difference techniques give poor results when applied to solid wall
boundaries. Cline (4, 23) has used a reference-plane characteristic
method for boundary points in time-dependent analyses of nozzle
problems. This technique is also used at all boundary points in the

subject research.

2. CHOICE OF INLET BOUNDARY CONDITIONS
At the inlet, a constant n reference-plane characteristic method

is used and, for subsonic flow, only one characteristic curve lies
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within the flow field (see Appendix C). Since there are 4+n unknowns
at the inlet (u, v, P, p, and Cs» i=1,...,n) and only one character-
istic relation, 3+n additional conditions must be specified.

The "correct" specification of steady flow inlet boundary con-
ditions is a difficult problem; a generally preferred set of condi-
tions is not known at the present time. It is expected that the
combustor analysis will be performed independently of the nozzle
analysis. The combustor analysis may or may not include two-
dimensional effects. In any case, the distributions of the fluid
dynamic properties (u, v, p, and p) at the combustor exit may not
provide an appropriate set of boundary conditions for the given nozzle
problem. The total conditions at the combustor exit, however, are
global properties of the flow which must be conserved between the
combustor exit and the nozzle inlet. The specification of total
conditions at the inlet places a constraint on the energy of the flow
but still allows flexibility in the solution for the static proper-
ties at this point.

The specification of total enthalpy H0 is appropriate for the
subject problem. Equation (A-3) shows that the total enthalpy
(h + V2/2) must be constant along streamlines in a steady flow.
Therefore, the total enthalpy distribution at the inlet is required
to match that at the combustor exit. Cline (4, 23) uses the inlet
flow angle 6 as a boundary condition. It has also been used for the
subject problem. The flow angle may be determined by experiment or

from the following procedure:
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1. Determine representative values of the ratio of frozen specific
heats \73 and the gas constant at the combustor exit.

2. Generate a "long inlet" geometry by adding six to ten mesh points
upstream of the nozzle inlet, simulating a constant-area duct.

3. Using the program of the subject research for isentropic constant
specific heat ratio flow, compute the solution to the long inlet
problem described in the preceding two steps. Inlet boundary
conditions for the long inlet problem are: a uniform distribution
of zero flow angle 6, and total pressure Po and total temperature
TO based on combustor exit conditions.

4. The flow angles at the nozzle inlet for the converged long inlet
problem can be used as the inlet flow angles for the reacting

flow problem.

Note that the arbitrary specification of zero flow angle at the nozzle
inlet has been found to produce unreasonable velocity profiles at the
nozzle inlet for some nozzle geometries.

A uniform distribution of static pressure across the combustor
exit is one of the results expected from the combustor analysis. The
specification of 6, Ho’ Ci and a uniform static pressure distribution
was tested as an inlet boundary condition set. For the cases tested,
this produced a velocity distribution which had a range from very high
valuyes at the center to near zero values at the wall after only 20 to
30 time planes. The static pressure distribution at the inlet from
the "long inlet" solution yielded reasonable velocity distributions.

The set of inlet boundary conditions which has been used in the

subject research is the specification of 0, Ho’ Ci, i=1,...,n and the
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total pressure P0 based on combustor exit conditions. Here, Po is the
pressure that would exist as a result of an isentropic stagnation from

combustor exit conditions with frozen composition.

3. RELAXATION OF THE SPECIES MASS FRACTIONS

In using total enthalpy H0 and total pressure P0 as inlet boun-
dary conditions in the constant n reference-plane scheme, it is found
that radial distributions of density, temperature, and velocity develop
which do not necessarily match similar distributions at the combustor
exit. Therefore, a hypothetical particle, upon making the transition
from the combustor exit to the nozzle inlet, encounters discontinuities
in the flow field. If not properly accounted for, these discontinui-
ties provide inconsistent kinetics data at the nozzle inlet from which
integration of the species continuity equations proceeds.

A series of numerical experiments was performed to study the
effects of the discontinuities described above. Two different chem-
istry systems, in different nozzles, and in various degrees of "near
equilibrium" have been subjected to discontinuities of different types
and magnitudes. The geometries and chemistry systems are presented
in Figure E-1.

Consider a particle at the combustor exit. Note that in func-

tional form (see Appendix A)

o = oi(o,T,Ci) (i=1,...,n) (E-1)
lpk = wk(T’Oi ’c1) = wk(psTaCi) i=1’°--:n) (E-Z)
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C-H-0-N GEOMETRY H-F GEOMETRY
Hy0 + M ZOH+H+M Fp + M TP+ M
H2+MZZH+M HF + MTH+F+M
0, + M T2 +M Hy + M ZoH+ M
co, + H TO0H +CO HF + F < Fy + H

> -+

H0 + H « H, + OH HF + H < H, +F
H,0 + 0 < 20H 2HF T F, + H,
OH + H < Hy, + 0 H-F REACTION MECHANISM
OH + 0 < 02 + H

C-H-0-N REACTION MECHANISM

Figure E-1. C-H-0-N and H-F systems.
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Since all the static properties and the species mass fractions are
known at the location of the particle, the species source functions
i and the energy source term wk can be computed at this point. In a
real flow, there can be no discontinuities of the static properties
and species mass fractions at the junction between the combustor exit
and the nozzle inlet. Therefore, from equations (E-1) and (E-2), the
distributions of o, and wk along the flow direction must also be con-
tinuous at this junction. The discontinuities do not represent
reality. They are merely the consequence of an attempt to link
together separate combustor and nozzle analyses. Their effect should
not be felt within the flow, but should be manifest at the inlet mesh
points before the species continuity equations are integrated through
the flow field. This is accomplished by allowing the species macs
fractions at the combustor exit to adjust to the static conditions at
the nozzle inlet. The discontinuities are replaced by ramp functions
outside (just before) the inlet mesh points as shown in Figure E-2.
The discontinuities in density and temperature become continuous,
linear transitions from combustor to inlet conditions over the period
of a variable "relaxation time." The time is chosen so that the change
in the energy source term wk is minimized between the combustor exit
and the nozzle inlet.

Figure E-3 shows curves of wk versus relaxation time for the H-F
system starting from near-equilibrium conditinns. The effects of
temperature and density ramps are shown separately. A zero relaxation

time corresponds to a discontinuity at the junction between the
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combustor exit and the noz