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SECTION I

I NTRODUCT ION

1. GENERAL

Performance prediction for a ramjet propulsion system requires

a detailed analysis of the flow through each of its major components:

the inlet, the combustor, and the exhaust nozzle. The objective of

this research was to develop a procedure for calculating the flow

field within the converging-diverging nozzle of a high-speed (M=6)

ramjet propulsion system.

Initial data (at the nozzle inlet) for the nozzle flow field

analysis is provided by the results of the combustor analysis. Ramjet

combustors are generally axisynimetric in shape with slowly-varying or

constant cross-sectional area. Techniques for analysis and performance

prediction for a high-speed ramjet combustor are still under develop-

ment. One technique (Reference ( 1)] is based on a one-dimensional

compound flow analysis of the combustor flow field. The flow is broken

into a number of coaxial flow streams and the one-dimensional flow

equations are solved within each stream. The static pressure is

matched radially across each of the streams resulting in a uniform

static pressure distribution across the combustor exit. The fuel

injection processes, fuel droplet dynamics, atomization, mixing, vapor-

ization, and combustion kinetics are all included in the flow model.
1.



The final result of the combustor analysis is a complete set of known

flow properties and chemical species concentrations at the nozzle

entrance where the converging geometry begins to introduce two-

dimensional flow effects. The flow at the combustor exit will not

necessarily be in chemical equilibrium. At high speeds, the stagna-

tion temperature within the flow will be large and the effects of

finite-rate chemical kinetics become important. Also residence times

within the combustor may not be sufficient for the flow to reach chem-

ical equilibrium. The technique developed in the subject research

will accept a nonuniform, nonequilibrium, distribution of initial con-

ditions at the nozzle inlet.

The analysis within the nozzle can be divided into two parts:

the analysis of the subsonic and transonic flow fields in the axisym-

metric nozzle entrance and throat regions, and the analysis of the

supersonic flow field in the nozzle divergence. The effects of finite-

rate kinetics must be included in both parts of the analysis. If the

nozzle divergence is axisymmetric, Reference (2) can be used for

analysis of the supersonic flow field. If the divergence is not axi-

symmetric, due to integration with the airframe, then a three-

dimensional analysis is required. A highly accurate, three-dimensional,

method-of-characteristics scheme for supersonic flow, including finite-

rate chemical kinetics effects, has been developed by Cline and Hoffman

(3). The subject research has been concerned with the analysis of the

subsonic and transonic flow regions. Both axisymmetric and planar

nozzle geometries are considered and the nozzle may have a centerbody.

Though the present discussion focuses on ramjet propulsion, the

2



technique which is described is applicable to any subsonic-transonic

flow field analysis where the effects of finite-rate chemical kinetics

must be considered. The computer program which evolved from this work

is an extension of that developed by Cline (4).

2. LITERATURE REVIEW

The literature surveyed for this research can be divided into

three groups: 1) one-, two-, and three-dimensional, steady, chemically

reacting nonequilibrium flow, 2) two-dimensional, unsteady, nonreacting

flow, and 3) unsteady, chemically reacting, nonequilibrium flow. Each

of these groups is considered in turn in the following discussion.

Steady, Chemically Reacting, Nonequil ibrium Flows

There is a very large amount of literature concerning this topic.

Most of the literature deals with one- and two-dimensional flows. For

the one-dimensional case, the solutions can be categorized as analyti-

cal, semiempirical, and numerical. Analytical solutions are possible

only for the very simplest nonequilibrium processes and often approxi-

mations such as linearization and the assumption of a high Mach number

are introduced. Reference ( 5) provides examples of analytical solu-

tions. Perhaps the most often used semiempirical method is the "sudden

freezing" approximation (5) where equilibrium flow is assumed upstream

of an empirically chosen "freezing point," and frozen flow is assumed

downstream of that point. Accurate numerical solutions are also avail-

". able and have been computed by a number of investigators. Examples

i include the work by Emanual and Vincenti (6 , 7), Sarli (8), Lordi

3



et al. (9), and Frey et al. (10). Reference (10) is widely used by the

propulsion industry.

Two-dimensional, steady, supersonic flows with chemical nonequili-

brium have been computed by Widawsky (11), Zupnik et al. (12), Craig

(13), Bartlma (14), and Kliegel et al. (2). Reference (2) considers

the elements C, H, 0, N, F, and Cl, 19 gaseous species containing

those elements, and 48 chemical reactions that may occur between those

species. A method-of-characteristics procedure is used. The super-

sonic initial-data line required to start the characteristic calcula-

tions can be input or it can be calculated by a transonic analysis

within the program. The characteristic equations governing the fluid

dynamic variables are integrated by a second-order (modified Euler)

explicit method. The species continuity equations are integrated using

a first-order, implicit method. It is significant to note that the

authors of Reference (2) state that even small interpolation errors

in species concentrations cause severe stability and accuracy problems

in the numerical integration of the species continuity equations. This

fact will be discussed more fully in Section III.

Cline and Hoffman (3) extended an isentropic flow three-

dimensional method-of-characteristics scheme, developed by Ransom et

al. (15), to include the effects of finite-rate chemical kinetics.

Their analysis uses the same chemical kinetics model as used in Refer-

ence (2). Initial-value plane data can be obtained from the results

of an analysis using Reference (2), but in that case, no account is

made for two-dimensional effects upstream of the throat. The subject

research provides a two-dimensional, nonequilibrium initial-value

4



plane for use in the analysis of Reference (3). Cline and Hoffman (3)

note the importance of using correct initial data. They found that

incorrect data may result in thermal compressions and shocks due to the

rapid change in chemical composition just off the initial-value

surface. As in Reference (2), the fluid dynamic equations are inte-

grated using a second-order explicit method, but the species continuity

equations are integrated using a second-order, implicit scheme. This

particular scheme was chosen after an extensive review of various

explicit and implicit methods for integrating the species continuity

equations.

Unsteady, Nonreacting Flow

The time-dependent technique for the solution of steady-state

converging-diverging nozzle flows has been used by a number of inves-

tigators [References (4) and (16) to (23)]. References (16) to (22)

provide generally good results for typical problems but the techniques

yield relatively long computational times. Cline (23) attributes this

to "inefficient numerical schemes and poor treatment of the boundaries

resulting in the requirement for excessively fine computational meshes."

Cline (4, 23) uses MacCormack's method for interior points with the

governing equations of motion in nonconservation form. Implicit arti-

ficial viscosity is present within this method so explicit artificial

viscosity is added only for flows with shock waves. The boundary

points are computed using a reference-plane characteristic scheme.

Solutions to representative, inviscid, nozzle problems are obtained

in approximately one minute using a CDC 6600 computer.

5
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Unsteady, Chemically Reacting, Nonequilibrium Flow

Vamos and Anderson (24) have used a time-dependent scheme to com-

pute the one-dimensional, nonequilibrium flow of reacting gas mixtures.

They cite several advantages of their approach as compared to steady,

one-dimensional analyses:

1) the use of relatively few grid points with relatively large

spatial increments through the nozzle, including the near

equilibrium subsonic portion of the nozzle.

2) the straightforward manner in which completely nonequilibrium,

subsonic, supersonic flow can be treated. In particular, the

usual singularity in the throat region associated with steady

flow analyses is not present in the unsteady approach.

MacCormack's method (which is explicit) was used in this work for all

the governing equations (including the species continuity equations).

Very long computation times were reported ("'1 hour on a CDC 6400) but

the results were quite good. No general computer programs have been

developed to treat multidimensional, reacting flows by an unsteady

approach.

3. REMARKS ON COMPUTATIONAL TIME

Stability, accuracy, and computational time are generally the

most important factors used in determining the merit of a particular

'. numerical method. In the subject research, computational time has

- been especially important for several reasons. First, the flow field

to be modeled in the nozzle entrance and throat regions is a two-

dimensional, subsonic and transonic flow. For steady subsonic flow,

6



the governing partial differential equations are elliptic while, for

steady supersonic flow, those equations are hyperbolic. In the tran-

sonic flow regime, the equations change from elliptic to hyperbolic

(i.e., they are mixed). Techniques for solving mixed flow problems

are not well developed, but hyperbolic problems have been studied and

solved for many years. The mathematical difficulties associated with

a mixed flow problem can be avoided by solving the unsteady flow equa-

tions which are hyperbolic in both subsonic and supersonic regions.

Then the steady flow solution can be obtained as the asymptotic

solution to the unsteady equations, with steady flow boundary conditions

applied, for large time. The disadvantage of this approach is that

another independent variable is introduced into the analysis and the

unsteady solution may have to be advanced through many time steps to

achieve the steady state. If the allowable time step is small, and/or

the time to compute each solution plane is large, then long computa-

tional times can result. The time step size is determined from

stability considerations for the given equations and numerical methods

used. Introducing finite-rate chemical kinetics into the analysis

significantly increases the time required to compute each solution

plane. This is because the number of equations in the mathematical

model increases by the number of chemical species considered, and the

calculations required to compute the species source function and to

integrate the species continuity equations are very time consuming.

The nature of the species continuity equations must also be con-

sidered in a discussion of computational time. For flows near

7



equilibrium, the species continuity equations are "stiff," and as a

result, they are difficult to solve numerically (see Appendix D).

Standard explicit integration techniques, when applied to stiff

differential equations, are unstable except for very small step sizes.

This problem occurred in the work of Vamos and Anderson (24). The use

of implicit methods, however, removes the stability problems and allows

more reasonable time steps. In addition to obtaining a solution to

the subject problem, a significant objective of this research has been

to achieve the solution in reasonable computational times.

8



N SECTION II
MODELING THE PROBLEM

1. PHYSICAL MODEL

In Section I it was noted that the initial data for the nozzle

K-. flow field analysis is provided by the results of the combustor

analysis. Within the combustor, the fuel injection processes, fuel

droplet dynamics, atomization, mixing, vaporization, and combustion

kinetics may all be considered. However, by the time the flow has

reached the combustor exit, it is assumed in this analysis that it is

a mixture of thermally perfect gases with no condensed phases. The

distribution of fluid dynamic properties and the species concentrations

may or may not be uniform across the exit. Also, the flow may be in

chemical nonequilibrium at the combustor exit. The flow within the

nozzle is treated as continuous, inviscid, and adiabatic. Body forces

are neglected. No provisions have been made for diffusion or turbu-

lence modeling within the flow. Finally, only chemical nonequilibrium

K is treated in this analysis; the flow is assumed to be everywhere in

instantaneous translational, rotational, and vibrational equilibrium.

2. MATHEMATICAL MODEL

The equations which correspond to the physical model described

above are given in Reference (25) and are discussed in Appendix A.

9



These equations are the global continuity equation, the momentum

equation, the energy equation, the species continuity equations, and

the thermal and caloric equations of state. In vector form, they are:

ap + V+v • (pV =o (1)

p D + VP =0 (2)

D(h + V1 P
-" - Dt+2 2 -a. =

0  (3)
Dt P t

ap.i
*Ti + v (piv ) =a (i=1.,n) (4)

n
P = pT Z CiR i  (5)

n T
h = E Cihi whereh i = T C dT + h (6)

where p Is the fluid density, V is the velocity, P is the pressure,

h is the system enthalpy, T is the temperature, pi are the species

densities, Ci are the species mass fractions, ai are the species source

functions, hi are the species enthalpies, R. are the species gas con-

stants, Cpi are the species specific heats at constant pressure, and

h are the species energies of formation.

In Appendix A, equations (3) and (4) are manipulated to forms

which are more convenient for analysis and the entire set of governing

equations is written for two-dimensional axisymmetric or planar flow.

10
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The resulting equations are:

Pt + UP x + Vpy + Pux + pvy + s(pv/y) = 0 (7)

ut + uu + vu + P/p =0 (8)t x y x

vt + uv x + vv y + Py/p =0 (9)

2

P + uP +VP - af2 (P + up + vp)= (10)t x y f t x y (k0

i+ uC + = (i=1,... ,n) (11)

where
n

= [Y fR iT - (yf-1)hi]i

The subscripts in these equations denote partial differentiation and

e in equation (7) is zero for planar flow and one for axisymmetric

flow. The terms af and Yf are the frozen speed of sound and the ratio

of frozen specific heats respectively. Note that the species conti-

nuity equations (ll)are coupled to equations (7) to (10) by the energy

equation source term k.

Since the interior points in this analysis are to be treated by

a fixed grid technique, it is convenient to transform the physical

(x,y,t) plane to a rectangular (c,nj) plane in which the differencing

is performed. The following coordinate transformation is used (see

Figure 1):

a."l
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SFigure 1. Physical and computational planes.
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X (12)

* . -i-y~x

w- o

where y (x) and yw (x) represent the nozzle centerbody and wall coor-

dinates, respectively, as functions of x. Applying this transformation

* . to equations (7) to (11) yields the forms of the continuity, momentum,

energy, and species continuity equations which are used in this analy-

sis.

P + P + vp + PUC +.Pau + PBv + pv/n : 0 (13)

u + uu +vu + P/p + P/p = 0 (14)
T TI C 11

v + uv +vv + P/p = 0 (15)

P +uP + VP - af2(P, + up +vp) k

C. + uCi + VCi = C i/P (i=l,...,n) (17)

where
if- -- = -B aYc a- w Yc)

ax- ax--r( ax ax

.. : B __ an =
Y Yw - c

v E a- u + av

2°'n - Yc +  nl/

11

6 13



Note that equation (17) may be written as

DC. .
(18

where DC /DT is the change in C. following a particle path in the comn-
i *1

putational plane.

3. CHEMICAL KINETICS

The species source function appears in the forcing terms of both

the energy equation (16) and the species continuity equations (18).

Before the species source function can be computed, a reaction mechan-

ism must be specified. The reaction mechanism used in this research

is the same as that used in Reference (3) with the addition of the

hydrocarbon reaction discussed in Appendix B. Unburned hydrocarbons

may be present in the gas mixture at the combustor exit and therefore,

provision for these species must be made in the chemical kinetics model.

Edelman, et al. (26) and Edelman and Harsha (27) have developed a

kinetics model for use in combustor analyses which includes a "sub-

- . global" partial oxidation step:

C CHm + L 0 ~H+ nC0 (19)

Note that this reaction proceeds in the forward direction only. The

41, reaction rate coefficient for equation (19) is determined empirically

and is given by (Ref. 27):

a.=6.0x i1 p0 ~ c C c 0(20)
n Cnm 02
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where P has units of atmospheres and c represents species concentra-

tions in g-moles/cc. For a nonequilibrium, chemically reacting flow

of a system of thermally perfect gases composed of the six elements

carbon, hydrogen, oxygen, nitrogen, flourine, and chlorine, Gold and

Weekly (28) have shown that 19 species and 48 chemical reactions should

be considered. Tables B-I and B-II of Appendix B show these species

and reactions. Experience with this and other reaction mechanisms has

indicated that there may be cases when not all of the reactions corres-

ponding to a given set of chemical species should be included in the

analysis. The number of reactions in the reaction mechanism is a sig-

nificant parameter affecting execution time. Therefore, no more reac-

tions than are necessary should be included in the reaction mechanism.

A general reaction equation which is used to represent any reac-

tion mechanism is

""n k j n If
S£ 'X. E V Xi  (j=1 .,m) (21)

i=1 kij 1i j 1""=rj

where vij and vii are the stoichiometric coefficients of the reactants

and products respectively, Xi denotes the ith chemical species, and kfj

and krj are the forward and reverse reaction rate coefficients, respec-

tively, for the jth reaction of the m reactions in the reaction

mechanism.

Reaction rate coefficients are not readily predicted at the

present time and therefore, they are generally found experimentally.

The form for the reverse reaction rate coefficient which is used in

this analysis is

15



-n.
krj = ai T i exp(-b./RT) (22)

where a nj, and b. are empirical coefficients, g is the universal

gas constant, and T is the local gas temperature.

Expressions for the species source function for both dissociation-

recombination reactions and binary exchange reactions are developed in

*Appendix B. For dissociation-recombination reactions, the species

source function is:

[, n v.
Oi =mi p2  Z (v i LKj ) 1(23)D-R jini) (23

SV. M k
-p i11 (C.) iJ n '.

i=1 1 1

- where n V .

K. =.Kp j i=l
"k n V!.

JD-R R'T ij
:,..i=l

For binary exchange reactions the species source function is:

i 2 ) IJFK.. ( (C)'
B-E j=1 1 i-1

(24)

_71'- n )V.." kr~
(Ci  ,,n k.

Z-.-'i=1
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where

n V'n(i) ,J

N K. K =
jB-E 

• n V
i=Ij

In equations (23) and (24), K is the equilibrium constant based on

partial pressures, Mj is the third body reaction rate ratio, Ci are

the species mass fractions, and m. are the species molecular weights.
1

The effect of different third bodies on dissociation-recombination

reactions is accounted for through the use of third body reaction rate

ratios M. as in equation (23). Appendix B contains a discussion of

these ratios.

Note that the difficulties in making accurate measurements for

the determination of reactions rate coefficients, the necessity of

extrapolating experimental data from one situation to another, and the

uncertainty as to the reaction mechanism, are all significant factors

limiting the accuracy of the analysis presented in this research. How-

ever, experience with one-dimensional analyses of reacting flows

indicates that the chemical kinetics model used here is adequate for

performance prediction.

17



SECTION III

THE UNSTEADY AND INCONSISTENT SCHEMES

V 1. GENERAL

The governing equations presented in Section II can be thought

of as being composed of two groups: 1) the equations governing the

fluid dynamic variables (i.e., the global continuity, momentum, and

energy equations), and 2) the species continuity equations. For

convenience, the first group will hereafter be called the fluid

dynamic equations. Two approaches to the solution of the complete

set of governing equations have been considered and are discussed

below. The first approach is called the "unsteady scheme" and, though

it has not been implemented, it is helpful in understanding the second

approach. The second approach is called the "inconsistent scheme" and

it has been used successfully in the overall numerical algorithm of

this research.

2. THE UNSTEADY SCHEME

Consider an initial-data surface for the subject problem at time

level N. Figure 2 illustrates the unsteady scheme at an arbitrary

grid point within the computational mesh. The fluid dynamic variables

uN 9VN, P N and PN and the species mass fractions CN are known at all

mesh points. The superscripts denote the time level. In the unsteady

scheme, the solutions of the fluid dynamic equations are advanced one

18
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time step by the methods of Reference (38) to give uN+1, vN+ , pN+,
"-T"N+1 N

and o The Ci are held constant during this step. In words, the

species continuity equations given by equation (18) require that the

total change in mass fraction along a particle path, for each of the

chemical species, is equal to ai/p. Therefore, using the solution for

u N+I and vN+ I and the time step size, the particle path is traced back

from the grid point at time N+1 to its origin in the initial data sur-

face (time level N). Then, by interpolation in the two-dimensional

N N N N Ninitial-value surface, values of , ,at the,..V , ,* p, and at th

origin are determined. The subscript * indicates values at the parti-

cle path origin which will generally not be at a computational mesh

N N N N N N+1 N+1 N+1 N+1
point. Given u. , v.N, T.N, p.N, C * ,u v T andp itis

possible to integrate the species continuity equations forward along
' N+1

* .+IL the particle path and to compute Ci  . When the steady state is

* *'.achieved, the same particle path and * values will be computed for each

additional time step and therefore, the solution will not change with

time. There are a variety of unit processes which might be imple-

mented with this approach. For example, one might predict the solution

for uN+ I vN+ I pN+l and pN+, generate the particle path and inter-

polate in the initial-data plane, integrate the species continuity

equations forward to give C and then repeat these same steps in
ip

a corrector procedure.

The unsteady approach suffers several serious drawbacks. Time

" consuming interpolation for 4+n variables in the two-dimensional

initial-data surface is required. Also, as noted in Reference (2),

interpolation for species concentrations is likely to produce numerical

20



difficulty. Values of the forcing term kin the energy equation for

high temperature, near equilibrium conditions are found to be very

sensitive to variations in the s~2ecies mass fractions. Therefore, any

interpolation error in the values of C.i could produce dramatic errors

in *k.Recall that k couples the fluid dynamic equations and the

species continuity equations. The unsteady approach is useful because

it is conceptually straightforward and provides a clear picture of

convergence at the steady state. Also, it provides a basis from which

the inconsistent approach can be understood.

3. THE INCONSISTENT SCHEME

Consider the ordinary differential equation

=f(y,t) (25)dt

The finite difference form of this differential equation is "consistent"

if the finite difference equation approaches the differential equation

as A~t -. 0. The overall algorithm used in this analysis is inconsis-

tent because of the treatment of the species continuity equations.

Specifically, in the inconsistent approach, the solutions for the fluid

dynamic variables are advanced one time step from an initial data sur-

face in the same manner as for the unsteady approach while the species

mass fractions are held constant. Then, the flow at time level N+1

is assumed to be steady and as many as four streamlines are traced

through the flow field with origins at selected locations along the

nozzle inlet. The species continuity equations are then integrated

along these streamlines from the nozzle inlet to the exit. This

21



process of advancing the fluid dynamic variables and then integrating

the species continuity equations along streamlines is repeated until

convergence at the steady state is achieved. This approach is incon-

sistent because the finite difference form of the species continuity

equations does not approach equation (18) as At+ 0 (3Ci/at is

neglected).

Figure 3 is helpful in understanding the inconsistent approach

and its relationship to the unsteady approach. Note that it corres-

ponds to the special case of v equal to zero and a streamline passing

through computational mesh points. Advancing the fluid dynamic var-
,+ + + N+1

iables one time step gives values of uN+l, vN+, pN+1, and p at

point C in Figure 3. It would be possible to trace a particle path

back to point A, corresponding to L-1 in the computational mesh,

where values of u, v, P, p, and Ci could be determined by interpola-

tion (between values at L-1, M, N and those at L-1, M, N-i). Then,

just as in the unsteady approach, the species continuity equations

could be integrated forward; in this case, from point A to point C.

The proper time step for integration of the species continuity equa-

tions would be found from the velocities at A and C and the distance

between those two points. This time step would, in general, not be

equal to the time increment between N and N+1. In the inconsistent

scheme, the species continuity equations are integrated between points

.mB and C with the time step determined by the velocities at B and C

and the distance between those two points. If the values of u, v, P,

p, and Ci are the same at points A and B, then the inconsistent approach

gives the same result as the unsteady scheme. Also, in the limit of
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steady state, the values of the fluid dynamic variables and species

concentrations do not change between points A and B.

The benefit of using the inconsistent scheme is that integration

of the species continuity equations always proceeds from the computed

values at B to yield new values of the species mass fractions at point

C. Interpolation for the species mass fractions is not required.
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SECTION IV

SOLUTION OF THE FLUID DYNAMIC EQUATIONS

1. GENERAL

In Section III, the fluid dynamic equations were defined as those

equations which govern the fluid dynamic variables u, v, P, and p.

These equations are the global continuity equation, the component

momentum equations, and the energy equation. Recall from Section III

that in the inconsistent scheme, the solutions to the fluid dynamic

equations are advanced one time step while the distributions of the

species mass fractions throughout the nozzle are held constant. This

section describes specifically how the solutions to the fluid dynamic

equations are determined.

The mesh points in the computational plane may be categorized into

four groups: interior, inlet, wall, and exit points (see Figure 4).

The inlet, wall, and exit points are know,, collectively as boundary

points. In the following discussion, thi numerical treatment used for

each type of mesh point is presented.

2. INTERIOR POINTS

Interior mesh points are computed using MacCormack's method

(Ref. 29); an explicit, second-order accurate, two-step finite dif-

ference scheme. The fluid dynamic equations are employed in non-

conservation form. Moretti (30) showed that using the conservation
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form decreased computational efficiency. Backward differences are

used on the first step and forward differences are used on the second

step.

As an example, consider the partial differential equation

ut = -uux  where u = u(x,t) (26)

Application of MacCormack's method yields the following finite differ-

ence equations:

S n+l n At nun n

1 = u -u u -ui l  (27)

n+l = [un  At .n+l ' n+l n+l n+lStep 2: u -Tui M+1i+l ai + U ]/2
i

or

un+l n At - n+I1 n+l n+l n(un ni =u--- - i ( i+l i ) + ui - Ui1 )] (28)

where i denotes mesh points along x, n denotes the time step, and the

tilde denotes values calculated by the first step. Similarly, appli-

cation of MacCormack's method to equation (7) for planar flow yields

N N N N
_N+l =N AtuN M(PLMPL-l M) + vN PL,MP,-
PL,M PL,M - At[uL ,M Ax VM( A- LM-y

+ N ___L _ + N, M L,M-)] (29)
Ax AY

~N+l -N+l ~N+l ~N+l

N+1 1 N _ N+I PL+I ,MPL,M N+1 PL,M+I-PL,M
PL,M 2 ILM At[UL,M( Ax + L,M( AY

-_N+l NN+l N N+l-"N+l L+I Wu L,M+ ~N+I L,M+-VL,M )]+ (30)'F L l ,x L,M Ay L,w- FL,M Mx
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where L and M denote axial and radial mesh points, respectively, N

denotes the time step, and the tilde denotes values calculated by the

first step.

When the nozzle does not have a centerbody, the centerline points

are treated as interior points and solutions at these points are com-

puted by requiring symmnetry about the centerline. The velocity com-

ponent v and derivatives of u, P, and p with respect to n are all set

to zero. The derivative of v with respect to n is evaluated by a

one-sided, second-order accurate formula.

3. BOUNDARY POINTS

All boundary points in the present research are computed using a

- second-order accurate reference-plane characteristic scheme. A

reference-plane scheme is used rather than a bicharacteristic scheme

because the increased complexity and computational time of the bichar-

acteristic scheme is not warranted in view of the accuracy limitations

associated with the chemical kinetics model. In reference-plane char-

acteristic schemes, derivatives with respect to one of the independent

variables are approximated and treated as forcing terms, thus reducing

the number of independent variables in the problem by one. For example,

in the constant n reference-plane scheme, all derivatives with respect

to n are approximated (by MacCormack's method) and are placed on the

I right-hand side of the equal sign in equations (13) to (16). Charac-

. teristic relations are then derived for the resulting equations. A

constant n reference-plane method is used for inlet and exit points

while a constant reference-plane method is used for the wall points.
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The characteristic relations for these reference-plane methods are

derived in Appendix C. Figures 5 and 6 summarize the results of that

Appendix.

Cline (4, 23) computes exit points by linear extrapolation from

the first and second adjacent interior points. In the subject problem,

the computational mesh extends only a short distance into the super-

sonic flow field (just far enough so that an accurate initial-

data surface for a steady flow, method-of-characteristics scheme can

be computed). The constant n reference-plane scheme is used at the

exit because it has been found to be more accurate than extrapolation

in the "just supersonic" conditions at the exit.

In the following paragraphs, the boundary conditions and unit

processes for inlet, wall, and exit points are described in turn.

Inlet Points

Figure 5 illustrates the characteristic relations which apply for

subsonic flow at the nozzle inlet. Note that in this case, only one

characteristic curve is contained within the flow field. The com-

patibility and characteristic equations which apply to the subsonic

inlet case are (see Appendix C)

2dP- pafdu = + af2,1- pafp 2)dT (31)

along d = (u-af)dr

where

;VP- P un -p vn "epv/n (32)

=VU - cP /p (33)
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Const
dT. I.3

dt u drI

d d u-f
dt u+af-

A 2 B

dv = *3 dT -,

dP adP 2 dp 04 dT along dC = udT

dCi = *5 d-&

dP + Pafdu = ( 4 + af2 1 + paf' 2)dT along d; = (u+ af)dT

dP - pafdu = ('4 + af2 1 paf 2)dT along dr = Cu-af)dT

compatibility equations characteristic curves

Figure 5. Constant n reference-plane characteristic relations.
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drdyl
Vdr IIi 'f

di) V+Gfa* %

adu - cdv = "3

dP a af dp = 4fdT I along dii vd-r

dC1 =5 ipd

Paaf P~f
dP + Ct* du valong dn =(_v + f*d

c af P 08f . *

dP -a du + -i--f dv along dn (_v- afa*)dT

(NF + a f *1 & ___

compatibility equations characteristic curves

Figure 6. Constant C reference-plane characteristic relations.
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* -v.P+af2-v + (34)

Since there are 44-n unknowns at the inlet (u, v, P, p, and C,

i=1,.. .,n) and only one compatibility equation, 3+ni additional condi-

tions must be specified.

The "correct" specification of steady flow inlet boundary condi-

tions is a difficult problem; a generally preferred choice is not

known at the present time. Of the several diffe~rent sets of inlet

boundary conditions which have been tested during this research,

*specification of e, H 0, P0 , and Ci appears to give the best results.

Here, e is the inlet flow angle, H is the total enthalpy (h + V1)

P0 is the total pressure based on frozen composition at the combustor

exit, and C. are the species mass fractions. The specification of

total conditions at the inlet places an upper limit on the energy of

the flow and still allows flexibility in the solution for the static

properties at the inlet. The inlet flow angle is determined by exper-

iment or from the following procedure:

1. Determine representative values of the ratio of frozen speci-

fic heats yf and the gas constant at the combustor exit.

2. Generate a "long inlet" geometry by adding six to ten mesh

-: points upstream of the nozzle inlet, simulating a constant-

area duct.

3. Using the program of the subject research for isentropic

constant specific heat ratio flow, compute the solution to

the long inlet problem described in the preceding two steps.

Inlet boundary conditions for the long inlet problem are:
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a uniform distribution of zero flow angle, and total pressure

P 0 and total temperature T 0 based on combustor exit conditions.

4. The flow angles at the nozzle inlet for the converged long

inlet problem can be used as the inlet flow angles for the

reacting flow problem.

Note that the arbitrary specification of zero flow angle at the nozzle

inlet has been found to produce unreasonable velocity profiles at the

nozzle inlet for some nozzle geometries.

Examination of equation (3) shows that for steady flow, the total

enthalpy (h + V 2/2) is constant along streamlines. Therefore, the dis-

tribution of total enthalpy at the inlet is required to match that at

the combustor exit.

A uniform distribution of static pressure at the combustor exit

is one of the results expected from the combustor analysis. The

specification of 0, H0, C1, and uniform static pressure was one of the

inlet boundary condition sets tested during this research. For the

cases tested, the velocity distributions at the inlet were unreasonable

with very low (or negative) velocities at the inlet wall point. The

use of total pressure, determined from conditions at the combustor exit

and based on stagnation with frozen composition, has proved effective

in computing the inlet points.

The species mass fractions C1 are specified at the inlet. Their

values are determined by the relaxation of the species continuity

equations between combustor exit conditions and the static conditions

4 at the inlet. This relaxation process is described in detail in Sec-

tion V and Appendix E.
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For the case of supersonic flow at the inlet, values of velocity,

pressure, density, and the species mass fractions are all specified

since downstream conditions do not propogate upstream in a supersonic

flow.

The unit process at the inlet for subsonic flow is based on a

two-step, predictor-corrector method. The compatibility equation (31)

and the specified inlet boundary conditions are used together in an

iterative procedure to compute values of the fluid dynamic variables

at the solution point. The iterative procedure is described first.

Recall that e, H0, Po. and C. are all known at the solution point

(point 3 in Figure 5). To begin the iterative procedure, the static

temperature T is assumed. Then the following sequence of calculations

is performed to calculate the values of the fluid dynamic variables:

1. Given the values of sta-ic temperature and the species mass

fractions at the solution point, compute the gas constant R3 9

the enthalpy h3, the frozen specific heat at constant pressure

Cp3 , and the ratio of frozen specific heats Yf3 "

2. Using the definition of total enthalpy and its specified

_value at the inlet, compute the velocity magnitude at the

solution point

Q3 [2(Ho 3 - h3 ))1 (35)

" Then compute the frozen speed of sound af and the Mach number
3

at the solution point.

3. Use the relation between total and static pressure at the

solution point to compute P3:
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P3 = PO3/[1 + (Yf 2 M3 2]yf3/f3 1l (36)

L Now, use P3 ' R3 and T3 in the thermal equation of state to

compute P3.

4. Compute u3 and v3 from the velocity magnitude at the solution

point Q3, and the given flow angle.

5. Use the compatibility equation as a check on the results of

the preceeding steps [i.e., compute P3 using the compatibility

equation (31) and compare with P3 computed in step 3 above].

6. Iterate on T3 using the secant method until P3 computed in

steps 3 and 5 agree to within a specified tolerance.

This iterative procedure is used as part of each predictor and corrector

step in the overall unit process at the inlet. The predictor-corrector

steps are described next.

In order to use the compatibility equation, as described in step

5 of the iterative procedure, the characteristic curve must be con-

structed and the compatibility equation must be written in finite

difference form. This is done by replacing the differentials in equa-

tion (31) with differences along the characteristic curve. In the

predictor step, all coefficients and derivatives are evaluated in the

initial-value plane. Given the time step and the estimate for (u-af),

the intersection of the characteristic curve with the initial-value

line (in the constant n plane) is determined using the finite differ-

ence form of the characteristic curve equation. This intersection is

point 2 in Figure 5. All coefficients in equations (31) to (34) are
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evaluated at the intersection point by linear interpolation between

points A and B in Figure 5. In the predictor step, the derivatives

with respect to n (in the P terms) are evaluated using backward differ-

ences in the initial-value plane. When all coefficients and deriva-

tives are evaluated in equations (31) to (34), the iterative procedure

is accomplished and the predictor step is complete. This is done for

all inlet points before the corrector step is started.

In the corrector step, the characteristic curve must be con-

structed again. Now, the coefficient (u- af) is an average of the

values at the solution point (from the predictor step) and values at

point 2. Also, all coefficients in equation (31) are computed as the

averages of values at the solution and intersection points. Values

at point 2 are again determined by linear interpolation. Derivatives

with respect to n in the i terms are evaluated by forward differences

at the solution point and are averaged with the backward difference

approximations in the initial-value plane. When all coefficients and

derivatives in equations (31) to (34) have been determined by the

averaging process described above, the iterative procedure is accom-

plished and the overall unit process at the inlet is complete.

Wall and Centerbody Points

The wall and centerbody mesh points are computed using the con-

stant C reference-plane scheme described in Appendix C. For thisF scheme, all derivatives with respect to C in equations (13) to (16)

are placed on the right-hand side of the equal sign and treated as

forcing functions. The characteristic and compatibility equations
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are summarized in Figure 6.

The wall slope is specified at each mesh point along the wall

(or centerbody) for the given flow geometry. This slope provides the

psingle boundary condition necessary for the solution of the fluid
dynamic equations at the wall (centerbody) mesh points. For example,

i. consider a wall point. From Figure 6, the appropriate characteristic

*and compatibility equations are

6du - cdv = ( 0 " 3 )dT (37)

along dn = vdt
dP - af dp = p4dt (38)

p taf p~af f21 paf p~afP 3
dP + ( du + f dv +a 2+--- --)dT (39)

N 1 2

along dn = (v + afa*)

v = u tan 0 (40)

These four equations in the four fluid dynamic variables are written

in finite difference form and are solved in a predictor-corrector pro-

cedure like that for the inlet points. Specifically, equation (40) is

substituted into equation (37), which is then solved for u3 at the

solution point. Then v3 is obtained from equation (40) and P3 is com-

puted using equation (39). Finally, equation (38) is solved for P3.

Exit Points

Exit points are computed for both subsonic and supersonic flow by

the constant n reference-plane procedure (see Figure 7). For subsonic

flow, the exit pressure is given and is equal to the ambient pressure.
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Figure 7. Subsonic and supersonic exit points.
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The characteristic relations in this case are

dv = -r3d (41)

along dC = udT|dP - af2dp = 'P4di (42)

dP + pafdu = ('P4 + af21 + pae 2)d, (43)

along d? = (u+af)dT

Equation (41) is solved for v3, equation (42) is solved for P3 ' and

equation (43) is solved for u3.

For supersonic flow at the exit, all characteristic curves are

within the flow field and so, another compatibility equation is added

to equations (41) to (43) above.

dP - pafdu = ('4 + af 2 1 - af 2)&

(44)

along dC = (u-af)dr

Equations (41) to (44) are four equations in the four fluid dynamic

variables. Equation (41) is solved for v3 and equations (42) to (44)

are solved iteratively for u3, P3 9 and P3.

For both subsonic and supersonic flow, a predictor-corrector

procedure, analogous to that for the inlet mesh points, is employed.

Coefficients and derivatives in the characteristic relations are eval-

uated in the initial-value plane for the predictor step. Derivatives

in the 'p terms are approximated by backward differences. In the

d corrector step, coefficients and derivatives are evaluated in the
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solution plane and averaged with results from the predictor step.

Derivatives in the 'p terms at the solution point 3re approximated

by forward differences.

4.

U
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SECTION V

SOLUTION OF THE SPECIES CONTINUITY EQUATIONS

1. GENERAL

Recall from Section III that in the inconsistent scheme, the

solutions to the fluid dynamic equations are advanced one time step

while the distributions of the species mass fractions throughout the

nozzle are held constant. Section IV provides the details of this

part of the overall numerical algorithm. Then, the new flow field is

assumed to be steady and the species continuity equations are inte-

grated along as many as four streamlines from the nozzle inlet to the

exit. This section describes specifically how the integration of the

species continuity equations is accomplished.

It is well known that integration of the species continuity equa-

tions for flows near chemical equilibrium requires special care because

the equations become quite "stiff" (Refs. 3, 5, and 31). The concept

of a stiff differential equation and a physical explanation for the

stiffness of the species continuity equations are provided in Appendix

D. Many numerical techniques have been proposed for the solution of

the species continuity equations in near equilibrium flows (Refs. 32

and 33). Cline and Hoffman (3) analyzed and tested a number of pro-

posed schemes ir their analysis of three-dimensional, steady, non-

* equilibrium fiow. They concluded that explicit schemes and
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predictor-corrector methods are stable only for very smal' step sizes.

Also, only some of the implicit methods they tested gave adequate

results. A method proposed by Lomax and Bailey (34) was chosen as the

preferred method and it is this scheme which has been used in the

subject research. The method is second-order accurate, implicit, and

is based on a Taylor series expansion of the species continuity equa-

tions.

2. SECOND-ORDER, IMPLICIT, TAYLOR EXPANSION

The second-order, implicit Taylor expansion method, as applied

to the species continuity equations, is derived in Appendix D. The

resulting finite difference equation is

c~ 1 = + h [fi(3_ V+) + 1f2.fi
Ci +(3 - +i Lf _ (P +' +-Ll- (T +'

(45)
n af.+ 3 (jk~-Cj )t (i=l .. ,n)

j=1 aCj ji+1 i"

where h = s - s., s is the position along the streamline, f =

1+ 1

V is the velocity magnitude, and the subscripts t and t+1 denote

points along the streamline. The partial derivatives in equation (45)

are determined analytically. When expanded, equation (45) becomes a

system of n simultaneous, linear, algebraic equations in the n unknowns

ki = C i+l-CiR. This system of equations is solved using Gauss eli-

mination with scaling and partial pivoting.

For flows which are not near chemical equilibrium, a modified

Euler method is available for integration of the species continuity
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equations. The adequacy of this explicit integration method must be

determined on a trial-and-error basis.

3. STREAMLINE TRACING

The species continuity equations are integrated along streamlines

in the inconsistent scheme. Since streamlines will not pass through

computational mesh points in general (except along the wall and cen-

terbody/centerline), it is necessary to trace streamlines through the

flow field before the species continuity equations are integrated. The

computer program developed during the subject research allows the user

to trace as many as four streamlines through the flow field. The two

streamlines along the wall and centerbody/centerline must be used and

one or two more can be used with origins at arbitrary mesh points along

the nozzle inlet. The use of more than four streamlines in the over-

all algorithm would lead to prohibitively long computational times.

Figure 8 illustrates the streamline tracing procedure. A

predictor-corrector method is used. Starting at the point (1,M,N)

at the nozzle inlet, the values of u and v at this point are used to

project a streamline to the intersection with the line of mesh points

at L=2. Then, values of (u,2, v,2)p at the intersection point are

found by linear interpolation between known values at the adjacent

mesh points at L=2. In the corrector step, the values of (u,2, v,2 )p
4

are averaged with u and v at (1,M,N) and the streamline is again pro-

jected to the intersection at L=2. Linear interpolation is used to

find (u*2, v*2 )c. This predictor-corrector method is applied at each

L station until the streamline has been traced to the nozzle exit.
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4. ERROR CONTROL

The implicit scheme described previously has been found to be

stable for even large step sizes in both Cline and Hoffman's work (3)

and in the subject research. However, the method is subject to

truncation error, and thus consideration must be given to step size

control.

In the derivation of equation (45), third- and higher-order terms

have been neglected. The objective of the error control scheme is to

estimate the third-order term and (by adjusting the step size) to

insure that the ratio of this tern to the computed tern [the right-

r hand side of equation (45)] is less than a specified tolerance. An

expression for this ratio is derived in Appendix D and is restated

h e re :K 
-2 K. + K

RATIO.= IiZ+1 12. it-i 46
1 ~6K.I (I..n)(6

i't

Note that RATIO has distinct values for each of the chemical species

in the gas mixture at each step in the integration. Also, RATIO can

be computed only after three integration steps have been taken.

The error control scheme is implemented by placing intermediate

points between grid points along the streamlines (see Figure 9). An

estimate is made of the number of intermediate points (NINT) required

between L* and L+1*. Values of temperature, density, and velocity at

L* and L+1* are determined by linear interpolation between known

values at adjacent mesh points at each L station. The values of these

same variables at the intermediate points are determined by linear
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interpolation between the corresponding values at L* and L+1*. Then,

the species continuity equations are integrated through the inter-

mediate points from L* to L+1* and RATIO is computed for each of the

chemical species. If, after the last intermediate integration step,

the maximum value of RATIO is less than a user specified tolerance,

then the integration proceeds. If the required tolerance is not

achieved, then the number of intermediate points is doubled and the

integration procedure is restarted from L*. Also, if the maximum

value of RATIO is two orders of magnitude less than the specified

tolerance, then the number of intermediate points is halved before the

integration from L+1* to L+2* proceeds.

Numerical experiments have been performed to illustrate the use of

the error control scheme. Details are provided in Appendix D and the

results are summnarized here.

1. Most of the computational time required to solve the subject

problem is related to integration of the species continuity

equations. Therefore, the total execution time is nearly

directly proportional to the number of intermediate points

(NI NT).

2. Failure to use intermediate points will, in general, yield

poor results for species mass fractions C.i and the energy

4source termV

3. Integrating from equilibrium conditions with very small

gradients in temperature and density and a small value of the

* specified tolerance on RATIO can yield very large numbers of

intermediate points.
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4. For equilibrium initial conditions, NINT is not particularly

sensitive to the sign or magnitude of temperature, density,

or velocity gradients between L, and L+1, as long as the

conditions in conclusion (3) do not occur.

5. For nonequilibrium initial conditions, NINT is sensitive to

gradients in temperature and velocity while it is only mildly

sensitive to the density gradient between L* and L+1*. If

fl the property gradients between these points do not match the

*corresponding gradients between L-1 and L,, more intermediate

points are likely to be required to achieve a specified

tolerance.

6. Conclusions 1 to 5 appear to be valid for the several chemis-

try systems investigated in this research.

* Because of conclusion 3, an upper limit of 20 intermediate points

is used in the computer program for the subject problem. Experience

indicates that a relatively large tolerance (5 to 10%) should be used

until the solution is near convergence and then the tolerance can be

reduced to the desired level. Also, the user has the option of speci-

fying the number of intermediate points thereby overriding the error

*- control scheme.

w" 5. RELAXATION AT THE INLET

-. The choice of inlet boundary conditions was described in Section

• - IV. Recall that the flow angle e, the total enthalpy H0 , the total

pressure based on combustor exit conditions and frozen composition Po'

and the species mass fractions C. are all specified at each inlet mesh

48
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point. The use of total conditions as inlet boundary conditions

establishes the energy level of the flow and allows some flexibility

in the distribution of static properties across the inlet. As a

result, the distributions of the static properties across the inlet

: will not necessarily match those across the combustor exit. Discon-

tinuities in static properties between the combustor exit and the

nozzle inlet create the need for a relaxation of the species mass

fractions between these two points. A detailed description of the

relaxation process is provided in Appendix E. Here, the justifica-

tion for the relaxation and the relaxation process are summarized.

* Consider a particle (a small mass of the reactive mixture of

gases) at the combustor exit. Also, note that in functional form

(see Appendix A)

a. = a(p,T,Ci) (i=1,... ,n) (47)

L-'1 ij 1

mk = *k(T,ai,ci) = Ok(P,T,Ci) (i=l,...,n) (48)

Since all the static properties and the species mass fractions are

known at the location of the particle, the species source functions

Sa. and the energy source term k can be computed at this point. In
a real flow, there can be no discontinuities in the streamwise dis-

tributions of the static properties and species mass fractions at the

junction between the combustor exit and the nozzle inlet. Therefore,

from equations (47) and (48), the distributions of ai and 'k along the

flow direction must also be continuous at this junction. The dis-

continuities in the static properties described in the preceding

49
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paragraph are a consequence of the problem model; that is, an attempt

K to link a two-dimensional nozzle analysis to a quasi-one-dimensional

combustor analysis. Since the discontinuities do not represent reality,

their effect should be manifest at the inlet before the species con-

tinuity equations are integrated through the flow field. This is

accomplished by allowing the species mass fractions at the combustor

exit to adjust to the static conditicns at the nozzle inlet. The

species continuity equations are relaxed between conditions at the

combustor exit and those at the inlet for a period of time that mini-

mizes the change in Ik between these two points. In effect, a short

distance is spliced into the junction between the combustor exit and

the nozzle inlet so that the discontinuities in static properties

produced by the mathematical model can be replaced with linear grad-

ients. The distance is chosen so that the chemical nature of the flow

at the combustor exit (as represented by the energy source term pk)

is preserved at the nozzle inlet to the extent possible. Figure 10

illustrates the effect of relaxation time on 'Pk for an H-F propellant

system. The initial conditions are near equilibrium and curves for

several different temperature gradients are shown. Figure 11 shows

relaxation curves for the same propellant system and gradients but

with nonequilibrium initial data. Several important conclusions

regarding lk relaxation curves from Appendix E are restated here:

1. All curves of Ok versus relaxation time approach zero as

relaxation time increases. This is because the chemical

systems move toward an equilibrium condition (where the

50
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species source functions go to zero) with increasing relaxa-

tion time.

2. At high temperatures and near equilibrium conditions, is

i quite sensitive to variations in temperature and density.

For example, a 20'R temperature perturbation, with no relaxa-

tion, can change the computed value of 'k by several orders

of magnitude (see Figure 10).

3. For the chemistry systems and static property gradients
• studied in this research, relatively small changes in composi-

tion occur during the relaxation from combustor exit to

nozzle inlet conditions. Typically, species mass fractions

- change by less than two percent.

Failure to relax the species mass fractions at the inlet leads to

numerical difficulties for two primary reasons. First, without relax-

ation, the data set (p,T,Ci, i=l,...,n) at the inlet is inconsistent.

As noted above, the energy source term k (and species source function)

can then differ by several orders of magnitude from its value at the

combustor exit. This causes a "hard start" condition in integration of

the species continuity equations away from the inlet. Second, if

the species continuity equations are not relaxed before the inlet,

they will relax within the computed flow field. This can produce dis-

- tributions of k within the flow with dramatic oscillations near the

inlet; this k distribution, in turn, distorts the flow field.

* - The proper relaxation time is determined as part of the overall

,I numerical algorithm. The scheme is illustrated in Figure 12 which
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shows a typical Pk versus relaxation time curve. In that figure, lkR

is computed for the conditions at the combustor exit, kO is computed

for the species mass fractions at the combustor exit and density and

temperature at the nozzle inlet with zero relaxation time, and kAt

is computed for the same conditions as 'kO but with a relaxation time

At. The values of 'kR corresponding to each inlet mesh point are

computed as part of the initialization procedure for the overall algo-

rithm. They are only computed once and then are stored. Consider

time level N in the solution of the subject problem. kO is computed

at each streamline origin for the static conditions prevailing at the

inlet. There is a minimum relaxation time and if IhkO1 < IhkRl

then the minimum relaxation time is used. This is because k is known

to approach zero with increasing relaxation time. Otherwise, the

species continuity equations are relaxed through time At1 (see Figure

12) which is the relaxation time computed for a given streamline

during previous time steps. Then the species continuity equations are

integrated along the given streamline to the nozzle exit. Nct, a

check is made:

0"kAt -'kR l ?
O " IR < .05 (49)

'kO - ' kR .0

If the check is satisfied, then At1 is not changed and it is saved for

use during the next time step in the overall algorithm. However, if

the check is not satisfied, then a straight linc 3s extended from kO

through 'kAt to intersect kR* The relaxation time At2 corresponding

to that intersection is used during the next time step. The samg
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procedure continues for subsequent time steps as shown in Figure 12

until the check is satisfied.
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SECTION VI

OVERALL NUMERICAL ALGORITHM

1. GENERAL

The overall numerical algorithm consists of the repetitive and

alternate application of the procedures described in Sections IV and

V; the solutions to the fluid dynamic equations are advanced one time

step for a given distribution of the species mass fractions throughout

the nozzle, and then the flow field is assumed to be steady while the

species continuity equations are integrated along as many as four

streamlines from the nozzle inlet to the exit. Note that for some

problems, the fluid dynamic equations may be advanced more than one

time step before the species continuity equations are integrated. If

this is possible, the total computational time may be reduced signifi-

cantly (see Section VII). As discussed in Section III, this overall

scheme is inconsistent in time in the treatment of the species con-

tinuity equations, but it becomes consistent at the steady state limit.

Also, it is necessary to relax the species mass fractions between the

specified static conditions at the combustor exit and those at the

nozzle inlet before integrating the species continuity equations

through the flow. Discontinuities in static properties at the junction

between the combustor exit and the nozzle inlet occur because of the

choice of inlet boundary conditions for the problem model. An error
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control scheme, which limits the size of the truncation error in the

integration of the species continuity equations, is available. Con-

vergence is achieved when the computed values of the fluid dynamic

variables and the species mass fractions no longer change with time.

Two sets of mesh points are used in the overall algorithm, as

illustrated in Figure 13. During the first part of the algorithm, the

solutions for u, v, P, and p are advanced one time step at all compu-

tational mesh points in a predictor-corrector procedure (see Section

IV). Then, the flow is assumed to be steady, and streamlines are

traced through the flow field to locate the streamline mesh points.

The values of static properties at the streamline mesh points which

are required for integration of the species continuity equations are

determined by interpolation between adjacent computational mesh points

at each L station. In addition to computing the distributions of the

species mass fractions along streamlines when the species continuity

equations are integrated, the energy equation source term 1 k, the ratio

of frozen specific heats yf, the gas constant R, and the total

enthalpy H are also computed and stored for each streamline mesh

point. The variables yf, R, and k are all needed for the solution of

the fluid dynamic equations. The total enthalpy distribution is used

as a check on the validity and accuracy of the converged solution.

The values of these variables at the computational mesh points are

determined by linear interpolation between adjacent streamline mesh

points at each L station.
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U 2. INITIAL-VALUE SURFACE

The initial-value surface must be a smooth distribution of the

fluid dynamic variables u, v, P, and p throughout the computational

mesh. It can be read in or computed internally within the computer

program for the subject research. Three different methods have been

investigated for internal generation of the initial-value surface:

1. Obtain a one-dimensional solution to the problem of interest using

the program of Reference (10). Then, use the results of this

analysis to provide the axial distributions of pressure, density,

temperature and velocity magnitude for the initial-value surface.

The local flow angle 0 and velocity components at any point in the

initial-value surface are estimated from the given geometry (i.e.,

interpolate between wall and centerbody values for e at each L

station).

2. Obtain a one-dimensional, isentropic, constant specific heats

solution for pressure, density, and velocity magnitude. Values of

R and Y for this analysis are representative values at the combus-

tor exit. The local flow angle and velocity components are esti-

mated as in method 1.

. 3. Using R and y as in method 2, compute the two-dimensional, isen-

tropic, constant specific heats solution for the subject problem

and use it as the initial-value surface.

For all three methods, the distributions of species mass fractions are

determined by integrating the species continuity equations through the

given flow field from the known conditions at the nozzle inlet.
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Method 1 requires the use of two computer programs and the trans-

fer of data from one to the other. Also, there is no provision in the

program of Reference (10) for nonuniform data at the nozzle inlet.

Methods 2 and 3 can be accomplished using only the computer program of

the subject research and can be used for any set of data at the nozzle

inlet. Method 2 is simpler to implement than method 3 and, since there

appears to be little difference in overall computational time to (;on-

vergence for the two methods, method 2 is preferred. All three methods

have yielded essentially the same converged solutions for the cases

tested.

3. BOUNDARY CONDITIONS

The choice of steady flow boundary conditions has been discussed

previously in Section IV. Recall that for subsonic flow, the flow

angle e, the total enthalpy H 0  the total pressure based on combustor

exit conditions P0 and the species mass fractions C. are specified
0 1

at the inlet; the flow angle 8 is specified along the wall and center-

body; and, the exit pressure is set equal to the ambient pressure.

For supersonic flow, all static conditions and species mass fractions

- are specified at the inlet and the flow angle is specified along the

wall and centerbody.

It is essential that the data at the combustor exit be consistent

1 .40with the chemical kinetics model that is employed. This fact has been

noted by Cline and Hoffman (3) and has been established again in the

subject research. An inconsistent set of data will yield computed

a values of the species source functions which can be several orders of
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magnitude in error. As a result, an attempt to integrate the species

- - continuity equations away from the combustor exit yields immediate

numerical difficulty.

4. STEP SIZE AND STABILITY

No attempt has been made to perform a stability analysis for the

overall numerical algorithm as applied to the governing equations for

two-dimensional, unsteady, nonequilibrium, chemically reacting flow.

The stability of the treatment of the equations governing the fluid

dynamic variables and the stability of the species continuity equation

scheme are treated separately. The stability of the overall numerical

algorithm has been verified by numerical experiment.

The scheme used to advance the solutions for the fluid dynamic

variables is subject to the CFL stability restriction. This requires

that the finite difference domain of influence must be at least as

large as the continuum domain of influence. It ensures that the speed

of propogation of numerical disturbances (truncation error for example)

everywhere exceeds the speed of propogation of disturbances in the

flow (i.e., the speed of sound in a compressible flow). Application

of the CFL criterion to two-dimensional, unsteady flow yields

AT 1(50)
[(V + a)( 1 2J + ( 50

In practice, the step size is computed as

AT = A (51)
[(V + a)
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where A ranges from 0.4 to 1.6 depending on the geometry of the flow

[Reference (23)]. Any study of the time step multiplier A should be

performed for a nonreacting flow similar to the flow with finite-rate

kinetics. The proper choice of A can accelerate convergence. The

author's experience indicates that the value of A used for a represen-

tative nonreacting flow will also work for the reacting flow problem.

The second-order, implicit scheme used for integration of the

species continuity equations has been found to be stable for all step

sizes. Note that the step size for integration of these equations is

not related to AT in equation (51) since the species continuity equa-

tions are integrated along streamlines in space while the fluid dynamic

equations are integrated from one time plane to the next.

5. THERMOCHEMICAL MODELS

In addition to the chemically reacting flow of a mixture of ther-

mally perfect gases, two other thermochemical models can also be

analyzed using the computer program of the subject research. These

models are:

1. Isentropic flow of a thermally and calorically perfect gas

F4 (constant y).

2. Isentropic flow of a gas whose equation of state is input in tabu-

lar form. Two-dimensional frozen and equilibrium solutions can

be obtained using this model.
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SECTION VII

VERIFICATION AND RESULTS

1. VERIFICATION

At the present time, there are no other methods available for the

analysis of two-dimensional, nonequilibrium, chemically reacting sub-

sonic and transonic nozzle flows. Therefore, it is not possible to

make comparisons with existing results. However, a number of tests

- - have been performed to verify the results of the subject research

-: as discussed in the following paragraphs.

The scheme for integration of the species continuity equations

must generate accurate concentration profiles for given distributions

of the fluid dynamic variables along the nozzle axis. In order to

test this capability in the subject computer program, one-dimensional

analyses of several kinetics problems were performed using the program

of Reference (10). These problems are discussed in Appendix E. Then,

using the distributions of p, T, and V from the results, the species

continuity equations were integrated through the given flow fields by

the technique of the subject research. The resulting concentration

profiles were compared with those computed by Reference (10). For the

C-H-O-N system, an "error" of 0.35 percent in the mass fraction of

* monatomic hydrogen at the nozzle throat constituted the most signifi-

cant deviation from the Reference (10) solution. Applying the same
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procedure to the H-F system yielded "errors" at the throat which were

typically less than two percent. The worst case was a 3.4 percent

deviation in the mass fraction of monatomic flourine. Figure 14

illustrates the species mass fraction profiles for the H-F system as

computed by the integration technique of the subject research.

There are four results which must be true of a converged solution

to the subject problem and which are therefore useful in determining

the validity of the computed results. First, the law of conservation

of mass requires that the mass flow at each axial position along the

nozzle must be constnt. Values of mass flow at the nozzle inlet,

throat, and exit are computed and made available as part of the program

output. Second, in the steady state limit, the total enthalpy Ho

must be constant along streamlines in the flow. A "total enthalpy

error" has been defined so that this fact can be used as a measure of

the accuracy of the solution.

HOL - OR

H Error H - (52)
V 2 - VE I

2

where HOL is the total enthalpy at axial position L along a given

streamline, HOR is the total enthalpy at the combustor exit for the

same streamline, and VE and VI are the velocity magnitudes at the

nozzle exit and inlet, respectively, along the streamline. Profiles

of total enthalpy error for the cases studied are presented with the

discussion of results. Third, the sum of the species mass fractions

must be one throughout the flow. This fact ,s not used explicitly
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in the problem formulation or in the numerical algorithm. However, the

sum of the species mass fractions at each axial mesh point along the

kinetics streamlines is computed and output. The fourth result which

must be true of the converged solution is that the finite-rate kinetics

results must lie between the equilibrium and frozen solutions since

those cases correspond to infinite and zero reaction rates, respec-

tively.

As a further test, the results of the subject technique have been

mass-averaged (in the radial direction) and compared with an accepted

one-dimensional solution [Reference (10)]. Mass-averaged temperature

profiles are compared with one-dimensional temperature profiles in

the discussion of results.

In the final verification step, the subject technique has been

applied to a -,opersonic problem and the results have been compared

with those from a two-dimensional method-of-characteristics solution

[Reference (2)]. The results of an H-F system subsonic-transonic

analysis were used to generate the initial data line for both the

method-of-characteristics solution and the solution by the subject

method. Eight equally spaced mesh points were used along the initial

data line. A comparison of the results is presented in Figure 15 (TDK

corresponds to the char-'teristics solution). Note the excellent

agreement in the temperature and concentration profiles along the

wall and the fair agreement of the centerline temperature profile.

6
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2. RESULTS

Several different nozzle geometries and chemistry systems have

been analyzed during this research. The details of the nozzle geo-

metries and reaction mechanisms for the systems discussed here are

presented in Appendix E.

C-H-O-N System

The C-H-O-N system corresponds to a realistic application of the

subject technique to a ramjet nozzle problem. The composition of the

reactive mixture of gases at the nozzle inlet results from an equili-

brium calculation for the combustion of a hydrocarbon fuel in air.

The nozzle size arid shape is appropriate for a ramjet application. It

is a circular-arc conicul nozzle with a 7.5 inch inlet radius, U 4.75

inch throat radius, a 45 degree angle in the convergence, and a 15

degree angle in the divergence. There are 12 chemical specie, and 8

reactions in the chemistry model. Figure 16 presents the results of

the analysis for this problem. Note that the mass-averaged tempera-

ture for the finite-rate kinetics solution does fall between the

equilibrium and fiozen solutions and that it matches the ODK solution
6

[Reference (10)] quite well. Also note that in this case, there is

only a small departure from the frozen solution. For both the isen-

trop,. (y = constant) and kinetics solutions, a mass flow difference
6

of 0.8 percent between tne inlet and the throat values occurred in

the converged results. For the kinetics solution, the sum of the

species mass fractions deviaced by less than lx 10-6 along both the

center and wall streamlines. The profiles of total enthalpy error
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are presented in Figure 17. Note that the error was less than one

percent at all mesh points except for the isentropic solution at the

last wall point. This particular point is just downstream from the

junction between the circular arc in the throat region and the conical

section in the nozzle divergence. The author's experience indicates

that the discontinuity in the second derivative of the wall coordi-

nates at this junction can cause distortions in the total enthalpy

profile. Adding three more mesh points in the axial direction

(L=16 to L=18) and recomputing the isentropic solution reduces the

total enthalpy error at L=15 to one percent. Note in Figure 17 that

the addition of finite-rate chemical kinetics to this problem has not

significantly affected the Ho profiles with respect to the isentropic

(y = constant) results.

With 18 mesh points along the axis, two chemical kinetics stream-

lines, and five intermediate points specified, each integration of the

species continuity equations for the C-H-O-N system required approxi-

mately 11 seconds on the CDC 6500 computer. The addition of a third

streamline increased that time to 16 seconds. Using the error control

scheme with a ten percent tolerance on the truncation error yielded an

integration time of 13.75 seconds (for two streamlines) while a one

percent tolerance increased the integration time to 23 seconds.

Integration of the species continuity equations after each time step,

with two streamlines and five intermediate points, yielded an accep-

table solution in an overall computational time of nearly one hour.

However, for this system, it is possible to integrate the species

continuity equations as infrequently as once every 30 time planes.

71
IJ



~ - - - -

4-
0
C

It) 0
0

* -SI
SI

E

U

'I 00 ~
4~4-

I C 0
0 C I

I 0
a I

I
I I I
I I C-,

a ~II
a ~JI g/ --- II I

I
0

.4-

C
0 -

4- '4-
0

0
* 0

0 L
4- 0
C 5 L
0 K L

0
* I 4
a I

*~ I -
* a, EU
I

4-)

a)
4.

-g EU
1

0

I-

I.-

a)
L..

I am
N ~- ~

N - 0 ~ ~ q 0 6 N
90 N -

2 2
h.. h..w w
o 0

I =

72



This reduces the computational time to approximately five minutes.

C-H-O-N With CI System

It is possible that unburned fuel may be present in the reactive

mixture at the nozzle inlet due to incomplete combustion in the ramjet.

A five percent mass fraction of propane (C3H8 ) was added to the C-H-O-N

chemistry system described above (for the same nozzle geometry) to

investigate the effect of the unburned fuel and to provide initial

conditions at the nozzle inlet which were not the result of an equi-

librium calculation. All mass fractions of the species present in

the C-H-O-N system were reduced by 5 percent to allow for the incor-

poration of propane. The solution with the addition of propane did

not differ greatly from the C-H-O-N solution; the mass-averaged tem-

perature at the throat increased by approximately 70'R while the

mass-averaged velocity magnitude decreased by 55 ft/sec. The mass

fraction of propane remained almost constant from the nozzle inlet

to the exit. The addition of one chemical specie and one reaction

slightly increased the computational time required for integration of

the species continuity equations (about 0.5 seconds per integration).

H-F System

The H-F system was analyzed because it contains only five chemi-

cal species and six reactions; relatively short computational times

per time plane can be achieved with this system. Also, since the

C-H-O-N system results were near the frozen solution, the H-F system

(at a high temperature) provided the opportunity to investigate a

system near equilibrium. A small nozzle geometry was chosen for this
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case so that some departure from equilibrium might occur before the

throat. As shown in Appendix E, the nozzle is circular-arc conical

with a two inch inlet radiu,, a one inch throat radius, a 45 degree

angle in the converging section, and a 15 degree angle in the diver-

gence. Figure 18 shows the results of the H-F system analysis. The

mass-averaged temperature profile falls between the equilibrium and

frozen solutions and matches the ODK [Reference (10)] solution very

well. Note that this system is near equilibrium upstream of the

throat but departs significantly from equilibrium downstream of the

throat. A difference of approximately one percent in the inlet and

throat mass flows occurred for both the isentropic (y = constant) and

kinetics solutions. The species mass fractions deviated by less than

lx 10- 10 along the center and wall streamlines. Figure 19 presents

the total enthalpy profiles for the H-F system. For this particular

problem, the solutions for the fluid dynamic variables along the

centerline (upstream of the throat) were still oscillating slightly

after more than 700 time planes for both the kinetics and isentropic

solutions. This accounts for the sign difference in the total

4 enthalpy error along the center in Figure 19. Figure 20 illustrates

the two-dimensional character of the solution for the H-F system.

Note the significant differences in temperatures and species mass

4 fractions between center and wall values which develop in the solu-

tion. Also note the compression along the wall just downstream of

the throat. This occurs at the junction between the circular arc of

4the throat region and the conical divergence. The effect is present

in both the isentropic (y = constant) and kinetics solutions.
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For the H-F system, with 25 mesh points along the axis, two

chemical kinetics streamlines, and five intermediate points specified,

each integration of the species continuity equations required five

seconds on the CDC 6500 computer. The use of four streamlines

increased that time to 10 seconds per integration. Using the error

control scheme with a ten percent tolerance on the truncation error

yielded an integration time of 5.8 seconds (two streamlines) while a

one percent tolerance increased the integration time to 10.4 seconds.

By adjusting the time step multiplier A [see equation (51)] it was

* possible to integrate the species continuity equations only every-

other time plane for the H-F system. However, after more than 800

* time planes, the values of the fluid dynamic variables at the center-

line were still oscillating with little evidence of damping. Inte-

grating the species continuity equations after each time step yielded

- an acceptable solution in a total computational time of one hour.

3. RECOMMIENDATIONS CONCERNING COMPUTATIONAL TIME

* - Recall from the discussion of the overall numerical algorithm

*that the solution to the subject problem is advanced in a two-step

* procedure; the fluid dynamic variables are advanced, and then the

species continuity equations are integrated along streamlines through

the flow. The second step is much more time consuming than the first

0 and thus, any attempt to reduce or minimize computational time should

focus on the integration of the species continuity equations. The

most significant factors regarding the time required for this inte-

gration are:
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1) the number of chemical species and reactions in the chemical

kinetics model.

2) the use of the truncation error control scheme for integration

of the species continuity equations.

3) the number of chemical kinetics streamlines used.

4) the frequency of integration of the species continuity equa-

tions as the solution is marched forward in time.

Controls for these four factors are available to the program user but

experience to date indicates that the proper set of controls is prob-

lem dependent. Some guidance is provided in the following discussion.

The chemical kinetics model should be as simple as possible.

The technique of screening reactions for inclusion in the chemical

kinetics model, as presented in Reference (38), is recommended.

The error control scheme is valuable for setting up the trunca-

tion error control parameter NINT and for refining the solution, but

it is generally too costly to use throughout an entire calculation.

The user should begin the analysis by computing several time planes

with error control and a relatively loose tolerance (5-10%). Then,

recompute the same time steps with a fixed number of intermediate

points. Adjust that fixed number of points until satisfactory agree-

ment with the solution using error control is achieved. The error

4 control scheme should also be used to refine the solution after con-

vergence with a fixed number of intermediate points.

For the cases studied, the addition of chemical kinetics stream-

4lines to a two streamline solution does not make dramatic changes in
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the computed results. The use of more than two streamlines signifi-

cantly increases execution time and thus, should be reserved for

refining the solution.

The C-H-O-N system results illustrated the dramatic computational

time savings which can be realized if it is not necessary to integrate

the species continuity equations after each time step. Again, some

experimentation in this regard should be performed for each new problem.
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SECTION VIII

CONCLUSIONS

A numerical method has been developed for solving the equations

governing two-dimensional, unsteady, chemically reacting flow in

propulsive nozzles. The unsteady equations are hyperbolic in sub-

- sonic, transonic, and supersonic flow regions and thus can be solved

by well developed marching techniques. The steady state solution is

obtained as the asymptotic solution to the unsteady equations, with

steady flow boundary cnnditions applied, for large time. The overall

numerical algorithm ,s inconsistent in time in the treatment of the

species continuity equations but becomes consistent at the steady

state limit. Interpolation for species mass fractions is not required

as part of the scheme for integration of the species continuity

equations.

The primary contribution of this research is the development of a

production-type computer program suitable for application to a variety

of nozzle problems. Verification of the results of the subject analy-

sis for two-dimensional subsonic and transonic flows is difficult

because, at present, there are no other methods available for the

solution of this problem. However, for the cases studied, the solu-

tions are quite reasonable and agree well in a mass-a,;raged sense

with accepted one-dimensional finite-rate chemical kinetics solutions.
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Also, when applied to two-dimensional supersonic flow, the results

of the subject analysis compare favorably with an accepted method-

of-characteristics solution.

Computational time has been found to be highly problem dependent.

It is especially sensitive to the number of chemical species and reac-

tions in the problem model, the use of the truncation error control

scheme in the integration of the species continuity equations, the

number of chemical kinetics streamlines used, and the frequency with

which the species continuity equations are integrated through the

flow field as the solution is marched forward in time. Appropriate

controls for these factors are available to the program user. For

the cases which have been analyzed to date, solutions have been

obtained in times ranging from five minutes to one hour using a CDC

6500 computer.

The primary value of t.,e subject technique is that it provides

the analysis of the subsonic and transonic portions of the nozzle flow

field, including two-dimensional and finite-rate chemical kinetics

effects, and starting from nonuniform, nonequilibrium conditions at

the nozzle inlet. Also, it provides consistent chemical kinetics data

in the supersonic flow region which can be used to generate the

initial-value line (surface) for accurate, multidimensional method-of-

characteristics techniques. The method of the subject research, when

coupled with a method-of-characteristics scheme for the nozzle diver-

gence, should provide a highly accurate analysis of the entire nozzle

flow field.
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APPENDIX A

GOVERNING EQUATIONS

1. STATEMENT OF THE GOVERNING EQUATIONS

The governing equations for fluid flow within the nozzle of a

propulsion system are derived from the application of the law of con-

servation of mass, Newton's second law of motion, and the first law

of thermodynamics to an appropriate fluid model. For analyses per-

formed for the purpose of performance prediction, the assumption of

a continuous, inviscid, nondiffusing, and adiabatic fluid is generally

adequate to accurately model the flow.

The macroscopic conservation equations which can be developed

from the laws stated above are derived in detail in many basic gas

dynamics texts (Ref. 35 for example). These equations are merely

stated here. Applying the law of conservation of mass to the flow

through a fixed volume element yields the continuity equation.

-L V• (pV) = 0 (A-1)

where p is the density of the fluid and V is the velocity. When

Newton's second law is applied to an element of unit mass moving with

the fluid (for the fluid model described above), Euler's equations of

motion are derived.

DV

8+ VP = 0 (A-2)
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where P is the fluid pressure, and for unsteady, two-dimensional

flow

DO a( + ua(J+ vj
Dt at ax

This vector equation provides two scalar component equations in a

two-dimensional flow. Note that body forces have been assumed to be

negligible in equation (A-2). Finally, the energy equation is derived

from the application of the first law of thermodynamics to an adia-

batic element of unit mass moving with the fluid. One possible form

of this equation is as follows (Ref. 25).

D(h + V2/2) 1 0P _ (A-3)
Dt P a t

where h is the fluid enthalpy. This form of the energy equation

shows that for steady flow, the total enthalpy (h + V2/2) is constant

along streamlines. This fact serves as a useful check on the validity

of computed results for steady flows.

In a two-dimensional flow, equations (A-i) to (A-3) provide four

scalar equations in the five unknowns u, v, p, p, and h, where u and

v are the velocity components. In equilibrium and frozen flows, an

equation of state of the form h - h(p,p) is added to provide a fifth

equation and to complete the formulation of the problem. In flows

with chemical nonequllibrium, equations (A-i) to (A-3) are still valid

provided that the thermodynamic variables are given an "extended"

definition (Ref.25). It is assumed that the nonequilibrium system

of fixed volume is in mechanical and thermal equilibrium and therefore
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has a definite pressure and temperature. Also, it is assumed that

the system is homogeneous in space and therefore its composition

can be specified by giving the number of moles of each chemical

species present. Finally, it is assumed that pressure, temperature,

and the number of moles of each of the chemical species are not

independent, but are related to one another through an equation of

state. To insure that the equations of state for a nonequilibrium

situation reduce to the equilibrium form when the equilibrium compo-

sition is substituted into those equations, the following requirement

is made (Ref. 25). "The state equation for any property of a system

in chemical nonequilibrium as a function of any other two properties

and all the mole fractions of the constituent species is identical in

form to the corresponding equation for the system in thermodynamic

equilibrium." For example, it is this requirement which allows the

use of the familiar thermal equation of state for a mixture of perfect

gases in a flow with chemical nonequilibrip.,.

Consider an equation of state of the foltowing form for the

nonequilibrium flow.

h = h(p,p,C 1,...,Cn)

where C. (i = 1,...,n) are the mass fractions of each of the n chemi-1
cal species in the reacting fluid. The addition of this equation of

state to equations (A-i) to (A-3) provides a set of five equations

in five plus n unknowns. All additional n equations are provided by

the application of the law of conservation of mass to the flow of

each of the chemical species through a fixed volume element. This

yields the species continuity equations.
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i apt

.- + V (plv) = o (i1,...,n) (A-5)

where Pi is the mass density of species i and ai is the species

source function.

As suggested above, it will be assumed in this analysis that the

working fluid is a mixture of thermally perfect gases. Then the

thermal equation of state is:

n
P pT E C.R. PRT (A-6)

1=1 *

The caloric equation of state is:

n T
h = E Cih. where h. = C Cpi dT + hi° (A-7)

i=1 I 1 To  1

In equations (A-6) and (A-7), R are the species gas constants, R is

the gas constant for the mixture, hi are the species enthalpies,

Cpi are the species specific heats at constant pressure, T0 is the

reference temperature, T is the fluid temperature, and h1° are the

species energies of formation.

Summary of major assumptions and governing equations

Major assumptions:

- continuum
- inviscid
- adiabatic
- nondiffusing
- negligible body forces
- chemical nonequilibrium only

S- fluid is a mixture of thermally perfect gases
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Governing equations: (vector form)

Global continuity: at (A-i)

o7

Momentum: p + VP = 0 (A-2)

Energy: D(h + V2/2) 1 1P _ o (A-3)

Dt p at

Species

continuity: .-u- + V • = a. (i = 1,...,n) (A-5)

Thermal equation n
of state: P =pT E C.R. (A-6)

i=1 1I

*00
,Caloric equation n T

of state: h =z~ Cih where h. = f Cpi dT + h (A-7)
i=1 1 1 1 T~ pi

2. REARRANGEMENT OF THE SPECIES CONTINUITY EQUATIONS AND THE ENERGY

EQUAT ION

The species continuity equations (A-5) can be simplified by

expressing them in terms of species mass fractions rather than species

mass densities. Substituting Ci = pi /p into equation (A-5) and using

the global continuity equation (A-i) yields:

DC.
t i (i 1,...,n) (A-8)

In this characteristic form, the species continuity equations are

one-dimensional equations which apply along a particle path. They

are integrated in this form in the computational scheme.
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The energy equation (A-3) can also be manipulated into a form

which is more convenient for analysis. In this form the species

source function ai appears directly. The species source function|1
contains within it the set of chemical reactions and appropriate

reaction rates for the assumed chemistry model (see Appendix B).

By forming the dot product of the velocity vector V with equation

(A-2), it is possible to develop an expression for D(V2/2)
Dt

DV V2  DP .
Dt + V V P =pD(-L) + L - P- (A-9)

Solving equation (A-9) for D(V2 /2) and substituting into equation

(A-3) yields

Dh 1 DP_ 0  (A-b)
t p Dt

Introducing the thermal and caloric equations of state, equations

(A-6) and (A-7), respectively, and the species continuity equation

(A-8), yields the desired form of the energy equation. Taking the

substantial derivative of equation (A-7) gives

Dh_ n Dh. n DC. n DT n

Dt C Ci - + i_ hi  i i Cp i Ft + ir hi Gi/p

(A-11)

Logarithmic differentiation of equation (A-6) provides an expression

for DT/Dt in equation (A-11). Equation (A-11) can then be used to

replace Dh/Dt in equation (A-10). The result is
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DP _af 2 D=lp (A- 12)
Dt Dt k

n
where = [yfRiT- (yf-1)hi]oi (A-13)

i =1

and af and Yf are the frozen speed of sound and ratio of frozen speci-

fic heats, respectively.

3. THE GOVERNING EQUATIONS FOR TWO-DIMENSIONAL PLANAR OR AXISYMMETh

FLOW

The geometries of interest in this research include two-dimen.

sional planar and axisymmetric flows. The equations governing two-

dimensional axisymmetric flow are normally expressed in cylindrical

coordinates, but they can be transformed to the notation of a Cartesian

coordinate system by means of the following transformation equations.

. r  v
vz  u (A-14)

r =y

z =x

Comparing the equations for two-dimensional planar flow with the

transformed set of equations [by equations (A-14)] for a two-dimensional

axisymmetric flow, it is seen that the equations are identical except

for the additional term pv/y in the global continuity equation for

axisymmetric flow. Therefore, the following set of equations, in

Cartesian coordinate notation, applies to both two-dimensional planar

and two-dimensional axisymmetric flows.

Pt + UPx +Vpy + Pux + PVy + E(pv/y) = 0 (A-15)
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U t + uux + vu y + P x/p =0 (A-16)

Sv t + uv x + vv y +P/p = 0 (A-17)

Pt + UPx + VPy - af2(Pt + UPx + Vpy) = k  (A-18)

0.

vC (i =I • .. n) (A-19)it ix iy p

where the subscripts denote partial differentiation. In equation

(A-15), e is zero for planar flow and one for dxisymmetric flow.

4. TRANSFORMATION OF THE GOVERNING EQUATIONS TO THE COMPUTATIONAL PLANE

Since the interior points in this analysis are to be treated by

a fixed grid technique, it is convenient to transform the physical

(x,y,t) plane to a rectangular (C,n,T) plane in which the differencing

is performed. The following coordinate transformation is used (see

Figure A-i)

T t

- (A-20)

- Yc (X)

Yw(x ) - Yc(X)

where yc (x) and y (x) represent the nozzle centerbod, and wall coor-

dinates, respectively as functions of x. Application of this trans-

formation yields:

a t aT

+ (A-21)

ay a
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Physical Plane

- - - - Centerbody -

/t

Figure A-1. Physical and computational planes.
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a ay ~ ayW ay)

-C1 Tn - Yc Y. TY)

:..' B =  = I

ay Yw(X) - y c (x)

For convenience, the following two variables are defined:

V a cu + av (A-22)

°• E y + n/a (A-23)

Applying the transformation in (A-21) to equations (A-15) to (A-19)

and introducing the definitions given by equations (A-22) and (A-23)

yields the following forms of the continuity, momentum, energy, and

species continuity equations, which are used in this analysis.

Summary of the governing equations in the computational plane

p + Up + VPn1 + pu + pcu +pavn + epv/n = 0 (A-24)

u r + uu + vun + P/p + tP/p =0 (A-25)

vT + uvC + vvn + aPn/p 0 (A-26)

P + uP +p uP + vP =
k  (A-27)

*~l Ci + uCi +v C i
n = P (i=1,...,n) (A-28)

n
P= PT E CR. = pRT (A-6)

i=1 i

n T 0

h = £ Cih i where h. = J C PidT + hi (A-7)
i=1 TO
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Note that equation (A-28) may be written as

DCi a.
D = - (i = 1,...,n)

where DCi/DT is the change in Ci following a particle path in thei:.i

computational plane.
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APPENDIX B

THE CHEMICAL KINETICS MODEL

1. REACTION MECHANISM AND THE SPECIES SOURCE FUNCTION

In Appendix A, it was noted that for the nonequilibrium flow of

a gas mixture, a third variable (the species concentrations) must be

introduced into the equation of state to specify the chemical state of

the reactive mixture. This, in turn, required the addition of n species

continuity equations to complete the set of governing equations. In

this section. an equation for the source term in the species continuity

equations is presented.

Implicit within the equation for the species source function is

a reaction mechanism (i.e., a set of coupled elementary reactions whose

reaction rates are functions of temperature only). As an example of

a reaction mechanism, consider the overall reaction between hydrogen

and flourine:

H2 + OF2 = aH2 + bF2 + cHF + dH + eF (B-i)

where 0 is the molar oxidizer to fuel ratio, and a through e are the

moles of the various species in the completed reaction. The science

of chemical kinetics is concerned with the determination of a suitable

reaction mechanism for overall reactions like that specified by equa-

tcn (B-i). The reaction mechanism should give an overall effect
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which is in agreement with experimental observations. For the overall

reaction given by equation (B-I), Cherry 36) has proposed the follow-

ing reaction mechanism:

F2 + M 2F + M (B-2a)

H2 + M 2H + M (B-2b)

HF + M H + F + M (B-2c)

HF + F 4-H + F2  (B-3a)

HF + HH + F (B-3b)2

2HF _H2 + F2  (B-3c)

Reactions (B-2) are called dissociation-recombination (or third body)

reactions, while reactions (B-3) are known as binary exchange reac-

tions. The symbol M in equation (B-2) represents the third body

involved in the reactive collision and it can be any of the chemical

species present in the reaction mechanism. A general reaction equa-

ttion which will be used to represent any reaction mechanism is

n k fj n t
zVi4 Xi E V ij Xi 0=l, ...,2m) (B-4)

k1  i=1

where Vii and vi. are the stoichiometric coefficients of the reactants

and products respectively, Xi denotes the ith chemical species, and

kfj and krj are the forward and reverse reaction rate coefficients,

respectively, for the jth reaction of the m reactions in the reaction

mechanism.
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The law of mass action (Ref. 25) states that "the rate at which

an elementary reaction proceeds is proportional to the product of the

molar concentrations of the reactants each raised to a power equal to

its stoichiometric coefficient in the reaction equation." Using this

law together with equation (B-4), it is possible to develop an expres-

sion for the net production of the ith chemical species due to the jth

reaction in the reaction mechanism (Ref. 31). Thus,

d(Xi , n v.. n v..
- (n [Xi] k in [X 1J] (B-5)
dt (vij - v=) kf. iI 1 kr  i1

Converting equation (B-5) to a mass basis and summing over all m reac-

tions in the reaction mechanism yields the equation for the species

source function.

m n n ,, nn pC V
ai =mi E (v.. )[kfj in (PCi)\ ij  k . (- )
1 1j=l 13 1 i i=1 ii - krj i M

j : 1

(B-6)

where mi is the molecular weight of the ith species. Note that the
1

species source function is the forcing term in the species continuity

equations (A-8) and that a. is also present in the forcing term of the
1

energy equation (A-13). Therefore, equation (B-6) provides the link

between the chemical kinetics model and the governing equations for

the problem of interest.

2. REACTION RATE COEFFICIENTS
S

Reaction rate coefficients are not readily predicted at the

present time and therefore, they are generally found experimentally.
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The form for the reverse reaction rate coefficient which is used in

this analysis is

' " -n.

krj = aij T exp(-b./RT) (B-7)

where aij, n3, and b. are empirical coefficients, R is the universal

gas constant, and T is the local gas temperature. The forward and

reverse reaction rate coefficients for a given reaction are not indepen-

dent but are coupled through the equilibrium constant for that reaction.

Using the equilibrium constant based on partial pressures (Kp.), it
pJ

is found that (Ref. 31)

krj =pj (W-T) (B-8)

where
n ~

&Vj = z (vi - Vi)j (B-9)
i=1

Note that the difficulties in making accurate measurements for the

determination of reaction rate coefficients, the necessity of extrapo-

lating experimental data from one situation to another, and the uncer-

*I tainty as to the reaction mechanism, are all significant factors

limiting the accuracy of the analysis presented in this research. How-

ever, experience with one-dimensional analyses of reacting flows

indicates that the chemical kinetics model used here is adequate for

performance prediction.
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3. TREATMENT OF HYDROCARBONS

Unburned hydrocarbons may be present in the gas mixture at the

combustor exit and therefore, provision for these species must be made

in the chemical kinetics model. Edelman, et. al. (26) and Edelman and

Harsha (27) have developed a kinetics model for use in combustor

analyses which includes a "sub-global" partial oxidation step:

CH +f-0 ,'!H +!nCO (B-IO)

n m 2 2 2 2

Note that this reaction proceeds in the forward direction only. The

reaction rate coefficient for equation (B-IO) is determined empirically

and is given by (Ref. 27):

a =6.0 x 1014 PO.3 cn c (B-11)SC n H m 0 2

where P has units of atmospheres and c represents species concentra-

tions in g-moles/cc.

4. THE SPECIES SOURCE FUNCTION FOR DISSOCIATION-RECOMBINATION REAC-

TIONS AND BINARY EXCHANGE REACTIONS

Equation (B-6) for the species source function is simplified for

dissociation-recombination and binary exchange reactions in the follow-

ing discussion.

Dissociation-Recombination Reactions

Dissociation recombination reactions are of the form

A + M 'B + C + M (B-12)

From equation (B-9), Av = 1 for all these reactions. Substituting
j
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equation (B-8) into equation (8-6) yields

1D-R 1 j=1L" 11 1

n C-.v..

1=1 9i J
or

=- 2 m F(. v. K. nI (C.)i
D-R j=1 (v3 13 L i 1 1

n M. k.
-p 1 (C.) ] I-j-w (B-14)

where11

n v.
K 1 (ii)1

K. = (B-15)
DR RT it"

The effect of different third bodies is taken into account through the

use of third body reaction rate ratios M. (see section 4).

Binary Exchange Reactions

Binary exchange reactions are of the form

A + B1'C +D (B-16)

In this case, Av. 0. Thus, equation (B-6) becomes
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°i miP2 F "1 11 ')i

= (v'. K 11. KpCi 3B-E j=1 1j - ' 'i I I

- II (C i (B-17)Li=1 mi j krj

or

.i p2  m 
n v,

B-E j=1 1j i=1 1

- o,

•n ).. k

(C.) 1 (B-18)
1=1 1 j . 1

i=1

where
If

n V..jII(i) 13i

K K i= (B-19)
K P,j n '

1 =1 1

The Hydrocarbon Reaction

The hydrocarbon oxidation as shown in equation (B-10) can be

treated as a special case of a binary exchange reaction. Rewriting

equation (B-10) in the form of (B-16), and so that it proceeds from

right to left, gives

0
m2 H2 

+ n CO CnH + 2 (B-20)
22n m 2 2 (-o

Since K pl is equal to the ratio of the forward and reverse reaction
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rates, then Kpj is zero for the reaction in equation (B-20). There-

fore, the species source function for the special case of equation

*i  (B-10) becomes
II

M m 2 n V i.. krBa = (V ij - uij) 1"  (Ci) n (B-n1"

i=1 1

5. THIRD BODY REACTION RATE RATIOS

Each dissociation-recombination reaction has a different reverse

reaction rate depending upon the particular third body involved in the

collision. This effect is taken into account in the chemical kinetics

* model by the use of third body reaction rate ratios. It is assumed

that the overall reverse reaction rate coefficient for the jth disso-

ciation-recombination reaction is given by

n
M. k r = C k.r j  (B-22)

where the summation over z represents all possible third bodies and

C is the mass fraction of the tth third body. Implicit in this

equation is the assumption that the overall reverse reaction rate is

a mass weighted average of the reverse reaction rates for each differ-

0-4 ent third body. According to References (36) and (37), the temperature

dependence of recombination rates can be reasonably assumed to be

independent of the third body so the recombination rate associated

with the tth species (third body) can be expressed as

-n

rij = T exp(-b/RT) (B-23)
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where a is dependent on the third body. Substituting this expression

into equation (B-18) yields

n -n.
Mjkrj = C a 1 T n exp(-b/_RT) (B-24)

n a. -n
m= i (i j-) cai T i exp(-bj/RT) (B-25)

or, using equation (B-7),

n (aj) Ck 
(B-26)

.: Mkrj z=1 aij z rj

Therefore, M. is defined by

n a.- .M _ ,I ( " '  Ck (B8-27)

Physically, M. is the mass weighted ratio of different third body

reaction rate premultipliers, a to the known reaction rate pre-

multiplier aij.

6. REACTION MECHANISM USED IN THIS RESEARCH

The reaction mechanism used in this research is the same as that

used in Reference (3) with the addition of the hydrocarbon reaction dis-

cussed in Section 3. For a nonequilibrium, chemically reacting flow

of a system of thermally perfect gases composed of the six elements

carbon, hydrogen, oxygen, nitrogen, flourine, and chlorine, Gold and

Weekly (28) have shown that 19 species and 48 chemical reactions should
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be considered. The chemical species are shown in Table B-I and the

48 reactions are shown in Table B-II. Note that 13 reactions are

shown in Table B-II. Note that 13 reactions are of the dissociation-

recombination type while the remaining 35 are binary exchange reac-

tions.

Experience with this and other reaction mechanisms has indicated

there may be cases when not all of the reactions corresponding to a

given set of chemical species should be included in the analysis. The

number of reactions in the reaction mechanism is a significant para-

meter affecting execution time. Therefore, no more reactions than are

necessary should be included in the analysis. Reference (38) provides

a grading of the various reactions appropriate for CHON and HF pro-

pellant systems as follows:

A - Important reaction between important species with reliable

rate data from a competent review

B - Energetically less significant reaction or rate data of

doubtful quality

C - Reaction between minor species which may be of significance

in some nozzle flows

X - Possibly significant reaction with estimated rate data

(not recommended for use)

Guidelines for the selection of reactions from the overall graded set

of reactions are provided in Reference (38).
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TABLE B-1

CHEMICAL SPECIES CONSIDERED

Chemical Species Chemical Species

CnHm OH

CO2  02

H20 CIF

CO C

Cl2  Cl

F2  F

HC1 H

HF N

H2  0

N2

NO
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TABLE B- 2

CHEMICAL REACTIONS CONSIDERED

Chemical Reaction Chemical Reaction

CnHm+ -E0 H2 + nCO HCl + HCl *H + Cl2
CO + M --Co + 0+ M HCl + 00<H +Cl

H 0 +M 0OH +H +M HF + Cl*HCl + F

CO +M-1,C + 0+M HF +F H +F
*Cl 2 + M 2C1 + M HF +H H 2 F

2 M2+ F + HF H + F2 2 + HF HF 2 2
HCl + M H+ Cl + M HF + 0OH +F

HF +M H+ F +M HF + 0H H 0+ F

H 2 + M H 2+MH 2 + Cl Hl+H

N2 +N 2N + M H 2 +0 O+H
NO + M tN + 0+ M 2H + 0 20H

OH + M 0+ H+M N2 +O0 NO +N

02 + M 20 + M N 2 + 02 2N0
CFMCl + F +M + N + OH

CO2 + H CO + OH NO + 0 N +02

CO2 + 0 + CO + 02 02+ H+

2 2 + ClO+C Cl + ClF C 2 F
H 20 + H O H + H 2  F + CiF Cl + F 2
H20 + 0 4 20H HF + Cl CIF + H

Co + Co HlCo2 + C HCl +F CF + H

CO + N tC + NO0 HF + CiF F2 + HNl

CO + NO -**CO 2 + N HF + Cl 2  CIF + HCl

CO + 0 -+ C + 02 CiF + CiF F F2 + Cl 2
HCl + Cl 7' H + Cl 2

109



r.

APPENDIX C

REFERENCE PLANE CHARACTERISTIC RELATIONS

1. GOVERNING EQUATIONS

The equations that are employed in this analysis to model unsteady,

two-dimensional, chemically reacting, nonequilibrium flow are developed

and transformed to the computational (C,n,-r) plane in Appendix A.

These equations are restated here for convenience.

p +up +vp + PU + paU + pav + Epv/n= 0 (C-)

U + uu + vun + PC/p + xP /p 0 (C-2)

v + uv + vv + aP/p 0 (C-3)

P +uP + vP a f2(PT + U P ) k (C-4)

C. i in uC. + iC. a./P 0=19....,n) (C-5)

PT r~l Up

- h = h(P,p,C i) (C-6)

The subscripts T, r, and n in these equations denote partial differen-

* tiation and i denotes the ith chemical species. Equation (C-6) is the

general form of the equation of state and since it is an algebraic

* ~ equation, it is not stated again in the remainder of this appendix.
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2. CONSTANT i REFERENCE PLANE

When the method of characteristics is applied to unsteady, two-

dimensional flow, the characteristic surfaces and corresponding com-

patibility equations are determined. Hoffman (39) shows that the

characteristic surfaces for this case are of two types; stream surfaces

and wave surfaces. The envelope of the stream surfaces is the pseudo-

pathline (the particle trajectory in nm space), and the envelope of

the wave surfaces is the Mach cone. The curves of tangency between the

wave surfaces and the Mach cone are the bicharacteristics. One com-

patibility equation is valid on each wave surface, one compatibility

equation is valid on each stream surface, and one compatibility equa-

tion is valid along the pseudo-pathline. Figure C-1 illustrates the

Mach cone, bicharacteristics, and pseudo-pathline as discussed above.

A reference-plane characteristic scheme is used in this analysis rather

than a bicharacteristic scheme because the increased complexity and

computational time of the bicharacteristic scheme is not warranted in

view of the accuracy limitations associated with the chemical kinetics

model (see Appendix B).

In reference-plane characteristic schemes, derivatives with res-

pect to one of the independent variables are approximated and treated

as forcing terms, thus reducing the number of independent variables

in the problem by one. For example, in the constant n reference-plane

scheme, all derivatives with respect to n are approximated (by

MacCormack's method or some other suitable method) and are placed on

the right-hand side of the equal sign in equations (C-1) to (C-5).
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This yields

P + UP +pu = (C-7)

U T + uuC + P C/P q,2  (C-8)

vT+ uVC=tp3  (C-9)

pT+u f2 PT+U 4(C -10)

C. + uC (=l..n)(-1

where

= VP~ - Pau~ -p~v - pv/rI

V2 -vu ap /p

4= vPn + af v p I+ *

*J5 = -vC.i + o./p

Characteristic Curves

A linear combination of the governing equations can be formed by

multiplying equations (C-7) to (C-1l) by i~ (j=1,2,.. .,4+n), respec-

tively, and then summning them. The notation is simplified if z$ through

i4+ are replaced by L$ The resulting linear combination is

2.lP +UPC + Pu -P 1 +t(u~ + uu +P p-

++v p)+2 4 P P af 2(P + up~)-t 4  (C-12)

3(T+ UVC 1 - p) =04PT+u, 4
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Rearranging equation (C-12) yields

p0(ut 1 - af u-) +p (t1 - aft-4 )

+ u (po 1 + ut2) + u(t 2)

+ v (ut 3 ) + v (z 3 ) (C-13)

+ P ( 2/P + Ut4) + P(T4 )

+ Ci (u5) + Ci(T 5) = t1*p1+ t 2 2 + -310 3 + t4 p4 + Z5*5

The following set of vectors can be defined where the components are

the coefficients of the partial derivatives in equation (C-13).

91 (u21 - af 2 t 1 - af2 4 ) (C-14)

W2  (Pt1 + ut 2 , t2 ) (C-15)

F3  (ut 3 ,t 3 ) (C-16)

14 (t 2 /p + Ut4 , t4) (C-17)

. 5 = (ut 5 , t5) (C-18)

Now, introduce the notation that dWlP is the derivative of p in the

direction of W1. dw2u is the derivative of u in the direction of W

etc. Recall that the directional derivative of a function f in the

direction of W is found by taking the dot product of the gradient of

f with the vector W. Therefore, with the notation above, and the

vectors defined by equations (C-14) to (C-18), equation (C-13) can be

written as
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dwIp + dw2u + dw3v + dw4P + dw5 Ci = (C-19)

i1 + 9 + I + 94 + k

If the z. (j=1,2,...,5) can be chosen so that the vectors W.

(j=1,2,...,5) are linearly dependent (lie in one direction), then the

curve which contains the vectors Wj is called the "characteristic

curve," its normal fN is called the "characteristic normal," and equa-

tion (C-19) is called the "compatibility equation." If N= (N ,N )

is the characteristic normal in the (r,T) plane, then N and Wj must

be related by

Fl •Wj = 0 (j=1,2,...,5) (C-20)

Expanding equation (C-20) yields

(ui1 - af2uk )N~ + (k~ 2k af )NT =0 (C-21)

(Pt1 + u92.)N + £2N = 0 (C-22)

(uk3)N + 3NT = 0 (C-23)

( 21P + uk4 )NC + '4N = 0 (C-24)

(ut5)N + Z5N = 0 (C-25)

Note that the subscripts c and T in equations (C-21) to (C-25) denote

the components of the characteristic normal in directions of C and T,

respectively. In matrix form, equations (C-21) to (C-25) can be

written as follows:
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A00 -a(uN+N) 0 2.

PN uN+N 0 0 0 22

,0 0 uN+N, 0 0 =0 (C-26)

0 N /p 0 uN C+NT  0 .4

0 0 0 0 uN+NT 2.5

Equation (C-26) is a system of homogeneous equations and therefore, if

' it is to have a nontrivial solution, the determinant of the coeffi-

cient matrix must be zero. Setting that determinant to zero yields

(uNC + N T3[(uN + NT 2 - aff 2 2] = 0 (C-27)

Equation (C-27) has two possible solutions. Setting the first factor

to zero yields

uN¢ + N = 0 (C-28)

If the term in square brackets is set to zero, the solution is

uN + N=± afN¢ (C-29)

From Figure C-2 it is clear that the following relationship is true

along the characteristic curves:

NS-N (C-30)

Substituting equation (C-30) into equations (C-28) and (C-29) yields

the characteristic curves in the constant n reference plane.

d :u (C-31)
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.... ) S/ const

- U-

.:d{; u d,r

A 28

drv- *3 dT

dP -afdp'4 along d ud

dC1  *5 dT

.dP + afdu - ( 4 + af2*1 + pa 2)dT along dc - (u+ af)d'

dP - pafdu - (v4 + af 211 " PafA)dr along dc = (u- af)dr

compatibility equations characteristic curves

4 Figure C-2. Constant n reference plane characteristic relations.
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. = u af (C-32)

Equation (C-31) corresponds to the equation (C-28). It is the projec-

tion of the two-dimensional flow pathline onto the constant n plane.

Fquation (C-32) corresponds to equation (C-29). It is the projection

of the two-dimensional Mach cone onto the constant n plane.

Compatibility Equations

The requirement that the determinant of the coefficient matrix in

equation (C-26) be identically zero has led to the determination of

the characteristic curves. Now, substituting those solutions, equa-

tions (C-28) and (C-29), into equation (C-26) and solving for the j

(j=1,2,...,5) yields the compatibility equations which correspond to

the characteristic directions. Specifically, substituting equation

-. (C-28) into equation (C-26) yields the matrix equation

0 0 0 0 0 k

pN 0 0 0 0 Z

o o 0 0 0 =0 (C-33)
.3

0 N /p 0 0 0 Z4

0 0 0 0 0 Z5

Here the order of the coefficient matrix is five and its rank is two,

so there are three independent solutions. Three possible solutions are

""~~~ 01= £ 4 = £ ; Z3 1 (C-34)

Li £1 Z Z2 X 3 = 9, = 0; k4 :1 (C-35)
""il =2 =3 = Z4 = 0; 95 =1 (C-36)
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Substituting equations (C-34) to (C-36) into equation (C-13) in turn

yields, respectively

VT+ uv = 3  (C-37)

P + up C af2 (P. + up): 4  (C-38)

C + u C.i =p5 (C-39)

or

dv ='3 dT (C-40)

dP- a 2dp = PdT along d = udT (C-41)

dC = d (C-42)

Now consider the characteristic curve given by equation (C-29).

Substituting equation (C-29) into equation (C-26) yields the matrix

equation

±afNN 0 0 af3N 0 1

pNe ±afN 0 0 0 z2

0 0 ± aN 0 0 t =0 (C-43)
f 3

0 N /p 0 ±afN{ 0 t4

0 0 0 0 ±afN £5

The order of this coefficient matrix is five and its rank is four so

there is one independent solution. Equation (C-43) yields

k 3 = z = 0; = af 2 4 = Taft2/p; £2 = +Pafz 4  (C-44)
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If £4 = 1, one possible solution is

S03 Z 5 ; Z1 =af2 ; '2 - paf; 4= 1 (C-45)

Substituting equation (C-45) into equation (C-13) yields

2af2(p + UP P + uuC + P /p -2 )

+ P + uP -af 2 (P + up)- 4 = 
(C-46)

or
dP + Pafdu = (i 4 + af2l + Paf4 2)dt along dC=(u+af)dT (C-47)

dP - pafdu = (p4 + af2P1 - Paf*)dT along dC=(u-af)du (C-48)

3. CONSTANT REFERENCE PLANE

For the constant C reference-plane scheme, all derivatives with

respect to C in the governing equations are approximated and treated as

forcing terms. The development which follows is entirely analogous to

!" .the derivation of the constant n reference-plane relations in the pre-

vious section of this appendix. Therefore, the corresponding steps in

the development of the equations will all be shown, but the arguments

will be abbreviated. Moving all derivatives with respect to € to the

right-hand side of the governing equations yields

P + VP + pau + pV=a (C-49)

u + vu + aPn/P = 2 (C-50)

.T + vn + OPn/p = 3 (C-51)
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I - r I .. .I . . . .. .. - . .. . . " - --

p +Vp a 2 ( + (C

n -= (-52

Ci + VCin P5 (C-53)

where

"I - - Pu- EpV/n

'2 = -uU4 - P

"'3 = -uv

'4 = "uP4 + af UPC+ 'k

*5 -uC ic + ai/P

Characteristic Curves

Forming a linear combination of equations (C-49) to (C-53) yields

. (p + VPn+ PoT + pav - u + l- / 2
1 ~~ 1)+£ 2(UT + n cTI

+ 3 (VT + 
Tv P + YP/  3) + 

4
[PT +  

-
P  af 2(pT +  ) " 4]

+k5(Ci +TC - 0 (C-54)

Rearranging equation (C-54) gives

P -k1- a f 4t) + PT(kl - a fZ 4~

+ Un(Pat 1 + V 2) + u1(. 2 )

+ V n(Pa k1 + vk3) + VT(13) (C-55)

+ Pn (at2/p + a43/P + t 4) + PT( 4)

+ Cin (v5) + CiT(45) = Y11 + Y 2 + Y 3 + 4 4 + Y5
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Define the vectors W9j (j=1,2,...,5) as follows

WI= (v£1 " af 2v£4  9 1  af2£4 ) (C-56)

W2 = (Paq£i + v £2  £2) (C-57)

W3 = (P"i1 + V£ 3 ' £3) (C-58)

Y4 = (£ 2/p + O£3/p + v£4 , £4) (C-59)

-= (v£ 5  £5) (C-60)

Then, using the directional derivative notation introduced in Section 2:

dWlp + dw2u + dw3v + dw4P + dw5Ci =

(C-61)
1 + £2P2 + +3*3 £4 4 + 5

Now, determine if the £ (j=1,2,...,5) can be chosen so that the W

are all linearly independent. If -9 is the characteristic normal, then

N. = 0 (j=1,2,...,5). This gives

(V£1 - af2 £ )Nn + ( - af2 £4)NT =0 (C-62)

(pat I + v£2)N + £2NT = 0 (C-63)

(at + V£3)N + £3NT 0 (C-64)

(ax 21p + 8£3/P + £4)N + £4NT = 0 (C-65)

(i £5)Nn + £5N = 0 (C-66)

or, in matrix form:
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Nn N 0 0 -a (-Nn+NT) 0

.paNn  vN +N, 0 0 0 £2

paNI 0 VN +NT  0 0 k3 =0 (C-67)
N/0 N/P aNn/p vNT+N 0 Z4
n T 4-

0 0 0 0 VN+N - 5

Setting the determinant of the coefficient matrix to zero yields

(N n + N) [(vN + N) 2 - af 2N 2 (a2 + B2)] = 0 (C-68)

Equation (C-68) has two possible solutions:

v N + N =0 (C-69)
) Ti

vN +N + afNT* (C-70)

where a*= (a 2 + a)

Noting from Figure C-3 that dr/dn = -Nn/N , equations (C-69) and (C-70)

can be rewritten as

dn1= (C-71)d-r

v T a a (C-72)

respectively. Equations (C-71) and (C-72) are the characteristic curves

in the constant reference plane.

4
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cConst
dr 3

dia V

dr

Bdu - cdv = 0* - a* 3)dT

2
dP afdp fdr along dn Vdr

dCi J5 dT

poaf p~af
dP + - -- du + -t dvaln d = +ac)d

a + i2 1 pctaf p~a AP 3 al n ( + af * d

(N a P + -a- V2 +x d

caf P~f
dP -- rdu + -rdvaln r=(Vac)d

2pctaf 2 p~afip2 aln n v-af*d
4 + af'4 - ---- -- )d

4compatibility equations characteristic curves

4 Figure C-3. Constant reference plane characteristic relations.
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Comnpatibility Equations

Consider the characteristic curve given by equation (C-69). Sub-

stituting equation (C-69) into equation (C-67) yields

0 0 0 0 0 .

paN TI 0 0 0 0 912
paN 0 0 0 0 9£3 =0 (C-73)

0 AN/p aN /p 0 0

0 0 0 0 0 9~

Three possible solutions to equation (C-73) are

z =z = =0; k2 1; k~-tI (C-74)

k 1£2 =k3 =k5 0; x 41 (C-75)

0;k (C-76)

Substituting equations (C-74) to (C-76) in turn into equation (C-55)

yields, respectively

V u + u + aP /p + v(-t/0)V ct/a V + aP_/)
Ti TU Ti Ti

(C-77)

-af2-V 2 P+ vP, + pT 4~ (C-78)

which may be written as
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Bdu - adv = (4p2 - ctl 3)dT (C-80)

dP - a 2 dp = p4d-r along dn=vd-r (C-81)

dC i = 45 dT (C-82)

Now consider the characteristic curve given by equation (C-70).

Substitution of this result into equation (C-67) yields

+afNct 0 0 -a2(a N a*) 0 £
ff1

paN ._+afNn* 0 0 0 '2

pN 0 ±afNna* 0 0 23 = 0 (C-83)nn 3
o aN /P aNn/P ±afNn* 0 £4

0 0 0 0 ±afNn* t5

Equation (C-83) has one independent solution:

= af2£4; £ - 2; ct£2 + p pafci*94  9£5 0 (C-84)

If £4 = 1 is chosen, then

£% = ' 2 = T pcaf/c*; £3 = -TpOaf/*;

(C-85)
.4 = 1; Z5 = 0

Substituting equation (C-85) into equation (C-55) yields the compati-

bility equations

p paaf p af 2 paf paf
dP +-- du + dv= (4 +  a+ f2 +  )d T

(C-86)
along dn = (v +afa*)dT
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and

pctaf f 2 poaf

paa f (C -87)
- )~ p)dt along dri (- (- afa*)dr
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APPENDIX D

THE SPECIES CONTINUITY EQUATION INTEGRATION SCHEME

I. STIFF EQUATIONS AND IMPLICIT VS. EXPLICIT INTEGRATION METHODS

It is well known that integration of the species continuity equa-

tions for nonequilibrium, chemically reacting flow, when the flow is

near equilibrium, requires special treatment because the equations

become quite "stiff" (Refs. 3, 5, and 31). In order to understand

the concept of a stiff differential equation, consider the following

general form for an ordinary differential equation.

xd = f(x,y) (D-1)
dx

The existence of a unique solution to this equation requires that

f(x,y) must be continuous and that it satisfy a criterion known as the

Lipschitz condition (Ref. 40). The Lipschitz condition is stated in

terms of the Lipschitz constant, L, which is defined by

:i"2 L= I af(x,y) (-2

If the ordinary differential equation is stiff, it will have a large

Lipschitz constant while its solution behaves like a polynomial (i.e.,

the solution has little exponential growth or decay).

The relevance of the Lipschltz constant to the species contin-

uity equation can be understood from the following discussion. The
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species continuity equation can be written in functional form as

DCi i_-Dt- p fi(P.T.Ci )  (i=i,...,n) (D-3)

Note that fi(pT,Ci) in equation (D-3) has dimensions of Ci divided by

time and therefore, the partial derivative (3fi/3C i)P ,T must have

. - dimensions of (time) 1. Following Ref. (25),a local characteristic

time for the rate process can be defined by

- 1 (D-4)
> ( fi ip,T

Now, equation (D-3) can be written as

DCi  x(p,T,C i)1-- 1(,TC (i=l,...,n)(D5
(D-5)

where

f.
X(p,T,C)i (D-6)1(,. 1a i iP,T

Using equation (D-3) and the definition of the Lipschitz constant

(D-2), the Lipschitz constant for the species continuity equation

becomes
.. @~fikP,T,Ci~

,:T L1(D-7 )
. . @ i  T

Consider the change in Ci according to equation (D-3) for an increment

of time equal to the local relaxation time.

DCi  C2-C( - 'f (D-8)
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In equilibrium flow, the local characteristic time, i, for the chemi-
DC.

cal reaction approaches zero and since- must remain finite for any

real physical process, the change in mass fraction also approaches

zero. Thus, the Lipschitz constant becomes large while the solution

behaves like a polynomial and the differential equation is stiff. For

the case of frozen flow, the mass fraction does not change and T

approaches infinity, so DCi/Dt goes to zero.

Many numerical techniques have been proposed for the solution of

the species continuity equations in near equilibrium flow. Among these

techniques are linearized approaches, conversion of the differential

equations to integral equations, modified Range-Kutta techniques,

higher-order predictor-corrector methods, and implicit methods. Curtiss

and Hirshfelder (32) and Seinfield (33) provide useful reviews of the

various numerical methods that have been used for stiff differential

equations. Cline(41) analyzed and tested a number of proposed schemes

in his analysis of three-dimensional, steady, nonequilibrium flow.

It is possible to categorize the numerical methods he tested into two

groups: explicit and implicit methods. In an explicit method, the

solution at the unknown point is expressed entirely in terms of known

points, while in an implicit method, the solution at the unknown point

is expressed in terms of both the known points and the unknown point.

f Cline concluded that explicit schemes, and predictor-corrector methods,

were stable only for very small step sizes (which would lead to exces-

sive computational time). Tyson and Kliegel (42) show that a step

* size of the order of the relaxation time T is necessary to insure

stability when the first-order Euler method (explicit) is applied to

130



the species continuity equations. Cline also found that only some of

the implicit methods he tested gave adequate results. He concluded

that a method proposed by Lomax and Bailey (34) provided the best

results. It is this technique, which could be called a second-order,

implicit Taylor expansion, which is used in this analysis.

2. DERIVATION OF THE SECOND-ORDER, IMPLICIT, TAYLOR EXPANSION SCHEME

To illustrate the derivation, consider the ordinary differential

equation:

dy f (x,y) (D-9).. dx

Here, f(x,y) may be nonlinear in y and y(x) is assumed to be continuous

and differentiable so it can be expanded in a Taylor series. Expanding

through second-order terms yields
.2

Yn+l =Yn + xxn (xn+ -xn) + dxIn (xn+I- xn)2

n+ n d n ndxn 2
(D-10)

+ O(AX 3

where

"".n Ynvn

and n denotes the nth mesh point. Note that
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d2 -afn +aff. n L n + '( (D- 12)
2x a dx ax n dydx n

Substituting equation (D-12) into equation (D-10) yields

2  af n afn
y = + (n (0-13)

where h x1 - xn Now, fn inside the square brackets in equation

(D-13) is replaced as follows

f nf 1 (0-14)
n.xn+1 n

Substituting equation (D-14) into equation (D-13) yields the desired

result.

h2  ff n afn 
*i Yn+1 Yn + fn 2 ax -- h + O  (h3 ) (D-13)

The derivation for the species continuity equations is entirely

analogous to the above derivation. The species continuity equations

are restated here for convenience.

DC = f (,TCj) (D-16)

Note that equation (D-16) is a first-order, ordinary differential equa-

tion when applied along a particle path in unsteady flow or along a

streamline in steady flow. Along the one-dimensional trajectory, the

substantial derivative can be written as D( )/Dt =tVd( )/ds where s

is an elemental path length and V is the velocity magnitude. Thus,
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equation (D-16) becomes

..,' dCi  i =TVd = gi( (i=I,.. . ,) (D-17)

The i subscript is temporarily dropped in the following development for

clarity. Expanding C in a Taylor series through second-order terms

yields

C.C + dC (s - + d2C In (sn+1 sn) 2;-" Cn+l = n T+ -n(n+1 " n ) +  -d2

n ds2ds (D-18)

+ O(AS 3 )

But

d2C = - n = - [gn(p,V,T.C)] (D-19)
ds ds dC

ds2  n
n

so

+gn dV +gn dT + 9n dC
dn2_j_ +g- d++(D-20)

ds 2 -  p ds DV ds dT ds aC ds

n

Note that the last term in equation (D-20) will become a summation over

all species when the i subscript is re-introduced. Substituting equa-

tion (D-20) into equation (D-18) yields

agn h 2ng +Cngn L d agn dV _gn T + gnI

dn+1 n n + ds aV ds aT ds n

+ O(h3) (D-21)
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where h sn+1 -sn* Now, let ds sn 1 - n; dT T Tn+1 -T n etc.,

and let gninside the square bracket be replaced by

Cn+1 -Cn(-2

* Substituting into equation (D-21) yields

C,,~. =Cn+hg [+ gn (P+ + g (Vn~~n

+ g ( - T) + Dg (C~ Cn) + Q(h 3  (D-23)

eR R-introducing the i subscript yields

Ki = [2g - l (J!!(p 3p ) +-ap --Inn3 (Vn+i 1

n n
+ g-nTl ~Tn)+ E - (K)J(-4

+ (h A)

where

K in Cifl 1 =Cin

The partial derivatives in equation (D-24) are determined analytically.

When expanded, equation (D-24) becomes a system of ^n simultaneous,

linear, algebraic equations which is easily solved by standard methods.
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3. ERROR CONTROL

The implicit scheme derived in the previous section has been found

to be stable for even large step sizes in both Cline's work (41) and in

the subject research. However, the method is subject to truncation

error and thus consideration of step size control must be given.

Equation (D-24) is of the form

Kin + d3C h3 +0(h4) (D-25)
in ~ds 31n 6

"computed term" "third order
term"

The objective in the error control scheme is to estimate the third-

order term and require that the ratio of this term to the computed

term be less than a specified tolerance. The third-order term is esti-

mated as follows.

hCi n (D-26)

|n

then

|3

d1 d 2  dC.i dC. dC. + C.

ns ds n n+1 n dsn-1 D-7
(ds) 

2

4

Ki K.1 CNTnRO

S hn+1 h n h n- i
-g2 D(D-28)

Si135

"compted trm" third135e



where his the average step size.

Assuming equal step sizes, hf+ hn hn h,

d3  K -2K. + Ki1
31j _'n+1 in n-1 (D-29)

ds 3nh 
3

Finally the ratio of interest is computed as

Kin+1 2Kin + in-1i

RATIO =Kn(D-0

RATIO = n+1 6Kin n-i (D-3 1)
6Kin

Note that RATIO has distinct values for each of the chemical species in

the gas mixture at each step in the integration. Also, RATIO can be

* computed only after three integration steps have been taken. To reduce

* the truncation error to the desired level, intermediate points are

placed between grid points along particle paths in the computational

mesh.

Figure D-1 illustrates how the error control scheme is used in

practice. An estimate of the number of intermediate points (NINT)

required between L and L+1 is made. The values of temperature, density,

and velocity at the intermediate points are determined by linear inter-

polation between the known corresponding values at the end points.

Then the species continuity equations are integrated from L to L+1
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and RATIO is computed for each of the chemical species. If, after the

last intermediate integration step, the maximum value of RATIO is less

than a user specified tolerance (TOL), then the integration proceeds.

If the required tolerance is not achieved, then the number of inter-

mediate points is doubled and the integration procedure is restarted

from 1. Also, if the maximum value of RATIO is two orders of magni-

tude less than TOL, then NINT is reduced by one-half before the inte-

gration from L+1 to L+2 proceeds. Figures D-2 and D-3 show the effect

of NINT in integrating between given end conditions for equilibrium

and nonequilibrium conditions at L. In the first two sections of the

tables in those figures, NINT has been specified, while in the last

section, TOL has been specified and NINT has been determined by the

error control procedure described above. Note that in both figures,

failure to use intermediate points yields poor results for the species

mass fractions and 'However, for the cases shown here, even a small

number of intermediate points improves the results significantly.

* Computational time for the subject problem is almost directly propor-

tional to NINT. Experience indicates that a loose tolerance (5 to 10%)

should be used until the solution is near convergence and then TOL can

be reduced to the desired degree.

Figure D-4 illustrates the effect of variable property gradients

* between L and L+1 on the number of intermediate points required to

achieve a tolerance of one percent. Part (a) of the figure corres-

ponds to equilibrium conditions at L. Case I indicates that for small

* gradients in density and temperature, the integration from equilibrium
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L I"NINT" Intermediate Pointsp~L

TL L+I

CIL ~, PL+I PL
CILIL+b At =IXO-5 sec CL+I 2T 0

NINT 0 2 5

F2 6.67002079E-07 6.67088240E-07 6.67098947E-07
CL HF 9.16541128E-01 9.16630067E-01 9.16633003E-01

H2 1.44297673E-02 1.44407872E-02 1.44405314E-02
F 5.27127187E-02 5.26282603E-02 5.26254722E-02
H 1.63157192E-02 1.63002183E-02 1.63003262E-02

*kL+ 1  14.231 E 05 9.669 E 05 9.456 E 05

NINT 10 20. 40
F2 6.67113862E-07 6.67116594E-07 6.67116342E-07

Ci HF 9.16632195E-01 9.16632155E-01 9.16632141E-01
L+1 H2 1.44406072E-02 1.44406089E-02 1.44406096E-02

F 5.26262396E-02 5.26262778E-02 5.26262907E-02
H 1.63002910E-02 1.63002915E-02 1.63002914E-02

*k 9.515 E 05 9.518 E 05 9.519 E 05

TOL 10% (NINT=2) 5% (NINT=4) 1% (NINT=4)

F2 6.67088240E-07 6.67110031E-07 6.67110031E-07
4C. HF 9.16630067E-01 9.16631423E-01 9.16631423E-01

11.1 H2 1.44407872E-02 1.44407117E-02 1.44407117E-02
F 5.26282603E-02 5.26269729E-02 5.26269729E-02
H 1.63002183E-02 1.63002255E-02 1.63002255E-02

k L+1  9.669 E 05 9.575 E 05 9.575 E 05

Figure D-2. The effect of NINT intermediate points - equilibrium
initial conditions (H-F system).
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L "NINT" Intermediate Points

TL

CiL __ __ __ __ PL+IPL

At~i z t0- 5 sec"' TL+I aTL -2 O*R

NINT 0 2 5
F2 9.26174224E-09 9.71138822E-09 9.74977520E-09

C. HF 9.60158784E-01 9.59517223E-01 9.59466462E-01
'L+1 H? 1.71175668E-02 1.71761786E-02 1.71807494E-02

F 1. 12932851E-02 1. 19025221E-02 1.19507258E-02
*H 1.14303552E-02 1.14040668E-02 1.14020535E-02

kL17.053 E 05 9.444 E 05 9.634 E 05

NINT 10 20 40

F2 9.73446971E-09 9.73981717E-09 9.74361901E-09
C.i HF 9.59464704E-01 9.59464162E-01 9.59464011E-01
'L+1 H2 1.71807895E-02 1.71808019E-02 1.71808054E-02

F 1.19523952E-02 1. 19529095E-02 1. 19530531E-02
*H 1.14021020E-02 1.14021168E-02 1.14021210E-02

*k9.640 E 05 9.642 E 05 9.642 E 05

TOL 10% (NINT=4) 5% (NINT=4) 1% (NINT=64)
F2 9.73637961E-09 9.73637961E-09 9.74374805E-09

C. HF 9.59467656E-01 9.59467656E-01 9.59463979E-01
11+1 H2 1.71807148E-02 1.71807148E-02 1.71808061E-02

F 1.19495923E-02 1.19495923E-02 1. 19530838E-02
H 1. 14020279E-02 1. 14020279E-02 1.14021219E-02

k9.630 E 05 9.630 E 05 9.643 E 05

Figure D-3. The effect of NINT intermediate points -nonequilibrium

initial conditions (H-F system).
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"NINT" Intermediate Points

L L+I

L+1

Case Number

7377.12 
3 

T 7377.1 7376.8 7370.8 7397.1 7376.8 7370.8

p .01730 .01729 .01729 .01729 .01830 .01729

- V 840 840 840 840 280

NINT 129 5 5 5 9

a) Equilibrium Conditions at L.

L+1

Case Number

L 1 2 3 4 5

T 6908 6812 6908 6812 6812 6812

p .01079 .00983 .00983 .01079 .00983 .00983

V 5373 5612 5612 5612 2806 1871

NINT 8 32 8 16 32

b) Nonequilibrium Conditions at L.

Figure D-4. The effect of property gradients on intermediate points
(TOL = .01).
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conditions may require a large number of intermediate points to achieve

a one percent tolerance. However, cases 2 and 4 show that even modest

gradients in temperature in density reduce NINT dramatically. In com-

paring cases 2 and 3 note that NINT is not sensitive to the sign of

the temperature gradient. Case 5 corresponds to tripling the relaxa-

tion time between L and L+1.

In part fb) of figure D-4, the conditions at L are not in equili-

brium. The gradients represented by case 1 are the same as those that

existed between L-1 and L in the data from which this information was

taken. Cases 2 and 3 show that NINT is sensitive to a change in the

temperature gradient but that it is not affected by a change in the

density gradient. Cases 4 and 5 illustrate the effect of the velocity

gradient (or relaxation time) on NINT. In general, discontinuous

gradients in temperature and velocity between the L-1 to L interval

and the L to L+1 interval will require a higher value of NINT to achieve

the specified tolerance than for the case of continuous gradients.

NINT is also affected by the density gradient but to a lesser degree

than for temperature and velocity. The significant results concerning

the use of error control are summarized as follows:

1. Most of the computational time required to solve the subject problem

is related to the integration of the species continuity equations.

Therefore, the total execution time is nearly directly proportional

to NINT.

2. Failure to use intermediate points in integrating the species con-

tinuity equations will, in general, yield poor results for species

mass fractions and LK"
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3. Integrating from equilibrium conditions with very small gradients

in temperature and density and a small value of TOL can yield very

large numbers of intermediate points.

4. For equilibrium initial conditions, NINT is not particularly sen-

sitive to the size or magnitude of temperature, density, or velo-

city gradients as long as the conditions in conclusion 3 do not

occur.

5. For nonequilibrium initial conditions, NINT is sensitive to grad-

ients in temperature and velocity while it is only mildly sensitive

to the density gradient. If the property gradients between L and

L+1 do not match corresponding gradients between L-1 and L, then

more intermediate points are likely to be required.

6. Conclusions 1 to 5 appear to be valid for the several chemistry

systems investigated in this research.
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APPENDIX E

TREATMENT OF SUBSONIC INLET POINTS

I. IMPORTANCE OF COMPUTATIONAL BOUNDARY CONDITIONS

Roache (43) remarks that all the flow patterns of common gases

and liquids are solutions to the same partial differential equations.

The flows are distinguished only by boundary and initial conditions

and by similarity parameters like the Reynolds number. He concludes:

S."It is therefore not surprising that the specification of computa-

tional boundary conditions, besides affecting numerical stability,

greatly affects the accuracy of the FDE solution." Cline (23) attri-

butes long computational times in time-dependent solutions of con-

verging-diverging nozzle problems to poor treatment of the boundaries

and inefficient schemes for the interior points. Moretti (44) and

Abbett (45) have shown that reflection, extrapolation, and one-sided

difference techniques give poor results when applied to solid wall

boundaries. Cline (4, 23) has used a reference-plane characteristic

method for boundary points in time-dependent analyses of nozzle

problems. This technique is also used at all boundary points in the

subject research.

2. CHOICE OF INLET BOUNDARY CONDITIONS

At the inlet, a constant n reference-plane characteristic method

is used and, for subsonic flow, only one characteristic curve lies
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within the flow field (see Appendix C). Since there are 4+n unknowns

at the inlet (u, v, P, P, and C1, i=1s...,n) and only one character-

istic relation, 3+n additional conditions must be specified.

The "correct" specification of steady flow inlet boundary con-

ditions is a difficult problem; a generally preferred set of condi-

tions is not known at the present time. It is expected that the

combustor analysis will be performed independently of the nozzle

* analysis. The combustor analysis may or may not include two-

dimensional effects. In any case, the distributions of the fluid

dynamic properties (u, v, p, and P) at the combustor exit may not

provide an appropriate set of boundary conditions for the given nozzle

problem. The total conditions at the combustor exit, however, are

global properties of the flow which must be conserved between the

combustor exit and the nozzle inlet. The specification of total

conditions at the inlet places a constraint on the energy of the flow

but still allows flexibility in the solution for the static proper-

ties at this point.

The specification of total enthalpy H is appropriate for the

subject problem. Equation (A-3) shows that the total enthalpy

(h + V 12) must be constant along streamlines in a steady flow.

Therefore, the total enthalpy distribution at the inlet is required

4 to match that at the combustor exit. Cline (4, 23) uses the inlet

flow angle e as a boundary condition. It has also been used for the

subject problem. The flow angle may be determined by experiment or

from the following procedure:
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I. Determine representative values of the ratio of frozen specific

heats Yf and the gas constant at the combustor exit.

2. Generate a "long inlet" geometry by adding six to ten mesh points

upstream of the nozzle inlet, simulating a constant-area duct.

3. Using the program of the subject research for isentropic constant

specific heat ratio flow, compute the solution to the long inlet

problem described in the preceding two steps. Inlet boundary

conditions for the long inlet problem are: a uniform distribution

of zero flow angle 0, and total pressure P0 and total temperature

00

4. The flow angles at the nozzle inlet for the converged long inlet

problem can be used as the inlet flow angles for the reacting

flow problem.

Note that the arbitrary specification of zero flow angle at the nozzle

inlet has been found to produce unreasonable velocity profiles at the

nozzle inlet for some nozzle geometries.

A uniform distribution of static pressure across the combustor

exit is one of the results expected from the combustor analysis. The

specification of 6, H 0, C.i and a uniform static pressure distribution

was tested as an inlet boundary condition set. For the cases tested,

this produced a velocity distribution which had a range from very high

U values at the center to near zero values at the wall after only 20 to

30 time planes. The static pressure distribution at the inlet from

the "long inlet" solution yielded reasonable velocity distributions.

4 rhe set of inlet boundary conditions which has been used in the

subject research is the specification of 0, H0 C1, i=1,...,n and the
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total pressure P0 based on combustor exit conditions. Here, P0 is the

pressure that would exist as a result of an isentropic stagnation from

combustor exit conditions with frozen composition.

3. RELAXATION OF THE SPECIES MASS FRACTIONS

In using total enthalpy H and total pressure P0 as inlet boun-

dary conditions in the constant n reference-plane scheme, it is found

that radial distributions of density, temperature, and velocity develop

which do not necessarily match similar distributions at the combustor

exit. Therefore, a hypothetical particle, upon making the transition

from the combustor exit to the nozzle inlet, encounters discontinuities

in the flow field. If not properly accounted for, these discontinui-

ties provide inconsistent kinetics data at the nozzle inlet from which

integration of the species continuity equations proceeds.

A series of numerical experiments was performed to study the

effects of the discontinuities described above. Two different chem-

istry systems, in different nozzles, and in various degrees of "near

equilibrium" have been subjected to discontinuities of different types

and magnitudes. The geometries and chemistry systems are presented

in Figure E-1.

Consider a particle at the combustor exit. Note that in func-

tional form (see Appendix A)

Ci = i(o,T,C i) (i=1,...,n) (E-1)

*k= k(TailCi) = *k(PTCi, i=1,...,n) (E-2)
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C 2 +H 'OH +CO HF +F F2 + H
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OH +H-H 2 + 0 H-F REACTION MECHANISM

OH + 0 02 + H

C-H-O-N REACTION MECHANISM

Figure E-1. C-H-O-N and H-F systems.
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Since all the static properties and the species mass fractions are

known at the location of the particle, the species source functions

~and the energy source term k can be computed at this point. In a

real flow, there can be no discontinuities of the static properties

and species mass fractions at the junction between the combustor exit

and the nozzle inlet. Therefore, from equations (E-1) and (E-2), the

distributions of ao. and kalong the flow direction must also be con-

tinuous at this junction. The discontinuities do not represent

reality. They are merely the consequence of an attempt to link

together separate combustor and nozzle analyses. Their effect should

not be felt within the flow, but should be manifest at the inlet mesh

points before the species continuity equations are integrated through

the flow field. This is accomplished by allowing the species ma Ss

fractions at the combustor exit to adjust to the static conditions at

the nozzle inlet. The discontinuities are replaced by ramp functions

outside (just before) the inlet mesh points as shown in Figure E-2.

The discontinuities in density and temperature become continuous,

linear transitions from combustor to inlet conditions over the period

of a variable "relaxation time." The time is chosen so that the change

in the energy source termk is minimized between the combustor exit

and the nozzle inlet.

*Figure E-3 shows curves of k versus relaxation time for the H-F

system starting from near-equilibrium conditinns. The effects of

temperature and density ramps are shown separately. A zero relaxation

time corresponds to a discontinuity at the junction between the
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combustor exit and the nozzle inlet. Note that a temperature discon-

tinuity of just -20OR changes the value oflkby several orders of

magnitude (from 2x 10 to 974x 10 ). The size of the temperature and

density discontinuities in Figure E-3 are typical for the cases

studied during this research. Also, note that with increasing relax-

ation time, the values Of k approach zero. This is because the chem-

ical systems move toward the equilibrium condition where the species

source functions (and consequently the energy source term) are zero.

Table E-I shows the effect of relaxation time on the species mass

fractions. Note that even relatively long relaxation times produce

small changes in the species mass fractions. These changes are

typically two percent or less with the exception of the change for F2

which is present in minute quantities in the reactive mixture. Figure

E-4 shows iPkversus relaxation time curves with initial conditions

corresponding to various locations in the ODK [Reference (10)] solu-

tion of the H-F problem. Note that for all sets of initial conditions

(i.e., various degrees of near-equilibrium), l k approaches zero for

large relaxation time. Figure E-5 shows kversus relaxation time for

the C-H-O-N system. Initial conditions are near equilibrium. Table

E-II shows the changes in the reactive species mass fractions as a

function of relaxation time.

There are several important conclusions regarding the data des-

4 cribed above:

1. All curves Of 4kversus relaxation time approach zero as relaxa-

tion time increases. This is because the chemical systems move
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toward an equilibrium condition (where the species source func-

tions go to zero) with increasing relaxation time.

2. At high temperatures and near equilibrium conditions, ibk is quite

sensitive to vdriations in temperature and density. For example,

a 20°R temperature perturbation, with no relaxation, can change

the computed value of *k by several orders of magnitude.

3. For the chemistry systems and static property gradients studied

in this research, relatively small changes in composition occur

* during the relaxation from combustor exit to nozzle inlet condi-

tions. Typically, species mass fractions change by less than two

percent.

Conclusion 3 is significant with respect to the use of P0 based on

combustor exit conditions for the calculation of inlet points. Since

the composition changes with relaxation between the combustor exit and

nozzle inlet, P0 based on combustor exit conditions is only an approx-

imation at the inlet. However, due to the very small changes in the

species mass fractions between those two points, it is a reasonable

approximation.

Failure to relax the species mass fractions at the inlet leads

to numerical difficulties for two primary reasons. First, without

relaxation, the data set (p,T,Ci, i=l,...,n) at the inlet is inconsis-

*( tent. As noted above, discontinuities can cause the energy source term

•k to differ by several orders of magnitude from its value at the com-

bustor exit. This causes a "hard start" condition in the integration

,* of the species continuity equations away from the inlet. Second, if
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the species continuity equations are not relaxed before the inlet,

they will relax within the computed flow field. This can produce

distributions of 4k within the flow with dramatic oscillations near

the inlet. This k distribution, in turn, distorts the flow. Figure

E-6 illustrates the difficulties described above. The "total enthalpy

error" in that figure is

H Error HOL- HOR (E-3)
'-VE 2 VI2

2

where HOL is the total enthalpy at station L, HOR is the total enthalpy

at the combustor exit, and VE and VI are the velocity magnitudes at

* *the nozzle exit and inlet respectively. Shown in Figure E-6 is a plot

of total enthalpy error and @k at each centerline L station in the H-F

problem for various relaxation times at the inlet. Note that for very

short relaxation times, *k does not have time to adjust to conditions

within the flow and, as a consequence, the rapid adjustment of *k at

the inlet can produce large total enthalpy errors. Once this error

is established at the inlet, no recovery is made.

The proper relaxation time is determined as part of the overall

numerical algorithm. The scheme is illustrated in Figure E-7 which

shows a typical *k versus relaxation time curve. In that figure, kR

is computed for the conditions at the combustor exit, kO is computed

for the species mass fractions at the combustor exit and density and

temperature at the nozzle inlet with zero relaxatior time, and *kAt

is computed for the same conditions as qkO but with a relaxation time
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At. The values of bkR corresponding to each inlet mesh point are com-

puted as part of the initialization procedure for the overall algorithm.

They are only computed once and then are stored. Consider time level

N in the solution of the subject problem. 'PkO is computed at each

*i streamline origin for the static conditions prevailing at the inlet.

There is a minimum relaxation time and if I kOI < 1 0kR, then the

minimum relaxation time is used. This is because *k is known to

:... approach zero with increasing relaxation time. Otherwise, the species

'.. continuity equations are relaxed through time AtI (see Figure E-7)

which is the relaxation time computed for a given streamline during

previous time steps. Then the species continuity equations are inte-

grated along the given streamline to the nozzle exit. Next, a check

is made:

" *kAt' *kRl ?

NO- kR I < .05 
(49)

If the check is satisfied, then At1 is not changed and it is saved for

use during the next time step in the overall algorithm. However, if

the check is not satisfied, then a straight line is extended from kO

through kAtl to intersect *kR" The relaxation time At2 corresponding

to that intersection is used during the next time step. The same

procedure continues for subsequent time steps as shown in Figure E-7

until the check is satisfied.
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