
AD-A127 RN9 CONVHERSION 0F ALGOR J-AMS 0O CUSOM O INTEGRATED CIRCUI ,
DEVICES(U) MASSACHUSETTS NS 0F TECH CAMRIDOE
RESEARCH LAB OF ELECTRONICS JALLEN 30 DEC 82

EDhFOR-R-3h24mF92081Ch05m hhu/3 NUCAENE-NNiFN O N

UI

1 012 0

1111.66

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963 A

le'' L

"il_'_

1.5(!l .

MIRCOYRSOUIO ET HR
NAFNI UEU t NARS 3A

AFOSR-TR- -2,)

FINAL REPORT

Conversion of Algorithms to

Custom Integrated Circuit Devices

AFOSR Contract F49620-81-C-0054

covering the period

15 March 1981 - 14 May 1982

submitted by

Jonathan Allen

Massachusetts Institute of Technology

Research Laboratory of Electronics APR 2 5 1983 j
Cambridge, MA 02139

4A

A 0-

0

- 8a3 04 20 209-

• ' ' J , , -.

SECURITY CLASSIFICATION OF THIS PAGE (ohen Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

AFOSR-TR- J;-.0-0248 ~_ _ _ _ _ _ _ _

4. TITLE (and Sublitl) S. TYPE OF REPORT & PERIOD COVERED

FINAL REPORT
CONVERSION OF ALGORITHMS TO CUSTOM 3/15/81 - 5/14/82
INTEGRATED CIRCUIT DEVICES s. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) a. CONTRACT OR GRANT NUMBER(&)

Jonathan Allen F49620-81-C-0054

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERS

Research Laboratory of Electronics

Massachusetts Institute of Technology
ramhrifdtiga MA 0l2119

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSR December 30, 1982

Boiling AFB, Washington, DC 20332 13. NUMBER OF PAGES

I'. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

ISO. DECLASSIFI CATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution limited

17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, it diflerent from Report)

II. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side Ii necessary and identify by block number)

I.". VLSI design, Custom Integrated Circuit Design

20. ABSTRACT (Continue an rover.. side It n"te .say and tdentif, by block numb.r)

-"- Lhis report we- gives5an overview, work statement, and status of researc
for the contract Conversion of Algorithms to Custom Integrated Circuits. The
basic conceptual framework for this work is to recognize that the design of
custom integrated circuits involves the specification of a number of different
levels of representation that are qualitatively as well as quantitatively
different, and that there is the necessity to derive a set of transformations
between these representations so that the complete design can be specified.

DD ! r47
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Et

- -- ---- ~ ~ . -~ -

SECURITY CLASSIFICATION OF THIS PAGERWh.. Data Etntered)

Accordingly, the work described in this report deals with ways in
which these representations can be established as well as the means
of deriving one representation from others.

An overview of the entire project is given, followed by detailed
description of several different projects focused on the different
levels of representation. These include artwork analysis, circuit
characterization, logic checking, the design for several application
domains, and consents relative to the changing technological base.'
In the artwork area design rule checking is performed in terms of two
different underlying representations of the mask layout specification,
and to special architectures derived involving four custom integrated
circuits for high performance design rule checking. In the area of
interactive graphic layout, three different graphic layout editors are
described along with the various features associated with them. In
the placement and routing area, channel routers are discussed in the
context of the overall PI system for placement and interconnect of
arbritrary rectangular cells with interconnect on all four sides.

In the circuit area a variety of concerns are addressed but two
dominant projects involve the bounding of delay through interconnect
and the high performance extraction of circuit representation from the
detailed mask specification. Both of the projects are aimed at the
characterization of circuit performance for high performance designs.

In the logic area the MOSSIM unit delay switch level logic
simulator is described, together with the underlying theory of MOS
digital systems that has been motivated by the needs for this simulation.

Finally, complex applications, both in the signal processing area
and in the area of compiled microprocessor base designs are dis -ussed.
Experience with these designs is used to motivate a discussion of the
way in which all of the above programmiatic capability can be interrelated

into a cohesive design system.

IWO79
I-.IY oeWiep

TABLE OF CONTENTS

1. Overview.

II. Statement of Work 7

III. Status of Research 15

IV. Publications 25

V. Professional Personnel 26

Al

OVERVIEW

In order to place the research done under this contract in perspective we

start by describing the view of integrated circuit design that motivates our

work. At the top level the goal is to be able to design custom integrated

circuits correctly, quickly, and inexpensively. Custom integrated circuit

design has a lot of competition, including readily available commercial parts,

and increasingly prevalent semicustom techniques, such as standard cell

approaches and the use of gate arrays. If custom design is to continue as a

viable approach it is important to be able to meet this competition in an

effective way. If a good set of design tools is available for such design,

then it need not be any more expensive to produce a design for a custom

circuit than for those designs that utilize standard cells or gate arrays.

This last statement may seem contradictory, since obviously a great deal of

design effort has gone into the creation of standard cells and into the

provision of gate array designs. What is really at issue is the question of

what fundamental representations the designer manipulates, and when decisions

have to be made in order to fix the final design. A major tenet of our

S approach is that it is possible to capture in programmatic form a great deal

of design information that can be used flexibly in many different

environments, rather than being restricted to some rigid architectural scheme.

Furthermore, by chosing these representations carefully, it is possible to

delay the binding of many decisions in a way that helps optimize the layout of

a particular design. We want to retain the advantages of canonical forms,

such as those used in standard cells and gate arrays, but we want to gain

flexibility in the shaping of these cells to provide high performance, and in

the way in which they are interconnected in clusters for a particular design

application. Just as standard cell design seeks to build on the accumulated

experience of designing for many different applications, our custom design

approach also seeks to benefit from many different concrete designs. Rather

than capturing the designer's expertise in terms of fixed final designs,

however, we are trying to capture the designer's expertise in more abstract

terms, by discovering and utilizing fundamental frameworks that can represent

the designer's intent coupled with the means to partially specify those

decisions that have been bound at any given point of the design process.

Computer-aided design systems must aid the designer in this way, and provide

him with a means to explore a variety of different design options, and to

2

probe the consequences of these decisions. We also believe that many

approaches to integrated circuit design utilize a "take what you get" approach

to performance considerations. That is, a design is made and then it is

inspected for design parameters such as area, speed, and power dissipation.

We want to place these considerations more centrally in design, and

accordingly we are exploring the ways in which performance variables can be

manipulated in design, and incorporated into programmatic procedures for final

mask layout specification. A good example of the opportunities available to

the custom integrated circuit designer is afforded by a comparison between

gate array designs and custom designs for a particular application. Some

industrial practitioners estimate that a gate array design can be as much as

four times bigger than a corresponding custom design for the same application.

The reason for this large expansion in area is that gate arrays force

decisions to be made relatively early in the design process in a way that

leads to substantial inefficiencies in the design. For example, it is not

uncommon for the gate utilization on a gate array to be no more than

sixty-five percent, leaving a third of the cells unused. Also, individual

transistors have to be oversized in order to make sure that performance speed

criteria are met. Also, routing channels are generally made bigger than they

need to be since the gate array must accommodate many different designs. In

todays' technology, gate arrays are certainly attractive for many applications

because of the low risk involved and the rapid turn-around provided. We

believe, however, that for many application areas, such as digital signal

processing, we will be able to provide design techniques that will compete

effectively with these semicustom approaches. This is a large challenge, but

as we understand further the nature of design and the balance between

preserving the designer's degrees of freedom versus the use of standard

predesigned (yet parameterizable) forms, that we will be able to offer design

techniques for high performance systems that will meet all of our basic

criteria. Exploring this balance between the designer's efforts and those

efforts that can be performed by a good computer-aided design system is a

major focus of our work.

In many ways the design of highly complex custom integrated circuits is

similar to the design of large programs. We look for identifiable modules

that can be connected into a appropriate hierarchy that provides internal

structure to the overall design, whether it be in hardware or software. Even

TI

though a lot of our emphasis in this contract is on programmatic techniques,

it is important to realize a fundamental difference between the design of

large software systems and the design of large custom integrated circuits. In

the case of software, the representations used at all levels of the hierarchy

and within all modules are identical, namely those provided by the programming

language being used. Thus, techniques that seek to enforce well-formedness

and correctness are uniform over all levels of the hierarchy within the

software system. The situation is very different, however, for hardware

design. En the case of the design of custom integrated circuits we actually

have two different kinds of hierarchy to deal with. The first kind of

hierarchy is, in fact, the same as that already mentioned for software. But

there is an additional aspect of hierarchy which is in some sense "orthogonal"

to this previously mentioned hierarchy that leads to a number of different

levels of representation for the same basic design. These levels of

representation can be characterized as the top level functional

characterization of the intended behavior, the architecture used to provide

the basic computational framework, the logic specification within this

architecture, the circuits utilized to realize this logic, the devices that

form the active and passive elements within these circuits, and finally the

geometrical layout that specifies the detailed mask information needed for

integrated circuit fabrication. What is striking about all of these

Irepresentations is that they are so very different in form. The way in which
transistors connect together at the circuit level gives rise to entirely

separate considerations than the way in which logic gates are connected

together to perform logic functions. Nevertheless, if we perturb one of these

representations, it has consequences at all of the other levels of

representation. Furthermore, it is important that each of these levels of

representation be important to the design process in that each representation

deals with a set of issues that are important to the overall design. For

example, the detailed specification of logic is clearly important to the

computational specification of any design, and so is the circuit performance.

When a designer visits each of these representations, then, he is focusing on

one particular point of view of the overall design. He knows that there are

many other aspects to the design, but it is difficult for him to deal with all

of them simultaneously. A good design system must thus provide not only

appropriate and insightful representations that must be specified and

manipulated during the design process, but it must also provide for

transformations between these representations so that they stay "aligned"

during the design process. All of this must be accomplished in the context of

very complex designs involving half a million or more transistors.

From the above discussion, we can appreciate that design involves two kinds of

tasks. First, the design must be specified, but then it must be verified at

each of the several levels of representation that we have mentioned. These

two tasks suggest that the overall design procedure can be characterized in

terms of an ongoing tension between synthesis and analysis. That is to say,

much of the current design of custom integrated circuits consists of the

specification of a design, usually instantiated without explicit use of design

constraints, followed by an analysis procedure that is intended to verify that

the requisite constraints at each representational level are satisfied. We

would like to, of course, achieve correctness from the start, without having

to verify it after the specification phase. There has been a certain amount

of success in this area, such as in the use of PLA generators. These are

programs that generate the detailed layout for a programmed logic array which
is "correct by construction". We want to learn from these experiences so that

performance constraints as well as fundamental design constraints can be

incorporated into the basic synthetic or specification procedures. It will

take a considerable amount of experience with both specification and

verification before we can see how to make this combination take place in an

optimal way. Accordingly, a large portion of our effort is devoted to

providing the tools for exploring a variety of different design synthesis

strategies, coupled with a powerful set of performance evaluation tools that

provide the designer with feedback as to the efficacy of a synthetic

procedure. This means that we combine intimately within this project both the

creation of d-oign tools and the utilization of these tools to design

practical chips. Two different categories of chips have served as major foci

for our design effort. In one case, we have designed a complex signal

processing chip that raises many issues for the creation of digital signal

processing implementations in general. These considerations include the

provision of substantial parallelism, the implementation of fast arithmetic

capability (including multipliers), novel memory circuit design including

multiport access, and real time input/output capability for connection to real

world devices. An important area of custom integrated circuit design is the

provision of a high level functional specification, and we have worked for

some time on the specification of languages for signal processing that can

serve as input to the overall design of custom integrated circuits for signal

processing. The utilization of such languages is important for capturing the

designer's intent in a precise way, since they make explicit the semantic

attributes of the design, and provide the designer with clean constructs upon

which to base his specification. Another exciting area related to the design

of circuits for digital signal processing is the growth of the size of the

basic computing elements. These elements have grown from the basic

arithmetic-logic capability, through the provision multiplier-accumulator

units and now on to matrix-orientated techniques that provide great parallel

power and generality and which have given rise to new and novel architectures

such as systolic arrays. Modern signal processing gives rise to important new

insights into the optimal form of filters, and clearly there is a large

interaction between these investigations and the implementation technology

which we use for design. We are now bringing into the activities of this

contract increased consideration of these factors, and believe that it will

enable us to construct highly optimized design procedures for modern signal

processing 3tructures. Thus the effective combination of talents from signal

processing theory, control theory, computational architecture, and circuit

design, are all needed to provide contemporary signal processing systems.

The other major class of systems that we are focusing our attention on are

those that are specifiable by some form of basic computational engine that is

controlled through the execution of microcode statements. This class of

systems is not mutually exclusive with the signal processing designs

previously described, but is more appropriate to the basic concerns of

language interpreters. Here at MIT we have a long history of emphasis and

expertise in the design of various dialects of the programming language LISP

and their interpreters. Fundamental knowledge of the nature of these

languages, together with the requirements for effectively interpreting them,

can be utilized to design optimal computational engines for their execution.

The SCHEME dialect of LISP has received a great deal of attention here, and

its designers have produced a second generation chip that depends on a great

deal of software for compiling the microcode specification on down to the

detailed chip layout. The requirements for these designs are specified in

terms of arithmetic capability together with specialized register files

interconnected by local bus schemes that provide for a great deal of

parallelism. Little emphasis so far has been placed on circuit performance,

but rather on architectural strategies for efficiently implementing the

language processor. A great deal of useful experience has been obtained from

this work, both as regards procedural representations and the compilation

strategies for achieving the final design. From these comments it can be

realized that the two major foci of chip design contemplated within this

contract have been used as motivators for the specification of design tools.
We see this as an important attribute of the contract since the provision of

design tools without a corresponding user community is a vacuous exercise.

The relationship of underlying technology to the design process is another

consideration that is receiving increased attention as part of our studies.

This emphasis has arisen in two interesting ways. In one case, we have been

concerned with the conversion of existing designs in one technology into an

alternative technology. An instance of such a case is the change of a design

from a TTL base to a custom MOS circuit. We have come to realize that each of

these underlying technologies carries with it a set of useful circuit forms

that do not map easily one onto the other. Thus, an important point of view

that has been derived from our investigations is that architectures in one

technology cannot be simply mapped onto another technology, but instead the

basic computational task needs to be reexamined in the context of the

implementation technology each time. Even though the experience with these

techniques has thus far been limited to a few specific cases, a great deal of

insight into the overall design process in each of these technologies has been

realized. Another aspect of technological change has been the gradual

movement from NMOS into CMOS. We have made sure that all of our design tools

* operate properly for both NMOS and CMOS, and once again it has been very

instructive to discover how different designs can be realized in both NMOS and

CMOS and the costs associated with each design. The circuit techniques used

* in each case vary a great deal, and give rise to completely different cost

functions for each style of design.

In this overview, we have explained the biases that are present in our overall

project, and tried to give some feeling for the design process as we viev it.

We are attempting to utilize sophisticated software techniques to rapidly and

correctly specify the va:*3ious design representations, and to complement these

techniques with high performance design verification tools. While our

emphasis is on techniques for creating custom integrated circuit designs, we

also believe that our investigations have provided a great deal of insight as

to the relative use of these techniques as opposed to semicustom techniques,

including standard cell approaches and gate arrays. The research results

provided by this contract can thus serve as a fundamental basis for highly

efficient custom integrated circuit design fully capable of producing high

performance designs for complex systems. In the succeeding sections of this

report we describe the projects undertaken during this contract and report on

our progress in the context of this overview. Thus, we hope to clarify the

intention of our various activities and show how they lead to important design

system methodologies.

Statement of Work

In this section we use the statement of work contained in our proposal to

describe the basic goals of our research diring this contract period. There

are a large number of distinct goals, and we will first describe them

separately, and then explain their interrelationship.

For some time we have been studying the use of constraints in a number of

different ways within a design system for custom integrated circuits. There

have been two major uses of constraints that have been explored. First of all

we have devoted considerable effort to utilizing constraints as a basic

declarative form of specifying the functionality required of a design. That

is, if we state, in the form of constraints, all those properties that must

hold in a particular system, then we have specified the functionality that

that system exhibits. In this way constraints can be used to specify

algorithmic confidence, and a substantial effort by Prof. Sussman and his

graduate student Guy Steele was made in this direction. As a result of their

work it was possible to demonstrate that classes of simultaneous linear

equations could, in fact, be represented as a set of simultaneous constraints,

and that it was possible to erect a number of independent solution strategies

on top of this basic declarative network. In this way the constraints

represented all of the conditions that held among the variables of the

simultaneous linear equations, but did not specify the way in which these

equations should be solved. While it was possible in this way to adequately

represent the competence of these equations, it has not been possible to

extend these ideas further into other significant classes of problems.

Accordingly our attention to constraints has turned more to their use within a

design system to automatically derive values for variables that are stipulated

by constraints, and to maintain the constraints through so called "truth

maintenance"I techniques. A simple example of this idea can be seen in the

sizing of a transistor. An important parameter of each transistor,

particularly for NMOS designs, is the length-to-width ratio. If we consider

separately the length, width, and length-to-width ratio of an individual

transistor channel, then it is clear that only two of these quantities can be

set independently, and the third is constrained in terms of the other two.

There are two benefits from the use of truth maintenance schemes in connection

with such interrelated variables. First of all, it is clearly possible to

propagate values for these variables when sufficient other parameters have

been specified to force their values. Thus if the length-to-width ratio is

specified, and the length is qlso given, then the system can automatically

provide the width variable value. Not, only is it convenient to have these

values automatically supplied, it is also of course beneficial to have it done

correctly in terms of the specified constraint. Another important virtue of

constraints, however, is that they may be used to check on the mutual

consistency of the values of sets of variables. Thus if a designer

independently specifies values for the length, width, and length-to-width

ratio of a particular transistor, and these values are not mutually

consistent, then a constraint orientated truth maintenance system can

ascertain this fact and advise the designer of this inconsistency. This is a

great help of course and these ideas are easily extended to basic notions

involved in design rule checking. Truth maintenance for constraint systems

can obviously be used interactively in a design system to check that new

design information that is added to the system is consistent with all of the

spacing constraints required by the underlying process technology. These

techniques have proved particularly useful in two of our programs. One of

them, called Daedalus, is an interactive graphic system based on the MIT

Artificial Intelligence Laboratory LISP machine which uses the constraint

propagation ideas locally. It has become apparent over time that constraint

propagation is not useful over a large design but instead is most useful for

local adjustments within a small area of the overall design space. Another

9.

program using the constraint propagation ideas is the text-orientated layout

language DPL. This layout language provides the designer with a means for

specifying constraints which he wants maintained and the system will

automatically keep the variable values aligned in a manner consistent with

this specification. Both of these systems have been very successful, and have

received wide use within our design community.

$ Building on the strength of these ideas for local constraint maintenance, we

have also started an investigation of the use of these ideas in logic and

timing simulators. Clearly a network of logic gates constrains the values of

the inputs and outputs of this gating structure. In fact the truth table for

any given logic function summarizes the nature of these constraints. Our

interest has been to use the constraint ideas to propagate logic values

through a network to both control and observe values at a particular point of

the network. Clearly this simulation technique is fundamental for testing,

and we have been interested to see how we can apply the basic programmatic

techniques for constraint propagation in this important area. Similarly we

have examined the use of constraints for timing simulators. Constraints for

the delays through any particular path of a circuit can be specified by the

designer and tested for within a timing simulator. While we are just starting

our investigation of this important area, we feel that these techniques should

be basic to the avoidance of race conditions within a well designed circuit.

In this way we hope to bring together our extensive work in performance

analysis specification with this basic set of programmatic capability

orientated around constraint maintenance.

In order to efficiently design complex systems, we are investigating

compilation techniques that convert a high level linguistic specification for

a design into a target machine which is constrained in terms of particular

architectures. Two different kinds of architectures have been studied. On

the one hand, we have extensive experience with microprocessn-r type designs as

evidenced in the case of the SCHEME chip, which has just recently completed

its second design iteration. This chip is motivated by the desire to provide

a custom architecture to efficiently execute a dialect of the programming

language LISP called SCHEME. Extensive knowledge of the way in which the

SCHEME language statements are interpreted has permitted a highly optimized

design both as far as the control is concerned and as far as data path

10

organization is concerned. A number of very interesting procedurally based

compilation techniques have been developed for this purpose. And this

continues to be a major thrust of our effort particularly within the

artificial intelligence area. An increasing focus of our effort has been on

the design of custom integrated circuits for signal processing, particularly

since there is a large possibility for exploiting parallelism, and because of

the need for extensive arithmetic capability in such designs. The MACPITTS

compilation scheme is an example of such a compilation procedure, which

utilizes a number of distinct finite state machines realized in terms of

program logic arrays coordinated to a single shared data path. We have also

studied a number of custom architectures for signal processing, and have

completed the design of a 'nigh performance signal processing chip initially

motivated by the needs of speech synthesis, but useful for a wide variety of

filtering applications. It is our belief that experience with specific

designs of this sort will help to steer and motivate our research for

compilation techniques that will yield high performance signal processing

designs. For example, an ongoing project derived from the design of thoz

speech synthesis signal processing chip has been the provision of the

programmatic capability for ge nerating the layout of high performance parallel

multipliers given the number of bits of the multiplier and multiplicand. In

this way the designer can quickly generate large high performance multipliers

without any need to specify detailed circuit and layout considerations. We

believe that this kind of capability is unique and has not been provided

previously and can be exceedingly useful in a building block approach to the

assemblage of complicated digital signal processing systems. Given further

experience with these individual blocks, they can then be called upon by a

higher level compilation strategy and it is this direction that we are

following. We are also exploring techniques for systematically examining the

* different degrees of parallelism that are available in a digital signal

-. processing system. Given one particular design, we already have available

formal techniques for manipulating that design into other versions of the

* design that make a different tradeoff between space and time. The coupling of

this high level means for exploring architectural choices with the algorithmic

basis for generating the individual cells will give rise to a comprehensive

system for the design of digital signal processing applications.

An important aspect of our work has focused on the provision of high

performance design rule checking algorithms. There are several aspects to

this work. Firstly, we have examined two different kinds of algorithms. The

traditional design checking algorithm represents the layout information in

terms of a set of rectangles. On the other hand, mask information can be

specified in terms of a symbolic coarse grid, and this gives rise to highly

regular algorithms for design rule checking. We have constructed design rule

checkers using both of these data representations and found that they each

have their place utilizing different kinds of technologies. If the design

rule checking algorithm is to run on a standard conventional computer then the

rectangle based algorithm has proved to be most satisfactory. The particular

version that we have constructed is modular in the sense that it is easily

adapted to a variety of different technologies, and by careful attention to

sorting and sequencing, we have been able to speed up the performance between

one and two orders of magnitude. Also, for sparse designs, since the design

rule checking time is roughly proportional to the square of the number of

rectangles, this rectangle based algorithm can be quite fast. In contrast to

this technique we have also designed a design rule checking algorithm that

first rasterizes all of the mask information, and then checks the design rules

by using pattern matching techniques over the coarse grid. The time needed

for this technique is independent of the number of rectangles in the design,

and uses an exceeding. y regular computational structure. For this reason we

have been studying for some time the design of special purpose hardware fo-

performing design rule checking using these techniques. This has necessitated

the design of four custom integrated circuits, but each of these is highly

regular itself and is not large. These four chips, together with -3everal

other support chips, will be mounted on a single microprocessor-based board

which can serve as a plug-in functional unit for an individual work station.

In this way very high speed design rule checking can be provided for

substantial designs on an interactive basis. The study of both of these

techniques has benefited from our concerns with the use of hierarchy and

design rule checking. A number of different hierarchical strategies have been

proposed, and the special purpose hardware treatment just described does in

fact utilize a hierarchical approach. The basic idea behind this hierarchical

approach is to treat every cell of the design as being completely well formed

and hence completely checkable by itself. When these individual cells are

combined to form larger units, then it is only necessary to check the

12

satisfaction of design rules along the interstices of the design where the

cells come together. This approach has been very successful and is now being

applied to all of our design rule approaches. Since we have completed our

design for the special purpose hardware for design rule checking, and are

currently implementing this design, we have also turned our attention to the

use of such techniques for artwork analysis for other tasks such as topology

extraction. As these algorithms are developed, we are confident that more

general architectures for artwork an~.lysis will evolve that will perform a

number of these tasks efficiently and flexibly.

A major facet of our work has been concerned for circuit performance issues in

terms of speed and power. A major tool in these studies is of course, circuit

simulation, which has been available for some time, but which is

computationally expensive. We have thus sought to bridge the gap between the

detailed mask layout information and the input format needed for the popular

SPICE circuit simulation program. Accordingly, we have designed a circuit

extraction algorithm which takes as input the detailed mask specification and

provides as output that information needed by the SPICE input deck. Thus the

user of this simulation program is spared the need to understand this input

format and can automatically derive all of the needed parameters from the

layout by simply invoking one program. In the past, circuit extraction

programs have been available, but they have not been very accurate. We

believe very strongly that as the scaling of layout dimensions goes Dn leading

to smaller and smaller widths and spacings, that highly accurate resistance

values and internodal capacitances will be needed in order to afford an

accurate circuit simulation. In the program under development, it is possible

to calculate resistances either by counting squares, by using form factors, or

by solving Laplace's equation for the resistance of nonstandard shapes. Thus

within the confines of one well structured program the user is able to obtain

those computational resources needed to calculate resistance values associated

with arbitrary forms in the layout. In the case of capacitances, not only are

capacitances to the substrate computed, but internodal capacitances, even when

the nodes are substantially distributed in space, are calculated. These

values are particularly important for dealing with noise problems due to

coupling between conductors in a dense integrated circuit. This program has

proved to be exceedingly valuable, and is undergoing continuing revision using

recursive techniques for automatically gaining a prespecified degree of

13

accuracy for both resistances and capacitances. It also turns out that the

program may be used in a simpler mode to obtain the network topology of the

circuit specified by the mask layout. This information is necessary for logic

simulation, and in fact a new unit delay logic simulator has also been written

that couples with this program in a very efficient way. A new area of study

that is complementary to these concerns is the examination of circuit

simulation techniques that are both accurate and fast, there has certainly

be. n substantial progress in this area within recent years, but we believe

th&t by the study of new modeling techniques coupled with innovative control

strategies that it will be possible to provide, possibly with the use of

special hardware, very 'high performance circuit simulation that is also very

accurate. Certainly without such resources, it is impossible to design high

performance circuits.

Once accurate circuit modeling values are available, it is of course important

to investigate the performance of these circuits. We hnave been particularly

interested in studying the delay through interconnect as evidenced by long

polysilicon wires that are frequently the source of substantial limitations on

performance in large circuits. It turns out that analytical relations can be

used to bound delay through such interconnect, and that these relationships

can be computed in a very efficient way. Thus we hope to be able to

incorporate these techniques within a design system that will allow a rapid

interactive exploration of timing and clocking structures. We are also

working in this connection on techniques for optimally sizing transistors in

order to fulfill speed and power requirements. Given a chain of such devices,

it is possible to compute the optimal size for each transistor according to

some stipulated criteria. We believe that it is also possible to use dynamic

programming techniques to both discover and characterize maximum delay paths

within any given network.

-. For some time we have been working on the design of a large program to

automatically place and route a set of rectangles of arbitrary aspect ratio

but orthogonally related with interconnect on all four sides. The provision

of a program to solve this problem is a large undertaking, and has involved a

great deal of study in both global and local routing techniques, including

channel routers and power distribution techniques. We have been working on

this problem for several years, and we are now at a stage where the program is

14

performing adequate routing capability, but the placement techniques are not

yet completely incorporated within the overall program. The design of this

large program has brought into focus a number of design issues and given rise

to many different student projects. Our approach is algorithmic, and does not

contemplate interactive use by the designer. Nevertheless, as we apply this

program to a number of different designs, it may be that some sort of

interactive capability is desirable. We emphasize that this effort is focused

around the derivation of optimal algorithms, and that the achievement of such

a program will be a major accomplishment since it is widely recognized as a

basic requirement for all comprehensive design systems.

In the previous paragraphs we have discussed many different programs that deal

with a variety of different representations as well as the transformations

between these representations. As we have noted before, there are two basic

computational environments that we use for the development of this software.

By far the largest number of programs are written for a DEC system 20 which

gives us a great deal of flexibility in programming languages, and also

provides for time shared use by great many researchers. This is also the

facility that is used to support our classes in integrated circuit design, so

*there is a natural means for providing us with user experience in association

with all of our programs. The second computational environment that is

heavily used is that of an MIT Artificial Intelligence Laboratory LISP

machine, coupled with a high performance color display as well as a

monochromatic high resolution display. This system has been used for the

development of the Dedalist system, and most of the LISP based tools such as

DPL. Both of these computational environments are connected together on a

local network which is also connected to a great many other research

facilities so that access is very flexible. An increasing emphasis of our

work is to consider the design of a unified data base that will be appropriate

for all of the different programs involved in the design process. This is a

large undertaking, and needs to be approached cautiously, particularly since

many of the programs are in a continuing state of flux and it may be

undesirable to constrain them to dealing with a rigidly formulated data

structure. We see this problem as an inevitable tension arising from

undertaking research on the design of custom integrated circuits. On the one

hand, we need the flexibility to innovate new solutions to a wide variety of

* problems, on the other hand, we need to continually examine how these

* 15

resources can be interconnected to provide a unified user orientated system.

* Nevertheless, we feel that it is time to explore the problems of a coordinated

system, and this will certainly be an increasing part of our effort.

We have mentioned in the paragraphs above that there are several different

designs that have motivated our creation of design tools. Most important of

these are our work on the SCHEME chip and our digital signal processing chip.

As we have commented, these designs are of widely different nature, and yet we
have been able to learn a great deal from these efforts. There are also, of

course, a wide variety of other designs going on, and we are currently

exploring the possibility of the design of a chip to be placed in a large

network appropriate to a "connection machine" suited for a large artificial

intelligence problems. This project will raise additional issues having to do

with a heightened level of communication between neighboring chips and system

coordination issues involving literally hundreds of processors. Thus, we

continue to expand the variety of designs that we have experience with, and

this enriches our confidence as to the worthiness of the design tools being

developed.

In the paragraphs above we have summarized the work undertaken for this

contract, and placed it in the context of our overview. We have tried to giveI a feeling for the evolving direction of the work, as well as the current
status. In the next section we deal explicitly with results obtained during

this contract year.

STATUS OF RESEARCH

In this section we give a detailed view of the ongoing status of our research

together with concrete accomplishments. A substantial number of publications

have resulted from this work and are listed separately at the end of this

report. Our work has been appropriately represented at the conferences

germane to this field, most particularly the Design Automation Conference held

each year in June. During this last contract year three papers were given at

the Design Automation Conference representing work sponsored by AFOSR and one

of them ("A "Greedy" Channel Router" by R. Riveat and C. Fiduccia) won a best

paper prize. Furthermore all of our programs are widely distributed and are

available within the United States at no cost. We believe that this policy

has resulted in widespread use of our programs and a lot of valuable feedback.

________________IF__N O_

16

For example, virtually every university carrying on substantial research in

integrated circuit design is using the MOSSIM unit delay logic simulator

developed by Randal Bryant under this contract.

The point of viev taken by our research has been expressed in a recent review

article, written by Professors Allen and Penfield titled "VLSI Design

Automation Activities at MIT". This article provides both a basic conceptual

at MIT in the design automation area, almost all of which are supported under

this contract.

In previous reports, we have put a great deal of emphasis on our research on

constraint representations and the means of exploring various performance

alternatives at the architectural level. During this contract year, less

basic research is going on in this area, but the ideas previously generated

are being used in a number of different ways. For example, the idea of

exploring various space/time tradeoffs at the architectural level has been

utilized in the MACPITTS project by designing a high level functional

specification language in a way that permits the user to explicitly control

these tradeoffs. What is missing, however, is the means to make these

conversions automatically in a semantically in variant way. That is, although

we know from previous research precisely how to control changes so that the

underlying competence remains invariant, we have not yet implemented this in a

programming language. This is part of our ongoing research, and the issues

are well understood, so the remaining task is to implement these ideas within

our design software. The constraint ideas which we have previously discussed,

are also being heavily used, particularly in the Daedalus system and the DPL

layout language, both of which encourage the user to use truth maintenance and

constraint propagation techniques for maintaining the well-formedness of the

growing design.

A great deal of attention has been devoted to the creation of effective mask

layout techniques. We have already mentioned the DPL text-based language,

* that provides for symbolic manipulation of important design variables, as well

as the daedalus system which is capable of converting a graphic layout into a

DPL orientated data base. Another layout language which has been used here

for some time is the AIDS language which is implemented in APL. AIDS is a

-li I

17

well constructed program, and was the first interactive layout language

available in our community, but since it runs interpretably, it is

computationally expensive for large designs. Nevertheless, largely through

Professor Penfield, there is substantial APL expertise here and this language

represents an important approach to the layout problem. By far the most

popular interactive graphic layout language presently used here is the program

HPEDIT which utilizes the HP 2647 or 2648 graphic terminals. This program is

self documented, menu driven, hierarchical and capable of zooming in on an

appropriate level of detail. Users find that they can learn to use this

language very quickly, and since it is written in C, it compiles very

efficiently on a number of different machines and has been used at many

different locations. It has been readily adapted from NMOS into CMOS, and a

recent improvement has been to provide interactive design rule checking within

the program. HPEDIT has been rewritten at least twice, so it is now a much

more reliable program, and much easier to modify. It is hard to

over-emphasize the importance of the human factors considerations that have

been used in the design of HPEDIT. This is particularly important in our

environment where we have many users who must learn to use the software

quickly, and renew their understanding after a lapse of time with minimal cost

in time. Given an improvement in our facilities base, we will probably extend

I{PEDIT to color graphic terminals, but this should present no major newIdifficulties. We have also developed a small program called MSHOW which

allows the user of a conventional alphanumeric terminal to display coarse

layout information. The display generated on such terminals is not very

desirable, but when the alphanumeric terminals are the only ones available, it

has been found to be very useful. No great effort has been put into this

program, but it will be maintained in order to provide a certain basic low

level capability from any conventional terminal.

We are particularly pleased with our activity in placement and routing. Under

k the direction of Professor Rivest, a lively research group has sprung up to

* - ~ consider all of the algorithmic problems involved in this task. One of the

most interesting projects was the development of the so called "Greedy Channel

Router" which provides optimal channel routing capability for custom

integrated circuits. A number of extant channel routers were studied and the

techniques used by them were examined in the context of many different

designs. From these studies, a set of elemental strategies evolved that have

18

proven capable of spanning all of the different strategies required in channel

routing. A control structure was then invented to coordinate these basic

moves, and a great deal of testing was done in order to optimize this high

level strategy. The result has been a high performing channel router, but one

which is also transparent to the user. That is, it is possible to understand

the basic moves used by this program, and of course it is an easy matter to

modify the control structure based on increased understanding through

experience. It is probably the insightfulness that has been brought to bear

in this router that contributed in large measure to the best paper prize that

was awarded to this work at the 1982 Design Automation Conference.

Channel routers, of course, provide only one ingredient in an overall

placement and routing strategy. The major task faced in this area is the

creation of a complete system for placing and routing rectangles of arbitrary

aspect ratio orthogonally related in minimal area. This has become a classic

problem, and is being studied by a large number of groups, but we feel that we

have achieved a leadership position in this area. By carefully combining both

global and local strategies, and using appropriate theoretical techniques for

the generation of spanning trees and other needed routing structures, it has

*been possible to develop a well motivated strategy. The system that we are

developing, called PI (for placement and interconnect) is still under

development, but it is already performing at a good level for interconnect.

Substantial problems remain for dealing with placement issues, and major

emphasis is being put on these issues. It may be that routing should be

treated as requiring an expert system, and that even several kinds of experts

are needed for different kinds of routing, such as "river routing". If such

capability were available, then the designer might ask the expert program to

perform certain routing tasks and the program might maintain a dialogue with

the user as to the appropriateness of such a move, the degree of difficulty,

the completeness of the routing, and the cost in space. Such an interactive

approach is in contrast with the more algorithmic approach used by the PI

system, and both of these techniques are currently under study. It is a

hallmark of our approach to many problems that we are willing to entertain

several different solutions to the same problem. Thus, we always have a

substantial level of internal competition between alternate approaches, and

this is very useful. In the routing area, the assessment of goodness of the

various approaches can be ascertained by testing on standard bench mark

19

problems, and these have recently been collected in a useful documented form

for all of those working in this area.

Continuing at the artwork level, we have for several years been concerned with

the efficient implementation of design rule checking programs that are

suitable for a variety of technologies. We have from the start restricted

these strategies to those layouts that incorporate mainly orthogonal

geometries with a possible inclusion of 45 degree lines. No other arbitrary
* shapes have been allowed, since the cost of including these in any practical

design rule checking program is exorbitant. Our initial experience has been

with rectangle-based design rule checking programs and several of these have

been built. Perhaps the most flexible has been a program, written in C, which

provides a number of basic operations, as might be conceived of as available

in a virtual machine designed for design rule checking, which can then be

combined by the designer to formulate arbitrarily complex design rules. Thus

a basic set of capabilities can be drawn upon to easily construct design rule

checks, without the need for the designer to deal with all the combinatoric

complexity involved in managing the thousands of rectangles present in any

realistic design. This design rule checker, initially implemented at MIT

Lincoln Laboratory, has been substantially improved through careful study of

the scanning and sorting routines that often dominate the execution time ofIsuch programs. Almost two orders of magnitude improvement in time have been
generated through this careful reexamination, and this has been enough to make

this program exceedingly useful on an interactive basis within the HPEDIT

interactive layout language. Thus, a medium size circuit can be readily

checked in a matter of a few seconds, and this capability has proved to be

exceedingly popular with our user community. A different tack on the design

rule checking problem is provided by first rasterizing the design into a

coarse grid of symbols, each of which represents the masks present in one of

-the grid squares. Design rule checking can then be done by using pattern

matching techniques associated with a moving window four squares on a side.

Such an approach leads to an exceedingly regular program design, the execution

time of which is proportional to the area of the chip rather than the number

of rectangles present in the layout specification. This regularity has

suggested the use of special hardware in order to improve the execution speed,

since no conditionals are present in the code and hence pipelining of activity

* can be used without penalty. Accordingly, a major project of ours has been to

20

design such a special purpose piece of hardware, which is a board level system

containing four custom integrated circuits. All of these four circuits have

been designed, and two of them have been returned from fabrication without any

error at all. When this board level product, including microprocessor

control, is completed during the next contract year, we expect to achieve at

least two orders of magnitude speed up in the overall processing of design

*rules. For large chips, this capability is indispensable, and should be

thought of as providing a special functional unit for an interactive VLSI work

station. We have given papers on this work at two conferences, and the work

has been very well received.

One of our earliest programs was MOSSIM, which is a unit delay logic
simulator. The trajectory of this work through time has been very

interesting, since the original work was focused mainly on providing a switch

level simulation, but as a result of continual refinement, a basic theory for

MOS, digital systems has evolved. The earliest work revealed that gate level

t simulators were inappropriate for MOS design, and hence our logic simulation

investigations focused at the individual transistor or switch level. This

decision has proved to be very helpful, and no design generated here is ever

dispatched for fabrication without a complete logical checking at this level.

The switch level seems to be an appropriate level of abstraction for MOS

designs and captures important circuit activity leading to the desired logical

behavior. What is most remarkable about this work is that the implementation

of the simulator itself led to a thoroughgoing examination of the basic

logical foundations for MOS digital circuits, and a theoretical analysis and

model has been provided for this purpose in the doctoral thesis of Randal

Bryant. Thus not only was a practical problem successfully attacked by the

design of the simulator, but basic theoretical understanding was also provided

in a complementary fashion. We feel that this style of attack on problems is

particularly appropriate for university research, since an immediate problem

is attacked and solved but the more fundamental issues are also appropriately

addressed.

A great deal of our emphasis has been on circuit performance, and this

emphasis can be expected to increase with time. The point of view taken by

much of our research is expressed in an article on VLSI circuit theory by

Professors Glasser and Penfield where the implications of the large complexity

21

of a design on the kind of circuit theory that must be developed is carefully

treated. We place much emphasis on circuit description, because we believe

that this level of representation is the heart of high performance in circuits

which must not be neglected, particularly in the university setting. Many

different topics have been investigated including the scaling of clock noise,

the syntactic interconnection of circuits for well-formedness, and the

development of circuits that can probe and test the performance of any given

process. Two of our most interesting projects however, concern the extraction

of circuit models from layout and the bounding of time performance along RC

interconnection trees in MOS circuits, particularly those involving

polysilicon lines. The circuit extraction work, which is instantiated in a

CLII program, provides a transformation between the layout description and the

input file for the SPICE circuit simulator. Highly accurate values of

resistance and capacitance are computed with all parasitic effects being

appropriately considered. Here again we place much emphasis on the need for

accurate values in order to achieve tight bounds on the estimation of the

performance of circuits. Users find it very useful to be able to go from a

layout description directly into SPICE and to be able to access with great

confidence the performance of their system prior to fabrication. It is hard

to over-emphasize the utility of this capability, and its importance for

modern design. This program is highly modular, and can easily be adapted for

a variety of technologies. In another substantial research activity,

involving three of our faculty, very useful models that bound the delay

through RC interconnection paths have been produced. This is another example

of bringing together highly fundamental and advanced theoretical techniques

with very practical circuit considerations. This work has attracted a great

deal of attention both at other universities and within industry and is a good

example of new techniques that are available for dealing with the complexity

of modern designs. We plan to continue to emphasize this work, and to

incorporate it in timing verifiers but can give estimates of overall

performance prior to fabrication as well as revealing possible race

conditions. Although it is hard to paint to a major research focus in this

area, our interest in performance has led to the constant examination of new

circuit forms in a variety of different designs. Without the kind of

programmatic tools that we have just described, there is no question that our

research community would not focus on these issues to anywhere near the extent

22

that nas actually happened in practice. There is no question that in the

future we will incorporate these techniques within rapid compilation

strategies so that the performance consequences of a number of different

architectural tradeoffs can be examined quickly and accurately. This is

really the important direction that research in computer-aided design for

custom integrated circuits must take. When the tools are not available to

quickly and accurately explore tradeoffs, these tradeoffs are simply not

examined. In a sense, then, we are moving in a direction where designs are

debugged while they are still at the model stage rather than being

constructed. This is entirely appropriate, of course, for custom integrated

circuits and proper use of these techniques leads to high performance circuits

at the time of initial fabrication. In the circuit area, we should also

mention that we are shifting our emphasis from NMOS to CMOS. This has meant

the development of a large number of new circuit forms, the adaptation of our

existing tools to CMOS, and the provision of many library cells, such as pads,

in this new technology. This work has actually consumed a considerable amount

of time, and although it perhaps does not qualify as basic research, it is

important to mention it here, since it has happened fairly easily and attests

to the flexible nature of our design tools which have been readily adapted for

* this new use.

The area of applications has been exceedingly important to us, because it

provides a test bed for a number of our design tools and architectural

frameworks. Increasingly, a great deal of our emphasis has been placed on

signal processing, since we need both architectural performance (i.e.

parallelism) as well as circuit performance, in terms of minimal area, high

speed, and minimum power. We have designed a high performance signal

processing chip for speech synthesis, which includes a sixteen by twenty-four

multiplier and a large amount of on-chip memory. This was a particularly

interesting study because it derived from an earlier TTL design using serial

arithmetic. Careful analysis, however, indicated that serial techniques were

inappropriate when used with the MOS technology, and the resulting integrated

circuit version has used a parallel architecture. The issues involved in

assessing the conversion between two different technologies, particularly the

conversion from TTL to MOS, has aroused a great deal of interest in industry,

and we feel that a great many useful lessons have been learned from this

experience. They have been documented in an article by Evans arnd Allen which

T~

23

is listed among our publications. The intimate interrelationship of signal

processing tasks with VLSI has been addressed by a number of our researchers,

and this continues to give rise to the study of new arch-,tectures for highly

parallel approaches to canonical signal processing problems. We are actively

studying the design of parameterizable floating point units, which are just

now coming into use, and are finishing the construction of a multiplier

assembler which is capable of generating a high performance parallel

multiplier where the word length of the multiplier and the multiplicand can be

specified as variable parameters by the designer. The provision of complex

number arithmetic and its consequences within linguistic frameworks has also

been explored for APL with implications for VLSI design. The view that we

have presented here of the interaction between signal processing and VLSI

shows our intent to combine fundamental theoretical studies with practical

implementation issues. Our research environment here is well suited for this

approach, and we believe that it nas given a great deal of strength to our

work. Work also continues on the design of the SCHEME chip, which is now in

its second version, and which provides a great deal of architectural

parallelism for the efficient execution of the SCHEME dialect of LISP. A

multiprocessor architecture has evolved which will be capable of using this

chip together with many other specialized processors to ,.'uce

performance multiprocessors systems. We are also studying ttn. :esign of a

nodal processor for the very large connection machine being constructed in trie

Artificial Intelligence Laboratory. This project is just now under way, but

raises interesting architectural issues as well as fundamental problems in

testing.

The facility base for all of our programs has been evolving over time,

although the diversity of programming languages being used is diminishing.

Far and away the most heavily used facility is the DECSYSTEM 20 which supports

at least half a dozen languages and almost all of our design software. This

is a large work house facility providing time shared capability for a large

variety of research, and is used in all of the different research laboratories

here at MIT doing design research. Many of the programs are being written in

C and in LISP and recently two small VAX computers have been added.

Eventually these VAX systems may become part of the individual design statJ.ns

suitable for highly interactive use. Of course the MIT Artificial

Intelligence Laboratory LISP machines are also used for this purpose and they

)

24

provide a very rich software environment in LISP plus highly interactive

graphic capability all of which is integrated together into a very powerful

system. We have some capability on the LISP machine and also on the VAX

systems for color graphics, but this capability will improve with time. As

these facilities evolve toward individual graphic design stations, there is no

question that increased emphasis on our work will be focused on coordinated

data bases and well defined interactions between all the pieces of our

software. Our approach has always been to develop the individual programs

first and to then examine the way in which they can be coordinated together

into a larger system. This is a bottom up approach, and we believe the time

is now approaching where a top down coordination strategy should be developed

and may be beneficial to the overall performance and user convenience of tnese

design stations.

.

I-

25

IV. PUBLICATIONS

In the list below, we cite the publications and internal memos that have been

written under the sponsorship of this contract, and which describe the work

done during this contract period. Readers wishing additional detailed

information on any activities conducted under this contract should consult

directly with Prof. Allen.

1. Evans, W.H. and Allen, Jonathan, "MOS Implementations of TTL
Architectures: A Case Study" Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, Paris France, May 3-5,
1982.

2. Penfield, Paul Jr., "Small is Big: The Microelectronic Challenge"
Proceedings, The Innovative Process: Evolution vs. Revolution, MIT
Industrial Liaison Program Symposium for Senior Executives, London,
England, November 12-13, 1981.

3. Penfield, Paul Jr., "AIDS, APL Integrated-Circuit Design System"
Proceedings APL 81, October 21-23, 1981, San Francisco, Cal.

4. Penfield, Paul Jr., "Principal Values and Branch Cuts in Complex
APL" Proceedings APL 81, October 21-23, 1981, San Francisco, Cal.

5. Glasser, L. A., and Penfield, Paul Jr., "VLSI Circuit Theory"
Proceedings Large Scale Systems Symposium, October 11-13, 1982,
Virginia Beach, Va.

6. Penfield, Paul Jr., and Rubinstein, Jorge, "Signal Delay in MOS
Interconnections" Proceedings of the Second Caltech Conference on
VLSI, January 19-21, 1981, Pasadena, California.

7. Kopec, Gary E., "The Impact of VLSI on Signal Processing Algorithms
and Architectures" Trends and Perspectives in Signal Processing Vol.
1, No. 3, July 1981.

8. Bryant, Randal E., "MOSSIM: A Switch-Level Simulator for MOS LSI"
Proceedings, 18th Design Automation Conference, Nashville, Tenn.,
June 29-July 1, 1981.

9. Bryant, Randal E., "A Switch-Level Model of MOS Logic Circuits" VLSI
81, John Gray ed., Academic Press 1981, pp 329-340.

10. Seiler, Larry, " A Hardware Assisted Design Rule Check Architecture"
Proceedings, 19th Design Automation Conference, Las Vegas, Nevada,
June 14-16, 1982.

26

11. Seiler, Larry, "Special Purpose Hardware for Design Rule Checking"
Proceedings Second Caltech Conference on Very Large Scale
Integration, Pasadena, California, January 19-21, 1981.

12. Rivest, Ronald L., "The "PI" (Placement and Interconnect) System"
Proceedings, 19th Design Automation Conference, Las Vegas, Nevada,
June 14-16, 1982.

13. Rivest, Ronald L., and Fiduccia, Charles M., "A "Greedy" Channel
Router" Proceedings, 19th Design Automation Conference, Las Vegas,
Nevada, June 14-16,1982.

Internal Memos:

1. Penfield, Paul Jr., "Signal Delay in RC Tree Networks" January 1981
VLSI Memo 81-40.

2. Kopec, Gary E., "MSHOW (multi-media layout dispay program)" July
1981 VLSI Memo 81-53.

3. Glasser, Lance A., "Clocking Semi-Groups for VLSI Circuit Analysis"
September 1981, VLSI Memo 81-63.

4. Glasser, Lance A., "The Syntactic Analysis of VLSI Systems Using
Graphs" September 1981, VLSI Memo 81-62.

5. Glasser, Lance A., "A Canary Straw Bird" February 1982 VLSI Memo
82-79.

6. Rivest, Ronald L., ""Benchmark" Channel-Routing Problems" February
1982 VLSI Memo 82-77.

Thesis:

1. Bryant, Randal E., "A Switch-Level Simulation Model for Integrated
Logic Circuits" MIT Department of Electrical Engineering and
Computer Science Ph.D., March 1981.

V. PROFESSIONAL PERSONNEL

Profs. J. Allen

L. Glasser

P. Penfield

R. Rivest

G. Sussman

Dr. H. Shrobe

1'

