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. ABSTRACT
- Equations are derived, within the framework of geometrical
optics, that relate the photon flux at a detector to the concentration
of an emitting gas contained in an extended source of rectangular cross
| gsection, for two optical arrangements that have been used experimental-
ly. Since the ratio of the experimental detector signals for the two
. quite dissimilar cases is in agreement with that predicted theoretical-
\ ly, the methods are validated.

A method 1s described for maximizing the signal at the detector,
ugsing a given lens, which may be applied to an extended source of gen-
' eral cross section.

RESUME

Selon 1l'optique géométrique, on a dérivé des E&quations qui
relient le flux de photons atteignant un détecteur 3 la concentration
2 d'un gaz &mettant dans une source &tendue dont la coupe transversale
est rectangulaire. Deux arrangements optiques sont considérés.
' Puisque le rapport des signaux expérimentaux pour ces deux cas tout &
1 { fait différents est en accord avec celui prédit th&riquement, les
‘ méthodes sont validées.

Une méthode est décrite afin de maximiser le signal d'un détec-
teur, pour une lentille donnée. Cette méthode peut 2tre appliquée dans
le cas d'une source &tendue ayant une coupe transversale arbitraire.
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1.0 INTRODUCTION

During continuing studies of a potential gas laser system it has
f been necessary to estimate the concentrations of several energetically
excited molecules in a vacuum flow system. We have, for example, mea-
! sured emissions from O, (alAg) and NF (bliz) in the near infrared
(1.27 ym) and visible (529 nm) respectively. The spontaneous transi-

tion rates (kso s‘l) for these molecular states are both well estab-

a

lished (1, 2), and so it 1s possible, in principle, to measure their
concentrations passively in a gas flow using calibrated detectors and
! narrow-band interference filters. Typically, the detection system is
arranged to view the active gases along an axis perpendicular to their
flow, through a window of known transmittance. A lens is frequently
used to increase the signal at the detector. The field of view of the

detector then covers an extended source of variable cross section con-

L~

taining an emitting gas whose concentration is assumed constant. How-
ever, it would not be difficult to include the case of a gas whose

{ concentration varies in a known way.

i : To calculate an accurate concentration, the volume of emitting

) gas that can contribute to the detector signal and the fraction of

' emitted 1light that arrives at the detector from any molecule in this
contributing volume must be specified precisely.

This report is not intended to present an original theoretical

treataent of the light-gathering properties of optical systems from

extended sources. This has been dealt with elsewhere both in general

terms (3, 4) and for the particular case of optimizing the focal length
- of a condensing lens to fill a spectrograph with light from a cylin-

drical extended source (5, 6).
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This document is concerned with a somewhat different situation.
It presents the methods that have been used to calculate accurately the
photon flux at a detector under two optical arrangements employed to

observe a particular source cavity that has a rectangular cross sec-

tion. Either a circular convex lens or a cylindrical tube, which was
j \ blackened and baffled to minimize internal reflection, was placed

between source and detector.

However, though a particular form of the extended source cross

f gsection is considered explicitly, the methods may be applied to any

# ; cross section. Also, the treatment of the lens case provides a general
method for maximizing the signal at the detector, for a lens of a given

. focal length and diameter, from a completely general extended source.

{ As in previous work (5, 6), the geometrical optics approximation

is made (diffraction effects are ignored).

Figure 1 defines the (left—-handed) Cartesfan coordinate system
used in subsequent sections to describe the emitting gas. It also
shows that the gas is constrained in the y-direction (% c¢) and in z (O
to L), but not in the x~direction. The field of view in x will thus be

unconstrained.

Since the mathematical treatment of the two optical arrangements
(lens and tube) is quite different, the theory may be verified by com-
parison with experiment: the ratio of experimental detector signals
for the two situations (from identical gas flows) should agree with the

calculated ratio of intensities at the detector. Thus it is not neces-

sary to know absolute concentrations in order to verify the theory.
When this has been validated, however, absolute concentrations can then
be calculated with confidence from the equations given here for either
case. Such concentration measurements have been made for excited oxy-
gen and nitrogen fluoride, and will be presented in separate reports.
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Results are given here (Chapter 4) for oxygen emission intensity ratios
that show the agreement between theory and experiment to be within the

measurement errors.

The final equations for gas concentration (Chapter 4) do not
take into account any absorption of light by the emitting gas itself;
i.e. self-absorption 18 neglected. They are therefore only valid for
dilute gases, or transitions for which the probability is low, as in
the cases of 0, and NF that we have studied.

This work was performed at DREV between January and September
1982 under PCN 33H0O7, Research on Chemically Excited Lasers.

2.0 LENS CASE

This chapter describes a method for calculating the number of
photons per second that arrive at a circular detector when a circular
focusing lens 18 placed between it and the extended source shown in
Fig. 1. Only thin lens formulae will be used.

The emitting volume will be treated as a continuum of contribu-
ting object planes (xy) to be mapped onto the detector plame. The
fraction of each mapped surface intercepted by the detector will be
derived. This, together with a function gspecifying the solid angle
subtended to the lens by each point in the object plane, will be inte-
grated through z-space to yield a total photon flux at the detector for

a given gas concentration and emission rate.

Originally, the cylindrical syemetry imposed by the coaxial
circular lens/detector arrangement will be exploited, the actual cavity
dimensions being treated as constraints upon this.
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2.1 The General Contributing Object~Plane Radius

Figure 2 shows a cross section through the xz plane of Fig. 1.
A lens of focal length f and radius R is placed at a distance & from
the window (at z = 0) of the extended source. The detector (radius r)
1s a distance v from the lens. The bar above the v, as with other
symbols used here,’ indicates a fixed parameter: vis a particular

value in the complete image space v.

There exists a u (in the object space u) for a fixed (v, s)
configuration, such that an object of radius h is mapped exactly into
an image of radius r at the detector position. u is given by

u=fv/(v - £) [1]
provided v > £, and u lies between s and s + L.
The object radius, h is
heu.r/v [2)
The general object position is
u(z) =z + s [3]
with u being a particular value z + s.

At any other position on the z-axis (z = 0, L), the maximum
object radius that can contribute to the intensity at the detector is
given by ht+ or h- (see Fig. 2). This is because only rays passing
through both h and the lens can arrive at the detector. This s not to

say that all rays leaving any h(u) arrive at the detector, as we shall

il S it B s i - . At
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So far, no way has been specified for choosing the lens and
detector positions v and s. Conventionally, the object position u is
required to be at the centre of the cavity (z = L/2), and the object
radius h 1s chosen to be the cavity radius. Equations 1 and 2 are then

implicitly simultaneous in two unknowns (v, s). However, for the case

h 1s not clearly defined. For the moment, [1] and [2] simply define u

and h for a given choice of v and s.

1
’ | considered here in which the source is unrestricted in the x-direction,
!
1 It is necessary to have an expression for the general contribu-

ting object radius h(u):
a) inu€u , hZ h- in Fig. 2 and the geometry gives:
(R-h-)/u=(R-Dh/u [ 4]
using [2] ylelds:
; h- = r.u/v + R(U - w)/u (5]

P)inu>u , h=ht

| (R+hH)/u=(R+T)/u (6]
: and similarly,
| h+ = r.u/v + R(u - u)/u. (7
-
; oy Thus in general, for L + 8 » u > s:
h(v) = r.u/v + Rlu - W|/a [8]

E
|
|
‘ i
‘ 1
o
L
|
|
1
[ |

Note that h(u) reduces to h (eq. 2) as required.
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h(u) defines a continuum of objects that are radii of cross
sections in the xy plane. Each of these objects will be focused, pro-
vided 8 > £, at a different position on the image side of the lens.

' Therefore it is necessary to know the radius of the circle at any point
, in the image space through which all rays from any obi§ct circle of

’ 1 radius h(u) pass, so that the fraction of this light intercepted by the
|

detector can be specified.

2.2 Light Cone Radius at any Position on the Image Side of the Lens

' Congsider Fig. 3. An object of radius h at u is focused at v
with image radius i.. The radius of the cross section of the cone
through which all light from the object passes is:

{ i- at v~ < v, and
i+ at v+ > v.

Now,

© s

’ tan® = (R - 1,)/v = (R - 1-)/v [9]
8o that

1- = 1, v=/v + R(v - v-)/v [10]

Now consider the detector to be placed at v—; i.e. v— = v.
- With

1, = vh/u [11]

N PP . ud L o e P - e,




UNCLASSIFIED !
8 !

PN

FIGURE 3 - Light cone radii on the image side of the lens

Eq. 10 becomes

i- = hv/u + R(v ~ V)/v [12]

o

for v < v.

Similarly for v > v

R

i tan® = (R + i+)/v+ = (R + 1,)/v [13]

vhich leads to
1+ = hv/u + R(V - v)/v [14]
Thus, at a fixed position v (detector position), the radius of
the circle of light from an object of radius h may be written in a
general form, using [12] and [14] as a function of object position u

only:

1(w) = h(uwv/u + Rjv = F|/v [15]
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where h(u) is given by [8] for all u, and
v(u) = fu/(u-f) [16]
Using [8] and [16], 1(u) can be written explicitly as a function of u:

i(u) = r + 2RV 1

[17]

which may also be written in the useful form:

i(u) = hv/u + Rv 1

-1
u u

2.3 Object and Image Space Cross Sections

Equation 8 for h(u) defines a continuum of circular emitting
cross sections, and [18] for i(u) gives the circles into which these
are mapped at the detector position v. The y~direction constraint
imposed by the cavity dimension * c, (see Fig. 1) can now be included.

The shaded region of Fig. 4 shows the constrained emitting cross

section, whose area is:

Ao(z) = 2[h2 sin~1 (c/h) + c(h? - c2)1/2] [19]

for h » c.

Figure 5 shows the cross section Ai(z) into which A,(z) 1is

mapped. 1Its value is given by:

Age) = 2[12 sinml (1 /1) + 1 (12 - 12)1/2] [20)
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for 1 > 1y’ vhich results from h > c¢. 1  may be calculated from [17]

since it 1s generated by h:

1.(z) =1+ 2Rv

i3 (2

whereas 1y’ since it results from ¢, must be calculated from [18]:

1 1
E'E' [22]

1y(z) -_c?/u + Rv

The fraction of Ai(z) that 1s intercepted by the detector can

now be specified.

2.4 Fraction Intercepted by . Circular Detector

Ai(z) may, in general, cover the circular detector (of radius r)

in four ways:

(a) 1y > r and 1x > r (Fig. 6(a)).

In this case the fraction of Ai(z) that is received by the

detector is:

F,(2) = nr2/A, (2) [23]

Ai(z) being given by egs. 20 to 22.

(b) iy >r 1x < T
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FIGURE 4 - Object space cross section: A, (z)

FIGURE 5 - Image space cross section: Ay(2)

y 4 y
iy) i
T /ix x T /1 X
(a) (c)

(¢)

FIGURE 6 - Interception of Ai(z) by a circular detector
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This case does not occur because it implies 1y > 1:’ which can-

not occur if h is chosen to be everywhere > ¢ (by ad justment of the

distances v and 8).

(c) ix >r 1y <t (Fig. 6 (c)).

The shaded area of Fig. 6(c) is

Ap(z) = 2[x2 s1n”l (1 /) + 1 (2 - 1DV, [24]

and

F (2) = A(2)/A (2) [25]
(d) 1x < r; 1y <r (Fig. 6(d)).

In this case the entire area Ai(z) is intercepted by the detec-

tor, and

F(2) = 1 [26]

To summarize:

(1) at all points in z, we have defined an emitting area A.(2z)

(eq. 19) that can contribute to light intensity at the

detector;
(2) through eqs. 23 to 26, we have obtained the fraction of this

area that is mapped, by the lens, onto the detector; and

(3) it remains to define the fraction of light emitted by any
point in A,(z) that arrives at the lens (essentially the

——t— - e mom e
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solid angle subtended to the lens), and hence by (1) and (2)
above, the fraction of emitted light that arrives at the

detector.

2.5 Fraction of Emitted Light Arriving at the Lens

This calculation is complicated by the fact that in the y-
direction light emission is restricted by an opaque roof, and that to
support a window, the cavity has a wall of thickness T where there is
essentially no emitting gas.

Figure 7 shows a cross section in the yz-plane of the cavity/
lens arrangement, indicating the window position and the angle sub-
tended to the lens by a point on the viewing axis. The varfable Y(z)
of Fig. 7 can be calculated from the geometry:

tan® = c/(u-M) = Y/u [27]
giving

Y(z) = uc/(u=M) ; (M =g - t) [28]

Thus the area of a lens of radius R illuminated by an emitting
point on the z-axis (shown in Fig. 8) is:

A (2) = 2[R? sin1(¥/R) + Y(R? - ¥2)1/2] (29]

for Y < R, and
A (2) = 7R2 [30]

for Y » R.
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FIGURE 7 - Lens and cavity in the yz-plane

-
-

FIGURE 8 ~ Area of lens illuminated:

The case Y > R occurs when the radiating point is close enough

D%

to the window to illuminate the entire lens area.

Thus the solid angle subtended to the lens (AL/uz) falls off
more rapidly than simply 1/u2, since the cavity roof restricts the area
of the lens that can intercept light; i.e. AL + 0 as z increases.

AL(z)

The fraction of light emitted by a point in A,(z) that

arrives at the lens is given by:
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F (2) = A (2)/4nu? [31]

Equation 31 is exact only for points on the z-axis, but for small off-
axis variations it is a very good approximation.

2.6 Relation Between Emitting Gas Concentration and Photon Flux at a

Detector

If the radiative rate constant for spontaneous emission from the
gas is kg (s~1), and the gas concentration is a (molecules cm‘3),

then an infinitesimal volume element

8V = A, (z) 6z (cmd) [32]

emits

6p = ksuA.(z)Gz (photons s~!) [33]

in all directions.

Of these, FL(z).GP(z) arrive at the lens, and F,(z). F(z).
8P(z) arrive at the detector.

Integrating over the extended volume (O to L in z-space) gives

the total number of photons per second arriving at the detector,
PSL’ ignoring for the moment the transmittance of the window, the

lens and a narrow-band interference filter. Thus:

L
P = 6 F, (2)F (2)k aA,(z)dz  (photons s~!) [34]

or, from [31]




UNCLASSIFIED
16

kal
L J ! F, (2)A (2)A.(2).u"2.dz [35])

The subscripts on P indicate spontaneous and lens respectively.
It is convenient to define a lens integral:

_ L -2
I, = [P (2)A (2)Ao(2).u™2 dz [36]

so that [35] can be written in a form that will be useful in future
comparisons with results obtained for the viewing tube case. Equa-
tion 35 becomes:

Ps

= kgealI /4w [37]

2.7 (Calculation of the Lens Integral: A Numerical Example

A FORTRAN program has been written to calculate the individual
terms in the integrand of eq. 36 pointwise in z~-gpace, and then per-
form the integral numerically using Simpson's rule. The precision of
the result can always be verified by increasing the number of integra-

tion points. The following dimensions are required as input parame-

ters:

- active detector radius;

= lens radius;

= lens focal length;

- cavity y-dimension (Fig. 1);
cavity wall thickness (Fig. 7);
- cavity z-dimension (Fig. 1);

- lens-to-source distance; and

<le - P 6o m wmn
|

- lens-to—-detector distance.
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Column one of Table I lists a particular set of values {qi} for these

parameters, which correspond to an experiment using a gas flow con-

taining excited oxygen (Oz(alA)). The emission from this (at 1.27 um)
i was recorded with a Judson J-16 germanium detector through a narrow—

band interference filter.

The value of the integral for this input set, IL{qi}’ was
found to converge to five significant figures (0.42401 cm3) using 201

integration points.

Table I also gives an error analysis. The experimental uncer-
tainties {qu} in the measured dimensions {qi} are listed in
column two, and the percentage uncertainties in column three. The
total measurement uncertainty is thus about 8%. Column four shows the
integral values obtained using a particular parameter at its maximum
allowed value (qj + qu) with all other parameters held at the
values given in column one. Thus, column five shows the maximum per-
centage variation in IL that can be introduced by the uncertainty in
each of the input parameters. The total uncertainty in IL is then

about 9% due tc the cumulative measurement error. Hence:

I, = 0.4240 £ 9T (em?) [38]

2.8 Choice of v and s: Maximization of IL

In the absence of any other criteria, the lens and detector
positions of Table I (s and v) were chosen such that an object at the
centre of the cavity (z = L/2), with a radius of about one and a half
times the cavity height (i.e. h = 1.5 ¢), would form an image at the
detector with a radius equal to that of the detector (r). This ensures
h(z) > ¢ for all z in O to L, as required by eq. 19.
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TABLE 1

Input and error analysis in the calculation of IL

Parameter value | Uncertainty

qa, qu y 4 qu IL(qj+6qj) XGIL
r 0.412 0.001 0.2 0.42585 0.43
R 2.23 0.01 0.4 0.42586 0.44
f 6.35 0.05 0.8 0.41897 1.19
c 0.54 0.02 3.7 0.44325 4.54
T 1.21 0.01 0.8 0.42364 0.09
L 12.05 0.05 0.4 0.42486 0.20
S 12.9 0.10 0.8 0.42675 0.65
v 9.5 0.10 1.0 0.41941 1.08

(qi in centimeters; I. - cm3)

L

However, it is possible to optimize s and v by numerically maxi-
mizing the lens integral I; of eq. 36, and hence by [37] ensuring

that the photon flux at the detector is a maximum.

The numerical procedure is as follows: a particular s-value,
sj, is defined (sJ

converging to a maximum IL (e.g. using the Newton-Raphson method) and

> f); IL is calculated for a series of v values

hence also to an optimum';j. A pair (;5, sj) can thus be defined for
any 8 > f that maximizes IL’ and by scanning through s an absolute

maximum IL and its associated optimum pair (;, 8) can be obtained.

Figures 9 and 10 show the results of such a calculation for the
experimental setup described in Section 2.7. The absolute maximum of

IL occurs at:

L
" o et dches " . P - e amiine.
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8 =22.1 ; Vv=8.14 (cm) [39]
Equations 1 and 2 can be used to calculated the size (h) and
position (u) of an object that is imaged exactly on the detector, for
the optimized values of [39]. This yields:
u = 28.9
Z=u-8m=6.8 [40]
and h = 1.46.
The nominal object position (;) is thus displaced from the

centre of the cavity (at z = 6) and the object radius (h) is almost
three times the cavity height.

These results are, of course, peculiar to the extended source
considered here, which is restricted in two dimensions and unbounded in
the third, and also to the lens and detector dimensions. However, the
methods would be applicable to any extended source for which it is
important to maximize a detector signal.

3.0 TUBE CASE

The equations derived in this chapter specify the number of
photons per second arriving at a circular detector through a cylindri-
cal tube placed between the extended source of Fig. 1 and the detector.
The tube was blackened and baffled to minimize internal reflection.

The purpose of this viewing tube is to define clearly the contributing
volume of emitting gas.

Figure 11 shows the xz-plane of Fig. 1, indicating a tube of
length K and radius R (exaggerated for clarity), and the volume of gas
that can contribute to light intensity it the detector.
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FIGURE 11 - Tube, detector and source in the xz-plane

~<

p1 (9)

]

1l

FIGURE 12 - Emitting cross section Al(z)
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Any point in the volume bounded by h(z) (for z = 0 to L) in
Fig. 11 may illuminate the entire detector surface. However, in the
region h(z) to H(z) (shaded in Fig. 11), radiating molecules can only
illuminate a fraction of the detector area. This fraction goes from 1

to 0 as x goes from h to H.

A first approximation, considering only the volume bounded by
h(z), will be presented, and subsequently the exact equations will be
derived for the entire volume bounded by H(z). It will be shown that
the contribution from the shaded volume of Fig. 11 is not at all negli-
gible; in fact it i1s of the same order of magnitude as the first
approximation (for the tube length considered here). Clearly, it will
go to zero as the tube length increases, but unfortunately so will the
detector signal. 1In practice the tube length is therefore limited and

the exact treatment must be used.

3.1 First Approximation: Detector Wholly Illuminated

From the geometry of Fig. 1ll:

h(z) = u(z). L 4 [41]

where, as in chapter 2,
u(z) =z + 8 [42]
An emitting area, A;(z), in which any point can fully illuminate
the detector, can thus be defined. Figure 12 shows this cross section,

bounded by the cavity height (c) and the variable h(z).

It 18 helpful in understanding the subsequent treatment of the
shaded region of Fig. 11, to derive the area A;(z) in cylindrical polar

coordinates:
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h n/2 p
1 [ pdpde + !, 1 pdpde} [43]
1

A(z) = 4{f

°
vhere ¢, and p,, shown in Fig. 12, are given by
®,(z) = sin~1(c/h(2)) [44]
and
p1(®) = c cosec ¢ [45]

Substitution of [44] and [45] into [43] leads to the familiar

form (cf. eq. 19) for the area of a section of a circle:
A (z) = 2(h? sin”! (c/h) + c(h2 - c2)1/2) ; (h > C) [4é6a]
which may also be written:
' A (z) = 2(h28; + c2cot ¢,) [46b]
| (1f ¢ > h, A(z) = ¥h2)

An inrfinitesimal volume element

8V = pbpSdsez [47]

centred at a position u(z), containing a molecules cm‘3, would emit

kscév photons per second into a sphere of surface area 4%u?. If all

I points in 6V can fully illuminate a detector of area

a = wnr? [48]

then the number of photons per second that arrive at the detector from
&v 1s:
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a
4mu?

p, = k adv [49]

Integrating over the volume bounded by h(z) and the cavity
length, and using [43] and [46]:

ak o
A, (z)
P, =—2 f S22 4, 50
! o w2 [50]

which is valid provided h(z) is small relative to u(z). Using [48]:

ksatz

vhich defines I, (cf. [50]).

P, is thus a first approximation to the number of photons s~!
arriving at the detector from the cavity, which ignores contributions
from the region h to H of Fig. 11. 1In that region, an emitting

molecule 1lluminates only a fraction of the detector area.

3.2 Inclusion of Boundary Region

Suppose that an infinitesimal volume element (eq. 47) contains

molecules that irradiate a fractional area of the detector:
a(p,z) = F(p,z).xr2 [52]

F(p,z) 1s the fraction of the total area (nr?) that is irradi-
ated by a molecule at (p, &, z), thus:

0 < F(p,z) < 1 [53]

This fraction is independent of & (cylindrical symmetry), but is
dependent on p, and through the limits of p (h and H), on z.
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Equation 49 must now be replaced by:

- a(p,2z)

GPST 4mu?

. ksaév [54]

Using [52] and integrating over the volume bounded by the cavity dimen-

sions and H(z) now,

k ar2

V F(p,2)
P =5 ! 222 gy 55
sT” T4 2 [55]

and by analogy with [43]:

ksarz L
P, = I
ST 4 °

) H /2 0
= (4[240 [ F(p,2) pdp + 17 a0 ['¥(p,2)0d0} [56]
u
2
The subscripts on P indicate spontaneous and tube respectively.

The limits (¢2 and H) of the integrals in [56] now include the
region h to H. From the geometry of Fig. 11:

H(z) = u(z) BBy [57]

and by analogy with [44] (cf. Fig. 12 with h replaced by H, and ¢, by
$):

®,(z) = sin~! (c/H(2)) [58]

Now, if a weighted area K(z) is defined:

/2

2

- 9, H
A(z) = 4{f% [ F(p,z)pdpd® + 2 f‘ F(p,z)pdpdd} [59]

then [56] can be written in a form similar to [50] and [51]:
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k ar? y k _ar?
-_8 A(2) - _8
Pst i g 71 [60]

i which defines IT’ a tube integral (cf. the lens integral case,

eq. 37).

A(z) 1is a weighted area in that points in an area A(z) (Fig. 12
with h replaced by H, and ¢, by ¢,) are weighted according to the frac-

tion of the detector they are capable of 1lluminating.
' Equation 59 can be separated into the previously defined area
A (2) (eq. 43), and a weighted area Zé(z) associated with the region h

to H in p-space. In 0 < p < h, F = 1, thus [59] becomes:

- o,H 8,h
{ A(z) = 4{ [ F ododo + [% pdode

®/2 o % o o, h
+ 77 11 pdpde + S f1 Fpdpde + S [ pdpde} [61)
o, ° %, h %, °

which, by comparison with [43] can be seen to yield:

- H 01 1
A(z) = 4{0,(2) I F(p,2)pdp + /

2

)

F(p,z)pdpdb} + Al(z) [62]

or
A(z) = Ay(2) + A[(2) [63]
defining A,(z). |
Thus it is possible to compare the effect of including the

shaded area of Fig. 1 with the first approximation given by eqs. 50,
51. Equation 60 with [63] gives:
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k ar? i
Pep = —— 1, +:f ‘;z) dz} [64)
i.e.
k'atz
Pop = —5— (1) + 1y} [65]
where
Ll R g, [66]
u

It only remains to define F(p,z), the fraction of the detector
area illuminated by a molecule at p between h(z) and H(z). This is
algebraically complicated, and is treated in detail in Appendix A.
Conceptually, it is only necessary to know that an explicit algebraic
form exists for F(p,z) in terms of tube and detector dimensions and the
distance s, which satisfies [ 53], so that the integrals in [62] can be

calculated numerically.

It 18 convenient for such a calculation, to write F in the

form:
F(p,z) = 1 - G(p,z) 3 (h<p<H 0<z<L) [67]
where G varies from O to 1 as p goes from h to H.
Equation 62 may then be expressed, after some calculus and
algebra, as:

- B
K(z) = 4{0,(2)[2(82 - 12) = [ G(p,2)odp] - Bh2(8; - 4;)

1
2

! 6(p,2)0dpde +3 (2 - )% - 2 - c2)"] }+a,(2z) [68]

[ Y
0
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Defining the two integrals in [68] to be Ip and Ipo’ and then rearrang-

ing:

A(z) = 4{4[0,B2 - 9;h2] - 0,1 -1, + 3 (cotd, - cote))}
;- + Ay (2) [ 69]
| A,(z) can thus be eliminated by using [46b]:

. A(z) = 4{0,(382 - 1) + %c? cots, ~ 1.} [70]

Equation 70 is a rather simple form for directly calculating the
weighted area A(z) needed for the tube integral I,r of eq. 60. The

{
' integrals in p- and é-space are:
I = ? d 71
; o(2) = [ Glo,2)0do [71]
3 9, c.cosecd
‘ I, (2) =" do [/ 6(p,2)pdp] [ 72]
P 02 h
If ¢ > h, eq. 70 {s still valid, but with ¢, replaced by ¥/2 in
[72] for Ip..
3.3 Calculation of the Tube Integral: A Numerical Example
A FORTRAN program calculates both the first approximation inte-
- gral I, (eq. 51) and the accurate form I, (eq. 60) using [46] and [70]
;-

for the numerators in the integrands. The z-space integrations are
performed numerically using Simpson's rule. For IT’ at each point {n
z-space a p-space integral [71] is performed for Ip(z), and a double
integral is performed for Ipo(z) (eq. 72): at each point in &-space a

p-space integral must be calculated since the upper limit of the p~
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integral is ¢-dependent. All the functions vary smoothly, and a rapid
convergence to five significant figures 1s obtained with only 25 points

for each numerical integration.

The required input dimensions are:

cavity z-dimension (Figs. 1 and 11)

cavity y-dimension (Fig. 1)

detector-to-source distance (Fig. 11)
tube radius (Fig. 11)

detector radius (Fig. 11)

tube length (Fig. 11)

R 1 ™ o 0 ™
|

Table II lists a set of experimental values for these parame-
ters, together with an error analysis as in Table I, corresponding to
an experiment using a gas flow of excited oxygen as described in Sec-
tion 2.7.

The total measurement error for this input 1is about 8%, which is
shown in Table II to give a comparable total uncertainty in the tube
{ntegral IT. Thus:

I, = 0.4135 E-01 * 8% (cm.) [ 73]

The first approximation I, was 0.2160E-01, which is only 52% of
I
the boundary region (h to H, the shaded region of Fig. 11) is of a

T Thus the contribution to the photon flux at the detector from

similar magnitude to that from the region in which all molecules can
fully illuminate the detector. In general, the full integral must be
calculated.
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TABLE II

Input and error analysis in the calculation of Iy

Parameter value | Uncertainty 10x

q 6qq Z 8qy IT(qj+6qj) 2814
L 12.05 0.05 0.4 0.41484 0.33
¢ 0.54 0.02 3.7 0.42648 3.14
s 18.2 0.20 1.1 0.41028 0.77
R 0.49 0.01 2.0 0.42371 2.47
r 0.412 0.001 0.2 0.41341 0.02
K 11.9 0.1 0.8 0.40973 0.91

(all values in centimeters)

4.0 LENS/TUBE RATIO: THEORY AND EXPERIMENT

For the cavity of Fig. 1 and a lens-detector setup as in Fig. 2,
eq. 37 gave the number of photons per second arriving at the detector.
This must be modified to include transmission factors for the window
(wtf), lens (1tf) and narrow-band interference filter (ftf), thus:

P = (wef).(1tf).(ftf).k al, /on. [74]

For example, a quartz lens has 922 transmission at 1.27 ym, in
which case 1tf = 0.92.

For the same cavity, but with a tube-detector setup (Fig. 11),
the photon flux at the detector was given by [60]. Again modified to

include transmission factors (no lens) this becomes:

- 2
Pop = (wef).(frf)k ol .r?/4 [ 75]

Thus for a given gas emitting at a rate kg, with a fixed con-
centration a, viewed with the same detector through the same filter,
the ratio of the lens and tube arrangements is:
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P I
SL _ (Atf) L [76]
Por xe2 L,

Experimentally, the detector signals are measured as voltages
" (Vy and Vp for lens and tube cases respectively), which are related

to photons s~! by a calibration constant T, thus:

L U

Pop = Ty 5 Pgr = Ty [77]

¢ Hence an experimental value for the ratio of lens to tube inte-

grals can be obtained from [77] and [76]:

o B ) [ 78]
I, | C e v

{
J expt.

For the excited oxygen emission experimental setups considered

in Sections 2.7 and 3.3, theoretical values for Ij, and It were

} obtained (eqs. 38 and 73), giving the theoretical ratio:
Ll 0.4240
T, | " 0.06135 - 10-3 [79]
heory

Table III shows the results from a series of experiments in
which different total oxygen pressures were used in the cavity, i.e.
different values of a, the emitting O, concentration. The correspond-
ing detector signals, measured using the aforementioned tube and lens
P arrangements, and their ratios are given. The ratio obtained at any
fixed preasure should be independent of the pressure. The table shows

that this is the case since no ratio deviates by more than 2X from the

average (18.83).
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TABLE III

Detector readings for several gas pressures

Pressure VL Vr VL/VT
(torr) (V) $TA))
1 185 9.7 19.1
2 327 17.7 18.5
! 3 443 23.7 18.7
4 535 28.0 19.1

The experimental value for the ratio Iy :IT is then given by
[78], with r = 0.412 and 1tf = 0.92,

1
\ L | _n(0.412)2 -
i T 57— (18.83) = 10.9 [80]

3 \
T expt.

The difference between the theoretical and experimental ratios

‘ is less than 6%, which is well within the uncertainty introduced into
the theoretical ratio (about 172) by uncertainties in the measured

dimens{ions.

The absolute concentration a of an emitting gas in the cavity of

Fig. 1 18 related to the measured voltage from a calibrated detector:
a) in the lens case using eqs. 74 and 77,

@ = 4¥TV /(wef) (1tf) (FeE)k T, ; (81]

. b) in the tube case using [75] and [77],

a= APVT/(wtf)(ftf)ksITrz .
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The integrals Ij, and Iy are calculated from physical dimen-
sions only (Chapters 2 and 3), and I' is the detector calibration con-
stant. The integrals may be computed to a high precision, but the
values are only as accurate as the total dimension measurement error,
which 1s typically less than 10%. The accuracy of the calculated con-
centration is also dependent upon the accuracy of the known emission
rate (kg) which is about 107 in the excited oxygen case, and the
detector calibration (< 10%Z). The transmission factors and voltage

measurements can be quite accurately measured (about 1Z).

An overall concentration measurement that is accurate to within

about 302 can therefore be expected.

Absolute concentrations of a particular excited species, Oz(alA)
in the gas flow from a chemical generator, have been estimated by
observing two entirely different emissions arising from this molecule.
The first of these emissions (at 1268 nm), the direct spontaneous
transition to the ground state, was observed with a germanium
detector/filter combination using both tube and lens arrangements, and
gave rise to the voltages listed in Table III. From these, partial
pressures of 02(a1A) were calculated in the range from 0.22 to
0.63 torr as the total 0, pressure varied between 1 and 4 torr. Obser-
vation of the second emission (the red "dimole” emission at 634 nm)
using a silicon detector and appropriate filter, led to estimated
Oz(alA) partial pressures between 0.27 and 0.69 torr over the same

total pressure range.

Agreement between the estimates from the two emissions is within
the anticipated 30X accuracy, and the average of the calculated per-
centages of Oz(alA) in the flow (varying between 25 and 17Z over the 1
to 4 torr total O, pressure range) is of the expected magnitude for
chemically d:nerated singlet delta oxygen (Ref. 7) in the flow system

employed in these experiments.
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5.0 CONCLUSIONS

The concentration of a photon-emitting gas contained im an
' extended source can be estimated using a calibrated detector, narrow-
band interference filter, and either a lens or a viewing tube to define
’ the contributing gas volume.

C e cee——ame—n o

The close agreement between theory and experiment for the ratio
of intensities at a detector for the two cases gives us confidence in
the methods and formulae developed in this report. The final two equa-
! tions could, of course, both be in error by the same multiplicative
constant. Though specifically applied to a source of rectangular cross
section, the methods can be modified for any extended source without
difficulty, and the lens treatment provides a method for optimizing the

light intensity at a detector from such a general source.
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APPENDIX A

Fractional Area of a Circular Detector Illuminated

Through a Cylindrical Tube by a Radiating
Off-Axis Molecule

Referring to Fig. A-1, consider first an on-axis point that
fully illuminates the end of the tube farthest from the detector. The
projection of this circle onto the plane of the detector by the rays
indf{cated in the figure has a radius Rp given by:

tan 6 = R/(u-K) = Rp/u [a-1]

Thus,

Rp(z) = Ru/ (u-K) [A-2]

As the point moves off-axis and into the region where h < p < H,
this projected circle essentially moves across the detector. There
will be some distortion from a circle, and Rp will increase slightly
as p becomes large. However, for small off-axis displacements the
projection can be considered to be a displaced circle of radius Rp.

It would not be difficult to write the exact eliptical equation for the
projected curve, but the deviation from this is negligible here
because: a) we are concerned only with the area of intersection of the |
detector circle and the projection, the deviation from the circular
curvature of which is minimal in the small arc covering the detector;
and b) at the extreme value p = H, where the deviation from a circle is
the greatest, this is also where the contribution to the integral IT

is the smallest because the fractional area illuminated is close to

zZero.
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FIGURE A-1 - Illumination of a circular detector through a cylindrical
tube
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FIGURE A~2 - Area of intersection of two circles

Now, the area of intersection of two circles (Fig. A-2) of radii

r, < r, is given by:

A, = % rg - (o - E)[ra - (o - 5)2]5 - r§ sin”l & ;25)

+<% r§ - £(r} - 52)“i - r sin~1 (%IQ [A-3]

where 0 is the distance between the centres of the two circles, and

£ = [02 - (r} - P]/20 (a-4]

In the case considered here,
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ry = Rp sy ] 2 X [ArS]

and ¢ may be calculated from the geometry of Fig. A-1l:

a(z,0) = Ko/ (u-K) [A-6]

Hence F(p,z), the fractional area of the detector illuminated
is:

F(p,z) = AI/nr2 = E(Rp/r)2 - {(C!—E)[R‘?)-(o-i)z]!5 + R%sin‘l(gigo}/nrz
P

+%-¢ (r2 - Ez)!’/ﬂr2 - [sin‘l(%)]/n [A-7]
Equation A-7 may be rearranged to give a form (cf. eq. 67):
F(p,z) = 1 - G(p,z) [a-8]
where
G(p,z) = [T(p,2)/7 - (R; - r2)/2] /x2? [A-9]
and

T(0,2) = (0 - E)[RZ - (o - £)2]% + RZ stn~1(Z%)
P P Rp

+E(e2 - £2)% 4 ¢2 gy (%) [a~10]

Thus, equations A-8 to A-10, together with [A-6] for o, [A-4]
for £, and [A-Z] for Ry, define the fractional area required.
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