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ABSTRACT

-Equations are derived, within the framework of geometrical
optics, that relate the photon flux at a detector to the concentration
of an emitting gas contained In an extended source of rectangular cross
section, for two optical arrangements that have been used experimental-
ly. Since the ratio of the experimental detector signals for the two

ly, the methods are validated.

A method Is described for maximizing the signal at the detector,
using a given lens, which may be applied to an extended source of gen-
eral cross section.

RESUME

Selon l'optique g~omgtrique, on a dfirivg des 6quations qui
relient le flux de photons atteignant un dfitecteur A la concentration
d'un gaz 6mettant dans une source fitendue dont la coupe transversale
est rectangulaire. Deux arrangements optiques sont considfirfs.
Puisque le rapport des signaux expfirimentaux pour ces deux cas tout
fait difffirents eat en accord avec celui pr~fiit thfioriquement, lea
mfithodes sont validges.

Une mfithode est d~crite af in de maximiser le signal d'un d~tec-
teur, pour tine lentille donnfie. Cette m~thode petit Otre appliqufie dans
le cas d'une source fitendue ayant une coupe tranaversale arbitraire.
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1.0 INTRODUCTION

During continuing studies of a potential gas laser system it has

been necessary to estimate the concentrations of several energetically

excited molecules in a vacuum flow system. We have, for example, mea-

sured emissions from 02 (a1Ag) and NF (b1 ) in the near infrared

(1.27 pm) and visible (529 nm) respectively. The spontaneous transi-

tion rates (k., s- 1) for these molecular states are both well estab-

lished (1, 2), and so it is possible, in principle, to measure their

concentrations passively in a gas flow using calibrated detectors and

narrow-band interference filters. Typically, the detection system is

arranged to view the active gases along an axis perpendicular to their

flow, through a window of known transmittance. A lens is frequently

used to increase the signal at the detector. The field of view of the

detector then covers an extended source of variable cross section con-

taining an emitting gas whose concentration is assumed constant. How-

ever, it would not be difficult to include the case of a gas whose

concentration varies in a known way.

To calculate an accurate concentration, the volume of emitting

gas that can contribute to the detector signal and the fraction of

emitted light that arrives at the detector from any molecule in this

contributing volume must be specified precisely.

This report is not intended to present an original theoretical

treatment of the light-gathering properties of optical systems from

extended sources. This has been dealt with elsewhere both in general

terse (3, 4) and for the particular case of optimizing the focal length

of a condensing lens to fill a spectrograph with light from a cylin-

drical extended source (5, 6).



UNCLASSIFIED
2

This document is concerned with a somewhat different situation.

It presents the methods that have been used to calculate accurately the

photon flux at a detector under two optical arrangements employed to

observe a particular source cavity that has a rectangular cross sec-

tion. Either a circular convex lens or a cylindrical tube, which was

blackened and baffled to minimize internal reflection, was placed

between source and detector.

However, though a particular form of the extended source cross

section is considered explicitly, the methods may be applied to any

cross section. Also, the treatment of the lens case provides a general

method for maximizing the signal at the detector, for a lens of a given

focal length and diameter, from a completely general extended source.

As in previous work (5, 6), the geometrical optics approximation

is made (diffraction effects are ignored).

Figure 1 defines the (left-handed) Cartesian coordinate system

used in subsequent sections to describe the emitting gas. It also

shows that the gas is constrained in the y-direction (± c) and in z (0

to L), but not in the x-direction. The field of view in x will thus be

unconstrained.

Since the mathematical treatment of the two optical arrangements

(lens and tube) is quite different, the theory may be verified by com-

parison with experiment: the ratio of experimental detector signals

for the two situations (from identical gas flows) should agree with the

calculated ratio of intensities at the detector. Thus it is not neces-

... sery to know absolute concentrations in order to verify the theory.

When this has been validated, however, absolute concentrations can then

be calculated with confidence from the equations given here for either

case. Such concentration measurements have been made for excited oxy-

gen and nitrogen fluoride, and will be presented in separate reports.
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Results are given here (Chapter 4) for oxygen emission intensity ratios

that show the agreement between theory and experiment to be within the

measurement errors.

The final equations for gas concentration (Chapter 4) do not

take into account any absorption of light by the emitting gas itself;

i.e. self-absorption is neglected. They are therefore only valid for

dilute gases, or transitions for which the probability is low, as in

the cases of 02 and NP that we have studied.

This work was performed at DREV between January and September

1982 under PCN 33H07, Research on Chemically Excited Lasers.

2.0 LENS CASE

This chapter describes a method for calculating the number of

photons per second that arrive at a circular detector when a circular

focusing lens is placed between it and the extended source shown in

Fig. 1. Only thin lens formulae will be used.

The emitting volume will be treated as a continuum of contribu-

ting object planes (xy) to be mapped onto the detector plane. The

fraction of each mapped surface intercepted by the detector will be

derived. This, together with a function specifying the solid angle

subtended to the lens by each point in the object plane, will be inte-

grated through x-space to yield a total photon flux at the detector for

a given gas concentration and emission rate.

Originally, the cylindrical symmetry imposed by the coaxial

circular lens/detector arrangement will be exploited, the actual cavity

dimensions being treated as constraints upon this.

L6. "- -
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2.1 The General Contributing Object-Plane Radius

Figure 2 shows a cross section through the xz plane of Fig. 1.

A lens of focal length f and radius R is placed at a distance s from

the window (at z - 0) of the extended source. The detector (radius r)

is a distance v from the lens. The bar above the v, as with other

symbols used here, indicates a fixed parameter: v is a particular

value In the complete image space v.

There exists a u (in the object space u) for a fixed (v, s)

configuration, such that an object of radius h is mapped exactly into

an image of radius r at the detector position. u is given by

fl (v- f) [i]

provided v > f, and u lies between s and-s + L.

The object radius, h Is

-xi r/- [2]

The general object position is

u(z) - z + s [3]

with u being a particular value z + s.

At any other position on the z-axis (z 0 0, L), the maximum

object radius that can contribute to the intensity at the detector is

given by h+ or h- (see Fig. 2). This is because only rays passing

through both h and the lens can arrive at the detector. This is not to

* say that all rays leaving any h(u) arrive at the detector, as we shall

* see.

____
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So far, no way has been specified for choosing the lens and

detector positions v and s. Conventionally, the object position u is

required to be at the centre of the cavity (z - L/2), and the object

radius 1 is chosen to be the cavity radius. Equations 1 and 2 are then

implicitly simultaneous in two unknowns (v, a). However, for the case

considered here in which the source is unrestricted in the x-direction,

K is not clearly defined. For the moment, [1] and [2] simply define u

and h for a given choice of v and a.

It is necessary to have an expression for the general contribu-

ting object radius h(u):

a) in u u , h - h- in Fig. 2 and the geometry gives:

(R -h-)/u - (R - T) [4]

using [2] yields:

h- -ru/ + R(u - u)/ [5]

b) in u > u , h - h+

(R +h+)/u =(R +3)/u [6]

and similarly,

h+ r.u/v + R(u -)/. [ 7]
"'1

Thus in general, for L +s u ; a:

h(u) - r.u/v + Ru - u [81

I 

t

Note that h(u) reduces to h (eq. 2) as required.

* I

.. 4
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h(u) defines a continuum of objects that are radii of cross

sections in the xy plane. Each of these objects will be focused, pro-

vided s > f, at a different position on the image side of the lens.

Therefore it is necessary to know the radius of the circle at any point

in the image space through which all rays from any object circle of

radius h(u) pass, so that the fraction of this light intercepted by the

detector can be specified.

2.2 Light Cone Radius at any Position on the Image Side of the Lens

Consider Fig. 3. An object of radius h at u is focused at v

with image radius i*. The radius of the cross section of the cone

through which all light from the object passes is:

i- at v- 4 v, and

i+ at v+ ), v.

Now,

tane.- (R - i.)/v - (R - i-)/v- [9]

so that

I- - i. v-/v + R(v - v-)/v [10]

Now consider the detector to be placed at v-; i.e. v- v.

With

i. - vh/u [i1]
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FIGURE 3 -Light cone radii on the image side of the lens

Eq. 10 becomes

i- -byv/u + R(v - v)Iv [12]

for v e. v.

Similarly for vi- > v

tant - (R + i+)/v+ ( R + i 0 )/v [13]

which leads to

i- b/u + R(v - v)/v [14]

for v > v.

Thus, at a fixed position v (detector position), the radius of

the circle of light from an object of radius h may be written in a

general form, using [12] and [14] as a function of object position u

only:

i(u) -h(u)v/u + R Iv - [15]
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where h(u) is given by [8] for all u, and

v(u) - fu/(u-f) [16]

Using [8] and [16], i(u) can be written explicitly as a function of u:

which may also be written in the useful form:

i (u) - hv*/U + RVI1 - .1[18]

2.3 Object and Image Space Cross Sections

Equation 8 for h(u) defines a continuum of circular emitting

cross sections, and [18] for i(u) gives the circles into which these

are mapped at the detector position v, The y-direction constraint

imposed by the cavity dimension ± c, (see Fig. I) can now be included.

The shaded region of Fig. 4 shows the constrained emitting cross

section, whose area is:

A.(z) - 2[h 2 sin-1 (c/h) + c(h2 - c2 )1/ 2] [19]

for h > c.

Figure 5 shows the cross section Ai(z) into which A.(z) is

mapped. Its value is given by:

Ai(z) - 2[i 2 sin- 1 (i /ix) + i (i2 - 2 )1/2] [20]
x yx y x y
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for i > iy, which results from h > c. ix may be calculated from (171

since it is generated by h:

i (z) r 2 [211

whereas i. since it results from c, must be calculated from [18]:Y

i $ -v /u+RvZ u [22]

The fraction of Ai(z) that is intercepted by the detector can

now be specified.

2.4 Fraction Intercepted by - Circular Detector

Ai(z) may, in general, cover the circular detector (of radius r)

in four ways:

(a) i•y r and ix P r (Fig. 6(a)).

In this case the fraction of Ai(z) that is received by the

detector is:

Fi(z) - wr2/A1 (z) [23]

Ai(z) being given by eqs. 20 to 22.

(b) i • r ; i x < r.
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FIGURE 4 -Object space cross section: A,(z)
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r x 
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(a) (c)(d

FIGURE 6 -Interception of Ai(z) by a circular detector
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This case does not occur because it implies i y ix, which can-
y x

not occur if h is chosen to be everywhere > c (by adjustment of the

distances v and a).

(c) Ix > r ; y < r (Fig. 6 (c)).

The shaded area of Fig. 6(c) is

AD(z) - 2[r 2 sin-1 (i /r) + I (r 2)1/2] [24]
y y y

and

F I(z) - Al(z)/Ai(z) [25]

(d) i < r; i < r (Fig. 6(d)).
x y

In this case the entire area Ai(z) is intercepted by the detec-

tor, and

FI(z) - 1 [26]

To summarize:

(1) at all points in z, we have defined an emitting area A.(z)

(eq. 19) that can contribute to light intensity at the

. detector;

(2) through eqs. 23 to 26, we have obtained the fraction of this

area that is mapped, by the lens, onto the detector; and

(3) it remains to define the fraction of light emitted by any

point in A.(z) that arrives at the lens (essentially the
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solid angle subtended to the lens), and hence by (1) and (2)

above, the fraction of emitted light that arrives at the

detector.

2.5 Fraction of Emitted Light Arriving at the Lens

This calculation is complicated by the fact that in the y-

direction light emission is restricted by an opaque roof, and that to

support a window, the cavity has a wall of thickness T where there is

essentially no emitting gas.

Figure 7 shows a cross section in the yz-plane of the cavity/

lens arrangement, indicating the window position and the angle sub-

tended to the lens by a point on the viewing axis. The variable Y(z)

of Fig. 7 can be calculated from the geometry:

tanO - c/(u-M) = Y/u [27)

giving

Y(z) - uc/(u-) ; (M - s - t) [28]

Thus the area of a lens of radius R illuminated by an emitting

point on the z-axis (shown in Fig. 8) is:

AL(Z) - 2[R 2 sin-(Y/R) + Y(R2 - y2 )1/2] [29]

* " for Y 4 R, and

A(s) wR2  [30]

for Y ) R.
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window lens

I T

U

FIGURE 7 - Lens and cavity in the yz-plane

x

FIGURE 8 - Area of lens illuminated: AL(z)

The case Y > R occurs when the radiating point is close enough

to the vindow to illuminate the entire lens area.

Thus the solid angle subtended to the lens (k/u 2 ) falls off

more rapidly than simply 1/u2 , since the cavity roof restricts the area

of the lens that can intercept light; i.e. A + 0 as z increases.

The fraction of light emitted by a point in A.(z) that

arrives at the lens is given by:
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F L ) - AL(z)/4wu 2  [31]

Equation 31 is exact only for points on the z-axis, but for small off-

axis variations it is a very good approximation.

2.6 Relation Between Emitting Gas Concentration and Photon Flux at a

Detector

If the radiative rate constant for spontaneous emission from the

gas is ks (S-1), and the gas concentration is a (molecules cm-3 ),

then an infinitesimal volume element

6V - A.(z) 6 z (cm3 ) [32]

emits

6P kcLA.(z)Sz (photons s-1) [33]

in all directions.

Of these, FL(z).6P(z) arrive at the lens, and Fi(z). F(z).
6P(z) arrive at the detector.

Integrating over the extended volume (0 to L in z-space) gives

the total number of photons per second arriving at the detector,

P SL' ignoring for the moment the transmittance of the window, the

lens and a narrow-band interference filter. Thus:

L

P SL I Fi(Z)FL(z)k aA .(z)dz (photons 8- 1)  [34]

or, from [311
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kuL
P +- 0 F (z)AL(z)Ao(z).u-2.dz [35]

The subscripts on P indicate spontaneous and lens respectively.

It is convenient to define a lens integral:
L

I L  f Fi(z)AL(z)Ao(z).u-2 .dz [36]

so that [35] can be written in a form that will be useful in future

comparisons with results obtained for the viewing tube case. Equa-

tion 35 becomes:

SSL = ks. 'IL/ 4 w [37]

2.7 Calculation of the Lens Integral: A Numerical Example

A FORTRAN program has been written to calculate the individual

term in the integrand of eq. 36 pointwise in z-space, and then per-

form the integral numerically using Simpson's rule. The precision of

the result can always be verified by increasing the number of integra-

tion points. The following dimensions are required as input parame-

ters:

r - active detector radius;

R - lens radius;

f - lens focal length;

c - cavity y-dimension (Fig. 1);

T - cavity wall thickness (Fig. 7);

L - cavity z-dimension (Fig. 1);

a - lens-to-source distance; and

v - lens-to-detector distance.

- . - - a --
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Column one of Table I lists a particular set of values {qj} for these

parameters, which correspond to an experiment using a gas flow con-

taining excited oxygen (02 (alA)). The emission from this (at 1.27 um)

was recorded with a Judson J-16 germanium detector through a narrow-

band interference filter.

The value of the integral for this input set, IL{ql}, was

found to converge to five significant figures (0.42401 cm3 ) using 201

integration points.

Table I also gives an error analysis. The experimental uncer-

tainties {6qi} in the measured dimensions {qi} are listed in

column two, and the percentage uncertainties in column three. The

total measurement uncertainty is thus about 8%. Column four shows the

integral values obtained using a particular parameter at its maximum

allowed value (qj + 6 qj) with all other parameters held at the

values given in column one. Thus, column five shows the maximum per-

centage variation in I that can be introduced by the uncertainty in

each of the input parmeters. The total uncertainty in IL is then

about 9% due tc the cumulative measurement error. Hence:

I L = 0.4240 ± 9% (cm3 ) [38]

2.8 Choice of v and s: Maximization of I L

In the absence of any other criteria, the lens and detector

positions of Table I (a and v) were chosen such that an object at the

centre of the cavity (z - L/2), with a radius of about one and a half

times the cavity height (i.e. h - 1.5 c), would form an image at the

detector with a radius equal to that of the detector (r). This ensures

h(z) > c for all z in 0 to L, as required by eq. 19.
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TABLE I

Input and error analysis in the calculation of I L

Parameter value Uncertainty

q Sq % 6ql I(q -6q j) 2 6 1L

r 0.412 0.001 0.2 0.42585 0.43

R 2.23 0.01 0.4 0.42586 0.44

f 6.35 0.05 0.8 0.41897 1.19

c 0.54 0.02 3.7 0.44325 4.54

T 1.21 0.01 0.8 0.42364 0.09

L 12.05 0.05 0.4 0.42486 0.20

S 12.9 0.10 0.8 0.42675 0.65

V 9.5 0.10 1.0 0.41941 1.08

(q in centimeters; IL - cm3 )

However, it Is possible to optimize s and v by numerically maxl-

mizing the lens integral IL of eq. 36, and hence by [37] ensuring

that the photon flux at the detector is a maximum.

The numerical procedure is as follows: a particular s-value,

S is defined (aj > f); IL is calculated for a series of v values

converging to a maximum IL (e.g. using the Newton-Raphson method) and

hence also to an optimum vj. A pair (vV, s j) can thus be defined for

any s > f that maximizes IL and by scanning through a an absolute

maximum I L and its associated optimum pair (v, s) can be obtained.

Figures 9 and 10 show the results of such a calculation for the

experimental setup described in Section 2.7. The absolute maximum of

I occurs at:

- -L
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s 22.1 ; v -8.14 (cm) [39]

Equations 1 and 2 can be used to calculated the size (h) and

position (u) of an object that is imaged exactly on the detector, for

the optimized values of [39]. This yields:

u 28.9

z -- s - 6.8 [40]

andh = 1.46.

The nominal object position (z) is thus displaced from the

centre of the cavity (at z - 6) and the object radius (h) is almost

three times the cavity height.

These results are, of course, peculiar to the extended source

considered here, which is restricted in two dimensions and unbounded in

the third, and also to the lens and detector dimensions. However, the

methods would be applicable to any extended source for which it is

important to maximize a detector signal.

3.0 TUBE CASE

The equations derived in this chapter specify the number of

photons per second arriving at a circular detector through a cylindri-

cal tube placed between the extended source of Fig. 1 and the detector.

The tube was blackened and baffled to minimize internal reflection.

The purpose of this viewing tube is to define clearly the contributing

volume of emitting gas.

Figure 11 shows the xz-plane of Fig. 1, indicating a tube of

length K and radius R (exaggerated for clarity), and the volume of gas

that can contribute to light intensity it the detector.
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Any point in the volume bounded by h(z) (for z - 0 to L) in

Fig. 11 may illuminate the entire detector surface. However, in the

region h(z) to H(z) (shaded in Fig. 11), radiating molecules can only

illuminate a fraction of the detector area. This fraction goes from 1

to 0 as x goes from h to H.

A first approximation, considering only the volume bounded by

h(z), will be presented, and subsequently the exact equations will be

derived for the entire volume bounded by H(z). It will be shown that

the contribution from the shaded volume of Fig. 11 is not at all negli-

gible; in fact it is of the Pame order of magnitude as the first

approximation (for the tube length considered here). Clearly, it will

go to zero as the tube length increases, but unfortunately so will the

detector signal. In practice the tube length is therefore limited and

the exact treatment must be used.

3.1 First Approximation: Detector Wholly Illuminated

From the geometry of Fig. 11:

h(z) - u(z). (R-r) + r [41]K

where, as in chapter 2,

u(z) - z + s [42]

An emitting area, Aj(z), in which any point can fully illuminate

the detector, can thus be defined. Figure 12 shows this cross section,

bounded by the cavity height (c) and the variable h(z).

It is helpful in understanding the subsequent treatment of the

shaded region of Fig. 11, to derive the area Aj(z) in cylindrical polar

coordinates:

Jim__
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0h wr/2 ?ipdd} [1
A,,(z) -41P~ f PdPd# + f P j~ O (30 0

where 01 and pl, shown in Fig. 12, are given by

0 -(z) - sin-l(c/h(z)) [44]

and

P() - c cosec 9 [45]

Substitution of [44] and [45] into [43] leads to the familiar

form (cf. eq. 19) for the area of a section of a circle:

Aj(z) - 2(h2 sin- 1 (c/h) + c(h2 - c 2 ) 1 / 2 ) ; (h > C) [46a]

which may also be written:

Aj(z) - 2(h2 f1 + c2cot #,) [46b]

(if c > h, Aj(z) - wh2 )

An infinitesimal volume element

6SV - P6Pt5#6z [47]

centred at a position u(z), containing a molecules cm- 3 , would emit

k a6V photons per second into a sphere of surface area 4vu 2 . If all5

points in 6V can fully illuminate a detector of area

a - wr2  [48]

then the number of photons per second that arrive at the detector from

6V is:
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sP- a k 96V [49]
4iru2 s

Integrating over the volume bounded by h(z) and the cavity

length, and using [431 and [46]:

ak s

p a M__k , A-2<) dz [50]
4ir u 2

which is valid provided h(z) is small relative to u(z). Using [48]:

k ar
2

s

P1  -- "I---i, [51]

which defines 11 (cf. [50]).

PI is thus a first approximation to the number of photons s
- 1

arriving at the detector from the cavity, which ignores contributions

from the region h to H of Fig. 11. In that region, an emitting

molecule illuminates only a fraction of the detector area.

3.2 Inclusion of Boundary Region

Suppose that an infinitesimal volume element (eq. 47) contains

molecules that irradiate a fractional area of the detector:

a(p,z) - F(p,z).wr 2  [52]

F(P,z) is the fraction of the total area (wr2 ) that is irradi-

7 ated by a molecule at (p, *, z), thus:

0 4 F(p,z) < 1 [53]

This fraction is independent of 0 (cylindrical symmetry), but is

dependent on p, and through the limits of p (h and H), on z.
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Equation 49 must nov be replaced by:

6P a(Pz) k a6V [54]
ST 4u 2  s

Using [52] and integrating over the volume bounded by the cavity dimen-

sions and H(z) now,

k ar 2

s I F- dv' [ss]P ST =  4 u2  d1[5

and by analogy with [43]:

kcr L dz 02 0H wr/2 p1
P 4  {4.2d$ f F(P,z) PdP + f dO .F(P,z)pdp} [56]
ST 4 o 2 o 02 0

The subscripts on P indicate spontaneous and tube respectively.

The limits (02 and H) of the integrals in [56] now include the

region h to H. From the geometry of Fig. 11:

H(z) = u(z) (R + r) [57]
K

and by analogy with [44] (cf. Fig. 12 with h replaced by H, and 01 by

02) :

02(z) - sin-1 (c/H(z)) [58]

Now, if a weighted area A(z) is defined:

_2 H w/2 P,
4Qf f F(P,z)Pdpd* + f f F(p,z)pdpd:)} [591

then [56] can be written in a form similar to [50] and [51]:
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k a r 2 L Ak ar 2

PST 4 ( dz 4 T [60]

which defines I a tube integral (cf. the lens integral case,

eq. 37).

XK(z) is a weighted area in that points in an area A(z) (Fig. 12

with h replaced by H, and 0, by 02) are weighted according to the frac-

tion of the detector they are capable of illuminating.

Equation 59 can be separated into the previously defined area

Aj(z) (eq. 43), and a weighted area A2(z) associated with the region h

to H in p-space. In 0 4 p 4 h, F - 1, thus [59] becomes:

4 2H 02h
A /(z)-41f fF pdpdt + dd 

ho

+1 f Pl pdd + ffFdd + f f pdpdfl [61]

41 42 h 02

which, by comparison with [43] can be seen to yield:

A(z) = 4{0 2(z) f F(p,z)pdp + f F(p,z)pdpdt} + A1 (z) [62]
h 42 h

or

A(z) 1 2 (z) + Aj(z) [63]

defining A2 (z).

Thus it is possible to compare the effect of including the

shaded area of Fig. 1 with the first approximation given by eqs. 50,

51. Equation 60 with [63] gives:

-



UNCLASSIFIED
27

1I +€ 2z= d.1 [64)ST- 4 0 2 *z.[

i.e.

k ar
2

P ST {I + 121 [65]

where

L -

12 - L z) dz [661
U2  

°

It only remains to define F(pz), the fraction of the detector

area illuminated by a molecule at p between h(z) and H(z). This is

algebraically complicated, and is treated in detail in Appendix A.

Conceptually, it is only necessary to know that an explicit algebraic

form exists for F(p,z) in terms of tube and detector dimensions and the

distance s, which satisfies [531, so that the integrals in [621 can be

calculated numerically.

It is convenient for such a calculation, to write F in the

form:

F(p,z) - 1 - G(p,z) ; (h 4 p < H; 0 4 z 4 L) [67]

where C varies from 0 to 1 as p goes from h to H.

Equation 62 may then be expressed, after some calculus and

algebra, as: rr z H
A(z) - 4t# 2 (z)[(H2 - h2 ) - f G(pmz)pdp] - kh2 (#1 - #2 )

h

f f , G(p,z)pdpdf +" [i2 - c2)' - (h2 - c2)k]+Al(z) [68]

-2 h

-e~i, --,-I w ' -----------...- -
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Defining the two integrals In [68] to be I and I.., and then rearrang-

ing:

A(,) - 4{[OF 2 - #1h
2] - I21p - Ip. + -(cot# - coto1 )}

+ A1 (z) [69)

A,(z) can thus be eliminated by using [46b]:

X(z) - 4{ 2( R
2 -I P) + %C2 cot# - zoo} [70]

Equation 70 is a rather simple form for directly calculating the

veighted area K(z) needed for the tube integral IT of eq. 60. The

integrals in p- and *-space are:

H
r (z) I G(p,z)pdp [71]

P h

41 c.cosect
(Z) f df [ G(pz)pdpj [72]

If c > h, eq. 70 is still valid, but with 01 replaced by w/2 In

[72] for I

3.3 Calculation of the Tube Integral: A Numerical Example

A FORTRAN program calculates both the first approximation inte-

-" gral I1 (eq. 51) and the accurate form I (eq. 60) using [46] and [70]
T

for the numerators in the integrands. The x-space integrations are

performed numerically using Simpson's rule. For IT9 at each point in

z-space a P-space integral [71] is performed for I (z), and a double

integral i performed for Io#(z) (eq. 72): at each point in #-space a

p-space integral must be calculated since the upper limit of the P-
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integral is *-dependent. All the functions vary smoothly, and a rapid

convergence to five significant figures is obtained with only 25 points

for each numerical integration.

The required input dimensions are:

L - cavity z-dimension (Figs. 1 and 11)

c - cavity y-dimension (Fig. 1)

s - detector-to-source distance (Fig. 11)

R - tube radius (Fig. 11)

r - detector radius (Fig. 11)

K - tube length (Fig. 11)

Table II lists a set of experimental values for these parame-

ters, together with an error analysis as in Table I, corresponding to

an experiment using a gas flow of excited oxygen as described in Sec-

tion 2.7.

The total measurement error for this input is about 8%, which isj shown in Table II to give a comparable total uncertainty in the tube

Integral IT ' Thus:

I T a 0.4135 E-01 ± 8% (cm.) [73]

The first approximation I1 was 0.2160E-01, which is only 52% of

I T . Thus the contribution to the photon flux at the detector from

the boundary region (h to H, the shaded region of Fig. 11) is of a

similar magnitude to that from the region in which all molecules can

fully illuminate the detector. In general, the full integral must be

calculated.

t ~ - - - -__ - - - - - - -
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TABLE II

Input and error analysis in the calculation of IT

Parameter value Uncertainty lOx
qj 6qi Z 6qi IT(q j+ 6 qj) 2 6 I T

L 12.05 0.05 0.4 0.41484 0.33
c 0.54 0.02 3.7 0.42648 3.14
s 18.2 0.20 1.1 0.41028 0.77
R 0.49 0.01 2.0 0.42371 2.47
r 0.412 0.001 0.2 0.41341 0.02
K 11.9 0.1 0.8 0.40973 0.91

(all values in centimeters)

4.0 LENS/TUBE RATIO: THEORY AND EXPERIMENT

For the cavity of Fig. 1 and a lens-detector setup as in Fig. 2,

eq. 37 gave the number of photons per second arriving at the detector.

This must be modified to include transmission factors for the window

(wtf), lens (ltf) and narrow-band interference filter (ftf), thus:

P PSL '_ (wtf).(ltf).(ftf).k saIl4 A. [741

For example, a quartz lens has 92Z transmission at 1.27 usm, in

which case ltf - 0.92.

For the same cavity, but with a tube-detector setup (Fig. 11),

the photon flux at the detector was given by [60]. Again modified to

include transmission factors (no lens) this becomes:

PST " (wtf).(ftf)k al T.r 2 /4 [75]

Thus for a given gas emitting at a rate ks, with a fixed con-

centration a, viewed with the same detector through the same filter,

the ratio of the lens and tube arrangements is:
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PSL (ltf) L [761
PST :r2  T

Experimentally, the detector signals are measured as voltages

(VL and VT for lens and tube cases respectively), which are related
to photons s- 1 by a calibration constant r, thus:

PSL w IVL ; PST w IVT [77]

Hence an experimental value for the ratio of lens to tube inte-

grals can be obtained from [77] and [76]:

ILI wr2 VL

expt.

For the excited oxygen emission experimental setups considered

in Sections 2.7 and 3.3, theoretical values for IL and IT were

obtained (eqs. 38 and 73), giving the theoretical ratio:

I - 0.4240 = 10.3
IT ho0.04135 [79]

tL heory

Table III shows the results from a series of experiments in

which different total oxygen pressures were used in the cavity, i.e.

different values of a, the emitting 02 concentration. The correspond-

ing detector signals, measured using the aforementioned tube and lens

' arrangements, and their ratios are given. The ratio obtained at any

fixed pressure should be independent of the pressure. The table shows

that this is the case since no ratio deviates by more than 2% from the

average (18.83).
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TABLE III

Detector readings for several gas pressures

Pressure VL VT VL/VT

(torr) (iOV) (MV)

1 185 9.7 19.1
2 327 17.7 18.5
3 443 23.7 18.7
4 535 28.0 19.1

The experimental value for the ratio IL:IT is then given by

[78], with r - 0.412 and ltf - 0.92,

I, L ,(o.412)z 8o
I 02 (18.83) = 10.9 [8 01

expt.

The difference between the theoretical and experimental ratios

is less than 6%, which is well within the uncertainty introduced into

the theoretical ratio (about 17%) by uncertainties in the measured

dimensions.

The absolute concentration a of an emitting gas in the cavity of

Fig. 1 is related to the measured voltage from a calibrated detector:

a) in the lens case using eqs. 74 and 77,

a - 4w rVL/(wtf)(ltf)(ftf)ksIL ; [81]

b) in the tube case using [75] and [77],

"a 4rVT/(wtf)(ftf)kaITr 2 [82]
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The integrals IL and IT are calculated from physical dimen-

sions only (Chapters 2 and 3), and r is the detector calibration con-

stant. The integrals may be computed to a high precision, but the

values are only as accurate as the total dimension measurement error,

which is typically less than 10%. The accuracy of the calculated con-

centration is also dependent upon the accuracy of the known emission

rate (k.) which is about 1OZ in the excited oxygen case, and the

detector calibration (< 10%). The transmission factors and voltage

measurements can be quite accurately measured (about 1%).

An overall concentration measurement that is accurate to within

about 30% can therefore be expected.

Absolute concentrations of a particular excited species, 0 2 (alA)

in the gas flow from a chemical generator, have been estimated by

observing two entirely different emissions arising from this molecule.

The first of these emissions (at 1268 nm), the direct spontaneous

*transition to the ground state, was observed with a germanium

detector/filter combination using both tube and lens arrangements, and

gave rise to the voltages listed in Table III. From these, partial

pressures of 02 (alA) were calculated in the range from 0.22 to

0.63 torr as the total 02 pressure varied between 1 and 4 torr. Obser-

vation of the second emission (the red "dimole" emission at 634 nm)

using a silicon detector and appropriate filter, led to estimated

0 2 (a
1 A) partial pressures between 0.27 and 0.69 torr over the same

total pressure range.

Agreement between the estimates from the two emissions is within

the anticipated 30% accuracy, and the average of the calculated per-

centages of 02 (a
1 A) in the flow (varying between 25 and 17% over the 1

to 4 torr total 02 pressure range) is of the expected magnitude for

chemically generated singlet delta oxygen (Ref. 7) in the flow system

employed in these experiments.

L__
- - - - - -

i C
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5.0 CONCLUSIONS

The concentration of a photon-emitting gas contained in an

extended source can be estimated using a calibrated detector, narrow-

band interference filter, and either a lens or a viewing tube to define

the contributing gas volume.

The close agreement between theory and experiment for the ratio

of intensities at a detector for the two cases gives us confidence in

the methods and formulae developed in this report. The final two equa-

tions could, of course, both be in error by the same multiplicative

constant. Though specifically applied to a source of rectangular cross

section, the methods can be modified for any extended source without

difficulty, and the lens treatment provides a method for optimizing the

light intensity at a detector from such a general source.
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APPENDIX A

Fractional Area of a Circular Detector Illuminated

Through a Cylindrical Tube by a Radiating

Off-Axis Molecule

Referring to Fig. A-I, consider first an on-axis point that

fully illuminates the end of the tube farthest from the detector. The

projection of this circle onto the plane of the detector by the rays

indicated in the figure has a radius R given by:
P

tan e - R/(u-K) - R /u [A-11

Thus,

R (z) - Ru/(u-K) [A-21
p

As the point moves off-axis and into the region where h < p 4 H,
this projected circle essentially moves across the detector. There
will be some distortion from a circle, and Rp will increase slightly

as p becomes large. However, for small off-axis displacements the

projection can be considered to be a displaced circle of radius Rp.

It would not be difficult to write the exact eliptical equation for the

projected curve, but the deviation from this is negligible here

because: a) we are concerned only with the area of intersection of the

detector circle and the projection, the deviation from the circular

curvature of which is minimal in the small arc covering the detector;

and b) at the extreme value p - H, where the deviation from a circle is

the greatest, this is also where the contribution to the integral IT

is the smallest because the fractional area illuminated is close to

zero.

._
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z

U= Z S

j K

FIGURE A-1 Illumination of a circular detector through a cylindrical
tube
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FIGURE A-2 - Area of intersection of two circles

Now, the area of intersection of two circles (Fig. A-2) of radii

r, < r2 is given by:

A, -- r - (a - t)[r ( - r sin - 1 (a-
I r2

+ ri - F(rj - t2)_ rf sin- 1 (E) [A-3]
2 r r i

where a is the distance between the centres of the two circles, and

(2 - (r - rj)]/2a [A-4]

In the case considered here,

. ... . . . . . .,. . .. . . . . . . .. . . I l| - - I l l
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r 2 -R , r I = r [A-5]

and a may be calculated from the geometry of Fig. A-i:

o(z,p) = Kp/(u-K) [A-6]

Hence F(p,z), the fractional area of the detector illuminated

is:

,F(p,z) - A,/rr2 - (R /r)2 - -)[,2-(G-E)2] + R2sin-1(0--)/wr2
p p p RP

+ k - (r2 - 2) /wr2 - [sin-l(-)]/w [A-7]

Equation A-7 may be rearranged to give a form (cf. eq. 67):

F(P,z) = 1 G(p,z) [A-8]

where

G(p,z) - [T(p,z)/w - (R2 - r2)/2]/r 2  [A-9]
p

and

- (a - t)[R2 - (a - C)2] + R2 sin-1(i-F)T(p ,z) - ppSp R Rp

+ (r 2 - E2) + r2 sin-1 r [A-iO]

Thus, equations A-8 to A-IO, together with [A-6] for a, [A-41

for t, and [A-2] for Rp, define the fractional area required.

- _ _ _- - -- - . . - .
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