
AD-A127 061 ORGANIZATIONAL STRUCTURE CONSIDERATIONS FOR SOFTWARE /
DEVELOPMENT PRO.JECTS(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA K M QUINN DEC 02

ARCLASSIFE ES /1- N

1.01W-50 Q8 1=5

11111I" I~11.2

M 11.6

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

___--_ _ -- -

I-NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
ORGANIZATIONAL STRUCTURE CONSIDERATIONS FOR

SOFTWARE DEVELOPMENT PROJECTS

by

KEVIN M. QUINN

December, 1982

Thesis Advisor Norman Lyons

Approved for Public Release, Distribution Unlimited

-J0
.4

, 3 04 21 104

.L - _I~ i _. _- -. . .- - --.... . ._ _ _ - - - --...... .

RUPOW DOCUMUKATMO PAGE &AD________________

14. TITLI(E sfffl I.?Yu Pacou mco t

Organizational Structure Considerations fo Master's Thesis
December. 1982Software Development Projects 0 BPum R.esm ug

7. AU"W . £Lu T~u
Kevin M. Quinn

I. 0201011011MG ONm&POIZAyION NAME AMC) *000680 %W ELEMEN Ri wtr, WRASE 4

Naval Postgraduate School iNUBR
Monterey, CA

11. CON VAOLL1NG OPPICS NAKE AND ADDRESS IS. 0119"01 DATE

Naval Postgraduate School December. _1982
Monterey, CA is. NUfteg"arOPAGas

14. 646s TOUSNG AGENCY NAME A A0049"61 Ettg .foam .4lot 0*#ole) is. seculty CL. £55. wo o

14. 0i1TRIOUTON SYATEMENT (at Z* lNapeet

'4 Approved for Public Release, Distribution Unlimited

? ; . IST04UON~ IT Arge"EW? (Off** abolf" maie ~mat~it. of dlmt ho 14m

1S. SUPPLEMENTARV NOTES

it. KIEV 0ODS10.,wa msoe dd lep ~#~&&rolA Afee WEk

Organizational Structure, Software Development
Team Size, Standardization, Division of Work

14. A40-*AC7 (COaaiMM Po,.NsO aid& 9 is'.a 0901F d 1,1106IV 0 Mb ms

Organizational structure has long been recognized as having an
important impact on an organization's ability to accomplish its
objectives. This paper provides managers of software development

$ projects with an analysis of the importance of several elements
of organizational structure, and of how they can use this
knowledge to make decisions which will have a positive impact

(ntinued)
Do 1473 *wsros or I Nov soIns 66"LaT?

00/Nl 01@2019 080M1aw

ABSTRACT (Continued) Block # 20

on the success of their projects. The structural elements dis-
cussed are specialization of activities, size of the work group,
and standardization of activities.

K

[I.-

'DD 5ort. 1473 2
S/ 3 04-601 eC&A"GS im eop~ ?V4 O&OMe ad"m= ~e

Approved for public release; distribution unlimited.

Organizational Structure Considerations
for Software Development Projects

by

Kevin N. Quinn
Lieutenant, United States Navy

B.S., United States Naval Academy, 1977

Submitted in partia' fulfIllm.ent o' the
r equiremens for the -- _ree of

M1ASTER OF SCIENCE INJ INFORM1ATION SYSTEM!S

f rom the

41% :NAVAL POSrGRADUATE SCHOOL
Dezember 1982

Aut hor: _2 ,

Approved by:__

Thesis Advisor

Second Reader

Ch man, Doepar n f Administraaive Sciences

Dean of Information and ?olicy Sciences

1 3

&BSTRACT

Organizational structure has long been recognized as

having an important impact on an organization's ability to
accomplish its objectives. This piper provides managers of
software development projets with an analys4s of the impor-

tance of sever&l elements of organizational structure, and
of hcw they can use :his knowledge m ake decision: which
wil. have a: positive impact On the success c- thar

projects. The structural elements discussed are specializa-

tion of activities, size of the work group, and

standardization of activities.

1:

S

-J

i'

-- - -. - - - -- - -

TABLE OF COITITS

I. INTRODUCTION 8

II. SPECIALIZATION OF ACTIVITIES 10

A. REASONS ?OR SPECIALIZATION 10

B. SPECIALIZATION IN SOFTWARE PROJECTS 11

C. MANAGEMENT DECISIONS 11

1. The Labor !ix Decision 12
2. The Labor Quantity Dezision 19

III. SIZE OF THE WORK GROUP 22

A. INTROLUCTION 22
B. PRODUCTIVITY IN GVOUPS22

C. SMALL PROJECT rEAMS 25

1. Social Dynamics Consilerations 27

2. Design Considerations 28
:D. SUMM A RY 23

IV. STANDARDIZATION OF ACTIVITIES 30

A. REASONS FOR STANDARDIZATI3N 30

B. SOFTWARE ENGINEERIN 31
C. THE DESIGN PHASE 32

1. Tcp-Dcwn Design 33

2. Designing for Change 34

3. Design for Simple Connections and

Functional Binding 35

4. Dosigning Systems as lodels 36
D. SUMM ARY 37

A V. SUMMARY AND CONCLUSIONS 39

LIST OF REFERENCES 43

INITIAL DISTRIBUTION LIST 45

ji5

!S

' |1 - - - - - --.. . .

LIST OF TABLES

I. GopSize and Productivity Percentage 25

V0

LIST OF FIGURES

2.1 Software Developmen t Model 12

4 2.2 Progranner Labor Productivity 13

2.3 1 Software Developsent Isoquant 14

2.4 Isocost Curve 16
2.5 The Optiaum Labor Mix 17

3.1 Ccmmunicatien Patterns in 11-Man Progr-mming
Teams 27

.w.7

m7

zI. llflJ PQflg

ks software developmeat projects have become more and

more complex, crganizations have developed various struc-

tures to accomplish them in an effective, efficient, and

timely manner. This aspect of the organizational adaptation

* process involves manipulating elements of organizational

s-ructurs in such a way as to optinize the utilizaticn o

the orqanization's scarce resources. Stoner [Ref. 1] iden-

tifies four major determinants of organizational structure:

the organization's strategy for achieving its goals; the

skills and needs of the people employed; --he technology

employed; and th . size of the organization and its subunits.

Management, by making decisions concerning these determi-

nants, seeks to develop the structure which will be most

suz-cessful in acccmplishing -ha q::als of th o-=anzation.

These managerial decisions are of ex:reme importance because

"the choices which top .ianagemer.t ae az- :he critical

determinants of organizational structure and process."

[Ref. 2: p.548] Because of the impaca. of these !-acisicns, _
is very important that managers of a software development

project understand what the elements of organi7ational

structure are and how they can be maaipulated to improve the

performance of the development process.

Three elements of organizational structure noted by

Stoner (Ref. 1] will be the focus of this paper. The first

element will be the specialization of activities. This

concerns the breaking down of the overall project into

Vo Icomponent activities and assigning personnel with special-

ized training to accomplish those activities for which their

training makes them most 3uited, and in which they will be
most prcductive. The objectIve of the chapter on

8

L--~ L _ _ -I-- - . . -

specialization of activities will be the making the critical

decisions of the optimal combination of specialized labor +o

employ, and the optimal quantity of individual specialized

labor to apply to the software development process.

The second element will be the size of the work group.

An analysis of the impact of work group size on productivity

will be made. The factors which influerce work group

productivity will be explored, and approaches to mitigating

the negative factors while enhancing the pcsitive factors

will be examined. The size and composltien of a work group

with hih productivity potential will be investigated, and

the ma-aqeial and systams design techniques needed to

support this work group will also be no--ed.

The third and final element will be the standardization

of activities. The benefits of activity standardization

within a software development project will first be

discussed in general terms. The standardization of on-

phase of the ?rccess will then b_ analyzed in detail to

identify specific contributicrs and relevance to the cverall

management process.

9

:1 ., _

A. REASOIS FOR SPECIALIZITION

One of the most impoctant elements of organizational

structure is the speciilization of activities. This

specialization in the organizational serse includes the

breaking down of the project into smaller, specializq!

tasks. The benefits of iivision of work have been :epeat-

edly demonstrated throughout the history of civiliza+-ion.

The order of magnitude improvmen-s in productivity

resulting from division of work have had profound impact on

the world's industrial development. Divisior. of work Is

important becaus.

no one person is physically able to perform all of the
opera-ions :n aost comlgx -asks o: cn n any one perscn
acquire all the skills. needed Io perform he various
tasks tha-: make u a complex oparation. Thas, in of-er
to carry out tas s rsquiring a number of steps, Jt is
necessary to rarcel out the various Dats of -h- taskamono a number os peopl. Such so-ciiized diviion of
work"allows oecpie to learn skiii and become expert at
their indivAua± job functions. Simplified tasks can be
learned in a rplatively short -erod of time and be
completed quickly. [Ref. 1: p. 254]

In a complex task such as a software development project

it would be impractical t assign or.= person to accomplish

the task by himself. In order to a:hieve a high quality

product, this person would not only have to be expert in all

areas of software development, he would also have to be able

to provide his own clerical services, administative

services, computer services, etc. This one-man approach is

impractical for a multitude of reasons, no, the least of

which is the development time that would be required. With

development times for projects running into the hundreds or

10

thousands of man-years, only the smallest of projects would

be possible. Therefore, 4ivision of work in a complex
development project is absolutely essential to the success

of the project.

B. SPECIALIZATICN IN SOFTWARE PROJECTS

The software development project is often broken down

into a sequence of tasks, phases, or activities such as

re-quirements analysis, system desian, system coding, system

test, etc. This division of the overall task into many

subtasks has been widely discussed in the !iteratura.

ks the task itself is divide_ into a variety of

subtasks, so to must the overall work requirement be divided

among manv 'nd- iduals. As discussed above, this division

of labor is necessary to produce a quality product within

time and cost constraints.]he division of labor allows

i-divi~uals tc specialize and be=M- exo'rt at certai

skills. Syste.ms analysts-, Drogam.T_=_s, techn.i-ia analys-:s,

and databass a-mini-straors a=- son_= z the Speciajizati ons
within software development projects. The chief oro,'rammer

team concept as described by Brooks (Ref. 3: p. 32-35],
makes clear distinctions between the skills, duties, and

responsibilities of its team members. The specialization

within the chief programmer team includes a chief

proqrammer, assistant programmer, administrator, editor,

secretaries, clerk, toolsmith, tester, and language lawyer.

This type of team, the individuals within it and their
duties will be discussed liter in the paper.

C. NANAGERENT DECISIONS

The thrust of this chapter will be towards developing

generic conceptual frameworks for the management decisions
concerninq the combination and quantity of the specialized

11

V labor skills to employ. The following management decision

*questions will be addressed:

1) What is the optimal mix of the different types of labor

to employ in the software development process?

2) What is the optimal quantity of a particular type of

labor to employ?

1. T ba x Dcis on

a. The ;roduction Proress

The software developm-n: p:rcess is a production

process which transforms a particular set of inputs (e.g.
systems analyst labor, programmer labor, computer services,

etc.) into a desired oatput. Figure 2.1 models this

pro cess.

I I

I ,

software
labor

levelopm1nt software
I -

capital
process

- - I

*, Fiqure 2.1 Software Development Rodel.

12

The relationship between the inputs into the

process and the maximum cutput based upon those inputs

represents the production function for the process. In

other words, givin the tezhnology applied, the output of the

process is a function of the inputs timployed in the process.
Brooks CRef. 31 and Fried [Rtf. 4] have demonstrated that if
the other inputs are held constant while one type of labor

is allowed to increase, that input will, at some point, show

dezreasinq marginal productivity and will eventually display

a negative margginal prod"tivity. ?igure 2.2 illuistrat4-s

these firdings with respe:t Io programmer labor. Thg sloo
of the curve in Figure 2.2 represents the marginal product

of programmer labor with respect to total lines of cod%

, i

cc de

programmer labor

Figure 2.2 Programmer Labor Productivity.

13

If we allow two of the inputs to vary, we can

develop an isoquant representing all of the possible effi-

cient combinations of these two inputs which will produce
the same quantity of output. For the purpose of this argu-

ment the two inputs used will be systems analyst labor and
programmer labor. Figure 2.3 illustrates an isoquant which
represents the possible com binations of programmer labor and
systems analyst labor capable of producing a given quantity

of software (Qs).

analyistaborI II

I QS

programmer labor

Figure 2.3 A Software Development Isoquant.

Points A and B on the isoquant represent two
di-ferent coubinaticns of programmer and systems analyst
labor capable of producina the same amount of software; as
such, they represent two different technological processes

(within the giver technology) used in the production of the

A1

software. The slope of the curve, therefore, represents the

marginal rate of technologizal substitution (MRTS) of
programmer labor for systems analyst labor. It can also be
shown that the marginal rate of technical substitution is

equal to the ratio of the marginal products of the inputs

[Ref. 5: p. 1581. In symbols:

MRTS = - Pp/MPsa (eqn 2.1)

where:

MPp = marqinal product of programmer labor

HPsa = marginal product of systems analyst labor
HRTS = marginal rate of technical substitution.

h. The Costs

If we assume that te orga-ization has a limie d

amount cf funds to expen or. -h: :zputs to ths pcduc-io.
process, an. tha- the tota. cost of 'he fixed inputs rsmains

ccnstant and is less than the total amount available, -hen

there exists an amount whizh is avai2.able to partition among
the variable inputs: programmer anl systems analyst labor.

In symbols:

M = Pp*Qp + Psa*Qsa (eqn 2.2)

where:

H = the total amount available for programmer and

systems analyst labor

Pp a the price of a unit of programmer labor
Psa a the price of a unit of systems analyst labor
Qp - the quantity of programmer labor used

Qsa - the quantity of systems analys' labor used.

15

If we graph 3iuation 2.2 we can represent the

various possible ccmbinations of programmer and systems

analyst labor that can be aquired for the amount M by a
straight line as in Figure 2.(4 . Ths line is called the
isocost curve for these input combinations. The slope of

the isocost curve Is negative and can be shown to be equal

to Pp/Psa.

a mo un t of

I, S- - - -
s t@analyst
labc z

II

II
amount of programmer labor

Figure 2.4 Isocost Curve.

If a family of the previously developed -soquant
* curves is superimposed upon the isocost curve of Figure 2.4,

as in Figure 2.5, it is possible to graphically determine

the optimum mix of programmer and systems analyst labor to

employ in the software development process.

16

amount ofQ

systems Q "analyst

labor

QQ3

amount of programmer labor

Figure 2.5 The Optimum Labor lix.

QI, %2, and 3 :=.p=esen: -soquar.ts . :nc-Fasing

order cf quantity of software produced. There iay be any

number of isoquants representel on the graph, but it can be

seen that output will be maximized for a aiven cost (M) at

the point where the isocost curve is tangent t. the highest

isoquant curve. In Figure 2.5 this is poin. B, and Q2 is

the maximum quantity of software that can be produced for

the given dollar amount available for programmer and systems

analyst labor. Alternately, it could be stated that % is

the minimum amount that would have to be spent on programmer

and systems analyst labor, other faztors held constant, in
order to produce a desired quantity Q2. points A and C

represent suboptimum utilization of resources because the

same dollar apount is being expend.l to produce a smaller

amount of output (Qi) than it is possible of producing.

17

Additionally, FIgure 2.5 shows that, _f other factors of

production are held constant, it is not possible to produce

more than Q2 (for example Q3) with a limit of M dollars
available for programmer and systems analyst labor.

Therefore, from Figure 2.5 it is demonstrated that the

optimum mix of systems analyst and programmer labor is

represented by the quantities Qsa ani Op respectively.

There is still more infDrmation available from

.'igure 2.5 . As shown above, the slope of the isocost curve

is equa! to he ratic of the prices of the ir.puts (-Pp/ps a),
an t'he slope of the isoquint cu=ve is -qua! to the marcinal

rate of technclogical substitution or :h . ratio of th .

marqinal products of the Inputs (-MPp/MPsa). The optimum

mix has been shcwn to be the point of tangency between 'he
.soccst curve :ind the iso)uant curve. Therefare, at the

optimum, the ratio cf the prices if th- inputs will b . equal

to the ratio of their marrinal produicts. The ootimal combi-

nation cf programme= and systems ana!'yst labor, -he: foe,

is Where:

Pp/Psa MPp/MPs a (eqn 2.3)

or alternately where:

Psa/Psa = MPp/Pp (eqn 2.4)

This second equation reveals that the optimum

mix exists where the marginal productivity of a dollar's
-Ile worth of systems analyst labor is equal to a dollar's worth

of programmer labor.

18

This conclusion makes intuitive sense and car. be.

generalized for any number of inputs [Ref. 5: p. 175]. What

the relationship says is that if, at any point, output can

be increased by taking a dollar from input X and applying

that dollar to input Y, that it is beneficial to do so. The

equilibrium point will necessarily be where -he ratio of the

marginal prcductlvity to cost for all inputs is equal.

The secord problem is to decil-e :h- optimal quantity

of an input to utilize i the sof-waze development process.

Programmer labor will be used as a rspresenta-:ivs inpu-i.

It was shown above that the marginal productivity of

programmer labor in the production of software, holding

other factors constant, is positive over the relevant range.

In other words, an incremental inzz-asze in programmer labor

will result, up to a point, In an -. cramental increase in

the amount of software produced. The amount of :he increase

in prcrammer labor reqaired to oroiuc . the incrsmen-a

increase in software produced is zallzi the marginal input

requirement of programmer labor in 1he production of soft-

ware (HIPp). If the market price of programmer labor is Pp,

then, in order to achieva a marainal increase in software

producticn, a rargirnal cost (MC) equal to the price of

programmer labor multiplied by the 3arginal input require-

sent of programmer labor in the production of software will

be incurred. The equation is:

MC u Pp*IRp (eqn 2.5)

or alternately, since it can be shown that the marginal

input requirement is equal to the inverse of the marginal

product:

19

ii InI - P7_

MC a Pp*1/MPp (eqn 2.6)

The marginal revenue (MR) received by selling the

incremental amount of software produced can also be calcu-

lated. If the market price of the software produced is Rs,

then the marginal revenue is equal to this market price

multiplled by the increase in softwire produced as a result

of an incremental increase in prtorafmer labcr. This second

term is -he marginal proluc, of programme: labo: in ths

production of software. The marginal revenue equa-ion Is:

MR= s*MPo (ean 2.7)

Because the flow of funds for costs and revenues
cour at d.iff.1 r=nt peri:Is in time, i s necezsa'- to

disccunt them to presen-- v.lues before comparing thm:

-irt
Present Value of 1C = Pp*MIp*e (eqn 2.8)

-rt
Present Value of MR = Rs*MPp*e (eqn 2.9)

The difference between the present value of the

marqinal revenue and the present value of the marginal cost

is the net present value of a marginal increase in tha
amount of progra er labor used. If this ne- present value

4 is positive, that is if the present value of marginal

* revenue is greater than the present value of marqinal cost,

ther it is profitable to increase the amount of programmer

labor used. If the net present va!ae is negative, then it

is profitable tc decrease the amount of proqrammer labor

ussd.

20

,, .. . -, ...-.

At the optimum, all other factors remaining

constant, programmer labor (or any other input) should be

acquired to the point where the present value of marginal

revenue equals the present value of marginal cost. In

symbcls this is where:

-- et
Pp*MIRp*e - Rs*MPp*e (eqn 2.10)

A proble! In implement.-. this type of concen-uai

framework is the diffirulty of .evaioping an accurat-

production function for :he scf-ware development prccess,

especially in vie.w of the paurity of good databases or: ths

subject. A maJcr benefit of this ty'pe of conceptual frame-

work is itcs compatibility with li.ear programming methods as

shown by Ein-Dor and Jones [Ref. 6].

2

21

Illi. mr MR !q2Li RU

k. INTRODUCT ION

The complex nature of software lavelopment projects has
necessitated the decomposition of the overall task into a
multitude of lesser tasks and th_ issignment of groups of
people -to accomplish those tasks.)ne would think that the
larger the group of people assigne! to a -ask, the shorter

would be the completion time for th? task. Therefore, in
order to mee- project deadlines, att:mpts have been made to

speed the completion 3f complex software development

projects by simply adding more manpower to the project. The

fallacy of this belief his been widely noted, most promi-
nently in Brooks' widely read book Te mlyhcal MIn t.ont_1 in
which Brooks identified some of th.z fators which restrained
increased group size from resulting in iecraased project

ccmplet*cn time; and In which he described how "addingI

manpower tc a late software projec- makes it later."
[Ref. 3: p. 25] The impact of this phenomenon on the soft-
ware production fur.ction was discussed in the j.-evious

chapter. This chapter will analyze how and why the size of
the work qroup ccntributes to this phenomenon, and how the
negative influence on productivity may be mitigated.

B. PRODUCTIVITY I GROUPS

From studies as well as from our own work experience we
know that members of a group working on a task do not spend

all of their time doing constructive work. Some percentage

of the time is spent on =offee breaks, meetings, illness,
training, vacations, communicating, socializing, etc. For a

10 member group "the non-productive time expected for each

22

....

member is 25 percent for vacation and the like; 10 percent
for idle time; and a base of 10 percent for time spen*

comunicating: a total of 45 percent. We may therefore

estimate that 55 percent of each employees time can be
considered productive in a group of up to 10 employees."

S[Ref. 4: p. 3] Fried defines productivity in a software

development project as "developing a system with the
following characteristics: - Maintainability (documented,

molular, etc.) - Effectiveness (meets actual user needs) -

Eff-iciency (uses minimal r-sources)." ' [Ref. 4: p. 81

The portion cf non-productire time -hi- is most variable

with group size is the communication time. if each member
of the group has to interact with each other in the acccm-

plishment of the task, the numb-r of interactions rises
dramatically with the number of ppopl- involved. If K were
the number of pe-ople in the group, the number of intarac-

t-ions (N) would .e given by the formula:

I = K* (K-1)/2 (ecn 3.1)

This formula shows that the number of interactions in
the group increases in exponential fashion with an increass

in group size. This communications effort has proven to be
a determining factor of productivity time in a group. Friei

[Ref. 4] has developed the following formulae for computinq
the the percentage of productirity time:

Pt = K*(T* .55- .0001*(K* K-i /2)) (eqn 3.2)

where:

Pt = pr')ductivity time
T a individual employee hours per work period
K a the number of people in the group.

23

V

The productivity percentage in the work group is therefore:

Pp i 100*(.55 - .0001* K*(K-1)/2) (eqn 3.3)

where:
Pp = percertage of produztive time

K = the number of Deople in tn-? qroup.

Solving the above squations fo= a 10 member group

working a 40 hour work week:

Pt = 10* (40* .55 - .0001 (10* 10-1 /2)) = 218.2
Pp 10 0(.55 - .0301 10*(10-1)/2) = 54.55

wha:reas for an 83 mehber "up working .. same hcurs:

I Pt = 80*40* .55 - .0001*(80* 80-1 /2)) = 748.8

Pp = 10O"(.55 - .3301* 80*(80-1)/2) = 23.4

Table I demonstrates how the productivity percen-age

varies for groups of various size.

Fried [Ref. 4], and Weinberg (Ref. 7] have experienced

this inverse relationship between group size and produc-

tivity in complex projects with which they have been

associated. Furthermore, Fried postulates that it is

possible to reach a point of negative marginal productivity.

This is consistent with Brooks' [Rvf. 3] earlier findings

that, after a pcint, adling manpower can increase time to

completion rather than decrease it.

24

r ABLE I

Group Size and Productivity Percentage

10 54.55
20 53.1
40 47.2
60 37.3

o80 23.3

! I

C. SMALL PROJECT TEARS

The above findings suggest that, :n the basis of p-cluc-

:iviey time, project teams should be created which are of

limited size. A team wi-.h :wo memoers wculI sesm -o ha-ve

the highest productivity percentage; but -he aditAioral

coordination and coamuni:ation :h - wou.! be :equie=
between groups, as well as the lim'"ed division of labor

possible within the group, woull elimina'e -a.y possible
advantages. Alternately, too largs a group results inr low

or negative marginal produ:tivity.

Brooks (Ref. 3] encountered t his dilemma of balancing

the desireable aspects Df small groaps against the absolutq

need to produce the large and complex OS/363 system within

time and budget constraints. He described his problem as
follows:

For effiency and conceptual integrity, one prefers a few
good minds doinq design and :onstruction. Yet for largesystems one wants a way to bring c nsiderable manpower to
bear so that the product .an make a timely appearance. How
can these two needs be reconciled?" [Ref. 3: p. 31]

25

The answer that Brooks [Ref. 3], .ills [Ref. 8]. and

others have advocated is the chief ?rogrammer team concept.

This concept calls for a 10 person team headed by a chief
programmer who designs, codes, tests, and documents the

system; and who Jis totally responsible for the product. All

the other team members are tasked with supportinq the chief

programmer in his duties. The other members of the team and

their duties are:

- The "copilot, who serveg as the D.-imary assistan- and

understudy to the chief programme=;

- The administrator who ha.ndles the iogistics and

administrative coordination for thz team;

- The editor who reviews the chief pcogrammer's rough

documenration and performs the necessary editing and

reworking required to Droduce the final product;

- Two secrezaries, one eaza for tna idminis-t:atno an-. :h-

editor, fcr the necessa.y typing, fi.inq.

correspcndence, etc.;

- The program clark who main'ains the program product

library;

- The "toolsmith" who provides basic utilities, creates

macro libraries, and in general facilitates and ensures

the adequacy of computer services;

- The tester who designs and plans mdule and systems

testing, produces test zises, test lata, etc.;

- The language lawyer who is expert in the chosen

programming language ind can advise the chief

programmer on sophisticated or intricate uses of the

language. [Ref. 3: pp. 32-35]

26

The hierarchy of individuals performing specialized

functions in support of a group leader not only provides the

benefits of division of libor and specialization discussed

earlier, it also provides conceptual integrity in design and

coding, as well as simplifying the interpersonal communica-

tion required. This reduction in coumunication requirements

coupled with the small size of the team results in a higher

productivity percentage for the team. Figure 3.1 illus-

trates the communication patterns within -he chief

r=q:a&mmr -eam. (Ref. 3: p. 36]

-- D -M - - -T CO1C

I I

.-- I

Figure 3. 1 Communication Patterns in 10-Ian Programming Teams.

. The small size of these teams and -the specialization

of function wit.hin them also helps to mitigate the negative.

impact of such social dynami-cs as Ahe "Commns Dilemma"

27

t l

EDITORI CL~i

(Ref. 91 and "social loafing" (Ref. 10]. These dynamics

suggest that individuals in a group may use more than their

share of a commcn resource or contribute less than their

share to the common effort if they feel that their excesses

or delinquencies will not be distinguishable from the common

consumption or effort. The small size of the team and the

specialized functions of the team members in the chief

programmer team concept alleviate these problems by making

each team member acccun-able for a visible, distinct seament

of -he group effort.

2. Dsi22n g anjlg. .at*o..s

:n order to reap the benefits of small groups such

as the chief programmer t-ams in large, complex projects i

4s necessary to have many cf these teams wcrking ccncur-

r:.ntly ir. coordinated fashion. To mi-imize the coo:dina~on

and management required, and thereby enhance the productive-

ness of each -eax., it is essential that thc overall sys-em

be desionel in a structured, modular manner with clea=r,

unanbiqucus specifications and 3a Sch Fta.-

dardized design methodologies will be discussed la-.er in the

paper. Their benefit is that t.ay allow independent,

concurrent production of modules which can be "integrated

into the whole without further coordination." (Ref. 4: p.

10]

D. SUKKARY

The above analysis indicates that, in a systems develop-

ment prolect, the size of the work groups should be

relatively small. The benefits of these small work groups

lie mainly in the improvel percentage of time spent produc-

" tively. This benefit results not only from the fewer number

of communications within the group; but also from the

28

ability of small, hierarchically structured groups to miti-

gate some of the non-productive aspects of group dynamics.

Certain managerial and system design techniques may be

required to ensure that these benefits result. These tech-

niques include:

- Proper scheduling and talk loading based on an
understanding of productive time.

- Clear as~inment of task and pro uct ;e pponsibility,
accompar.9 by measurement and ra-cogrniton of
indiv-dual perfcrmanc-.

- modular desian that supports cea.: assi. tent of
product zespdnsibility. [Ref. 4: p. 10i

29

- -- ---


~~~iv. mzTnu.&zzKII , . ugIxizT

A. RUSONS FOR ST&IDADIZ&TION

Standardization of ictivities is a very important

element of organizational structure because it is the way in

which the organization ensures that its efforts will produce

predictable results in the quantity, ual it , timeliness,

and cost of -he software produced. In activity is standard-

ized when the procedure is made uniform and consistent.

The advantages of standardization of activi-tes have

lcng been recognized in production processes. In an automo-

bile assembly line the order :n which activities are

performed, the manner in which they ire performed, the qual-

ifications cf workers, the rate of production, the tools,

parts, etc., are all highly standazdized. This stanr--rdiza-

tion is one of the reasons tha- this "ype cf producticn is

so successful. There are, of course, s1'n:: cant :- =Z -

enzes between automobile assembly aid software development,

but the benefits of standardization of activitiss are recog-

nizeable2 in both areas.

The goals of standardization ars to produce predictable

results in quantity, quality, timeliness, and cost. The

quantity metric could be lines of erde, number of modules,

applications programs completed, etc., depending on manage-

ment's desired control system. The quali'ty metric is a

* complex and multifaceted Dae. What constitutes good soft-

ware is a question that continues to be debated.

fReliability, predictability, readability, maintainability,

modifiabilty, flexibility, robustness, efficiency, and

understandability are some of the concepts currently associ-

ated with evaluating the quality of software.

30



The timeliness and cost metrics are fairly simple

concepts. The time it takes to complete a project and the
cost of the project will vary with the nature of the
project, assigned resources, etc.; with the general goal

being to complete the project within the budgeted cost and
time period. The predictability of the above metrics is

itself a major goal of standardization. From a management

viewpoint, the rxedictability of the outcome of the organi-

zation's efforts is absolately essertial for 'he planning

and cont:ol of thoze efforts.

B. SOFTWARE ENGINEERING

The field cf softw.re engineering has developed in
response to the need to iiprove ana standardize the methods

and techniques exployed in the software development process*
There have been various attempts to define the field of
scftware engineering. Wasserman ani Fre=an (Ref. 11]
defined It as:

the. attempt to seek out and use techniquss that cin
assist 'n the economical develooment of software which
executes reliably and efficiently on rcal machines,
making effective use of the human resources available.
Softwa;e 'Engineering tries to take an overall systems
v'iew oint in whch the ptimization of all resources -
deveicpmental as well is operational - is considered.
(Ref. 1: p. 256]

B.W. Boehm [Def. 12] shows a slightly different perspec-

tive in his definition of software er.gineerinq as:

the means by which we attempt to produce all of this
software in a way that is both cost-effective and reli-
able enough t. d eerve our s (It isi the
practical app 1ication of scient I. f.c knowledge sin the
desiqn and construction of computer programs and the
Issoci§ tad documentation reuired t].develop, operate#
and ma ntain them. (Ref. I: p. 1223

31



The decision of which te:hniques and methodologies to

utilize In the software development process is a choice of

the technology to employ. This choi--e is of critical impor-

tance to the development process because the technology

employed serves to define the software production function.

"The production function summarizes the characteristics of

tha exIsting technology at a given point in time; it shows

the technological constraints that the firm must reckon

with." (Ref. 5: p. 146] Therefor-, by selecting certain

techniques and mqthodologi-s, ind implementing t.hem as stan-

dards for the conduct of -.he d.velopi-an -t process, the choice

of the technology which will form the boundary of tie organ-

ization's productivity is made. The importance of

structured, modular software desiga to the implementation

and effectiveness of small proj ct teams was discussed

earlier in this paper. Zo prowiS. zontinuity, design meth-

odologies will be used as the exampla of how activities in

the development process a.-3 being standardized to contribute

to the success of soft-war- d-velopm.?t prolects.

C. TRE DESIGN PIASE

The importance of s-.andardizing the design phase of a

software development project has grown with that of the

design phase itself. Devaloping standard design methcds is

one of the thrusts of software engineering and many

approaches have been championed. The standard approaches

that have been most widely accepted are those which advocate.
Aa structured approach to the design process. rhe very ter2

"structured" implies that scme sort of standard method,

mechanism, or approach is used. Stevens, Myers, and
Constantine [Rf. 13] have dfined structured design as "t
set of proposed general program design considerations and

techniques for makinq coding, debugging, and modification

32



easier, faster, and less axpensive by reducing complexity."

(ef. 13: p. 216]

Perhaps the best known structured design technique

is Top-down design which results from a stepwise refinement

process. Stepwise refinement is a methodology which

consists of the following steps:

1) Star' with a ligh-level, overall stat-ment )

description of the desired syst=_m function made up

of: a) the overall stat emeat of the system function;

and b) comments/description of t-he nxtr Ieve! of

detail.

2) Refine the abcve by replacing the ccmments/d=_scription

with a) lower level functicns; ar.

b) ccmments/description of the n-xt l.evel.

3) Repeat the refiiement uttil thera are no ccmments left

so that the bottom leval consists only of functions

whIch can be implement-91 on the hirdwara/software

machine.

This Top-down design can be represented as a hier-

archy of modules in which the "uses" relationship exists

between the higher and lower level modules. The "uses"

relationship can be interpreted as "requires the presenca of

a correct version of." (Ref. 14: p 230]

Brooks [Ref. 31 termed Top-down design "the most

important new programming formulation of the (1970-1980)

decade." (Ref. 3: p. 1I4 Among the benefits that Brooks

attributed to Tcp-down design were four ways in which it

assists the designer to avoid errors or buqs:

First, tle clarity of structure anl representation makes
the precise statement of requirements and functions of

33



F

the modules easier. Second, the partitioning and
independpnce of modules avoid system bugs. Third, the
suppresslon of detail makes flaws in the structure more
,pmaren*. Fourth, the desiqu can be tested at each of

Its refi£nement steps, so t-M ing can star- earlier and
focus on the .roper level of detail at each step.'[Bet. 3: p. 1431

The concepts of modularity and clear structure

present in the Top-down design approach are represented in

the more resent design approaches although the manner and

c:iteria of the decomposition have var-ied in some cases.

2. pg -o *. a L

Parnas (1ef. 15] has proposed a resign methodclogy

which focuses on designing software that can be easily

changed. His approach uses a molular decomposition based

upon information-hiding modules wi-hin a hierarchical struc-

ture. Parnas rRef. 151 proposes a Iesig. procedure. which
would include:

1) Identifying all difficult design I-ecisions and thcse
design decisicns which ir_ likc!y - chanas.

2) Isolating the changeable design decisions Into

information-hiding modules with clearly defined
interfaces which will be unaffectel by potential

changes.

3) Establish the "uses" relationship between the modules.

4) Set up the "uses" hierarchy by: a) listing the modules

at level 0 (i.e. those iodules which use no other
module) ; and 1) working up the hierarchy to the top

level (i.e. that module which is used by no other
module).

3!



Partas' approach to system design has been of

silnificant interest to those in the software engineering

field because his methods:

1) Bring software design closer to beiag a science.

2) Resul t in programs whi~h are easier to fix and modify.

3) Result in programs whih are easily subsettable and

extendable.

4) Allow modules -o be programmed ani ested

i-odependently [Ref. 15].

Note that the ability to iniapendently program and

test modules which Is cited here and _n suseguent design

techniques is what was shown to be necessary for the affec-

tive utilization of smail project teams wi:hir. a large,

complex project.

3. ,-s A 1 and ucti-nal B-nd

S Stevens, 2yers, and Constantine (Ref. 13] have

proposed structu-ed design tszhniqu-s basel on princinles
similar to :hose of Parnas. These techniques emphasize a
structure of simly connected, funztionally bound modules.

They emphasize the use 3f structure charts rather than flow-

charts in the design phase. Reference 13 provides the

somewhat lengthy step-by-step procedure for developing the

input-process-output general structure that Stevens, Myors,

and Constan'in - advocate.

The benefits of this design technique include:

VO 11) Its compatability with the HIPO hierarchy charting

format (Ref. 16].

2) Better maintainability of resultant programs.

31 Results in independently programmable and testable

modules.

35



4) Ability to identify ani optimize critical modules.

5) Ability to develop rauseable modules.

4-* D&Ilkang 1XAs.11s L& fl2As

Jackson [Ref. 171 has proposed a different approach

to software design. He argues that there are some serious

disadvantages to the functional approach to systems design.

Among the disadvantages he cites are:

1) The difficulty of applying funct.i-nal leslgn to complex

problems.

2) The frequent requests for changes i system function.

3) The lack of a clear distiction between functions to be

performed by software and those to be perfcr2ed by
hardware.

Jackscn's approach is to "ei , "he system primai y

as a mcdel o! the :eality which it is representing azd

subsequarnly superimpose the desir-d finctions on the mole!.

The steps in the process are:

1) Represent each active entity in the zeal world system to
be modeled as a prccess acting on a dedicated processor.

2) Represent the communication between the processes
themselves, and between the processes and the outside

world as a data stream.

L i 3) Superimpose desired functions on the model.

36



Menard [(9f. 181 of the Comsunications and Computer

Science Department of E-xon corporation has used Jackson's
design method in combination with top-down implementation

and structured walkthroughs. This combination was called
the Program Structure Technology (PSr| . Nenard found that

the benefits derived from the use. of PST, measured
statistically for seveoral applicatiots, . lade
increased programmer productivity' an. r~d _mai' n-.
nance costs. Vith PST as a design method, the
programmer can produce double the industry standard
numger of lines of code per year. The reduced mainte-na.nce cost6s result_ from enco tnt:?:!.nq *_!wer bugs -" 1'-
program code and from having the simpler, structured
code which is easier to modify." Ref. 18: p. 891

Menard [Bef. 18] found that, whereas the PST method

required them to spend more time o!1 the design phase of a

project, this time was more than made up in -he implementa-

tion phase of the project.

D. SUMMIRY

The design m.thodoloi-as discusss=.d abcve are importin.

for providing conceptualli sound framewcrks for the desian

of "good" software; but, in order to realize the maximum

benef it, the chosen methodology must be standardized

throughout the development project. It is the standardiza-

tion of the process which provides the organization with the
benefits by reducing the necessity for communication and

coordination while maintaining design integrity and facili-

tating successful irtegration.
The standards themselves form the basis of the organiza-

tion's planning, control, and evaluation processes. Biggs,

Birks, and &tkins [Ref. 19] summarized the importance of

standardization as follows:

The standard approach to phases, steps, act.ivities, andtasks makest possible to plan, control, and evluate
progress durng the systems development process w.thout

37

i __



4inhibiting the necessary analyticil and creative work
requirgd to produce successfal new systeps. The struc-
ture alows mana qement t9 make 4nl mon;tor Incremental
commit-ments and the ablity tc impact interim results.
It is an important key to in or Inizat on's effective
management of the systems levelopment process.
CRef. 19: p. 4 7

The importance of standardizing the activities in the

software development proc-ass continues to receive management
attention. The emphasis on developing standard methods and

approaches to reouirements analysis, specifications, docu-

men -ation, integration, and testi.g marifest s the vita'

importance of activity s tan ardiz tion i -he softwa

development proccess.

38

-. . .. - . . .. . .. . "-. . .. . ... .. . . . ... '!



V. i Al. A £2 IQo_ LNS

Organizational structure has long been recognized as

having an important impact on an organization's ability to

accomplish its objectives. Managers, therefore, need tc be

aware of how orqanizational structure affects performace.

This paper has provided the managers of software development

projects with an analysis of ta-? importan'e o: severa

elements of orgarizaticnal struc-u_-, an! of how they can

use this knowledge to make lecisicns about organizatcna

structure which will have a positiv= impact on the success

of their projects.

The first structural element analyzed was h_ speciali-

zation of activities. I- was found --hat thI- ma .aqs coul!

proceed with specific or aeneral knawledqa of the software

production function as prov-d-d by 3_ooks (Ref. 3], ?ni& .

[Ref. 4), Waizbra [Ref. 7]. an.d. i-Dc: and Jonas (Ref. 6],

tc develcp conceptual framewCrks t. ass- mak.n deci-

sions for optimizing the uTiliza tion of the soecialize;.

inputs into the software development process. Two cf -he

most important decisions are the dqtermination of the

optimal mix of these inpts, and the determination of the

optimal quantity of a particular input to aquire.

The cptimal mix cf the various iaputs was shown to exist

at that point where the marginal producmivity of a dollar's
worth of any input in the production of the software cu-.pu-.

iis equal to the marginal produc-ivity of a dollar's worth of

any other input.

The optimal quantity of an input to employ, other

factors remaining constant, is that quantity at which the

present value of the marginal revenue received due tc a

marginal in-crement of the input is equal to the present

39



I
value of the marginal cost incurred do to that marginal

inc rement.

This type of conceptual framework provides the addi-

tional benefit of being compatible with technical analysis

and linear programming as shown by Ein-Dor and Jones

(sfe. 6].

One element of organizational structure that affects

labor productivity and thus -he proluction function is the

size of the work group. Brooks [Ref. 3] found :hat, after a
pcint, increas-?s nr rramm= labz: cStribu-ed les -
"ess to software production and that, ultimately, increases

in programmer labor would have a neative impact on p-oduic-

tior. Fried ( ef. 4] experisnced similar results as did

Weinberg (Ref. 7]. Fried [Ref. 4] and Brooks (Ref. 3] found

that communications requirements were the major fac-o 4n

reduced productivity as group size increased. Tried

(Ref. 4] has developed a formula from case studies and prac-

tical experience which car. be us=-. calcula - := . cun-

of time spent srent produztively by a group based upon ".he?

size of the group. This formuia and e=inberg's [Ref. 71
findings suagest that groups wi.h mars than 30 people will

spend less than 50 percent of their time doing productive

work.

Cass and Edney [Ref. 91 and Latane, williams, and

Harkins [Ref. 10] discovered aspects of social dynamics

which also contribute to reduced individual productivity in

larqe groups. These findings indicat9 that individuals tend

to use more resources and contribute less effort if their

consumption and performance are felt to be indistinqishable

from that of the group.

A possible sclution to the team size problem in view of

these findings is the chief programmer team concept. This

hierarchically structured, 10 person team is organized in a

manner which provides for lesign integrity, quality output,

40



simple ccmmunication patterns, visible job performance, and

high productivity. Successful implementation of this small
team concept in complex projects requires a modular project
design as well as managerial emphasis on planning, control,

and evaluation.
The achievement of good planning, control, and evalua-

tion requires the standardization of software development

activities including: requirements azalysis, specifica-
tions, design, dccumentation, integration, and testing. The

sel--ction and _mp !ment-tIon of standard techniaues Sn1

methodcloqiqs represents the ch-oice of technology for the

project. This technological choice, in turn, serves to

define the pro4uction function for the project.

Stevens, Myers, and Constantine [Ref. 131, Parnas

[Ref. 151, and Jackson (Ref. 17], amona others have proposed_

software design methodologies which have been used with

success as the standard for software projects. The modular

s-ructure a.d clearly ef!.ied g:f--ces : i fzoi

structured design methodologies ailow for -h - successfi

division of work among small, efficie-.: prcgrammng tems.

Biggs, Birks and Atkins [Ref. 19] emphasizq -the impor-

tance cf activity standardization in all phases of the

development process as i key element of organizational

structure. Its importance is recognized not only because it

makes effective planning, control, and evaluation possible:

but alsc for the reduction in communication and coordination

it allows.

The field of organizational structure and its impact on

organizations' success is vast, with myriad subtle interre-

lationshivs. It is an interdisciplinary field with

A applications from economics, operations research,

psychology, sociclogy, and various technologies. This paper

has delved intc several of the relationships between

elements of organizational structure and the software

L41



development process. & cammoa thread that has appeared in

each element is the software development production func-

tion. ks the database of development projects improves, so

too will oar ability to analyze and improve the software

development process.

4

I

I ~42

- - - - - - -



LIST 07 RIPEIUWCES

1. Stoner, J. A., Magga= 2d el. , Prentice-Hall, 1982.

2. 1r-aniR Sow B. eyer, A., and Coleman, HI.
q t Sa trat 6e9y, St rc~ue ad Process,~

ASS ll 21 AU.ugA2"91t kiiiuj p. t46-962a* July 1978.

3. Ercoks, P., Mh J~j, IID 12n, Addlsorn-Weslay,
19,75. a l

4. FrieZd, L., "The Imoact Dof Team Size on. Sistsms
Development Performanci,*" Aerbach (3-10-19) , 19A2.

5. Mansfield, B., A ±gaag~ono4 rz 3d ed., nIorton, 1979.

*16. Ein-Dcr, P. and Jon-as, C., lrzmc _4,!M
C malLLZOIMt o'v. snm U5b :sael- meni!
sc p aa 7ri Mt -STE5*5, 1982.

7. Weinbera, G 11 PIY~ct2I2I 2 M2_-3 .o06te 129Z=216:1

8. 'MIis ~ C. Chi-ef ?rcaramme:r Tsms a:rcp~ nd
CCS,11- I B, F=Ieral Sy~tBMS D-:isC ZcC= ?ptSZ:

9. Cass R and Ednay J 3 -"he Commons Dilemma: A
S~miuation Testing th e Efflects of Resource V's'i lity
a.. T -rtorial Dimnsion," ft~ili Ecloy p. 371-386:
1978.

10. Latane, B. Williams, K., and Harkins, S. "Social
Loafing," h~y. j~oqvg To . 0dly, co e 1979.

11. Wasserman, A. and Preeman, P., I"Softwaz a E ngineering
Education: Status and Prospl~ts," a As of the
TR7ZR. Vol. 66, go. 8, p. 256-2 5, August 19718,

12. Boehm, B.;q "Software Eqginseringq 1 1 = I
2a .9ap +Vol. C-2, No. 12, p. 12i Itn

13. Stevens, . Myars G, anid Constantine L

413



1 14. Pa nas, D., "Desigaing Software for Ease of Extension
and Contraction "  T.2  on Software
g, lejar. .LG p. 526-235, Har:h 1979.

15. Parnas D. "On the Criteria t3 be Used in Decomposing
5ystems io Nodules," Qoaiu t _ q~s o tki Lk , P.210-225, December 19 2.

16. "HIPO and Integrated Program Design" I H .-.
joual, Vcl. 15, No. 2, p. 253-257, 1976.- -

17. Jackson ?., "In form ation Systems: od eling,
Sequencing, and T:zansforma-ions, Procee- ras, 3z
In:~rnatona1 Ccnfs-sace or. Software Tnginee-f- g, p.
33-42, 197E.

18. Metard, J.,. "Exxon' s Experience with the Michael
Jackson Desiln .ethol," Dltabas., p. 88-92,
Winter-Spr ing 1980.

19. Bigqs, C., Birks, E., and Atkins, w., Managina th -

4-

____ ____ ____ __ _ ____ ___



I.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Ctameror itat lon
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postqra~uate School
Mon~erey, Califcrnia 93940

3. LT Kev:i Quinn USN
1360 Atkinsor foad
lbertyVll_, .... 60048

45


