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it is shown that, in principle, shading information from the two views can
be used to determine the orientatiaon of the surface normal along the
feature-point contours, as well as the parameters of the reflective properties

of the surface material. The numerical stability of the resulting equations is
also examined.
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, cxplicit depth information only at particular points in the image. To compute a complete surface
g description, this sparse depth map must be interpolated. A computational theory of this interpolation
or reconstruction process. based on a surface consistency constraint, has previously been props:sed.
In order to provide stronger boundary conditions for the interpolation process, other visual cues
to surface shapc arc cxamined in this paper. In particular, it is shown that, in principle, shading
information from the two views can be used to detenmnine the orientation of the surface normal
along the feature-point contours, as well as the parameters of the reflective propertics of the
surface material. The numerical stability of the resulting cquations is also examined.
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1. Introduction

1.1. The Global Problem

One of the goals of a vision system is to compute the three-dimensional shape of the
visible surfaces in a scene. The human visual systern uses many cucs to compute surface shape,
with different modules of the system using varying sources of information in the images to
infer information about surface shape. Examples include motion analysis, stercopsis, shading, and
texture. How do these different visual modalities contribute to the computation of surface shape?

Onc computational approach to undcerstanding the human visual system, pioncered by Marr
and Poggio (sec, for cxample. [Marr, 1976, 1982: Marr and Poggio, 1977)). views the computation
of surface shape from images, in part, as a collectien of transformations between two main
representations. ‘The first representation is the primal sketch, which makes explicit loci of changes
in image irradiance at particular scales of resolution; the second is the 24-1) skeich, which makes
explicit information about surface shape and reflective properties of the surface material. The
modules that compute information feeding the 24-1) sketch from the primal sketch have generally
been considered to a first approximation to be independent of one another. It is clear, however,
that within the 2}-D sketch the different sources of information should intcract. both to maintain
consistency among the data provided by different moduics. and to provide feedback to the modules
in order to cnhance the acquired data (for example, texture contours can facilitate stercopsis
by driving vergence eye movements [Kidd. et al, 1979]). In this paper, we arc interested in
examining interactions at the level of the 2§-D sketch between modules of the carly visual system.
In particular, we will investigate some of the ways in which shading information can augment
stereo data.

1.2. The Motivating Problem

The goal of the 24-D sketch [sce, for example, Marr, 1978, 1982] is to compute surface
parameters, in particular, the distance to and orientation of small patches of the visible surfaces,
the discontinuitics in those surfaces (for cxample, the edges of objects), and possibly the properties
of the surface material (for example. the amount of specularity, the colour and the albedo of
the surface material). Representations similar to the 2§-I sketch have also been suggested by
Horn [1979] and Barrow and Tenenbaum [1979]. As mentioned. the input to this representation is
provided by a number of roughly independent modules, two important oncs of which are stercopsis
and motion perception. The input provided by these particular modules, which is characteristic
of many early visual modules, consists of explicit information about surface shape or disposition
only at particular points in the image.

This follows from the form of the primal sketch. Both psychophysical investigations [for
example, Attneave, 1954; Barlow, 1961) and computational studies [for example, Roberts, 1965;
Herskovitz and Binford, 1970, Horn, 1973: Marr, 1976; Marr and Hildreth, 1980, and reviews
by Rosenfeld and Kak, 1976; and Pratt, 1978] of carly visual processing suggest that most of
the information in an image is carricd by the intensity changes, and hence, that the first stage
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_of analysis of images is the detection of such changes. Thesce changes in intensity are used as

input by the modules that feed the 24-1) sketch and hence explicit information is obtained only
at those locations. For example, in sterco computations [Marr and Poggio, 1979; Grimson, 1981;
Baker and Binford, 1981; Mayhew and Frisby, 1981] the zero-crossing contours of the primal
sketches [Marr and Hildreth, 1980] for the lcft and right cye are placed in correspondence, and
the difference in projection of the corresponding contours in the two cyes is used to determine the
depth of the surface along that contour. To create a complete surface representation it is necessary
to interpolate between the known values of the raw 24-D sketch. An initial theory of this process
that implicitly takes into account some of the shading information available in the primal skeich
has been proposed {Grimson, 1982a, 1982b: see also refinements by Terzopoulos, 1982],

While this interpolation or reconstruction theory constructs the “best™ surface to fit through
the known depth points provided by stereopsis. it is clear that. in prin~+ ', supplying additional
constraints to the reconstruction process would result in an improved accuracy in the computed
surface shape.

An extreme example of this can be scen in Figure 1, which shows one possible set of depth
constraints obtained by stercoscopicaily viewing a sinusoidal depth grating of a uniform material
from a particular viewpoint. The most conservative reconstruction, without explicitly taking the
shading information into account, would be the planc shown in Figure 1b. On the other hand,
if surface orientation information were also available along the depth contours, the more correct
reconstruction of Figure lIc would be obtained. Thus, the motivation is to find algorithms for
computing surface oricntation at the known depth points provided by stereopsis.

1.3. The Specific Problem

Given that we want to augment the boundary conditions supplied to the reconstruction
process, the specific question to be investigated here is whether shading information along the
zero-crossing contours of the primal sketch can be used to provide information about the surface
orientation along those contours.

The traditional approach to the shape-from-shading problem. pioncered by Horn [1970, 1975),
has been monocular. The goal has been to extract explicit surface orientation values at cach point in
the image, from a single view of the scene. As stated, the problem is considerably underconstrained
and thus additional information is required in order to obtain the surface orientation information
(sec for example [lkcuchi and Horn, 1981; Bru-s, 1981; Brooks. 1982)). For example, it is usually
assumed that the direction and strength of the illuminant and the reflective propertics of the
surface material (which are assumed constant over large scctions of the image) are known. One
mcthod for obtaining the additional information necessary to solve for the surface oricntation,
under these assumptions, is to usc the technique of photometric sterco [Woodham, 1978, 1980,
1981; Ikeuchi and Horn, 1979: Silver, 1980}. In this case, multiple images obtained from a single
viewpoint, but with different illuminant dircctions, are uscd to determine the surface orientation
at points in the image.

The intention in this paper is to solve (at lcast partially) the shading problem with fewer
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Figure 1. Part (a) shows an extreme example of a sct of depth constraints that could be obtained by
stereoscopically viewing a sinusoidal depth grating. If shading information is not explicitly acoounted for, 1
the best surface reconstruction is the plane shown in part (b). On the other hand. if the shading information
is used 1o obtain surface orientation information along the depth contours, the more accurate reconstruction
of part (c) is obtained.




requirements or assumptions about the parameters of the imaging pracess. To do so will reguire
cither additional sources of information about shading or wcaker expectations on the delivered
data, or both. Indeed, since the motivating problem is to obtain additional boundary conditions on
the reconstruction process, we will only cxpect surface oricntation information at the zero-crossings,
rather than everywhere in the image. We will further only expect a coarse cstimate of the surface
normal, since the values will serve as boundary conditions for a surfacc approximation process,
rather than constituting an explicit surface reconstruction in itsclf. Morcover, we will introduce
an additional source of information to the process. In particular, we will investigate the added
information provided by the differing shading information observed at nearby viewpoints. Hence,
we are concerned with binocular shading. cspecially as it applies to the surface reconstruction
problem. The main questions to be addressed here are: (1) Using binocular shading, under what
conditions can we solve for the surface oricntation at the zero-crossing contours that have been
matched by stereopsis, and (2) How numerically stable is the resulting process? We will sce that
the method used to solve for the surface orientation is essentially an alternate fonn of photometric
stereo, using images obtainced from different viewpoints, rather than with different iluminants,

2. The Basic Equations

The brightness recorded at a point in an image can gencrally be considered as a product
of three factors, the total amount of incident light striking the surface, the percentage of such
incident light which is reflected (as opposed to absorbed or transmitted), usually denoted by the
albedo, p, of the surface, and the reflectance of the surface, the distribution of the reflected light as
a function of direction. Here, we shall assume that the intensity of the incident light is normalized,
by incorporating it into the dcfinition of p. As a consequence, the parameter p is not restricted to
the range 0 — 1, but rather can take on any positive value,

Using a right-hand coordinate system with origin at the left eye, z axis connecting the two
eyes and the negative z axis pointing straight ahead, a surface may be represented by a Monge
patch

{zy Y, —f(Z, y)}
and the surface normal at a point, by

{p,q,l}
where
__of __8f
= -a—z q= a_y

The situation to be investigated here is onc in which the illumination gecometry consists of an
arbitrary surface illuminated by a point source, sufficicntly distant from the surface relative to the
distance to the viewer. Under most circumstances (for example, the surface reflectance is isotropic),
the reflectance properties of the surface can be combined with the illumination gcometry and the
viewer position into the convenicnt representation of a reflectance map [Horn, 1977).

For an arbitrary surface, the surface reflectance map will generally be a combination of two
effects. The first is a diffuse or matte component, which results from the scattering of light that




s -

J&

_penetrates some distance into the microstructure of the surface. The second is a specular or luster

component, which results from the mirror-like reflection of light at a smooth interface between
two materials of different refractive index. These two components can be combined into a single
reflectance map in the following manner (sce, for example. [Horn, 1981; Blinn, 1977 Phong,
1975)).

l.ct n denote a unit vector in the direction of the surface normal, defined at a point on the
surface, let s denote a unit vector in the direction of the point light source. and let v denote a
unit view vector. (In general, we will consider objects to be distant relative to the viewer, so that
v 1s essentially constant, and will consider objects to also be distant relative to the light source, so
that s is cssentially constant). Then the recorded brightness is given by
& = pR(n)

and the reflectance map is given by
R(n) = |(1 — a)(n-s) + a{n-h}" (1)

where h is a unit vector in the direction of the off specular angle,
(s+9)
VaVT+(s-v)
Here, p, @ and & arc paramcters of the particular surface, with p and k non-negative and o ranging
between 0 and 1.

Note that n is a function of the surface f while s is a function of the illumination gcometry.
For our particular choice of coordinate system, the view vector for the left eye is particularly
simple, v, = {0,0,1}. Now suppose that we take a second view of the surface, with vergence
angle g (see Figure 2). Here, the view vector is given by vig = {—sin 3,0, cos §}. Note that the
vergence angle 8 and the illuminant direction are assumed to be known, so that the vectors vg
and s are constants.

The first term in expression (1) corresponds to a matte or Lambertian component of the
surface. Since this component depends only on the angle between the light source and the surface
normal (and hence is independent of v), it is identical for both views. Thus, no additional
information will be obtained from two views in the case of a perfectly matte surface. The second
term corresponds to a specular component of the surface, and this term, in general, does change
octween the two views, as can be scen in expression (1).

Our intent is to use the two expressions for recorded brightnesses in the two eyes to determine
the oricntation of the viewed surface at some point. In order to compare irradiance values from the
two views, we must be certain that the points in the images at which the irradiance measurements
arc taken arc in correspondence (that is, we know which points in the two images correspond to
the same point on the surface). In the ideal case of isolated intensity edges, matched zero-crossings
from a stereo algorithm [for example, Grimson, 1981} are in correspondence, so by restricting our
attention to such points, we are in principle guaranteed irradiance measurements that correspond
to the samc point on a physical surface. We should note, however, that in practice a certain amount
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Figure 2. The geometry of two views of the suiface. with the vergence angle g8 indicated.

of error will be associated with the matched zero-crossings, due to uncertainty in cxactly localizing
the underlying intensity changes. This error will reduce the effectiveness of the computation.

There are two stages to the computation of surface orientation. The first is to compute the
surface reflectance parameters p, a and & (in some applications, these might be known a priori).
Once the reflectance map is known, we must then solve for the surface oricntation along the
zero-crossing contours, assuming that p, a and & arc constant along these contours. More precisely.
we solve the following problem. Let the recorded brightnesses in the left and right eyes be

€L = p[(1 — a)m + au*]
€r = pl(1 — a)m + avt]
respectively, where

m=0nNn-§
_ (s4+v)-nm

S VAVTFsS Y
(s+ vr)-m

ViViFs-vg
We will first solve for p,a and k over some portion of the image, and then use these values to
solve for the surface orientation along zero-crossing contours in this region of the image.

3. Solving for the Reflectance Parameters

The task of determining the reflectance paramcters would be considerably eased if the surface -’
oricniation (p, ) were alrcady known. We thus restrict our attention to situations in which this is




truc. Consider a point of high curvature alung a zero-crossing contour, which in the limiting case
might be a corner where two zero-crossing contours intersect. ‘The orientation of the contour in
the image plane, along cither direction of the contour, is different (within the resolution of the
imagce grid). A directional derivative taken along one direction of the contour yields a constraint
on the relationship between p and g at this point. Since there are two different directions along
the contour at such a point, we get two different constraints on the surface orientation, each one
corresponding to a straight linc in gradient space. defining a linear relationship between the values
of p and ¢ at the point. The intersection of these two lines uniguely defines the surface orientation
at the corner.

We can also perform this computation in a somewhat non-standard representation, by using
unit normals. The representation we choose to utilize is obtained by orthonormally projecting
the Gaussian hemi-sphere of all visible unit normals onto the plane spanned by the first two
components of the unit normal. (Note that this i a one-to-one, onto projection, since we are
only interested in the half of the Gaussian sphere composed of the unit normals corresponding
to visible surfaces). Thus. rather than performing computations in gradicent space, we instead use
the components of the unit normals lying in the unit disk. In this case, cach directional derivative
constrains the first two components of the unit normal to lic on a half ellipse in the unit disk. The
intersection of two such half cllipses uniquely defines the components of the unit surface normal
at the point.

3.1. Using Irradiance Derivatives

We now consider methods for determining the surface refiectance parameters at such a point.
Initially we have three unknowns and only two equations. To uniquely solve for the unknowns,
we will need additional information. One possibility is to consider using derivatives of the image
irradiances to solve for the paramecters. Taking first dircctional derivatives of the irradiance
cquations introduces three new variables, p.,p,{= ¢.) and ¢,. (Note that ¢, is assumed to be
cqual to py, since we shall assume that the surfaces are at least twice continuously differentiable.)
This gives us a total of 8 unknown variables, the three listed, as well as p,q,p,a and k. At a
corner, we can compute the values of p and gq. Furthermore, second directional derivatives along
the depth contour yicld two additional lincar constraints on p,,p, and q,, so there are only 4
independent variables. We also have four equations, namely:

6~£‘£
oz
9L
dy
¥ér
9z
op
oy
where the subscripts L and R denote the left and right images, and the other subscripts denote
partial differentiation.

= p(1 — a){myp: + mep,} + paku*! {uppz + uqpy}
= p(1 — a){myp, + mqqy} + paku*—! {uppy + uqeqy}
= p(1 — a){myp. + mep,} + paky ! {vep: + vopy}

= p(1 — a){myp, + meq,} + pakv""(v,py + veay}




~3.2. Solving The Equations

We now seek a closed form sol “ion (o this set of equations; that is. we seck expressions for
determining p, @ and k as functions of the image irradiance derivatives, the illuminant direction
and the vergence angle. While it is possible to obtain such a closed form solution (for completeness,
the solution is given in the appendix), it is not very useful for computational purposes, since it is
numerically very sensitive, as discussed below.

3.3. Numerical Stability

While the appendix describes a solution to the problem of determining the parameters of the
surface reflectivity. numerical simulations indicate that the solution is not numerically stable. This
is illustrated by the following example. used to determine whether the image values £:(£, — £5)
and £ (€L — £x) can be reliably measured from an image.

Since a visual sysiem is not an infinite resolution device, it is important to take this into
account when simulating the solution to the above equations. In particular. onc cannot use
analytic cxpressions for terms such as 31(&, — £x) but rather. one must usc finite difference
approximations to such differential expressions. in order o reflect the discrete computational
structure of the vision system. Morcaver, the range of values for £; and &5 should also be discrete.
rather than continuous, since any scnsor will have a finite resolution of brightness values. These
considerations turn out to be critical in evaluating the numerical stability of the computation.
In particular, the closed form solution for the reflectance parameters given in the appendix in
principle provides exact values for those paramcters, if infinite precision data is available. When
discrete approximations arc used. however, this exact solution is no longer possible, as is illustrated
by the following example.

A synthetically shaded sphere of radius 160 pixels with a total irradiance range of 8 bits (or
256 grey levels) was constructed using equation (1) with the parameters p = 256, a = 0.8 and with
k varying from 1 to 10. Note that this implies that recorded brightness was descretized to a finite
precision, thereby restricting the resolution of measurements of spatial change in the difference
between the image brightnesses. '

The ratio of interocular separation to fixation distance was set at 6:100. The total number
of points visible to both eyes was counted. and the percentage of such points for which the finite
differences corresponding to the above partial derivatives exceeded a threshold of 1 grey level, or
1 part in 256, was mcasured. This percentage was observed to be small, no more than 4%, even
for large values of k. This held true over a range of illuminant directions. Some cxamples are
shown in Table 1. (Similar results hold for other values of a.)




Tk ws % . _k__ws_ | =@

1 999 221 T 897 268
T777 7799 T o TP T e | 008
13 999 000 17 3 [ 897 000 |

T4 999 T 000 1T Y T w97 [ Toa

J_ 4 | 999 L I .

50 99 134 |7 5T w97 177

6 1 999 | 1% R 243
7o [y T ey T 0
18 ] 999 2% [ 8 o891 | 34 |
TS T ey 39 9 87 3.94
TR T e i e

Table 1: Sensitivity in computing derivatives of image differences

The table lists the percentage of points on the sphere. visible in both eyes. for which the finite
difference approximation of the partial derivative of the change in image intensity exceeded a threshold of
one part in 256. Here. k denotes the exponent of the specular component. and v1s is the percentage of all
possible points on the sphere which are visible to bath eves. The first two components of the unit source
normal. p. and g,. are given by p, = 0,9, = 0 in the left columns. and p, := 0.557,¢. = 0.239 in the
right, and the vergence angle is 8 == tan™' ;&;.

This observation suggests that the system of equations listed in the appendix, while providing
& solution in the ideal case. will not provide a numerically stable solution. One cxplanation for
this can be scen by noting that any partial derivatives of the irradiance cquations will involve
partial derivatives of the components of the surface normal. Unless the surface has a significant
cunvature at these points. the partial derivatives of the image irradiances will be small and hence
the computation of the surface parameters will be numerically unstable. For example, if a smaller
sphere had been used in the above example. the numerical stability of the solution to the reflectance
parameters would be improved. since the effective curvature of the sphere would be increased.

While using finite differences in the change in image brightness between the two views did
not provide detectable values. it was observed that the simple image differences frequently did.
Examples are shown in Table 2. Here, we observe that even for strongly specular surfaces (k = 10)
the percentage of orientations with a detectable (> 1 grey-level) difference in image brightnesses
is over 55%. Allowing for image sensor noise (for example, image differences > 3) still leaves an
appreciable percentage of orientations with measurable differences.

p, = 0.557 ¢, = 0.239
k % total % > 1 % > 2 % >3
1 96 85 53 25
2 9 91 63 37
3 89 89 62 39
4 89 83 57 38
5 88 7 53 36
6 88 ! 49 k7
7 88 66 45 32
8 88 62 4, 3l
9 88 58 40 29
10 88 55 38 28
9
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Table 2: Sensitivity in computing image differences.
The wable lists the percentage of points on the sphere, visible in both eyes with a recorded intensity
of at least 5 parts in 256, for which the difference in image intensity exceeded a given threshold. Here, k
denotes the exponent of the specular component, § = tan ™' t§5. and p, = 0.557 and ¢, = 0.239. The first
column lists the percentage of points on the sphere which are visible in both eyes with sufficient brightness.
The remaining three columns list the percentage of such points which have an irradiance difference in the
two eyes of the amount listed.

This suggests that while we may not be able to reliabiy measure the spatial derivatives of
the difference in image brightness, due to the discrete nature of the sensing of brightness values
and the discrete approximations to the spatial derivatives, we may be able to rely on the simple
differences in image brightness. We thus turn 1o the problem of finding a solution for the surface
reflectivity parameters from the image brightnesses alone.

4. A Second Solution

We first observe that even recording the irradiances at a corner (defined here are a point of
high curvature), where the surface orientation is known, is not sufficient to solve the problem. since
we have two equations in threc unknowns. We thus require an additional source of information
and will assume that we know the surface orientation at two distinct points, (we will show later
that these could be two nearby corners or simply one corner and a ncarby point).

At cach corner, we note that the following cxpressions hold (where ¢ denotes the image point
in question)
2m, (€L — £€R),
T (ELF €r)(uF = vF) = (€L — Er),(uF + oF —2m,)
1

Qa,

(Er)ur—(EL)iv®

1+ =
g = (ELt Er)(uf — vf) — (€L — €r),(uf + v —2m,)

' 2m,(uf — v¥)

_(e—ta)1
uf —v¥ a,

This gives us a solution for p and «a, presuming we know the value of k. To determine k. we
assume that the surface reflectivity parameters are constant over the region of the image spanned
by the two known points. In this case, a; = a; and p; = p; and this leads to the following
implicit equations for &:

(6L~ €r), _ ma(u*fL — v*€R),
(6L —CRr);  my(u*€L — v*ER),
and )
(L —¢r),  (v*—=+*),
(€L —Er)y (v —0*),’
Either equation can be solved numerically to determine the value of k and hence of the other
reflectivity parameters a and p.
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4.1. Numerical Stability

While the cquations derived in scction 3 were observed to be numerically unstable, the
above solution is much more sound. This can be observed by the following simulation. Consider
a sphere illuminated by a point source, and observed by two sensors whose angle of vergence is
B = tan~'(1f5) (roughly cquivalent to a human observer fixating on an object 1 meter removed).
The surface of the spherc can be given any surface reflectance properties by specifying the
parameters k, p and a. For some set of parameters, we compute the observed brightness value in
cach sensor to one part in 256. We then apply the cquations derived above (assuming initially
that the value of &k is known) to compute the parameters a and p. The accuracy of the computed
values is compared to the original value under a number of situations.

Since a certain amount of crror will follow from the tuncation of brightness accuracy, we
mcasured the crror in computing the parameters as a function of the difference in observed
brightness valucs. It will be noted that we can trade off accuracy of computed parameters with the
percentage of onentations for which such a computation can be made (sce Table 3). In particular,
as we increase the required lower bound on the observed differences in brightness, we decrease the
total percentage of orientations for which a computation can be made. but increase the percentage
of such points which give rise to computed surface parameters within a particular error range.
Table 3 illustrates some examples.

T

|k vis 1 p-5 p-10 a-1 a-5 a-10
Cod 25 219 526 62.0 5.1 178 310
2 Ry 69.7 95.8 98.4 68 28.5 546
3 39 66.3 95.2 9.4 119 398 66.6
4 38 60.1 93.6 9.0 139 4.2 720
5 36 5717 922 98.6 139 46.1 76.0
6 M4 564 918 98.4 15.2 49.3 78.6
7 32 564 910 98.2 16.3 524 80.3
8 3 553 90.6 98.1 150 521 82.7
9 29 554 909 98.3 183 55.5 84.1
10 28 55.2 90.1 98.0 11.7 56.8 85.0
k vis pl p-5 p-10 a-1 a-5 a-10
1 0 00 00 00 00 0.0 00
2 0 0.0 0.0 0.0 0.0 0.0 0.0
3 2 513 98.0 100.0 00 00 133
4 7 73.2 99.0 100.0 200 537 812
5 11 72.5 99.1 100.0 17.1 529 86.5
6 13 706 | 985 100.0 186 576 879
7 14 71.0 98.8 100.0 194 61.8 90.1
8 14 69.6 | 986 100.0 16.7 61.3 92.7
9 14 69.9 98.4 100.0 226 64.7 927
10 14 700 | 985 100.0 212 66.2 94.7

Table 3: Errors in computing o and p.
The following parameters are defined:




wis is the percentage of viewed orientations on a sphere for which the difference in observed brghtnesses
exceeds some threshold;

a-¢ is the percentage of vis which lie within a range 4¢% of the correct value of a;
p-¢ is the percentage of vis which lie within a range +¢% of the correct value of p;
¢ is the percentage error bar allowed about the correct value.

In this case, the illuminant direction is given by p, = 0.557,¢9, = 0.239. In the first table, the
threshold of image differences was set at 3. in the second table. the threshold was 5.

To compute the value of k, we must solve an implicit cquation in k. This can be done
numerically, for example, by Newton-Raphson. While computer simulations indicate that this
computation is very robust in the case of perfect image brightnesses, the computation is much
less stable when considering truncated brightness values (i.c. if infinite precision brightness values
are used, the computation returns very accurate values for &, but when the finite resolution of
the brightness sensor is taken into account. the accuracy of the computation drops off quickly).
‘Table 4 indicates an cxample of the crror associated with computing & numerically. This table was
computed by choosing two surface oricntations at random, such that the difference in brightness
cxceed a threshold of 3 grey levels, and solving the implicit equation for k by a Newton-Raphson
method.

One possible method for improving the accuracy of computing not only &, but also p and
a, is to consider the reflective properties of the surface to be constant over some extended region
of the image. In this case, a number of points may be sampled, and the computed values for the
parameters averaged. Table 4 illustrates the reduction in error associated with computing k.

1 3 5 10

1% 27 2.1 28 43

5% 148 15.6 16.2 186
10% 218 30.6 2.7 353
20% 412 50.7 546 65.3
30% 62.6 65.9 736 84.5
40% 69.3 174 839 M7 ]
50% 150 854 920 98.5

Table 4: Errors in computing k.

Two different orientations were chosen at random, such that the difference in brightness values at
each point exceeded a threshold of 3 grey levels. The percentage of such pairs of points with percentage
error in computing k within the given range are indicated. In the case illustrated below. the illuminant
direction was given by p, = 0.557,q, = 0.239, with p = 256, a = 0.5 and k = 5. The percentages are
shown for the case of sampling 1, 3, 5, and 10 pairs, and averaging the results.

5. Solving for the Surface Orientation

Given that the equations derived in Scction 4 can be used to determine the surface reflectivity
parameters &, p and a, we turn to the final stage, which is to compute the surface orientation
along the matched zero-crossing contours of the sterco algorithm.




‘The algorithm described below is essentially a modification of the photometric stereo algorithm
[Woodham, 1978, 1980, 1981: Ikcuchi and Horn, 1979; Silver, 1980]. It can be sketched as follows.

(1) Compute the reflectance map [Horn, 1977, 1981; Horn and Sjoberg, 1979] associated
with the computed values of p, a and k. Since R is a function of the unit surface normal,
it can be calculated over the unit disk, with coordinate axis given by the first and second
components of the unit normal.

(2) Use the measured value of £ at a point to determine a contour of isobrightness in the
unit disk. This defines the set of possible surface orientations, which are cousistent with the
value of .

(3) Use the measured value of € at the corresponding point to determine a second contour
of isobrightness in the unit disk. The intersections of the two contours define possible surface
orientations. Note that in general there will be at least two such points of intersection.

(4) We can disambiguate the possible orientations by applying a third constraint. Take a
directional derivative of depth along the contour through the point. This will yicld a linear
constraint between p and ¢. When translated to the unit disk (and a constraint between the
components of the unit surface normal), this constraint becomes a half ellipse in the unit
disk. The intersection of this curve with the two isobrightness contours defines the correct
surface orientation for the point in question.

The key question still to be considered is whether this algorithm results in a unique solution.
We first observe that the isobrightness contours for either a matte or a specular surface consist of
a serics of nested cllipses or half-cliipses. In particular, for a given value R(n) = ¢, the ellipse has
center in the unit disk of (¢p,, cq,) where p, and ¢, are the first and second components of the
unit source vector s. The minor axis of the ellipsc is oriented along the line from the origin to
the projection of s and the major axis is perpendicular to it

While it is possible to derive this analytically, it more easily observed by noting that
for a Lambertian coated sphere, with source located along the same direction as the viewer,
the isobrightness contours are nested circles. For an off-axis light source, the corresponding
isobrightness contours can be obtained by rotating the sphere relative to the viewer, and then
projecting the previous isobrightness contours onto the unit disk, clearly resulting in a series
of nested ellipses. A similar argument holds for the isobrightness contours of a purely specular
surface.

When considering a convex combination of two such reflectance maps. the isobrightness
contours become somewhat more complex. In gencral, however, the contours are slightly distorted
cllipses (sce Figure 3). As a consequence, the intersection of isobrightness contours from the two
eyes will in general result in a pair of points in the unit disk. (This excludes the degenerate case
of a pure matte surface, in which case the intersection will be a complete ellipse.) We must now
determine the circumstances under which the third constraint will disambiguate this pair of points.

Suppose that the zcro-crossing contour at the point of intcrest has a tangent in the image
planc whosc angle with respect to the z axis is 4, and whose derivative of depth along the contour




Figare 3. Examples of isobrightness contours on the unit disk. for different reflectance maps. In all
four cases, p, = 0.7,¢q, = 0.3. For cases (a), (b), and (c). the exponent k = 10, and the parameter a is
0.1,0.5 and 0.9 respectively. In case (d), the exponent is k = 5 and a = 0.5.
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Figure 4. Constraints on the unit surface normal, as a function of the component of the surface
gradient along a contour. Each contour delineates the possible values of the unit surface normal, for a
different value of the surface gradient along the zero-crossing contour. In each of the contours illustrated
here, the parameter 7 was negative. The straight line corresponds to the case in which the depth derivative
along the zero-crossing contour was zero.

is given by the value d. This dclﬁvative determines the component of the surface normal along the
contour. When translated into a constraint on the components of the unit surface normal, the set
of possible unit normals which are consistent with such a component along the contour are given
by the paramctric equations (assuming « is non-zero)

tsiny 1

nl(t)': 3
(sin® 5 + d? — 2dt cosy + ¢2)
ny(t) = d— tcosy

(sin27 + d? — 2dt cosy + t”)*

These parametric equations define a half eltipse in the unit disk with center at the origin and with
major axis the line through the origin with slope — cot~y of length 2. If 4 is positive, the half
cllipse is that which connects the two endpoints of the major axis and whose half of the minor
axis lics the the positive n, half disk, if v is negative, the half ellipse lies with its half of the
minor axis in the negative n, half disk (see Figure 4).

We wish to determine the conditions in which there is nor a unique solution, which
corresponds to determining the conditions under which the half ellipse constraint passes through
both points arising from the intersection of the isobrightness contours. Note that the family of all
possible depth constraints can be represented by the pairs (4,5) where v ranges from —x to »
and b is the length of the minor axis of the half ellipse. Consider a point (po, go) lying in the unit
disk. Let

= —’-q-g.
§ = sgn(qo) tan P0




Then the valid range of possible v is from £ — § to € + 3, modulo 2x. Thus, the sct of possible
depth constraints which pass through this point can be specified by the graph given in Figure §,
which has a range of x in 4 and a maximum in b of \/p + ¢2. For a sccond. distinct point in
the unit disk, a similar mapping is obtained, which intersects the first at exactly one point. This
implies that there is exactly one ellipse, with orientation and eccentricity given by this intersection,
which passes through both points in the unit disk. This in turn implics that the depth constraint
will almost always uniquely specify the surface orientation of the zero-crossing point, since only
a particular alignment of the light source and the depth contour will result in an ambiguity, and
in general, the physical proccsses which give rise to the depth contour constraint are independent
of the light source. In the casc of continuous valuc ranges for v and d. the sct of conditions
in which a unique answer is not possible will, in fact, have mcasure zero. In the more practical
case of a discrete range of values for 4 and d, assume that the orientation 4 can take on one
of n different values, while the component of the depth gradicnt along the contour d can take
on one of m different values. Then assuming that the possible values for v and d are uniformly
distributed, and assuming that the constraints duc to the reflectance map isobrightness contours
arc independent of the constraint due to the depth derivative implies that the probability of an
ambiguous computation of surface orientation is ;L. Clearly, if we have a reasonable resolution
for 4 and d, this probability will be very small.

6. Discussion

We note that it is possible to solve for the reflectivity parameters without requiring two
corners. Suppose instead that we have one corner, and that the surface is at Icast twice continuously
differentiable. Then by noting that integration of surface orientation around a closed loop must
yield zero (note that a similar constraint has been used by lkeuchi and Horn [1981]) we can
determine the surface orientation at a second point, and the analysis of Scction 4 still holds.

We also note that the numerical properties of the algorithm sketched here probably preclude
its use by the human visual system. In particular, to have reasonable numerical stability over a
large range of surface orientations, a large vergence angle is required (on the order of 3°). For the
human system, this is roughly equivalent to viewing objects from a distance of 1 meter or less.
In cases of machine vision, where control of the positioning of the sensors is possible (i.e. we are
not restricted to interocular separations of 6 cm) large vergence angles are more feasible.

7. Error Analysis

As well as performing simulations of the computation of surface parameters, we can also
make an estimate of the error associated with computing the parameters. This analysis will also
indicate a means for determining those situations in which the error is smali.

We again consider the situation in which the parameter k is known exactly, as well as the
values of p and ¢ and hence of m, u and v. We let
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Figure 5. Determining the uniqueness of the solution. Parts (a) and (b) represent constraints between
the parameters b and +, for different values of ¢. When a second point is added (c), the intersection of
the two contours defines the only possible half ellipse in the unit disk which passes through both points
in the unit disk and has appropriate major and minor axes. Thus, given two isobrightness contours in the 1
unit disk, from the two views of a point on a zero-crossing contour, there is exactly one depth contraint
which will not disambiguate these points.




a,, = measurcd value for a
pm == measurcd value for p
= actual value for a

po = actual value for p

§, = crror in £,

§r = error in £g.
The goal is to determinc estimates for the ratio of the measured values to the actual values, that
is, to derive cxpressions for

Am
€ = —

Qg
e, = om.

po

By expansion, we obtain the following expression
o = (eL—£!€+6L"‘6R)_l_
m - am

ok — pk

Sr
(’*eL—en)

Thus,
_ é — bR _1_
- (l + &L — €R)€a.
Similarly,
o = m(éL — Er + 6 — 6R)
" (uk— '"ka + 6r) — (v — m)(£L + 6L)
(l + —ér ) ] — (u" - m)JR — (v" — m)6L
fL—fR (u "—m)(fn+6n)—(u“——m)(£L+6,_)
so that

(1 n 6R) \ (uk — m)sg — (v* — m)6,

51_,— fR (u" ——m)(ER+6R)-—(u"——-m)(€L +6L) ’

The goal is to determine what circumstances will result in small errors in the computed
paramcters (i.c. under what conditions will ¢, = 1 and ¢, == 1).

Algebraic substitution yields the following alternative forms:

—bp 16€ — 6.ER
= 1 -
% +&—& » miéL = £r)

€ = (1 +oL—tr )(1 - b —br + % (ELbr — EREL) )

51. —¢r €L —Er+ 6L —bp+ A(ELbr — ErbL) )
We can see that the only circumstances in which the error will be large arc when |£, — £g| is
not significantly greater than |6, — 6r|. Since in general, |6, — éx| will be no more than 1, by
restricting our attention to portions of the image in which |, — €| is larger than some threshold,
we can reduce the probable error in our estimation of the surface reflectivity parameters.
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8. Summary

We have demonstrated that shading information can be combined with sterco data along
feature point contours in order to determine the surface orientation along those contours, under
the following conditions.

(1) The surface is illuminated by a distant point source, whose direction relative to the viewer
is known,

(2) The surface is viewed from two different positions, and the angle of vergence of the two
views is known. For numerical stability, this angle should be on the order of 3 degrees or
larger.

{3) The surface is at lcast twice continuously differentiable.

(4) The reflectance map of the surface can be represented in the form
R(n) = |(1 — a)(n-s)+ a{n-h}*

where s is a unit vector in the direction of the light source, h is a unit vector in the direction
of the off specular angle,

___(+9)

CVAVTH (Y
and n is a unit surface normal. The variables a,p and k are unknown, and are to be
computed from the irradiance data. It is assumed that a is non-zcro, so that the surface is
not perfectly matte.

Under these conditions, we have shown that using the brightness values recorded at
corresponding points in the two images (dctermined by the stereo correspondences) we can
compute the reflectivity parameters for the surface, and using in addition the component of the
surface gradicent along the sterco contour, we can apply an algorithm similar to photometric sterco
v compute the surface orientation along the stereo contours.

The numecrical stability of the computation was also explored and methods for reducing the
possible error in the computation were suggested. The key observation concerning the computation
was that while accurate solutions were possible given high resolution input (c.g. the image
brightnesses were known to extremely high accuracy), when the discrete nature of the brightness
sensistivity and spatial sensitivity of the imaging devices was taken into account, the numerical
stability of the computations degraded rapidly. This suggest that in its current form, computations
such as those outlined here may be of limited practical use, until methods for improving the
numerical stability are derived.
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10. Appendix

The solution for the reflectivity parameters, using derivatives of the image irradiances is
summarized as follows. The solution to k is given by

In {(a2 + myas)ug — (a1 + mqas)u,} — In {(az — mpas)u, — (a1 — mgas)v,}

k=1+ lnv—lnu

the albedo p is given by
2p = (g) O(L. + L,) — [uC + wD)® — (1 — v)C + (1 — £)D)¥
PTN8) T lumy Fom R A (1= vy £+ (1— ¥
and the specular scalar « is given by

-
Ole

where
a) = umy(A,L, — A L)+ my(ud, B, — wA T, )+ A Zomg(u€ — wv)
8; = wmy(A. L, — B,L,) + mp(pd, ), — wA L;)+ AT, my(p€ — wv)
a3 = wA? + (wv — wé)AzH, — yA:
where
¢ =(A:+vA)A—~ (4, +€4,)B
¥ = uAA, —wBA,
0 = uA? + (wv — uf)AB — wB?
and where

C = k(upu* "' + v,ot~1) —2m,

D = k{uu*™! 4 vv* ') — 2m, M
and where the sccond directional derivatives along the two directions of the zero-crossing contour,
whouse values are d; and d; with associated directions v; and v,, determine the constants




d, sin® v, — dy sin v,

sin (1) + 72)sin{y2 — 71)
d, cos? y, — d; cos? 7y,

W= = -
sin (v + v2)sin(y2 — 1)
28in; siny,

V= ——
sin (71 ++ 72)
2cos; cos v,

= ————.
sin (71 + 72)

Finally, the surface orientation at this point is given by the three parameters
AypA— AwB
Sy

~ (A +vA)A— (A, + €A,)B
Jer =4 — foy
fyy =W ffzy-

10.1. Discussion of the Equations

Several comments on the form and derivation of the equations arc appropriate. First, we note
that in deriving the above cxpression for a. the form obtained is valid only in the case of both
A, + 4, and A; — A, non-zero. This provides an interesting side effect. since these expressions
both vanish if and only if the surface material has only a matte component, and no (mcasurable)
specular component, or the surface is a planc. If the surface material has no specular component,
a = 0 and this is cxactly the expression obtained by substitution of A, = 0 and A, = 0 into the
cxpression obtained for a.

Second, we note that, subject to possible numerical errors, the solution for the surface
reflectance parameters is unique.

Third, we note that it is important to consider the measurability of the image knowns. In
other words, can we extract the required measurements for the images in a rcliable manner? We
first notc that the zero-crossing contours, along which the sterco depth information is known, will
frequently outline discontinuitics in the surface or in the surface material, for example, occluding
edges of objects or changes in surface albedo. Since we cannot measure infinitesimal derivatives
in the image, does this preclude our ability to measure derivatives cof the images? The answer
is no, since we can again rely on directional derivatives. For cxample, we need to measure
£(EL — €r) and £ (€L ~ £g). This can be done without crossing a discontinuity in the image
irradiances by considering the two directional derivatives along the contour obtained at a corner in
the zero-crossing contour. At this point, we have two different directional derivatives, and simple
algebra allows us to then determine the parametric partial derivatives.
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