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1. Introduction

1.1. The Global Problem

One of the goals of a vision s)stem is to compute the three-dimensional shape of the

visible surfaces in a scene. Thc human visual system uses many cues to compute surface shape.

with different modules of the system using varying sources of information in the images to

infer infonation about surface shape. Examples include motion analysis, stercopsis, shading, and

texture. How do these different visual modalities contribute to the computation of surface shape?

One computational approach to understanding the human Aisual system, pioneered by Marr

and Poggio (see, for example. [Marr, 1976, 1982: Marr and Poggio, 1977]). views the computation

of surface shape from images, in part, as a collection of transformations between two main

representations. The first representation is the primal sketch, which makes explicit loci of changes

in image irradiance at particular scales of resolution: the second is the 21-1) sketch, which makes

explicit information about surface shape and reflective properties of the surface material. The

modules that compute information feeding the 2 -1) sketch from the primal sketch have generally

been considered to a first approximation to be independent of one another. It is clear, however,

that within the 21-1) sketch the different sources of information should interact, both to maintain

consistency among the data provided by different modules, and to provide feedback to the modules

in order to enhance the acquired data (for example. texture contours can facilitate stereopsis

by driving vergence eye movements [Kidd. et al., 1979]). In this paper, we are interested in

examining interactions at the level of the 2.-D sketch between modules of the early visual system.

In particular, we will investigate some of the ways in which shading information can augment

stereo data.

1.2. The Motivating Problem

The goal of the 2 -D sketch [see. for example, Mar, 1978. 19821 is to compute surface

parameters, in particular, the distance to and orientation of small patches of the visible surfaces,

the discontinuities in those surfaces (for example, the edges of objects), and possibly the properties

of the surface material (for example., the amount of specularity, the colour and the albedo of

the surface material). Representations similar to the 24-D sketch have also been suggested by
Horn 119791 and Barrow and Tenenbaum 119791. As mentioned, the input to this representation is

provided by a number of roughly independent modules, two important ones of which are stereopsis

and motion perception. The input provided by these particular modules, which is characteristic

of many early visual modules, consists of explicit information about surface shape or disposition

only at particular points in the image.

This follows from the form of the primal sketch. Both psychophysical investigations [for

example, Attneave, 1954, Barlow, 19611 and computational studies Ifor example, Roberts. 1965:

Hcrskovitz and Binford, 1970: Horn, 1973: Mar, 1976; Mar and Hildreth, 1980, and reviews

by Rosenfeid and Kak, 1976: and Pratt, 19781 of early visual processing suggest that most of

the information in an image is carried by the intensity changes, and hence, that the first stage



of analysis of images is the detection of such changes. These changes in intensity are used as
input by the modules that feed the 2 -l) sketch and hcncc cxplicit inlormation is obtained only

at those locations. For example, in stereo computations IMarr and Poggio, 1979: Grimson, 1981:
Baker and Binford, 1981; Mayhew and Frisby, 19811 the zero-crossing contours of the primal

sketches (Marr and Hildreth, 19801 for the lcft and right eye are placed in correspondence, and

the difference in projection of the corresponding contours in the two eyes is used to determine the

depth of the surface along that contour. To create a complete surface representation it is necessary
to interpolate between the known values of the raw 2J-D sketch. An initial theory of this process

that implicitly takes into account some of the shading information available in the primal sketch
has been proposed [Grimson, 1982a, 1982b: see also refinements by Terzopoulos, 19821.

While this interpolation or reconstruction theory constructs de "best" surface to fit through

the known depth points provided by stereopsis. it is clear that. in prin';'-, supplying additional

constraints to the reconstruction process would result in an improved accuracy in the computed
surface shape.

An extreme example of this can be seen in Figure 1, which shows one possible set of depth
constraints obtained by stereoscopically viewing a sinusoidal depth grating of a uniform material
from a particular viewpoint. 'he most conservative reconstruction, without explicitly taking the
shading information into account, would be the plane shown in Figure lb. On the other hand,
if surface orientation information were also available along the depth contours, the more correct

reconstruction of Figure lc would be obtained. 'lhus, the motivation is to find algorithms for

computing surface orientation at the known depth points provided by stereopsis.

1.3. The Specific Problem

Given that we want to augment the boundary conditions supplied to the reconstruction
process, the specific question to be investigated here is whether shading information along the

zero-crossing contours of the primal sketch can be used to provide information about the surface
orientation along those contours.

The traditional approach to the shape-from-shading problem, pioneered by Horn [1970, 1975],
has been monocular. The goal has been to extract explicit surface orientation values at each point in

the image, from a single view of the scene. As stated, the problem is considerably underconstrained
and thus additional information is required in order to obtain the surface orientation information

(see for example [Ikeuchi and Horn, 1981: Bru-s, 1981; Brooks. 1982)). For example, it is usually
assumed that the direction and strength of the illuminant and the reflective properties of the
surface material (which are assumed constant over large sections of the image) are known. One
method for obtaining the additional information necessary to solve for the surface orientation.

under these assumptions, is to use the technique of photometric stereo [Woodham, 1978. 1980,
1981; Ikeuchi and Horn, 1979: Silver. 1980. In this case, multiple images obtained from a single
viewpoint, but with different illuminant directions, are used to determine the surface orientation

at points in the image.

lhe intention in this paper is to solve (at least partially) the shading problem with fewer

2



Figure 1. Part (a) shows an extreme example of a set of depth constraints that could be obtained by
stereoscopically viewing a sinusoidal depth grating. If shading information is not explicitly accounted fIr,

the best surface reconstruction is the plane shown in part (b). On the other hand, if the shading information

is used to obtain surface orientation information along the depth contours, the more accurate reconstruction
of part (c) is obtained.
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requirements or assumptions about the parameters of de imaging process. To do So will require

either additional sources of information about shading or weaker expectations on the delivered

data, or both. Indeed, since the motivating problem is to obtain additional boundary conditions on

the reconstruction process, we will only expect surface orientation information at the zero-crossings,

rather than everywhere in the image. We will further only expect a coarse estimate of' the surface

normal, since the values will serve as boundary conditions for a surface approximation process,

rather than constituting an explicit surface reconstruction in itself. Moreover, we will introduce

an additional source of information to the process. In particular, we will investigate the added

information provided by the differing shading information observed at nearby viewpoints. Hence,

we are concerned with binocular shading, especially as it applies to the surface reconstruction

problem. The main questions to be addressed here arc: (1) Using binocular shading, under what

conditions can we solve for the surface orientation at the zero-crossing contours that have been
matched by stereopsis, and (2) How numerically stable is the resulting process? We will see that

the method used to solve for the surface orientation is essentially an alternate forn of photometric

stereo, using images obtained from different viewpoints, rather than with different illuminants.

2. The Basic Equations

The brightness recorded at a point in an image can generally be considered as a product

of three factors, the total amount of incident light striking the surface, the percentage of such

incident light which is reflected (as opposed to absorbed or transmitted), usually denoted by the
albedo, p. of the surface, and the reflectance of the surface, the distribution of the reflected light as

a function of direction. Here, we shall assume that the intensity of the incident light is normalized,

by incorporating it into the definition of p. As a consequence, the parameter p is not restricted to
the range 0 - I, but rather can take on any positive value.

Using a right-hand coordinate system with origin at the left eye, z axis connecting the two

eyes and the negative z axis pointing straight ahead, a surface may be represented by a Monge

patch

(z, Y, -fAX, v)
and the surface normal at a point, by

{p,q,1}

where

P= o-f q=L

The situation to be investigated here is one in which the illumination geometry consists of an

arbitrary surface illuminated by a point source, sufficiently distant from the surface relative to the

distance to the viewer. Under most circumstances (for example, the surface reflectance is isotropic),
the reflectance properties of the surface can be combined with the illumination geometry and the

viewer position into the convenient representation of a reflectance map [Horn, 19771.

For an arbitrary surface, the surface reflectance map will generally be a combination of two

effects. The first is a diffuse or matte component, which results from the scattering of light that
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penetrates some distance into the microstructure of the surface. The second is a specular or luster
' component, which results from the mirror-like reflection of light at a smooth interface betweenf two materials of different refractive index. 'hese two components can be combined into a single

reflectance map in the following manner (see, for example. [Horn. 1981: Blinn, 1977: Phong,
19751).

L.et n denote a unit vector in the direction of the surface normal, defined at a point on the
surface, let s denote a unit vector in the direction of the point light source, and let v denote a
unit view vector. (In general, we will consider objects to be distant relative to the viewer, so that

is essentialli constant, and will consider objects to also be distant relative to the light source, so
that s is essentially constant). '[hen the recorded brightness is given by

E = pR(n)

and the reflectance map is given by

R(n)=(1- a)(n. s) + a{nh}] ()

where h is a unit vector in the direction of the off specular angle,

h= (s + v)
v v + (s. v)

Here, p, a and k are parameters of the particular surface, with p and k non-negative and a ranging
between 0 and 1.

Note that n is a function of the surface f while s is a function of the illumination geometry.
For our particular choice of coordinate system, the view vector for the left eye is particularly
simple, vi, = {0, 0, 1}. Now suppose that we take a second view of the surface, with vergence
angle 6 (see Figure 2). Here, the view vector is given by vR = {- sin P, 0, cos 0}. Note that the
vergence angle 9 and the illuminant direction are assumed to be known, so that the vectors VR
and s are constants.

The first term in expression (1) corresponds to a matte or Lambertian component of the
surface. Since this component depends only on the angle between the light source and the surface
normal (and hence is independent of v), it is identical for both views. Thus, no additional
information will be obtained from two views in the case of a perfectly matte surface. The second
term corresponds to a specular component of the surface, and this term, in general, does change
oetween the two views, as can be seen in expression (1).

Our intent is to use the two expressions for recorded brightnesses in the two eyes to determine
the orientation of the viewed surface at some point. In order to compare irradiance values from the
two views, we must be certain that the points in the images at which the irradiance measurements
arc taken are in correspondence (that is, we know which points in the two images correspond to
the same point on the surface). In the ideal case of isolated intensity edges, matched zero-crossings
from a stereo algorithm [for example, Grimson, 19811 are in correspondence, so by restricting our
attention to such points, we are in principle guaranteed irradiance measurements that correspond
to the same point on a physical surface. We should note, however, that in practice a certain amount
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Figure I The geometry of two views of the suxitace. with the vergence angle 0 indicated.

of error will be associated with the matched zero-crossings, due to uncertainty in exact)y localizing

the underlying intensity changes. This error will reduce the effectiveness of the computation.

There are two stages to the computation of surface orientation. The first is to compute the
surface reflectance parameters p, a and k (in some applications. these might be known a priori).
Once the reflectance map is known, we must then solve for the surface orientation along the
zero-crossing contours, assuming that p, a and k are constant along these contours. More precisely.
we solve the following problem. Let the recorded brightnesses in the left and right eyes be

CL = p[(1 - Q)m + auk]
ER =p[(( - C')m + aVk]

respectively, where

U (S+VL)'_n

V (S + VR) []
\2Vr/f + s. YI"

We will first solve for p, a and k over some portion of the image, and then use these values to
solve for the surface orientation along zero-crossing contours in this region of the image.

3. Solving for the Reflectance Parameters

The task of determining the reflectance parameters would be considerably eased if the surface
orientation (p, q) were already known. We thus restrict our attention to situations in which this is

6



true. Consider a point of high curatUre along a zero-crossing contour, %hich in the limiting case

might be a corner where two zero-crossing contours intersect. The orientation of the contour in
the image plane, along either direction of the contour, is different (within the resolution of the

image grid). A directional derivative taken along one direction of the contour yields a constraint

on the relationship between p and q at this point. Since there are two different directions along

the contour at such a point, we get two different constraints on the surface orientation, each one

corresponding to a straight line in gradient space, defining a linear relationship between the values
of p and q at the point. The intersection of these two lines uniquely defines the surface orientation

at the comer.

We can also perform this computation in a somewhat non-standard representation, b) using
unit normals. The representation we choose to utilize is obtained by orthonormally projecting

the Gaussian hemi-sphere of all visible unit nonnals onto the plane spanned by the first two
components of the unit normal. (Note that this is a one-to-one, onto projection, since we are
only interested in the half of the Gaussian sphere composed of the unit normals corresponding

to visible surfaces). Thus. rather than performing computations in gradient space, we instead use
the components of the unit normals lying in the unit disk. In this case, each directional derivative

constrains the first two components of the unit normal to lie on a half ellipse in the unit disk. The

intersection of two such half ellipses uniquely defines the components of the unit surface normal

at the point.

3.1. Using Irradiance Derivatives

We now consider methods for determining the surface reflectance parameters at such a point.

Initially we have three unknowns and only two equations. To uniquely solve for the unknowns,
we will need additional information. One possibility is to consider using derivatives of the image

irradiances to solve for the parameters. Taking first directional derivatives of the irradiance
equations introduces three new variables, p,,p,(= q,) and q,. (Note that q, is assumed to be
equal to py, since we shall assume that the surfaces are at least twice continuously differentiable.)
This gives us a total of 8 unknown variables, the three listed, as well as p, q, p, C1 and k. At a

comer, we can compute the values of p and q. Furthermore, second directional derivatives along
the depth contour yield two additional linear constraints on Pz,pv and q,, so there are only 4
independent variables. We also have four equations, namely:

ah =p(1 - c){mppz + mp 1 } + pakuk- l {UpPz + U qP,1

a = p0 - a){,mppy + mqq} + pok k- {UpP + Uqq,}

a._ = p(I - ){mp pz + mqPy} + pak k - l {VvP + vp.)

atR = P0 - "){mpPp + mqqy} + packvk- {vppy + Vqq1,}

where the subscripts L and R denote the left and right images, and the other subscripts denote

partial differentiation.

7
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3.2. Solving The Equations

We now seek a closed form sol on to this set of equations: that is. we seek expressions for
determining p, a and k as functions of the image irradiance derivativcs, the illuminant direction

and the vergence angle. While it is possible to obtain such a closed form solution (for completeness,

the solution is given in the appendix), it is not very useful for computational purposes, sipce it is

numerically very sensitive, as discussed below.

3.3. Numerical Stability

While the appendix describes a solution to the problem of determining the parameters of the

surface reflectivity, numerical simulations indicate that the solution is not numerically stable. This
is illustrated by the following example, used to determine whether the image values -, - C,?)
and J(L - rli) can be reliably measured from an image.

Since a visual system is not an infinite resolution deice. it is important to take this into
account when simulating the solution to the abo%c equations. In particular. one cannot use

analytic expressions for terms such as 1'(rj - El) but rather, one must use finite difference
approximations to such differential expressions, in order to reflect the discrete computational

structure of the vision system. More'ner, the range of values for El and el? should also be discrete.
rather than continuous, since any sensor will have a finite resolution of brightness %alues. These

considerations turn out to be critical in evaluating the numerical stability of the computation.
In particular, the closed form solution for the reflectance parameters given in the appendix in
principle provides exact values for those parameters, if infinite precision data is available. When

discrete approximations are used, however, this exact solution is no longer possible, as is illustrated
by the following example.

A synthetically shaded sphere of radius 160 pixels with a total irradiance range of 8 bits (or
256 grey levels) was constructed using equation (1) with the parameters p = 256, a = 0.8 and with
k varying from 1 to 10. Note that this implies that recorded brightness was descretized to a finite
precision, thereby restricting the resolution of measurements of spatial change in the difference

between the image brightnesses.

The ratio of interocular separation to fixation distance was set at 6:100. The total number

of points visible to both eyes was counted, and the percentage of such points for which the finite
differences corresponding to the above partial derivatives exceeded a threshold of 1 grey level, or
I part in 256, was measured. This percentage was observed to be small, no more than 4%, even

for large values of k. This held true over a range of illuminant directions. Some examples are
shown in Table 1. (Similar results hold for other values of a.)

i I~ lll lll[ II II III il I~ l] . n L'* ... . m ni[ . ...8



k vz k ___%

1 99.9 2.27 1 r 89.7 2.64
2 -- _00- - 89.7 08

4 999 000 4 89.7 0.241 5 99.9 1 1.34 1 5 89.7 1.77
6 L9~ 99 6__ '89.7 2.43

7 99 2.37 89.7 3.03
+ .- F -r- -- i - - - --

8 I 9 .9 2.56 _8 ; 89.7 3.42
- - -9 -_ 9 89.7 3.94

_ 0 1 _99.9 3.67 10 89.7 4.36

Table 1: Sensitihily in computing derivatives of image differences
The table lists the percentage of points on the sphere. visible in both eyes. for which the finite

difference approximation of the partial derivative of the change in image intensity exceeded a threshold of
one part in 256. Here. k denotes the exponent of' the specular component. and ,ts is the percentage of all
possible poits on the sphere which are %isible to both e es. The first two components of the unit source
normal. p. and q,. are given by p, = 0, q, = 0 in the left columns, and p. = 0.557, q, = 0.239 in the
right. and the vergence angle is 0 - tan -  -.

'his obser~ation suggests that the system of equations listed in the appendix, while providing
, solution in the ideal case. %ill not provide a numerically stable solution. One explanation for
this can be seen b noting that any partial derivatives of the irradiance equations will involve
partial deriat es of the components of the surface normal. Unless the surface has a significant
curvature at these points. th, partial derivatives of the image irradiances will be small and hence
the computation of the surface parameters Aill be numericall\ unstable. For example, if a smaller
sphere had been used in the aboxe example, the numerical stabilit$ of the solution to the reflectance
parameters would be improved, since the effective curxature of the sphere would be increased.

While using finite differences in the change in image brightness between the two views did
not provide detectable values, it was obserxed that the simple image differences frequently did.
Examples are shown in Table 2. Here, we observe that even for strongly specular surfaces (k = 10)
the percentage of orientations with a detectable (_> 1 grey-level) difference in image brightnesses

is over 55%. Allowing for image sensor noise (for example, image differences > 3) still leaves an
appreciable percentage of orientations with measurable differences.

p. 0.557 q, = 0.239
k %total %> I %>2 % >S
1 96 85 53 25
2 92 91 63 37
3 89 89 62 39
4 89 83 57 38
5 88 77 53 36
6 88 71 49 34
7 88 66 45 32
8 88 62 4, 31
9 ] 88 58 40 29

10 I 88 55 38 28

9



Table 2: Sensitivity in computing image differences.

The table lists the percentage of points on the sphere, visible in both eyes with a recorded intensity
of at least 5 parts in 256. for which the difference in image intensity exceeded a given threshold. Here, k

denotes the exponent of the specular component. f = ta-' T8. and p. = 0.557 and q, 0.239. The first
column lists the percentage of points on the sphere which are visible in both eyes with sufficient brightness.

The remaining three columns list the percentage of such points which have an irradiance difference in the

two eyes of the amount listed.

This suggests that while we may not be able to rcliabiy measure the spatial derikati'cs of
the difference in image brightness, due to the discrete nature of the sensing of brightness values
and the discrete approximations to the spatial derivatives, we may be able to rely on the simple
differences in image brightness. We thus turn to the problem of finding a solution for the surface
reflectivity parameters from the image brightnesses alone.

4. A Second Solution

We first observe that even recording the irradiances at a corner (defined here are a point of
high curvature), where the surface orientation is known, is not sufficient to solve the problem, since
we have two equations in three unknowns. We thus require an additional source of information

and will assume that we know the surface orientation at two distinct points, (we will show later
that these could be two nearby corners or simply one corner and a nearby point).

At each corner, we note that the following expressions hold (where t denotes the image point

in question)

2m,(EL - CR),
g (CL + CR), (U. - V,) - (L - CR),(U., + V, - 2m,)

1

I +

(1L + Cd.),(u - v;) - (eL - C),(Ju k + vk - 2m.,)

(L - CR), 1
Uk _Vk' a,

This gives us a solution for p and a, presuming we know the value of k. To determine k. we
assume that the surface reflectivity parameters are constant over the region of the image spanned
by the two known points. In this case, al a2 and p1 = p2 and this leads to the following

implicit equations for k:

(CL - C,), m2( u k C - OkCR),

(L - 'R) 2  ,I(UkCL - VI: R)2
and

(CL - CR), (W -
(CL - tR)2 - (uk - V

Either equation can be solved numerically to determine the value of k and hence of the other

reflectivity parameters a and p.

10
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4.1. Numerical Stability

While the equations derivcd in section 3 were observed to be numerically unstable, the

above solution is much morc sound. This can be observed by the following simulation. Consider

a sphere illuminated by a point source, and observed by two sensors whose angle of vergence is

0 = tan-
1

(Th) (roughly equivalent to a human observer fixating on an object 1 meter removed).
'he surface of the sphere can be given any surface reflectance properties by specifying the

parameters k, p and a. For some set of parameters, we compute the observed brightness value in

each sensor to one part in 256. We then apply the equations derived above (assuming initially

that the value of k is known) to compute the parameters a and p. The accuracy of the computed

values is compared to the original value under a number of situations.

Since a certain amount of error will follow from the truncation of brightness accuracy, we
measured the error in computing the parameters as a function of the difference in observed

brightness values. It will be noted that we can trade off accuracy of computed parameters with the

percentage of orientations for which such a computation can be made (see Table 3). In particular,

as we increase the required lower bound on the observed differences in brightness, we decrease the

total percentage of orientations for which a computation can be made. but increase the percentage
of such points which give rise to computed surface parameters within a particular error range.

Table 3 illustrates sonic examples.

I k V2S - p1 P-5 p-10 a-i ct-5 a-10
1 25 21.9 52.6 62.0 5.1 17.8 31.0
2 37 69.7 95.8 98.4 6.8 28.5 54.6
3 39 66.3 952 99.4 11.9 39.8 66.6
4 38 60.1 93.6 99.0 13.9 442 72.0

. 5 36 57.7 92.2 98.6 13.9 46.1 76.0
6 34 56.4 91.8 98.4 15.2 49.3 78.6
7 32 56.4 91.0 98.2 16.3 52A 80.3
8 31 55.3 90.6 98.1 15.0 52.7 82.7
9 29 55.4 90.9 98.3 18.3 55.5 84.1

10 28 55.2 90.1 98.0 17.7 56.8 85.0

k Vis p-1 p-5 p-10 a-I a-5 a-10
1 0 0.0 0.0 0.0 0.0 0.0 0.0
2 0 0.0 0.0 0.0 0.0 0.0 0.0
3 2 51.3 98.0 100.0 0.0 0.0 13.3
4 7 73.2 99.0 100.0 20.0 53.7 81.2
5 11 72.5 99.1 100.0 17.1 52.9 86.5

6 13 70.6 98.5 100.0 18.6 57.6 87.9
7 14 71.0 98.8 100.0 19.4 61.8 90.1
8 14 69.6 98.6 100.0 16.7 61.3 92.7
9 14 69.9 98.4 100.0 22.6 64.7 92.7

10 14 70.0 98.5 100.0 21.2 66.2 94.7

Table 3: Errors in computing a and p.

The following parameters are defined:
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v%3 is the percentage of viewed orientations on a sphere for which the difference in observed bnghtnesses
exceeds some threshold;

a-c is the percentage of ms which lie within a range ±f% of the correct value of a;

p-e is the percentage of vis which lie within a range ±% of the correct value of p;

e is the percentage error bar allowed about the correct value.

In this case, the illuminant direction is given by p. = 0.557, q, = 0.239. In the first table, the
threshold of image differences was set at 3. in the second table, the threshold was 5.

To compute the value of k, we must solve an implicit equation in k. This can be done
numerically, for example, by Newton-Raphson. While computer simulations indicate that this
computation is very robust in the case of perfect image brightnesses, the computation is much
less stable when considering truncated brightness values (i.e. if infinite precision brightness values
are used, the computation returns very accurate values for k, but when the finite resolution of
the brightness sensor is taken into accounL the accuracy of the computation drops off quickly).
Table 4 indicates an example of the error associated with computing k numerically. This table was
computed by choosing two surface orientations at random, such that the difference in brightness
exceed a threshold of 3 grey levels, and solving the implicit equation for k by a Newton-Raphson
method.

One possible method for improving the accuracy of computing not only k, but also p and
a, is to consider the reflective properties of the surface to be constant over some extended region
of the image. In this case, a number of points may be sampled, and the computed v'alues for the
parameters averaged. Table 4 illustrates the reduction in error associated with computing k.

1 3 5 10
1% 2.7 2.7 2.8 4.3
5% 14.8 15.6 16.2 18.6

10% 27.8 30.6 29.7 35.3
20% 47.2 50.7 54.6 65.3
30% 62.6 65.9 73.6 84.5
40% 69.3 77.4 83.9 94.7
50% 75.0 85.4 92.0 98.5

Table 4: Errors in computing k.

Two different orientations were chosen at random, such that the difference in brightness values at
each point exceeded a threshold of 3 grey levels. The percentage of such pairs of points with percentage
error in computing k within the given range are indicated. In the case illustrated below, the illuminant
direction was given by p. = 0.557, q. = 0.239. with p = 256. a = 0.5 and k = 5. The percentages are
shown for the case of sampling 1, 3, 5, and 10 pairs, and averaging the results.

5. Solving for the Surface Orientation

Given that the equations derived in Section 4 can be used to determine the surface reflectivity

parameters k, p and a, we turn to the final stage, which is to compute the surface orientation

along the matched zero-crossing contours of the stereo algorithm.

12



The algorithm described below is essentially a modification of the photometric stereo algorithm

[Woodham, 1978, 1980, 1981: Ikeuchi and Horn, 1979: Silver, 19801. It can be sketched as follows.

(1) Compute the reflectance map [tHorn, 1977, 1981: Horn and Sjoberg, 1979] associated

with the computed values of p, a and k. Since R is a function of the unit surface normal.

it can be calculated over the unit disk, with coordinate axis given by the first and second

components of the unit normal.

(2) Use the measured value of 61, at a point to determine a contour of isobrightness in the
unit disk. This defines the set of possible surface orientations, which are consistent with the

value of eL.

(3) Use the measured value of Ei? at the corresponding point to determine a second contour
of isobrightness in the unit disk. The intersections of the two contours define possible surface

orientations. Note that in general there will be at least two such points of intersection.

(4) We can disambiguate the possible orientations by applying a third constraint. Take a

directional derivative of depth along the contour through the point. This will yield a linear
constraint between p and q. When translated to the unit disk (and a constraint between the
components of the unit surface normal), this constraint becomes a half ellipse in the unit

disk. T'he intersection of this curve with the two isobrightness contours defines the correct
surface orientation for the point in question.

The key question still to be considered .s whether this algorithm results in a unique solution.

We first observe that the isobrightness contours for either a matte or a specular surface consist of
a series of nested ellipses or half-ellipses. In particular, for a given value R(n) = c, the ellipse has

center in the unit disk of (cp,, cq3) where p, and q. are the first and second components of the

unit source vector s. The minor axis of the ellipse is oriented along the line from the origin to

the projection of s and the major axis is perpendicular to it.

While it is possible to derive this analytically, it more easily observed by noting that

for a lIambertian coated sphere, with source located along the same direction as the viewer,

the isobrightness contours are nested circles. For an off-axis light source, the corresponding
isobrightness contours can be obtained by rotating the sphere relative to the viewer, and then

projecting the previous isobrightness contours onto the unit disk, clearly resulting in a series

of nested ellipses. A similar argument holds for the isobrightness contours of a purely specular

surface.

When considering a convex combination of two such reflectance maps, the isobrightness

contours become somewhat more complex. In general, however, the contours are slightly distorted
ellipses (see Figure 3). As a consequence, the intersection of isobrightness contours from the two

eyes will in general result in a pair of points in the unit disk. (This excludes the degenerate case

of a pure matte surface, in which case the intersection will be a complete ellipse.) We must now
determine the circumstances under which the third constraint will disambiguate this pair of points.

Suppose that the zero-crossing contour at the point of interest has a tangent in the image
plane whose angle with respect to the z axis is -1, and whose derivative of depth along the contour

L
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Rlpm I. Examples of isobrightneus contours on the unit disk. for different reflecance maps. In all
fbur Cases, ps = 0.7,qgo = 0.3. For caes (a). (b), and (c). the exponent k = 10, and the parameter a is
0. 1.0.5 and o.9 respectively. In case (d), the exponent is k 3 and a =0.5.
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Figure 4. Constraints on the unit surface normal, as a function of the component of the surface
gradient along a contour. Each contour delineates the possible values of the unit surface normal, for a
different value of the surface gradient along the zero-crossing contour. In each of the contours illustrated
here, the parameter I7 was negative. The straight line corresponds to the case in which the depth derivative
along the zero-crossing contour w s zero.

is given by the value d. This de'ivative determines the component of the surface normal along the

contour. When translated into a constraint on the components of the unit surface normal, the set
of possible unit normals which are consistent with such a component along the contour are given

by the parametric equations (assuming I is non-zero)

n1(t) = t sin

(sin 2 Y + d2 - 2d cos y+ t2)t

n2(t=) - d - t cony

(sin 2 -y + d2 - 2dt cosy+ t2)

These parametric equations define a half ellipse in the unit disk with center at the origin and with
major axis the line through the origin with slope - cot -, of length 2. If ,y is positive, the half

ellipse is that which connects the two endpoints of the major axis and whose half of the minor
axis lies the the positive n2 half disk, if -y is negative, the half ellipse lies with its half of the

minor axis in the negative n2 half disk (see Figure 4).

We wish to determine the conditions in which there is not a unique solution, which

corresponds to determining the conditions under which the half ellipse constraint passes through
both points arising from the intersection of the isobrightness contours. Note that the family of all

possible depth constraints can be represented by the pairs (-y,b) where y ranges from -w to w

and b is the length of the minor axis of the half ellipse. Consider a point (Po,qo) lying in the unit

disk. Let

.sgn(qo) tan-'
PC
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T'hen the valid range of possible -y is from - to ( + ~,modulo 2wr. Thus, thc set of' possible
depth constraints which pass through this point can be specified by the graph given in Figure S.
which has a range of w in -y and a maximum in b of v +q.For a second, distinct point in
the unit disk, a similar mapping is obtained, which intersects thc first at exactly one point. This
implies that there is exactly one ellipse, with orientation and eccentricity given by this intersection,
which passes through both points in the unit disk. This in turn implies that the depth constraint
will almost always uniquely specify the surface orientation of the zero-crossing point, since only
a particular alignment of the light source and the depth contour will result in an ambiguity, and
in general, the physical processes which give rise to the depth contour constraint are indcpendcnt
of the light source. In the case of continuous value ranges for -y and d. the sct of conditions
in which a unique answer is not possible will, in fact, have measure zcro. In the more practical
case of a discrete range of values for -y and d, assume that the orientation -y can take on one
of n diffecrent values, while the component of the depth gradient along the contour d can take
on one of m different values. T'hen assuming that the possible v'alues for -y and d are uniformly
distributed, and assuming that the constraints due to the reflectance map isobrightness contours
are independent of the constraint due to the depth derivative implies that the probability of an
ambiguous computation of surface orientation is -L. Clearly, if we have a reasonable resolution
for -y and d, this probability will be very small.

6. Discussion

We note that it is possible to solve for the reflectivity parameters without requiring two
corners. Suppose instead that we have one corner, and that the surface is at least twice continuously
differentiable. Then by noting that integration of surface orientation around a closed loop must
yield zero (note that a similar constraint has been used by Ikeuchi and Horn 119811) we can
determine the surface orientation at a second point, and the analysis of Section 4 still holds.

We also note that the numerical properties of the algorithm sketched here probably preclude
its use by the human visual system. In particular, to have reasonable numerical stability over a
large range of surface orientations, a large vergence angle is required (on the order of 3Y). For the
human system, this is roughly equivalent to viewing objects from a distance of I meter or less.
In cases of machine vision, where control of the positioning of the sensors is possible (i.e. we arc
not restricted to interocular separations of 6 cm) large vergence angles are more feasible.

7. Error Analysis

As well as performing simulations of the computation of surface parameters, we can also
make an estimate of the error associated with computing the parameters. Ibis analysis will also
indicate a means for determining those situations in which the error is small.

We again consider the situation in which the parametr k is known exactly, as well as the
values of p and q and hence of m. us and v. We let

. 16
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Figure 5. Determining the uniqueness of the solution. Parts (a) and (b) represent constraints between
the parameters b and 1, for different values of C. When a second point is added (c), the intersection of
the two contours defines the only possible half ellipse in the unit disk which passes through both points
in the unit disk and has appropriate major and minor axes. Thus, given two isobrightnem contours in the
unit disk, from the two views of a point on a zero-crossing contour, there is exactly one depth ontraint
which will not disambiguate these points.
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mmcasured value for a"
P, = measured value for p
00, = actual value for a
Po = actual value for p
6L = error in CL

6R = error in CR.

The goal is to determine estimates for the ratio of the measured values to the actual values, that
is, to derive expressions for

aO
Pm

PO

By expansion, we obtain the following expression

P~=(CL -- Ei + 6L - 6R) IP~n--- k _ Vk a m

+6L - 617 po

Thus,

Similarly,

{CL - C + 6L - 6R)
= (uk - mX R + 6R) - (Vk - M)(CL + 6 L)

EL T-Tn (,, - ,.XCR + 6R) -(, M )(EL + 60.

so that

f - R (U k - )6(Vk -M)6L( CL- R -( M)(CR + 6R) - (V - M)(L + 6L.)

The goal is to determine what circumstances will result in small errors in the computed
parameters (i.e. under what conditions will ep % I and c. Po 1).

Algebraic substitution yields the following alternative forms:
6L - 6 R + 6REL - 6 LR

C L - 6R p m(L- ER)

+6L -6R~f 6 L -
6

1 R (L 6 R -CR6L)

CL -CRX1 CL -CR +±6L -6R + -*(CL6R - CHL))

We can see that the only circumstances in which the error will be large are when I CL - CR1 I is

not significantly greater than 16L - 6RI1. Since in general, 16L - 6H1 will be no more than 1, by

restricting our attention to portions of the image in which ItL - C j is larger than some threshold.

we can reduce the probable error in our estimation of the surface reflectivity parameters.

18
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8. Summary

We have demonstrated that shading information can be combined with stereo data along

feature point contours in order to determine the surface orientation along those contours, under

the following conditions.

(]) 'he surface is illuminated by a distant point source, whose direction relative to the viewer

is known.

(2) The surface is viewed from two different positions, and the angle of vergence of the two

views is known. For numerical stability, this angle should be on the order of 3 degrees or

larger.

(3) The surface is at least twice continuously differentiable.

(4) The reflectance map of the surface can be represented in the form

R(n) ( [- a)(n s) + a{n. h}k ]

where s is a unit vector in the direction of the light source, h is a unit vector in the direction

of the off specular angle,
h = (s + v)

/12 + (s. v)

and n is a unit surface normal. The variables a, p and k are unknown, and are to be

computed from the irradiance data. It is assumed that a is non-zero, so that the surface is

not perfectly matte.

Under these conditions, we have shown that using the brightness values recorded at

corresponding points in the two images (determined by the stereo correspondences) we can

compute the reflectivity parameters for the surface, and using in addition the component of the

surface gradient along the stereo contour, we can apply an algorithm similar to photometric stereo

to compute the surface orientation along the stereo contours.

The numerical stability of the computation was also explored and methods for reducing the

possible error in the computation were suggested. The key observation concerning the computation

was that while accurate solutions were possible given high resolution input (e.g. the image

brightnesses were known to extremely high accuracy), when the discrete nature of the brightness

sensistivity and spatial sensitivity of the imaging devices was taken into account, the numerical

stability of the computations degraded rapidly. This suggest that in its current form, computations

such as those outlined here may be of limited practical use, until methods for improving the

numerical stability are derived.
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10. Appendix

The solution for the reflectivity parameters, using derivatives of the image irradiances is

summarized as follows. The solution to k is given by

k IIn {(a2 + MpaO3)t - (a, + mqa3)Up) - in {(a 2 - Mpa3)V,; - (a, mqa3)Uj
k= -l- Inv- Inu

the albedo p is given by

2p = . O (E . + E ) - -[ C + wD ) . --, - )C -+ (I - -f)D )

( 11) (;Am"+ WMq)O + [1-V)m, + (I - )qq

and the specular scalar ct is given by

1$

where

a, Asm.(A.E. - Ayz + Mq(jMAyEy~ - +A~2  AyE~Mq(gA - WLI')

a2 = WMq(A.Ey - AyEz) + Mp(),1&y~J, - wl&.A.) + A.,p(A - WLI)

where

0 = (A. + v'A)A - (Ay + CA)B

'if AAAy - wBAz,
e = A2 + (V -_g)AB - WE2

and where

A8z 8t

8i, 8)I
Oh. 8ER

EY -h + o-C

A =k(uu-' _VV-1)

B = k(uquk-  - vk-1)

C = k(upu - I + vi -k ) - 2m,
D fi /(uuk-' + lVq-1) - 2m,

and where the second directional derivatives along the two directions of the zero-crossing contour,
whose values are d, and d2 with associated directions "y and 72, dctcrmine the conszant
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d, sin 2 y72 - d2 sin 2 71
sin (-y, + 72) sin (12 - Y1

d, cos 2 yi - di cos 2 
172

sin(-I, + '7 2) sin (12 - 7)

2 sin yI sin 72
sin (-, + 'Y2)
2 cos'71 cos 12
sin (-Yl + '12)

Finally. the surface orientation at this point is given by the three parameters

A,1A- AzwB

=A.1 + AjA - (A, + Cx)B
IXX =/ A- Vf, v

A Y = W -

10.1. Iiscussion of the Equations

Several comments on the form and derivation of the equations are appropriate. First, we note

that in deriving the above expression for a, the form obtained is valid only in the case of both

Ar + A. and A. - A. non-zero. This provides an interesting side effect, since these expressions
both vanish if and only if the surface material has only a matte component, and no (measurable)

specular component, or the surface is a plane. If the surface material has no specular component,

a = 0 and this is exactly the expression obtained by substitution of A, = 0 and A, = 0 into the

expression obtained for a.

Second, we note that, subject to possible numerical errors, the solution for the surface
reflectance parameters is unique.

Third, we note that it is important to consider the measurability of the image knowns. In
other words, can we extract the required measurements for the images in a reliable manner? We

first note that the zero-crossing contours, along which the stereo depth information is known, will

frequently outline discontinuities in the surface or in the surface material, for example, occluding

edges of objects or changes in surface albedo. Since we cannot measure infinitesimal derivatives

in the image, does this preclude our ability to measure derivatives of the images? The answer

is no, since we can again rely on directional derivatives. For example, we need to measure

&(CL - CIn) and 4(L - Cr4. This can be done without crossing a discontinuity in the image

irradiances by considering the two directional derivatives along the contour obtained at a comer in

the zero-crossing contour. At this point, we have two different directional derivatives, and simple

algebra allows us to then determine the parametric partial derivatives.
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