AD-A126 979 ANALYSIS OF THE RELATIONAL DATA BASE MODEL IN SUPPORT 12
OF AN INTEGRATED APPLICATION SOFTWARE SYSTEM(U)} NAVAL
POSTGRADUATE SCHOOL MONTEREY CA R NISHIMURA DEC 82

UNCLASSIFIED G 9/2.

flio
mn

rrTEEREE
EEEE
EEE

rrreere
rr - 8§ B
T

m
22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MA126979

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS o

ANALYSIS OF THE RELATIONAL DATA BASE MODEL
IN SUPPORT OF AN
INTEGRATED APPLICATION SOFTWARE SYSTEM

by

Rodney Nishimura
December, 1982

Thesis Advisor: Dushan Badal

—

Approved for Public Release; Distribution Unlimited

FECUMTY CLASMAICATION OF Tuil PAGR (Then Dete Bnsared)

REPORT DOCUMENTATION PAGE BEPOSE COMPLETING £ORM
T RFSAY TUORr *E?=ﬁ1aﬁaa==awaamnnwwznﬂaz1aﬁar—-'
basd Sl777
4. NITLE (and Subtivie) . $. TYPL OF AERORT & PEMOO COVERED
Analys1§ of the Relational Data Base Master's Thesis
, Model in Support of an Integrated ecember, 1982
Applciation Software System. §. PERFOMUNG ORG. AEPORT HUNBER

.) 02 . ACY O AnT Ny)

Rodney Nishimura

AREA & WORK UNIT wUMBERS
Naval Postgraduate School

% —E T YT PSR AT R L] " PROGRAM EL EMENT PROIECT TAIK
i Monterey, California 93940

| 1. CONTROLLING OPFICE NANE ANO ADORESS 12. AEPORY DaTR

; Naval Postgraduate School December, 1982

: Monterey, California 93940 1. "“"'1';6" ®acts

1 T 0 ¢ 1.0 MY wANl & A SU(IT G fiorent fonis Cantrailing Offise) | 15, SECURITY CLASS. rof ihie ribar)
Unclassified

‘H’W"gg! ASMFICATION/ D T
“kom_‘ C ON/ DOWNGRADING

Te. EI’NN““ 3’!""’ (et e ‘.—.ﬂ)
Approved for Public Release; Distribution Unlimited

i

17. DISTRIBUTION STATENENT (of the abowrost antered in Blesk 20, .I ditferent Fam Repert)

PERCV

P ———————
19. SUPPL CUENTARY NOTES

AR Bl S | A

(9. KEY WORDS (Conrinwe ev v I ary Gnd 14antify Oy sk munber)
Relational Data Base Model, Integrated Application Software

(36, AGSTRACT (Cantiwue e rT Y % nd 1oaniy by Siech mumber)

The premise of this thesis is that many software application
systems perform similar functions on a data object and contain a
significant operational intersection. An Integrated Application
Software System ([ASS) integrates the capabilities of the applica-
tions into one system. The purpose of this thesis is to evaluate
the utility of the relational database model to conceptually inte-

grate the text processing, relational database management, form
) Continued

[4
) 08" 1473 eormow or 1 nov 681 OBsOLETE

[} - -
f/n 0103-01¢- 4001 1 SECUMTY CLASMFICATION OF Twis #aal ﬁtz R

—— g —— -~ .
" T ———— . 1,

L________________._

YRty 8V

V108 Q08 hen Rees Satamd.

ABSTRACT (Continued) Block # 20

generating, electronic mail, and electronic modeling applications.

The conclusion of this study is that the relational database model
‘can conceptually suﬁport the data representation and manipulation
requirements of each application considered. Furthermore, the

integrated system has potential capabilities that are not available
in the non-integrated set of applications.

Aocession For
N7ls friaT ¥ 34

?’Lu 748
v Inag ane 9 -

:4"0-\1.10L,.--« S
0,____.,_,———.—»—-’/" - “
! e
Dlstribatlcnl ' A

‘avel 1A/

= ‘\vallﬁ-b&"”\ ¢
. special

pilst

\\B\‘\ \ .

5 1473
4 40 14-s601

S s
2 SECUMTPY €L ANAMICATION OF T PoQRMNen Date Bntored)

-

- e - — ‘
'jﬂ*’ﬁ:fﬁ.ﬁsnnqq'u~ S e a .

Approved for public release, distribution uniimited,

Analysis of the Relational Data Base Model
{in Support of an
Integrated Application Software Systenm

by

Rodney Nishimura
Lieutenant, United States Navy
B,S,, University of Southern California, 197%

sSubmitted {n partial fulfillment of the
requirements for the degree of
MASTER QOF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1982

AUTHOR Rodnery hoefirrscro

APPROVED 8Y: L‘Z e m

Thesis Advisor

Waxég

Co=Advisor/Secaond Reader

41222&@\:>‘1(% g;j5{7,29tjj—_““\

Chairman, Department of Computer Science

e Mol

Dean ot Intormation and Policy Science

j
I
!
!
!
!
|

ABSTRACT

N

“ The premise of this thestis is that many software
application systems perform similar functions on a data
object and contain a significant operational intersection,
An Integrated Apolication Software System (IASS) {ntegrates
the cavacilities of the applications i{nto one system, The
purpose of this thesis is to evaluyate the utility of the
relational database model to conceptually integrate the text
processing, relational database ranagement, form generating,
electronic mail, and electronic modeling applications.

The conclusion of this study s that the relational
database model can conceptually support the data
representation and manipulation requirements of each
application c¢onsidered, Furthermore, the integrated svstenm
has potential capapilities that are not avajilable in the

non=integrated set of appllcations.r?

TABLE OF CONTENTS

x. x"rnooucr!o" [XEEEENENEEENNNNENR RN NNENNENNNNENNRNN NN}/ ‘
.. APPLIC‘TION aorT"ARE pnoabg" X EEENEENEENEN NN N NN] a

B. THE IAS8 OBJECTIVES 4uvescencccscscscasssasssss 9
c. !.ss APPLICATIONS [AN NN EXEEEENEFEENEEE NN N N N N N N J ‘l

II. IASS DATA OBJECT [N RN EEENNENNNNNNNENENNENNNNINNNN NN NN 13

B]

A. THE T.BLE (AN ENENNNNNENNNENRNERENE NN NN NN NNENENJN NN NENZ 13

B, IASS TABLES cecvvevstscnvcsncgssscscccctcensnssne 14
1. Text Processor Tables cccesssccncescccencne 18
2. Database® TableS sccevssvccosvcocccsssssccsane 20

3, Form Generator Tables eevqoreccssoenvasensses 22

4, Electronic Mail TableS e cccceccccscacacee 25

.S. Electronic Soread Sheet TableS .ccvcccscase 29

ITI, CONCEPTUAL INTEGRATION ,cesvceccssscvcccccscccnns 33 ‘
A, OVERVIEW ,y0cccvceeovcctcsccsscesestatosanccscssnos 33

B. BASIC IAss PRIMITIVES A EEENNENFENNNNENNNNNNNNENNNN) 3‘

1. INSErT cccoceccncocsvsectcctcsesccccccconce s
2, MOdifY ceesccctscanccseanscsssnnasesssenscvss is
3, Delete .ccvcescevtcscnrnssscessvoncnsscscenne 3%
4, ProjecCt ccevveveteveverescscctocnccnseccnas 36 '
S. S€leCT scecccvrescncsersogrrstcacsesscccnns 36
S5, UNLOoN ,ecccocovecccccecengecavsecscccccnnnee 36

C. REALIZATION OF LOGICAL OPERATIONS ,c.eccscccnnce 37
1. Text Processor/Form Generator .secccsssccss 37

20 El.ctronic H‘ll 90008 0 C0getoRooeooRcsseee ‘o

IV, IAS
A.

C.

V. CONC
A,
A,
LIST OF
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

st ... S -

3, Electronic Spread Sheet ,.ccccevcccscssscnse

s EXTENSIBILIT¥ 9800000000000 ¢00B0RRSsROOLIPOROIBROERTSNTYS
CO"BINING I‘ss T‘BL;S .l.'......'.......;.l.l..
INTRA TYPE COMBINATIONS ,ccccccvcccscccccscccce

) TeXC/FOr™ csoevenosssccsacoctscsesossccscsonos

2. MBLl Leescccconstcesessnsconsncrnasenssssssea
3. Soread Sheet ,cvcecsecensosnscccsassesansos

I”T:R TYPF CO.BINATIONS 08 ¢ QO p0 000 asdstssaed oo

1. TOXT sevevecoosnescssnnscgsncsnssossssssncse
2. FOPM ,cccecectsscscntenoncossssncansessscsonnse
3. MBIl cevccercecoscnccsconscssscccentnnsnsnnon

4. spread SHQQt G000 R OGQEOSUS gRoOoeoseReOeRNIEY

LUSION R
FINDINGS covsecesnscncnscevcosensssescscssscsasncas
FOLLOW=ON RESEARCH ccvevacrccccncvosassccctnsanns
REFERENCES seocevecsvtcnescccocqsocctscescsccacsnnee

A (WOord STAr) sececesccccrcsscccsesesacvaseces

R (VL) ceeecocseccvescasscasssscscrcccconsnnss
(EALt) cececcacsoncscccasatssccsasssscnnanse
(NFOff =M@) ccevvvosccreveccccccnceccncoces
(Obase® II) sevcccccoccccssocscsacsscsnccsonee
(S@AUItUr) cevevecscsvscorcncscscccssnascnanse

(Vis1CAl1C) cvecctcccnvsaveoserscsssssannnsse

X QO ™M m O 0N

(zip) [A E NN ENNENNENNENNNNENNENENENNENNNNNNNERENENN)

I (!.11) 080000000 sc000000g00tcgcacotreRnnee

T T T S o

44
S3
83
5S4
54
7
5A
60
60
54
66
68
71
71
72
78
76
8%

96
100
106
114
121
124

A 2y

a:abxocn""! 00000000000 0008000¢000e08ge0000c0bootavnnony

I"ITIAb DISTRI’UTION bxsr OP 000000000 QR000000scecnNOSY

129

130

¢ 2 g

- ——v——

Y, A TN 35 el M T LIRS (- A s 4

- rwmrr ae

I. INTRODUCTION

A, APPLICATION SOFTWARE PRQOBLEM

The utilization of computers in many areas, such as
personal computing or office and ranufacturing automation,
is rapidly expanding, No longer {s their uyse being
relegated to Ssupport personnel, but is spreading into tne
ranks of lower and middle level management, The majority of
such users are non-computer professionals who are coming to
depend on the computer to provide support to accomplish
their primary responsibilities,

Over the past years, numerous SsSoftware packages have
been made avallable to support a broad spectrum of users in
varying environments, Capabilities such as word oprocessing,
database managenment, modeling, form generation, and
electronic mail have Dbecome essential. The vourpose of
introducing the conmputer into an organization {s to increase
effectiveness and efficiency. wWhile the performance of each
support package i{s individually satisfactory, the manner in
which they are presented to the user as a qgroup i{s not, As
{illustrated {n Figure 1,1, each support system is typically
disjoint from all others, and the user 1is presented with

different models, command vocapbularies, and operating

instructions, This non={ntegrated combination ot
]
T = Al gy - . .

application software requires a special effort on the part
of the user to learn a new system and remember it along with
the other systems that are used, For instance, one simple

task can be invoked in a different way in each systen,

Figure 1,1 = Disjoint Support Systems,

B. THE IASS OBJECTIVES

Wwhat is needed to increase productivity is an integrated
system that combines the capabilities of the applications
and presents the user with a single, yet easy, conceptual
data model and vocabulary set, It is such a system that is
called an Inteqrated Application Software System (IASS). The
objectives of such a system are:

(1) Ensure a high degree of user friendliness and
emphasize simplicity.

(2) Minimize the tnitial and acquired user skill level
necessary to use the system,

(3) Mini{mi{ze the learning time reguired to use the

systenm,

ot

S

—ma

(4) Present a logical distinction between each of the

IASS’s capabilities, but minimize explicit navigation
betwveen thenm,

(S) Realize the largest functional intersection of the
capablilities of each included application,

(6) Develop a minimum set of primitive commands,

(7) Minimize the dependence on programming in order to
use the systenm,

(8) Embody the notion of software adaptivity whereby
the user can learn a npew application by learning only a
small i{ncrement of new apolication specific commands and
tunctions,

(9) Embody the notion of software reusability, New
arplications can pe {mplemented bty aading a small i{ncrement
of functions and commands which can be expressed in terms of
existing IASS operations,

while the [ASS cannot be expected to completely
integrate tne features of each support package, it can
strive to maximize the intersection between them, Figure 1,2

shows a simple illustration of an IASS {n a venn Diagranm,

1
2r47..
IASS
1 3] 4
_I

Figure {,2 « IASS Intersection,

ic

The purvpose of this thesis is to determine the utility of

the relational database nodel as the kernel of the IASS.

Ce IASS APPLICATIONS

Five common software applications were selected to be
integrated: |

(1) Text Processor

(2) Relational Database Management System

(3) E€lectronic Spread Sheet

(4) Forms Generator

(S) Electronic Mail

As a non=integrated collection of application software,
each s {mplemented to accomplish a predefined sef of
operations on a srecific flle type, Data in a file 1is not
directly sharable Dpetween apolications and neither are the
commands to manipulate the data. Command vocabularies are
usually "baroauye®" {n that most of the operators are intended
to exist as a mactter of convenience to the user, However,
too often (it s a very small percentage of the overall
vocabulary that (s used most of the tinme, Users usually
learn a subset of the vocabulary necessary to accomplish the
essential functions of the application, and disregard the
rest, It is the {ntersection of functions and vocapularies
that the IASS supsumes and makes the common system for all

included applications,

11

. % "-*_q_n.c.ynv. P L

|
i
!

Commercially available software application packages
were Treviewed to determine the nature of the logical file
types and the oi:entill functions. A detailed description
of each ot the application packages (s {ncluded {n

Appendices A through I,

12

II., IASS DATA OBJECT

A. THE TABLE

The logical file of any application system contains data
which s used by a specific set of application proarams.
The kKey to achieving an Integratec Application Software
System (IASS) which can support each logical file type (s to
map each {nto one data object, The data object chosen for
the IASS 1s the <table since {1t (s a natural method of
organizing data and {s an easily understood object, Each
column in the table represents one attribute of the file and
each ro+4 represents an unique occurrence, The taples
include columns whicn represent key values to uniguely
{dentity each row, Any datum in a table can ve accessed by
specifying the name of the table, the valuye of the key, and
the name of the attribute containing the datum, In this
thesis, rows will will also be referrea to as tuples or
lines and columns as attributes or flelds. A complete
description of the table is given in Martin (Ref, 1],

This chapter describes tne preliminary aesign of a set
of tables which can support the data requirements of the

IASS applications.

13

TR ERE o P

8. IASS TABLES

In the IASS each application s a logical database
consisting of a set of tables. There are three general
classes of tables, data table, application directory, and
data tabdle schema, The data table represents the logical
file of an application, The data tables are typed according
to their primary use as, text, form text, database, spread
sheet, and malil, Data table typing (s done only to
logically organize data taoles whicn are used primarily by
the same application programs, The IASS does not Ssubpport
strong data table typing. Being able to combine taoles of
different types i{s an fmportan: feature of the IASS,

The apolication directory table contains descriptive and
definitional data apout the data tables {n an application or
logical datapase, Each row 1in the application directory
table describes one data table and has a standard schema,
Figure 2,1, ID {s the primary key value of the apolication
directory table, NAME 1is the unique name of the data table,
COLUMNS is a list of column names in the data table, This
list {mplicitly defines tne schema of the data table.
ACCESS COMTROL defines the access privileges of various
classes of system users to the taple, including read and
write access and privileges to modify the data taole schenma,
This data {tem also contains information concerning which
operations are allowed on the data taple, For instance, (¢t

may be decided that onhe datanase data table cannot be joined

14

with a mail data table, TABLE POINTER points to the data
table, DESCRIPTICN s & literal description of the tabple,
VIRTUAL indicates whether the data taple is composed from
other IASS data taples, CONDITION {ndicates how a virtual
tatle is composed, For example, if the virtual data table
was formed Dby ‘a join, tnhat data would be stored in the
CONDITION column of the application directory, GLOBAL
contains all the recurring information which {s applicavole
t0 a data table as a vwhole, such.as formatting, display mode
(e.g. page or tabple),. access patns, etc, For each
application, the schema of the application directory table

can be augmented as required,

ID NAME COLUMNS| ACCESS TASLE VIRTUAL
CUNTROL| POINTER

CONDITION| GLOBAL DES=-
CRIPTION

Figure 2,1 = Application Directory Table Schema

The data table schema table contains a row for each
column {n the data tables, The schema of the data table
schema table Figure 2.2, is the same in each application.
ID {s the primary kKey of the tabple, Each column in the a

data table has an unique NAME, TYPE and wIDTH descrioe the

15

- ..
! CF 7 W o

data type associated with the column and the maximum width

of the data entry,

10 NAME | TYPE [WIDTH | SYNOMYM TABLE|} ACCESS
[CONTRGL

Figure 2.2 = Data Table Schema Table

Data typing supports the data integrity tgunction of the
underliying system, SYNONYM s the list of names by which
the column could be referred, This information is used to
determine relationships that exist with otner data tables,
possibly of a different type or allows the same column to be
referred to by many different names depending on the context
of its use, For example, in a personnel data table, the
column name may be PNAME, This column could be referred to
as PERSNAME, NAME, PERSON, etc, 7This column must bpe used
with caution, 1Its data may {nadvertently change the access
privileges of a user to a data fitenm, TABLE 1{s the data
tables the column occurs 1in. A gquery of the data table
schema table can be done to determine the names of the
tables the column is in to avoid searching through an entire
application directory. ACCESS CONTROL defines tnhe

privileges associated with each column £or a class of systenm

16

-

- o _ "_"‘=ﬂ..................'.-'-"llllIlllllulg...-..._.__ﬂr

users including read and write access and privileges to
modify the column definition,
Figure 2,3 shows the relationships between the tables

that exist in each application,

Application Directory
N

ID NAME COLUMNS] ACCESS TABLE -VIRTUAL
CONTRCL) POINTER
h 1

. L
L.-.--..------_-----.1
CONDITION|GLOBAL] DES~- DATA
CRIPTION TABLE
R

|
Data Table Schema

|

ID INAME ITYPE WIDTH SYNONYM TABLE}] ACCESS
CONTROL

Figure 2,3 = IASS Table Relationships

This fiqure indicates that each Trow in the application
directory taple (s connected to a set Of rows in the data
table schema table and a data table, TIhe dotted line shows
a cross reference f£rom a data table schema taple row to a

directory table row.

17

1. ext . sor T e
a, Text Directory Table

The text directory table contains a row for each
text data table, The directory, Figure 2,4, has the
standard application directory schema, Since the text data
taocoles can be output to a visual medium, each data table has
a global print tormat., This data is stored {n the GLOBAL
columns or, {f necessary, in a table accessed via the data
in the GLOBAL columns, and contains the page length, rignht
and left margin, top and bottom margin, number of lines per
page, page neader, page footer, tab spacing, and 1line

svacing,

1D NAME COLUMNS] ACCESS TABLE VIRTUAL
CONTRGL|] PUINTER

CONDITION] GLOBAL DES~
CRIPTION

Figure 2.4 =« Text Directory Taple Schema

b, Text Data Table Scnema Taple
The text data table schema table, Figure 2.5,
contains the predefined column set, ID and TEXT LINE. The
ID is the primary xey ot the text data table, TEXT LINE

descrives the TEXT LINE column in the text data table, Ais

18

{I 'ﬂr’f"'

L aprava R T T TR g

it st o avirnslhy -i“‘) ~ -

Figure 2,5 shows, the TEXT LINE can be aliased with the FORN

LINE column in a form text date table or the BODY column in

a mail data table,

ID NAME TYPE WIDTH SYNONYM TABLE ACCESS

CONTROL
Ay
1 10 INe NONE ALy read: all
TEGER wricte? DBA
modify: DBA
2 |TEXT]JCHAR FORM™ ALL read: all
LINE LINE, writes: all
BODY modify: DBA

m—m‘

Figure 2.5 = Text Data Table Schema Table

c. Text Data Table

The text data table, Figure 2,6, is described
by the COLUMNS and DESCRIPTION columns in tne text directory
table, It contains data used to prepare a printed document
or a computer program. The rows in a text table are sorted
on the ID column, Each ro«# has an unique ID number which
corresponds to the line number i{n the display. Although the
user can refer to an ID numoer, an 1ID number cannot oe
directly modified, The data {n a TEXT LINE is unformatted,
In a single line of text, there are two kinds of data that
are recognized, the character string to be printed and

speclal combinations of characters to be executed, The

19

- ‘.“.”"‘"' r-w;:"-‘l;"‘*‘ ‘ ot - B _V_“ v" . _

executadble characters are specific to a text processor

abplication program (e.g, text formatter or compiler),
Figure 2.6 shows the ¢two xinds of data., Rows | and 2
contain literal character strings to be printed, Row n

contains a formatting command (pagee=break),

ID TEXT LINE

i_lL NCWw 1S the time »
' 2 _for ali good men to '

| » '.oa

Figure 2.6 ~ Text Data Table

2, Datapase Tabjles

a. Datapase Directory Table '

The database directory table contains a row for

each database data table, The datapase directory table,
F{gure 2,7, nas the standard application directory schema,
The GLOBAL column contains data descrioing the display mode

or printed formatc,

10 NAME COLUMNS] ACCESS TABLE VIRTUAL
CONTROL| POINTER
i_

'!
CONDITION] GLORAL |DES=
CRIPTION

Figure 2,7 =« Database Directory Table Schera

20

A '
M * ”W“*" LI - . - e et e e, e P - 73

b. Database Data Table Schema Table
The database data taole schema table, Figure
{ : 2.8, {nitially contains an entry only for the 1D column.
The ID 1s a xey in the database data table, As datapase
data tables are defined, entries to the datavase data table

schema table will have to be made,

ID NAME TYPE AIDTH SYNONYM TABLE ACCESS
CCNTROL

-

1]ID INTEGER NONE ALL read: all
write: DBA
modify: DBA

Figure 2.8 =« vatabase Data Table Schema Table

¢. Database Data Table

£ach database data table, Fiaure 2,9, represents i
one entity, and is descrioed by the COLUMNS and DESCRIPTION
column in the datapase directory taole, The data in a
satapase data table 1s formatted, Each row is an unique
occurrence of the entity. Tne columns of the database data
taole are the attributes of the entity. ID contains the
display order of a row, This ordering does not {imply that
there s a canonical ordering of the entity. The ID can pe

referred to but cannot be directly modiftied by the user.

The other columns of the database data table are not

predefined, The database data table can pe directly vieweg

21

P

at the screen by the user or printed, but may be reformatted

based on the data {n the GLOBAL column 1f necessary,

0 ATTR=1 ATTR=2 ATTRen

- ~ - ~) —- -

i 4 R ! _*.M

Ffigure 2,9 = Datarase Data Table

3, FHorm Gepersfor Tables

3, Form Text Directory Table
The form text directory table has the stancdard
applications directory schema, Ficure 2,1%, BRecause the
form {s intended to be vrinted, each for» contains a orint
format «shich (s defined by the data aocregate named GLCORAL,
This data acqrecate i{s the same as that contained in the

text directory table previously described,

COLUMNS) ACCESS TABLE VIRTUAL
CONTROL] POINTER
CONDITINN] GLORAL NES=
CRIPTION
I

Figqure 2,10 « Form Text Directory Table Schema

22

)~ . :
N Tl o 5 VRSO

b, Form Text Data Table Schema Table

The torm text data table schema table, Figure
2,11 contains the predefined columr set ID and FORM LINE,
The ID is the primary key of the form text data table, FORM
LINE describes the FORM LINE column in the form text data
table, Figure 2.11 shows that the FORM LINE c¢olumn can be
allased with the TEXT LINE column in a text data taole or

the BODY column in majil data table.

ID NAME TYPE WIDTH SYNONYM TABLE ACCESS

CONTROL
t {10 {1n- " NONE T L read: all
TEGER write: DBA
modifys: DBA
2 |FORM] CHAR TEXT ALL reaa: ail
LINE LINE, i write: all

BODY modify: DBA

Figure 2,11 = form Text Data Taple Schema Table

€. Form Text Data Table
A form is a repetitive document with blanks ¢to
be filled in, A form can be represented as a collection of
rows contained in a taple, as shown i{n Figure 2,12, and s
descrined py the COLUMNS and DESCRIPTION cColumns in the form

text directory taole,

23

- —— . N - T T e A .
L e e O SRR Y . . R ‘

ID FORM LINE
ma——
1{ {NANME)}
— I
2| (ADDRESS)
* e —————————————————
3
R
4|Dear {B,RELATION}
S{FORM1,TXT
Somsnmhn— e ———

Figure 2,12 = Form Text Table

Each row of the table is sorted on the ID and corresponds to
the same row in the form, Although the user can reference
an ID number, 1£ cannot be directly moditied, The FOR#M
LINE column, contains unformatted data, In addition to
literal character strings which are printed, 1including
horizontal and vertical lines, it contains a special set of
executaple data, A speclal character comoination indicates
s«hether the blanks in the form are to filled in by the user
and stored (n a tadble, Or wnether the Dplanks are to bve
£illed (n from a table, This special set of data must oe
Known by the user as {t is merely inserted as a combination
of characters 1into the FORM LINE column, The view of the
torm at design and modification time is exactly that of the
form data table although it may be reformatted if necessary.

Figure 2,12 contains an example of the data in
the form text data table, The data in tne first FOkM LINE

{indicates that the printed value £or the first row in the

24

-~

printed form is to be retrieved from the NAME column of the
selected row of the associated database data taple, Tne
data in the fourth FORM LINE indicates that the printed gorm
is to contain the literal string ‘Dear’ followed by tne
value from the RELATION column of taple B of the assoclated
datapbase data table, The information in row 4 also
indicates that the associated taole is a join of two taoles
each containing a column named RELATION., Row S {ndicates
that the body of tne form is a text cata table named FURM1,
A form text data table s similar to a text
table, They differ only in their data content and the way
tnrey are uysed, The data in the form taxt 4ata tahle can be
variables whose values are deternined at print time, The
variavles in a form do not have to he bound to a narmed data
table or speci{fic row in a data table and tnerefore can be
re=used in the same or in many different applications,

4, Electron Mail Tables
A, ™Mail Directory Table

I0 NAME COLUMNS] ACCESS TABLE VIRTUAL
CCNTROL]| PQINTER

CONDITION| GLOBAL PES=
CRIPTION

Filqure 2.13 = Mail Directory Tahle Schema

25

N . S rmeen v ——

y

LURER S 2 U T W e

The mail directory table contains a row for each
mail table, The standard application directory schema does
not have to be modified for the mail application, Figure

2.13, The GLOBARL data items contain the data to determine

ownership of the mail data tabhle and any other applicable

information,

p, Mall Nata Table Schema Tabie

ID NAME TYPE WIDTH SYNONY¥ TABLE ACCESS i

CIONTROL ‘
1 14>) INTE NONE ALL read: all
«GER “arite: DBA

modify: DRA

2 FROM CHAR NONE arg, reads 11
wrice: a1}
~odi¢tv: TRA

3 TO CHAR NONE ALL read: all
srite: all
rodify: DBA

-

4 |COPY TO]CHAR NONF ALL read: all
write: all
modify: DBA

_

] DATE CHAR NCNE ALL read: all
write: all
modity:s DBA

R
(] SuUBJ CHAR SUB= ALL read: all
JECT write: all
modify: DBA
? 80DY CHAR TEXT LINE, ALL read: all
FORM LINE write: all

modigy: DBA

fiaure 2.14 « Mail Data Table Schema Table

26

TN e i wmea o) } e —— i

The mail data tabple schema table, Filoure 2,14,
contains the system detined columns of a message, The ID is
the primary key of each mail' table, . The other columns
contain the data to denote the originator, recipoients,
subject and the body of the message, Figure 2,14 snows that
the BODY can be synonymous with tre TEXT LINE of a text data
table or FORM LINE of a form text data taple

€. Vail Data Taple

ID FROM TO COPY TC DATE SUBJ BODY

1| ME You THE™ J1/1 MESSAGE
2] Ycu ME THEM (172 MSG,TXT
n

Figure 2,1S =« “ail Data Table

Electronic mail {s a utility which facilitates
the excnange of textual messages between system users, A
mail file contains a set of megsages, The messade consists
of data items which are read bv the recipients, The mail
table, Flgure 2,15, 1is described by tnre COLUMNS and
DESCRIPTION colurns in the mail directorv table, Fach row

in the table corresponds to one message, Each messaqge

27

- —

6P T cupinge M. S pee -
.

© e Ar

contains a header which is comprised of the FROM, TO, COPY
T0, DATE, and SUBJECT of the message, The BQDY column can
contain the entire message or the name of a text table, For
example, Figqure 2,15 shows that message | contains the
entire message body. Message 2 contains the name of a text
data table in the text directory table, The mail table can
be directly viewed by the yser as a summary of the messaqges
put snrould be retormatted to read or edit a sinale messaqe,

S. Electronic Soread Sheet Tableg

a, Spread Sneet Directory Table
The spread sheet directory table contains a row
gor each spread sheet data taole., The standard apolication

directory schema, Flgure 2.15, {s used,

o NAME COLUMNS] ACCESS TAALE VIRTUAL
CONTRO POIMTEP

CONDITINN] GLORAL NES=
CRIPTION

Flaure 2,16 = Soread Sheet Nirectory Table Schema

The GLORAL data items define the recalculation order,
default format, and any other inforrmation apolicable to the

referenced spread sheet data table,

29

»¥ e e A

b.

2.17,

data tabdble,

table.,

Spread Sheet Data Table Schema Table

The spread sheet data table schema table,

contains ¢t

he

ID is the primary key of the spread sheet

Figure

predefined columns of the spread sheet

data

The other columns contain the data to calculate the

value of an entry position and constryct the user view of

the spread

sheet data table,

D NAME TYPE WIDTH SYNONYM TABLE ACCESS
CONTRGL
1 10 INe NONE ALL read: all
TEGER write: DBA
modify: DBA
2 X CHAR NANE ALL read: aill
INDEX arites all
modifv: DBA
3 Y IN= NONE ALL read: all
INDEX| TEGER Write: ail
modify: 0OBA
4 FORMAT] CHAR NONE ALL read: all
write: all
modify: DBA
1----#--—---—-
S VALUE CHAR NOME ALL read: all
write: all
modify: DBA
s i
8 FUNCe CHAR NONE ALL read: all
TION write: all
modify: DBRA

Flaure 2,17 « Spread Sheet Data Table Schema Tahle

“&F

29

> Mt gue R S A
.

€. Spread Sheet Data Tabdle

A spread sheet data table contains the formatted
data to calcylate the values of and display a numerical
model. The spread sheet data table {s described by the
COLUMNS and DESCRIPTION columns {in the soread sheet
directory table, A spread sheet data table, Figure 2,18, s
peinted to by & TARLE POINTER in the soread sheet directory

table,

ID X Y FORMAT VALUE FUNCTION

1 A 1 INTEGER 5 S
RIGHT
3

2 A 2 INTEGER 5 5
RIGHT
3

n A 3 INTEGER 10 Al + A2
RIGHT
3

figure 2,19 « Spread Sheet Data Table

The spread sheet data table can bte considered to be the
tabular representation of the traditional spread sheet view,
Figure 2,19, or, conversely, the traditional snread sheet
view can be regarded as one display mode of the spread sneet
data tadble, FEach entry vosition {n the view (s defined by

one row {n the spread sheet data table,

30

Fiqure 2,19 = Spread Sheet View

The ID is the display order of the spread sheet
data table but does not provide the ordering for the entry
positions in the spread sheet view, Tre X and Y INDEX
columns represent the relative position of the entry
position in the soread sheet view, The mapoing of the X and
Y 4indices to the display {s contained {in the GLOBAL column
of the soread sheet directory tabdle, The FORMAT column
containg the data describing the disnlay of the entry
vos{ition, A numeric value of an entry vposition can be
disvlayed as an integer, tloatina ooint, or dollar and cents
number, The format information also {ndicates whether the
values should be right or left justified and the width of
the entry position in the disrlay. The VALUE e¢olumn
contains the displav value of the FUNCTION column, The
FUNCTION column contains an exoression which s used to
determine the value of the entry position, The expression
could be the typical constant, literal, or arithmetic tvnes,
or could be a database query, or & pointer to any other IASS
dats table, The operands of an expression can be any
constant value or the value of ancother entry oosition {n the

B

spread sheet, An operand value can also be an arithmetic,
trigonometric, or some other predefined function, which can
use the value of another entry position &s a parameter,
Using the value of another entry pcsition as an operand {n
an expression is necessary to support dynamic modeling, {.e,
when a chanae {s made to one entry position, {t (s
{mmediately reflected in the entire soread sheet view, As a
matter of fact, the ¢freedom to define value af one entry
position in terms of any other entry position resulted in
one data table structure and it also prevented us from using
the datavbase intearity enforcement mechanism for the soread

sheet view,

32

L

111, CONCEPTUAL INTEGRATION

Ao, OVERVIEW

The main design objective of the Integrated Application
Software System (IASS) i{s to oresent the user with a sinqle
concertual view of the system regardless of the context of
its use. From the user’s perspective, there (s only one data
object, the table, As was indicated in Chapter 2, dependina
on the 1level of experience or {ntent of the user, a
translation may be required to reformat a data table, This
translation {s from table to table and therefore, the notion
of a single data cbject is preserved,

At the conceptual level of each application there s a
common set of table overators and a set of application
svecific table operators. The common set of table operators
reoresents the transoortable knowledge of the system as the
user loaically traverses hetween apolications, The user mnust
learn or be coonizant of only the apolication specific
overations as the system yse chanages,

By functionrally cateqorizing each data manipulation
operations on the logical file of the non=DBMS aoplications,
an {ntersection can be deduced, The intersection is
comprised of ooperations to locate, insert, modify, delete,

copy, and move data Iin a ¢tile, These operations can bhe

33

integrated at the conceptual Jlevel by a set of six basic
IASS primitive table operators based on the relational
algebra, This chapter demonstrates how the data
manipulation operations of each selected application can be
mapped {(nto the conceptual level primitives, Althouah not
the main intent of this chapter, where appropriate,

extensions to the tynical operation are suqggested,

B, BRASIC TASS PRIMITIVES

The six basic IASS primitives which can perform the
operations in the functional 1intersection Are INSERT,
“ODIFY, DELETE, PROJECT, SELECT, and UNION, Each primitive
is set theoretic In that the ooerands are tables and the
results are tables, A table can contain any number of rows,
A special kable, BLANK, s defined to be a row with all
columns blank except for the 10, A literal string,
‘literal’, can stand for any character string in which {t {s
contained, 4hat follows is a description of the primitives,
For this discussion the following conventions #ill be ysed:

(1) The word table is synonymous with data table

(2) Whenever two tables are used {n an ogperation,
tablel and table2, tablel will be the current table,

(3) Column names will appear in uober case, their value

vill be appear in lower case,

34

- . e ————— o v v - -

4;:'177':"? > “-W':‘" w-

i P A.Os et ey

1. Insert
Given tableil, INSERT adds table2 at a specified

location, The operator is denoted:
INSERT(location, table2, tablel)

2. Modity
iven a taple, MODIFY chances the value of the

columns in the rows of the table, The operator is denoted:
) MODIFY((COLUMN, column, new valuef; tahle)

where the 3-tuple (COLUMN, column, new value) describes the
change by column name, present vajlue, and the new value,
The + indicates that more than one column car be modified bv
4 single operation, If a change to a column value is to be
made irrespective of the cresent value, e,g, chanage any
value {n column NAME ¢to “JONES’, that desire can be
expressed by a special character, or wild card, olaced |(n
the oresent value position of the 3-tuple,
3. Dejece

Given a table, DELETE deletes the set of rows from

the table that satisfy a specifiecd condition vased on the

column values, This operator is denoted:
OELETE(condition, table)

The ovbevrands of the conditional statement are Jliteral or

numeric constants, arithmetic expressions, or the column

35

values of the table, The operators of the conditional
statement are the arithmetic comparison operators (<, >, =,
A, $, 2), the 1logical operators (=, A ,v), and the
arithmetic operators (+, =, ¥, /)., The delete operator also
creates a table that contains the deleted rows,
4, Project

Given a table, a projection of the taole {s made by

removinag some of {ts columns and/or rearranging some of the

remnaining columns, A projection of a table is denoted:;
PROJECT(column list, tasle)

where column list names the degired columns from the table,
5. Select

Given a table, a selection returrs the set of roaws

that satisfy a conditional statement based on the colump

values, A selection on the table is denoted :
SELECT(condition, table)

6, Union
Given two tables, tablel and table2, the union
creates a taple wshose rows are i{n tableil or table2, or both,

The union operation 1is denoted:
IINJON(table2, tablel)

The schema of the regultant table will be the same as

tablei, The columns {n table2 whose content (s not the same

36

C e ———— .,

as a column in table!l will not be in the resultant table,
There are tvo differences petween the union and insert
operators, First, union appends table2 to the bottom of
table 1, Second, insert assumes that tables | and 2 are the

same tyoe,

C. RFALIZATION OF LOGICAL OPFRATIONS
This section demonstrates tnhat tcthe data manipulation
operations on the logical file in the fuynctional
intersection of each application can be exoressed in terms
of the conceotual level orimitives. It will be assumed that
the underlying system maintains the ID column as rows are
moved in a taple. 1Its resolution, therefore, will not be
4iscussed,
1. Texr Processor/Form Genegator
The command sets of Several text processors and the
form generator facility of DRASE II and the ZIP form
generator were reviewed, and {t was found that the text
processor set contained the set of form generator commands.
Therefore, these apolications will pe discussed together,
a, Locate
Positioning the cursor typically comprises a
larce oportion of the text processor and form generator
overations, The cursor can be directed ¢to a line number,
rejlative distance from the current line, or to a substring,

The result of positioning the cuyrsor can be conrsidered to be

37

TET Tty M g -

a line reference, Locating a row in the text or form text

data table {s done by!
SELECT(condition, table)

Using the primitive, the text or form text data table can be
prowsed by contiguous lines (e,a ID > X1 A ID g X2), or by
l1ine content (e,g., TEXT or FORM LINE = “substring’A(ID ¢ 14
+ 10)).,
b. Insert
Inserting a row into a text or form text data

table at location ID is done by:
INSERT(ID, BLANK, table)

The same primitive can be used to {nsert an entire data

table2 into the current data tablel at location ID:
INSERT(ID, table2, tablel)

c. Modity
Inserting and deleting characters are
functionally equivalent {n that they are modifications to
the contents of & file, Assuming that the desired row s
current, the operation to modify the row in a text or form

text data table {s:
MODIFY((TEXT or FORM LINE), ‘0ld’, “new’, table)
The £ind and replace overation {s an extension of inserting

38

or deleting characters, With this operation, a row does not

have to be previously selected, Also, a sinole change to a
set of rows identified by a conditional expression based on
their column values can be done, The ¢ind and revplace
overation is done bv the expression:
MODIFY((TEXT or FNRM LINE, ‘old’, ‘new’),
SFLECT(condition, table))
d., Delete

Oeleting a row or set of rows (block), from a

text or form text data table 1is done pby:
NELETYE(condition, table)

The condition can pe any function of the ID and/or TEXT or
FORM LINE columns, This generalization enhances the typical
text orocessor or form generator ovperation since rows can be
identified by number or content and a block does not have to
be a contiguous set of rows,
e, Copy
Coovying lines in a text or form text data table

can be done by the expression:
INSERT(ID,SELECT(condition, table), table)

Any portion of a text or form text data tablel can be copied

to or saved to another table2 bv the expressions:

39

UNION(SFLECT(cnrndition, tablel), tadle2)
or
UNION(DELETE(condition, tablel), table2)
The general nature of the primicives enhance the tyeical
text processor or form generator operation oy allowing the
lines to be ldentiftied by content and not requirime that a
block be contiguous, For example, the statement:
UNION(SELECT(TEXT LINE = "4BC7A (IC < 19},
tacleil), tarle?)
would cooy to tacle2, any line in tablel «itn ID less thar
10 and whose TEXT LINE c¢olumn contains ¢tne character
sucstring ABC,
f. Yove
vovinag rnws or a khlock in a text or form texr

data tables to lecation ID s done by tne excressionr:

INSERT(ID, DELETE(condition, tanle), tabdle)

The condition can be any function of the ID and/or TEXT or
FORM LINE columns, This ageneralization e2nrances the tvplcal
text processor or form generator operation wnich requires
that line numeers be Xknown and a bSlock of lines Dde
contiquous,
2., Electroric Majl

The UNIX mail utility {s an elaporate system which

18 closely coupled to the overating system, Viewed as a

database taple, the complexity {s reduced, A set ot

40

essent{al mali operations were deduced from the UNIX mail
system, .
a, Locate
Displaying messages for reading or editing can

be done by!
SELECT(condition, table)

Using the orimitives, the message to o¢e displayed can te
described by any condition a¢ the columns of the mai]l data
table. This would oreclude the uyser from having to orowse
the mail data table first to determine which messaqges mianht
be of interest and then li{stina them by number,

A summary of the messaces can be displayed by
selecting a set of messages which satisey a condition and

then disolaying the desi{red columns:
PROJFCT(column list, SELECT(condition, table))

By using the primitives, the user is not restricted to the
oredetfined message summary,
. Insert
A message can be created by aopending a blank
row {into the mall data table and modifying 1its null
contents:?
UNION(BLANK, table)

MODIFY((COLUMN, 4, ‘new”)’
SELECT(all columns = &, table))

41

Alternately, & message can be created at any location, 1D,

in the mail table by the expressiont

INSERT(ID, BLANK, tabdle) -
MODIFY((COLUMN, 8, °nevw’),
SELECT(all columns = g, table))
Regardless of the method used, the J=tuple 1list {n the
nodify ooerator contains s set of valuess for each column {n
the mail table exceot the ID, The change gor each column {s
from null to the desired value suoplied by the user,
Messaces addressed to a user can be nicked up

from any mail data table2 by the expression:
UNION(DELETE(TO = ‘user’, table?), tablel)

vessaces can be picked yp from a mail data tacle?2 that

satisfy any specified condition by the general expression:
UNION(DELETFE(condition, table2), tablel)

Finally, an entire mail table2 can be inserted i(nto mail

tablel at location ID by:
INSERT(ID, table2, tablel)

e, Vodity
Assuming that a message has been selected, any

flield in the message can be edited by the operation:

MODIFY((COLUMN, column, rew value), table)

LY

The same change can be made to Several messages wnich

satisfy a specitied condition by slightly modifying the
pasic operation:
MODIFY((COLUMN, column, new value),
SELECT(condition, table))
d. Delete

uessaces can be aeleted frem a mail data table

pdsed on any columrn condition bv the expression:

VELETE(condition, table)

Using the orimitives, a user {s not restricted to a
predefined method of deleting messages, «~ith ore oreration,
any set of messages can be ldentitied and deleted,
e, Copy
There may pe an occasion wnen a coov of a
message Iin a majil data table needs to be made, Coovina a

message can be done by

UNION(SELECT(condition, taple), taple)

vMessages can be copled or saved to another mai]l data tabple2

by the expressions:

UNION(SELECT(condition, tablei), table?)
or
UNION(DELETE(condition, tablel), tanle2)

43

——- T)

¢, Move
Messages in a mail data table are not ordered,
They can be moved within a mail data table to location ID by

the expression:

INSERT(ID,DELETE(condition,table), table)

3. Electronic Spread Sheet

As was noted {n chapter 2, the typical spread sheet
view {s not ¢the spread sheet data table, However, data
manipulation operations on the view can be translated into
the oterations on the spread sheet deta table,

a, Locate

Entry positions {n the spread sheet view are
reterenced by X and Y oositi{on, AS a result of the locate
ooeratior, the FUNCTION field {s displaved, Locating entry

position e, r in the table is done by the axpression:
PROJECT(FUNCTION, SELFCT(X = ¢c A Y = r, table))

The expression suggests that an entry oosition can be
located DLy any other column in the spread sheet data table

by the exoression:
PROJECT(FUNCTION, SELECT(condition, table))

A problem with VISICALC is that a model cannot be debugged
very easily since the only one entry oosition can be

referenced at any time, The ceneral nature of the orimitive

44

’ “",‘ﬂf ”,‘:-?“J-ZN. ool . -

) .'d- I‘

e ———— o ¢

L o AT e

oberators enhances the debugaing capabllity by allowing a
set of entry positions to be iocated in the spread sheet
data tadble by any condition of the column values, For
example, all entry positions which have a VALUE greater than

10 can be found by the single operation:
SELECT(VALUE > 10, table)

This same action using the VISICALC command set would
require the yser to locate the entry positions one=byeone,
b, Insere
One row in the spread sheet view (s comnosed of
C rows in the spread sheet data table (C = number of columns
in the view), 1Inserting one row in the spread sheet view at
rs, 1s done by C {terations of the expressionrs:
UNTON(BLAMK, table)
MODIFY(((X, &, x),(Y, 8, r)),
SELECT (X = gAY = #, table))
In the expression, x is an element of the column set {1,.C}.
Qne column in the soread gsheet view (s composed
of R rows {n the spread sheet data table (R = number of rows
in the view), Insertina a column in the soread sheet view
at 4, is done by R {terations of the expressions:
UNION(BLANK, table)

MOD:FY(((X,’,G),(Y,’,Y))'
SELECT(X = pAY = §, table))

In the expression, y {s an element of the row set {(1,.,.R}.,

43

Two spread sheets can be apoended together to

form one composite table by

UNION(table2, tablel)

Following a row or column Jinsertion, fuyrther
processing has to be done to move the SucCcCessor rows or
columns {in tnhe spread sheet view, Moving rows or columns {s
discussed in subsection £f. After the rows or columns are
moved, the entry positions that use the value of a moved
entry bposition as an operand {n the FUNCTION column must be
found and modified, This process is described in subsection
Ce Fimally, the modified FUNCTIONS must oe evaluated and
the new entry position VALUE disvlavyed.

C., Modity

A value or label entry operation in VISICALC |is

done to change the value of the FUNCTIOv column of the

current entry position. The expression is:

VMODIFY((FUNCTION, function , new function), table)

Movina an entry position (X = e, Y = p), in thke
sprread sheet view by changing the X or Y value (X =z ¢, Y =
r) may reauire a subsequent modification to the FUNCTION
column of the entry positions that use e, o as an operand,
The primitive expression to £ind and modify all of these

denpendent entry positions is:

46

c e~

PR o SN R S -

MODIFY((FUNCTION, ‘ep’, ‘cr’),
SELECT(FUNCTION = ‘ep’, table))
The current entry position can be blanked by the

expression:
MODIFY((FUNCTION, function, £), table)

Clearing all entry rositions in the spread sheet view can be
done as a speclial case of the bplanking action previously
degcribed, Instead o0f the table being a oreviously

selected row, it 1is in this case, the entire table:
MODIFY(C(FUNCTION, function, #), table)

After modifving the FUNCTION column of an entry
position, the FUNCTION must be evaluated and the new entry
nosition VALUE displayed.

The VISICALC format commands deal with the !
visual display of entry positions, Formatting an entry
position reauires a modification to the FOPMAT column {n the
spread sheet data table, Chanqinq the format o¢ the current

entry position {s done dpy:
MODIFY((FORMAT, forrmat, new format), table)

Ore format chanqge can be made to a set of entrv positions

which satisfy a specified condition by the ocoerationt

MODIFY((FCRMAT, format, new format),
SELECT(condition, table))

47

d, Delete
One row from the spread sheet view can bde
deleted with the VISICALC command set, S3Since one row, r, in
the view is compnosed of C rows {n the spread sheet data
table, (C = total number of rows {n the view) that many must
be deleted from the spread sheet data table, The operation

is:
DELETE(Y = r, table)

Although the VISICALC command set does not allow multiple
rows to be deleted, the basic delete operation can be
moditied to delete a plock (Y1 througn Y2) {n the soread

sheet view:
DELETE(Y > YIA Y & Y2, table)

Deleting a column {s simijar to deletina a row,
Since a column, ¢, in the soread sheet view {s comoosed of R
rows (R = number of rows in the view) in the spread sheet

data table, that many are deleted by the single expression:
DELETE(X = ¢, table)

This operation can be enhanced to allow the deletion of a

set of columns (X1 through X2):

PELETE(X > X1A X & X2, table)

48

Following a row or column deletion, gfurther

processing 1is needed on the table, In the view, a deletion
requires that all rows and columns be moved to £ill 4in the
biank. Moving rows and columns is discussed in subsection
f. After the rows or columns are moved, all of ¢the
dependent tucles must be found and their FUNCTIONS modified
te correspond to the new positions, Finally, the modified
FUNCTIONS must be evaluated and the new entry Dposition
VALUES displayed,
e, Copy
Copying the current entry position (X = e, Y =

r), in the spread

o), to any other vosition (X = ¢, Y
sheet view, can be done by the exbression:
- -
MODIFY((COLUMN, column, (e,p).column),SELECTC(X = cA
Y = r, table))
If the destination entry ovosition (X 3 ¢, Y = 1r) s not
found, a new tuple must be entered into the spread sheet
table and {ts null contents modified:
UNIONCBLANK, table) .
MODIFY((COLUMN, B, (e,p).column), SELECT(X = #F A
Y = 9, table))
For the entry position (X = ¢, ¥ = r), the 3=tuvle 1list
contains a change for each column except X and Y, to the
value of the same column {n entry position at (X = e Y = p),

Although order in the spread sheet data table s

49

=

ingsignificant, the entry position can be copled to a
specified location by substituting the insert operator for

the union (n the previous expression:
INSERT(ID, BLANK, table)

A column of height h, can be created {in the
view by making h copies of tne entry position at X =2 e Y =
P. In the spread sheet data table, the operation can be
done by selecting the rows witn a Y value in the heignht
ranae (r through s) of the column, ¢, {n the view, and
making the same chanage to the VALUE, FUNCTION, and FORVAT
columns, The operation is:

MODIFY((COLI'MN, column, (e,p).columnf,SELEcitx z cA

(Y > *AY £ 3), tahla))

Copvying a column of height h, can be done by
making h calls to the copy one entry position orocess, On
each call, the Y value for both the origin and tarcet eantry
position {s incremented by one,

dakinag n cooies of one column can be done by
making n calls to the copy one column process, On each
call, the X value is changed,

Copying a row of length 1, can be done by making
1 calls to the copy one entry oosition process., 0On each
call, the X value for both oriqin and target entrvy position

is incremented by one,

S0

- .

Ml "*:?-bc;.m..,”.._ . .

. e

Makinao m copies Of a row could be done by makina

m calls to the copy one row process, On each call, the Y
value would be changed.

Any rectangular portion of & sopread sheet view
in spread sheet tablel, (Y1 through Y2) bv (X1 throuqn X2),
can be conied to or saved to another spread sneet in soread

sheet taole2, This oneration is done by the exoression:

UNION(CSELECT((Y 3 YI A Y & Y2)A(X > X1A X & X2), tablel),

table2)
or
UNIONC(DELETE(C(Y > YIA Y £ Y2)A(X > X1A X < X2), tablel),
table2)
f, Move

A row move, from r to s, in the soread sheet
view can ne done in the tacle by mpdifyina the .Y value of
the C rows in the spread sheet data table, The exporession

is:

MODIFY(CY, r, S), SELECT(Y = r, table))

A set of rows (r through §8) can be moved by ¢the same
exoression with a4 different with a dlfferent set of

parameters:

MODIFY((Y, v, ¥ = Ir = sl), SELECT(Y > rAY £ s, tanle))

This expression {s for the case where the set of rows s
moved upr, To move the set of rows down, the new value {n the

3=tuple would nave to be modified to vy ¢ ir =~si,

51

— YT L — - e a [P

Moving a column {n the spread sheet view i{s done
with the same primitives, The process will not be
reiterated except to mention that each occurrence of Y in
the oriaginal expressions would have to be changed to X,

After moving rows or columns, deoendent entry
positions have to be found and their FUNCTION columns
moditied to reflect the new oositions, Finally, the
modified FUNCTIONS must be evaluated and the new entrv

position VALUE displayed in the view,

IV, IASS EXTENSIBILITY

A, COMBINING IASS TABLES

From the review of the commercial application systenms,
it i{s clear that the non-DBMS arplications selected for this
study orovide functions to manipulate data in one logical
file, Combining files, of the same type, can be done by
appending files together or inserting one into another, As
a Tresult of these file combinations, Mhowever, no new
relationships are develovped nor can information be deduyced
from the action. Using the relational database model as the
common data model, there are a set of binary orerators which
can be used to combine taples to form new relationshios and
derive information, These operators UNION, SET DIFFERENCE,
INTERSECTION, JOIN, and NATURAL JOIN are defined in Yllman
(Ret, 2), This chapter explores the serantics of comoining
the data tables by these ooerators. Speculation of this
nature can result in numerous table combinations which could
ootentially define a new apnlication; This review {s not
oresumed to be exhaustive, but merely sugaests the
meaningfulness of and potential wuses for the IASS table

combining overators,

33

[t) -y “-?~."“" PN

B. INTRA TYPE COMBINATIONS
This section considers the etffect of combining data
tables of the same type by the goperators SET DIFFERENCE,
INTERSECTION, JOIN, and NATURAL JOIN, The UNION operator
will not ©be discussed since each arcplication can use it to
support an existing functicn,
1. Text/Form
Due to the similarities in the text and form tables,
the semantics of the intra table combinations will be
4iscussed togqether,
a, Set Difference

The set difference operator would be peaningful
within the <context of text processing and form aenerating.
It could be used in apnlications which reauire a lineepys=
line comoarison between two tables, For example, it {s
often necessary to compare two versions of the same computer
proaram {n the course of program development or two versions
of the same form during desiagn, By apolying the set
difterence operator on two tables R and S, a listing of all
the lines in ? that are not duplicated {(n S would bpe
returned,

The set difference operator would als; be useful
in an application to extract entire sections from a table,
Used in this way, the goerator would represent the inverse
of the wunion or {nsertion overators to build a comoosite

table. From the composite table R, thosSe same sactions, S,

54

T TS LR R . . e

could be directly removed by performing a set difference,
Similarly, the set difference could also be usetul to remove
lines from a table, R, that were contained {n table, S,
. Intersection
The 1{ntersection of two tables would be
meaningful within the context of text processing or form
generatina, It couyld pe used {n anclications requiring a

line~ty=line comoarison or to match supstrinag patterns ot

two tables to determine their similarities, For example,
comparing versions of the same taple to check their
consistency could te Aone bv taking the intersection, This
operator also sugaests that two unrelated tables could be
compared to determine <their “closeness”®, The resyltant
table could bpe used to deduce similarities petwveen the two
tables hased on the fact that they contained {dentical
lines, or used to selectively remove duolicate lines from A
either table,
c. Joain

Joining two text tables or form text tables
would be meaningful, It could be used {n an aoplication
which required two tables to be in context simyltaneously,
For example, tables equiioined on their ID number would

produce a sSplitescreen effect to review and edit them

side-by-gide, This combination would be particularly useful |

1f the contents of one table was dependent on or related to 1

S5

the contents of the other, The same operation would be a
method to produce a multi-columned t!ble from two tables,

Joining two tables vwould also ‘be Jyseful {n
applications which required a comrarison of the lines of two
tables, Because the join performs a cartesian product |t
would be unlikely that lines could be compared other than as
to their equality, Since the Join uses a selection
overator, the jJoin couyld determine equality by matehing a
line in R as a substring in S or vice versa, An equijoin on
the contents {n two tables would produce a table which would
1ist the lines in R next to the llngs § that were equal,
This could be used to determine the similarity between two
tables with finer resolution than that avajilable bv taking
the intersection,

d, Natural Join

To do a natural join of text tables or form
tables would be meaningful, A natural join petween tvwo
tables would produce similar resuylts as those cbtained by
doina an intersection or an eguijoin on the tabhle contents,
An apolication in which the natural join could be used would
acain be to produce a table based on the equality of lines
contained {n two separate tables, Instead of creating a
table which contained a line from each taple in orne row, the
resultant table would contain only lines from one, As with

the equijoin, the lines returned could be a substrina match,

56

T T gt W gy F. -

B

2. Mail

4., Set Difference
The set difference operator would be meaningful
in a mail utility, An apolication in wnhnich the overation
would be usegul is to eliminate duplicate messages ¢from
several mail tables,
b, Intersection
The intersection of two mail tables would be
meaningful, By doing an {intersection, duplicate messaqges
could be located in several majil tables, This 1information
could be used to selectively manrage the message tables and
control the number oOf message coples {n the entire systenm,
¢, Join
The join of two mail tables would be uyseful in a
mail utilicy, It could be uysed in an aoplication such as
automatic readdressing, For examole, consider the set of
messages that have the same subject, A recipient could be
in mail table R by virtue of the fact that it has recefved
at least one message pertaining to the subject, This mail
table in effect would reoresent a channel defined bv the
common subject, As messages are received {n the mail table
S, an eguijoin on the SUBJECT column between mail taole R
and mai{l table S tbllowed by & projection of R.header and
S.Body would create 3 covy of the npew nessage for each

recipient in mail table,

¢
S e e————— g, I

e SIS T w_w

The join of two mail tables would also be
meaningful 1in an ad hoc aoplication to find messages in two
mail tables whose fields have a specified relationship, For
example, a join could be done to return all of the messaqes
in R and 8 such that they were from the same addressee but
the mesgages {in S were dated after the messaces in R,

d, Natural Join

A natural join on two mail tables would be
meaningtul, Since the BODY column of a message is textual,
twvo messaaes could be considered to be equal {f one was a
substring match of the other. A natural join on two mail
tables R and 8 would therefore, return all messages in R
whiech had the same header as a message in S and whose body
was either duolicated, a sybset of, or a superset of the
body of the message (n S,

3. Snread Sheet
a, Set Difference

The set ditference operator wauyld be meaninqful
in a soread sheet application, It could be used to compare
two instances of the same model, For example, {f snread
sheet R contained a model with one set of ocarameters, and
soread sheet S contained the same model with & different set
of parameters, the set difference would produce a spread
sheet view which showed each entry oosition {n R that wasg

difterent in 3,

s O T o . gy -

r o T oTmTmEmeET T T s st e .

b. Intersection
An {ntersection of two spread sheet tables would
be meaningful, It could be used to produce a spread sheet
used to compare different instances of the same model, The
resultant table in this application would show the entry
positions that remained constant aiven a different set of

parameters.

c. Join

The join of two spread sheet tables would be
meaningful. If the spread sheets were the same model with
different parameters, an eguijoin on the position flelds
would be a way to produce a table so that two spread sheets
could be compared side=by=side, A .rocess could be
developed which could be used to toggle vetween the snread
sheet {n view, In this way, each spread sheet maintains it
logical {ndeoendence,

A Join between two spread sheet tables would be
the only vway their contents could be compared by column
relationships, For example, a join could be done to
directly determine the differences between two instances of
the same model or the same instance of & problem in two
ditferent models, The join on R and S such that the X and Y
positions were the same but the VALUE {n R was {n a
speci{fied relationship to the VALUE {n S would return a

table which contained the entry positions {n R and S which

satisfied the condition.

d, Natural Join
A natural join on two spread sheet tables would

produce the same effect as the intersection.,

C. INTER TYPE COMBINATIONS

This section considers the effects of combining data
tables of different typmes by the operators UNICON, SET
DIFFERENCE, INTERSECTICN, JOIN, and NATURAL JOIV, Some
table operations are not syntactically feasible on cerrtain
table types and therefore are not addressed,

1, Text

a, Union

The union between a text table and a form table
would be meaningful, For example, the body 0f a letter can
be kept {n & text table. By unioring it to a form table
containing a letter head, a form letter would be created,

The union between a text table and mail table
would be meaninqgful., An application in which this operation
would be usefuyl to create a text table from the bodies of
several messages in a maill data table,

The union between a text table and a spread
sheet table would be meaningful, 3y anpending a soread
sheet table onto a text table, the FUNCTION column data
could be included in a text table, possiblv to be sent to an

individual {n a letter,

60

The union between a text table and a database
table would be meaningful, If a database table contained a
textual column, for example a literal description of an
object, the data {n that column could be included {n a text
table, Conversely, a textual description about an object
could be Kkept in a text table, By unioning the text table
onrto the database table, the data for the textual colunmn
would be provided,
o, Set Difference
The set difference between a text table and a
form table would be meaningful, An application to remove
text lines from a text table which were also In a form could
use the set difference, A set difference between a text
table and any of the other table types would not be
syntactically meaninaful,
c¢. 1Intersection
The intersection between a text table and a form
table would be meaninaful {n an application to determine the
text lines that were c¢ommon in the tables, By this
operation {t could be determined {f a form letter contained
the a body stored {(n the text table, An intersection
between a text table and any of the other table types would
not be syrtactically meaningtul,
4, Join
A join between a text table and a form table

would be meanineful, A text table can be Joined with a form

61

¥y

table on the ID flelds which could be used to produce a form i
with] textual description, Either portion of this
composite table could be separately edited, An equijoin on
the li{nes of the text and form tables would return the lines
which were common in both tables,

A join between a text table and a mail tabdle
would be meaninaful, If the text table had one subject on

each TEXT LINE, by doing an equiijoin on the TEXT LINE and

the message SUBJECT, a text table can pe created which

contains the message bodies pertaining to a set of subjects

which are of interest, This could be a method of collating

the messages from several system users concernina a

particular subject into a single document,

A join between a text table and a database table
would be meaningful. For example, £ a database table
contained a textual column, the column {n the database table
could contain the 1ID of a text line, An egquijoin on the
datapase column and text line would sSupply the text for the
database tuple, One text line could be contained in several
of the Aatabase tuples and by maintaining one c¢ooy of the
textual contents, all tuples will be assured of having the
same textual column value, If the database table contained
a mailina 1list, a join on the datapase table and the text
table would be the>nrocedure by which a copy of the text
table could be made for each entry {n the l{st, Another

application in which a join would be meaningful between a

§2

. A .

text table and Jdatabase table i3 where the database contains
3 set of keywords or key phrases, By doing an equijoin on
the TEXT LINE and the keywords or key phrases, every line in
the text table containing the keywordsg or key phrases would
be returned, The same apolication also suqggests that the
combination could be used in support of A& vword cChecking
oroqram, Separate dictionaries can be maintained in a
database table and joined with a text table, The resyltant
tables could be used to check spelling or to analyze a
particular style of writing.

A join between a text table and a spread sheet
table would be meaningful. A narrative description about
one mode]l could be maintained {n a text table, Since it s
common to sStore the same model with different parameters in
several spread sh;ets. one text table could be foined to the
spread sheets Dby ID number to document the model, This
#ould be useful to the user view{ng tne spread sheet table,
To contain this additional information in the view, would
require an application snecific process which wvould disvlay
the additiona)l field,

e, Natural Join

The natural join between a text table and form
text table vwould be meaninqful since the column names are
synonymous, It could be used to determine the lines of text
contained {n both tables, The resultant table would be the

sare as that returned by taking the intersection,

63

L)) - = o e oy -+
- —— P . L
‘0 I "\”‘_ « - . .) 1

2, Form
a. uUnion
The union between a form text table and a text
table would be meaningful, An application in which this
operation would be useful would be to generate a form letter
a3 was addressed in subsection 1. The union vetween a fornm
text table and & ma{l table would be meaningful, The bodv of
a message could be a FORM LINE, By unioni{ng the farm table
and the mail table, a form sent line-by=line through the
mail facility could be regenerated.
b. Set Difference
The set difference between a form text table and
taxt table would be meaningful, In a similar aoplication as
that discussed in subsection 1, the operation could ©ve
useful to remove a set of text lines from a form, A set
difference between a form text table and the other table
types i{s not syntactically feasible,
€. Intersection
The {ntersection between a form text table and a
text table would be meaningful to determine the cormon lines
of text between the two tables as was described {n subection
1. An intersection hetween a form text table and the other
table types is not syntactically feasible,
4, Join
A join between a form text table and text table

would be meaningful in aoplications discussed {n subsection

64

4

o BT TNy s . agPp - . -

-

1. A joiln between a form text table and a mail table would
be meaningtul, A user can sequence a FORM LINES and namé the
form in the SUBJECT column and send a torm line=py=line
through the mail facility, A form text tadble with one line
can be created containing the form name, Ry an equijoein on
the FORM LINE and SUBJECT columns, all o0f the FORM LINES
could be collected from the mail table, Tre form can be
reseaquenced by the data {n the SUBJECT column of each
message,

A join between & form text table and database
table would be meaningful, A join on the ID numbers between
a torm text table and an associated database table would be
useful to view the two tables gimultaneously, The lines of
each table In the doined table could also be edited
{ndependently in this form,

A join between a form text taole and soread
sheet table would be meaninaqful, Since the FUNCTION column
could contain a reference to an entry {n a database table, 2
form text table and spread sheet table could have a
relationship through a common database., An eguijoin on the
FUNCTION column and FORM LINE would return the list of entry
vositions and form lines which contained the same database
reference, In the view, the spread sheet and the filled out
torm could dbe disvlayed, This would be useful to show @&
spread sheet model and {ts oarameter set in a form i{n one

view,

6%

e, Natural Join

A natural join between a form text table and
text table would be nmeaningful {in the same apdlication
described i{n subsection 1,

3. Mail
a, Unfion

The union between a mail table and text table
would be meaningful. A message can be created bty a union
between a mai{l table and text table that Contained a message
body on one line, The message header can then bte edited for
the message created, Simflarly, a text table of n lines
could be unioned onto a mail table and sent to a svstem
user, FPOM, TO, CCPY TO, ard DATE columns of n messages
would be the same, The text tabhle name and 1D can be placed
in the SUBJECT column to direct the recipient {(n the
reconstruction of the text table.

The union between the mail table and a database
table containing a textual column {s meaningful, The union
would be usefu] to subnly a message bodv from the textual
column, The header of the message could then be edited,
This would be a method to send data in a local database to
any other user {n the system, Another application ¢or a
uninn between g datahase and mail table would be to generate
a set of message headers in a datapsse table, These headers
could be unioned onto a mail table and then the 30DY columns

orovided,

66

e

b, Join

A join between & mail table and the form text
table and text table {s nmeaningful, For example, this
operation can be used to send a text table or form text
table to & system user through the mail facility, A set of
message headers addressed to the same recipient containina
an ID I{n the BODY colurn, could be orecared in the nail
table, 8y doing an equijoin on the message BNDY and the
text or form text ID columns, and removing the extraneous
columns, a message containing each line of the form text or
text table can bhe created,

A join between a mail table and a database table
would be meaningful, For example, a message could be
addressed to a qroup of individuals recoonized by a single
name, A database table could contain the mapoing from that
sinale name to the individual names, An equljoin between the
TO column of the message and the column containi{ng the
aggrecate name {n the database would produce a table which
contains a copy of the oriainal messaqge for each individual
included in the group, This operation could alsc be used to
generate a message, Having prepared the body of a message
and using a stsndard subject line, a database table
containing & set of headers including the subject, could be
equi{joined with a mail table on the SUBJECT columns to
produce the entire messace, This messace generation method

is particularly usefyul in a situation where ¢the standard

67

Rt oo o IS PRV VL

u

A erG At

headers are always being revised, It is also useful when one
message needs to be sent to several Adifferent headers or
several messages of the same subject need to be sent to the
same header,
Finelly, a message can be created by iJoining a
database table containing & set of message headers and a
text table containing a message body on each line, By
eauifoining the two tables on the ID column, one heading
would be joined to one body, A join on any other column in
the header, and the TEXT LINE would join every header with
every body.
c. Natural Join
The natural Jjoin between a mail table and
database table would be meaninaful, An apolication in which
a natural join would be useful would be to support routing
of incoming messages, For example, it {s often necessary to
route messages to individuals based on the messaade subject,
If a database were maintained which had fields for the
subject and name of a person, the mail table could be
naturally Joined to this 1ist, The result of the action
would be a table wnhich contained a copy of the message for
each person,
4. $pread Sheet
a, Union
The union between a spread sheet table and a

database table would be meaningful. This operation could bhe

68

useful in a situation where a spread sheet must contain

standard entries, For example, a database table could be
maintained with a subset of the spread sheet table columns
(e.q, X, Y, and FUNCTION), This database could be unioned
onto a spread sheet table to boiler plate the soread sheet
view,
b, Join
The Yoin between a spread sheet table and

database table would be meaninaful, For example, a database

table could contain a set of values which are of special
signiticance, A conditional Join based on these values and
the VALUE column in the spread sheet taple would return all
nt the entry positions which satisfied the condition.
Another apolication {n which this combination would bpe
meaningful would be to store standard entry position
deginitions in a Adatabase table, An equijoin on the
vosition columns would bhoiler plate the soread sheet,
Finally, an arplication in which this combination would be
meaningful {s to store a set of parameters for a scread
sheet table in a database containing columns for X, Y, anc a
vector containine the parameter set, 3y doing an equijbln
an the X and Y columns, and removing all of the columns
except the X, Y, FORMAT, VALUE, and desired paranmeter

column, the parameter set is sypolied to the model,

69

h Y - T T . o .Y, 4
T M e o - . .) 1

¢. Natural Join

The natursl join between the spread sheet table
and @& database table would be meaningful, A database table
could contain documentation with. respect to each eantry
position {in the spread sheet table, By doing & natural join
on the X Y columns, a spread sheet table could be documented
tuple hy tuple, This would e~specially be useful {f there
were instances of the same model in separate soread sheet
tables, For this aoplication, the line documentation would
only have to maintained in one database table,

A spread sheet can be created from two database
tables, Database tablei could coentain the X, Y, and FORMAT
columns representing a oarticular soread sheet format,
Database tanle?2 could contain the X, ¥, VALUE, and FUNCTION
solumns reoraesertina a standard model, Ry a natural join ot
the two tables, a spread sheet containing a standard madel

in & selected format would be produced,

70

V, CONCLUSION

A FINDINGS
gased on this study, {t can be concluded that the

relational datahase model can conceptually supoort the data

representation and manipulation requirements of the selected
IASS aboplications, At the conceptual level each loaical
file can be represented as a table and the common data . |
man{pulation functions of each aoplication in 1ts
traditional form can be expressed in terms of basic IASS
primitives, In the TASS, hiaoher level apolication specific
functions can be defined {({n terms of the lower level
primitives, For exameole, the COPY, MGYE, and FIND AND
REPLACE tfunctions can be expressed {n terms of the primjtive
oairs, INSERT/SELECT, INSERT/DELETE, and MODIFY/SELECT
respectively, In addition to the intersection of commands
and functions that exists petween the IASS applications
ttere exists an intersection of commands and functions
between supbsets of the applications, For example,
tormatting commands are apolicable {f a user s editina a
text file, form, or message body, Also, aagregate
arithmetic tunctions are common to database and spread sheet
anplications, These intersections further reduce the set of
application spvecific commands and functions a user must
Know,

71

\ . - S e —— - s,
- "’ "‘; BE T L . gy . . . i‘
‘—m- ensitnne -

The IASS also contains a set of four combining
operators, When used to combine tables of the same type,
these operators can be used to deduce information about data
contained in two tables, and to create new tables from
existing tables, In this way, the IASS enhances the basic
capabilities of each of the non-DBMS aoplications,

Ay mappina the loqical file into one conceptusl datsa
object, data independence is achieved, Therefore, the full
use of the specitically designed Adata tables can be realized
by removing their semantic identity. A data table can be
used by &8 loqgically different application or it can be
combined with a different ctable type {nto a table which
defines a new relationship. This new table can be created
tor an ad hoc application or for an application added to the
IASS, The ability to combine data tables {moarts to the
IASS, cavabilities which are not available from the set of

disjoint applications,

B, FOLLOW=-ON RESEARCH

The first task is to re-evaluate the logical data bases
designed for the 1IASS, The present organization {mplies
that each application 1s a disjoint database, This
perspective was useful for thi{s study, but {t {s clear that
they must not be disjoint 1if it implies that different table
types cannot be combined, Another {teration on the IASS

tables needs to be done to combine the acplication

72

directories and data table schemas into tables in a
centrally maintained data dictionary/directory,

After the conceptual level (s re~evaluated, the next
step {(n the oroject should be to design the physical level
of the IASS and design the software to implement the system,
It is recommended that the first {teration of the
implementation be a prototype consisting of the table data
object and the ten IASS primitives, to evaluate the utility
of the IASS to subport the needs of a user {n an actual
operating environment. Subsequent {terations can include
the DBMS functions such as data {nteqrity, security, and
crash recovery,

Concurrent with the physical level and software desian,
the appolication specific command languages and oretessing
proarams can be designed, The text formatter, form orinter,
and spread sheet view generator can all be desigred based on
the data tabdble definitions and the apstract interfaces of
the primitives,

Finally, it s recommended ¢that the IASS be emulated on
an existing relational DBMS (e.g, DBASE II), The reason for
this {s two=fold, First {t would provide an available test
bed which can be used to test concepts which need to be
resolved before the prototype system {s delivered, Second,
{t could be used to determine the manner in which the IASS

will handle the fundamental needs of the user bhefore the

73

tirst prototype is finished, It would therefore, be a vay to

involve the user in the early design stages of the IASS.

74

O

+
_ - - - . -

Ly

LIST OF REFERENCES

1. Martin, J., Computer Data-Base QOrganization, Prentice
Hall, 197S

2. Ullman, J., Principles of Database Systems, Computer
Science Press, 1980

APPENDIX A: WORD STAR

WORD STAR is a word processing program developed bY
Micro=Pro to combine the capabilities of a screen editor and
an on=screen text formatter, The result {s a very powerful
text editor which displays the referenced file as {t will
appear on the printed opage,

WORD STAR s primarily meny=driven, The commands which
are presently valid are displayed in a menu, and are
executed by keystroke combinations. Oneline {nformation |is
avajilable to the user céncerning many other aspects of WORD
STAR, The menu driven feature eases user initiation to WORD
STAR and {s part of the Help facility, The level of help is
selectable to mateh the users leve] of exverience, and
determines the extent to shich the menus are disolayed on
the CRT,

« WORD STAR 1is composed of a set of seven njierarchically
organized menus or environments, as shown in Table A,1, The
user enters 40RD STAR in the No=File environment, At this
point there (s no file in reference, the object granularity
is the file, and the menu options 1include commands to:
change the logged disk drive, set the automatic directory
display feature (on/off), set the help level, orint a ftile,
rename a file, copy a file, delete a file, run a progranm,

open a document file, and open a non=document fi{le,

76

T TR T e N e . -

Table A,i = WORD STAR Menu H{erarchy,

LEVEL MENU
1 No File
2 Main Menu
3 a, Help

be OneScreen Format
¢. Print Control

d. Quick Edit

e, FilesBlock

WORD STAR recognizes two types of files, "document" and
"nonedocument®”, A document file can either be a text file
processed by a word processor or a program run by 4
computer, A nonedocument £{le 1is a special ouroose file
#hien {s used by another software product, and will not be
discussed further,

The onescreen editor and formatter are {nvoked by
selecting the menu option to open a document file, This
causes J0RD STAR to enter the 4ain Menu environment with a
specific file in reference. If the file oreviously existed
it 1s made current, otherwise a new file is created and made
current, On entering the Main Menu environment, a status
line and a rule are initialized, The status 1line contains
information about the system <« the name of the file, tne

page within the file, the column and row numner the cursor

17

P —

X
|
3

is at, and the insertion mode (on/o0ff), The rule indicates
the right and left nmarqgin position as well as the tap
positions, The Main Menu represents the basic file editing
environment where the user will remain unti{l {t is decided
to quit the current file and return to the No File Menu or

the operating system, 1In any case, WwORD STAR does not

permit lateral movement between the subemenus of the Main
Menu,

A useful feature WORD STAR employs s "word wrap", «ith
word wrap, the user does not have to insert carriage returns
at the end of each line, As the text overruns the end of
the 1line, WORD STAR automatically starts the next line, In
this way, the uyser merely {nputs an entire block of text as
a continuous ASCII character string, and leaves the
formatting to the system, In the Main Menu, the user can
edit tne file in qgranularities of character, word, and line,
Insertion {s a "toggled” operation (on/off), where the user
is either in insert mode or overwrite mode, Any keystroke
entered (s either inserted (n the text at the cursor
position, shifting characters to the right to accommodate
it, or overwrites the character at the cursor vosition, To
facilitate on=screen editing, the Main venu contains
commands to control cursor moverant and to scroll the
screen, It is possible to insert tabs or end-ofe-paragrapn
markers, There is a "find and Replace" command which can be

repeated any numper of times, Deletions can be done on a

78

single character, a word, or an entire line, The Main Menu

.als0 contains options to select one of the five submenus,

The Quick Editing environment supports editing on nhigner
levels of abstraction of text objects than the Main Menu,
There are additional cursor movement commands to give a
wider ranae of control and Qranulari;y. As in the Hain Menuy
environment, the user can scroll the display, but now it (s
continyoys at nine user selectable rates until stopped oy
command, Insertions are accomplished in tne same way as in
the Main Menu environment, but deletions are possible on a
wider range ot objects, There 1s a feature to allow a
command to be repeated at one of nine user selectable rates,
unti{l stopped by command.

The Block environment provides the user a set of
operations on a bdloeck of text, WORD STAR considers an
entire file to be a special case of a block of text, Flles
can be saved by several menu ortions: save and resume the
referenced fille, save and quit to the operating system, save
and exit ¢the referenced file, and copy to another file,
Files may also be renamed, deleted, printed, or quit without
saving changes, To support these £ile ovoerations, the Block
Menu contains options to change the logged disk, and to turn
the automatic directory listina on or off, In this
capacity, the Block environment is used as a successor to
the Main or Quick Editing environments after the cursor 1is

positioned., B8locks in a file must be marked by the user,

79

Ty

PR o S THRPE VT

R L P

As a delimited aqggregation of text, a block can be moved
within the same file, Copying blocks of text can either be
within the referenced file or between the referenced file
and an external file, Block copying between files are bi-
directional, Copying a block to an external file entails
overwriting an existing file or <creating a new file,
Copying a Dblock from an external file entails moving the
entire external file to the point {n the text indicated by
the cursor, Any marked Dblock can also be deleted, As a
precautionary measure, WORD STAR allows the user to hide
block markers, and only blocks which are visioly marked can
be deleted, In addition to a text block being organized
into a continuous, unstructured string of text, WORD STAR
supports a columnar organization,

The previously described amenus contain operatlons ¢to
create, edit, position the cursor, or output a text file,
The format of the file, either as it is visually displayed
or orinted out, is defined by a set of formatting parameters
associated with the file or by commands embedded {n the
tile, The formatting parameters associated with a file are
initially set to default values and the set of empedded
comrands is initially empty,

Formatting {n «ORD STAR {s primarily done onescreen with
the options contained in the On=Screen Menu, The on=screen
formatting commands are those whose effects can oe visually

displayed, and they are listed {n Table A.2.

80

-

TR o K VR VT

Table A.,2 = WORD STAR On=Screen Formatting Commands,

1, Set left margin

2, Set right margin

3, Release maragins

4, Set angd clear tabs

5. Indent a paragraph

6, Create a special rule
7., Center text

8, Set line scacing

The On=Screen Menu also contains options in the form of
(On/0££) toggles to control: word wrap, rule display,
variable tabbina, hyphenation help, rianht marain
justification, soft hyphen, print embedded control
craracters, and page breax disvlay. If ar on=screen
tormatting operation needs to bpe applied to the previous
contents of the fi{le, the applicable portion of the file
must be reformatted, Furthermore, these formatting
parameters are only temporarily applied when the file {s
referenced, Any subseaquent reference to a file requires
that the on=screen formatting parameters be reset,

WORD STAR combines into one menu, the Print %“enu, all
optionrs which create special printing effects not nermally
displaysble on a video screen, There are options to: bold
face, double strike, underline, strike ocut, subscript, and

superscript., Since the effects of these options cannot be

81

displayed on the video screen, a_special character (s used
to mark the aftected area, Additional special printing
effects are selectable through this menu on a one time
basis: overprint a character, indicate a nonetreak space,
and overprint a line. The Print Menu also contains options
which control the printer during output, The user may embed
commands {n the text file to cause the printer toc change
piteh, or cause a pause to allow ¢tne user to change the
print element or riboon,

Printing can also be directed through the uyse of
embedded dot commands. These commands are placed in the
text file and appear as regular text on the disclay, but are
net output to a printer and force WGkD STAR to change a
printinc parameter at print time, Dot commands alter the
defauylt parameters WORD STAR uses to format the printed
page, Table A,3 provides a listing of these commands,

Dotecommands may be placed anywhere {n the text, but
since they are static and tend to destroy the relationsnip
between what {s displayed and what (s printed, they are
usually placed at the peginning of the text file, As with
the options of the Print Menu, dot=command actions must be
supported by tne specitic printer {n use,

The last menu to be described i{s the Help “enu, Help is
"on=line" in that it can be invoked at any time through the
Main Menu, and {s "dynamic" ({p tnat the level of help can be

adjusted, The level will determine now much information {is

82

displayed when an opntion {s selected, The Help Menu options
display information ons paragraph reforming, flags {n the
right=hand margin, dot and print commands, status line,
ruler 1line, how to set margins rnd tabs, and how to move

blocks of text,

Tanhle A,) « WORD STAR Dot Commands,

1., Set line height
2. Set page lengtn

3. Set top marain |
4, Set bottom margin

Se¢ Generate headers

6. Generate footers

7 Set footer margin

8, Reset page number

9, Offset page from left side of printer
10, Position rage number

11, Set character width

12, Force a page break

13, Prevent a vage break

wCRD STAR is an excellent and very bpopular word)
processina progran, The screeneoriented and on=line
tormatting features are different from other systems in that
they are extremely easy to use, Once experience s gained
with WORO STAR it {s difficult to use line-oriented editors
or offe-line formatting systems, The on=line help facility
makes W4ORD STAR easy to learn and user friendly., One aspect

of WORD STAR that could be considered a disadvantage is the

813

. W oy) i) ‘
%- ’ L S e

large command set, However, being menuedriven, the commands
not normally used do not have to be memorized since they are

alvays listed in the menu,

84

sl . . . LTI — T —-—m_, s

f
{

osem

APPENDIX B: VI

"VI" is a text editor used by the UNIX operating system

and was created by the University of California at Serkeley,
and Bell Laboratories,

VI (visual) (s a display oriented {nteractive text
editor with @& command vocabulary size of aoout ninety one.
The user sees the CRT screen as a window into the text file
and all editing operations are immediately visible, Line ?

numbers are not displayed and nave no real use {in VI,

although {t {s possiole to £ind out the number for a line,

For the sake of protection the user does not actually edit
the file, out a copy of it, At the comoletion of a session
the uyser will indicate whether to keep tne edited copy or
the original,

There are forty seven movement commands for control of
the cursor, whicn s the edfitor’s point of reference, and
the screen disclay., Scope of movement {iSs possible over
file, screen, paragraph, section, sentence, line, word, and
character sized units, Up to twenty six 1locations in tne
tile can Dbe marked for later return, or sepecific locations
tound that match a desired character string. Table 8,1
lists the cursor movement commands available in the VI
system, Note that there is duplication, in that more than

one command does the same thing,

85

Table B

el = VI Cursor Movement Commands

Backward window

Forward
Seroll
scroll

window
down %
up *

Backspace one character *
Backspace a single character

dackup
Backup
Backuyp
Retreat
Retreat
Retreat
Retreat

a word
a word during insert
to beginning of werd
to previous line ¥
to deginning of sentence
to beginning of previosus paragraoh
to previous section boundary

Lineteed advance to next line

Advance
Advance
Advance
Advance
Advance
Advance
Advance
Agvance
Advance
Move to
Move to
Move to

to first nonewhite space on next line *
te next lire, first #hite soace
to next line, same Colunmn *

to next character #

to peginning of word

to end ot next word

to section boundary

to the next typed character

to beginning ot next paragqraoh
previous line x

end of current line =

balancing parenthesis or orace

Moves cursor to last line on screen *
Moves cursor to middle of sCreen x

Move fo
Move £fo
Move to
Move to
Search
Search
Seareh
Searen
Repeat
Find a
Find a
Reverse

rward to beginning of word
rward to end of ward
first non=white space on current line
line numbper # *
for word *
forward for string xx
backward for string =
for next match *=
last single character search
single character, backwards =
single character, forward x
direction of previous find

-~ ——
3
»

86

R ARt o R o

T
1

Table B,1 = (Cont,)

41, Find first instance of next character

42, Repeat the last search command *

43, Homes the cursor

44, Mark the present position of the cursor *
45, Return to marked position *

46, Redraw the screen

47, Returns to orevious context

The ovperations of insertion, modification and deletion
are suypported by thirty commands that permit the user a
varied level of object control, Items that are inserted,
modified or deleted are immediately updated on the screen to
give the user a current view of the f{le status, The user
algso has the apbility to undo the previous command {f its
effects were undesired, Most {nsertion and modification
commands are struyctured so that they continue to ooerate
until the user issues a command to terminate them, Normally
during insertion the user has control of format in that new
lines are started by entering a carriage return, However
there 1s an option that will let VI determine when to start
4 new line, based on line length, and let the user Just
enter text as a continuous stream, Table B,2 lists the
thirty edit commands,

In order to use VI the user issuyes the command "vi"

followed by the name 0f the file to be edited, If this is a

87

new tile, then the name will ﬁot be found in the directory
and VI will create an emoty file, After entry, the user will
{ssue cursor motion commands to maneuver through the file,
and issue edit commands to change the contents of the file,

There are no gther modes or displays available in VI,

Table B,2 = VI Edit Command Summary

1. Insert a number of spaces

2, Insert nonprintable characters
3. 1Insert "shiftwldth" pblank spaces
4, Insert at the beginning of line !
S, Insert at end of line

6, Insert before the cursor =x

7. Insert after the cursor *=*

8, Insert new line below current line

e« Insert new line above current line

10. Insert text below current line =%

11i. Insertc text apove cyrrent line =%

12, Delete last character

13, Delete rest of the text on current line »
14, Delete character before cursor

15, Delete the following object

16, Delete single character under cursor = N
17, Repeat last command *x |
18, Join together lines =

19, Replace single character under cursor

20, Replace characters at cCursor *x

21, Change the entire line

22, Change single character

23, Change the followling object

24, Change rest of the text on current line
25. Undo last change to current puffer *x

26, Restore current line to previous condition
27. Yank following object {nto buffer *

29, Yank a copy of current line into cuffer
29, Repeat last text insertion

30, Named buffer specification follows *

38

In addition to the two command categories already aiven
there are additional commands of a miscellaneous nature,

Table 8,3 lists these additional commands,

Table B,3 = M{scellaneous VI Commands,

1, Print file status message

2. Clear and redras thRe screen

3, Redraw the current "logical®" screen

4, Suspend Or restart output

S, Cancel partially formed command

6, Return to vposition in last edited file
7. Reformat lines in buffer

8. Indicate file and option maninulation
9, Quit VI, enter line-oriented editor

Some very basic formating commands for line length and
indenting are directly avajilavle, A macro creation
capapility is present to allow tne user to create
abbreviations for command strings., Table B,4 lists these
formatting commands, VI makes no claim to supvporting a
formatting package, since the file will be ocutput in the
same format the user entered ({t, For speclal formatted
output a VI generated fi{le must be processed by an off-line
word processor, like "NRQFF <ME" descriped in Appendix (D).

VI provides a nigh degree of support to the user for
restructuring a file, or files, There are nine buffers

availabdle for storing deleted text, and twenty six ouffers

89

""“""""‘“"'!-!u-u-u--n-u----u---v..

to yse as temporary holding spaces while reordering and
editing, The text can be taken from other files and/or
but!cr;, for use {in the f{ile currently being edited, If
needed, previously deleted text from the current file can be

recovered, and also other files,

Table R, 4 = VI Formatting Commands,

1., Reformatting command

2. Shift lines left one "sniftwidth®
3, Reindent lines

4, Shift lines riqght one *sniftwidth"
S. Prints current file contents

"VI" {s a good screen oriented editor and has a wide
range of capabilities, however it has some drawhacks,

(1) It has a poorly designed user intertace since the
command vocabulary is very large and tne individual command
strings are difficylt to rememper, There does not seem to
have been much thought given to the desian of the command
vocabulary.

(2) It takes a fairly long time to learn the VI system
and gain functional use, An on=line tutorial orogram {s
used to help beginrners, since it {s hard to oecome familiar

with it on their own,

90

Wt e ————

!
‘**‘“-—nﬂ

D T T

(3) VI does not inspire user confidence in that ({t (s
too easy to accidentally enter some unknown command string,
and there 13 little correlation between what the user wants
to do and the command(s) that must be issued,

(4) From personal use, about thirty three commands were
considered to be generally useful (marked by * or *¥), and
only ten of these accounted for the greater najority of all
operations (marxed by **¥), The remaining VI commands were
generally treated as "window dressing® py all but the most
sophisticated users,

(S) There is no help facility, of any kind, provided by
the VI system, At the very least, an on-line listing of

commands should be provided,

91

APPENDIX C: EDIT

EDIT {s a text editor supported by the UNIX operating
system, EDIT (s a simplified versfon of another UNIX
editor and contains & minimal set of operators, It is 1line
oriented which means that the main opject of EDIT (s a line
of text of some finite lengtn,

EDIT merely supports text file creation and modification
operations, The user inputs text into a file by lines,
indicating the end of a 1line bpy a carriage return, A
display of the file will show an ordered list of lines as
they exist in the file, Ordering of lines s completely
determined oy the system and although the user can use line
numbers as a reference, the line number 1Is not directly
accessible to the user to change or set, Any display of
text by EDIT (s done by line, Substrings can be referenced
within a line, or lines, A formatted output display by EDIT
can only be achieved {f the user directly inputs the desired
gormat 1line by line, MO processing of the contents of a
line {s done by EDIT,

snhen invoked, EDIT sets aside a temporary copy o¢f the
referenced file in a working buffer, If the file -joes not
already exist in the directory, then it is & new file and {s
created, The basic set of commands availabple to EDIT are

l1isted in Table C,i,

92

y —-

I' n“ . - ; -

Y -r 9... .. e " _ - B —— —

=

Table C.t ~ EDIT Commangd Summary,

1, Edit a file
2, Specify a file
3, Append line(s)
4, Insert line(s)
S. Insert line(s) into an external file
6, Insert line(s) from an external tile
7. Delete line(s))
8. Copy line(s)
9, Move line(s)
10, Print line(s)
11, Show line number
12, List line(s)
13, Substitute a string
14, Search for string
15, Undo last command
16, Make effect of command global
17, Move cursor
- forward
- backward
18, Quit

Searching for a line hag the effect of makinag the found

line the current 1line., Any subsequent editina operations

are done in relation to the current line, Lines can be
found and displayed by line numbers, and ranges of lines can
be speci{fied, Lines can also pe found and displayvyed forward
or backward, relative to the current line, 2 line can be
found by any substring of its contents, but the entire
substring muyst be contained in one line, PBecause of this
deficiency a substring may not be locatable merely pecause

it exists in the text file, when searchina EDIT will move

93

-

‘.'
* W’W*

forwvard or backward and will wrap around the buffer, so as
to return to the starting line {f tnhe target object is not
tound,

New lines can be appended before the current line, or
inserted after it, The user i{ssues a command to specify that
there are no more lines to add, Upon completion the current
line s the last line added, Additions can also be made by
moving or copying lines within the text file, “oving can bve
viewed as a comdbination of a deletion and an insertion, 3y
specifying a range of lines to be changed, they are deleted
and the system enters insert mode for the user to add tne
new lines, Additionally, {nsertions are possible from other
text fiies,

Modifying a line {s done by substituting a new string
for an already existing target string or the line, 1If
desired, the substitution can have global effect {n that It
will modify all occurrences of the target string on all
lines,

Deletion {s usually accomplished by indicating tnhe line,
or lines, to be deleted, A search command can oe used with
the deletion operation when the specifi: 1line numbers are
not know,

EDIT protects the user from making inadvertent changes
to a text fille, The effects of the last executed command
that effected the butfer can be reversed, Additionally, the

effects of ¢the editing session do not pecome permanent

%4

Ve -..\,?~..<~‘."‘.w"~

unless the user issues a command to make them permanent, At
that point the edited copy, which is in the buffer, replaces
the original file in the directory, Leaving EDIT without
indicating to make the changes permanent is like the editing
segsion never occurred,

In addition to writing a vwhole buffer out to the
directory, subparts can be written to another text file.
This {s done py specifying the range of lines and the file
to be written to,

The EDIT text editor 1s very ¢Gbasic which (s both an
advantage and a disadvantage, It has a minimal command set
and theretfore is easy to learn, The bigaest prooclem s that
it is lineeorientea. As such, modifications are done a line
8t a time, where each line is a separate entity. [t does not
treat the ¢file as a shole, but as a disjoint collection of
lines, It imposes the {dea c¢f line numbers, wnich do not
exist in the text file, {. order to use the editor, There
are fewer high level editing operations available, as
compared to current screen-oriented editors, and they are
limitea to operating on lines and not tne text file as a
whole, while capaple of producing satisfactory results, due
to its line at a time limits, the operation oecomes tedious
if the file 1s large, ard/or there are a lot of small
changes which must be done, Given the advanced features of
todays line-oriented edi{tors, EDIT s a very archaic and

frustrating way to create and modify a text file,

95

S SRR

AD-A126 879 ANALYSIS OF THE RELATIONAL DATA BASE MODEL IN SUPPORT

OF AN INTEGRATED APPLICATION SOFTWARE SYSTEM{U} NAVAL

POSTGRADUATE SCHOOL MONTEREY CA R NISHIMURA 9EC 82
F/G

/2, NL .

UNCLASSIFIED

IEY:
it =

22 ot B

[rrPTEEE E
FEEE

EEFE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

APPENDIX D3 NROFF =ME

*"NROFF <~MNE"™ i3 a text processing facllity for files that
are created on the UNIX operating system, It was created by

the University of California at Berkeley, and Bell

Laboratories, "NROFF" s a program that acceots an input
file prepared by the user and outputs a formatted vaper to
the user’s design, "=ME" is a macro package that enhances
the capabilities of the "NROFF" program by adding additional
tormatting abilities and commands. The input file consists
of the actual text entered by the user, through some editor
system, and a series of embedded NROFF =ME commands,

There is a large vocabulary of “reauests", which are
really dot-commands consisting of a periocd followed by a two
letter string, The basic NRCFF package SsSupports seventeen
categories of commands, and has a total of eighty seven
commands, The «ME package adds three categories and a total
of sixty commands for a grand total of one hundred and forty
seven commands, Table D,1 lists the NROFF and <ME command
cateqories, and the number of commands in each,

NROFF «ME uses thirteen predefined general variables and
twenty three predefined read=only variables to sucport its
processing needs, The wuser s provided with a macro
facility to define new commands in terms of the basic set of

comrands and operations on the varfables., This allows the

96

user

"F"""""""""""""""""""""""'-----------u-—

to abbreviate a falrly 1long command stream (nto a

single command,

Table D.! = NROFF and ~ME Commands,

com

MAND CATEGORY

COMMANDS

NROFF

L]
=
m

20,

Font &« Character Size Control

Page Control

Text Fillling, Adjusting & Centering
Disclays

Vertical Spvacing

Line Length & Indenting
Paragraphing

Macros, Strings, Diversions, & Traps
Number Registers

Tabs’, Leaders, & Flelds

InputQutout Conventions

Hyohenation

Titles

Headinas

Line Numbering

Conditional Input

Environment Switeching

Standard Input Insertions
InputOutout File Switching
Miscellaneous

Py

BWNRN= ONOWLODeEWWOWLAOORAd

FOOODOOCT LWOOOODOAEOONOOW

TOTAL

L]
~)

a
o

prod

suf¢

and

NROFF <ME is a good word processing system and

uce some complex formatting actioens,

er from some drawbacks,

However,

(1) 8ince the file i{s first created by the text

{t can

it does

editor

then run by NROFF, the user has a significant dejlay in

97

T T ey A e

A o

T m———————p——— = .

determining {¢f the degired format was achleved,

(2) In addition to depending on the text editor, NROFF
sust depend on other programs to preprocess the text file
before NROFF can handle jt for specialized requests. Two
examples of preprocessors are packages to handle tables and
complex equation symboloay. while ennhancing NROFF <=NE’s
capabllities, they add more categories and commands, and
increase the amount of time necessary for the usSer to see
the actual results of commands.

(3) The wuser manual for the NROFF packaae (s not
presented in sutficient detail to completely understand the
effect, or use, of all commands, It appears that thg user
i{$ supposed to have a basic understanding of the system
betore reading the manuals!

(4) The command vocabulary {s fairly larqge and thev are
not easy to remember, Based on personal use, only about
twenty percent of the vocabulary s generally useful and
therefore remembered, Table D,2 opresents a simolified

listing of tne most used commands,

98

e ————— v e

Tadle D.2 = Basic Commands =ROQFF =ME

20.

21,

22,
23,
24,

2s,

Page length

Line spacing

Line lengtn

Page headers

Indent

- permanent

= temporary

Begin next page

Need ¢ lines

Insert # tlank lines
Center tne next % lines
8reak

Detine a macro
Fill/No=£2111}
Hyphenate/No=hyphenate
Underline
Section/Chapter headinas
Quotations

footnotes

Keep an index

Start paragraph

« pasic .
« left adjusted

= 50dv indented

= numpered

Start display

= list

- block

= floating block

= delayed text

Table handler =

- detinition

- start

= body

= end

Equation detinition
vultiple column format
Default paper formats

e thesis

control constructs

« read special variables
= change gspecial register
= conditional formatting

% part of Table preprocessor

99

P

APPENDIX E: DBASE II

- 1 per v

DBASE II is a relational database system created by
Ashton=Tate of Los Angeles, California for microcomputer
systems, For this review, the CP/M version of DBASE 11 was
used, where the DBASE Il prograr {s an executable “commana
file" residinag in the systenm,

The DBASE I system uytilizes several different ¢file

types: datapase, report form, command, index, memory, and
text, Each file ¢type has a specific purpose that s
identifiable by its type name, "Report form" files store the
information, specified by tnre yser, for describing the
tormat (headings, tlelds, totals, suptotals, contents, etc,)
in which & "database” file {s to be oytput, "Commana" files
contain a sequence of DBASE II statements, commands, and
control structures necessary to create a user defined view,
“Index"” files are a 1list of pointers to a specific
"database” file, "Memory" files contain tne values of
memory variables and constants saved previously by the user,
"Text” files are collections of ASCII characters for input

into a "database" file, or created by output from a

e "dstabase” file, DBASE Il cannot directly use "text" files,
“\\\—.-

‘-N‘.‘—-‘_‘——--
Most of the fIT#s are—stored {n what 13 known as Standard

Data Format (SDF), and they can be ysed directly by any

other program that uses SDF files. Additionally, any text

) 100

tiles in SOF can be used by the DBASE II system, The tile
i3 the largest data object supported by DBASE II which
creates, deletes, or nodifies the current file(s), A
database tile is erought into reference by user
specification, and a maximum of two database files can be
“open”® at one tine,

DBASE Il can be used interactively or can be programmed
to create a view of the datsbase to support recurring
applications, Regardless of method, DBASE II proviaes the
user with the same basic hignh-level data definition (DDL)
and data manipulation (DML) language, An &nrglish like
command language with & very regular syntax {s a user
friendly feature of DBASE II. Tne commands are very
poverful 4{n that their operands and results are typically
databasgse files, The command structure {s usually presented

in the following form:
COMMAND (SCCPE] (CONDITION)

The scope modifier designates the number of records to
be selected in response to the specific comrand, The
condition modifier specifies a conditional statement that
the Trecord’s ¢flelc values must satisfy in order for the
record to be {(ncluded in the ¢£final result, Table E.1
provides a 1listing of the basic DBASE Il commands, with

duplicate commands having been factored out,

101

¥ TW‘-. R~ - - -

S e eep e b oo - s

i ¢ "O‘
nsadion; W v - - - ")

Taple E,1 = DBASE II Basic Commands,

-
Display an expresasion on the screen
Formet screen or printer output
Input a character strina
Input & string to a memory variable
Wait for user inout
List the records in a database
Di{solay data from & database
Oisclay the structure of a gatabase
Renane a fille
Erase a file
Generate a report
£xecute a "command® file
Return from a "command" file
Display the contents of the memory varlaoles
Store a value in a memory varlaole
Save memory variaples to a file
Restore memory variables from a file
Select & specific datapase for use
Set specific DBASE Il parameters
Abort a command

23,

24,
25.
26,
27.
28,
29,
3o,

31,
32.
33,
34,
is,

Create a nevw databasge
g£dit a database
Modity @ database’s structure, or the
contents of flelds in selected records
Uvdate & database from another database
Add data from a text file teo a database
Copy data from a database to a text file
Insert record(s) into a database
Delete record(s) from a database
Unmark records marked for deletion
Locate a record based on key valuye,
or condition
Goto & speciftled record
Move forward or backward {in a datcabase
Index a database
Sort a database based on a field
Perform JOIN operation on two databases

36,
37.

-
Count the number of records
Sum 4 field or subfield in a database

102

wr T . o . . TTTTTTTm e

- —

Default ordering for records in a datapase file 1is the
sequence in which the records are entered, Ordering can be
altered by inserting records into specific parts of the
database, and by sorting or {ndexing the database, In the
default order, the “database" ¢file does not contain a
recognized key,

By sotiinq or 1indexing a "datapase" file, keys are
detined and the search tire reguired to locate a record !s
redyced, Multiple indexing be done for the same database,
but based on different keys, Sorting produces a new
"database” f{le, which {3 a copy of the original database,
only {t (s sorted, An "indexed" file is a virtuval file of
pointers to the original "database" file, whereas lookup
speed can be enhanced by {ndexing a AdAatabase, there {s
overhead {ncurred {in maintenance of the "index" fils=,
Changes made to the original database flle are not reflected
in the new sorted "database" or "index" flle, The oriainal
database must be sorted oOr indexed atter each change {n
order to remain current,

The data definition language allows the user to define
the organization of the data {in a new datavase file oy
specifying the name of the database, and giving 1information
on each of its tields (name, type, width, decimal places),
The structure of a new database file can also pe copied from
that ot another database file, Additionally, new structures

cen be created as the result of using the JOIN operator

103

T T, s .. ongiyn - . C

e

provided by the DBASE Il system, At any time, the structure
and/or contents of a file can be displayed or output, The
struycture of a database tile can also be modified at a later
time, but presents some problems {n that all records
currently in the database flle are destroved,

Begsides using DBASE II 1interactively, it can be
programmed {n {ts own language through the use of "command"
files., The DML statements are embedded {n the £file and
iterative execution of DML statements are controllied by a
set of DBASE I control structures (If-Then, If-Then-Else,
Goto, and Do~while), "Command" tiles tend to make extensive
use of memory variables and input/output functions which are
also extensively supported by OBASE II, 7To create a user
view the designer/proarammer will edit a "command" ¢€ile(s)
to contain trhe correct DBASE [I statements, commangs, and
control structures to manipulate the oroper "database"
tiles. The capabilities and limitations of any view is
dependent on the desian of the "command" tile(s),

The reason for the qgreat popularity of DBASE II is <:chau
it 1s a very easy database management system to learn and
use, Its English-like command languéeqge 1§ natural and user
griendly, Although the command set is rather extensive, the
command names accurately describe their action and use a
reqular syntax so they are easy to remenmbper, The
interactive nature and full screen display orientation makes

user {nteraction simple and direct. Wwith 1ts set of

v
104

- — o . C e e e e r— - . 1
:0 . e "W‘M' T e v

predefined gunctions, input/output commands, rcommand®

files, and programaing constructs it is easy to create views
tor almest any application, DBASE II 1s a powerful
relational database system yet it {s obvious that the
designers gave much thought to keeping it simple and did not
introduce complexity for its own sake, However, there are a
couple of problems witn OBASE I which are worth mentioning,
and they are all prodbaply due to the justified emphasis on
simplicicy,

(1) At any one time, a maximum of two databases can be
in reference, This 1limitation requires that databases be
explicitly dbrought into and out of use, It would help 1f
there was another method, besides using a "command" file,
for verforming operations on multiple tapoles,

(2} In modifying the structure of a database the
contents are deleted, This reauires that the database oe
explicitly saved to an external database and then bpe
recopied back after structure modification, It {s an
inconvenience, to say the least.

(3) The only relational operation directly provided by
the system is the JOIN command, It would greatly enhance the
capability of the system to Provide more of the operators.

(4) The display structure s a little it too rigid,
and the yser does not have much direct control, sort of

writing a "command®™ file, to effect the output format,

APPENDIX F: SEQUITUR

SEQUITUR is & relational database system designed by the

Pacitic Software Manuftacturing Company ot Berkeley,

~Calitornia,

SEQUITUR sees & Adatabase as & collection of named
tables, each of which contains some kind of data related to
the subject of the database, Each datapase has a set of
system tables. The "Column® table lists the name, tyrve,
size, and display format of all columns authorized for use
in the database’s tables, The "Tablen table lists the names
ot the columns that are included {n each of the datatase’s
taples, Together the "Column" and "Table" tables act as
part of a data dictionary system for the database,

SEQUITUR has & tairly large command vocabulary of over
sixty seven commands, There are twenty five vasic commands,
forty two screen editor commands, and more formed DY
combinations of the previous commands, A multileve]l "Hels"
facility {s used to support the user,

SEQUITUR offers four kinds of help, There are statys
lines at tne top of the screen, An “edit card" display can
be called by the user in order to se¢ a comprehensive 1list
of cursor object and motion keys, and escave operations,
The "help"™ command summons an oneline RTanuval, that s oreset

by the user to provide no, medium, or maximum nhelo, Lastly,

106

there are situational

command process,

Table F,1 =

help prompts that occur

SEQUITUR Basic Commands,

1.
2.
3.

CHQOSE {database}
CREATE {database)
ADD to {(table}
EDIT {(table}

SHOW {(taple)
PRINT (table}
REPORT generator
FORMS generator
SELECT from (taple} «x
MANUAL select
JOIN (tables)
SORT {(tables) ¢
UNION *
INTERSECTION +

DIFFERENCE *
UNIQUE rows =
DUPLICATE rows =
carPY

APPEND

REMOVE rows
RENAME column

26,

COMPACT Base
DUMP to (file)
LCAD from {gile)
HELP? from manual
EXIT

¥ =& Member of SEQUITUR’s "set" commands.

The twenty ¢five

pasic commands cover

operational capabilities of the SERUITUR

commands are presented to the user in the form

—

107

- ’?f§«auwf“~‘

during the

the major
system, The

of a Theny,

———— e —

there are situational help prompts that occur

command process,

Tavle F,{ = SEQUITUR Basic Commands,

1. CHOOSE (database)
2« CREATE {(database)
3. ADD to {(taple)

4, EDIT (table}

5, SHOW {(tapcle)

6, PRINT (tadle)}

7, REPORT generator
8, FORMS generator
9., SELECT from (table) =
10, MANUAL select

{1, JOIN {(tabples}

12, SORT {(tables) *
13, UNION

14, INTERSECTION *

15, DIFFERENCE *

16, UNIQUE rows =
t7. DUPLICATE rows =
18, CnpY

19, APPEND

20, REMOVE rows

21, RENAME column

22. COMPACT base

23, DUMP to (file)
24, LOAD from {file)
15, HELP from manual
26, E£XIT

* = Member of SEQUITUR g "set" commands.

The twenty ¢five pasic commands cover
operational capabilities of the SEGQUITUR

commands are presented to the yser Iin the form

107
- ‘"‘: & "*‘W..‘v.“s-
R ——

during the

the mrajor
system, The

of a meny,

and once A& choice is made SEQUITUR enters the display mode

necessary to support that choice, Table F,l lists the basic
cormands, plus the command for exiting from SEQUITUR,

The SECUITUR display modes are orqganized as "tables", or
"pages®, The table mode {s similar to the approach taken by
the "Queryedy=Exarple” system (QB8E), and presents the data
in ecolumns and rows with vertical lines separatinag the
coluansg and indicators for new Trows, Alternatively, the
page mode presents the data one row at a time, with tne
column headings listed vertically. The user has the apility
to £1ip back and forth between the two display modes at

'1110

Table F,2 =« SEQUITUR Cuyrsor Object & Motion Commands,

i. Move cursor up one line

2. Move cursor down one line

3. Move cursor left one object

4, Move cursor to next object

S, Move cursor to beainning of object
6, Move cursor to previous word

7. Move cursor to end of cyrrent object
8, Move cursor to next word

9, Object 3 word

10, Object = line

11, Object = sentence

12, Object = varagraph

13, Object = view

14, Object = page or screen
15, Object = column

16, Object = row

17. Object = one character

108

Once in a desired display mode the user mnust make use of

the editor commands to make changes to the table, All editor
coamands are single keys comnined with tne <Control>,
<Escape>, or «<Tap> Keys, Table F,2 provides a list of the
' cursor object and motion commands avatlavle, Most
overations require two commands since the ooject must be

specified first, and then the actuval oceration,

Tavle FP.3 = SEQUITUR Screen Editor Commands,

1., Delete left portion of object

2, Delete entire object

3, Delete right portion of object

4, Flips "insert" toqgagle

S. Shows rows marked for deletion

6, Flip "page=taole" display style
7. Goto s=th object

8, Goto last ooject

9, Restores more recent version of row
10, Display earlier version of row
11, Executes a command

12, Search forward for column entry
13, Search backwards for column entry
14, Edit card disvlay

The screen editor commands are used to make actual
changes (additions, modifications, or deletions) ¢to the
displayed taple on the screern, Table F,3 1lists these
commands which are uysed {n conjunction with the cursor

object and movement commands listed previously.

1909

Additionally there are a number of miscellaneous
commands that are provided to aid the user, These are listed

in Table F.4,

Table F.4 = Additional SEQUITUR Commands

1, Get Edit Help

2, Scroll Forward

3, 8croll Backwards

4, Interrupt Present QOvperation
§, Lock/Unlock Cursor Object

There are an abundance of taple tyoes {n SEQUITUR,
"vVirtual"® tables consist of pointers to data in a "base"
table(s), and are formed by conducting relational operations
(e.q., JOIN) on the base table(s), Virtyal taoles are
permanent additions to the databpbase, All operations
conducted on the virtual table effect the base tavcle, but
not all operations on the base table wil] reflected {n the
virtual table,

*Slice" taples consist of the data from a "home™ tavnle,
and are formed by restricting or rearranging the columns in
the home table, Actually, slice tables are Jjust alternate
ways of viewing the same nome tabdble, All operations
conducted on the slice table effect tﬁe home table, and all

overations on the home table effect the slice table,

110

. ————— e

"Template”® tables are used to store control {ntorration
on the operation(s) (SELECT, SORT, UNION, DUPLICATE, UNIQUE,
INTERSECTION, and DIFFERENCE) degired to be performed on a
set of "base™ tabdles, The user specifies once the seguence
of operations to be performed, and each time that result 1is
desired the gopropriate template taple {s called to create
the desired virtyal table,

SEQUITUR provides several methods of outputting data to
the user:

(1) There is the "print" command which prompts the user
to specify heading, page length, margins, page number, date,
column/row divider symbol, etc, for either a “"table” or
"page” style output, The entire table is then output, one
record at a time, in the speci{fied format,

{2) There {s the "form generator®, The user creates a
form Jetter or document by making an entry in the "farms"
taple in either “page" or “taple"™ style, and answering
several system prompts as to page size, width, margins, The
form generator {s {ntended for letter tyoce generation since
it only allows one text field in the gorm, All other entries
are pulled from an aopropriste table and the "form" reoceated
for each row i{n that table,

(3) There i{s the "report generator®, The user creates 3
report table that 1S associated with a known data tanble, The
repert table specities which data table columns are to be

used, how they are positioned, what name tney have on tne

i1

torm, allotted width, and alignment, Again, the user must
specify formatting items 1like page 1length, line length,
maraing, delimiters, and other related items, The individual
columns 4in the report table can be marked for sorting,

grouping, andsor arithmetic processing, It aritnmetic

processina s opted for, then another table, the "function"

table 1is created to record what (s to be done to each column

« total, minimym, maximum, average, or count,

8ased on a very short familiarization experience with
SEQUITUR there {s no doupbt ¢that (it {s a powerful and
comelete relational 0DBMS, However, {t is not as user
griendly as 1its advertisements would lead you to believe,
Sone of the prokblems encountered were:

(1) Too. many commands to remember, Tnis increased
learninge time and added to the confusion, Too many of tne
commands were just window dressing {n that their effect
could nhave pe done using other commands, (Like the "QObject
=", extra cursor movement and deletion commands,) ahile
using keys as commands leads to faster command input, it
makes things more difficult when tnere are sc many commands
the symbol on the Kkey has 1little or no relation to 1its
etfeect,

(2) The structure of the uyser interface was unwieldy., It

was eagy to get lost and difficult to recover to a known

location, Operations that worked under one condition did

112

——

B R e e SR & aasnt . -

not work {n another, or produced completely different and

unexpected results. (e.,9. in some instances the "execute"
coopmand will return you to the main menu, in others 1t was
ignored or treated as a mistake,)

(3) There were too many types of tables, ways of using
tables, editing tebles, and creating relations between
tadles. The user is being swamped with a level of dectail
that 1{s oetter left to the system, It geems that SEQUITUR
was created with simplicity and user support being lesser

considebations to system sophistication,

113

APPENDIX G: VISICALC

VISICALC is an electronic spreadsheet proaram created by
Software Arts, Inc, of Cambridge, Massachusetts and marketed
by Personal Software Inc, of Sunnyvale, CA, Its purnose (s
to allow the user to easily model a wide range of numerical
prorlems in a standard tabular format by replacing ctre
user’s pencil, calculator, and scratchpad,

The screen s divided into a grid of columns ahd rows
that torm addressable (column, row) entry vositions, The
columns, which run across the tap of the grid, are lettered
starting with "A" and the rows, which run down the side, are
numcered starting with "ti7, Eaech entry position {s an
incecendent entity, and can contain a character strina, a
nuperic value, or a function that must oe calculated, Entry
positions that contain functions are recalculated by
VISICALC each time certain conditions are met, The functions
will specify values 1{in terms of constants, operators, and
the values of other entry positions,

The screen is used as a "window" (nto the spreadsheet
and 1{s modiffable by the user. The user i{s given numerous
commands, see Table G,1, with which to alter the disolay

format of the screen,

114

Table G,1 = VISICALC Display Commands,

{i. Clear Spread Sheet
2, 8et Global Oisplay Format TO;
= Integer
e Dollars & Cents
e Left/Right Justified
= Graph
3, Set Entry Uisplay Furmat To;
= Integer
« Collars & Cents
e Left/Right Justified
« Graph
4, Reset Entry To Globael Display Forrat
S Set Column width within A window
6, Set Order 0Of Recalculation:
e Column #wise
= Row wise
7. Set Recalculation:
« Aytomatic
« Manual
8, Move An Entire Pow Or Column
9. window Control:
= Split Screen sorizontal
= Split Screen vertical
« Single Window
10, window Synchronization;
- synchronized
~ Unsynchronized

The «indow can be "split" {nto two halves so as to 1laox
into nonadioining areas of the spreade-sheet simultaneously,
The two windows can be "synchronizea" so they move togetner,
or unsynchronized so movement (s {ndependent, Disolay
format may be globally set for the screen as a whole, or
individual entry nositions can be assigned their own format,

Column width {s variable from 3 to 37, out <columns {n the

118

same window must have the same widtn, The value of each
entry position {s calculated by "column order” (A1, A2, ...,
An, B1, 82, ..., 8n, Ci1, etc.) unless the user chances the
recalculation order to "row order” (At, Bl, ..., N}, A2, B2,
svey n2, C2, etc.). By defauylt VISICALC starts 1in
“sutomatic" recalculation mode where the value of all entry
pos{tions are recalculated each time an entry is changed, As
this can signiticantly slow dowrn . he model when larage arids
and/or complicated numerical expressions are used, the user
can enter "manyal" recalculation mode where a command nust
be issued to cause recalculatisn to occur,

VISICALC vrovides a command=line oriented editor that
enters, modifies, or deletes data {n a referenced entry
cosition(s). A cursor {s provided on the arid to indicate
the current entry position referenceqd by VISICAIC, There
are screen commands to allow the user to scroll across the
grid or to move to an exact (row. column) entry position,
[f needed, the numeric orocessing capability of VISICALC can
be used like a calculator to suoport the user’s
comgutational needs, A powerful cacapility of VISICALC {is
the replicate . command, This allows the user to defire an
entry once, and then have it entered {n a ranrqe of
successive column or row entry oositions, Additionally, the
user can svecify if the original entry {s to be replicated

exactly, or shrould any references to other entry rositions

116

be updated at each new position to take {into account

relative vos{tion on the spreadsheet,

Tatle G,2 = VISICALC Cursor Movement & Entry Commands,

11, Move Cursor Riaht Or Up
12, Move Cursor Left Or Down
13, Change Cursor Direction;
- lJp/Down
- T{aht/Left
14, Move Cursor To Tne Cther sindow
1S, Mmove Cursor To A Specific Entry Position

16, Abort Last Command
17. Set An Entrv Positinn To Blank
18, Delete An Entire Row Or Column
19, Inrset A New Row Or Column
20, Replicate an Entry
21, Set Title Areas:
e Horizontal Title
- Vertical Title
« Mo Title
22, Repeat A label Entry
23, vake An Irredfate vumerical Calculatien
24, Enter A Label In An Entry Position
25, Enter A Value In An FEntry Position
26, Save A Cory Of The ScreadeSheet

Since VISICALC {s a numerical modeling tool it has a
series of arithmetic and aqgqregate functions that (¢t
supports, Table G.3 orovides a listing, VISICALC has been
designed to store numbers in decimal format, not binarv, and
maintains them with uo to eleven significant digits or

4qecima)l olaces,

117

4 Table G,3 = VISICALC Arithmetic & Aggregate functions

-
8, Addition
b, Subdbtractioen
€. Multiplication
4, Division
e, ELxponentiaction
2. Caleylate The Sum Of A Fange Of Values
g Calculate The Minimum In A Ranage CGf Values
he Calculate The Maximum In A Rance 0f Values
{1, Count The Number Of Entries In A List
3. Calculate The Average Of A Ranage Gf Values
k. Calculate The Net=Present=Value 0f A
Range Of Values
1., Perform A Lookup Operation
me, PI (3,1415926536)
n, Calculate The Absoclute Value
o. Calculate The Integer Portion Of A Value
P. Sauare Root
q, Logarithms, Base 2
r. Logarichms, Base 10
s, Trigonometric Functions (Sin, Cos, Tan, Asin,
Acos, Atan)

VISICALC makes use of dynamic memory allocation so the
actual daimensions of the spread=sneet deoend on the amount
of memory available and tne complexity of the entries made
by the user, The user does not have to worry about memory
allocation since VISICALC takes responsibility for ({ts wuse
and efticiency, As entries shrink, or are deleted, VISICALC
reclaims the extra memory space, The user is shown how much

menory remains and & warning prompt occurs when memory space

{3 nearly exhausted,

For a perrmanent copy of the contents o0f the spread sheet
the user may send the output to & printer, A subpart of the

total spread-gheet may be sent by designatirg the lower

right corner to be printed,

VISICALC {s a powerful and fairly simple modeling tool
whose advantages seem to easily outweigh the disadvantaces,
The command vocabulary is low (26 commands, 19 ¢functions)
and the qgreater majority are actually useful and not just
windov dressing, The user manuyal is well written and easily
understood, but s fairly lonq, VISICALC supports a known
human weakness (small/tast short term memory, large/slow
long term memory, and slow calculation speed) by remembering
the deta{ls of a commonly reoccurring user oprcolem (tne
situation to ©be modeled), limiting tnhe user to oroviding a
smaller and more select set of {ni{tial inputs, ang
performing the computations in a faster, more reliable, anrd
repestable manner, However it does have Some droolems:

(1) Command strings and their eftect must be memorized
since there {s little relation to the strina and the effect,
¥enus provided by the system are very poor, and require you
to already knov the meaning of tne command string,

(2) A pasic understanding of VISICALC ana a hignhn degree
of operational capability can be cbtained, in a tairly short
time, by reading only the £first third of the user manual,

However, to gain maximum uyse of the system regquires a

119

signific.t amount of time and effort to read the entire
user manual and experiment with the operations, Sore nice to
know features that have a major eftect on model valiﬁity
(e.g. recalculation order) are discussed at the end of the

user manuyal and might be easily missed,

120

APPENDIX H: 21IP

The relational data base management system “"DBASE 1II",
described in Appendix (D), contains a set of commands which,
when embedded {(n a "command” file, define the output format
used to generate the display on the screen, or output to the
printer, In addition to generating the display form, the
commands also direct the D3ASE II system to either determine
the values of the entries from a record in the referenced
database, or from memory variables, I[f the inout device {s
the screen/keydoard, DBASE Il may retrieve a yser entered
value from tne screen and store {t in a tield of a datapase
record, or in & memory variaole, These form definition
commands can also be put into a new type of file, the
“gormat" file, by 2IP, In this case the format, contained
in the “format” file, {8 used as an display overlay %=z
prompt the user to chanae data values in an exi{sting record
in a "datavase" file,

Z1P {s a CP/M proqram used to generate, or modify, a
DBASE 1II "command" or "format" file, It (s a oowerful tool
in the sense that the user is not required to know the
details ot the OBASE II torm generation capability
("conmand® files, and display commands), ZIP presents the
user w«ith a blank screen and an onescreen editor, whicn

suUppoOrts several levels of cursor movement and formatting

121

BT T g S oy

cosmands, to help {n the form design., Table H,1 lists the

ZIP editor commands.

Table H,1 = 2IP Editor Commands,

1. Screen commands
top
bottom
rext
previous
firse
« last
2, Middle of line
3, Insert a space
4, Add a line
S. Delete
= character
=« line
6, Draw/Erase horizontal line
7. Draw/trase vertical line
8, Erase/Save wvork file
9. Insert DBASE II cormand expression
10, Change vari{abdble
« vertical marker
e nhorizontal marker
~ tab spacing
- margin
- page length
Quit

i1,

The cursor can be moved to any position on the blank screen
wvhere the user will enter the information required by the
ZIP program, Intormation is conveniently limited to literal
strings, memory variables, record field values, and fetching
4 value from the screen and storing {t into a record ¢field

er memory variable, Interspersed between these Z1IP

122

D Nl

-r v -.W._‘p, P -

formatting commands may be DBASE II executable commands {f
the file type s “command”, There are special purpose
commands to dravw, or undraw, vertical and horizontal lines
on the form,

The ZIP program may be viewed as a translator between
the screen desian made by the user and the operations of
DBASE 11, The screen contents asgsociated with each screen
position are translated into a sequence of DHBASE II
commands, statementc. and control structures which are
organized as either a "command" or "tormat" file, 2ZIP also
places any embedded execution commands 1into the file and
automatically sets, or resets, tne appropriate system
"toggles” as needed,

ZIP 18 a useful sumport tool for DBASE II (n that (it
relieves the user trom having to orogram a "command®™ file In
order to create a desired display format, However, it must
pe pointed oyt that ZIP is a very basic formatter, 1is line
oriented, and (s incacable of the more comblex types of

displays,

123

APPENDIX 1I: MAIL

"MAIL" is an electronic mai{l facility produced by tnhe
University of Calitornia at Berkeley and Bell Laboratories
tor the UNIX operating system, It allows users to send
messages to other users, or groups of users, on the system,

The basic unit of the MAIL system is the message, which
is simply a special type of text file, The message is
preformatted and contains tields tor originator,
destination, subject, copy to, and body, Messages are
contained either in the users "private" majilbox or 1in the
"system® mailbox., A “"dead~-letter® file is also majintained
for each user to contain messages which cannot be delivered
to a valid destination, The private mailbox and dead~=letter
file are maintained as text files in tne UNIX directory and
therefore can be used by other orodrams running under UNIX,

Ubon logging into the UNIX system, a promot apoears at
the terminal indicating that there is mail for the uyser,
Messages addressed to a user are initially contained {n tne
system maillbox, and can be read from the systen mallbox oy
the MAIL tacility, The messages already 1in ¢the private
mailbox and/or deadeletter file are cext files anc thus not
directly accessible to the MAIL facility.

The user may elect to read the mail by invoking thne M“AIL

taciiicy, A one line summary of all messages in the systenm

124

-

- ..-"‘." ’-‘wﬁ - g~ L - -

il

r—wm

g
[]

mailbox 1s presented to the user, and each message s agiven
an integer identification number starting at one, At this

point the user has a number of different options available

a8 sumnarized in Table Il.1.

Table I.1 = MAIL Command Summary

1. Alilas a narme +

2. Unalias a name(s)

3, Goto previous message ¢ +

4. Goto next message ¥ +

5. Display summary of commands +

86, UCisplay out all currently defined aliases

7. Display a message

8., Display out headers of message list +

9, Di{splay message list

10, Display size of each message

11, Display top few lines 0f each message

12, Execute the following UNIX shell command

13, Change directory

14, Delete message(s) «

1S, Delete current messace, print next messaqe

16, Undelete messacges marked for deletion

17, Reply to a received message ¢

18, Edit a list ot messages in turn

19, Send message to designated uysers +

20, End-~oft=message +

21. Exit, don’t change system majilbox *

22. Quit, save undeleted or unsaved messages in the
user’s mailbox, save unreferenced in the
system mailbox,

23, ¥arx message(s) to be saved {n system mailbox *

24, Save a messaqge list by appending to a text file

25, List current range of message nheaders

26, Help +

27, Set options «

28, Unset options

* MAIL facility has more than one command to
pertorm this action,

128

PR o s PP - . e

The user may select a message and read 1{t, After
revievwing the message the user may forget the message, save
it {n the system mailbox, delete {t, or prepare a response,
When the user guits the MAIL facility all messages wnich
have not been deleted, saved, or reviewed are placed bpack
inte the system mailbox, The remaining messages, those
revieved but no special action indicated, are placed in the
private mailbdbox, If the user desires, the MAIL facility can
be eXxited and the system mailbox left unchanqged,
Additionally the yser can create "alias"™ names that
correspond to multiple users, ask for message summaries,
append messages to files, or invoke an editor,

The MAIL uéil!tv does not contain its own editor, but
depends on the editor(s) available to the UNIX system and on
the user to set an option speciftying which one is desired,
When the user indicates that a message is to re created, the
editor is invoked, the user enters the text, and when
tinished ({ssues an end-=of-message command to return control
to the MAIL facility., vwhile in the editor, the user can
issue "escape"™ commands that directly effect the message
processing, A listing of these egcape commands {s provided
in Table 1,2, Contents of other tiles may be inserted into
the messaqge, names of recipients added or changed, the

header field edited, or an alternate editor invoked,

126

Table 1,2 = MAIL escape commands

10,

Execute UNIX shell command .

Add names to recipients of copy

Read "“"deadletter” file into message

Invoke text editor

Aport the message beina sent

Insert a named file into the mesgsage o

Create a subject field

Write the message into a named file

Pipe the megssage through a process as a filter
Insert a string into trhe ressage

{ssu

While in the MAIL facility, UNIX shell commands may

ed, The

MAIL facility {s temporarily interrupted, ¢t

be

ne

command {s executed, and then the MAIL facility s resumed

wifnout adverse effect,

Table I,3 = MAIL options,

(Append/Prepended) messages to private mailbox

{Yes/No)
(Yes/No)
(Yes/No)
{Yeg/No)
(Yeg/NoO)
(Yes/No)

sSubject line prompt

Prompt for carbon copy recipients of message
modity delete command

Ianore terminal interrupt signals

Include sender in group message recipients
Saving interrupted messages

Detine defaylt editor name

Define escape character

10. Define file to record outgoing mall

11, Define number of lines in the "too" of a message

127

Additionally, the MAIL facllity has a series of options

e il

the user can change to tailor its operation, Table I,3
provides a listing of these options,

The MAIL facility is a good support prograr and is quite
capadble of accomplishing 1its goals, Howevér. it has more

than 1ts fair share of problems,

(1) There is a very limiteag user manual, and experience
must be gained frem other users or by trial and error,

(2) There are too many commands, and too many of those
duplicate each ather, The number of commonly useful

commands 1s low (marked with a +), with the rest bpeing

windowe=dressing,

(3) The facility 1s not user friendly., The user myst oe

avare of location in the facllity and ahat is expected next,
because there are no special prompts and the help command
only provides a command summary.

(4) If the message reciplent {s on line when the message
arrives, wnatever operation (s 1in orogress is rudely
{nterrupted oy the display of the message, This can be very
disconcerting to the recivient,

(S) The user can’t determine which message s aqoina
where (svstem mailbox, private mailbox, dead=letter file),

prior to leaving the MAIL facilitv,

128

-

BIBLIOGRAPHY

Bricklin, 0., & Franklin, B., VISICALC User Manual, Personal
Software, Inc, 1979

Codd, E., " Relational Database: A Practical Foundation for
Productivity®, Communications of the ACM, 25, 2, po, 109 =
117, (Feb 1982)

DBASE 11 User Manual, Ashton Tate 1981

Ghosh, 8., Data Base Qrganization for Data Management,
Academic Press 1977

Horowitz, £, & Sahni, S,, Fundamentals of Data Structures,
Computer Science Press, Inc, 1976

Kent, W,, Data and Reality, North Holland Publishina Co,
1978

Naiman, A,, Introduction to Word Star, Sybex Inc, 1982

SEQUITUR User Manual, Pacifi{c Software Manufacturina Company
1962 -

UNIX Programmer’s Manusal, Seventh Edltion, Volume 22 Bell
Telephone Labratories, Inc 1979

129

oo —

—— oy

1.

2,

3.

4.

INITIAL DISTRIBUTION LIST

Defanse Technical Informetion Center
Cameron Station
Alexandria, virginia 22314

Linrary, Code 0142
Naval Postgraduate School
Monterey, Callfornia 93940

Professor Dusan Z, Badal, Code 522D
Department of Compulter Sclence
Naval Postgraduate Senool

Monterey, California 939490

LT Rodney Nishimure, USN
14541 5, Catalina Ave,
Gardena, California 90247

130

No, Coples
2

