
AD-A126 979 ANALYSIS OF THE RELATIONAL DATA BASE MODEL IN SUPPORT 1X
OF AN INTEGRATED APPLICATION SOFTWARE SYSTEM U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA R NISHIMURA DEC 82

UNC IED 0G9/2 N

lmhmhhhhhmommlm
soI.EhmhEmhE--
mhsmmhhmmhhlm
EhEEohmhhhEEEE

I -~
1.21111 1.4~ -11.

'ill,-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREIAU OF STANOARS1963 A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
ANALYSIS OF THE RELATIONAL DATA BASE MODEL

IN SUPPORT OF AN
INTEGRATED APPLICATION SOFTWARE SYSTEM

by
Rodney Nishimura
December, 1982

Thesis Advisor: Dushan Badal

0Approved for Public Release; Distribution Unlimited

08 04 IS oo

11mUEumV C6444S9IC&?t0eU Too ph"B Mhow 04" Rom e spm______________

n~piT SOIETMO PAGN 6931____001 ______

1. IMPORT rMWMa-m.u N GGVT hoP am:a. 1.g~ cCg

Analysis of the Relational Data Base Master's Thesis
Model in Support of an Integrated -December. 1982

Appiciation Software System. a. pameI 0". QgVcT "Vuama"

7. AUTNW@U0. 0. CONTRACT 60 F4"Aso NwiMUEUVa

Rodney Nishimnura

Naval Postgraduate School AC OKu, usm

Monterey, California 93940

I$. C61111,1164.116 OFFICIR"a N A N A 06118 eo e it. 1111PORT Days

Naval Postgraduate School December, 1982
Monterey, California 93940 is. 01160111106111aPGIRS

130
1. oo TSINWG AgEN1CI MNg 6 AasmueeII WIW m ONW CdMWI~Afl OM.) It. SEURITY CL.ASS. roe this imwj"

Unclassified

I"a IckA ICATI~OOWNGRADING

16. 0m6TRIUTI lTVraiMeM e~at. aov
Approved for Public Release; Distribution Unlimited

17. HSRII U~tOR ST AT9i T N? I" iO boemIE -- d #0 &- i 20- 1#40 Jhawe)

is. 1(Ey Woe" fCMANI an M -2rs sesf aomeoa " 1i 90f OF No**mi~m

Relational Data Base Model, Integrated Application Software

The premise of this thesis is that many software application
systems perform similar functions on a data object and contain a
significant operational intersection. An Integrated Application
Software System ([ASS) integrates the capabilities of the applica-
tions into one system. The purpose of this thesis is to evaluate
the utility of the relational database model to conceptually inte-
grate the text processing, relational database manag~ement, form

(Continued)

'0" 147314ff *eumtv 00,SI~tO 1, Revg RAM isM O"O.

cc '1jalft

VV ~ ~~ m CeeCPSOOG en VO* ft 1119

ABSTRACT (Continued) Block # 20

generating, electronic mail, and electronic modeling applications.

The conclusion of this study is that the relational database model
-can conceptually support the data representation and manipulation
requirements of each application considered. Furthermore, the
integrated system has potential capabilities that are not available
in the non-integrated set of applications.

ACCS t ~'For_-

"4ts

4tit.o - -

jA V n o 2 . A ~

2 2

Approved for public release, distribution unlimited,

Analysis of the Relational Data Base Nodel
In Support of an

Integrated Application Software System

by

Rodney Nishimura
Lieutenant, United States Navy

9.3., University of Southern California, 1975

Submitted in partial fulfillment of the
reouirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1992

AUTHOR: 61~z~.

APPROVED 8Y% __j.

Thesis Advisor

Co-Advisor/Second Reader

... _m .. _m, _ .. _._,2k _ _- .
Chairman, Department of Computer Science

Dean of Information and Policy Science

3i

ABSTRACT

-> The premise of this thesis Is that many software

application systems perform similar functions on a data

object and contain a significant operational Intersection.

An Integrated Apolicatlon Software System (IASS) inteqrates

the capabilities of the applications into one system. The

purpose of this thesis is to evaluate the utility of the

relational database model to conceptually Integrate the text

processing, relational database management, form generating,

electronic mail, and electronic modeling apolicatIons.

The conclusion of this study Is that the relational

database model can conceptually support the data

representation and manipulation requirements of each

application considered. Furthermore, the integrated system

has potential capabilities that are not available in the

non-integrated set of applications.

4

-pw-. .!

TAB1LE OF CONTENTS

to INTRODUCTION .. eeseesoeu9oeeeeess

A. APPLICATION SOFTWARE PROBL6EM s

B. THE IA33 OBJECTIVES **,0.geeses* 9

C. 113S APPLICATIONS it.........***** 1

11. lASS DATA ORJECT **es* 13

A,* THE TABLE * .se eee eees ebaeo s 13

B, lASS TABLES *.............e** 14

1. Text Processor Tables 1

2. Database Tables *...........e 20

3. Form Generator Tables *......... 22

4. Electronice Mall Tables *.......... 25

5, Electronic Scread Sheet Tables 24.....

InI. CONCEPTUAL INTEGRATrom **********. 33

A,* OVERVIEW s o s o 33

13, BASIC IASS PRIMITIVES 34

20 Moad ify o o a o s a a 0 90 0 *a050 a *0 a0 50 a0 09 3 5

3 . Doeete o o * os s %a s ambe q 9 o auso * oso o*vo a. 3 5

4. Project s..00600ssoss 36

So Select *.................o 36

So * union *....*ss 36

C, REALIZATION OF LOGICAL OPERATIONS .. *.......... 37

1, Text Proctesor/Form Generator ,..... 37

2. Electronic Mail000 55550005 40

5

3' Slecree eped Sheet 4460060...6600660 5

S. INTR TYPE COMBINATIONS *...*... .. 5.

2. TeForm eeeoee eo.e .eeem 64

4. Scread Sheet 514....,......... 6

V e rNE * CONCLUSIONN ...660666006.6... 6 6..Sg 71

As* FINDINGS *.60666.6066600660s. 71

A. FOLLOW-ON RESEAPCH 660.e..e~g...g. 72

L1ST OF REFERENCES ... t0@060666 0600660 75

APPENDIX A (Wvord Star) ,.*** ***.,***,* 76

APPENDIX C (Edit) *606606666060606606 92

APPENDIX D (Nrotf -me) bboo0 0*.006 6000 96

APPENDIX f (Dbage 11) *..........,...,. 100

APPENDIX F (Seaultur) *0000000660***0** 106

APPENDIX H CZiv) *................ 121

APPENDIX I (Mail) *66666666000S006066 124

6

BIBLIOGRAPHY o.,oe.,0, .. .-0.0o. * .* , 129

INITAL 01STRI5UTON LIST .. ,..ooooo..,...o 130

)

I

1,

Is INTRODUCTION

Ae APPLICATION SOFTWARE PROBLEM

The utilization of computers in many areas, such as

personal computing or office and manufacturing automation,

is rapidlly expanding. No longer is tneir use being

relegated to support personnel, but is spreading into tne

ranks of lower and middle level management. The majority of

such users are non-computer professionals who are coming to

depend on the computer to provide support to accomplish

their primary responsibilities.

Over the Past years, numerous software packaaes have

been made available to support a broad spectrum of users in

varying environments. Capabilities such as word Drocessinq,

database management, modeling, form generation, and

electronic mail have become essential. The ourpose of

introducinq the computer Into an organization is to increase

effectiveness and efficiency. While the performance of each

support pacKaqe is individually satisfactory, tne manner in

which they are presented to the user as a group is not. As

illustrated In Figure 1.1, each support system is typically

disjoint from all others, and the user is presented with

different models, command vocabularies, and operating

instructions. This non-integrated combination of

B

application software requires a special effort on the Part

of the user to learn a new system and remember it along with

the other systems that are used, For instance, one simple

task can be invoked In a different way in each system.

Figure 1,1 - DisJoInt Support Systems.

Be THE IASS OBJECTIVES

What is needed to increase productivity Is an integrated

system that combines the capaoilities of the applications

and presents the user with a single, yet easy, conceptual

da a model and vocabulary set. It is such a system that is

called an Integrated Application Software System (lASS). The

ovjectives of such a system are:

C) Ensure a high degree of user friendliness and

emphasize simplicity.

(2) Minimize the Initial and acquired user skill level

necessary to use the system,

(3) Minimize the learnina time required to use the

system.

9

c4) Present a logical distinction between each of the

IASS's capabillties, but minimize explicit navigation

between them.

(5) Realize the largest functional intersection of the

capabilities of each Included application.

(6) Develop a minimum set of primitive commands.

(7) Minimize the dependence on programming In order to

use the system.

(8) Embody the notion of software adaptivity whereby

the user can learn a new aoplication by learning only a

small increment of new apolication specific commands and

functions.

(9) Embody the notion of software reusability. New

applications can oe implemented by adding a small increment

of functions and commands which can be expressed in terms of

existing IASS operations.

while the IASS cannot be expected to completely

integrate tne features of each support pacxage, it can

strive to maximize the intersection between them. Figure 1.2

shows a simple illustration of an JAS in a Venn Diagram.

2
JABS

3 4

Figure 1.2 IASS Intersection.

Ir

The purpose of this thesis Is to determine the utility of

the relational database model as the kernel of the IASS.

C, lASS APPLICATIONS

Five common software applications were selected to be

integrated:

(l) Text Processor

(2) Relational Database Management System

(3) Electronic Spread Sheet

(4) Forms Generator

(5) Electronic Mail

As a non-integrated collection of application software,

each Is implemented to accomplish a predeftined set of

operations on a srecific tile type. Data in a file is not

directly sharable oetween apolications and neither are the

commands to manipulate the data. Command vocabularies are

usually "barooue" in that most of the operators are intended

to exist as a matter of convenience to the user. However,

too often it is a very small percentage of the overall

vocabulary that is used most of the time. Users usually

learn a subset of the vocabulary necessary to accomplish the

essential functions of the application, and disregard the

rest. It is the intersection of functions and vocabularies

that the lASS subsumes and makes the common system for all

Included appllcatlons.

ii

I

Commercially available software application packages

were reviewed to determine the nature of the logical tile

types and the essential functions. A detailed description

o each of the application packages is included in

Appendices A through I.

12

Il. IASS DATA OBJECT

A. THE TABLE

The logical file of any application system contains data

which is used by a specific set of application proorams.

The KeY to achieving an Inteqrateo Application Software

System CLASS) which can support each logical file type is to

map each into one data object. The data object chosen for

the 1ASS Is the table since it is a natural method of

organizina data and is an easily understood object. Each

column in the table represents one attribute of the file and

each ro4 represents an unique occurrence. The tables

include columns whicn represent key values to uniquely

identity each row. Any datum in a table can oe accessed by

specifying the name of the table, the value of the key, and

the name ot the attribute containing the datum. In this

thesis, rows will Will also be referreo to as tuples or

lines and columns as attributes or fields. A complete

description of the table is given in Martin (Ref. 1].

This chapter describes the preliminary design of a set

of tables which can support the data requirements of the

IASS applications.

13-iibi. L

B. 1ASS TABLES

In the IASS each application is a logical database

consisting of a set of tables. There are three general

classes of tables, data table, application directory, and

data table schema. The data table represents the logical

file of an application. The data tables are typed according

to their Primary use as, text, form text, database, spread

sneet, and mail. Data table typing is done only to

logically organize data taoles which are used primarily by

the same application proqrams, The IASS does not support

strong data table typing. Being able to combine taoles of

different types is an important feature of the lASS.

The apolication directory table contains descriptive and

definitional data aoout the data tables In an apollcatlon or

logical dataoase. Each row in the application directory

table describes one data table and has a standard schema,

Figure 2.1. 10 is the orlmary key value of the apolication

directory table. NAME is the unique name of the data table.

COLUMNS is a list of column names In the data table. This

list implicitly defines the schema of the data table.

ACCESS CONTROL defines the access privileges of various

classes of system users to the table, including read and

write access and privileges to modify the data taole schema.

This data item also contains information concerning which

operations are allowed on the data taole. For instance, It

may be decided that one database data table cannot be Joined

14

with a mall data table. TABLE POINTER Points to the data

table. DESCRIPTICN Is a literal description of the table.

VIRTUAL Indicates whether the data table is composed from

other IASS data taoles. CONDITION indicates how a virtual

table is Composed. For example, if the virtual data table

was formed by a join, that data would be stored in the

CONDITION column of the application directory. GLOBAL

contains all the recurring information which Is applicable

to a data table as a whole, such as formatting, display mode

(e.g. page or table),- access patns, etc. For each

application, the schema of the application directory table

can be auqmented as required.

ID NAME COACCESS TABLE VIRTUAL

I CONTROL PolTR

COmDITION1 GLOBAL DESTI-

Figure 2.1 - Apolication Directory Table Schema

The data table schema table contains a row for each

column In the data tables. The schema of the data table

schema table Figure 2.2, is the same In each application.

ID Is the primary key of the table. Each column in the a

data table has an unique NAME* TYPE and wIDTH descrioe the

15

NOR".

data type associated with the column and the maximum width

Of the data entry.

I ID NAME I TYPE WIDTH I SYNONYM TABLEI ACCESS JI I I I I ICONTROL

Fiqure 2.2 - Data Table Schema Table

Data typing supports the data integrity function of the

underlyinq system. SYNONYM Is the list of names by wnich

the column Could be referred. This information is used to

determine relationships that exist with otner data tables,

possibly of a different type or allows the same column to be

referred to oy many different names dependinq on the context

of its use. For example, in a personnel data table, the

column name may be PNAME. This column could be referred to

as PERSNAME, NAME, PERSON, etc. This column must be used

with caution. Its data may inadvertently chanqe the access

privileqes of a user to a data Item. TABLE is the data

tables the column occurs in% A query of the data table

schema table can be done to determine the names of the

tables the column is in to avoid searching throuqh an entire

application directory. ACCESS CONTROL defines the

orivileaes associated with each column for a class of system

16

or

users Including read and write access and privileges to

modify the column definition*

figure 2.3 shows the relationships between the tables

that exist in each application.

Application Directory

ID NAME COLUMNS ACCESS TASLE -VIRTU L
CONTROL POIUTER

CONDITION GLOBAL DES- DA AA

CRIPTION a TABLE

Data Table Scheme

ID AOE ITYPE WIDTH SYNONY I TABLE ACCESS
SCONTROL

Figure 2,3 IASS Table Relationships

This flqure Indicates that each row in the application

directory taole is connected to a set of rows in the data

table Schema table and a data table. rhe dotted line shows

a cross reference from a data table schema taole row to a

directory table row.

17

1. Text Processor Tables

a. Text Directory Table

The text directory table contains a row for each

text data table. The directory, Fiqure 2.4, has the

standard application directory schema. Since the text data

taoles can be output to a visual medium, each data table has

a global print tormat. This data is stored in the GLOSAL

columns or, If necessary, in a table accessed via the data

in the GLOBAL columns, and contains the page length, right

and left margin, top and bottom margin, number ot lines oer

page, page neader, paqe footer, tab spacing, and line

spacing.

ID NAME COLUMNS ACCESS TABLE VIRTUAL
CONTROLI POINTER I

CONDITION jGLOBAL DEST- NI - CIPION[

Figure 2.4 - Text Directory Taole Schema

b. Text Data Table Scnema Table

The text data table schema table. Figure 2.5v

contains the predefined column set, ID and TEXT LINE. The

ID is the primary Key ot the text data table. TEXT L14E

describes the TEXT LINE column in tne text data table. As

' -is

Figure 2.5 shows, the TEXT LINE can be lLcased with the FORN

LINE column in a form text data table or the BODY column in

a mall data table,

ID NAKE TYPE WIDTH SYNONYM TABLE ACCESS
CONTROL

I ID IN- NONE ALL read: all
TEGER write: DBA

modify: DBA

2 TEXT CHAR FORM ALL read: all
LINE LINE, write: all

BODY modify: DBA

FTiure 2.5 - Text Data Table Schema Taole

c. Text Data Table

The text data table, Figure 2.6, is described

by the COLUMNS and DESCRIPTION columns in tne text airectory

table. It contains data used to prepare a printed document

or a comouter program. The rows in a text table are sorted

on the ID column. Each rom has an unique Ii number which

corresponds to the line number in the display. Although the

user can refer to an ID number, an ID number cannot oe

directly modified. The data In a TEXT LIME is unformatted.

In a single line of text, there are two kinds of data that

are recogniZed, the character string to be printed and

special combinations of characters to be executed. The

19

executable characters are specific to a text processor

application program (e.g. text formatter or compiler).

Figure 2.6 shows the two Kinds of data. ROWS I and 2

contain literal character strings to oe printed. Row n

contains a formatting command (page-break).

ID TEXT LINE

1 'iw is the time

I 2 Ifor all good men to I
1 nI'°" I

Figure 2.6 - Text Data Table

2. Database Tables

a. Database Directory Table

The database directory table contains a row for

each database data taole. The dataoase directory table,

Figure 2,7, nas the standard application directory schema.

The GLOBAL column contains data descrioinq tne display mode

or printed format,

NAE I COLU14MSI ACCS I TABLE VIRTUAL

CONDITION GLOPAL DES

Figure 2.7 Database Directory Table Schema

20

.... i i ._. :- • _

b. Database Data Table Schema Table

The database data table schema table, Figure

2.8, initially contains an entry only for the ID column.

The ID Is a Key in the database data table. As dataoase

data tables are defined, entries to the database data table

schema table will have to be made.

ID NAME TYPE OIDTH SYNONYM TABLE ACCESS

CONTROL

I ID INTEGER NONE ALL reeds all
write: DBA
modify: DBA

Figure 2.8 - Oatabase Data Table Schema Table

c. Database Data Table

Each databdse data table, Fioure 2.9, represents

one entity, and is descrioed by the COLUMNS and DESCRIPTION

column in the database directory taole. The data in a

oataoase data table is formatted. Each row is an unique

occurrence of the entity. Tne columns of the database data

taole are the attributes of the entity. ID contains the

display order of a row. This ordering does not Imply that

there Is a canonical ordering ot the entity. The ID can oe

referred to out cannot be directly modified by the user.

The other columns of the database data table are not

predefined. The database data table can oe directly vIeweo

21

at the screen bY the user or printed, but May be reformatted

based on the data in the GLOBAL column if necessary.

ID ATTR-1 ATTR-2 ATTR-n

II

m -

Figure 2.9 Database Data Table

3, Form Generator Tables

a. Form Text Directory Table

The form text directory table has the standard

applications directory schema, Fiaure 2.1. !ecause tle

form is intended to be orinted, each form contains a orint

format which is defined by the data aooreqate named GLOBAL.

This data ao#reoate is the same as that contained In the

text directory table vreviously described.

ID NA E I COLUMNS ACESS TABLE, VIPTUAL j
CONTRO POIN TER

CflD!Tfl J LOR L CRIPTIONj

Figure 2.10 - Form T-xt Directory Tahle Schema

22

be Form Text Data Table Schema Table

The form text data table schema table, Fiqure

2.11 contains the predefined column set ID and FORM LINE.

The ID is the primary key of the form text data table. FORM

LINE describes the FORM LINE column In the form text data

table. Fiqure 2.11 shows that the FORm LINE column can be

aliased with the TEXT LINE column in a text data taole or

the BODY column in mail data table.

ID NAME TYPE WIDTH SYNONYM TABLE ACCESS
CONTPOb

I ZD IN- NONE ALL read: all
TEGER write: 0BA

modify: USA

2 FORM CHAR TEXT ALL reao: all
LINE LINE, write: all

BODY modify: USA

Figure 2,11 - Form Text Data Table Schema Table

c. Form Text Data Table

A form Is a repetitive document with blanks to

be filled In. A form can be represented as a collection of

rows contained in a table, as shown in Figure 2,12, and is

described by tne COLUMNS and DESCRIPTION columns in the form

text directory table.

23

ID FORM LINE

1 (NAME)

2 (AUCRESS)

4 Dear (B.RELATION)

5 FORP.1eTXT

Figure 2.12 - Form Text Table

Each row of the table is sorted on the ID and corresponds to

the same row in the form. Although tje user can reference

an ID number, it cannot be directly modified. The FORM

LINE column, contains unformatted data. In addition to

literal character strings which are Printed, including

horizontal and vertical lines, it contains a special set of

executable data. A special character comoination indicates

ahether the blanks In the form are to filled in by the user

and stored In a table, or wnether the blanks are to oe

filled in from a table. This special set of data must oe

Known by the user as it Is merelylinserted as a combination

of characters into the FORM LINE column. The view ot tne

form at design and modification time Is exactly that of the

form data table although it may be reformatted If necessary.

Figure 2.12 contains an example of the data In

the form text data table. The data In the first FOkM LINE

indicates that the printed value for the first row in the

24

printed form is to be retrieved from the NAME column of the

selected row of the associated database data table. Tn.

data in the fourth FORM LINE indicates that the printed form

is to contain the literal string "Dear" followed by tne

value from the RELATION column of taole B of the associated

database data table. The information In row 4 also

indicates that the associated taole is a join of two taoles

each containing a column named RELATION. Row 5 indicates

that the body of tne form is a text Oata table named FURMI.

A form text data table is similar to a text

table. They differ only in their data content and tne way

tr-ey ire used. The data in te torm taxt data table can be

vJriables Wnose valuet are determined at print time. The

variables in a form do not have to te bound to a nared data

table or soecific row in a data table and therefore can be

re-used in the same or in many different aoolications.

4. Electromic Mail Tables

a. Aall Directory Table

ID NAME COLUMNSI ACCESS TABLE VIRTUAL
CONTROL IPOINTER

CONDITION GLOBAL $f -
L I CRIPTION1

Fiqure 2.13 - Mail Directory Table Schema

25

6--

The mall directory table contains a row for each

mail table. The Standard application directory schema does

not haVe to be modified for the mail application, Fiqure

2.13. The GLOBAL data Items contain the data to determine

ownership of the mail data table and any otner applicable

inform'ation.

0, mail Vnata Table Schema Tabl.e

ID NAM'E TYPE WIDTH SYNONYM4 TABLE ACCESS
CONTROL

1 ID) ITT N ALL rseat: All
-GER write: DBA

modify: DRA

2 FPQN CHAR ND4'IE ATS'rae: all
writp: Al1
lodftv: RAA

3 TO CHAR 4nFA[LL reioei: Al1
write: all
-modify: DBA

4 COPY TO CHAR ~ 4ON47 ALL riedt all
vrite: all
modify: ORA

15 DATE CHAR 14ONE ALL read, all
write: all
modify: DRA

A SUBJ CHAR SUB- ALL read: all
JECT write: all

modify: DRA

7 BODY CHAR TEXT LINE, ALL read: all
FORM4 LINE write: all

modify: OBA]

figure 2.14 -Mail Data Table Schema Table

26

The mall data table schema table, Ficure 2.14,

contains the system defined columns of a messaQe. The ID is

the primary key of each mail table. The other columns

contain the data to denote the orlqinator, recipients,

subject and the body of the messaqe. Fioure 2.14 snows that

the BODY can be synonymous with tre TEXT LINE of a text data

table or FQRm LINE Of a form text data taole

c. Mail nata Table

ID FPOM TO COPY TO DATE SUBJ BODYf ME YOU THE" 1/1 MESSAGE

2 YCIJ ME THE" 1/2 MSG.TXT

Figure 2.15 mail Data Table

Electronic mail is a utility which facilitates

the exchance of textual messages between system users. A

mail file contains a set of messaoes. The messaie consists

of data items which are read bVy the recipients. The mall

table, Figure 2.15, is described by the COLUMNS and

DESCPIPTION columns in the mail lirectorv table. Each row

in the table corresponds to one message. EAch message

27

contains a header which is comprised of the FROM, TO, COPY

TO, DATF, and SUBJECT of the messaqe. The BODY column can

contain the entire messaqe or the name ot a text table. For

example, Fiqure 2.15 shows that message 1 contains the

entire messaqe body. 4essaqe 2 contains the name of a text

data table in the text directory table. The mail table can

be directly viewed by the user as a summary of the messaqes

but should be reform4tted to read or edit a sinale messaqe.

5. Electronic Soread Sheet Tabl e

a. Saread Sheet Directory Table

The soread sheet directory table contairs a Tow

for each spread sheet data taole. Tne standard a~olication

directory schema, Floure 2.1b, is used.

j ~A~t f OLUNS1 CCN1TROL POINTED

CO~r ITON CLCYPT.)F$

Flaure 2.16 - Soread Sheet nirectorv Table Scmema

The GLORAL data items define the recalculation order,

default format, and any other Information aoolicable to the

referenced spread sheet data tablo.

24

b, Spread Sheet Data Table Schema Table

The spread sheet data table schema table, Figure

2.17, contains the predefined columns of the spread sneet

data table. ID is the primary Xey of the spread sheet data

table. The other columns contain the data to calculate the

value of an entry position and construct the user view of

the spread sheet data table.

ID NAME TYPE WIDTH SYNONYM TABLE ACCESS
CONTROL

I ID IN- NONE ALL read: all
TEGER write: DBA

modify: DBA

2 X CHAR NnNE ALL reAd: all
INDEX write: all

Smodifv: OBA

3 y IN- NONE ALL rpAm: all
INDEX TEGER write: all

modify: 0BA

4 FORMAT CHAR NONE ALL read: All
write: all
modify: DBA

5 VALUE CHAR NONE ALL read: all
write: all
modify: DBA

6 FUNC- CHAR NONE ALL read: all
TION 4rite: all

modify: DRA
- --

Pierure 2.17 - Spread Sheet Data Table Sehema Table

29

- .- -

c. Spread Sheet Data Table

A spread sheet data table contains the formatted

data to calculate the values of and display a numerical

model. The spread sheet data table Is described by the

COLUMNS and DESCRIPTION columns in the soread sheet

directory table. A spread sheet data table, Figure 2.19, is

pointed to by a TASLF POINTER In the spread sheet directory

table.

ID X Y FORMAT VALUE FUNCTION

t A I INTEGER 5 5
RIGHT
3

2 A 2 INTEGER 5 5
RIGHT
3

-L -

Figure 2.19 - Spread Sheet DAta Table

The spread sheet data table can be considered to oe the

tabular reoresentation of the traditional spread smeet view,

Figure 2.19, or, conversely, the traditional soread sheet

view can be regarded as one disolay mode of the soread sheet

data table. tach entry position In the view is defined by

one row in the spread sheet data table.

30

25

310

Figure 2.19 - Spread Sheet View

The ID Is the display order of the saread sheet

data table but does not orovide the orderinq for the entry

positions In the spread sheet view. The X and Y INDEX

columns represent the relative position of the entry

oosition in the soread sheet view. The mapoinq of the X and

Y indices to the display Is contained in the GLOB4L column

of the soread sheet directory table. The FORMAT column

contains the data describing the disolay of the entry

oosttion, A numeric value of an entry oosition can be

displayed as an integer, floatino ooint, or dollar and cents

number. The format information also indicates whether the

values should be rioht or left justified and the width of

the entry position in the display. The VALUE column

contains the displav value of the FUNCTION column. The

FUNCTION column contains an exoression which is Used to

determine the value of the entry position. The expression

could be the typical constant, literal, or arithmetic tvnes,

or could be a database ouery, or a pointer to any other ZASS

data table. The operands of an expression can be any

constant value or the value of another entry oositlon in the

31

spread sheet. An operand value can also be an arithmetic,

trigonometric# or some other predefined function, which can

use the value of another entry position as a parameter.

Using the value of another entry position as an operand In

an expression is necessary to support dynamic modeling, I.e.

when a chanae is made to one entry position, it is

immediately reflected in the entire soread sheet view. As a

matter of fact, the freedom to define value of one entry

position in terms of any other entry position resulted in

one data table structure and it also prevented us from usinq

the database Intearity enforcement mechanism for the soread

sheet view.

32

jigj, 11&

II, CONCEPTUAL INTEGRATION

A, OVERVIEW

The main design objective of the Integrated Application

Software System (IASS) is to oresent the user with a sincle

conceotual view of the system regardless of the context of

Its use. From the user's perspective, there is only one data

object, the table. As was indicated in Chapter 2, dependinq

on the level of experience or intent of the user, a

translation may be required to reformat a data table. This

translation is from table to table and therefore, the notion

of a sinqle data object is preserved.

At the conceptual level of each application there is a

common set of table ooerators and a set of application

soecific table operators. The common set of table operators

represents the transoortable knowledqe of the system as t!le

user loaically traverses between apolications. The user must

learn or be Connizant of only the apolication soecific

ooerations as the system use chances.

By functionally cateqorizina each data manipulation

ooerations on the logical file of the non-DBMS aoplications,

an intersection can be deduced. The intersection is

comprised of ooerations to locate, insert, modify, delete,

CopY, and move data In a file. These ocerations can 6e

33

Integrated at the conceptual level by a set of six basic

IASS Primitive table operators based on the relational

alqebra. This chaoter demonstrates how the data

manipulation operations of each selected application can be

mapped into the conceptual level primitives. Althouqh not

the main intent of this chapter, wnere aopropriate,

extensions to the tyzical operation are sioqested.

B. RASIC lASS PRIITIVES

The six basic IASS primitives which can perform the

operations in the functional intersection are ZNSERT,

MODIFY, OLETE, PROJECT, SELECT, and UNION, Each primitive

is set theoretic in that the ooerands are tables and the

results are tables. A table can contain any number of rows.

A special table, B[,ANK, is defined to be a row With all

columns blank except for the 10, A literal strinq,

'literal', can stand for any character strinq in which it is

contained, What follows is a description of the primitives.

For this discussion the following conventions Will be uSe4l

C) The word table is synonymous with data table

(2) whenever two tables are used in an oceration,

tablel and table2, tablel will be the current table.

(3) Column names will aopear in uooer case, their value

will be appear in lower case.

34

I (nsert

Given tablet, INSERT adds table2 at a specified

location. The operator is denoted:

IRSERT(location, table2, tablet)

2. Modify

liven a table, 'OODIFY chances Vie value ot t?'e

columns in the rows of the table. The operator is denoted:

mODIFY((COLUMN. column, new value), tahle)

where the 3-tuple (COLUmN, column, new value) describes the

change by column name, present value, and the new value.

The + indicates that more than one column cat be modified by

a single operation, If a chance to a column value is to be

vade Irresoective of the Present value, e.q. chanoce any

value in column NAME to 'JONES', that desire can be

expressed by a special character, or wild card, olaced in

the oresent value oosition of the 3-tuple.

3. Delete

Given a table, MELETE deletes the set of rows from

the table that satisfy a specified condition based on the

cotumn values. This operator is denoted%

OELETE(Conditior, table)

The ooerands of t"e conditional statement are literal or

numeric constants, arithmetic expressions, or the column

35

....

values of the table. The operators of the conditional

statement are the arithmetic comparison ooerators (<, >, a,

A, 4,), the loQical operators (, ,v , and the

arithmetic operators (, -. *, I). The delete operator also

creates a table that contains the deleted rows.

4. Prolect

Given a table, a Projection of the taole is made by

removina some of Its columns and/or rearranina some of the

remainlnq columns. A projection of a table is denoted:

PROJECT(column list, taole)

where column list names the desired columns from the table.

5. Select

Given a table, a selection returns the set of rnws

that satisfy a conditional statement based on the column

values. A selection on the table is denoted :

SELECT(conltion, table)

6. Union

Given two tables, tablel and table2, the union

creates a taole whose rows are in table1 or table2, or both.

The union operation is denoted:

fiNION(table2, tablet)

The schema of the resultant table will be the same as

table!. The columns in table2 whose content is not the same

36

~-. ~. - .9

as a column in tablel will not be In the resultant table.

There are two differences between the union and insert

operators. First, union aPpends table2 to the bottom of

table 1. Second, insert assumes that tables 1 and 2 are the

same type.

C. RFAL[ZATION OF LOGICAL OPFRATIONS

This section demonstrates that the data manipulation

operations on the logical file in the functional

intersection of each application can be expressed in terms

of the conceatual level primitives. It will be assumed that

the underlyina system maintains the ID column as rows are

moved in a table. Its resolution, therefore, will not be

discussed.

1. Text Processor/rort GeneretoL

The command sets of several text Processors and the

form generator facility of DRASE II and the ZIP form

generator were reviewed, and it was found that the text

processor set contained the set of form generator commands.

Therefore, these apolications will be discussed together.

a. Locate

Positioninq the cursor typically comprises a

larce portion of the text processor and form oenerator

operations, The cursor can be directed to a line number,

relative distance from t~e current line, or to a substrlnq.

The result of positioninq the cursor can be considered to be

37

' I 1 Il I I I I I II I

a line reference, Locating a row In the text or form text

data table Is done byl

SELECT(condition, table)

Uslnq the primitive, the text or form text data table can be

browsed by contiguous lines (e.o ID Xi A ID (X2), or by

line content (e.Q. TEXT or FORM LINE sUbStrinqA(ID < Id

+ to)).

b. Insert

Inserting a row into a text or form text data

table at location ID Is done by:

INSERT(ID, BLANK, table)

The same primitive can te used to insert an entire data

table2 into the current data tablel at location ID:

INSERT(ID, table2, tablel)

C. Modify

Insertinq and deletinq characters are

functionally eouivalent in that they are modifications to

the contents of a file. Assuming that the desired row is

current, the operation to modify the row in a text or form

text data table is:

MO0IFY(CTFXT or FORM LINE), old', 'new', table)

The find and reolace ooeration Is an extension of inserting

39

-.,: "' ." ---. .

or deleting characters, With this operation, a row does not

have to be previously selected. Also, a single change to a

set of rows identified by a conditional expression based on

their column values can be done. The find and replace

oceration is done bv the expression:

MODIFY(CTEXT or FOP LINE, 'old', 'new'),
SFLECT(onditlon, table))

d. Delete

Deletinq a row or set of rows (block), from a

text or form text data table is done by:

nELETE(condition, table)

The condition can oe any function of the ID and/or TEXT or

FORM LINE columns. This qeneralization enhances the typical

text orocessor or form generator operation since rows can be

identified by number or content and a block does not have to

be a contiguous set of rows.

e. Copy

Cooving lines in a text or form text data table

can be done bV the expression:

INSERT(XD,SELECT(condltion, table), table)

Any portion of a text or form text data tablel can be copied

to or saved to another table2 by the exoressions:

39

UNIONCSFLECT(cindition. tablel), table2)
or

UNION(DELETE(condition, tablel), table2)

The qeneral nature of the Primitives enhance the tycical

text Processor or form qenerator oPeration by allowino the

lines to be identified by content and not requirina that a

block be contiguous. For examole, the statement:

u, I (SELECT(rEXT L IN A 6 C'A (IC < I f,
taclel), tatle2)

would coby to taole2, any line in tablel witn ID less than

10 and whose TEXT LIIE column contains tn. character

substring ABC.

f. ove

4ovina rows or a hlock in a text or form text

data table to lecation 10 is done by tne excressior:

INSERT(ID, OELETE(condition, table), table)

The condition can be any function of to'e ID and/or TEXT or

FORm LINE columns. This aenerallzation enhances tte tvvical

text Processor or form generator ooeration amich reauires

that line numters be known and a block of lines be

contiquous.

2. Electronic -all

The UNIX mail utility is an elaborate syste" which

is closely coupled to the ooeratinq system. Viewet as a

database table, the comolexity is reduced. A set ot

40

I
- - - -iIlm - II- - i |

essential mail operations were deduced from the UNIX mail

system,

as Locate

Displayinq messaqes for reading or editing can

be done by:

SELECTCcondition, table)

Using the orimitives, the messaqe to ce disvlayed can be

described by any condition of the columns of the mail data

table. This would oreclude the user trom havinq to orowse

the mail data table first to determine which messages mioht

be of interest and then listino them by number.

A summary of the messaaes can be displayed by

selectinq a set of messaces which satisfy a condition and

then disolaying the desirsd columns:

PROJFCT(column list, SELECT(condition, table))

By usine the orimitives, the user Is not restricted to the

oredefined messaqe summary.

b. Insert

A messace can be created by aopendinq a blank

row into the mail data table and modifyina its null

contentst

UNION(SLANK, table)
40DIFYCCCOLP4P, 5,ne',

SELECT(all columns : 0, table))

41

- -w ?

Alternately, a message can be created at any location, I0

in the mil table by the expressiont

INSENTCD, BLANK, table)
NODIFY((COLUWN, C, new&)

SELECT(all columns a A, table))

Regardless of the method used, the 3-tuple list In the

,Rodify ooerator contalns a set of values for each column In

the mail table exceot the ID. The crane for each column is

from null to the desired value suoplied by the user.

MessaceS addressed to a user can be oicked up

from any mail data table2 by the expression:

UNIONCELETE(TO a 'user', table2), tablet)

MPssaaes can be oicked up from a mail data table2 that

satisfy any specified condition bV the general exoression:

UNIO(DELETF(condltlon, table2), tablet)

Finally, an entire mail table2 can be insertel into mail

tablel at location ID by:

TNSERTCID, table2, tablel)

c. Modify

Assuminq that a message has been selected, any

field in the message can be edited by the operation:

UODIFYC(rOLUMN, column, new value), table)

42

The same change can be made to several messaces wnich

satisfy a specified condition by slightly modifyinq the

basic operation:

MODIFY(CCOLUMNe Column, new value),
SELECT(condition, table))

d. Delete

messaoes can be neleted !rom a Tail data table

based on any column condition bv the expression:

D)LETE(condition, table)

Usinq the oriritives, a user is not restricted to a

vredefIned method of deletinq messaqes. aitm one overation,

any set of messaqes can be identified and deleted.

e. Copy

rhere may oe an occasion wnen A cocV of a

messaqe In a mail data table needs to be Made, Coovina a

messaqe can be done by:

UNION(SELECT(condition, table), taole)

4essages can be copied or saved to another mail data table2

bY the expressions:

UNIONSELECT(condition, tablet), table2)
or

UNION(DELETE(condition, tablet), table2)

43

f. Move

Messaqes In a mail data table are not ordered.

They can be moved within a mail date table to location ID by

the expression:

INStRT(ID,DELETE(condition,table), table)

3. Electronic Spread Sheet

As was noted In charter 2, the typical spread sheet

view IS not the spread sheet data table. However, data

manipulation operations on the view can be translated into

the ooerations on the spread sheet deta table.

a. Locate

Entry positions in the spread sheet view are

referenced by X and Y oosition. As a result of the locate

ooeration, tMe FUNCTION field Is displayed. Locating entry

position c, r in the table is done by the expression:

PROJECT(TUNCTTON, SELECT(X a C A Y z r, table))

The expression suqqests that an entry oosition can be

located by any other column in the spread sheet date table

bY the exoression:

PROJECT(FUNCTTON, SELECT(condition, table))

A problem with VISICAC Is that a model cannot be debuqqed

very easily since the only one entry oosition can oe

referenced at any time, The ceneral nature of the orimitive

44

operators enhances the debugqing capability by allowing a

set of entry oositions to be located in the spread sheet

data table by any condition of the column values. For

example, all entry positions which have a VALUE greater than

10 can be found by the sinqle operation:

SELECT(VALUE > 10, table)

This same action using the VISICALC command set would

require the user to locate the entry positions one-by-one.

b, Insert

One row in the spread sheet view is comoosed of

C rows In the spread Sheet data table (C a number of columns

in the view). Insertinq one row In the spread sheet view at

r, is done by C iterations of the expressioMs:

UNION(BLAMK, table)
MODIFYC((Xf ', x),(Y' 8, r)),

SELECT CX = $AY a 8, table))

In the expression, x is an element of the column set (1..C).

One column in the soread sheet view is comoosed

of R rows in the spread sheet data table (R = number of rows

in the view), Insertino a column in the soread sheet view

at d, is done by q iterations of the expressions:

UNNCBLANK, table)
MODIFY(((X,,d),(YEy))#

SELECT(X a AY ¥ =, table))

In the expression, y is an element of the row set {1..R).

45

Two spread sheets can be apoended together to

form one composite table by:

UNIONCtable2, taolel)

Followinq a row or column Insertion, further

processing has to be done to move tme successor rows or

columns in tne spread sheet view. 4ovinq rows or columns is

discussed in subsection t. After the rows or columns are

moved, the entry positions that use the v~lue of a moved

entry Position as an ooerand in the FUNCTION column must be

found and modified. This process is described in subsection

c. Finally, the modified FUNCTIONS must oe evaluated and

the new entry position VALUE disolayed.

c. Modify

A value or label entry operation in VISICALC is

done to chanqe the value of the FUNCTIOv column of the

current entry position. The expression is:

40DIFYC(FUNCTION, function , new function), table)

Movino an entry position (X = e, Y = c), in tle

spread sheet view bY changing the X or Y value (X a c, Y =

r) may reouire a subseauent modification to the FUNCTION

column of the entry positions that use e, o as an operand.

The primitive expression to find and modify all of these

deoendent entry positions is:

46

- - -~ ~m--|

MODIFY(CTUNCTION, "ep', cr'),
SELECT(FUNCTION 2 'eP', table))

The current entry position can be blanked by the

expression:

MODIFY((FUNCTION, function, A), table)

Clearina all entry Positions In the spread sheet view can be

done as a spocial case of the blanking action previously

described. Tnstead of the table being a oreviously

selected row, it is in this case, the entire table:

MOOIFYC(FUNCTION, function, 8), table)

After modifyina the FINCTION column of an entry

Position, the FUNCTION m1st be evaluated and the new entry

Mositiom VALUE displayed.

The VISICALC format commands deal with the

visual display of entry positions. Formattinq an entry

position reouires a modification to the FOPmAT column in the

spread sheet data table. Chanqing the format o' the current

entry Position ts done by:

MODIFY((FORMAT, format, new format), table)

Ore format chanae can be made to a set of entry Positions

which satisfy a specified condition by the coeration:

%LnOrYC(FCRMAT, format, new format),
SELFCT(condition, table))

47

.2'

d, Delete

One row from the spread sheet view can be

deleted with the VZSXCALC command set. Since one row, r, in

the view Is composed of C rows in the spread sheet data

table, (C a total number of rows in the view) that many must

be deleted from the spread sheet data table. The operation

is:

DELETECY a r, table)

Althouqh the VISICALC command set does not allow multiple

rows to be deleted, the basic delete operation can be

modified to delete a block (¥1 throua Y2) in the spread

sheet view:

DELETECY YIA y < Y2, table)

Deletinq a column is similar to deletina a row.

Since a column, c, In the spread sheet view is comoosed of R

rows CR a number of rows In the view) In the spread sneet

data table, that many are deleted by the sinqle exoression:

DELETE(X z c, table)

This operation can be enhanced to allow the deletion of a

set ot columns (XI through X2):

hELETE(X > XIA X $ X2, table)

48

rollowinq a row or column deletion, further

processing is needed on the table. In the view, a deletion

requires that all rows and columns be moved to fill in the

blank. Moving rows and columns Is discussed In subsection

f. After the rows or columns are moved, all of the

dependent tuoles must be found and their FUNCT1ONS modified

to corr*isaond to the new positions. Finally, the modified

FUNCTIONS must be evaluated and the new entry position

VALUES displayed.

e. Copy

Copying the current entry oosition (X 2 e, Y a

o), to any other oosition (X a c, Y a r), in the soree

sheet view, can be done by the exoression:

MOOIFYC(COLUM, column, (e,o).column),SELECT(X = c

Y = r, table))

If the destination entry oosition (X a c, Y = r) is not

found, a new tuple must be entered into the spread sheet

table and its null contents modified:

UNION(BLANK, table)
*ODIFYC(CO0UAN, X, (epp).eolumn), SELECT(X a 0A

Y U ., table))

For the entry position CX a co Y r r), the 3-tuole list

contains a cmanae for each column except X and Y, to the

value of the same column in entry position at (X e, Y p).

Althouqg order in the scread sheet data table is

49

Insignificant, the entry position can be copied to a

bpecified location by Substituting the insert operator for

the union in the Previous expression:

INSERT(Do, BLANK, table)

A column of heiqht h, can be created in the

view by making h copies of tne entry Position at X z e Y 2

p. In the spread sheet data table. the operation can be

done by selecting the rows witn a Y value in the height

ranne Cr through s) of the column, e, in the view, And

making the same change to the VALUE, FUNCTION, and FORM&T

columns. The operation is:

mQDIFY(CCO0LTM, column, (e,p),column),SELECT(x z CA

(Y) rA Y < s), table))

Copying a column of height h, can be done by

makino h calls to the copy one entry oosition process. On

each call, the Y value for both the origin and taroet tntry

position is incremented by one.

akina n cooies of one column can be done by

making n calls to the copy one column orocess. On each

call, the X value is chanqed.

Copying a row of lenoth 1, can be done by makinq

1 calls to the copy one entry oosition Process. On each

call, the X value for both origin and target entry Positlon

is Incremented by one.

50

CT--W

0

Makina m copies of a row could be done by makina

m calls to the copy one row orocess, On each call, the Y

value would be cnanqed.

Any rectangular portion of a Soread sheet view

In spread sheet tablel, (Y1 throuqh Y2) ov (Xl throuqm X2),

can be Cooied to or saved to another spread sneer In soread

sheet taole2. This oneration is done oy the exoression:

UNION(SELECT((Y : y1 A Y , Y2)A(X) X1A X 4 X2), table1),
table2)

or
UNION(DELETE((Y > YtA T % Y2)A(X > XIA X < X2), tablet),

table2)

f. Move

A row move, from r to s, in the sortd sheet

view can te done In the taole by oditylna the -Y value of

the C rows in the spread sneet data table. TMe exoression

MODIFY((Y, r, s), SELECT(Y = r, table))

A set of rows Cr throuoh s) can be moved by tre same

expression with a different with a different set of

parameters:

mODIFY(CY, y, y - Ir - sl)o SELECT(Y 4 rAY $ s, tablo))

This expression is for the case where the set of rows is

moved up. To move the set of rows down, the new value in t1e

3-tuple would nave to be modified to y + Ir -SI.

51

Moving a column in the spread sheet view is done

with the same primitives. The process will not be

reiterated except to mention that each occurrence of Y in

the original expressions would have to be chanqed to X.

After moving rows or columns, deoendemt entry

positions have to be found and their fU4CTION columns

modified to reflect the new positions. Finally, the

modified FUNCTIONS must be evaluated and the new entry

position VALUE displayed in the view,

52

IV. lASS EXTENSIBILITY

A, COMBINING XASS TABLES

From the review of the commercial application systems,

it is clear that the non-DBMS applications selected for this

study orovide functions to maniculate data in one looical

file. Combininq files, of the same type, can be done by

appendinq files toqether or insertinq one Into another. As

a result of thesp file combinations, however, no new

relationships are developed nor can information be deduced

from the action. Usino the relational database model as tme

common data model, there are a set of binary ooerators which

can be used to combine tables to form new relationshios and

derive information. These operators UNION, SET DIFFERENCE,

INTERSECTION, JOIN, and NATURAL JOIN are defined in Ullman

Ctef. 2). This chapter explores the semantics of comoining

the data tables by these ooerators. Speculation of this

nature can result in numerous table combinations which could

ootentially define a new application. This review is not

oresumed to be exhaustive, but merely suqoests the

meaningfulness of and potential uses for the lASS table

combining operators.

53

_ _ _

.-

8. ZNTRA TYPE CavBINATIONS

This section considers the effect of combining data

tables of the same type by the operators SET DIFFERENCE,

INTERSECTION, JOIN, and NATURAL JOIN. The UNION operator

will not be discussed since each acplication can use It to

support an existing function.

1, Text/Form

Due to the similarities in the text and form tables,

the semantics of the intra table combinations will be

discussed toqether.

a. Set Difference

The set difference operator would be meaninqful

within the context of text arocessinq and forT oeneratino.

It could be used In aplications which reouire a line-by-

line comoarison between two tables. For example, it is

often necessary to comoare two versions of the same computer

orogram in the course of oroaram development or two versions

of the same form during design. By apolyino the set

difference ooerator on two tables R and S, a listino of all

the lines in R that are not duplicated in S would be

returned.

The set difference overator would also be useful

in an application to extract entire sections from a table.

Used in this way, the ooerator would represent the inverse

of the union or insertion ooerators to build a comoosite

tables from the composite table R, those same sections, S,

54

could be directly removed by performinq a set difference.

Similarly, the set difference Could also be usetul to remove

lines from a table, R, that were contained in table, S.

b. Intersection

The intersection of two tables would be

memninqful within the Context of text orocessinQ or form

q~nerat!in. It could oe "sed in aooltcations reiuirinq a

line-by-line comoarison or to match suostrina Oatterns of

two tables to determine their si!ilarities. For example,

comparinq versions of the same table to check their

consistency could be done bY taking the intersection. This

operator also sugoests that two unrelated tables could be

comrared to determine their "closeness". The resultant

table could be used to deduce similarities between the two

tables based on the fact that tMey containel identical

lines, or used to selectively remove duolicate lines from

either table.

c. Join

Joining two text tables or form text tables

would be meaningful. It could be used in an aoplication

whicM reouired two tables to be in context simultaneously.

ror examole, tables equiloined on their ID number would

produce a split-screen effect to review and edit them

side-by-side. This combination would be oarticularly useful

if the contents of one table was dependent on or related to

-- ~ -EW5-

the contents of the other. The same operation Would be a

method to produce a multi-columned table tram two tables.

JoinInq two tables would also be useful in

applications which required a comparison of the lines of two

tables. Secause the join performs a cartesian Product it

would be unlikely that lines could be compared other than as

to their ecuality. Since the join uses a selection

ooerator, the Join could determine equality by matchinq a

line in R as a substrina In S or vice versa. An equiloin on

the contents In two tables would produce a table which would

list the lines In R next to the lines S that were equal.

This could be used to determine the similarity between two

tables with finer resolution than that available by takinq

the intersection,

d. NAtural Join

To do a natural join of text tables or form

tables would be meaninqful. A natural loin between two

tables would produce similar results as those obtained by

daia an Intersection or an eauiJoin on the table contents.

4n apolication in which the natural join could be used would

again be to produce a table based on the equality of lines

contained in two seoarate tables. Instead of creatinq a

table which contained a line from each taole in one row, the

resultant table would contain only lines from one. As with

the eouiloin, the lines returned could be a substrino match.

56

~ 7 i

a. Set Difference

The set difference operator would be meaningful

In a mall utility. An apolication in which the operation

would be useful is to eliminate duplicate messages from

several mail tables*

b. Intersection

The intersection of two mail tables would be

meaningful. By doing an Intersection, duolicate messages

could be located in several mall tables. This information

could be used to selectively manage the message tables and

control the number of message copies in the entire system.

c. Join

Te join of two mail tables would be useful in a

mail utility. It could be used in an aoolication such as

automatic readdressing. For examole, consider the set of

messages that have the same subject, A reciolent could be

in mail table R bY virtue of the tact that it has received

at least one messaae Pertaining to the sublect,. This mail

table In effect would reoresent a channel defined by the

common subject. AS messaces are received in the mail tAble

S, an eculloin on the SUBJECT column between mail table R

and mail table S followed by a projection of R.Meader and

S.Body would create a cooy of the new messaqe for each

recipient in mall table.

57

rl

The join of two mall tables would also be

meaningful In an ad hoC application to find Messa5es In two

mail tables whose fields have a specified relationship. For

example, a Join could be done to return all of the messages

In R and S such that they were from the same addressee but

the messaaes in S were dated.after the messaces in R.

d. Natural Join

A natural join on two mall tables would be

meaningful. Since the BODY column of a messaqe Is textual,

two messages eould'be considered to be equal if one was a

subString match of the other. A natural join on two mail

tables R and 8 would therefore, return all messages in P

which had the same header as a message In S and whose body

was either duolicated, a subset of, or a suverset of the

body of the message in S.

3. Soread Sheet

a. Sot Difference

The set difference operator would be meaninqtul

In a spread sheet application. Tt could be used to compare

two Instances of the same model. For examole, it snread

sheet R contained a model with one set of oarameters, and

soread sheet S contained the same model with a different set

of parameters, the set difference would produce a spreed

sheet view which showed each entry oosition in R that was

different in 3.

5B

b. Intersection

An Intersection of two spread sheet tables would

be meaningful. It could be used to produce a spread sheet

used to compare different instances of the same model. The

resultant table in this application would show the entry

Positions that remained constant alven a different set of

carameters.

c. Join

The join of two spread sheet tables would be

meaningful. If the spread sheets were the same model with

different parameters, an equiloin on the position fields

would be a way to produce a table so that two spread sheets

could be compared side-by-side. A ,rocess could be

developed which could be used to toggle ttween the soread

sheet in view. In this way, each spread sheet maintains it

logical indeoendence,

A join between two spread sheet tables would be

the only way their contents could be compared by column

relationships, For example, a join could be done to

directly determine the differences between two instances of

the same model or the same instance of a problem in two

different models. The join on P and S such that the X and Y

positions were the same but the VALUE in R was In a

specified relationship to the VALUE In S would return a

table which contained the entry positions in R and S which

satisfied the condition.

59

; i

d, Natural Join

A natural join on two spread sheet tables would

produce the same effect as the intersection.

C. INTER TYPE COMSINATIONS

This section considers the effects of Combining data

tables of different tyces by the operators UNION* SET

DIFFERENCE, INTERSECTION, JOIN, and NATURAL JOIN. Some

table operations are not syntactically feasible on certain

table types and therefore are not addressed@

1. Text

a, Union

The union between a text table and a form table

would be meaninqul. For example, the body of a letter can

be keot in a text table. By unionlnq It to a form table

containina a letter head, a form letter would be created.

The union between a text tAble and mail table

would be meaningful. An application in which this ooeration

would be useful to create a text table from the bodies of

several messaces in a mail data table.

The union between a text table and a soread

sheet table would be meaninqful. By anpending a soread

sheet table onto a text table, the FUNCTION column data

could be included in a text table# possibly to be sent to an

indivilual in a letter.

60

The union between a text table and a database

table would be meaningful, If a database table contained a

textual column, for example a literal description of an

object, the data in that column could be Included in a text

table, Conversely, a textual description about an object

Could be kept In a text table. By unLonina the text table

onto the database table, the data for the textual column

would be provided,

b, Set Difference

The set difference between a text table and a

form table would be meaningful. An application to remove

text lines from a text table which were also in a form could

use the set difference. A set difference between a text

table and any of the other table types would not be

syntactically meaninoqful.

c. Intersection

The Intersection between a text table and a form

table would be meaninful In an application to determine the

text lines that were common in the tables. By this

operation it could be determined If a form letter contained

the a body stored in the text table. An Intersectionm

between a text table and any of the other table types would

not be syrtactLcally meaningful.

1. Join

A Join between a text table and a form table

would be meaninaful. A text table can oe joined with a form

61

0;

table on the ID fields which could be used to produce a form

with a textual description. Either portion of this

composite table could be separately edited. An eauijoin on

the lines of the text and form tables would return the lines

which were common in both tables.

A join between a text table and a mail table

would be meaninaful. It the text table had one subject on

each TEXT LINE, by doinq an equiljoin on the TEXT LINE and

the message SUBJECT, a text table can oe created which

contains the message bodies pertaining to a set of subjects

which are of interest. This could be a method of collating

the messages from several system users concernina a

particular subject Into a single document.

A join between a text table and a database table

would be meaninqful. For example, if a database table

contained a textual column, the column in the database table

could contain the ID of a text line. An eouiloin on the

database column and text line would supply the text for the

database tuple. One text line could be contained in several

of the database tuples and by maintaining one copy of the

textual contents, all tuples will be assured of havina the

same textual column value. If the database table contained

a mallina list, a Join on the database table and the text

table would be the procedure by which a copy of t.ie text

table could be made for each entry In the list. Another

application In which a Join would be meaningful between a

62

pOF

text table and database table is where the database contains

a set of keywords or key phrases. By doinq an equljoin on

the TEXT LINE 4nd the keywords or key phrases, every line in

the text table containing the keywords or key phrases would

be returned. The same application also suggests that the

combination could be used in support of a word checking

oroaram. Separate dictionaries can be maintained in a

database table and joined with a text table. The resultant

tables could be used to check spelling or to analyze a

particular style of writing.

A join between a text table and a spread sheet

table would be meaningful. A narratIve description about

one model could be maintained in a text table, Since it is

common to store the same model with different Darameters in

several spread sheets, one text table could be loined to the

spread sheets by ID number to document the model. This

would be useful to the user viewing tme spread sheet table.

To contain this additional information in the view, would

require an application specific process which vould disolay

the additional field.

e. Natural Join

The natural join between a text table and for

text table would be meaninqful since the column names are

synonymous. It could be used to determine the lines of text

contained in both tables, The resultant table would be the

same as that returned by takinq the intersection.

fi3

2. form

a, Union

The union between a form text table and a text

table would be meaningful. An application In which this

operation would be useful would be to generate a form letter

as was addressed in subsection I. The union between a form

text table and a mail table would be meaningful. The body of

a messaqe could be a FORM LINE. By unioninq the fort table

and the mail table, a form sent line-by-line through the

mail facility could be regenerated.

b. Set Difference

The set difference between a form text table and

text table would be meaninqul, In a similar aoplication as

that discussed in subsection 1, the operation could be

useful to remove a set of text lines from a form. A set

difference between a form text table and the other table

types is not syntactically feasible.

c. Intersection

The intersection between a form text table and a

text table would be meaningful to determine the common lines

of text between the two tables as was described In subectlon

to An intersection between a form text table and the other

table types Is not syntactically feasible.

do Join

A join between a form text table and text table

would be meaningful in applications discussed in subsection

64

1. A loin between a form text table and a mail table Would

be meaninqful. A user can sequence a FORM LINES and name the

form in the SUBJECT column and send a form line-by-line

through the mail facility. A form text table with one line

can be created containing the form name. Sy an equiloin on

the FOPM LINE and SUBJECT columns, all of the FORM LINES

could be collected from the mail table. Te form can be

reseQuenced by the data in the SUBJECT column of each

message.

A join between a form text table and database

table would be meaningful. A join on the ID numbers between

a form text table and an associated database table would be

useful to view the two tables simultaneously. The lines of

each table in the loined table could also be edited

independently in this form.

A loin between a form text table and saread

sheet table would be meaninatul. Since the FUNCTION column

could contain a reference to an entry in a database table, a

form text table and spread sheet table could have a

relationship throuqh a common database. An eaulloin on the

FUNCTION column and FORM LINE would return the list of entry

oositions and form lines which contained the same database

reference. In the view, the spread sheet and the filled out

form could be displayed. This would be useful to show a

spread sheet model and its oarameter set in a form in one

view,

65

e. Natural Join

A natural Join between a form text table and

text table would be meaninqful in the same application

described In subsection 1.

3. Mail

a, Union

The union between a mail table and text table

would be meaningful. A message can be created by a union

between a mail table and text table that contained a message

body on one line, The message header can then be edited for

the messaqe created. Similarly, a text t~ble of n lines

could be unioned onto a mail table and sent to a system

user. FPOM, TO, COPY TO, and DATE columns of n messaoes

would be the same. The text table name and ID can be Placed

in the SUBJECT column to direct the recipient in the

reconstruction at the text table.

The union between the mail table and a database

table containing a textual column is meaningful. The union

would be useful to Supply a message body from the textual

column. The header of the messaoe could then be edited.

This would be a method to send dAta In a local database to

any other user In the system. Another appLication for a

uv ion between a database and mail table would be to generate

a set. of message headers in a database table. These headers

could be unioned onto a mail table and then the BODY columns

provided.

66

- ' .' .- , -A --

b. Join

A join between a mall table and the form text

table and text table Is meaningful. For example, this

operation can be used to send a text table or form text

table to a system user through the mail facility, A set of

messaqe headers addressed to the same recipient containina

an I in the BODY Colurfn, could be oreoared in the mail

table. By doina an ecuijoin on the message SnDY and the

text or form text ID columns, and removing the extraneous

columns, a message containing each line of the form text or

text table can be created.

A Join between a mail table and a database table

would be meaningful. For example, a messaqe could be

addressed to a qroup of individuals recoonized by a single

name. A database table could contain the mapoing from that

sinole name to the individual names, An equiljoin between the

TO column of the message and the column containina the

aqqreoate name in the database would produce a table which

contains a copy of the oriainal message for each individual

included in the group. This operation could also be used to

generate a messaqe, Havinq preoared the body of a messaqe

and using a standard subject line, a database table

containing a set of headers includina the subject, could be

eouijoined with a mail table on the SUBJECT columns to

oroduce the entire miesaoe. This messaoe oeneration method

is particularly useful in a situation where the standard

67

headers are always beinq revised. It Is also useful when one

message needs to be sent to several different headers or

several messages of the same subject need to be sent to the

same header,

Finally# a message can be created by joining a

database table containing a set of message headers aind a

text table containing a message body on each line. By

eaulloininq the two tahles on the ID column, one heading

would be joined to one body. A join on any other column In

the header, and the TEXT LINE would join every header with

every body.

P c, Natural Join

The natural join between a mail table and

database table would be meaninoful. An apolication in which

a natural join would be useful would be to supoort routinO

of incoming messages. Tor examIole, it is often necessary to

route messages to Individuals based on the messaee subject.

If a database were maintained which had fields for the

subject and name of a person, the mail table could be

naturally joined to this list. The result of the action

would be a table which contained a copy of the messaoe for

each person.

4. Spea Sle

a. Union

The union between a spread sheet table and a

database table would be meaninqful. This operation could be

69

useful in a situation where a spread sheet must contain

standard entries. For example, a database table could be

maintained with a subset of the spread sheet table columns

(e.o. X, Y, and FuNCTION). This database could be unioned

onto a spread sheet table to boiler plate the soread sheet

view.

b. Join

rte loin between a spread sheet table and

database table would be meaninoful, For example, a database

table could contain a set of values which are of special

significance. A conditional Join based on these values and

the VALUE column in the spread sheet table would return all

of the entry positions which satisfied the condition.

Another apolication in which this combination would be

meaninqful would be to store standard entry position

definitions in a database table. An equiloin on the

position columns would boiler plate the soread sheet.

Finally, an application In which this combination would be

meaningful Is to store a set of parameters for a spread

sheet table in a database containing Columns for X, Y, and a

vector containino the oarameter set. 9y doinq an equiloin

in the X and Y columns, and removing all of the columns

except the X, Y, FORMAT, VALUE, and desired parameter

column, the parameter set is supolied to the model.

69

I

C. Natural Join

The natural Join between the spread sheet table

and a database table would be meaninqgful. A database table

could contain documentation with. respect to each entry

position In the spread sheet table. By doinq a natural join

on the X Y columns, a spread sheet table could be documented

tuple hy tuple. This would bspecially be useful If there

were Instances of the same model in separate soread sh et

tables. For this aoplication, the line documentation would

onlV have to maintained in one database table.

A spread sheet can be created from two database

tables. Database tablel could contain the X, Y, and FORMAT

columns representing a oarticular soread sheet for,%at.

Database table2 could contain the X, Y, VALUE, and FUNCTION

:oluons reoresentinc a standard model. y a natural join of

the tie tables, a spread sheet containina a standard lodel

in a selected format would be oroduced.

70

4"

1

V. CONCLUSION

A. FINDINGS

Based on this study, It can be concluded that the

relational database nodel can conceptually supoort the data

representation and Tanipulation requirements of the selected

IASS aoplicatlons. At the conceptual level each locleal

file can be represented as a table and the common data

manipulation functions of each aoplication In Its

traditional form can be expressed in terms of basic IASS

primitives, In the T.SS, hicher level avolication specific

functions can be defined In terms of the lower level

primitives. For examele, the COPY, MOVE, and FVI D AND

REPLACE functions can bo expressed In terms of the primitive

ocirs, INSERT/SELECT, INSERT/DELETE, and MODIFY/SELECT

respectively. In addition to the intersection of commands

and functions that exists between the lASS applications

Vjere exists an intersection of commands and functions

between subsets of the applications. For example,

formattLnq commands are apolicable if a user is editina a

text file, form# or message body. Also, aoareqate

arithmetic functions are common to database and spread sheet

apolications, These Intersections further reduce the set of

aoplication soecific commands and functions a user must

know.

71

The XASS also contains a set of four Combining

operators, when used to Combine tables of the same type,

these operators can be used to deduce information about data

contained in two tables, and to create new tables from

eXistinq tables. In this way, the ZASS enhances the basic

capabilities of each of the non-DBMS aoolications.

By mapoina the locical file into one conceotual date

object, data independence is achieved. Therefore, the full

use of the specifically desiqned data tables can be realized

bY removinq their semantic identity. A data table can be

used by a loqically different aoplication or it can be

combined with a different table type into a table which

defines a new relationship. This new table can be created

for an ad hoc application or for an application added to tt~e

1ASS. The ability to combine data tables imoarts to the

ZASS, coabilities which are not available from the set of

disjoint applications.

8. FOLLOW-ON RESEARCH

The first task is to re-evaluate the logical data bases

desioned for the IASS. The present organization implies

that each application Is a disjoint database. This

perspective was useful for this study, but It is clear that

they must not be disjoint if it Implies that different table

tyoes cannot be combined. Another iteration on the IASS

tables needs to be done to combine the aoplication

72

directories and data table schemes Into tables In a

centrally maintained data dictionary/directory.

After the conceptual level is re-evaluated, the next

step in the project should be to desiqn the physical level

of the TASS and desiqn the software to Implement the system.

it is recommended that the first iteration of the

implementation be a prototype consistinq of the table data

object and the ten lASS primitives, to evaluate the utility

of the TASS to support the needs of a user In an actual

operatinq environment. Subsequent iterations can include

the DBMS functions such as data integrity, security, and

crash recovery.

Concurrent with the Physical level and software desion,

the apolication specific command lanquages and oro:essinq

proarams can be desiqned. The text formatter, form ortiter,

and spread sheet view generator can all be desiaved based on

the data table definitions and the abstract interfaces of

the primitives,

Finally, it is recommended that the 1ASS be emulated on

an existinq relational DBMS (e.q. DBASE ZI). The reason for

this Is two-told. First It would provide an availahle test

bed which can be used to test concepts which need to be

resolved before the prototype system is delivered. Second,

it could be used to determine the manner in which the XASS

will handle the fundamental needs of the user before the

73

first prototype Is finIshoe It would therefore# be a way to

involve the user in the early desiqn staoes of the lASS.

74

LIST OF REFERENCES

1. Martin, J,, Computer Data-Base Organization, Prentice
Hall, 1975

2. Ullman, J., Principles of Database Systems, Computer
Science Press, 1990

75

'~- *~~4~L

APPENDZX A: WORD STAR

WORD STAR is a word processing program developed by

Micro-Pro to combine the capabilities of a screen editor and

an on-screen text formatter. The result is a very powerful

text editor which displays the referenced file as it will

appear on the printed oage.

WORD STAR Is primarily menu-driven. The commands which

are Presently valid are displayed In a menu, and are

executed by keystroke combinations. On-line information is

available to the user concerning many other aspects of WORD

STAR. The menu driven feature eases user initiation to WORD

STAR and is part of the Help facility. The level of help Is

selectable to match the users level of exoerience, and

determines the extent to OhiCh the menus are displayed on

the CRT.

WORD STAR is composed of a set of seven riierarchically

organized menus or environments, as shown in Table A.l. The

user enters 4ORD STAR in the No-File environment. At this

point there is no file In reference, the object granularity

is the file, and the menu options include commands to:

chanqe the loqged disk drive, set the automatic directory

display feature (on/off), set the help level, orint a file,

rename a file, copy a file, delete a file, run a Program,

open a document file, and open a non-document tile.

76

-..
0"0-

Table AI - WORD STAR Menu Hierarchy.

LEVEL ANU

I No rile

2 Main Menu

3 a. Help
b. On-Screen Format
e. Print Control
d. QuicK Edit
e. File/BlocK

dORD STAR recognizes two tyoes of files, "document" and

"non-document", A document tile can either be a text tile

processed bY a word processor or a Proaram run oy a

computer. A non-document file is a special ouroose file

which is used by another software product, and will not oe

discussed furtner.

The on-screen editor and formatter are invoked by

selectinq tne menu option to open a document file. This

causes AORD STAR to enter the lain Menu environment with a

specific file in reference. It the tile oreviously existed

it Is made current, otherwise a new file is created and made

current, On entering the Main Menu environment, a status

line and a rule are initialized. The status line contains

information about the system - the name of tne file. tne

page within the tile, the column and row numner the cursor

77

is at, and the insertion mode (on/off). The rule Indicates

the right and left margin position as well as the tab

positions. The main Menu represents the basic file editing

environment where the user will remain until it is decided

to quit the current tile and return to the No File Menu or

the ooerating system. In any case, ,ORD STAR does not

permit lateral movement between the sub-menus of the Main

Menu.

A useful feature WORD STAR employs is *word wrap". with

word wrap, the user does not have to insert carriage returns

at the end of each line. As the text overruns the end of

the line, WORD STAR automatically starts the next line. In

this way, the user merely inputs an entire block of text as

a continuous ASCII character string, and leaves te

formattina to the system. In the Main Menu, the user can

edit the file in granularities of character, word, and line.

Insertion is a "toggled" operation Con/off), where the user

is either in insert mode or overwrite mode. Any keystroke

entered is either inserted in the text at the cursor

position, snifting characters to the right to accommodate

it, or overwrites the character at the cursor position. To

facilitate on-screen editing, the Main 4enu contains

commands to control cursor movemant and to scroll the

screen. It is possible to insert tabs or end-of-paragrapn

markers. There is a "Find and Replace" command which can be

repeated any numoer of times, Deletions can be done on a

78

single character, a word, or an entire lines The Main Menu

also contains options to select one o the five submenus.

The Quick Editinq environment supports editinq on nigher

levels of abstraction of text objects than the Main Menu.

There are additional cursor movement commands to oive a

wider rance of control and granularity. As in the main Menu

environment, the user can scroll the display, but now It is

continuous at nine user selectable rates until stopped oy

command. Insertions are accomplished in tne same way as in

the Main Menu environment, but deletions are Possible on a

wider ranae of objects. There Is a feature to allow a

command to be repeated at one of nine user selectable rates,

until stopped by command.

The Block environment provides the user a set of

operations on a block of text. WORD STAR considers an

entire file to be a special case of a block of text. Files

can be saved by several menu options: save and resume the

referenced file, save and quit to the operating system, save

and exit the referenced file, and copy to another file.

Files may also be renamed, deleted, printed, or quit without

savinq changes. To support these file operations, the Block

Menu contains options to chanqe the loqqed disk, and to turn

the automatic directory listing on or off. In this

capacity, the Block environment is used as a successor to

the Main or Quick Editing environments after the cursor is

positioned. Blocks in a file must be marked by the user.

79

As a delimited aggregation of text, a block can be moved

within the same tile. Copying blocks of text can either be

within the referenced file or between the referencel file

and an external tile. Block Copying between files are bi-

directional. Copyinq a block to an external file entails

overwriting an existing file or creating a new tile.

Copying a block from an external file entails moving the

entire external file to the point in the text indicated by

the cursor. Any marked block can also be deleted. As a

precautionary measure, WORD STAR allows the user to hide

block markers, and only blocks which are visioly marked can

be deleted. In addition to a text block beinq organized

into a continuous, unstructured strinq of text, WORD STAR

supports a columnar organization.

The previously described menus contain onerations to

create, edit, position the cursor, or outPut a text file.

The format of the file, either as it is visually displayed

or printed out, is defined by a set of formatting parameters

associated with the file or by commands embedded in the

file. The formattina parameters associated witn a file are

initially set to default values and the set of embedded

commands is initially empty.

Formattina in WORD STAR is Primarily done on-screen with

the options contained in the On-Screen Menu. The on-screen

formattino commands are those whose effects can oe visually

displayed, and they are listed in Table A.2.

so

Table A,2 - WORD STAR On-Screen Formatting Commands.

1, Set left marqin
2, Set right margin
3e Release margins
4, Set and clear tabs
5, Indent a paragraph
6. Create a special rule
7, Center text
8, Set line spacing

The On-Screen Menu also contains options in tle form of

(On/Oft) toggles to control: word wraop rule display,

variable tabbino, hyphenation help, riaht marqin

justification, soft hyphen, print embedded control

characters, and page breaK display. If an on-screen

formatting operation needs to be applied to tme previous

contents of the file, the applicable oortion of the file

must be reformatted. Furthermore, these formattinQ

parameters are only temporarily applied when the file is

referenced. Any subseauent reference to a file recuires

that the on-screen formatting parameters be reset.

WORD STAR combines into one menu, the Print menu, all

options which create special printing effects not normally

disPlayable on a video screen. There are options to: bold

face, double strike, underline, strike out, subscript, and

superscript. SInce the effects of these options cannot be

81

* .

displayed on the video screen, a special character Is used

to mark the affected area. Additional special printing

effects are selectable through this menu on a one time

basis: overprint a character, indicate a non-break space,

and overprint a line. The Print Menu also contains options

which control the printer durino output. The user may embed

commands in the text file to cause the printer to chanqe

pitch, or cause a pause to allow tne user to cnange the

Print element or ribbon.

Printing can also be directed through the use of

embedded dot commands. These commands are placed in the

text tile and appear as regular text on the disclay, but are

not output to a printer and force WORD STAR to change a

prlntlno parameter at print time. Dot commands alter the

default parameters WORD STAR uses to format the Printed

page. Table A.3 provides a listing of these commands.

Dot-commands may be placed anywhere in the text, but

since they are static and tend to destroy te relationship

between what Is displayed and what is printed, they are

usually placed at the beginning of the text tile. As with

the options of the Print Menu, dot-command actions must be

supported by the specific printer in use.

The last menu to be described is the help enu. Melp is

"on-line" In that it can be invoked at any time throuoh the

Main Menu, and Is "dynamicO In that the level of help can be

adjusted. The level will determine now much information is

82 -

displayed when an oation is selected. The Help menu options

display information on: paragraph reforming, flags in the

right-hand margin, dot and print commands, status line,

ruler line, how to set margins rnd tabs, and how to move

blOks Of text.

Table A.3 - WORD STAR Dot Commands.

1. Set line height
2. set page length
3. set top margin
4. Set bottom margin

5. Generate headers
6. Generate footers
7. Set footer margin
8. Reset page num6er
9. Offset page from left side of printer
10. Position page number
11. Set character width
12. Force a page break
13. Prevent a oage break

wCRD STAR is an excellent and very pooular word

processino program. The screen-oriented and on-line

formatting features are different from other systems in that

they are extremely easy to use. Once exoerience is gained

with WORO STAR it is difficult to use line-oriented editors

or off-line formattinq systems. The on-line help facility

makes WORD STAR easy to learn and user friendly. One aspect

of WORD STAR that could be considered a disadvantace is the

83

larae comimand set, However, being menu-driven, the commands

not normally used do not have to be memorized since they are

always listed in the menu,

84

APPENOIX 8: VI

OVZ" Is a text editor used by the UNIX operating system.

and was created by the University of California at BerKeley,

and Sell Laboratories*

VI (visual) Is a display oriented Interactive text

editor with a command vocabulary size of aoout ninety one.

the user sees the CRT screen as a window into the text file

and all editing operations are immediately visible. Line

numbers are not displayed and have no real use in VI,

although it is possiole to find out the number for a line.

For the sake of protection the user does not actually edit

the tile, out a copy of it. At the comoletion of a session

the user will indicate whether to Keeo tne edited covy or

the oriqinal.

There are forty seven movement commands for control of

the cursor, whicn is the editor's point of reference, and

the screen display. Scope of movement is possible over

file, screen, Paragraph, section, sentence, line, word, and

character sized units, Up to twenty six locations in tne

file can be marked for later return, or specific locations

found that match a desired character string. Table B.l

lists the cursor movement commands available in the VI

system. Note that there Is duplication# In that more than

one command does the same thing,

85

Table 9.1 - VI Cursor Movement Commands

1. Back ward window
2. Forward window
3. Scroll down C

4. Scroll up *
5, Backspace one character *
6. Backspace a single character
7. SacKup a word
8. BacKup a word during insert
9. Backup to beqinnLnq of word
10. Retreat to previous line *
11. Retreat to beginning of sentence
12. Retreat to beginning of previous paraqraoh
13. Retreat to previous section boundary
14. Linefeed advance to next line
15. Advance to first non-white soace on next line *
16. Advance to next line, first white soace
17. Advance to next line, same column *
18. Advance to next character *
19. Advance to beginning of word
20. Advance to end of next word
21. Advance to section boundary
22. Advance to the next typed character
23. Advance to beginning of next oaraqraoh
24. Move to previous line *
25. Move to end of current line]

26, Move to balancing parenthesis or orace
27. Moves cursor to last line on screen *
28. moves cursor to middle of screen *
29. Move forward to beginninc of word
30, Move forward to end of word
31. Move to first non-white soace on current line
32, Move to line number I *
33, Search for word *
34. Search forward for string Cs
35. Search backward for string *
36. Search for next match **
37. Repeat last single character search
38. Find a single character, backwards '

39. Find a single character, forward *
40, Reverse direction ot Previous find

86

Table B.1 - (COnt.)

41. Find first instance of next character
42. Repeat the last search command
43. Homes the cursor
44. Mark the present position ot the cursor
45. Return to marked position $

46. Redraw the screen
47. Returns to orevious context

The operations of insertion, modification and deletion

are supported by thirty commands that permit the user a

varied level of object control. Items that are inserted,

modified or deleted are immediately updated on the screen to

give the user a current view of the file status. The user

also has the ability to undo the previous command if its

effects were undesired. most insertion and modification

commands are structured so that they continue to ooerate

until the user issues a command to terminate them. Normally

durinq insertion the user has control of format in that new

lines are started by entering a carriage return. However

there Is an option that will let VI determine when to start

a new line, based on line lenqth, and let the user just

enter text as a continuous stream. Table 8.2 lists the

thirty edit commands,

In order to use VI the user Issues the command "vi"

followed by the name of the file to oe edited. If this is a

87

7 _J

new file, then the name will not be found in the directory

and VI will create an emoty file, After entry, the user will

issue cursor motion commands to maneuver through the file,

and issue edit commands to change the contents of the file.

There are no other modes or displays available in VI,

Table 8.2 - VI Edit Command Summary

1, Insert a number of spaces
2. Insert nonprintable characters
3, Insert "shittwidth" blank spaces
4. Insert at the beginning of line
5. Insert at end of line
6. Insert before the cursor **
7. Insert after the cursor **
R. Insert new line below current line
9, Insert new line above current line
10. Insert text below current line ;$

11. Insert text aoove current line s
12. Delete last character
13. Delete rest of tie text on current line
14. Delete character oefore cursor
15. Delete the following object
16, Delete single character under cursor *,

17, Repeat last command *
1s. Join together lines
19, Reolace single character under cursor
20, Replace characters at cursor **
21. Change the entire line
22. Change sinqle character
23, Chanqe the following object
24. Change rest of the text on current line
25, Undo last change to current buffer **
26. Restore current line to Previous condition
27, Yank following object Into buffer *
29. Yank a copy of current line Into outfer
29. Repeat last text insertion
30. Named buffer specification follows *

mmiN a ~ ~msenmm H e m mmm

'i8

In addition to the two command categories already given

there are additional commands of a miscellaneous nature.

Table 6.3 lists these additional commands.

Table .3 - miscellaneous VI Commands.

1. Print ile status message
2. Clear and redras the screen
3. Redraw the current "logical" screen
4, Suspend or restart output
5. Cancel Partially formed command
6, Return to Position in last edited file
7. Reformat lines in buffer
0, Indicate file and option manioulation
9. Quit V1, enter line-oriented editor
gmm n immmeaeegm~minminmme

Some very basic formating commands for line lenqti and

indenting are directly availatle. A macro creation

capability is present to allow the user to create

abbreviations tor command strings. Table 9.4 lists these

formatting commands, VI makes no claim to supoortinq a

formatting package, since the file will be output in the

same format the user entered it. For special formatted

output a VI generated file must be processed by an off-line

word processor, like "0ROFF -ME" described in Appendix (D).

VI provides a nigh degree of support to the user for

restructurinq a file# or files. There are nine buffers

available for storinq deleted text, and twenty six ouffers

69

to use as temporary holdinq spaces wille reorderinq and

edIting. The text can be taken from other files and/or

buffers, for use In the file currently being edited. If

needed, previously deleted text from the current file can be

recovered, and also other files.

Tible 0,4 - VI Formattinq Commanas.

1. Reformatting command

2. Shift lines left one "sniftwidth"
3, Reindent lines

4. Shift lines right one "sniftwidth"
5. Prints current file contents

OVIO is a good screen oriented editor and has a wide

ranqe of capabilities, however it has some drawbacks.

(1) It has a poorly designed user interface since the

command vocabulary is very large and the individual command

strings are difficult to remember. There does not seem to

have been much thought given to the desiQn of the command

vocabulary.

(2) It takes a fairly long time to learn the VI system

and gain functional use. An on-line tutorial orogram is

used to help beainners, since It is hard to oecome familiar

with It on their own,

90

(3) VI does not inspire user confidence In that it is

too easy to accidentally enter some unknown command string,

and there Is little correlation between what the useT wants

to do and the command(s) that must be Issued,

(4) From personal use, about thirty three commands were

considered to be generally useful (marked by * or **), and

only ten of these accounted for the greater majority of all

operations (marked by **o The remaining VI commands were

generally treated as "window dressing" oy all but the most

sophisticated users.

(5) There is no help facility, of any kind, provided by

the V1 system. At the very least, an on-line listing of

commands should be provided,

91

APPENDIX C: EDIT

EDIT is a text editor supported by the UNIX operating

system. EDIT is a simplified version of another UNIX

editor and contains a minimal set of operators. It is line

oriented which means that the main object of EDIT Is a line

of text of some finite lenqtn,

EDIT merely supports text file creation and modification

operations. The user inputs text into a file by lines,

indicating the end of a line by a carriage return. A

display of the file will show an ordered list of lines ds

they exist in the tile. Ordering of lines is completely

determined oy the system and although the user can use line

numbers as a reference# the line number is not directly

accessible to the user to change or set. kny display of

text by EDIT is done by line. Substrings can be referenced

within a lines or lines. A formatted output disolay by EDIT

can only be achieved if the user directly inputs the desired

format line vy line. No processing of the contents of a

line is done by EDIT.

*hen invoked, EDIT sets aside a temporary copy ot the

referenced file In a working ouffer. If the file -Joes not

already exist in the directory, then it Is a new file and is

created. The basic set of commands available to EDIr are

listed In Table C.1.

92

Table C,! - EDIT Command Summery.

1. Edit a file
2. Specify a file
3. Append line(s)
4v Insert line(s)
5. Insert line(s) into an external file
6. Insert line(s) from an external file
7. Delete line(s)
8. Copy line(s)
9. Move line(s)
10. Print line(s)
11. Show line number
12. List line(s)
13. Substitute a string
14. Search for string
15o Undo last Command
16. MaKe effect of command global
17. Move cursor

- forward
- backward

1. Quit

Searching for a line has the effect of makino the found

line the current line. Any subsequent editino operations

are done In relation to the current line, Lines can be

found and displayed by line numbers, and ranges of lines can

be specified. Lines can also be found and displayed forward

or backward, relative to the current line. A line can be

found by any substring of its contents, but the entire

substring must be contained in one line. Because of this

deficiency a substrinq may not be locatable merely because

it exists in the text file. when searcnina EDIT will move

93

__ _ __ _ 1
' *4

forward or backward and will wrap around the buffer, so as

to return to the starting line it tne target object is not

found.

New lines can be appended before the current line, or

inserted after It. The user Issues a command to specify that

there are no more lines to add. Upon completion the current

line is tne last line added. Additions can also be made by

moving or copying lines within the text file. Vovinq can be

viewed as a Combination of a deletion and an Insertion. By

specifying a range of lines to be chanqed, they are deleted

and the system enters insert mode for the user to add tne

new lines. Additionally, insertions are possible from other

text files.

Modifying a line is done by substituting a new string

for an already existing target string on the line. It

desired, the substitution can have global effect in that it

will modify all occurrences of the target string on all

lines.

Deletion is usually accomplished by indicatinq tne line,

or lines, to be deleted. A search commend can oe used with

the deletion operation when the specific line numbers are

not know.

EDIT protects the user from making inadvertent changes

to a text tile. The effects of the last executed command

that effected the buffer can be reversed. Additionally, the

effects of the editing session do not oecome oermanent

94

.:' rr , ,,

unless the user issues a Command to make them permanent. At

t1hat point the edited copy, which is in the buffer, replaces

the original file in the directory. Leaving EDIT without

Indicatinq to make the changes permanent is like the editing

session never occurred*

In addition to writing a whole buffer out to the

directory, subparts can be written to another text file.

This is done by specifying tne range of lines and the file

to be written to.

The EDIT text editor is very basic which is both an

advantage and a disadvantage, It has a minimal command set

and therefore Is easy to learn. The bigoest proolem Is that

It is line-orientea. As such, modifications are done a line

at a time, where each line is a separate entity. It odes not

treat the tile as a whole, but as a disjoint collection of

lines. It imooses the idea of line numbers, wnicM do not

exist in the text file, £&o order to use the editor, There

are fewer high level editing operations available, as

comoared to current screen-oriented editors, and they are

limitea to operating on lines and not tne text file as a

whole. While capaole of producing satisfactory results, due

to its line at a time limits, the operation ocecomes tedious

if the file is large, and/or there are a lot of small

changes which must be done. Given the advanced features of

todays line-oriented editors, EDIT Is a very archaic and

frustratino way to create and modify a text file.

95

AD-A126 979 ANALYSS OF T HE RELTONA DATA BASE MODE N SUPPORT 3)
POSTGRADUATE SCHOOL MONTEREY CA R NISHIMURA DEC 82

UNCLASSIFIED F/G 9/2. NL

lllllllllI olEEEEEEEEEEEE

L 1.25
14

S... -..
. . . .

~MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF ST
AN DARD

S
'
1

9 6 3
-

A

l(I i2

'I I,

11U1
u~hhIi

APPENDIX 0: NROTF -NE

*NROFF -ME" is a text processing facility for tiles that

are created on the UNIX operating system. It was created by

the University of California at Berkeley, and Bell

Laboratories. *NROFF" is a program that acceots an input

file prepared by the user and outputs a formatted oaper to

the user's design. "-ME" is a macro package that enhances

the capabilities of the ONROFF" program by addinq additional

formatting abilities and commands. The input file consists

of the actual text entered by the user, through some editor

system, and a series of embedded NROFF -ME commands.

There is a large vocabulary of Oreouests", which are

really dot-commands consistinq of a period followed by a two

letter string. The basic NRCFF packace supports seventeen

categories of commands, and has a total of eighty seven

commands. The .ME packaoe adds three categories and a total

of sixty commands for a grand total ot one hundred and forty

seven commands. Table Del lists the NROFF and -PE command

cateqories, and the number of commands in each.

NPOFT -ME uses thirteen Predefined ceneral variables and

twenty three Predefined read-only variables to support its

processing needs, The user is provided with a macro

facility to define new commands in terms of the basic set of

commands and operations on the variables. This allows the

96

i |1 i i ' " - ' .. . o , .

user to abbreviate a fairly long command stream into a

single command.

Table D.l - NROFF and -ME Commands.

COMMANDS

COMPMAND CATEGORY
lROFF -ME

1. Font i Character Size Control 7 9
2. Paoe Control 7 0
3. Text Fillingo Adjusting & Centering 6 0
4. Displays 0 22
5. Vertical Spacing 7 0
6. Line Length & Indenting 3 0
7. Paraorephing 0 4
9. Macros, Strings, Diversions, £ Traps 13 0
9. Number Registers 3 0
10. Tabr, Leaders, & Fields 4 0
11. InoutOutout Conventions 9 0
12. Hyohenation 4 0
13. Titles 3 13
14. Headinas 0 b
15e Line Numbering 2 0
16. Conditional input 8 0

17. Environment 3witchinq 1 0
18. Standard Input Insertions 2 0
19. InputOutput File Switching 3 0
20. Miscellaneous 5 6

TOTAL 67 60

NROFF -ME Is a qood word Processing system and it can

produce some complex formatting actions. However, it loes

suffer from some drawbacks.

(1) Since the file is first created by the text editor

and then run by NROFF, the user nas a slqnificant delay in

97

I
- - -: ~

determining it the desired format was achieved.

(2) In addition to depending on the text editor, NROrF

mUSt depend on other programs to preprocess the text file

before NROFT can handle It for specialized requests. Two

examples ot preprocessors are packages to handle tables and

complex equation symboloay, while enhancing NpOaF -mE's

capabilities, they add more categories and commands, and

increase the amount of time necessary for tne user to see

the actual results of commands.

(3) The user manual for the NROFF packace is not

presented in sufficient detail to completely understand the

effect, or use, of all Commands, It appears that the user

is supposed to have a basic understandino of the system

before readino the manuals!

(4) The command vocabulary is fairly larqe and they are

not easy to remember. Based on personal use, only about

twenty Percent of the vocabulary is generally useful and

therefore remembered. Table D,2 Presents a simlitfied

listing of tne most used commands.

90

lr - ' . - . -

Table D.2 basic Compands *RoFF -mE

1. Page length
2. Line spacing
3. Line lepqtn
4. Page headers

5. Indent
- permanent
temporary

6. Begin next paqe
7, Need s lines
8, Insert # blank lines
9. Center tne next # lines
10, Break
11. Define a macro
12. Fill/No-till
13. Hyphenate/No-hyphenate
14. Underline

15. Section/Chapter headinos
16, Quotations
17. Footnotes
18. Keep an Index
Iq. Start Paragraph

L tas ic
left adjusted

- oodv indented
- numbered

20. Start display
- list
- block
- floating block
- delayed text

21. Table handler *
- definition

Start
b body

- end
22. £auation definition
23. Multiple column formac
24. Default paoer formats

- thesis
25. Control constructs

- read special variables
- chanqe special register
- conditional formatting

P part of Table preprocessor

99

SA_ _

APPtNDIX E: DBASE I

DBASE I Is a relational database system created by

Ashton-Tate of Los Angeles, California for microcomputer

systems, ror this review, the CP/1 version of DBASE I was

used, where the DRASE II program is an executable "commano

file" residinq In the system.

The DBASE 11 system utilizes several different file

types: database, report torm, command, Index, memory, and

text. Each file type has a specific purpose that is

identifiable by its type name. "Report form" files store the

Information, specified by the user, for describing the

format (headings, fields, totals, subtotals, contents, etc.)

in which a "database" file is to be output. "Command" files

contain a sequence of DBASE It statements, commands, and

control structures necessary to create a user defined view.

"Index* files are a list of Pointers to a specific

"database' file. *Memory" files contain tne values of

memory variables and constants saved previously by the user.

*TeXtg files are collections of ASCII characters for input

into a 'database" tile, or created by output from a

"database* file. DBASE II cannot directly use "text" files.

Past of the i hat is known as Standard

Data format C(DS), and they can be used directly by any

other program that uses SDF files. Additionally, any text

100

f1les in 8DU can be used by the DBA3[II system. The file

Is the largest data oblect supported by OBASE 1! which

creates, deletes, or modifies the current tile(s). A

database tile is brought Into reference by user

specification, and a maximum of two database files can be

"open at one time.

DBASE 11 can be used interactively or can be Programmed

to create a view of the database to support recurring

applications. Regardless of method, DBASE II provioes the

user with the same basic high-level data definition (DDL)

and data manipulation (DML) languaqe. An English like

command language with a very regular syntax is a user

friendly feature of DBASE 11. The commands are very

powerful In that their operands and results are typically

database files. The command structure is usually presented

In the following form:

COMMAND (SCOPEJ (CONDITION)

The scope modifier designates the number of records to

be selected in response to the specific command. The

condition modifier specifies a conditional statement that

the record's field values must satisfy in order for the

record to be Included in the final result. Table E.1

provides a listing of the basic DBASE XI commands, with

duplicate commands havinq been factored out.

101

4t

Table 1.1 - DGASE II Basic Commands.

1. Dispey an expression on the screen
2. Formeat screen or printer output
3. Input a character strina
4. Input a strinq to a memory variable
5e wait for user input
6. List the records In a database
7. Disolay data from a database
8. Disolay te structure of a oatabase
9. Rename a file
10. Erase a file
11. Generate a report
12. Execute a "command" file
13, Return from a "commend" file
14. Display tne contents of the memory variables
15, Store a value in a memory variable
16. Save memory variables to a file
17. Restore memory variables from a file
19s Select a specific database for use
19. Set specific DBASE II parameters
20. Abort a command

21. Create a new database
22, Edit a database
23, godify a database's structure, or the

contents of fields In selected records
24. Update a database from another database
2S. Add data from a text tile to a database
26, Copy data from a database to a text file
27. Insert record(s) into a database
20. Delete record(s) from a database
29. Unmark records marked for deletion
30, Locate a record based on key value,

or condition
31, Goto a specified record
32. yove forward or backward in a database
33. Index a database
34. Sort a database based on a field
35. Perform JOIN operation on two databases

36, Count the number of records
37. Sum a field or subfield in a database

102

7, , , .

Default ordering for records In a database tile Is the

sequence In which the records are entered. Ordering can be

altered by Inserting records Into specific parts of the

database, and by sortinq or Indexing the database, In the

default order, the "database" file does not contain a

recognized key.

by sorting or indexing a "database" tile, keys are

defined and the search tiMe required to locate a record -'s

reduced. Multiple indexing be done for the same database,

but based on different keys. Sorting Produces a new

"database" file, which Is a copy of the oriqinal database,

only it is sorted. An "indexed" file is a virtual file of

ocinters to the original "database" file. Whereas lookup

speed can be enhanced by indexinq a database, there is

overhead incurred in maintenAnce of the "index" file.

Chanqes made to the original database file are not reflected

in the new sorted "database" or "Index" file. The oriainal

database must be sorted or indexed after each change in

order to remain current.

The data definition language allows the user to define

the organization of the data In a new database file oy

specifying the name of the database, and givinq information

on each of its fields (name, type, width, decimal places).

The structure of a new database file can also be copied from

that of another database file. Additionally# new structures

can be created as the result of Using the JOIN operator

103

'I _._ _-__ _-__ _ -_ _ _ _ _ _ _ _ __ ,
..... r t

provided by the DBASE It system. At any time, the structure

and/or contents of a ftile can be displayed or output, The

structure of a database tile can also be modified at a later

time, but presents some problems in that all records

currently In the database tile are destroyed.

Besides usino DBASE 11 interactively, It can be

programmed in its own language through the use of "command"

files, The DML statements are embedded In the file and

iterative execution of DPL statements are controlled by a

set of DSASE II control structures (if-Then, If-Then-Else,

Goto, and Do-while). "Command" files tend to make extensive

use of memory variables and input/outout functions which are

also extensively supported by OBASE 1I. To create a user

view the designer/proorammer will edit a "command" fle(s)

to contain tne correct DBASe rI statements, commands, and

control structures to manipulate the oroper "database"

files. The capabilities and limitations of any view is

dependent on the desIan of the "command" tile(s).

The reason for the great popularity of DBASE 1I is :Via

It Is a very easy database management system to learn and

use, Its Enqlisn-like command lanquaqe is natural and user

friendly, Although the command set is rather extensive, the

command names accurately describe their action and use a

regular syntax so they are easy to remember, The

interactive nature and full screen display orientation makes

user interaction simple and direct. With its set of

104

AI. M- -

predefined functions, Input/output commands, *command"

files, and programming constructs It is easy to create views

tor almost any application. DBASE .II is a powerful

relational database system yet it Is obvious that the

designers gave much thouqht to keeping It simple and did not

introduce complexity for Its own sake. However, there are a

couple of problems witn DBASE 11 which are worth mentioning,

and they are all probaoly due to the justified emphasis on

simplicity.

(1) At any one time, a maximum of two databases can be

in reference, This limitation requires that databases be

explicitly brought Into and out of Use. It Would help if

there was another method, besides using a "command" file,

for performing operations on multiple tables.

(2) In modifying the structure of a database the

contents are deleted. This reauires that the dataoase oe

explicitly saved to an external database and then be

recopied back after structure modification. It is an

Inconvenience, to say the least.

(3) The only relational operation directly provided by

the system is the JOIN command, It ,ould greatly enrance the

capability of the system to grovide more of the operators.

(4) The display structure is a little bit too rigid,

and the user does not have much direct control, sort of

writing a "command" file, to effect the output format.

105

APPENDIX F: SEQUITUR

SEQUITUR Is a relational database system designed by the

Pacific Software Manufacturinq Company of Berkeley,

California.

SEQUITUR sees a database as a collection of named

tables, each of which contains some kind of data related to

the subject of the database. Each database has a set of

system tables. The "Column" table lists the name, type,

size, and display format of all columns authorized for use

in the database's tables, The "Table" table lists the names

of the columns that are included In each of the database's

tables, TogetMer the "Column" and "Table" tables act as

part of a data dictionary system for the database.

SEQUITUR has a fairly larqe command vocabulary of over

sixty seven commands. There are twenty five basic commands,

forty two screen editor commands, and more formed by

combinations of the previous commands. A multilevel "Helo"

facility is used to support the user,

SEQUITUR offers four kinds of help. There are status

lines at te top of the screen. An "edit card" display can

be called my the user In order to set a comprehersive list

of cursor object and motion keyst and escape operations.

The 0elp" command summons an on-line manual, that Is oreset

by the user to provide no, medium, or maximum nelo. Lastly,

106

....... l lilI Iil,

there are situational help prompts that occur during the

command process,

Table r.1 - SEQUITUR Basic Commands.

1. CHOOSE (database)
2, CREATE (database)
3, ADD to (table)

4, EDIT (table)
5, SHOW (raole)
6, PRINT (table)
7, REPORT qenerator

9, FORMS ;enerator
9, SELECT from (table) •

10, MANUAL select
11. JOIN (tables?
12. SORT (tables) *

13. UNION *
14, INTERSECTION *

15. DIFFERENCE

16, UNIQUE rows
17. DUPLICATE rows ;

18. COPY
19. APPEND
20, REMOVE rows
21, RENAME column
em~mi mmmmmnmmismm

22, COMPACT base
23. DUMP to (file)
24. LOAD from (ile)
25, HELP from manual
26. EXIT

* £ Member of SEQUITUR's *set" commands.

The twenty five basic commands cover the major

operational capabilities of the SEQUITUR system, The

commands are presented to the user in the form of a menu,

107

m ,i , . .

there are situational help prompts that occur during the

Command Process,

Taal@ 1,I - SEQUITUR Basic Commands.

t. CHOOSE (database)
2o CREATE (database)
3, ADD to (table)
4. EDIT (table}
S. SHOW (table)
6, PRINT (table)
7, REPORT qenerator
6. FORMS generator
9. SELECT from (table)
10. MANUAL select
UI, JOIN (tables)
12. SORT 4taales?
13. UNION *
14. ISTERSECTION N

15. DIFFERENCE

16. UNIQUE rows
17. DUPLICATE rows
18. CnPY
19, APPEND
20, REmOVE rows
21. RENAME column

22. COMPACT base

23. DUMP to (file)
24. LOAD from (file)
25. HELP from manual
26. EXIT

a Member of SEQUITURO& Oset" Commands.

Tle twenty five basic commands cover the i ajor

operational capabilities of the SEQUITUR system. The

commands are presented to the user 1n the form of a menm,

107

I,
" - , r, , L 2 ..

and once a choice Is made SEQUITUR enters the display mode

necessary to support that choice. Table F,l lists the basic

commands, plus the commend for exitinq from SEQUITUR.

rhe SEGUITUR display modes are organized as *tables", or

Opaqeso , The table mode is similar to the approach taken by

the *Ouery-by-Exauple" system (OSE), and presents the data

in columns and rows with vertical lines separatino the

columns and indicators for new rows, Alternatively, the

paqe mode presents the data one row at a time, with the

column headinqs listed vertically. The user has the ability

to flip bacK and forth between the two display modes at

will.

Table F,2 - SEQUITUR Cursor Object & Motion Commands.

1 Move cursor up one line
2e move cursor down one line
3, Move cursor left one object
4, move cursor to next object
5, Move cursor to beginning of object
6. Move cursor to previous word
7. Move cursor to end of current object
0, Move cursor to next word
9. Object a word
10, Object z line
t. Object x sentence
12, Object a oaragraph
13. Object x view
14. Object a paae or screen
15, Object 2 column
16. Object z row
17. Object x one character

108

loAd

Once in a desired display maode te user must make use of

the editor commands to Make changes to the table. All editor

commands are single keys Combined with tne <Control>,

<Escape), or <?aD> keys, Table F.2 provides a list of the

cursor object and motion commands available. Most

operations require two commands since the object must be

specified first, and then the actual ooeration.

Table F.3 - SEQUITUR Screen Editor Commands.

l. Delete left Portion of object

2. Delete entire object
3. Delete right oortion of object
4. Flips "insert" toqqle
5, Shows rows marked for deletion
6, Flip wpaqe-taole w display style
7. Goto s-th object
8. Goto last ooject
9, Restores more recent version of row
10. Display earlier version of row
11. Executes a command
12. Search forward for column entry
13. Search backwards for column entry
14. Edit card disolay

The screen editor commands are used to maKe actual

changes (additions, modifications, or deletions) to the

displayed table on tme screen. Table F.3 lists these

commands which are i;sed in conjunction with the cursor

object and movement commands listed previously.

109

Additionally there are a number o miscellaneous

commands that are provided to aid the user. These are listed

in Table F,4,

Table 7.4 - Additional SEOUITUR Commands

1, Get Edit Help
2. scroll rorward
3. Scroll Backwards
4, Interrupt Present operation
S. Lock/unloct Cursor Object

There are an abundance of table tyoes In SEQUITUR.

*Virtual" tables consist of Pointers to data in a "base"

table(s), and are formed by Conducting relational operations

(ea.q JOIN) on the base table(s). Virtual taoles are

permanent additions to the database. All operations

conducted on the virtual table effect the base table, but

not all operations on the base table till reflected in the

virtual table.

"SlIce' tables consist of the data trom a "home" tacle,

and are formed by restricting or rearranqino the columns in

the home table. Actually, slice tables are Just alternate

ways of viewing the same name table. All operations

conducted on the slice table effect the home table, and all

ooerations on the Mome table effect the slice table.

j11

gTemplate' tables are used to store control inforration

on the operation(s) (SELECT, SORT, UNION, DUPLICATE, UNIQUE,

1NTASZECTION, and DIFFERENCE) desired to be performed on a

set o "base" tables, The user specifies once the seauence

of operations to be performed, and each time that result is

desired tne appropriate template table Is called to create

the desired virtual table.

SEQUITUR provides several methods at outputting data to

the user:

(1) TIere is the "print* command which prompts thoe user

to specify heading, page length, margins, oaqe number, date,

column/row divider symbol aec. for either a "tablen or

"page" style output. The entire table is then output, one

record at a time, in the specified format.

(2) There is the "form generator". The user creates a

form letter or document by making an entry in the "forms"

table in either "page" or "table" style, and answering

several system prompts as to page size, width, marqins, The

form generator is intended for letter tyee generation since

it only allows one text field in the tormo. Al other entries

are pulled from an aopropriate table and the "*form*" reoeated

for each row in that table.

(3) There is the "report generator", The user creates a

report table that Is associated with a known data table. The

report table specifies wnich data table columns are to be

used, how they are positioned, what name tney have on the

11l

form, allotted width, and alignment. Again, the user must

specify formatting items like page length, line length,

marains, delimiters, and other related Items. The Individual

columns in the report table can be marked for sorting#

grouping, and/or arithmetic processinao. it arithmetic

processinq Is opted for, then anotner table, the "function*

table is created to record what is to be done to each column

- total, minimum, maximum, average, or count.

Based on a very short familiarization experience with

SEQUITUR there is no doubt that it is a oowerful and

comelete relational DBMS. However, It is not as user

friendly as its advertisements 0ould lead you to believe.

Soms of the problems encountered %ere:

(1) Too. many commands to remember. Tnis increased

learnino time and added to tne confusion. Too many of tne

commands were just window dressing In that their effect

could have De done using other commands. (Like the RObject

z"F extra cursor movement and deletion commands.) hile

using keys as commands leads to faster command input, it

makes things more difficult ,hen tnere are so many commands

the symbol on the key has little or no relation to its

effect.

(2) The structure of the user interface was unwieldy. It

was easy to get lost and difficult to recover to a known

location. Operations that worked under one condition did

112

not wor in another, or produced completely different and

unexpected results. (e, g in some instances the "execute"

command will return you to the main menu, in others it was

iqnored or treated as a mistake,)

(3) There were too many types of tables, ways of using

tables, editing tables, and creating relations between

tales. The user is being swapped with a level of detail

that is oetter left to the systems tt seems that SEJUITUR

was created with simplicity and user support beina lesser

considerations to system sophistication,

113

-L.J* .~--

APPENDIX G: VISICALC

VZSICALC is an electronic spreadsheet prooram created by

Software Arts, Inc, of Cambridqe, Massachusetts and marketed

by Personal Software Inc. of Sunnyvale, CA. Its ourpose is

to allow the user to easily model a wide range of numerical

problems in a standard tabular format by reclacimq tne

user's Pencils calculator, and scratchpad.

The screen is divided into a grid of columns ad rows

that form addressable (column, row) entry Positions. The

columns, which run across the top of the grid, are lettered

startinc with "A" and the rows, which run down the side, are

numtered starting with "I". Each entry position is an

Inaeocendent entity, and can contain a character strin, a

numeric value, or a function that must oe calculated. Entry

positions that contain functions are recalculated by

VISICALC each time certain Conditions are met. The functions

will specify values in terms of constants, operators, and

the values of other entry Positions,

The screen is used as a "window" into the spreadsheet

and is modifiable by the user. The user is qiven numerous

commandso see Table G.l with which to alter the display

format of the screen.

114

. l-l l

Table Got - VISICALC Display Commands.

t. Clear Spread Sheet
2. set Global Display Format To;

I !nteqer
- Dollars & Cents
- Left/Right Justified
- Graph

3. Set Entry Display Frrmat To:
- Inteqer

C tollars & Cents
Left/Richt Justified

- Graph
4. Reset Entry To Global Display Format
S. Set Column Width Within A Window
6. Set Order Of Recalculation;

- Column wise
- Row wise

7. Set Recalculations
- Automatic
- Manual

. Move An Entire Pow Or Column
9, Window Control;

- Split Screen Horizontal

- Split Screen Vertical
- Single Window

10. window Synchronization;
- Synchronized
- Unsynchronized

The 4indow can be "split" into two halves so as to 1MoK

into nonedJoining areas of the spread-sheet simultaneously,

The two windows can be "synchronized* so they move toaetner,

or unsynchronized so movement is indeoendent. Disolay

format may be globally set for the screen as a whole, or

individual entry oositions can be assigned their own format.

Column width is variable from 3 to 37, out columns in the

115

"' -- I -
'

..- II I I I I I I,

same window must have the same width, The value of each

entry Position is calculated by "column order" CAl, A2, ... ,

An, 51, 82, ... , $no C1, etc.) unless the user chances the

recalculation order to "row order" (At, @1, ... , ni, A2, S2,

... , n2, C2, etc.). By default VISICALC starts in

"automatic" recalculation mode where the value of all entry

positions are recalculated each time an entry is chanoed. As

this can siqificantly slow down cne model when larqe arids

and/or comolicated numerical expressions are used, the user

can enter "manual" recalculation mode where a command Tust

boe issued to cause recalculation to occur.

VISICALC orovides a command-line oriented editor ttat

enters, modifies, or deletes data in a referenced entry

oosition(s). A cursor is provided on the qrid to indic~te

the current entry position referenced by VISICAEC. There

are screen commands to allow the user to scroll across tne

qrid or to move to an exact (row. column) entry nosition.

If needed, the numeric orocessing capabllity of ISICALC can

be used like a calculator to suoport the ser's

computational needs. A powerful caoability of VISTCAC is

the replicate command. This allows the user to define an

entry once, and then have it entered in a range of

successive column or row entry oositions. Additionally, the

user can specify if the origtnal entry is to be replicated

exactly, or should any references to other entry positions

116

n m I I I III 11 iii l lit.. _

be updated at each new position to take into account

relative position on the spreadsheet,

Table G.2 - VISICALC Cursor movement & Entry Commands.

-lWWmmmm

11, Move Cursor Riaht Or Up
t2. move Cursor Left Or Down
13, Chanqe Cursor Direction;

-UO/Down

14. move Cursor To Tme Other *indow
15. move Cursor To A Soecific Entry Position

16. Abort Last Command
17. Set An Entry Position To Blank
18. Delete An Entire Pow Or Column
19. Inset A New Row Or Column
20. Replicate An Entry
21. Set Title Areas;

- Horizontal Title
- Vertical Title
a N'o Title

22, Reoeat A Tabel Entry
23. vaKe An ITediate lumerical Calculatien
24. Enter A Label In An Entry Position
25. Enter A Value In An Fntry Position
26. Save A Copy Of TNe Saread-Sheet

Since VISTCALC is a numerical modeling tool it has a

series of arithmetic and aggreqate functions that it

supports. Table G.3 orovides a listing, VISICALC ha3 been

dosigned to store numbers In decimal format, not binary, and

maintains tnem with uo to eleven significant dialts or

decimal olaces,

117

Table G3 VISICALC Arithmetic & Aggregate functions

a. Addition
b, SubtractiOn
c' multiplication
d. Division
*. Exponentiation
t. Calculate The Sum Of A Pange Of Values
g. Calculate The Minimum In A Rance Of values
h. Calculate The Maximum In A Rance Of Values
I. Count The lumber Of Entries In A List
I. Calculate The Average Of A Rance Of values
k. Calculate The Net-Present-Value Of A

Rance Of Values
I. Perform A Lookup Operation
me P$ (3.1415926536)
n. Calculate The Absolute Value
o. Calculate The Integer Portion Of A Value
ps Souare Root
q Logaritoms, Base 2
r, Logarithms, Base 10
s. Trigonometric Functions (Sin, Cos, Tan, Asin,

Acos, Atan)

VISICALC makes use of dynamic memory allocation so the

actual dimensions at the spread-sneet deoend on the amount

of memory available and tne complexity of the entries made

by the user. The user does not have to worry about memory

allocation since V1SCALC takes resPonsibilitY for its use

and efficiency. As entries shrink, or are deleted, VISICALC

reclaims the extra memory space. The user is shown how much

memory remains and a warning prompt occurs when memory space

IS nearly exnausted.

11

i

For a permanent copy of the contents of the spread sheet

the user may send the output to a printer. A subpart of the

total spread-sheet may be sent by designating the lower

right corner to be printed.

VISICALC Is a powerful and fairly simple modeling tool

whose advantages seem to easily outweigh the disadvantages.

The command vocabulary is low (26 commands, 19 functions)

and the greater majority are actually useful and not just

window dressinq. The user manual is well written and easily

understood, but is fairly lonq. VISICALC supports a known

human weakness (small/fast short term memory, large/slow

lone term memory, and slow calculation speed) by rememoering

the details of a commonly reoccurring user problem (tne

situation to be modeled), limitinq tne user to orovidina a

smaller and more select set of initial inputs, ano

performina the computations in a faster, more reliable, and

repeatable manner. 4owever it does have some oroolems:

(1) Command strings and their effect must be memorized

since there Is little relation to the strino and tne effect.

Menus provided by the system are very poor, and require you

to already know the meaning ot the Command strina.

(2) A basic understanding of VISICALC and a hiqn deqree

o operational capability can be obtained, In a fairly short

time, by reading only the first third of the user manual.

However, to gain maximum use of the system recuires a

119

" - i - . - - -_----_.

sIgnitIcL-It amount ot time and effort to read trie entire

user manual and experiment with the operations. Some nice to

know features that have a major effect on model validity

(eeg. recalculation order) are discussed at the end of the

user manual and might Of easily missed,

120

APPENDIX H: ZIP

The relational data base manaaement System "DBASE I1"o

described In Appendix CD)f contains a set of commands which,

when embedded in a "command" file, define the output forrfat

used to qenerate the display on the screen, or output to the

printer. In addition to generating the display form, tie

commands also direct the 03ASE II system to either determine

tne values of the entries from a record in tMe referenced

database, or from memory variables. It the inout device is

the screen/Keyboard, DBASE rI may retrieve a user entered

value from tne screen and store It in a tield of a dataoase

record, or In a memory variable. These form definition

commands can also be out into a new type of file, tne

"format" tile, by ZIP. In this case the format, contained

In the "format" file, is used as an display overlay t-z

prompt the user to chanace data values in an existinq record

In a "database* file.

ZIP is a CP/M program used to generate, or modify, a

DBASE II "command" or "format" file. It is a oowerful tool

in the sense that the user Is not required to know tte

details of the D0ASE II form generation capability

("command" files, and display commands). ZIP presents the

user with a blank screen and an on-screen editor, whicn

supports several levels of cursor movement and formattina

121

i.

commands, to help in the form design. Table .1 lists the

ZIP editor commands.

Table H. - ZIP Editor Commands.

1. Screen commands
- top
- bottom

- ext

orevious
first
lest

2. Mliddle of line
3. Insert a space
4. Add a line
5. Delete

- character
- line

6, Draw/Erase horizontal line
7. Draw/Erase vertical line
8. Erase/Save work file
9. Insert DBASE I1 command expression
10. Change variable

- vertical marker
- horizontal marker
- tab spacing
- margin
- oaqe length

11. Ouit

The cursor can he moved to any positlon on the blank screen

where tne user will enter the information reouired by tme

ZIP program. Information is conveniently limited to literal

strings, memory variables, record field values, and fetchinQ

a value from the screen and storino it into a record field

or memory variable, Interspersed between ttese ZIP

122

!I

tormattinq commands may be DBASE 1I executable commands if

the file type is "command". There are special purpose

commands to draw, or undraw, vertical and horizontal lines

on the form.

The ZIP proqram may be viewed as a translator between

the screen design made bY the user and the ooerations of

DGASE 11. The screen contents associated with each screen

position are translated into a sequence of DBASE II

commands, statement*. and control structures wnich are

orqanized as either a "command" or "format" tile. ZIP also

places any embedded execution commands into the file and

automatically sets, or resets, tne appropriate system

"togqles* as needed.

ZIP is a useful suoport tool for DBASE II in that it

relieves the user trom having to oroqram a *command" file in

order to create a desired display format. However, it must

oe pointed out that ZIP is a very basic formatter, is line

oriented, and is incapable of the more complex types of

displays.

123

APPENDIX I: MAIL

ONAILH Is an electronic mall facility produced by the

University of California at Berkeley and Bell Laboratories

for the UNIX operating system. It allows users to send

messages to other users, or groups of users, on the system.

The basic unit of the MAIL system Is the message, wnich

is simply a special type of text file. The messaae is

preformatted and contains fields for originator,

destination, subject, copy to, and body. messages are

contained either in the users Oprivate" mailbox or In the

system mailbox. A "dead-letter" file Is also maintained

for each user to contain messages which cannot be delivered

to a valid destination. The private mailbox and dead-letter

file are maintained as text files In tne U1JIX directory and

therefore can be used by other oroorams running under UNIX.

Upon logging into the UNIX system, a Promot apoears at

the terminal indicating that there is mail for the user.

Messages addressed to a user are Initially contained in the

system mailbox, and can be read from the systen mailbox oy

the MAIL facility, The messages already in tne private

mailbox and/or dead-letter tile are text files and tnus not

directly accessible to the MAIL facility.

the user may elect to read the mail by Invoking the 4AIL

facility. A one line summary of all messages in the system

124

__ A
,- ~b*~' -~-- .~-

mailbox is presented to the user# and each message is given

an Integer identification number startinq at one. At this

point the user has a number of different options available

as summarized In Table 1.1.

Table l.1 - MAIL Command Summary

1. Alias a name +
2. Unallas a name(s)
3. Goto previous messaqe * +
4. Goto next message * +
S. Display summary of commands .
6. Display out all currently defined aliases
7. Display a message
8. Display out headers of messaae list +
9. Display message list
10. Display size of each message
11, Display top few lines of each messaqe
12, Execute the following UNIX shell command
13. Change directory
14. Delete messaqe(s) +
15. Delete current message# Print next messace
16. Undelete messaoes marked for deletion
17. Reply to a received message *
18. Edit a list ot messages in turn
19. Send message to desiqnated users +
20. End-of-message +
21. Exit, don't change system mailbox S
22. Quit, save undeleted or unsaved messaqes in the

user's mailoox, save unreferenced in the
system mailbox,

23. mark message(s) to be saved in system mailbox *
24, Save a melSSae list by appending to a text file *
25, List current range of message headers
26, Help +
27, Set options *
28o Unset options

MAIL facility has more than one command to
perform this action,

125

* ~ _ -

The user may select a message and read it. After

reviewinq the messaqe the user may forget the message, save

it In the system mailbox, delete It, or prepare a response.

When the user quits the MAIL facility all messages which

have not been deleted, saved, or reviewed are placed back

Into the system mailbox. The remaining messaaes, chose

reviewed but no special action indicated, are placed in the

private mailbox. If the user desires, the NAIL facility can

be exited and the system mailbox left uncranqed.

Additionally the user can create *alias* names that

correspond to multiple users, ask for message summaries,

append messages to files, or Invoke an editor.

The MAIL utility does not contain its own editor, but

depends on the editor(s) available to the UNIX system and on

the user to set an option specifying which one is desired.

When the user Indicates that a message is to te created, the

editor is invoked, the user enters the text, and when

finished issues an end-of-message command to return control

to the MAIL facility. #hile in the editor, the user can

issue "escape" commands that directly effect the messaqe

processing. A listing of these escape commands is Provided

In Table 1.2. Contents of other files may be inserted into

the messaae, names of recipients added or chanqed, the

header field edited, or an alternate editor invoked.

126

Table 1,2 - MAIL escape commands

1. Execute UNIX she11 command
2. Add names to recipients of copy
3. Read Odeadletter" file Into message
4o Invoke text editor
5. Aoort the message beina sent
Go Insert a named file into the message +
7o Create a subject field
U. write tne message into a named tile
9. Pipe the messaqe through a process as a filter
10. Insert a string into tPe messaqe

While in the MAIL facility, UNIX shell commands May be

issued. The MAIL facility Is temporarily interrupted, tne

command is executed, and then the AAIL facility Is resumed

without adverse effect,

Table Z.3 - MAIL options.

1. (Append/Prepended) messaqes to private mailbox
2. (Yes/No) Subject line prompt
3. (Yes/No) Prompt for carbon copy recipients of message
4. (Yes/No) Modify delete command
S. (Yes/No) Ignore terminal interrupt signals
6. (Yes/No) Include sender In group message recipients
7. (Yes/to) Savinq interrupted messages
A. Define default editor name
9. Define escape character
10. Define file to record outqoinq mall
It. Define numbOr ot lines in the "top" of a message

127

- -- - _ a .. ,, 2 ; ... '.. " ,, - ',, A

Additionally, the MAIL facility has a series of options

the user can change to tailor its operation, Table 1.3

provides a listing of these options,

The MAIL facility is a good support progra- and is quite

capable of accompllshinq its goals. However, it has more

than its fair share of problems.

(1) There is a very limitea user manual, and experience

must be gained from other users or by trial and error.

(2) There are too many commands, and too many of those

duplicate each other. The number of commonly useful

commands Is low (marked with a +), with the rest being

window-dressing.

(3) The facility Is not Qser friendly. The user must oe

aware of location In the factlity and what is exoected next,

because there are no special prompts and the help command

only provides a command summary.

(4) It the message recipient is on line when the message

arrives, Wnatever operation is In Progress is rudely

interrupted oy the display of t1e message. This can be very

disconcerting to the recipient.

(S) The user eam9t determine which messace is goina

where (system mailbox, private mailbox, dead-letter tile),

prior to leaving the MAIL facilitY.

129

7j

BIBLIOGRAPHY

BrIlcl/n, 0. & rranklin, B., VZSZCALC User Manual, Personal
Software, Inc. 1979

Coda, C., 0 Relational Database: A Practical Foundation for
Productivltyu, Communications of the ACM, 25, 2, pot 109 -
117, (Feb 1962)

DBASE 11 User Manual, Ashton Tate 1981

Ghosh, S., Data Base Organization for Data Management,
Academic Press 1977

Horowitz, I. & Sahni, S., Fundamentals of Data Structures,
Computer Science Press, Inc. 1976

Kent, W., Data and Peality, Nortl, Holland Publishino Co.

1978

Nalman, A., Introduction to Word Star, Syoex In,. 1442

SEQUITUR User Manual, Pacific Software Manufacturinc Comoany
1982

UNIX Programmer's Manual, Sevenmt Edition, Volume 2A Bell
Telephone Labratories, Inc 1979

12

129

I- I 1 i _,,,_,_,_.....

INITIAL DISTRIBUTION LIST

No, Copies

. Defense Technical Information Center 2
Cameron station
Alexandria. Virqinia 22314

2. Library, Code 0142 2
Naval Postqraduate School
Monterey, California 93940

3. Professor Dusan Z. adal, Code 52Z
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. LT Rodney Nishimura, USN
14541 8, Catalina Ave.
Gardenap California 90247

13

130 .

