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EV/ Introduction

In 1939 Flory announced the principle of equal reactivity of polymer
chains (1). The principle maintains that the ability of a chain molecule
to form larger molecules is independent of the chain length. The argument
was very significant at that time for two reasons: First, the existence of
high moTecular weight polymers was considered by some to be improbable.
These proponents argued that the high molecular weight species must have a
higher diffusion constant, relative to the lower molecular weight species,
which would eventuélly 1imit the extent of polymerization. Studies on
condensation-type polymers with random coils demonstrated the general
validity of the principle of equal reactivity (2). The second signifi-
cant result was that the distribution of molecular weights could be
readily calculated from kinetic parameters that were independent of chain
lehgth‘

N

The major significant deviations from this principle seem to occur only
with very low molecular weight species where inductive or polarization effects
can be transmitted across a small molecule. Indeed, Lenz (3) cites a number
of cases where the reactivity of a functional group on a difunctional
monomer depends on whether or not the other functional group has reacted.
Challa (4) showed a similar effect on the rate of polymerization of poly-
(ethylene terephthalate) where the reactivity of the "monomer" bis-
(8-hydroxyethyl) terephthalate differs from that of higher oligomers and
polymer. Peebles and Wagner (5) examined the transesterification kinetics

of dimethyl terephtalate and ethylene glycol in the presence of a catalyst.




They concluded that the second transesterification reaction was some three

times faster than the first transesterification reaction. The overall
transesterification of the terephthalate monomer must somehow involve some
type of molecular transition state containing the catalyst because attempts
to verify the faster transesterification reaction with the partly transester-
ified material resulted in absolutely no reaction (6). Thus, the documented
"violations” of the principle of equal reactivity seems to be restricted to

very small chain segments of random coil molecules.

Several calculations have been made to determine how departures from
the principle of equal reactivity would influence the molecular weight dis-
tribution of a polymer. Nanda and Jain (7) assumed that the second order
reaction constant for a condensation polymer was proportional to the molecular
weight of the formed polymer through the relation k(1+ fl-), where k and %
are constants and i is the number of monomers in a'chain of length i,

_to obtain an analytical solution for the molecular weight dis-
tribution. Magat (8) developed simultaneous integral equations for stepwise
polymerizations without termination for a number of conditions where the rate
constant for propagation varied with chain length. His approaches are
Timited, however, in that the precise polymerization conditions must be
specified before the equations can be evaluated.

A new series of stiff rod-like polymers (9) have recently been synthesized
and characterized with a repeating unit of the form

N N
.y C - \ Y - or -~C C —
n n

where the "X" atom can be oxygen, sulfur, or singly hydrated nitrogen.




The condensation of the functional groups

H N N, 0 0
@ + HOM
HO OH HO OH

appearsto occur simultaneously to form the benzobisoxazole because intermediate

functionalities have not been detected by chemical or spectral means (%e).
These observations suggest that the interacting molecules must be collinear

(or nearly so) before feaction can take place. Furthermore, once reaction

has commenced, the entire series of reactions to form the cyclic structure

must occur quite rapidly. If such is the case, then the rate determining

step is the ability of rods to rotate into a collinear configuration rather
than the coupling step. Here the principle of equal reactivity is not violated;
the reactivity of each end is independent of the length of the chain to which

it is attached. The purpose of this paper is to calculate the molecular weight

distribution for randomly oriented rod-like molecules which must diffuse or

rotate into a collinear configuration prior to the coupling reaction.
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Mathematical Development

The reaction between molecules of size i reacting with molecules of size

J to form a molecule of size i + j irreversibly and without by-product

is postulated to have a rate of formation proportional to k cijxixj where k is
the specific second order rate constant for coupling, Eii is a function of the
molecular lengths i and j and is a measure of the ability of molecules to become

collinear, and xixfi-are the concentrations of molecules of size i and j.

To simplify the notation, the constant k is adsorbed into the time derivative.

Thus from eq (1), the rate of farmation of x; is given by

. i-1 e

=4 L .. sXs . - X, I es X
R TR IRy & €45 X3 (2)

The monomer X is considered to react at the rate

= - z
X x1j=] Cij Xj (3)

These rate formulas can be summed to give the following time derivative functions

Ty = 0 [T, (4)
since no by-product is formed.
.z.. ® e wa?
1.1~5_:_:£#T§?\fl,3-1 Ci4%; e o (5)
(-] 2 L] 0
L X,= I §x, L Jeuix
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If the variable Ell.ca" be specified, then the molecular weight distribution
and the moments of the distribution can in principal be determined by

computer calculations.

Because many polymers have degrees of polmerization in excess of 100,
and perhaps into the thousands or millions, it is not reasonable to solve
the excessive number of simultaneous differential equations given by (2)
and (3). However, if some type of scaling law can be found which will permit
calculation of the distribution for a low number average molecular weight

distributions, then computer calculations are feasible.

The generalized exponential distribution function
F(i.m.k) = my*/™ %" exp(-y1™) 1R (k/m) (7) Ghcel
W( k) = my /M (KEap(yi™) /8L (ke )/m] (8)
where <i> =l [(k¢1)/m)/y' Mp(k/m),

can be rewritten in a scaling law form .with /44, as the independent variable.

F(1,mk)<i> = %%:'/m) [_a,_)_-}kq exp - (g1/<t> "] (9)
n

““’m’k)d’n -ﬂ%:l) [—J?n] k exp [ '(91/<1>n)m] (10)

with g = (P (k+1)/m]}/®(k/m)
This distribution is a generalized form of the Schulz distribution (m = 1),

the Tung-Weibull distribution (k = m-1, k > 0), and a good approximation of
the most probable distribution (m = k = 1) at large values of (1)n.

The next question to consider is the form of the function c1J which

determines the abflity of the molecules to rotate into a collinear conformation.

Doe and Edwards (9) suggest that the rotational diffusion constant of a rod
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. more computer time required. Also, as <1>n increased, values of X,

<

depends on (In i)/i3 in dilute solution and higher inverse powers of i in more
concentrated solutions, whereas Bird (10) suggests that the rotation of a
rigid dumbbell depends on the square of the length (12). The assumption can
then be made that if rod i were held fixed in space while rod j was allowed to
rotate freely, then the rate of rotation would be proportional to j'".
where N is an adjustable parameter. If rod j were held fixed and rod i allowed
to rotate, the rate is proportional to 1'". The overall average rate is then
cyy = N+ g2 ' (n

This equation can then be substituted into the set of simultaneous differential ?

equations 2r=-§= The initial concentration of monomer, @1 was selected to be
unity. Initially, Xy was taken as the independent variable. A set of K

.« o .
simultaneous differential equations xi/xfnd’ where and is the change in
concentration with time of the independent variable, was set up for solution
by a computer. The value of K was selected to be large enough so that}fixi).999
over the range of integration considered. A Runga-Kutta method was used to
obtain values of xf, from i = ind to 1 = K. After each integration, an interger
value of L = 0.8K was tested to see whether LX <0.0005. If the test failed,
a larger value of K was selected, the program retreated to the results obtained
on a previously performed integbation. and computation continued. This
procedure allowed only a small number of equations to be solved at the beginning
of the solution, but as <i>n increased, more equations were solved, and hence
nd decreased
and eventually became too small to permit reliable values of X/ %5nq 0 be com-
puted as evidenced by fluctuations in Xnd* As Xind approached this limiting
value, a new independent variable was selected and concentrations of all i
varfables below X, . , were arbitrarily set to zero. Extensive testing of this
procedure by choosing various values of 1 for the independent variable exhibited

no effect on the calculated distributfon provided that *ndS Snax
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Results

Integration of eq's 2, 3, 5 and 6 were performed for integer values
of N in eq 11 as a function of conversion. Values of <i>n varied from unity

(initial condition) to <i>_ values in excess of 50. From the xi values so

n
computed, values of xi‘i>n/z’9 were obtained. For all values of N used,
except for N = 0 (the most probable distribution) the scaling law held to
within the precision of the data when <i>n values exceeded ten. The

results are presented in Fig.'s 1 and 2 for the distribution as a function

of 1‘/<1‘>n and in Fig. 3 for the heterogenity index <i>w/<1'>n as a function

of conversion.

R




. Discussion

The empirical observation that the scaling laws F(i) <1>n and H(i)<1>n
are functions only of 'l/<1>n means that inexpensive computer calculations
can be performedtgo evaluate these functions at small values of <1>n.

en : ‘

The function can, be used directly to evaluate the molecular weight distribu-

tions for large valyes of <i>n. This technique can be used for other schemes
relating kinetics to reactor designs, etc. where numerical calculations are

required.

When the value of N in equation 11 is nonzero, the rate of polymerization q
5;1, eq 5, decreases with increasing conversion. As N increases, the rate of '

polymerization decreases at a faster rate. Both the scaled mole fraction and

weight fraction distributions show a maximm in the range i/<i>_of 0.6-0.7,
the maximum shifting to higﬁer values with increasing N. The breadth of the
distribution, however, becomes narrower, and reaches an asymptotic value at

<i>n values of approximately 10. The application of these calculations to

the observed distributions of Poly([benzo(1,2-d:5,4-d') bisoxazole-2,6 -diyl]

-1,4-phenylene) has been discussed by Cotts and Berry (9e).
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Lo ) Leaend for Fiqures

. Figure 1. The scaled mole fraction'of polymer as a function of i/<i>n for
various values of N in eq 1IN

Figure 2. The scaled weight fraction of polymer as a function of ‘i/<1>n for

various values of N in eq 11

Figure 3. The heterogeneity index <i>n/<i>n as a function of <i>n and N.
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