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‘EyA quasi~one dimensional, nonequilibrium, streamtube model and finite
difference computer code has been developed to study nonisentropic
supercritical, real gas flows. A system of unsteady Euler equations is
integrated to a steady state solution utilizing MacCormack's
explicit/implicit numerical scheme. Implicit characteristic boundary
conditions are employed at the subsonic inlet to enable automatic solution
of inlet conditions consistent with the critical mass flow rate. A
numerical damping technique for the explicity evaluated reaction rate has
been developed such that nonequilibrium flows with large reaction rate
coefficients have been solved numerically with significant reduction in
computation time.
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NOMENCLATURE

streamtube cross-section area, also symbol for atomic species
speed of sound

frozen specific heat at constant volume

specific internal energy

specific enthalpy, also Plank's constant

cut off coefficient

equilibrium constant

forward rate constant for reaction A2 + AT=R2A + A
forward rate constant for reaction Ay + A2 2A + Ay
Boltzmann's constant

characteristic length

molecular weight for atomic species

nass flow rate

pressure

partition function

specific gas constant of the mixture

entropy

temperature

time

velocity in the streamwise direction

volume

atomic species equation source term

streamwise coordinate

cross—-section coordinate

mass fraction of atomic species




Y ratio of specific heats

6 characteristic temperature

P density

T characteristic time

L ] reaction rate coefficilent
Subscripts

c eritical

d digsociation

el electronic

F frozen

i xmesh point index

rot rotational

t throat

tr translational

vib vibrational

a differentiation with respect to a

p differentiation with respect to p

0 stagnation
Superscripts

n time level indéx

n¢ temperature exponent

*

proportionality constant for integration step size based on
chemical relaxation time

equilibrium




Chapter 1

INTRODUCTION AND LITERATURE SURVEY

In the past few decades interest in high temperature aerodynamics has
increased dramatically. The two primary areas of 1interest have been the
flow downstream of a shock wave (i.e. within a shock layer) and internal
expanding flows. The former is of practical interest when designing high
speed aircraft or reentry vehicles and the latter is of interest mainly in
propulsive devices. Nonequilibrium, expanding, quasi-one dimensional
streamtube flow is the focus of this investigation.

A basic phenomenon associated with expanding compressible flows at
high temperature and low pressures is the freezing or trapping of energy in
chemical or 1internal energy modes. Hence, energy is withheld from the
system. Departure from equilibrium results with the frozen state extreme
clearly containing an excess of energy associated with {ndividual particles
over that which it would have in an equilibrium state at the local
temperature and pressure. This implies a further reduction in temperature
which in turn effects the nonequilibrium rate. Since convergent-divergent
nozzles or streamtubes effectively convert internal energy {nto kinetic
energy, which in propulsion applications directly translates into thrust,
nonequilibrium effects may degrade nozzle performance appreciably.

Some insight into the trends for convergent-divergent nozzle behavior
follows on examining  the classical quasi-one ‘9imensiona1, {nviscid,
compressible equations such as derived in referedé; [1]. For supercritical
(1.e. a transition from subsonic to supersonic) flow, the critical section

{8 at the geometric minimum of the one dimensional nozzle. Downstream of

N "‘-“"A;-“
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the critical point both temperature and density decrease rapidly with
increase in gas velocity. Typical cooling rates are of the order 103 to
106 K/sec [2]. Since changes in temperature affect the equilibrium energy
distribution curve (i.e. Maxwell-Boltzmann distribution) and the physical
mechanisms to redistribute the energy occur at a finite rate, noticable
departures from physical equilibrium are possible.

However, nonequilibrium processes are nonisentropic, hence the perfect
gas descriptions for inviscid compressible flow (e.g., Liepmann #nd Roshko
{1]) require modification. For unonisentropic processes the local
thermodynamic state is not only a function of streamtube area, but also the
upstream area distribution, i.e. the history of the fluid flow wupstream of
any point in the streamtube. The specific nonequilibrium effects present
in a particular flow field depend on the gas components and the temperature
and density of the flow. This follows since all such physical phenomena
need particle interactions to maintain equilibrium, and temperature and
density levels indicate the energy and number of such interactions.
Representative types of possible nonequilibrium physical phenomena to be
found 1in an expanding flow are: translational, rotational, vibrational,
chemical, and radiation. For any energy mode to maintain local
equilibrium, the characteristic time for readjustment by collisions must be
negligible compared with the time required for the fluid to experience a
significant change 1in 1local conditions (characteristic flow time). In
general, the adjustment of translational and rotational modes requires
relatively few collisions to maintain equilibrium as compared to vibration
or a chemical reaction. Hence, translation and rotation have short

characteristic times for readjustment by collisions and thus are generally

assumed to be in local equilibrium. It 18 only in the presence of large




flow field gradients that the characteristic readjustment time becomes of

the same order as the characteristic flow time. This paper emphasizes
nonequilibrium due to chemical reactions, assuming all other modes to be in
local equilibrium. However, the methodology is applicable to a general
nonequilbrium process which may be modeled and evaluated using the same
numerical procedures.

Since chemical reactions occur as a direct result of molecular
collisions, it is apparent that as the temperature and density decrease in
an expanding flow the number of interactions decrease and energy may
effectively become frozen due to “incomplete” chemical reaction. If we
consider the simple case of an elementary reaction involving diatomic
dissociation, the atomic species concentration (x) 1is a measure of the
energy required to break the diatomic bonds. Such “"tied up” energy is then
unavailable for conversion 1into kinetic energy. In a flow process this
manifests itself by several distinct regions which are associated with the
freezing phenomenon. In subsonic regions, the characteristic flow time is
large since the temperature and density are high, and the atomic
concentration closely approximates equilibrium distribution. As a flow
accelerates in a subsonic section, the concentration departs from
equilibrium but still maintains near equilibrium conditions. The flow may
then continue to accelerate with corresponding decreases in temperature aad
pressure. At some point in the streamtube such decreases imply that the
characteristic reaction .time becomes much larger than the characteristic
flow time, since sufficient particle collisions to maintain equilibrium are
no longer present. When this occurs, the concentration quite rapidly
departs from equilibrium and effectively “freezes out”, essentially

withholding energy from the flow.




From a practical standpoint, a nozzles, for example, can be designed

80 as to minimize nonequilibrium effects. There are basically four major
parameters of interest here that control nozzle performance and they will
be discussed in some detail 1later. Briefly, they are nozzle scale,
reaction rate constant, stagnation density, and stagnation temperature.
Previous studies indicate [3] that order of magnitude changes in a
nondimensional rate parameter (¢$) are needed to significantly alter the
nonequilibrium concentration. Increasing the stagnation pressure (p,) does
have an effect on both the initfal dissociation and the recomaination rate.
However, for propulsion applications there will be a weight penalty for
increases in the stagnation condition. For this reason predicting thrust
loss due to nonequilibrium effects 1s important to the performance of
propulsive devices.

Since the nonequilbirum system of equations is nonisentropic,
virtually all problems of practical interest are too complicated to solve
analytically. Therefore, various schemes have been proposed to numerically
integrate the system of partial differential equatioms. The numerical
techniques have primarily been related to the difficulties with: 1)
boundary conditions and, 2) near equilibrium situations. One of the
earliest methods [3] employed a standard numerical 1integration technique
(Runge-Kutta) applied to a system of steady Euler equatioms. For an
initial valve type problems (e.g., a supersonic inlet) the inlet conditions
were gpecified and a .solution computed by a space marching method.
However, 1if one boundary is upstream of the critical station, use of a
steady Euler equation description implies a two point boundary valve
problem 1involving the critical mass flow (ﬁc) and the 1inlet boundary

conditions. The critical mass flow is determined at the station where the

- e, WL, g
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local flow velocity is equal to the local frozen speed of sound. Unlike
the isentropic case, (&c) cannot be determined a priori because the flow at
each point depends on the entire upstream history. In addition, for
nonequilibrium flow the critical point is downstream of the geometric
minimum. Therefore, the critical mass flow rate and location must be
determined during the integration procedure. This problem £is illustrated

by the following relation {2]:

CHE X e
(£ -1

which is the nonequilibrium extension of the classical expression [1]:

() Lody = 7&__;&%
U dx !‘L _

(dp/ax) feosdn)

for isentropic flow. For 33 = 0 (geometric minfimum) the local velocity
equals the local sound speed (ap or a*) for isentropic supercritical flow.
However, equation (1) 1indicates the critical point can occur downstream of
the throat since (SE;)(;E) is generally positive. This 1is true because
hp is negative, h, is positive (except at very high temperatures), and in
an accelerating flow gziis negative due to decreasing temperature. At
such a8 downstream critical station the velocity 1is equal to the local
frozen sound speed which 1s unknown initially.

Several methods have been devised for the two point boundary valve

problem when using steady state equations. A simple procedure consists of

essentially several guesses for the mass flow rate, using the limiting
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frozen and equilibrium mass flow rates as guldes for upper and lcwer

bounds. Successive iteration were computed wuntil supercritical flow
downstream of the throat was calculated (Bray [3], Hall and Russo [4]). A
second technique involved integration to Jjust upstream of the critical
singularity with a guess for Ac’ The solution was matched with a series
expansion about the singular point to obtain a corrected valve for éc, and
the procedure was repeated until convergence resulted [3}. An inverse
method proposed by Eschenroeder et al [3] eliminated the necessity for
iteration by specifying the equilibrium density (p*) instead of the area
distribution 1in the transonic nozzle section. Equilibrium wmass flow (m:)
was assumed and the area ratio (A(x)) was determined as part of the
solution. Integration was continued downstream of the critical point, then
direct integration methods were used for the remainder of the computational
domain. Sti1l another technique (Bray [3]) suggested patching together an
upstream equilibrium solution to a nonequilibrium flow downstream of the
critical point.

A major difficulty in the integration procedure is that typically the
upstream boundary point includes a subsonic, near equilibrium region. The

departure from close to equilbrium states exhibites a singular perturbation

behavior. This results from the fact that the nonequilibrium parameter '
(e.g. concentration) alters its state in proportion differences from
equilibrium and universally proportional to a characteristic time; 1in the
near equilibrium region this is essentially 0/0, i.e. closely
indeterminate. If a ordinary explicit space marching scheme 1s used,
extremely small increments wmust be taken to maintain numerical stability
and is somewhat impractical. 1In reference [5], Lomax and Bailey provide an

excellent sumiary of numerical integ. ation methods applied to the singular
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perturbation problem. One may use small perturbation theory in the near
equilibrium region to increase step size [6]. Anothe: technique developed

by Treanor [7] wuses a linear approximation to the rate equation. The

linear equation is integrated explicitly with the results being expressed
in the form of the Runge~Kutta finite difference equation plus a correction
term. Step size can also be increased by converting the differential
equations to integral equations. Bray [3] avoids the problem by using his
patched equilibrium solution technique. Finally implicit numerical
techniques are suggested in reference [5), and a review of implicit methods
as applied to reacting systems 1s given in reference [8]. Implicit schemes
do remove the step size constraint of explicit schemes but are less
accurate and require more computer time per iteration.

In recent years consideration has been give to circumventing the two
point boundary valve problem by means of an unsteady description. The
system of equations is then hyperbolic in time throughout the entire domain
of integration in contrast to the elliptic subsonic region when steady.
The technique has been applied to ideal compressible [9] and nonequilibrium
[10] flows using explicit integration schemes (e.g., Lax-Wendroff [l11] or
MacCormack [12]). Unsteady methods allow integration in time to a steady
state compatible with imposed steady state boundary conditions. The
critical mass flow and critical section location are then found in the
course of the numerical evaluation. However, the unsteady scheme still
must converge to a steady state solution in all near equilibrium regions,
and this limits step size in wuch the same way as when using steady Euler
equations.

It 1s the present intent to take advantage of both time dependent

Euler equations, which eliminate the two point boundary valve problem, and
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implicit schemes which eliminate the stability time step constraint. In
Chapter 2, the physical model for nonequilibrium, compressible flow in a
streamtube will be described, including assumptions and model equations.
Boundary conditions, thermodynamics, and rate chemistry are also discussed.
In Chapter 3, the suggested fmplicit numerical scheme 1s described and
numerical treatment of the boundaries is discussed. Chapter 4 covers
numerical solutions that 1llustrate the capability of the implicit scheme
when applied to nonequilibrium flow. Finally, Chapter 5 discusses possible
improvements, extensions to higher dimensions and larger systems of

reactions.
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Chapter 2

ANALYTICAL AND PHYSICAL MODEL AND GOVERNING EQUATIONS

The modeling 1s that of a nonequilibrium flow 1in a quasi-one
dimensional streamtube. If all processes were isentropic, algebraic
equations would describe the thermodynamic changes of state [13].
Thermodynamics then constraing the inter-related state variables but
implies a one to one correspondence between physical and dynamic properties
calculated from the equations of motion. For nonequilibrium flow the
thermodynamic behavior depends on the detalled flow history. As mentioned,
the unsteady Euler equations will be used to model the nonequilibrium flow.
They comprise a hyperbolic system of partial differential equations which
describe an 1inviscid, adiabatic, compressible flow. The quasi-one

dimensional system 18 then:

:

? A _
mass: Sf Y o Tk T ©
. S + LLEEL = -1 };12
momentim: 32 3K e Ix

o~
N
VI
xl(‘
"

e

eneray: == ’—%

- 3
e

species: %—-E- + “ %% = W 9,7,«)

In addition to the standard (homogeneous medium) conservation
equations, there 18 a single conservation of species constraint. The

physical modeling required by this phenomenon is presented in the following

section.
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2.1 Chemistry/Thermodynamics

The species equation, 1in fact, 1s representative of a number of
possible nonequilibrium effects: for example, 1internal modes such as
vibrational, rotational, or electronic, and chemical modes such as
dissociation, ignition. Here we will assume that chemical dissociation is
representative and the sole nonequilibrium flow phenomenon. This implies
that all other energy modes are either in equilibrium at the local flow
temperature (T) or maintain a fixed sub-state, i.e. frozen. ‘The species
concentration effects the system both implicitly and explicitly. That is,
pressure and internal energy are now functions of concentration as well as
two other thermodynamic properties, such as density and temperature.

A relatively simple binary gas suffices to 1illustrate the
nonequilibrium effects. An approximate but realistic gas model described
by Lighthill/Freeman [13], ([l4] as an "ideal dissociating gas,” and
contains the major feature of a binary reacting system while simultaneously
eliminating complex but non-enlightening terms. Lighthill simplified
several coantributions to the partition functions for a diatomic gas. A
brief discussion of the basis 1s described below. Congider a diatomic
dissociating gas to be composed of particles (A) which include
translational and electronic internal energy modes, and a combined particle
(A2) which, in addition to the above, has vibrational and rotational

degrees of freedom. The factorized partition functions of each are of the

form
A
QA = Q: Qc.(
& t N A‘L
0] Q? = oal aly Qg

The translational partition function for (A) atoms or (A7) molecules is

T "‘_"w PR — e ——
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vhere m is the mass of the specific particle. The rotational partition

function is
Ay T
A - —
( ) Qrot 3\ (9P>

and the vibrational partition function is given by
A'; l
07) Qoo = -8/
| - <

The electronic partition function is described by the general equatiom
- €& - €
AT 7% 7%

) Q= %e v g AL g AT,
where the gy are degeneracy factors for the energy levels €y. Specific
values for the constants for a particular species are obtained by
spectroscopic analysis of transition between energy levels. Use of
equations (5) - (8) in the mass action equation for a symmetric diatomic

gas leads to:

G@é}

3
@ - € m(mmd) 0T (-E) (LY
R B )

vhere (a*) indicates equilibrium concentration. Lighthill noted that for
1000 < T < 7000°k the contents of the brackets in equation (9) is
essentially constant, and he suggested that it be taken to be a counstant,
characteristic, dissociation density (pq). The simplified expression is

then
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.t -9
(l 03 _——‘&—-—: = _gd_ c VT
| - < ©

The thermal equation of state is unaffected by the constant pg
assumption since pressure depends only on derivatives of logarithms of the
partition function with respect to volume. Assuming both A and Ay to be

perfect gases, the thermal equation of state in equilibrium is
= (1 4+ o™
(ll) —»p = ( )RAlQT

The expression (1 + a*) RAZ is essentially the equivalent of a mixture gas
constant.
Since the caloric equation is a function of temperature it 1s affected

by the Lighthill approximation. The general expression for equilibrium is
{13]):

A
() e'- RA{T" [1<‘%_ InQ+ (1-<%)) INQA‘J
Al 37
~(1-2) R, 0,
Using the simplified mass action relation (10), this reduces to simply:

03) e’ = RA’_[3T + e(’od]

in which contributions due to electronic energy have been assumed to be
negligible for the temperature range considered. The internal energies of

individual constituents of the mixture are:
U"D h= (Q'A)-(;,. - 3:LRAT - 3R41T

Neglecting electronic energy and on assuming that the molecular vibration

mode {8 half excited:

€= X R,T ¥ R.T + i R, T = 3R,T
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Since e = aey + (l-u)eA2 Eq. (13) then follows. Note that in this model
4
the ratio of specific heats for a non-dissociated gas (a = 0) is ; » which
7
is 1less than the true ; for diatomic molecules. From Eqs. (11) and (13)

the equilibrium enthalpy is:

wH  hE e g s Ry [ (4T = <7 oy |

The preceeding discussion of equilibrium chemistry provides a basis
for the nonequilibrium model. The thermal (11) and caloric (13) equations
of state are of the same form for nonequilibrium and require only
replacement of o* by a. A finite rate associated with concentration
changes requires replacement of the algebraic mass action equation by a
differential description equation (3d). The right hand side of this
equation represents the production or recombination of atoms. For & binary

diatomic dissociating gas

. —_— - T
(:u) w(p,u,u) =<k,,1=-< K, b:%% (-2t

MA Kc_

Freeman [13] noted that for equilibrium

2
. = Ma ke
|- x* ae

KC

which 1is identical to the ideal model equation (10) if MAE- is replaced by

P

od e—9d/T

- « He also replaced the first parenthetical factor on the right

[

hand side of equation (16) by a single Arrhenius rate constant.

% _-®

Therefore the source term becomes

. - Gds
) W o= GT¥e | (-d Lo <2
@4
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2.2 Nonequilibrium Flow

With the motion described by unsteady Euler equations and

thermodynamics/chemistry described by an ideal dissociating gas model, the

-following system of nondimensional equations apply:

(M) Ueg + AUy, + H = O

where:
r b r“ o o o .1' ‘Fm - “
? o w %y W s
N 0 7% I I

U= A= H= 2w A +%

T 1> o e, “ o |) & A M
Y o o L~ LL - ur
LT L | L J

The nondimensional parameters are:

e= e//(’- ! w u,/“o » T Tl/fb

(29) | ,
X = ’VIL ) + + /Q}%£> y A4 = ‘4//2t

where ( )' indicates the dimensional variables in (3) and ( )g indicates

[}

stagnation conditions.

- -6
w = @ Tn’g ,}!-*3(_ #—.2?:‘ x‘]

Q. = (L/%)/( MA/Q"’."&)
() R o= O Q) Ray

C.- = 3RA1

T ¢, To &




2.3 Equilibrium Flow

A limiting case to be considered is that of idealized "identical”
equilibrium. In this limit the differential species conservation equation
may be replaced by the equivalent 1law of mass action (10). The order of
the equation system decreases by one and local equilibrium 18 enforced
instantaneously and continuously. Thus, the state vector and coefficient

matrices of Eq. (19) are now

© | pu da |
v = * A X
w ) H* B
-
T_K,o\u4
L k(2 *6451
L J
(=) , 1
«U C (@)
RaT ) < 4 J&:;[ :> (7 (:,E!i *‘.BA;I. }_:S
A = %o 30 FRL %R, YR 3T

{
= ) e N
where: k‘ I+ ﬂ é.:‘."- 3% }e
3T, ¥Y 3 = e‘,/f
23 o\' = A ¢
( ) R* = ( | + C’\') RAl H |- Gl"' gf;

Actually, for the isentropic frozen or equilibrium 1limits, the entire
systea can be reduced to algebraic forms. However, for cousistency such
limiting cases have been integrated here using the same unsteady Euler

equation description.




2.4 Time Scales

When the flow is neither frozen (a = constant) nor in equilibrium,
there are two time scales present in the problem. Multiple time scales can
lead to integration difficulties (see Chapter 3). Such problems are
strictly numeric and result from the presence of widely separated
eigenvalues in the discrete equations. The two scales are a flow time
(Tf1ow) and a chemical relaxation time (T pep): The flow time
(l‘{) T‘ low = L/a°
is a measure of the physical scale of the nozzle or residence time of the

fluid as was suggested in Eq. (20). The chemical relaxation time
o - M
(25) ¢ A
C‘ Q. T°

Chuing
is a8 measure of how rapidly the fluid will relax to an equilibrium state.

Ne

The rate parameter & in Eq. (21) is simply the ratio of the time scales,
Tflow/ Tchem-
This process can be understood in terms of a linearized model for a

rate equation; say

d“ = ** -
uc) q€ <

in which t is a modified t.phep-
In general o® and t are both time dependent, but for constant values
the decay towards equilibrium exhibits a simple exponential behavior (Fig.

1):
@)

Clearly 1 is the time required to decrease the relative difference by the

- a? -t/
o - o .

Q, —A*

factor e‘l, and smaller t 1{mplies a faster relaxation process. Of course
the assumed constant heat bath in general, is not true along a streamtube.

Thus variable temperature and density imply varying a* and Tehem according




to 1local conditions, and hence there 18 a coupling to the fluid motion.

Tflow
The limit =-—--- < 1 i3 the frozen case in which there 1is no time to react

Tchem

to local flow changes; alternatively, this is equivalent to a short path

length. The opposite extreme, ——=—- >> 1, approximates local equilibrium

and corresponds to a relatively long local residence time for a particle.
It 1s the near equilibrium situation for which neither time scale can be
neglected, but the chemical relaxation time is relatively small, that lead

to numerical difficulties.

2.5 Boundary and Initial Conditions

The boundary conditions are extremely important and require special
care in the case of numerical evaluationms. For a subsonic inlet two
boundary conditions are required, and are taken here to be stagnation
enthalpy and entropy. Since interest is in the steady state, only steady
state boundary conditions are applied. The total enthalpy is a function of

temperature, velocity and concentration:

@') ho = qu[(‘-lo-t)‘rq. -&e‘;] +ou?
The differential entropy 1s [15] x
ds= 3R, dT - (1 +«)R, dp - R_In [ 1-a"] d«
2 4y, L ap WL W B S Sk Y
( 7) 2 T Ay IS b ‘(A" - &
The limiting expressions for frozen and equilibrium extremes are [13]
Ezuilrln.'um', : .
S = 3 in T + %(l‘llh'f) —(l—-'z)(n (\--7)
©4
(Io) Frozen - ( l"’})ln_@_ + const
T = Comst N
¥=~1
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More will be said regarding boundary and initial conditions

(including the

supersonic exit) in Chapter 3 where the specific application to the

numerical technique 1s discussed.

4 TR T el v, g
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Chapter 3

NUMERICAL ANALYSIS

3.1 Stiffness/Stability Analysis

It has been pointed out that the nonequilibrium system of equation
(19) {s numerically stiff. Stiffness is not the result of an analytical
technique but can originate from the discretization of a continuum equation
set when multiple time scales (e.g. Tfloy @8nd Tchem) are present. The
phenomenon can be demonstrated by writing the species continuity equation

in finite difference form using explicit upwind differencing (u>0):

31 o n n n an h
( ) x(. - \L - CQUL - (A("_\) - qu(’ b '(L
ult
where ¢ = -—- (Courant number)
At
At
qd = -~
Tchem

The last term in equation (31) represents the time :fazarized Sorm of the
chemical rate equation [13]. The stability limits of this explicit finite
difference alogorithm can be investigated using Von Neumann stability

analysis [16]. Each Fourier component of the solution is written as:

n n Tco
. e
(32) <, =V
which on substituting into (31) yields
nel T
~4&
()Y = 1 -c(1-ef®)-d
n
\"4
Since the modulus of the amplificatfon factor must not exceed unity, i.e.
nel
(34) 6] = A\ ¢ 1
n
V
therefore
R :m—\_--.«.v.v-... N
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(35) G = I +ac(i-cos®)(crd-) + d(d-2) <1

If satisfied for all 0 and 0<l-cos0<2

(3¢) 4o (¢ +d-1) +d(d-1) £ 0

or

G7) <« £ | -dny

The classical upwind constraint follows for the frozen limit (d+0), namely

(3%) C £ |

However, notice that positive c requires

(39) d £ &

o

@) ot = T

L 4+ qu:dwn
X —Bx

Therefore, as T.hem*? (higher reaction rates) the step size (At) for
stability 1s determined by d rather than c. Hence, for situation in which
step size 1s dictat:d by chemistry, the number of iterations for
convergence to the steady state may be impractical for explicit techniques.
An implicit wmethod is of some interest 1in order to improve the step size
and therefore, iteration count.

3.2 Explicit/Implicit Integration Scheme

The specific technique applied here to the nonequilibrium equation set
is that developed by MacCormack [17]. The scheme is an implicit analog of
MacCormack's explicit algorithm [12] introduced in 1969. 1In fact, the new
method uses the earlier explicit technique as the first of a two stage
procedure and 18 referred to as an explicit/implicit algorithm. The
explicit first stage uses the original predictor - corrector concept to

compute local changes 1n the dependent variables of the governing

—— -
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equations. Then, the implicit second stage distributes those changes
globally to all points in the computational domain, thus removing the

stability constraint associated with the explicit algorithm. The procedure

18 second order accurate in time and space, unconditionally stable in time,
and block bidiagonal in form.

3.2.1 Model Equation

The basic theory and implementation of the explicit/implicit algorithm

can be demonstrated using a model convection equation:
CD) W+ cdu = O
2t I

The explicit part integrates equation (41) wusing a predictor/corrector

method:

‘ ‘)
p: aAX
LL"V'\'J = u;v\ A u,'\
(2 _ - __
Au,;'m= _,_«_;_t_,__g(u‘_"\ﬁ - ui:‘ﬂ
¢ 4X
(A‘_ nH = Ji( u.,.'“ + uom + Auc’m)

In the predictor step, a known field at time t = nAt is used to provide an
initial estimate for the new field at time level t = (n+l)At by wusing one
sided spatial difference to compute the dependent variable change, Au, for
the hyperbolic equation. The estimates u1“+1 are used in the corrector
step with opposite one sided differencing to compute a second estimate of
the change Au1“+1. The new prediction is then the previous value plus an

average of the two estimates. This can be clearly demonstrated by
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rewriting the finite difference equations (42) as an Euler predictor

followed by a modified Euler corrector [18]:

N
(43) " .

W, = w" g\at(u{’w ui”w‘)
These are equivalent to MacCormack when the time derivatives of a
hyperbolic equation (u') are computed using forward spatial differences in
the predictor and backward spatial differences in the corrector. Hence, by
equation (43) the change in the dependent variable (u) is the average of
the changes at the predictor and corrector levels. The method 1is second
order accurate and stable if the time step satisfies the wusual CFL
condition:

At £ Ax/c_
Since C in Eq. (41) is the slope of the characteristic in the physical
domain, this restriction simply insists that the computational domain of
dependence must include the physical domain of dependence (figure 2).

The stability constraint is removed by 1including both current (t =
nAt) and new (t = (nt+l)At) time 1levels in the finite difference
approximation of equation (41). Along a negative slope (c<0), forward
spatial differencing 1is appropriate since the information 1is propagating

from larger x at earlier time. Therefore an {implicit form for equation

(41) becomes

(‘1‘-/) w™= - (1-«) cat (“c?, = “i") - «cat (u'- “cw)
ax x

The constant (a) essentially determines the "degree of implicitness” in the
equation. If (¢ = 0), the original explicit equation is recovered; if

(a = 1), equation (44) is fully implicit. On collecting terms, Equation
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(44) can be written in the following form:

(45) (‘ ) A‘%%) Su= -Cal aul v nat (™

where
(q‘) A u-n = u;:’\l - u‘n

Similiarily, if C>0

N\ i
@”) (‘ + _2_.2) Sua = -cAt A'“in + X__é_t.". Su.“'

where

For stability, it can be shown that

Ly A > % ('cl -é—’i>

At

Note that the first term on the right hand side of equation (45) 1is the
explicit approximation (42) to the model equation. Hence, the {implicit

extension of the original MacCormack explicit scheme is

4
Al  explicit

¢ - A.es.)suw‘“ = ag’ + Xat gu
A X a

GORE

A uam explic.it

(l + A _A__t_._>$ua""'= Auim ¢ Nat "
AXx

U1y) ¢

w™ = t (u> + W™ +¢ u;"’”)

- " e, W s G -
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This system 1s unconditionally stable for

In addition,

satisfies the constraint equation (48).

corrector procedures involve bidiagonal matrix

single sweep through the computational domain is necessary for

The bidiagonal structure can be seen from:

r Tr 7
M' Na %u\
'v|1 ,43 (::> S(Aa
O Ug.
Mz-t NI $ !
M Suy
| J L J
where
Mo = 1+ rat
A X
N¢ = A At
ax
3.2.2 Euler System
Using the basic algorithm, the scheme 1is

nonequilibrium Euler System (19) as represented by:

Ve ¢+ AU, + H

o

The explicit/implicit algorithm for matrix equation (49) is

+ H‘“ )

— n
S'U&“’I = A [fi

Al a, o"
———
4x

S—

AU.tn = - At(

(S'Oq P (T-

U

n
- ot a4 )
a4 X

A "
i

wri
= + S'Ui.’

¢

T e W G
M

integration in time

equations so

if A
both predictor and
that only a

each level.

L,

AU,

O Wg

A“: + NruAu:H

applicable to the




A-Utm = - At‘(ALm A-ULT\-T + HL’\+\>

X
Sop) < (I +at A-\A\:t')gvc"": au™
Ax ‘
\ —
u‘:M - Ji'(v,'_‘\ +U-‘“” ¢ &Uim‘>
vwhere
A A n
A, 1AL - \al) - 1al
A X AX
a_ LAY < (AR - 1AL
AX AX
The matrix |A| is related to the eignevalues of the system by
(.51) ‘Al = Sx-‘ DA sx
where - -1
Aa, O
DA - x‘t
o M
M,
L .
(53)
)\A‘ = wax E |u-a] - ax/at o.og

A, = maxd [ul - sx/at, 008
AA = max i | weal - Ax/At,0.0z
A

= m“zlul - ax/at, o-og

The matrix of efgenvectors (Sy) satisfies

A= S A, S,

A
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where A, 1s the diagonal matrix of eigenvalues of (A). (Appendix A

provides a derivation of the eigenvalues and eigenvectors for both the

! equilibrium and nonequilibrium equations). For regions which satisfy the

.usual one dimensional, compressible, explicit stability criteria

| (3) At < AX
; lul +t a
i all Ap will be less than or equal to zero. In such cases the Ap are set to

zero (see equation (52)) and the set of difference equations (50) reduce to

an explicit form. When all A, are positive the implicit equation can be

expanded to examine the matrix block bidiagonal form. For example, the

implicit predictor equation (50a) can be written as

n n n
(s¥) I + %_t; Al SUL-n = AU‘-“ + —4-& 'Alw § v

and solved by a single mesh sweep in the decreasing (i) direction. The
corresponding corrector sweep 1is in the opposite direction. Appendix A
provides a detailed description of the block-bidiagonal solver.

This explicit/implicit method has several significant advantages over
other implicit methods. One major advantage 1s the block-bidiagonal
structure. Numerous other 1implicit schemes (e.g. Beam and Warming [19])
‘employ a block-tridiagonal solution algorithm which tends to increase
computer time per iteration. In addition the bidiagional method is
straightforward to program and does not require matrix inversion.

An area of difficulty is the inclusion of a source term (Hj in the
inblicit stage of integration. For an ideal gas, the quasi-one dimensional

source term is not time dependent and therefore, does not effect stability.

!
However, the nonequilibrium source term contains the time dependent

reaction rate (;). (See equation (19)). As will be shown in Chapter &,

2T e T T e L, s
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the fmplicit stage of integration will provide sufficient stability for
moderate reaction rates. But, sufficiently high reaction rates effect
stability since v 1s only evaluated during the explicit stage of
integration.

3.3 Boundary Conditions

The solution procedure for the block bidiagonal matrix equation (48)
assumes that all dependent variables are known at the boundaries. For
certain types of boundaries (such as supersonic inlets or outlets) the
boundary conditions are straightforward. However, for supercritical nozzle
flow the boundary conditions require special attention.

Characteristic theory provides a basis for the construction of stable
implicit boundary conditions. As noted 1in reference [20], a correct
formulation of boundary conditions are of extreme importance as they are
the governing elements of the computation. Porous boundaries in hyperbolic
problems are represented schematically in Figure 3 for one dimensional
ideal gas flow. (Reacting flows have one additional characteristic; see
Appendix A). At a subsonic inlet, two positive eigenvalues (A} = u, A3 =
. u#d) define paths along with information is transmitted to the boundary
from outside the integration domain. Consequently, two boundary conditions
are needed [21]. Along the remaining negative characteristic, information
is transmited from 1inside the domain; forward spatial differences then
correctly account for the 1influence of such characteristics at the
boundary.

To apply these characteristic constraints to the {mplicit algorithm,
the following time linear approach was used [22]. The boundary conditions
(ss) B; ( v)=o

Can be written in time linear form:




P
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(5;c) TD (36 (tj) - \é__i; )_Sl_ = 0O

» € PRSI &

Recall (Chapter 3) that the boundary conditions for a subsonic inlet are

that total enthalpy and entropy are fixed at the inlet. Equation (49) in

‘characteristic form is

where A = P-l AP

At the inlet, the eigenvectors corresponding to the positive eigenvalues

are replaced by the boundary conditions (56). Therefore equation (57)

becomes
(5%) P, U, ¢ PRLAD, + R H=0O
where P = r:ﬁ‘ l P:. = ’ ‘F\ 1
)
b, 5
3D
§§ °
or L3V L J
€) Yo + WRAV, rRIRH= o

Equation (19) is a modified partial differential equation to be solved at
the boundary using the explicit/implicit method (50). Equation (50) need
not be modified at the supersonic outlet since there eigenvalues are
positive, implying that all information at this boundary 1is transmitted
outward from the interior of the domain. Thus, the boundary condition
procedure involves the use of forward difference at the inlet and backward
differences at the outlet. The {implementation of this procedure {s
represented schematically by Figure 4. Notice that the mesh sweep was

applied in alternating directions to eliminate oscillations.
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Chapter 4

NUMERICAL SOLUTIONS

4.1 General Description

A computer program has been developed from application of the physical
modeling and numerical techniques of Chapters 2 and 3 to a quasi-one
dimensional, nonequilibrium, supercritical, streamtube flow. Code
validation and case studies (operating on a PDP 11/23 computer) are
presented here to indicate the utility of the code and some advantages
relative to earlier algorithms.

Memory 1limitations (28 Kilobytes) required a sequentation of the
domain in order to achieve larger area ratios. An upstream segment (see
Figure 5) contained the streamtube wminimum section and required the
subsonic inlet boundary condition discussed in Chapter 3. Once supersonic
flow velocity was achieved, a fixed supersonic boundary condition was used
at the inlet of any additional downstream streamtube sections. This
procedure allowed for expansion to an arbitrarily large area ratio without
either exceeding the memory limitations of the system or sacrificing
accuracy as would be required by an otherwise decrease in the number of
mesh points for a given area change.

Initial conditions (t=0), boundary conditions (inlet, outlet), and
computational methods were explored 1in the selection of example cases for
numerical evaluation. Table 1 indicates the {ndividual parameters and
specifications for the study, but only some combinations of the overall
possibilities were actually used as a basis for the solutions. A majority
of cases were considered with the larger stagnation species concentration

(referred to ‘as the “"hot gas” case). However, a selected set of results
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for the lesser ("cold gas”) species concentration are also presented. The
area distribution along the gtreamtube was chosen to be parabolic, the
larger area ratio level refers to the exit maximum of any extended
supersonic section (Figure 35). Initial conditions are the assumed
distributions of dependent physical property variables. Typically, a
decreasing (downstream) 1linecar variation was employed in order to be
consistant with the trends of expanding flow.

4.2 Numerical Validation

It is {unformative to compare any results with the corresponding
expected trends from analytical considerations such as described in
references [1], [13] or [23]. Some important checks for consistency are:
constant mass flow rate along the streamtube, achievement of sonic velocity
at the minimum section in the limiting frozen or equilibrium calculations,
and appropriate shifting of the sonic point to a downstream location for
nonequilibrium flow. Of course, accuracy of a numerical result depends
upon the number of mesh points 1in the computational domain, integration
step size, and the enforced convergence criteria. The latter was taken

here to be
()  Z|oMP-on] e (5 w)
¢
as the criteria for all computed results.

For frozen flow, computed results were compared with tabulated,
analytical results, e.g. [23]. Table 2 summarizes the numerical solution
of an {deal gas flow (Y = 1.4) and compares the solution with the exact
analytical values. The important conclusions are first, that the accuracy
of the code is demonstrated by excellent agreement between computed and
analytical solutions. That is, the maximum error for any variable at any

CFL number is 3.02 with the average vr. r generally below 0.5%.

- e, W
.




38

Second, the characteristic boundary conditions discussed in Chapter 3 do
satisfactorally "find"” the correct set of 1inlet variables such that
supercritical flow is achieved. Third, the computed Mach number at the
throat deviates from unity by a maximum of 0.3%. Finally, the number of
{terations decrease with increasing CFL (i.e. increasing At), but with an
expected decrease in accuracy.

Numerical solutions for equilibrium calculations were validated by a
comparison between computed results and; the law of mass action (10) for
consistency, an equilbrium sonic speed at the throat, and for constant mass
flow rate along the streamtube. In all cases where mass action was checked
the agreement between the numerically computed concentration and an
analytically computed concentration from equation (10) was accurate to six
significant figures. The equilibrium Mach number departed from unity by at
most 0.15Z (for a CFL number equal to 10). As 1in the case of frozen flow,
the accuracy of the numerical solution improved with an increase in mesh
polnts or a decrease in CFL criteria. For all cases the steady state mass
flow rate varied by at most 0.15%2 and for nonequilibrium flow the flux had
the same accuracy as for isentropic flow at a given CFL number.

In addition to mass flow consistency, nonequilibrium flow was
validated by verifying that the sonic point moved downstream of the minimum
section as the rate coefficient (&) increased (Equation 1). Also
qualitative behavior was compared with the results of Reference [3]. For
all cases, the equilibrium and frozemn 1limit data banded that of
nonequilibrium flow. For example, an increase in rate coefficient causes
the species concentration to depart from near equilibrium  farther
downstream and the flow temperature to increase. It appears from the cited

general results that the computer code does output results which are
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consistent with the physics of che problem.

4.3 Integration Difficulties

Consider problems related to numerical instability as specifically due
to the explicitly modeled source term. The species equation source term,
;, was evaluated at the current time level as outlined in Equation (50).
Such a basic for estimation of the local change in concentration due to
chemical reactions can be extremely unaccurate when the rate coefficient
becomes large. Figure 6 1llustrates the relative scale of the reaction
rate compared to temporal step size. As the reaction coefficient
increases, some flow regions tend to remain in near equilibrium, as 1is made
clear by the slope of the fast reaction rate in Figure 6. Essentially, 1in
such “"fast”™ cases any small deviation from equilibrium produces a large
initial rate to bring the concentration back to an equilibrium level. This
initial rate quickly decreases as the chemical relaxation follows an
exponential decay. If the {integration step 1s a sufficiently small
fraction of the relaxation time (T pep) such as used in Reference {10], the
initial rate (or slope) will decrease at the next iteration level due to
then updated values for dependent variables. However, if the time step
exceeds the characteristic relaxation time, the concentration may (and most
frequently does) overshoot the equilibrium level, thus leading to numerical
instability.

For all nonequilibrium explicit cases, the basic predictor/corrector
scheme was unstable unless the time step was taken as some fract{ion of the
smallest relaxation time in the mesh. This constraint is apparent from the
stability restriction of Equation (40).

Whea computing using the explicit/implicit algorithm, the 1local

concentration can easily (and frequently does) overshoot the 1local current
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equilibirum level without achieving numerical instability for rate
coefficient magnitudes 1less than ¢ = 104, A possible explanation is that
the implicit stage of integration modifies the explicitly computed local
evaluation by distributing these changes globally, thus effectively damping
out oscillations. Nevertheless, as the rate coefficient increases such
numerical damping is insufficient to maintain stability.

Four distinct methods were employed in attempting to improve numerical
stability. Two methods used a cut off criteria to prevent the
concentration from overshooting an equilibrium level. A third method used
a point by point “type" splitting calculation for equilibrium and
nonequilibrium regions. That 1is, either equilibrium or nonequilibrium
equation were locally solved depending upon a type splitting criteria. A
fourth technique consisted of a modification of an analytical/numerical
approximation suggested by Bray [3]. A brief description of these
algorithms will be presented in chromological order.

The “type splitting™ (Method 1I) procedure employed a crossover
criteria to determine which equation set (1.e. equilibrium or
nonequilibrium) was to be solved at each mesh point (Figure 5). If the
local reaction rate at a given grid point was sufficlently large such that
the change in concentration exceeded the change to the current, local
equilibrium level, identical equilibrium was assumed for that mesh point
and time step. Therefore, equilibrium Equations (22) were applied at such
points and nonequilibrium equations (19) at all other points in the mesh.
This procedure met with some limited success. With this technique the
explicit stability 1limit was, in fact, substantially increased. By
eliminating the explicit relaxation time constraint, the temporal step

limitation was determined by the CFL criteria. This algorithm proved to be
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stable for reaction rates up to ¢ = 104, To add an implicit stage (and
hopefully further 1increase the system stability 1limit) required an
assumption be made for changes in concentration (Aa) at “equilibriuam”
points. For identical equilibrium, a is completely specified by the law of
mass action. However, for this method any given mesh point 1in the
computational domain could be in either equilibrium or nonequilibrium at
different time levels. This required that a concentration change be
specified regardless of the point type. Applying an estimated change did
not improve stability. In fact, this method did not yield any stable
implicit results.

A second method (II) employed an analytical approximation by Bray [3]
to essentially remove the singular perturbation region. Bray assumed that
in regious of the flow field for which the dissociation rate term was
significantly larger than the species comvection term, the flow was "in

equilibrium.” That 1s, the suggested criterion is:

(o) T (1-) & YT > |udd
dx

Bray considers a lower limit of 20 as the level at which nonequilbrium
should be appropriate. A starting point was chosen based on this
criterion. Figure 7 indicates that the procedure is not unstable, but does
result in an oscillatory solution near the starting point. It was decided
that the oscillations were related to the near equilibrium nature of the
starting point, which lead to overshoot for large time steps.

The remaining two algorithms (III,IV) employed explicit damping of the
species equation in order to improve and control stability. The first of
these (Method III) wused a cut off criterfon based on the 1local, time

dependent, equilibrium concentration. Any concentration change that




42

exceeded the change to the current local equilibrium level was restricted
(cut off) so as to proceed at some fraction of the maximum possible change
(a: - ai). This procedure produced numerically stable results for large
time steps (CFL = 10) but did produce some “chatter” that could not be
damped. The results of Figure 8 indicate the oscillations in a typical
solution.

The final algorithm (Method 1IV) eliminated the chatter (of II1) by
basing a8 cut off criterion on the local steady state equilibrium
concentration in contrast to the 1local, transient equilibrium. This
procedure, In effect, provided a 1lower bound on the concentration
distribution, and added the necessary stability to permit consideration of
nonequilibrium flows with large time steps (Figure 9). The next section
provides results that indicate the significant improvement that becomes
available for nonequilibrium flow evaluation.

4.4 Results

Method IV algorithm implementation was as follows. First, the
computation of both frozen and equilibrium limiting cases established an
upper and lower bound to the nonequilibirum distribution behavior. The
finite rate chemistry cases were then solved using an initial (t = Q)
concentration distribution selected to be greater than the equilibirum
lower bound over the entire domain. During the explicit portion of the
algorithm, if an implied concentration change was larger in magnitude than
that required to achieve local steady state equilibrium, the allowed change
was “"cut off” at some fraction of the difference. That is

if ax>(xt-%)
(bl) then 4 .-:K(,(z - g“.)
- Where K ¢ |

[ W Wy G
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The entire domain was scanned at each step to locate the most downstream
point for which a cross over of the equilibrium "stability”™ boundary would
result 1if not constrained by the cut off condition (Equation (63)). The
cut off rule was then applied at that point and all proceeding upstream
points. By this means, an extremely inaccurate estimate of the
concentration change was inhibited 1in the near equilibrium region. This
effectively restricted the consequences of the local reaction rate so that
the transient concentration distribution remained above that for the
equilibrium 1limit. Essentially, imposing the lower bound provided the
additional stability for the explicit/implicit algorithm in the singular
perterbation region. That is, since the chemical reaction rate (6), is
time dependent and only evaluated at the current time level the 1inaccuracy
of the explicit estimate of the rate is compensated by using a known lower
bound to inhibit overshoot and oscillations. The individual solutions
provide some evidence of the utility of Method IV.

The purpose of the completed sample cases was to explore the ability
of the algorithm to produce results counsistent with the physics, and to
demonstrate the relative gain or penalty in computation time. Five cases
(1.e., parameter sets) were considered in order to indicate a range of
applicability and determine possible regions of difficulty. The five cases

were as follows:

Case [ 7 CFL ®
1 0.67 0.9 0,103,5x103,104105,«
2 0.67 5.0 0,103,5x103,104,105,«
3 0.67 10.0  0,103,5x103,10%,=
4 0.40 0.9 0,10%4,=
5 0.40 5.0 0,10%,»
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In all cases, a segmented solution procedure was employed using 57 points
between computational boundaries. The first segment, contained the minimum
section which expanded the fluid to supersonic velocity (Ypax = 2.0). The
second, completing supersonic section expanded the flow further over

2.0 < y < 10.0. The large area ratio was introduced so as to demonstrate

chemical freezing even more clearly. The convergence criterion (Equation
(60)) was ¢ = 104, The initial conditions for all computed solutions were
the same. That is, for the first segment (Ypax = 2.0) a decreasing linear
distribution for density, velocity, and temperature and a constant
concentration distribution. When comparing iteratiomns to convergence for a
given stagnation condition, the same initial profile was always employed.
Table 3-7 summarize iterations and cut off criteria for each case. When
comparing relative near time note that an explicit/implicit iteration is
2.25 times an explicit iteration.

4.4.1 Case 1 - Hot Gas Explicit Solution (CFL = 0.9)

Results for explicit integration (CFL = .9) are illustrated in Figure
10-14 and iterations and cut off conditions are summarized in Table 3. The
concentration profiles of Figure 11 demonstrate the freezing phenomenon as
supersonic flow continues to expand. In addition, this figure shows the
tendency of the concentration to maintain a near equilibrium distribution
for larger area ratios for increasing ¢. The initial spatial departure
from equilibrium is more easily seen in Figure 11 which is an exploded view
of the throat region., The temperature, velocity, and density follow
expected trends for nonequilibrium flow. That is, temperature and velocity
increase and density decreases with increasing ¢. An interesting
consequence of applying the cut off algorithm 1s that the explicit

integrate stage (generally restricted by chemistry dominated flows) may

mvvenamn —iomies e e e A
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then be integrated using only a CFL stability criterion. More will be said
regarding the quantitative improvements after the implicit results are
discussed.

4.4.2 Case 2 - Hot Gas Explicit/Implicit Solution (CFL = 5.0)

Some numerical results obtained for this explicit/implicit case are
summarized {in Table 4. The graphed distributions (Figures 15-19) of
dependent variables (p,u,T,a) indicates excellent agreement with the
explicit (CFL = 0.9) solution. For example the exit concentrations for
both ¢ = 104,105 differ by less than 0.1% for either ¢. Also, from a
comparison of Figures 1l and 16 it can be seen that the concentrations at
the 1intermediate y = 2.0 are 1indeed virtually identical. However, the
implicit (CFL = 5.0) algorithm converged in approximately 0.56 the time
required for the explicit (CFL = 0.9) method.

4.4.,3 Case 3 ~ Hot Gas Explicit/Implicit Solution (CFL = 10.0)

When the CFL number was increased to 10.0 a significant decrease in
accuracy was noted for higher rate constants. Table 5 1lists the iteration
and cut off coefficient (K) for the results plotted in Figures 20-24. Note
that results for ¢ > 10% are not presented for CFL = 10.0. In order to
obtain a sufficlently accurate solution for ¢ = 10% a cut off criterion of
0.2 was necessary. This increased the number of iterations to 300, three
times the number for CFL = 5.0 (compare Tables & and 5). Figure 25
illustrates the substantial inaccuracy that corregsponds to a ¢ = 104
evaluation with K = 1.0 used as a cut off basis. The plot of those results
(inverted triangles in Figure 25) indicates a virtual equilibrium
concentration distribution out to y = 2.0. However, both Cases 1 and 2
indicated that departure from equilibrium occurred at a substantially

smaller area ratio for the same rate parameter (see Figures 10 and 15). A
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decrease to K = 0.2 (larger values were tried) led to solutions for Cases 2
and 3 which were nearly identical, as indicated by the upper concentration
distribution in Figure 25, but with a run time increased by a factor of
three.

A measure of the error for & = 104 and the range of CFL numbers is

plotted in Figure 26. The error is defined as:

() o = Ié (u™"- o hf/ir
(£ (om0 2 |

g

The CFL = 5 case converges much more rapidly than the CFL = 0.9 case (100
uses 410 iterations) and produces virtually identical results. Similarly,
for CFL = 10 with a K = 1.0 cut off condition, convergence is quicker than
for either 0.9 or 5.0, but as discussed above (Figure 25) the results are
quite inaccurate. The K = 0.2 iteration history plot (Figure 26) indicates
the substantial increase in iteration count (from 60 to 300) and suggests
that CFL = 10.0 would be less efficient than an explicit case for ¢ = 105,
That is, when the acceptable error level is below that corresponding to the
explicit stability limit then an explicit method becomes preferable to an
implicit method (Figure 27). The conclusion 1s that for a sufficiently
large CFL number the inaccuracy introduced by the implicit method produces
a sever constraint on the cut off condition. Therefore, at sufficiently
high ¢, a lower CFL number is favorable for a more accurate solution in
fewer iterations.

4.4.4 Comparison of Computation Time

The improvement in number of iterations and computer time can be seen
from Figures 28 and 29. Results for Cases 1l and 2 are compared with an

explicit calculation employing Tchep Stability constraint instead of the
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cut off algorithm. As discussed, for reaction dominated flows the explicit
time step is determined by the characteristic relaxation time. (e.g. for
an upwind algorithm equation (40) determines the step size). In practice,
numerical investigation has indicated {10] that for stability in a reaction
dominated flow

(W> At = @<?°\¢~\mm

where

6 <1

That is, for stability the integration must proceed at some fraction of the
smallest relaxation time in the field. The results shown in Figure 28 for
the explicit integration without the cut off criterion were computed with 8
= 0.3. This value was determined by decreasing 8 until a stable solution
was obtained. The results plotted in Figure 28 indicate that the "Topen”
cagse deviates from the others downstream of the throat. As would be
expected the cut off algorithm does {introduce solution error but the
results differ by only 0.12 at y = 2.0. The other dependent variable
(p,u,T) indicate similar results with the maximum error at any mesh point
being less than 3.0%. The significant 1improvement in computer time

realized for this smail decrease in accuracy is summarized below:

Method Iterations Average At Relative Run Time
Explicit ~CFL = .9 8 = 0.3 3470 0.04 1.0
Explicit - CFL = .9 K=1.0 430 0.2 0.15

Implicit - CFL = 5.0 K

0.5 100 1.0 0.08

This chart illustrates a drastic {mmprovement in run time for a small
decrease 1in accuracy. The 1iteration history plot (Figure 29) shows

graphically the difference in convergence rate.
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4.4.5 Ca%es 4 and 5 - Cold Gas

For completeness, results for two CFL numbers with lower stagnation
conditions (corresponding to a, = 0.40) are illustrated in Figures 30-33
for CFL = 0.9 and Figures 34-37 for CFL = 5.0 and iteration and cut off
conditions are summarized in Tables 6 and 7. The graphs and tables
indicate quite similar qualitative behavior and conclusions witl regard to
the numerical algorithm consideration.

4.4.6 Boundary Conditions

Characteristic boundary conditions were presented in Chapter 2 and the
numerical procedure was discussed in Chapter 3. The characteristic
boundary condition provided stable inlet condition without overspecifying
the problem, which otherwise may have prevented the automatic development
of a proper supercritical flow. As discussed 1in the section on code
validation (Chapter 4), a choked flow condition was achieved using this
characteristic treatment of boundaries. Figures 38 and 39 1indicate the
solution of the inlet velocity to a steady state value consistent with
critical mass flow and unit Mach number at the minimum section for an
equlibrium (¢ = =) calculation. Figure 39 is an enlargement of Figure 38
for iteration count less than 100, For all CFL numbers the inlet velocity
overshoots the steady state value with subsequent oscillation to a final

value.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

Considerable savings in computing time has been demonstrated using an
explicit/implicit algorithm in conjunction with a cut off condition oa the
explicitly computed reaction rate (;). For results presented in this
paper, the explicit/implicit algorithm was two to three times faster than
the explicit stage along, when the cut off condition was employed for both
the explicit and explicit/implicit methods. In addition, when comparing
this algorithm with other explicit integration methods for stiff equations
such as presented in Reference [10] the explicit stage was seven times and
the explicit/implicit algorithm twelve times faster for the particular case
investigated (& = 109). MacCormack's explicit/implicit method [15] was
proven to work for a system of stiff equation and with the addition of the
cut off algorithm was extended to cover a wider range of nonequilibirum
flow (0 < & < 103).

Characteristic boundary conditions have also been devised for
quasi-one dimensional supercirtical flow. These boundary conditions
permitted the solution of an unsteady system of equation (to a steady state
final value) without a priori specification of inlet conditions consistent
with supercritical mass flow. Results presented indicate that with these
characteristic boundary conditions the Mach number at the wminimum sections
for the limiting equilibrium and frozen cases was accurate to 0.15Z.

An extension of the approach may be fruitful 1in three areas: 1)
increased number of dimension; 2) higher order reaction systems; 3)

different integration algorithms. The extension of the current method to

higher dimensions will require careful consideration of the stability
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boundary concept when applying a cut off condition. It may be possible to
simply apply the cut off condition in an analogous manner. That 1is, solve
the two dimension equilbrium case and use this as the local 1lower bound.
For higher order reaction systems possible concentration stability
boundaries might be defined by considering the equilibrium distribution of
each species with all other species frozen. Finally, for {improved
integration techniques, a more extensive parametric study of cut off
condition with reaction rate coefficient and CFL number must be performed
to provide more data regarding the optimum cut off criterion combination in
terms of a given reaction rate coefficient and step size. In addition, as
discussed in Chapter 3, inclusion of the source term in the implicit stage
of 1integration should be investigated to determine if numerical
instabilities due to explicit evaluation of the rate term can be eliminated
without losing the advantage of the bidiagonal structure of the
explicit/implicit algorithm.

In all, substantial improvements in computation time for a system of
stiff equations have been demonstrated. Application of characteristic
boundary conditions in conjunction with an unsteady system of Euler
equations has eliminated the two point boundary value problem. The cut off
algorithm has extended the range of applicability of the MacCormack
explicit/implicit scheme. The success of this numerical method provides a
basis for extension to higher dimensions and more complex reacting

systems.
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Table 1

INVESTIGATED NUMERICAL MODEL PARAMETERS

Method CFL Number
Explicit 0.9
Explicit/Implicit 5.0, 10.0

Initial Conditions

Dependent Variables - Constant stagnation level
(p,u,T,a) - Linear between spatial
boundaries

~ Equilibrium distribution

Configuration Ymax

Maximum area ratio 2.0351, 10.31
for parabolic distribution

Stqggation Conditions ag

Concentration 0.4, 0.67

1
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Table 2

MACCORMACK EXPLICIT/IMPLICIT

Input data:

Y = 1.4, Ypay = 2.0351,

ALGORITHM WITH CHARACTERISTIC BOUNDARY
CONDITIONS

No. mesh points = 57, ¢ = 10-6

Location CFL [} u T Max % Error Icerations
Inlet Exact 0.9564 0.2973 0.9823 - -
0.9 0.9563 0.2976 0.9823 0.1 600
5.0 0.9565 0.2975 0.9824 0.07 120
10.0 0.9574 0.2977 0.9827 0.13 80
Throat Exact 0.6339 0.9128 0.8333 - -
0.9 0.6341 0.9129 6.8333 0.03 600
5.0 0.6337 0.9114 0.8330 0.16 120
10.0 0.6338 0.9091 0.8327 0.40 80
Outlet Exact 0.1806 1.5743 0.5044 - -
0.9 0.1809 1.5741 0.5051 0.17 600
5.0 0.1817 1.5730 0.5081 0.73 120
10.0 0.1827 1.5721 0.5119 3.0 80
. ‘t.,..A‘t%AN.i;:::. _
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Table 3

CASE 1 SUMMARY
ao = 0.67, CFL = 0.9, ¢ = 10~4

L2 Ypax
2 10

Iterations K Iterations K
0 400 - 180 -
103 410 1.0 180 -
5x103 400 1.0 190 -
104 410 1.0 200 -
103 430 1.0 220 1.0
w 460 - 210 -

Table 4
CASE 2 SUMMARY
ag = 0.67, CFL = 5.0, ¢ = 104
L2 Ypax
2 10

Iterations K Iterations K
0 90 - 60 -
103 100 1.0 60 -
5x103 90 1.0 60 -
104 100 1.0 60 -
10° 100 0.5 70 1.0
- 100 - 60 -
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103
5x103

104

e

0
10%
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Table 5

CASE 3 SUMMARY
ap = 0.67, CFL = 10.0, ¢ = 107%

H nax 10
Iterations K Iterations
80 ~ 50
60 1.0 50
60 1.0 50
60 1.0 60
300 0.2 60
60 - 50

Table 6

CASE 4 SUMMARY
ag = 0.4, CFL = 0.9, ¢ = 1074

Yoax
2 10
Iterations K Iterations
410 - 180
430 1.0 200
460 - 210

K

1.0

0.5
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Table 7

CASE 5 SUMMARY
ag = 0.4, CFL = 5.0, ¢ = 10™4

Ypax
2 10
Iterations K Iterations
90 - 60
100 1.0 60
100 - 70
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Fig. 27, Trends in Algorithm Accuracy and Iteration Count
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Appendix A

EIGENVALUES, EIGENVECTORS AND BOUNDARY CONDITIONS

Diagonalzation of Euler Equation

As noted in Chapter 3 the system of nonequilibrium unsteady Euler
equation can be solved using a block bidiagonal implicit scheme. In order
to implement this algorithm, eigenvalues and eigenvectors of the system
must be computed. This section will cover their deviation following
procedures similar to Reference [24].

Nonequilibrium Case

For the nonequilibrium case the system of equations 1is:

.Q_ " 0 o o ’91
U . RIGe «w %o Wl |
T o R¢. W 0 T
A (o) o o U )
- Jt g -t X
'(/41> [ ou ) )
% W
o)
+
P
%1; u 3€ t g
| W J

To diagonalize this set of equations the eigenvalues and eigenvector of A

must be found from the relations

(a3) X, A = N X,
or )

T Tl T e, W . o . - - -
.
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- -
(A.é x(' (A" Xl. I\ = 0
where x4y and Aj; are the row eigenvector and eigenvalues of matrix A.

The eigenvalues are computed by:

(As) det (A-NTI)=73
which becomes N
(40) (M- (A -(ura)) (A-(u-ad) =0
(R+Cy)
Here a2 = ——-—— RT which 1is the ratio of the local frozen speed of
YoRoCv
sound to the stagnation speed of sound. Hence the eigenvalues are
X' = M-q
' Ay T U
(47) 2
Ay = U ta
Ay = @

The eigenvalues are calculated by substituting the eigenvectors into

Equation (A.5)

>
"

- LR, ¢ , 2 )PAP
T

>
j 8
]

: )
I, O ,-_g&_,o)
’ )

A

41

(@) ] o ) c , ‘ )

These eigenvectors form the rows of a matrix Sy. Now the matrix A can

(

(

(, a%R.P, p )Qﬁ_f_
RT T

(

be diagonalized by the simiflarity tranform

(A1) A= S, As]

td o -“ AR ’--‘_’.,W- P -




where A is the diagonal matrix of eigenvectors

v(ﬁ"’\ RT




Equilibrium Case

For the equilibrium system of equations:

[ P ] [ W e o ]
Raa ¥ ) -
w o+ 3= _2_ (& RuT 24
+ Q‘a’. R 36 “ %P +’€,}§: 3T
(:Qli) i Jt. I o k.(zz»'*§.€> wu J
- X .
e R
G + o = O
T J z‘(c ’ﬁe)-ﬂ X
N L ]
. — - )
where K, = I+ o s ) Ka %‘- ‘S‘!;
3% ¥

By the same procedure, the eigenvalues of A are here

Al T U-a
A A E
( ) N2 = G t4
where L
o2 - QA;T[O'\ (|--\)‘(HzT/e.,)+(8+3a(—-t’)(l'/q)]

R, [ «(1-4) + 3(R- (Tl ]

which is the ratio of the local equilibrium sound speed to the stagnation
sound speed.

The matrix of eigenvalues is then computed using (A.5)




a%REe o [ ]
RaT, 3?-: +RT Tl R+R, o4
! o - e
(ars) S, = K (8 -a 1)
l a % Rep _E_I R +8,T "Var]
R‘xT 34 40T Tler+ €m e)«/‘e

Boundary Conditions

The implicit boundary condition at the subsonic inlet is applied as in
Reference {22]. For the case of equilibrium flow there are two positive
and one negative eigenvalue. Therefore two boundary conditions can be
applied:

S = constant
hy = constant

For an ideal dissociating gas

W) S = 3T+ X(1ah)-(1-=)In(1- <)
©d

_(’,}.\3 I“'F' + const
R4

(An) h, Rh[(q;q)T ¥ 64] + %’

Appling these boundary conditions in time linear form

:é:é. v =0 ) jlé& .21? =0
@“> 2T }Te Yo ¢

R .
Te T T T e A seme -
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Therefore,

@n) 35 = (D 4 g e
e © T 9%
5 = 2 + 9, 3
Q?zé) ey T :F. AT
(42)) e = R (T +94) ds
Y- )9
VY, = W
(423 e |
d3h = R, (44x) + R (Tre)dn
(43) = pr , >

By eliminating the eigenvectors of the positive eigenvalues and replacing

them with the boundary conditioms

[ ~a ¥, R @ £_
(429) RT T
p . | TodM (490D (4rdilrrogde
3T

\ e -

'Qﬁﬁ*g}:& O 2 o8
© T 2 T T

-
P = RT

© (o)

o o

o o o




Therefore, the system of equations at the boundary becomes

() P U, + PLAT, + PH= o

. or

(427) U, = - PR (4T, )

The explicit/implicit algorith 1s used at this point with forward
differences only. At the supersonic outlet all eigenvalues are positive
thus no special treatment is necessary.

Algorithm Implementation

With the eigenvalues, eigenvectors and boundary conditions specific,
the implementation of the implicit scheme is as follows:

Recall that the bidiagonal matrix equation is

+ at (A" w4 "y AT

Rather than invert the matrix

T + a¢ A"

— ¢

»”

The following matrix algebra may be performed
oy 5 (T 3L 60T < s
or

T *ﬁ 0|5 ST 7 kW

The diagonal matrix




et 2

I + Ato)
A X

proves to be much more easily integrated.

The complete sequence is as follows: (Reference [17]) i

1

2)

3)

4)

5)

6)

7)

n

W = 4'(); + .é_s- lA'” QULP\H
s X ¢
X = Syw

OA cal cu lated

~<
"

T + %g OA>"x
X

Sbé-— = Sx.l y

o, -

T WE Ty . came—
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Appendix B

COMPUTER PROGRAM INPUT VARIABLE NAMES

The following is the list of user supplied input variable names for

the computer program.

The definition of some geometric variables

illustrated in Figure Bl. Dimensions are given where appropriate.

CAl

CF

CFL

DELMAX

ETA

IBUG

ICHEM

ICoN

ICTOFF

IGEO

INLET

IPT

IREAD

ITAPE

ITMAX

IWRITE

Species concentration at 1 =1

Chemical rate constant
(Reference [13])) page 231)

Courant number
Convergence criteria (Equation (60))

Temperature exponent
(Reference [13] page 231)

Debug printout i{f =1

Nonequilibrium if = 2
Equilibrium if = 3

Detail printout for sﬁecified mesh
point if = 1

Apply cut off criterion if =1

= 0 no minimum section

‘= ] minimum section

= (0 characteritic inlet boundary
conditions

= ] fixed inlet boundary condition
Specify mesh point for detailed printout
= 1, read initial conditions from unit 98
= 1, write dependent variables of final
iteration to unit 99

= 2, write error history to unit 77
maximum number of iterations

interval for writing data to output file

number of mesh points

e :" -.,"'t'?"" “'irh—'n._*- A -

are




anamitin oz

PO

RHO1
RHO2

THD

TRLX
TO
Tl
T2
vo

vl

XKCHEM

XLT

1B

s

Stagnation pressure [Atm]

Characteristic dissociation
density pq [g/cm3]

Initial inlet density
Linear decay coefficient

Characteristic dissociation
temperature

Reaction rate coefficient (9)
Stagnation temperature [©9K]
Initial inlet temperature
Linear decay coefficlient
Initial inlet velocity
Linear growth coefficient
Cut off coefficient (K)

Distance from miminum section to
point where YB is specified (Figure Al)

Total length if IGEO = 1
length to exit from origin if IGEO = 0O

Molecular weight of diatomic species

Half height at X = XL

D e

B s 8 R e~ ——— -

it i -
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All data entered is formated. Real variables are read using F10.0
format, except for TRLX and CF which are read in E10.3 format. Integer
variables (those beginning with I or N) are read with I5 format. The data
entry sequence is as follows with each line representing a data card or

line entry:

NMAX ITMAX IWRITE IBUG DELMAX
% . XL XLT YB CFL
% RHO1 RHO2 Tl T2 Vo V1
ICHEM TO PO XMA2
RD THD ETA TRLX CF
ICON IPT
ICTOFF IGEO INLET IREAD ITAPE
CAl XKCHEM
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— —— — —— — —— —

Fig., Bl. Geometry Input Variable
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Appendix C

PROGRAM SUBROUTINE DESCRIPTION

The following 1is a 1list of subroutines used to solve the

nonequilibrium streamtube flow probvlenm. A description of each subroutine

is provided below.

MAIN

INTEG

EVECT

BNDRY

CHEM

executive routine to manage input, output, initialize data,

and check convergence.

integration subroutine. Computes explicit and implicit changes
in dependent variable Ul and applies cut off criterion if ICTOFF

= 1., Called from PROGRAM MAIN.

computes matrix of eigenvectors (SX) and its inverse (SXINV).

Called from SUBROUTINE INTEG.

calculates the characteristic boundary condition. Called from

SUBROUTINE INTEG.

calculates the species continuity source term OMEGA. Called

from PROGRAM MAIN.
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Appendix D

COMPUTER PROGRAM LISTING

The following pages contain the complete listing of the nonequilibrium

streamtube flow program described in this paper.
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\N TV V02.% Mon 24=-Jan=83 13:146:37 PAGE 001

PRCCRAM MATN

COMMON UL1(E194) 93X (eaa) o XINV(L94)sDUCEL14) 91 (6)0b)
BCELYICICALINT T Y 4 CAMN o TToMMAX T Wl UG sFLUXS(e)sICALL

s TOND

sOMZGCA(E1) aTCEH"M(61)9Q(51)9ACHEMILVF 9T TASICHIMIDAZY
PRIPHOO ORI THN 9T L XoTNCEZ(H1)Y9ICTRLIIDCDTIDMPIIEQORAT
IECPMN(S51) s ICTOSF aXKCHEMYINLET o 4IN

DIMENSICH X(615eXti(61)9CM(51)

1 2UIS{Cloe) sPXRN{BL)YIXMENT(61)

Commmmem—=

LGN WO N ]

READ (& 9200)MMAX oI THAYSIURITESIBUGIDEL “AX
READ (4921 0U)XLeXLTsY2s(rFL
READ(C&49220)FPHO19"HC2aT1+T29V0sV1
READ(&49772)YICHEMST~9POy¥YMA?2
READ(49223)PNeTHDISTASTFLXCF
READC(49221)ICONSIPT
REAN(491221)ICTOFFaICFLoINLETSIREALSITAPE
READ(49203)CALIXKCHEM
CLOSE(UNTIT=649DISPOST='SAVET4ERR=999)
IFCICTOFF 4ENe C) GO T2 2COC0
READ(789991) (A(IDU(T 1) 9U(Ta2)sU(T93)9FCON(I)ol=1aNMAX) .
CLNSE(UNIT=78+4DTISPOST='SAVE?sERR=G99)
2000 CONTINUES

Commmmmm-m PRINT INPUT DATA

WRITE(&1922%)

WRITE(HY 92 0C)INMAX 9ITHMAX 9 IWPITZ9IRBUGDELMAX
WPITE(619240)CFLIXLIXLTAYE
WRITE(619250)RHC19RRN29T15T29V09V1
WRITE(61926Z)ICHEMaTCaPLoXMA2
WRITE(S192S3)RDeThDETATRPLXCF
WRITE(H192F1)ICCNIFT
WRITE(E192C54)ICTOFFIGELYINLITHIIREADSIITAPE
WRITE(6192S6)CA1IXKIHEM

(recocca-

Co====e=e NOZZLS GEOMETR

c-----—--

A1 = XLT

IF(IGED oJENe 0)Y Al = XLT = XL
DX = Al/FLOAT(NMAX=1)

A2 = XLT

IF(IGED +50s Q) A2 = 2.

DO S I = 19NMAX

XCI) = XL - A2 + DXeFLCAT(I-1)

ACT) = (Y2 = 1,0)eX(I)%s2/(XL**2) + 1.0
€ CONTINUE

(oweccccmnas

Cev==w=e= INITIAL CONDITIONS

(eovcencas

RY = 8,315
IEGPAT =




\WN TV

TIM
DT
Su
ITE

13
=

R

Vv02.¢ Mon 24=-Jan=92 13:46:37 PAGE 002

ISAVE
CFLMIN = 1.0Z+0¢

NMI

N

0
0

0.0
oC
N

0
=1

1

IFCINLET .06 1) N#IN=2
DO 10 1 = 19NMAX
U(Ial)d
UCI+3)
U(ls+2)
XM(I)
UCIse)
CNCD)
RXNC(T)
10 CONTIMUE
IFC(IREAD 4G, 0) CO T7 2010 i

READ(9843C1))

T1 - T2&«(X(I) -
VO + VIs(X(I) -

111

RHCL1 = PH2Ze(Y () = X(1))/ Al

X(1))/ Al
X(1))/ Al

= U(I92)/7CS0RT(U(TI3)) ;

= 0.0
= 0,0
= 0,0

CACT) 9 (L a1)oUCTI2)oU (I 93)9U(TI94)sI=1+NMAX)

CLOSE(UNIT=98+D]ISPNEF='SAVE" 4SPR=9G9)
2010 CONTINUE
U(NMAY 91 )sU(NPFAY92)xA(NYMAX)
DN 11 K = 14
FLUYS(K)Y = Do

XM1

1.0E+06*RA2#TO="0=CXP(~-THD/TO) /PO

UCTal)%U(Te2)SA(]) /XML

SART(AL1l + Al=»*¢2)/(A1 + 1,) !

PO/(RO*TNs]1,lE+0¢) \

DO 11 I = 1sNMAY

Ul1(I9K) = U(I9sK)

U1S(T9K) = U(TsK)

XMPOT(I) =

11 CONTINUE

RA2 = RU/XMA2

RO = RA2

CVF = RO/(GAMO=1,)
C-------—
Crmemem——- STACNATION CHEMISTPY
(ereerece=

IFCICHEM LFCe 1) GO TO 14

PO = PO%1.0F+05/,902¢9°

RA = 2.%RU/XMA2

RA2 = RU/XMA2

CVF = 3.=RA2

Al =

CAQ =

RO = (1e + CAD)=RA"

RHJ0 =

GAMO = (RO ¢ CVF)/sCvF

RD8 = RD/RHCO

Al = 1, - CAO

DSTG = (AlssAl)e(CAC**(2,5CA0))

IF(IREAD ofQ6 1) CC TO 3
N0 13 1T = 19NMAX

A?

IF(A2
IF(A2

Al

T

HO/Z(TOsU(143))
eGTe 8684) U(Toe) =
«e6Te 8S,) CN TN 12

0.0

RO#EXF (~THC/(TC*U(193)))/(RHIC*U(Is1))
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UCTIsds) = (=A3 + SCRT(4esxAl + Al®s2))/(24)
IFCICTOFF 4EQe 1) U(Isé) = CAL

12 UICI94) = U(194)

UlS(lsé4) = U(Ire)

R = RA23(l, + U1(I94))

GAM = (P + CVF)/CVF

XMCI) = UCTs2)/CaRT(AA\»2R&U(l92)/(CAMILRD))

13 CENTINUF
IFCICHEM +FCq 3
U(lse4) = CA)
Ul(194) = (€A1
U1SC194) = CAl

3 CONTINUZ

Coacowe ==
-

«DF4 TF1 +EQs Ce0) GN TO 23

[ R e

(mwm===== PRINT TINITIAL/PCUMDRARY CINDITIONS

Creremmn=

14 WRITE(619755)
WRITE(619260)DX
IFCICHEM oMEe 1)WRITE(619261)RA29CVF9RH009RO
WRITE(619270) (T9X(I)sACI)el=13NMAX)
WRITE(6194N0)ITERITIME9NTHIENQRAT
WRITE(61941C)
WRITE(H19420) (TaX(I)sU(Ta1)oUCT92)9U(I93)aXM(I)>
1 UCT94) s CHCI) 9T XNCTI) 9 XMDCT(I Y sI=19NMAX)
IF(IBUG o5Ce 0) GO TG 6CI
WRITE(61952C)

2AGE 003

NRITE(619510)(U1(I~1)~U1(192)’U1(193)vUi(I94)aI=1’NMAX)

s2¢ FORMATU(// 91X e MATIN
60C CONTINUF
IF(ICON, SN, 0) GO TN 370
WRITE(61942CHIPT
t0 CONTINUE
Cesreosssstssssssacsennsxnl

INITIAL CIONDITIONS ULY)

C C
C INTEGRATION L DOP c
o C
Coasrssssstsssgtonssdssnsksl
ICQUNT = IWRITE
ITEF = 1
ioo0 CONTINUE

Commmmm=n

C-em==e== FINITE RATE CHEMISTPY

c--------

y TMIN
TMIN

(emccane=

C(-======= CALCULATE TIMC €TEP

Commmmman

1.0E+06
XKCHEM=TMIN

<9 VMAX = 0.0
DO 60 T = 19NMAX
P = (1s + UL(TI94))ePA"
Al = (Res?2 + CVFsRY/(TANDERO*CVF)
TEST = ABS(U(TIl)) + SAPT(ALsU(I93))
IF(TEST ofT, VMAX) VMAX = TEST
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60 CONTINUF
DT = CFLsDX/VMAX
IFCICHENM (MNF, 2) Cf TN ¢2
TFLOW = DX/VMAX
62 PO 61 1 = 1anMaAX
R = (ls ¢ Ul(194))sR12
Al = (Rs%x2 + CVUF2RY/(CAMN*ROsCVYF)
CN(I) = DT=(ALS(U(I97)) + SCAT(ALsU(I92)))/DX
IF(CNCI)Y oJLTe CFLMINY CFLMIN = CN(I)
IF(CNCT)Y o0Te 140 ofTe CFL oLTe 140) G2 TO 63
WRITE(619440) ITERIsZMN(I)
¢2 CONTINUE
61 CONTINUF
TIME = TIME + DT

'--------

-

Ce=-===== PREDICTOR STEP

JICALL = 1

DD 70 1 = 1sNMAX

A2 = THD/(T0=U1(I93))

IF(A2 oGTe 85¢) CE(I) = 0.0

IF(A2 oCGT. 85,) GO TO 70

CE(I) = RDsEXP(=THNR/(TC~U1(193)))/(RHCO2UL(T41))
70 CONTINUE

IFCICHEM oEQs 2) CALL ChZIM

CALL INTEG

DO 1S K =

DN 15 1 =

V1(1+XK) =
15 CONTINUE

(romece-

Crweem- -= BOUNDAPY CONDITICHNS

194
MMINsMMAYX
U{TeK) + TUCTK)

IFC(INLET EQe 1) GNP TN 2320
Al = RD*EXP(=THD/(TC=U1(193)))/(RHO0=UL1(191))
IFCICHEM (MFe 2) Ul(l94) = (=-A1 + SQRT(4,%21 + Al®%2))/2,
GAM = (4, + ULl(144))/3,
CNEF = GAMO/GAM
Al CAD - Ul(1ls4)
A2 le = Ul(1ls4)
A3 Ul(le4)
A4 (RDB#2A1) % (A3ex(2,5A3))%(A42+sA2)sZXP(A])
COEF = DSTh/A4
. Ul1(191) = (COEF*U1(193)*x3)es(1,/(1.+A3))
U1(192) = SART(2,sPA2s(4,+CA0~(4s+A3)sU1(1+3) +
1 A1«THD/TO)/(5AMO=R0O)) ‘
2020 CONTINVE .
' IFC(IPUG +ENe 0) GO T £190

WRITE(619SN0)
WRITEC(619S510)(UL(TI91)sULCT92)9Ul(T93)sUL(I9é)sI=1oNMNAX)

500 FORMAT(//91X9*MAIN PPECICTIR UL')

€10 FORMAT(1X94E144¢)

610 CONTINUE

c-----—--
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C-======= CORPECTOR STFP

c-o-—----

ICALL = 2
SW = 1e = SV
DO 76 I = JaNMAX

A2 = THD/(TNsUI(I93))
IFCA2 GT. £%54) CECI)Y = 0,0
IF(A2 «GTe R54) CO TN 7T¢
CE(I) = RNeEXP(=TH "/ (TC»UI(I93)))/(RH2OsUL1(T01))
76 CONTIMUE
IFCICHEM 4ECe 2) CALL CHEM
CALL INTEG
DO 24 1 = 19MNMAX
RYN(CI) = TTZHEM(T)
24 CONTINUE
D0 25 K = 194
00 25 1 = NMININMAY
UL(I9K) = D55 (UCIoF) « UL(IeK) + DU(IIK))
25 CONTINUE
c--------
(r==e=e== BOUNDATY CCNDITIONS
C------—-
IFCINLFT JEC, 1) C7 TN 20120
Al = RD#*CXP(=THR/(TO0=J1(192)))/(RHONsU1(191))
IFCICHEM JNE, 2) Ul(1l94) = (=-A1 + SQRT(&,sA]l + Aless2))/2,
GAM = (4, ¢ U1(194))713,
COEF = GAMON/GAM

Al = CAD = Ul(14+4)

A2 = 1le = Ul(194)

A = J1(194)

A4 = (RCNPexA1)e (A3 (2,%A3))e(A2x2A2)sZXP(AY)

COEF = DSTG/A4
Ul(191) = (COEFeUL(1l92)x83)*a(1,/(1e+42))
Ul(192) = SQRT(ZesPAC(4o+CA0=(4e+A3)2ULl(193) +
: 1 A1*THN/TCY/(GAMOSRD))
203C CANTINUE
IF(IBUG +EQe 0)CO TC <20
WRITE(61+530)
530 FORMAT(//91X9*MATIN COPRECTOR U1l*)
WRITE(619510) (U1C(I91)9U1(I92)9UL(I93)9UL(T94)91=19NMAX)
620 CONTINUE

c--------
Comem==== PRINT DQUTPUT
Cemmmonaa
IFCICON +Efe 0) GG TN 21 )
URITE(619435) ITERSULICIPTs1)ULCIPT2)sULCIPT13)9oUL(IPTe4)
50 TQ 35
31 IFCITER o MNE, ICOUNT) CO YD 35
ICCUNT = ICCUNT + IWPITE
XM1 = UL(NMAX91) Ul (""MAX92)%A(NMAX)
NO 30 1 = 1sNMAYX
IF(ICHEM Qs 1) C7 T3 33
P = PAZ2es(1ls + UL1(T194))
GAM = (R + CVF)Y/CVYF

2 e —
. pyg . _
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XMCUI) = U1(T192)/S0°T(CEM2Ps31(193)/(GaMDesPN))
IFCICHEM ,f0. 2) £ T2 22

Al = UL(TI94)

A2 = TO&UL1(T93)/THE

A3 = (Le+Al)*(1e+Al)8(Al®(1e=0]1)+43,%(2,~A1)5i28%s2)
Ab = 48Rl (la=Als2])s(le+24%A2)

1 + o0 (Be+2osA1-L1ee3)0A2u 02
AS = SQFT(AI/AL)
XM(I) = ASxXM(T)
60 T0 22
33 CONTINUF
XMUI) = U1(T192)/SCPT(U1(T92))
32  CANTINUE
XMOOT(I) = ULCIs1)#U1(T2)¢A(I)/XM]
30 CONTINUS
WRITE(619400) ITERSTIMESDT9IEQRAT
WRITE(619410)
WRITE(61942C) (TaXCIDsU1CTs1)9ULCT92)sU1CIs3)9XMII)s
1 ULCT94)9CNCI)9RXNCI) aXMNOT(I) 91=13NMAX)
35 CONTINUZ
Comoomean . |
C====--== CONVEPGENCE TFCT
Commmmman
IF(ITER .NEo 10) GO TN 159
SUM = 0.0
D0 149 K = 194
DO 149 T = 1sNMAX
SUM = SUM +((U1(IsK) = ULS(IsK))s%2)
149  CONTINUE
SUML = SORT(SUM/FLNAT(LMAX))
19 CONTIMUE
IF(ISAVE oNE, 10) & T2 41

ISAVE = 0
DEL = 0.0
SuUM = 0.0

DN 40 K = 14
DO 40 1 = 1sNMAX
TEST = ABS(ULI(TeK) = U1S(]sK))
IFC(TEST oGTe DEL) OFL = TESTY
SUM = SUM +((UL(TIsF) = U1S(IeK))e=?)
40 CONTINUE
SUM = SAORTISUM/FLAOAT(MMEYX))
SUM = ALOG1C(SUM/SUMY)
IFCITAPE oFC, 2) WPITF(7749900)ITEPSUM
IF(DEL oLTe DELMAX) O TO 998
D0 42 K = 194
DO 42 I = 19NMAY
U1SC(I9K) = U1(TI9eK)
[ %4 CONTINUE
41 CONTINUE
c-‘------

Commem=== RFSET AFNAYS TN NFW VALUES

foococonc=e
-

ITEP = ITFP +
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| ISAVE = 1SAVE + 1
IFCITEP oGTe ITMAX) 37 70 999
DO 45 K = 194
DG 45 ] = 1oNMAX
UCTsK) = ULC(]9K)
‘ 4< CONTINUE
! G2 10 100
Covsssssssnssssscasssnss(
c c
o END FfF LOCP C
C C
. Cossssssssssssssxsasstns’ .
908 XM1 = UL(NMAX91)eU1(HNMAX92)sA(NMAX) ]
D0 55 I = 19aNMAX
IFCICHEM 4ECs 1) GO TP 3
R = RA2s(1e + Ul(I94))
GAM = (F + CYF)/CvVF
XM(I) = UL(T92)/CSGRT(FAMR*=UL1(]93)/7(5AMI%R0))
IFCICHFM LF0, 2) GO T 5¢
Al = Ul(l94)
A2 = TO=UL(I93)/TH"
A3 = (44+A1)*(1e+A1) % (P18 (1e=21)+3,%(2.=A1)%A2%%2)
Abh = 340 Ale(le=RA)xal)2(]1,+42,%A2)
1 + Jos(Pe+3 vl )1-Llxx3)epA225?
AS = SCRT(A3/AGL)
XM(]) = ASsXM(I) ’
GO 70 54 )
€2 CONTINUT
XM(I) = ULl(T+2)/750R°T(ULI(I+3))
Ss CONTINUE
XMCOTCI) = UL(TIs1)=L1(T~2)sA(I) /XM
S5 CONTINUE
ITERSTIME WD T IEARAT

WRITE(6194C0)
WRITE(619610)
WRITE(619420)
1
999 CONTINUE
WRITE(619445)
CLOSE(UNIT=61
IFCITAPE o Ffi,
1
STopP
(evvoncaaa
Crmemmena

(ecommena=

20C  FORMAT(4IS9F10.C)
. 20¢ FORMAT(2510,0)
210 FRRMAT(4F10.C)
220 FORMAT(6F10.0)
; 1221 FORMAT(SIS)
, 221  FORMAT(21%)
222  FPRMAT(IS93F10.0)
1 223 FORMAT(37F104092E1Ce3)
! 224 FCRMAT(4E1446)

FCRMAT STATEMINKTS

(ToXC(I)ollCTol)oUl(T92)9UL(T93)sXM(I)>
ULCT94)9CNCI)9RXNCI) sXMDOT(I) 9I=19NMAX)

CFLMIM

sDICPRSE="YCAVYEY)

1IARITE(9%9901) CACT Y sUL(To1)oULCTo2)9UL(I93)
Ul1¢T94)9I=19NMAX)
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FCRMAT(// 91X INPUT DATAY /)
FORMAT (LY g "NMAX= 3] 93X 9 ITMAX="9 S o3X e IWRITE="9]1593X0
YIPUG=Y 9S4 3X ! DELMAX=Y 9T 1063)
FORMAT (/91X 9 'CCOL="9F104393Xa'XL="9210,s393%X0
SXLT="9EINe292X 'Y =9E1043)
FORMATC/ 91X FHL1=09F 18410932 'RHN22"9E104393Xs*'T1=%9F18e1093% -
) YT2="'9FE10Ce292X e ' yD='951541093Xe9'y1="s81043)
FORMAT (/91X 9" TCON="91592X 9" IPT=,415)
FORMAT (/91X 9 I CTOFF =95 93X IGED=?9]C93Xa"INLET=Y9]1S5+3X
YIREAD=Y9]% 92X ITAPE="915)
FORMAT(/91X9'ICHTM="91633Xe'TO="9E124393X9*'P0='9510639
IX9'XMA2=%971043)
FORMAT (/31X 'PU="9C1Ce333Xo'THD="9E10e393Xs?ETA=Y9E1D042
IX9'TPLX="9F106293Xe*CF='9E1043)
FORMAT(C//9*INITIAL/BCUNDARY CONDITIONS'9//)
FCRMAT(/+1X9'CAL1="'3E1Ce393X
IXKCHEM='9E10.3)
FPRMAT(1Xa'DX=*9F20,34/)
FORMAT(/a1Xo'RA2="4719,1093X9'CVUF=*9E18,1092X>
TRHOO="+F1%,1093X9'20='4F13,10)
FORMATCIX 92 T1=0 91242 9! X=?9F146693X9"A=%9C14¢6)
FORMAT(/ /91X a0 ITT0=109T1493X9'TIME="9E]146693X9'DT="9214,6 !
s3I e?'IZQPAT="414) '
FORMAT (/946X 9T " 98X o' X o122 X9 " RHTI " 912X e U 913X 0" T 913X9"M'912ZX>
CCA® 912X 9" CHNY 12X 'RXNTY 910X 9 XMIOTY)
FORMAT(3IX91399€144.6)
FCRMAT(//7931X s '"CCMNVYERCENCE CHECK=ULlsU2eU3%93X9'[=%9159//)
FORMAT(1Xa1S593X946F14,6)
ECRMAT (/791X ITEr=09T493X9"I=9]be3Xo'CN=VeEL1b,b6977)
CORMAT(// 91X 'CFLMINZ="9E14eb)
FORMAT(/ /91Xt ITER=?91492Xe"]I=9T493X9*RXN=*3ELGeb69//)
FORMAT(1XsISeF14,.8)
FORMAT(SF1l4,46)
FND
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SURROUTINE INTFC
COMMON UT(L194)9SX(L94) 9 5XTHV(494)oD(6194)eUCHL94)9A(01)
CoCFL oL TalX oA gl ToNMAX oS Wl SUGIFLUXSC(A)SICALL
sTOND
SOMECA(ELL)STCHTM(61)97(61) 9ACHEMICVFIETASICHEM

N & WD) e

sECPN(E1) s ICTNFF o XKCHIMsINLFToNMIN
DIMENSION DAC&) 9aDAINV (&) sFLUXCA) sW (&) 9X (&)oY (4)92(4)

e cace=
-

Ce==we=-= EXPLIZIT STAGE
Comevamcen
IF(ICTOFF 4EQe Q) CC TD 2000
IEQRAT = 0
D0 80 I = 29NMAX
IF(] oNE, NMAX) GO TO 71}
C6e = Ul(I94) =~ UL1(I-194)

GO TO 72
71 Co = (1o=SHISUL(T4104)=(14=2¢SW)sJLl(l94)=SWsUL(I-134)
Py DUCTIs4) = =NTs(UL(T1+2)eC4)/DX + DT&«OMEGA(])

PEG = ECON(I) = U1l(Ie4)
IF(ABS(NU(T94)) +CSe ACS(CFQ)) [EQRAT =1
80 CONTINUE
2000 CONTINUZ
IZND = O
DCOFL1 = 0.0
DCDTL = 3J.0
D0 S I =NMININMAX
IF(l oNEe. 1) GO TG 2

C1 = ULI(I+191) = UL(Is1)

€2 = Ul(I+1+2) = UL(1I+2)

€3 = UI(T+193) = UL(1+3)

Cé = UL(I+194) = UL(1s4)

CS = ALOG(A(I+1)) ~ ALCC(CAC(I))
GO TO 4

2 IF(I oNFEe NMAX¥) GO TN 3

Cl = Ul(I91) -~ ULI(I=-191)

C2 = UI(I92) = ULI(I=1+2)

€3 = Ul(Is»3) = UL(I-1+3)

Cé = UL(I94) = UL(T=194)

€S = ALOG(A(I)) - ALNCCA(T=-1))
GO TGO &

3 COCNTINUE

Cl = (le=SHUYeULC(T+191) = (1e=2,85W)*yUl1(I9]l) =~ SWeULI(I=-_»1)
€2 = (1e=5SWI*UL(T+192) = (le=2,2Su)*Ul(s2) = SWeUl(I=192)
C3 = (1e=SWIsUL(TI+193) = (le=24*SW)*sUL(T93) = SWeU1(I=193)
Cé = (le=SW)BUL(T+1194) = (le=2+o5W)eUL(T34) = SWeUL(I~=144)
C5 = (1e=SW)SALOG(ACI+1)) = (le=2.*SW)SALOC(A(CI))
1 - SWsALOG(AC(CI-1))

4 CONTINUE
NCOR = 0.0
DCPT = Qa0

DU(Te4) = N,0
IFCICHEM oS0, 3) £N TN &4
IFCICHEM oFCy 1) OMECA(I) = QeN

tPA29RCIFHLN 9N CoTHN S TRLX9TCoCE(61)9DCORLI9CCDTLIOMPOIEDT -
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DUCTIos4) = =NTe(UL1(T92)%C4)/DX + DTsIHEGA(])
ICUT = ¢
IFCICTOFF otNe €) C° 70 S5
DEQ = XKCHFM®(ECON(I) = Ul1(I14))
CON = Ul(Isa)es2/(1e=U1(]94))
CINP = U1(T94) + DU(Te4)
EQCRIT = Ul1(ls4) + DED
IF(CONP oLFe 0aC oCPe CCNP oGEe 1.0) 53 TO 58
EQRAT = CONMN/CE(1)
IF(I +CTe 'FQPAT) ¢0 TG SS
1CUT = 1
DU(CIs4) = DPEQ
OMECACI) = DUCT94)/LT + Ul(192)eC4/DYX
QCI) = OMECA(CI)=THP/(34+70)
IFCICALL «EQe 2) GQ TC Sé
TCHEM(I) = 1,0

» IFCICUT JEfe 1) TCHEM(I) = 3,

N TV
<]
5%
Sé
7

GO TO 60

IFCICUT 4EQs 0) GO TO 60
IFC(TCHEM(T) +E", 3.0) (O TD 57
TCHEM(I) = 2.0
GN T0 60

TCHEM(TI) = 4.0
G2 70 60

Commmce=ea EQUILIERTIUM

c--------

54

Al = CF(I)
42 = U1(1s¢)
UI(Ts4) (=A1 + SOFT(4 Al + 818x2))/2,

NU(T 94) Ul(Teb) = A2
OMECA(I) = (.0

2(1) = 0,0

Cé = 0,0

Al = Ul(T9+4)

A2 = THD/TO

A3 = ALl=x(l.-A1)/(2.-A1)
DCOR = =A3/U1(Is1})

DCDT = A2%A3/(U1(1s2)4s")
IF(I +EC. 1) DPCCRI LCNR
IF(1 +E0, 1) DCOT! nerr
TCHEM(TI) = 4.0

c------——

Cew==e=~= NCONEQUTLIBRIU"

C--------

60

1
2

CONTINUE
R = RA2=(le ¢+ Ul(I94))
Bl 2 14/7(1le + THD="CNT/(3.,2T0))
32 = THD*DCDR/(2,¢T))
DUCT1) = ~DT=C(U1(I+2)%C1 + ULCI1)eC2 + ULC(Iel)eU1(T92)elS)/Dx
PUCTI92) = =CTsUI(192)¢C?/0CX = DTe(RsCI+RA2sUL(I93)s(Cs
+NCELFeCl + "CDT2CI)
+ PeUL(T93)eCLl/7ULCT 1))/ (GAMOsR0eDX)
I"(ICHgN oFPe 1) C(1) = 040
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c-‘------

Crwmm=

favewn

feceeacea
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DUCTI93) = ~DPT=U1(T192)=LA/PX =

*#(C2 + UL1(I1+2)sCE)/0X
CONTIrU®

DUC19+4) = 7,0

IF(IBUG +57e 0) GO TU

WRITE(61s100)
FORMAT(//91X9*INTTG

z0n

EXPLICIT DUY)

24=Jan=£3 13:48:03

DT« (261 (]192)/CVF =~
- DTs2(1)

PAGE €G3

T2eyl(lal).,

WRITE(A19110)(CDLCIo2)aDUCT92)90UCT 93)9NUCT»4)9GMECACI)ICE(I)

I=19AMAYX)
FORMAT(1¥X96%1440)
CONTINUF

IFCINLFET +5Cs C) CALL FMDRY

c- LR X X X ¥ 3

STABILITY CHeCK

IF(CFL

N PETURPM

1.0)

BOUNDAPRY COMDITICNS

c--------

NN 47 K =
FLUX(K) =

CONTINUE
ISAVE = 2
IFCINLET
ISAVE = 0
DO 410 x =1
FLUXS(K) = O

CONTINUE

CONTINUE
IF(SW «EQ,
IF(SH oF",

194
FLUXS(K)

ofQe ) CT TO 2010

4
«0

1.0
NeC

s AN -
e AND,

TeaLL
TcrLL

P I
PR I

1)
”

IPLICTIT STAGE

IBND =1

NN 40 N =NMININMAY

I = SWeN + (loe=SW)®(MAY+NMIN=N)

I1 = 1

IF(I oNE.

CALL ONDRY

DN 11 K =

X{(K) = (.1

DN 11 L = 194

X(X) = Y(K) + SYX(KoL)sFLUX(L)
CONTINUE

N0 12 K =

FLUX(K) =
CONTINUE
CONTINUS

CALL EVECT

DO 10 K = 144

WIK) = DU(TeK) + DT=FLLY(K)/DX
CCNTINUE

D3 15 f z 194

1) 6C 7O 13

194

194
X(K)

ISAVE
ISave

NMAX~-1
NMAX~1
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X(K) = 0,0

DO 15 L = 194

X(K) = X(K) + SX(KsL)ewWw(L)
15 CONTINUE

DAC1) = ARS(UL(TI92) - LCHEM*C) = (DX/DT)
DA(2) = ARS(UL(I+2)) = (DX/CT)
DAC&L) = APS(ULI(]92)) = (DX/DT)
DAC3) = AZS(UI(I97?) + ACHEM»C) ~ (DY/DT)

IFCICHEM (MFE, 2 «0Pe T ,L,Z0e 1) DA(S) = Q.0

DO 20 K = 194

DACK) = AMAY1(DA(K)CD)

DAINV(K) = 14/7(1e + DT2DA(K)/OX)

IFCICHEM JNEe 2 oDRs I LENe 1) DAINV(S) = 0,0

: Y(K) = DAINV(K}*X(K)
- 20 CCNTINUF
“f IFCT oNEe 1) GC TO 24
Al = DAINV(1)

A2 = ((U1(CT92) = ACHT~#(C)/(U1(T92) + ACHEMsC))«DA(1)sA1eDT/OX
Y(1) AL=X(1)
Y(2) X(2)
Y(3) X(3) = A2sX (1)
Y(&) Cs0

2 pr 2%
DU(lsK)
D2 29 L
DT 9X)

25 CONTINUT
pp 29 K 194
2¢(K) = DA(KI®Y(K)

¢ CONTINUE -

[3S O LI I O 1]

= 194
DD

194
SUCT oK) + SYIMY(Kal) =Y (L)

nac o

DY 35 K = 144

FLUX(K) = 1,0

DD 35 L = 144

FLOX(K) = FLUX(K) + SYTINV(KsL)2Z(L)
B2 CONTINUE

IF(] «NE, ISAVE) CC TO 27
DO 38 K = 14
FLUXS(K) = FLUX(K)
3g COMTINUE
37 CONTINUE
IFC(IBUC €7 C) CGN T7 210
WRITE(61912C)TaNXsDT
12C FCOMAT(//91X e INTEC THMPLICIT STEP 43Xt I=*91393X9'0X="y
1 FTlelbo3X o' 0 T=V3FTebs/olXa'HoaYsZsDUSFLUX?)
WRITE(HL913IC)I(WIKIIX(HIaY(K)I2(K)IDUCTIK)eFLUX(K)sK=194)
130 FCRMAT(1X96E1446) .
‘ 210 CONTINUF
40 COMTINUE
RETURN

FND
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SUZFNUTIN® EVECT
COMMAN UL (61986)0SX (424)1SXINV(L94)9DU(HLre)sU(A]Lrs)

1 AC6L1) 9CaCFL AN TadXsCAM ol oM MAXSWII2UGIFLUKS (&) s ICALL
< s IFNC
3 SOMEGACEI)ITCRTY(O1)97¢61) SACHIMICVF oI TAYICHIM
& PA’oFPavH"OOPFOTHCsTQLXsTO$CC(61)9“CDR1*D’DT19CVF’¢EC'
s sFCON(EL)SICTOFE o XKCHEM

1 = 11

C = SORT(ULI(I+2))

R = RA25(1le + Ul(194))

DCDR = (.0

NCOT = 0.0

ACHEM = SQOT((CVF=*? + [Rex#2)/(GAM0O*ROsCVF))
TF(ICHEM ,NE, 3) GO TO °

Al = Ul(ls4)

A2 = TO=sUL1(I+3)/THD

A3 = GAMNI*PO0s(Als(1e~A1)+3,%(2,~A1)%A22%2)

A4 = Als(le=A1%22)%(],+2e¢%82)+(Be+3e%A1=Alss3)sA2s8?

ACHEM = SNFT(RAZs34/213)

Bl = Ul(T94)s(14-U1(194))/7(2.=U1(I94))

22 = THD/TN

NCOR = =F1/7U1(Is1)

DCOT = C221/(U1(I32)02")

? CONTINUL

Al = 14/7€1s + THDPsP(CTT/(34%70))

A2 THR*DCPR/(2,¢T()

IFCICHEM ,FC, 1) ACZHSY = 1,

IF(IAUG <EC. 0) G0 TO 20N

WMRITE(6191CCITaACHEN ST
1z0 FORMAT(/ /91X s ' EVECT 92X 9 I="91392X0 A= 9E14e693X9'L="9T1446)
260 CONTINUF

(rormmce=- CALCULATE MATRIX IF CTIGENVECTAOPS
c--------

SX(194) = C,

SX(244) = N,

SX(394) = (.

SX(491) = 0O,

SX(&92) = Co

SX(493) = 0,

SX(494) = Co.

SX(1s1) = 1.

SX(192) = =~ACHEM#CeCAMC*RO$UL(T91)/7(Reil1(Jr3)+
1 FA2¢U1(193)2Uul(]91)eNCNR)

SX(193) = (UL(Ts1)/L1(193))
1 ‘(P*RA’°U1(I,?)‘DCDT)/(Q*PA7‘U1(I91)*DCDR)
SX(2s1) = 1,

$SX(2+2) = I,

SX(Z93) = =U1(T91)/7(21=(Pey1(l93)/CVYF = A2¢U1(191)))
SX(391) = 1.

SX(242) = =€X(192)

SX(2493) = “X(1e2)

SX(491) = 7,

SX(he2) = N,

F e g : e ————
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SX(493) = 0,
IFCICHEM o'Fe 2 oQRe I o2Na 1) G TO 10

SX(194) = C222y)(lsl)/F
SX(214) = C,

SX(394) = “X(194)
SX(494) = 1,

(rmmmmnem=
Cow=—wm==== CALCULATZ INVTPST MATRIX
’.--------
10 AL = SX(792)#SX(192)=5X(292)2SX(293)
1 —SX(293)8(SX(242)=5X(192))

SXINV(1ss) = 0O,
SXINV(294) Ne
SXINV(394) Co
SYINV(4s1) O
SYINV(4s2) O
SXINV(443) Je
SXINV(49s) 0.

SXTMY(11)
SXINV(1e2)
SYINV(1s2)
SXInv(2s1)
SXINV(2+D)
SXINV(2+3)
SXINV(291)
SXIMV(392)
SXIMV(3s+3)

-SX(392)2°¥(243)/A1
(S5X(392)28¥(193)=5X(142)3SX(393))/A1
SX(192)%SX(293)/A1

(SY(292) - SX(393))/A1

e

-SYINY(2s1)

SX(242)/4)

(SY(192) = SX(292))/41

SXIN‘\’(?’I)

LT T T T I T A T O e N 1 T T TN (DN L O 1 € U T T O O L I L |

IFCICHEM (MEe 2 «CFe 1 4EO0, 1) GN TO 20
A2 = 1./(R cvry

SXINV(14+4) -A2«TARsCVTsULI(l92) /P
SXTNV{294) 0.

SXINV(39¢) “A2xPA2#1(T93)

SXINV(491l) Ce

SXINV(4s2) 0.

SYINV(493) 0.

SXINV(&94) I

20 CONTINMNUE
IF(IBUG «57e 9) GC TO 213

WRITE(615110)
110 FOOMAT(/ /91X EVECT SXsSXINV®)

WRITE(HI9120)(SXCLO1Y oSN (L92)9SX(L93)9SX(L*4)9aSXINVILIL1)

1 SXIMUCL2) 9 SXINVIL93) oSXINV(L94)9L=1194)
120 FORMAT (1X98E14,.6)
210 CPNTINUE

RETURN

END
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SUBPOUTINI 2NDPY
COMMON U1(6194) 95X (494)9SXINYV(Ga4)eDU(BLlo4)oli(bYr4)
ACELYICOCTLICTaDXICAMII T aNMAXaSWeTIZUGIFLUXS(&)ICALL
+IFND
INMEGACLLY o TCHFMUEL)IN(HL1)dACHEMICVF e TASICHEM,
PA2IRDIPHOOD ST COTHL o T LY aTN9CT(61)YsLCORLIDCDTLI9DMPIEGT " T
CECOMNCE1)YIICTNET 9 XKLHEM
DIMENSICH TUL1(4)

(S BF ORI

Jeeew-=a- CALCULATE FIP2 HATCIX

R = (ls + Ul(194))sFA?2
= Ul(ls4)

Al = SCFT((Fex2 « CVYFeP)/(GAMOsRIsCVF))
TFCICHEM JNEe 2) CGCT T 2

1l = Ul(1+4)
R2 = TOsUl(19?)/THD
R3 = GAMOsCNe(D1e(l1e="1)+342(2,~-E1)%3%2%82)
Bé = Ble(l.=-21%22)e(1le+243R2)+
1 (Bet2esFP1=Clsn3)s32282
Al = SCPT(RA23E4/T2)
2 CONTINUF
A2 = (U1(1+2) + TE2/TH)eD(CDNL
A2 = (U1(19%) + THLE/TNY=DCNTY
Aé = CAMO=RC/RA2
AS = THR*DCCP1/(T2+U1(1+3))
A6 = THD«DCPT1/7(TO%xU1(193))
A7 = A1=GAtN=202U1(191)3%xSAPT(UL(L1+43))/7(RxU1(153)

1 + RA2#11(0192)»U'1(191)sDCORY)
A9=(U1L(191)/U1(193))%("+RA22U1(193)2D2DT1)/(R+2A2¢U1(191)%DCEFY)
A8 = (=(14+42)/U1(191)+2C)%(=AT72(44+7+A2) - AL2ULl(192)2A9)

1 + (24/7U1(192)+R6)2(A43J1(192)
2 +42sA7)

911 = A4=U1(192)2(2,/U1(193)+A6)

P12 = =R2%(2,/U1(192)+L¢)+(=(1,+Z)/UL(191)+A5)»
1 (bet2+A2)

P13 = =AbelU1(192)2(~(1,+2)/U1(191)+A5)
SX(191) = F11/A2

$SX(192) = ~P11%A7/AS5

SX(193) = P1l1«A9/AR

SX(194) = 0.0

SX(291) = P12/A%

SX(292) = =P12%AT/AR

SX(293) = P12sAQ/AS

SX(294) = N,C

$SX(2s1) = P13/AR

$X(392) = =P12xp7/P?

SX(393) = P13=sAG/AR

SX(3s4) = C.

SX(h91) = Co

SX(492) = Co

SX(493) = ©,

SX(494) = G,

IFCIEND oENs 1ITETUERN
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c------—-

c--------

10

100
11¢C
12¢C
22C

DO 10 K = 144

DUL(K) = 0,

N0 10 L = 144

DUL(K) = NDULLI(K) <+ SX(KalL)sDU(1lsL)
CONTINUE

D 20 ¥ = 194

NUCIIK) = PULI(K)
CONTINUET

IF(1RUG .E"e 0) GN T 2CO

ARITEC(EY19100)

WRITEC(CO61«11NY(EX(Kl1)al X (Ka2)aSX(Ke2)aSX(Ko4)sDU(L1+K)9K=1194)

WRITSE(H19120) Al 9Al9AT9AL9AS9A59AT A3 9A9
FOPMAT(//91Xs'2ENRY P1P2sDULY)
FrRMAT(1Xs5E14,.6)
FCRMAT(/ 91X 990 1wec)
CCNTINUE

OETURM

END




|

(o N e NS ]

Iv V02.5

SUEROUT

COMMON U1(E194)9SX(494) 2SXTIMV(L94)aDU(LLI L) aU(HL0b)
ACHL1)9C o L 9T oDXaCAMD el o N MAX 93l UG eFLUYS(4)ICALL Y

W 1) e

INT CHEM
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1050230

PACE 001

ICREDCHECZA(EL) s TCHEM(61)9N(BL)IACHEMATYF 9FTASTICHEM

RAZ9RCSRHOC 9P O0aTHR o TNLX9TOsCT(61)9DCI19DCDTL9DMPIECT LT

sFCCNC(61) s TCTCFFaXKCHE

comeemee CALCULATF CkIM

DN 10 1
TFCCE(]
JMECAC(I]
RCI) =
GO 77 1
Z Al =

A3 = A2
CMEGA (T
acn =
14 CANT1
IF(IRUG
WRITE (6

= JoMNMAY
) .
) = 0.0
0ed
Y

EXP(=THD/(T2%xU1(193)))
A2 = UL(Te4)ex2/(1a=U1(T94))

/CZ(I)

} = (1e=A3)2(1e=I'1(To4))eAlsTRLX=UL(I91)5U1(Te3)escTA
OMECA(T) *THD/(2.2T0)

NUZ
=86 0)
14200)

MEe 0aC)

[eBd]
< -

CAL PRODUCTION RATS

-~
[

T0

To 2

ing

WPITECET9210)(UICT 1Yol (T 923)sUL(T+4)IMECGA(T)]=19NMAX)
22¢C FORMAT (/79 CRFY FHTr29aTCHEM?)
210 FOPMAT(1X94F1P,10)

120 FCRMAT (1X91497E14,5)

3C0 CONTI
PZTURN
END

NUS

[ovte-tiaas

‘i
{






