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NOMENCLATURE

A streantube cross-section area, also symbol for atomic species

a speed of sound

cv  frozen specific heat at constant volume

e specific internal energy

h specific enthalpy, also Plank's constant

K cut off coefficient

Kc  equilibrium constant

Kf,1  forward rate constant for reaction A2 + A ---2A + A

Kf,2 forward rate constant for reaction A2 + A2  2A + A2

k Boltzmann's constant

L characteristic length

MA molecular weight for atomic species

m mass flow rate

p pressure

Q partition function

R specific gas constant of the mixture

S entropy

T temperature

t time

u velocity in the streamwise direction

V volume

v atomic species equation source term

x streamwise coordinate

y cross-section coordinate

a mass fraction of atomic species
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B proportionality constant for integration step size based on
chemical relaxation time

y ratio of specific heats

o characteristic temperature

p density

T characteristic time

* reaction rate coefficient

Subscripts

c critical

d dissociation

el electronic

F frozen

I i-mesh point index

rot rotational

t throat

tr translational

vib vibrational

a differentiation with respect to a

P differentiation with respect to p

0 stagnation

Superscripts

n time level index

nf temperature exponent

* equilibrium
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Chapter 1

INTRODUCTION AND LITERATURE SURVEY

In the past few decades interest in high temperature aerodynamics has

increased dramatically. The two primary areas of interest have been the

flow downstream of a shock wave (i.e. within a shock layer) and internal

expanding flows. The former is of practical interest when designing high

speed aircraft or reentry vehicles and the latter is of interest mainly in

propulsive devices. Nonequilibrium, expanding, quasi-one dimensional

streamtube flow is the focus of this investigation.

A basic phenomenon associated with expanding compressible flows at

high temperature and low pressures is the freezing or trapping of energy in

chemical or internal energy modes. Hence, energy is withheld from the

system. Departure from equilibrium results with the frozen state extreme

clearly containing an excess of energy associated with individual particles

over that which it would have in an equilibrium state at the local

temperature and pressure. This implies a further reduction in temperature

which In turn effects the nonequilibrium rate. Since convergent-divergent

nozzles or streamtubes effectively convert internal energy into kinetic

energy, which in propulsion applications directly translates Into thrust,

nonequilibrium effects may degrade nozzle performance appreciably.

Some insight into the trends for convergent-divergent nozzle behavior

follows on examining the classical quasi-one dimensional, inviscid,

compressible equations such as derived in reference [1). For supercritical

(i.e. a transition from subsonic to supersonic) flow, the critical section

is at the geometric minimum of the one dimensional nozzle. Downstream of
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the critical point both temperature and density decrease rapidly with

increase in gas velocity. Typical cooling rates are of the order 105 to

106 K/sec [2]. Since changes in temperature affect the equilibrium energy

distribution curve (i.e. Maxwell-Boltzmann distribution) and the physical

mechanisms to redistribute the energy occur at a finite rate, noticable

departures from physical equilibrium are possible.

However, nonequilibrium processes are nonisentropic, hence the perfect

gas descriptions for inviscid compressible flow (e.g;, Liepmann and Roshko

[1]) require modification. For nonisentropic processes the local

thermodynamic state is not only a function of streamtube area, but also the

upstream area distribution, i.e. the history of the fluid flow upstream of

any point in the streamtube. The specific nonequilibrium effects present

in a particular flow field depend on the gas components and the temperature

and density of the flow. This follows since all such physical phenomena

need particle interactions to maintain equilibrium, and temperature and

density levels indicate the energy and number of such interactions.

Representative types of possible nonequilibrium physical phenomena to be

found in an expanding flow are: translational, rotational, vibrational,

chemical, and radiation. For any energy mode to maintain local

equilibrium, the characteristic time for readjustment by collisions must be

negligible compared with the time required for the fluid to experience a

significant change in local conditions (characteristic flow time). In

general, the adjustment of translational and rotational modes requires

relatively few collisions to maintain equilibrium as compared to vibration

or a chemical reaction. Hence, translation and rotation have short

characteristic times for readjustment by collisions and thus are generally

assumed to be in local equilibrium. It is only in the presence of large

liil* irll I hill
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flow field gradients that the characteristic readjustment time becomes of

the same order as the characteristic flow time. This paper emphasizes

nonequilibrium due to chemical reactions, assuming all other modes to be in

local equilibrium. However, the methodology is applicable to a general

nonequilbrium process which may be modeled and evaluated using the same

numerical procedures.

Since chemical reactions occur as a direct result of moleL.lar

collisions, it is apparent that as the temperature and density decrease in

an expanding flow the number of interactions decrease and energy may

effectively become frozen due to "incomplete" chemical reaction. If we

consider the simple case of an elementary reaction involving diatomic

dissociation, the atomic species concentration (0) is a measure of the

energy required to break the diatomic bonds. Such "tied up" energy is then

unavailable for conversion into kinetic energy. In a flow process this

manifests itself by several distinct regions which are associated with the

freezing phenomenon. In subsonic regions, the characteristic flow time is

large since the temperature and density are high, and the atomic

concentration closely approximates equilibrium distribution. As a flow

accelerates in a subsonic section, the concentration departs from

equilibrium but still maintains near equilibrium conditions. The flow may

then continue to accelerate with corresponding decreases in temperature and

pressure. At some point in the streamtube such decreases imply that the

characteristic reaction time becomes much larger than the characteristic

flow time, since sufficient particle collisions to maintain equilibrium are

no longer present. When this occurs, the concentration quite rapidly

departs from equilibrium and effectively "freezes out", essentially

withholding energy from the flow.

... . . .. . . *



From a practical standpoint, a nozzles, for example, can be designed

so as to minimize nonequilibrium effects. There are basically four major

parameters of interest here that control nozzle performance and they will

be discussed in some detail later. Briefly, they are nozzle scale,

reaction rate constant, stagnation density, and stagnation temperature.

Previous studies indicate [3] that order of magnitude changes in a

nondimensional rate parameter (0) are needed to significantly alter the

nonequilibrium concentration. Increasing the stagnation pressure (po) does

have an effect on both the initial dissociation and the recomaination rate.

However, for propulsion applications there will be a weight penalty for

increases in the stagnation condition. For this reason predicting thrust

loss due to nonequilibrium effects is important to the performance of

propulsive devices.

Since the nonequilbirum system of equations is nonisentropic,

virtually all problems of practical interest are too complicated to solve

analytically. Therefore, various schemes have been proposed to numerically

integrate the system of partial differential equations. The numerical

techniques have primarily been related to the difficulties with: 1)

boundary conditions and, 2) near equilibrium situations. One of the

earliest methods (3] employed a standard numerical integration technique

(Runge-Kutta) applied to a system of steady Euler equations. For an

initial valve type problems (e.g., a supersonic inlet) the inlet conditions

were specified and a solution computed by a space marching method.

However, if one boundary is upstream of the critical station, use of a

steady Euler equation description implies a two point boundary valve

problem involving the critical mass flow (;c) and the inlet boundary

conditions. The critical mass flow is determined at the station where the
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local flow velocity is equal to the local frozen speed of sound. Unlike

the isentropic case, (mc) cannot be determined a priori because the flow at

each point depends on the entire upstream history. In addition, for

nonequilibrium flow the critical point is downstream of the geometric

minimum. Therefore, the critical mass flow rate and location must be

determined during the integration procedure. This problem is illustrated

by the following relation [21:

which is the nonequilibrium extension of the classical expression [I]:

dA
for isentropic flow. For -- 0 (geometric minimum) the local velocity

dx

equals the local sound speed (aF or ao) for isentropic supercritical flow.

However, equation (1) indicates the critical point can occur downstream of

ha da
the throat since (---)(--) is generally positive. This is true because

php dx

hp is negative, b is positive (except at very high temperatures), and in

an accelerating flow -- is negative due to decreasing temperature. At
dX

such a downstream critical station the velocity is equal to the local

frozen sound speed which is unknown initially.

Several methods have been devised for the two point boundary valve

problem when using steady state equations. A simple procedure consists of

essentially several guesses for the mass flow rate, using the limiting
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frozen and equilibrium mass flow rates as guides for upper and lower

bounds. Successive iteration were computed until supercritical flow

downstream of the throat was calculated (Bray [3], Hall and Russo [41). A

second technique involved integration to just upstream of the critical

singularity with a guess for mc . The solution was matched with a series

expansion about the singular point to obtain a corrected valve for mc, and

the procedure was repeated until convergence resulted [31. An inverse

method proposed by Eschenroeder et al [3] elimin'ated the necessity for

iteration by specifying the equilibrium density (p*) instead of the area

distribution in the transonic nozzle section. Equilibrium mass flow (mc)

was assumed and the area ratio (A(x)) was determined as part of the

solution. Integration was continued downstream of the critical point, then

direct integration methods were used for the remainder of the computational

domain. Still another technique (Bray [3]) suggested patching together an

upstream equilibrium solution to a nonequilibrium flow downstream of the

critical point.

A major difficulty in the integration procedure is that typically the

upstream boundary point includes a subsonic, near equilibrium region. The

departure from close to equilbrium states exhibites a singular perturbation

behavior. This results from the fact that the nonequilibrium parameter

(e.g. concentration) alters its state in proportion differences from

equilibrium and universally proportional to a characteristic time; in the

near equilibrium region this is essentially 0/0, i.e. closely

Indeterminate. If a ordinary explicit space marching scheme is used,

extremely small increments must be taken to maintain numerical stability

and is somewhat impractical. In reference [5], Lomax and Bailey provide an

excellent summary of numerical integ.ation methods applied to the singular
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perturbation problem. One may use small perturbation theory in the near

equilibrium region to increase step size [6]. Anothei technique developed

by Treanor (7] uses a linear approximation to the rate equation. The

linear equation is integrated explicitly with the results being expressed

in the form of the Runge-Kutta finite difference equation plus a correction

term. Step size can also be increased by converting the differential

equations to integral equations. Bray 131 avoids the problem by using his

patched equilibrium solution technique. Finally implicit numerical

techniques are suggested in reference [5], and a review of implicit methods

as applied to reacting systems is given in reference [8]. Implicit schemes

do remove the step size constraint of explicit schemes but are less

accurate and require more computer time per iteration.

In recent years consideration has been give to circumventing the two

point boundary valve problem by means of an unsteady description. The

system of equations is then hyperbolic in time throughout the entire domain

of integration in contrast to the elliptic subsonic region when steady.

The technique has been applied to ideal compressible [9] and nonequilibrium

[10] flows using explicit integration schemes (e.g., Lax-Wendroff [11] or

MacCormack [12]). Unsteady methods allow integration in time to a steady

state compatible with imposed steady state boundary conditions. The

critical mass flow and critical section location are then found in the

course of the numerical evaluation. However, the unsteady scheme still

must converge to a steady state solution in all near equilibrium regions,

and this limits step size in much the same way as when using steady Euler

equations.

It is the present intent to take advantage of both time dependent

Euler equations, which eliminate the two point boundary valve problem, and
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implicit schemes which eliminate the stability time step constraint. In

Chapter 2, the physical model for nonequilibrium, compressible flow in a

streamtube will be described, including assumptions and model equations.

Boundary conditions, thermodynamics, and rate chemistry are also discussed.

In Chapter 3, the suggested implicit numerical scheme is described and

numerical treatment of the boundaries is discussed. Chapter 4 covers

numerical solutions that illustrate the capability of the implicit scheme

when applied to nonequilibrium flow. Finally, Chapter 5 discusses possible

improvements, extensions to higher dimensions and larger systems of

reactions.
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Chapter 2

ANALYTICAL AND PHYSICAL MODEL AND GOVERNING EQUATIONS

The modeling is that of a nonequilibrium flow in a quasi-one

dimensional streamtube. If all processes were isentropic, algebraic

equations would describe the thermodynamic changes of state [13].

Thermodynamics then constrains the inter-related state variables but

implies a one to one correspondence between physical and dynamic properties

calculated from the equations of motion. For nonequilibrium flow the

thermodynamic behavior depends on the detailed flow history. As mentioned,

the unsteady Euler equations will be used to model the nonequilibrium flow.

They comprise a hyperbolic system of partial differential equations which

describe an inviscid, adiabatic, compressible flow. The quasi-one

dimensional system is then:

+ = - 0A9

In addition to the standard (homogeneous medium) conservation

equations, there is a single conservation of species constraint. The

physical modeling required by this phenomenon is presented in the folloving

sectiOn. In aditon t th stndar (hmogneou meium conervtio
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2.1 Chemistry/Thermodynamics

The species equation, in fact, is representative of a number of

possible nonequilibrium effects: for example, internal modes such as

vibrational, rotational, or electronic, and chemical modes such as

dissociation, ignition. Here we will assume that chemical dissociation is

representative and the sole nonequilibrium flow phenomenon. This implies

that all other energy modes are either in equilibrium at the local flow

temperature (T) or maintain a fixed sub-state, i.e. frozen. The species

concentration effects the system both implicitly and explicitly. That is,

pressure and internal energy are now functions of concentration as well as

two other thermodynamic properties, such as density and temperature.

A relatively simple binary gas suffices to illustrate the

nonequilibrium effects. An approximate but realistic gas model described

by Lighthill/Freeman [13], (14] as an "ideal dissociating gas," and

contains the major feature of a binary reacting system while simultaneously

eliminating complex but non-enlightening terms. Lighthill simplified

several contributions to the partition functions for a diatomic gas. A

brief discussion of the basis is described below. Consider a diatomic

dissociating gas to be composed of particles (A) which include

translational and electronic internal energy modes, and a combined particle

(A2) vhich, in addition to the above, has vibrational and rotational

degrees of freedom. The factorized partition functions of each are of the

form

G A A

A A.% '4' A,, A,

The translational partition function for (A) atoms or (A2) molecules is
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Ck Q

where m is the mass of the specific particle. The rotational partition

function is

rot

and the vibrational partition function is given by

(7)-

The electronic partition function is described by the general equation

+. 9, e + 4.

where the gi are degeneracy factors for the energy levels ei . Specific

values for the constants for a particular species are obtained by

spectroscopic analysis of transition between energy levels. Use of

equations (5) - (8) in the mass action equation for a symmetric diatomic

gas leads to:

(9) -. -& rn(rGV-- ) --

where (a*) indicates equilibrium concentration. Lighthill noted that for

1000 4 T 4 70000 K the contents of the brackets in equation (9) is

essentially constant, and he suggested that it be taken to be a constant,

characteristic, dissociation density (Pd). The simplified expression is

then
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2. - . '

The thermal equation of state is unaffected by the constant Pd

assumption since pressure depends only on derivatives of logarithms of the

partition function with respect to volume. Assuming both A and A2 to be

perfect gases, the thermal equation of state in equilibrium is

(j)_,p~ (4 ed)RT

The expression (1 + a*) RA2 is essentially the equivalent of a mixture gas

constant.

Since the caloric equation is a function of temperature it is affected

by the Lighthill approximation. The general expression for equilibrium is

[13]:

Using the simplified mass action relation (10), this reduces to simply:

in which contributions due to electronic energy have been assumed to be

negligible for the temperature range considered. The internal energies of

individual constituents of the mixture are:

u4 A A~~=T

Neglecting electronic energy and on assuming that the molecular vibration

mode is half excited:

eA= 3-R "T RA A7 + 4 R T~ -3R 7

A- -- --------------------
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Since e = aeA + (l-a)eA2 Eq. (13) then follows. Note that in this model
4

the ratio of specific heats for a non-dissociated gas (a - 0) is - , which
73

is less than the true - for diatomic molecules. From Eqs. (11) and (13)
5

the equilibrium enthalpy is:

The preceeding discussion of equilibrium chemistry provides a basis

for the nonequilibrium model. The thermal (11) and caloric (13) equations

of state are of the same form for nonequilibrium and require only

replacement of at* by a. A finite rate associated with concentration

changes requires replacement of the algebraic mass action equation by a

differential description equation (3d). The right hand side of this

equation represents the production or recombination of atoms. For a binary

diatomic dissociating gas

Freeman [13] noted that for equilibrium

MA VC

Kc
which is identical to the ideal model equation (10) if MA-- is replaced by

Pd e-ed/T
He also replaced the first parenthetical factor on the right

P
hand side of equation (16) by a single Arrhenius rate constant.

Therefore the source term becomes

(ii ' f
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2.2 Noneuilibrium Flow

With the motion described by unsteady Euler equations and

thermodynamics/chemistry described by an ideal dissociating gas model, the

.following system of nondimensional equations apply:

( 1 ) -+

where:

The nondimensional parameters are"

Lk T-T T'/A
AL/ A =

where ( )' indicates the dimensional variables in (3) and ( )0 indicates

stagnation conditions.

T W.~

-, - , T- .

P, " .
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2.3 Equilibrium Flow

A limiting case to be considered is that of idealized "identical"

equilibrium. In this limit the differential species conservation equation

may be replaced by the equivalent law of mass action (10). The order of

the equation system decreases by one and local equilibrium is enforced

instantaneously and continuously. Thus, the state vector and coefficient

matrices of Eq. (19) are now

HZ A 0

(ai)

(A 0

= / t .
0 kRT -leC T, -k+

where: I4 .A - -

3T AT L e! +-t +v • -eato

Actually, for the isentropic frozen or equilibrium limits, the entire

systea can be reduced to algebraic forms. However, for cot.sistency such

limiting cases have been integrated here using the same unsteady Euler

equation description.
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2.4 Time Scales

When the flow is neither frozen (a - constant) nor in equilibrium,

there are two time scales present in the problem. Multiple time scales can

lead to integration difficulties (see Chapter 3). Such problems are

strictly numeric and result from the presence of widely separated

eigenvalues in the discrete equations. The two scales are a flow time

(Tflow) and a chemical relaxation time (rchem). The flow time

is a measure of the physical scale of the nozzle or residence time of the

fluid as was suggested in Eq. (20). The chemical relaxation time

Mr4

is a measure of how rapidly the fluid will relax to an equilibrium state.

The rate parameter 0 in Eq. (21) is simply the ratio of the time scales,

Tflow/tchem.

This process can be understood in terms of a linearized model for a

rate equation; say

01t

in which T is a modified Tchem.

In general a * and T are both time dependent, but for constant values

the decay towards equilibrium exhibits a simple exponential behavior (Fig.

1):

Clearly T is the time required to decrease the relative difference by the

factor e-1, and smaller T implies a faster relaxation process. Of course

the assumed constant heat bath in general, is not true along a streamtube.

Thus variable temperature and density imply varying a* and -chem according
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to local conditions, and hence there is a coupling to the fluid motion.

Tflow
The limit---- << 1 is the frozen case in which there is no time to react

Tchem

to local flow changes; alternatively, this is equivalent to a short path

TfJow

length. The opposite extreme, ------ >> 1, approximates local equilibrium
I Tchem

and corresponds to a relatively long local residence time for a particle.

It is the near equilibrium situation for which neither time scale can be

neglected, but the chemical relaxation time is relatively small, that lead

to numerical difficulties.

2.5 Boundary and Initial Conditions

The boundary conditions are extremely important and require special

care in the case of numerical evaluations. For a subsonic inlet two

boundary conditions are required, and are taken here to be stagnation

enthalpy and entropy. Since interest is in the steady state, only steady

state boundary conditions are applied. The total enthalpy is a function of

temperature, velocity and concentration:

The differential entropy is [15]

ca0) a : 3I~7 -3R +;L SI + K) R4 I1  '-

The limiting expressions for frozen and equilibrium extremes are [13]

OI- ( I k 4 4C oiht

F.at1.
7-r
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More will be said regarding boundary and initial conditions (including the

supersonic exit) in Chapter 3 where the specific application to the

numerical technique is discussed.

nnl inn i " ' . .. . . . ' .. . . . . ....--............ dt
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Chapter 3

NUMERICAL ANALYSIS

3.1 Stiffness/Stability Analysis

It has been pointed out that the nonequilibrium system of equation

(19) is numerically stiff. Stiffness is not the result of an analytical

technique but can originate from the discretization of a continuum equation

set when multiple time scales (e.g. Tflow and Tchem) are present. The

phenomenon can be demonstrated by writing the species continuity equation

in finite difference form using explicit upwind differencing (u>O):

C3+1 n 4
(L

uAt
where c --- (Courant number)

At

Atd4m--

T chem

The last term in equation (31) represents the time tloearizt( 'irm of the

chemical rate equation [131. The stability limits of this explicit finite

difference alogorithm can be investigated using Von Neumann stability

analysis [161. Each Fourier component of the solution is written as:

() Q< 4 WVitP X 0

which on substituting into (31) yields

VIP
Since the modulus of the amplification factor must not exceed unity, i.e.

V e f

therefore
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(ss) G1' i e-c- a) c-4-~ +

If satisfied for all 0 and 01-cosO2

or

The classical upwind constraint follows for the frozen limit (d+O), namely

(39') C- e- I
However, notice that positive c requires

(39) 4L
or

CHO) At C44 M-Je

.. +

Therefore, as Tchem+O (higher reaction rates) the step size (At) for

stability is determined by d rather than c. Hence, for situation in which

step size is dictat.d by chemistry, the number of iterations for

convergence to the steady state may be impractical for explicit techniques.

An implicit method is of some interest in order to improve the step size

and therefore, iteration count.

3.2 Explicit/Implicit Integration Scheme

The specific technique applied here to the nonequilibrium equation set

is that developed by MacCormack [17]. The scheme is an implicit analog of

MacCormack's explicit algorithm [121 introduced in 1969. In fact, the new

method uses the earlier explicit technique as the first of a two stage

procedure and is referred to as an explicit/implicit algorithm. The

explicit first stage uses the original predictor - corrector concept to

compute local changes in the dependent variables of the governing
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equations. Then, the implicit second stage distributes those changes

globally to all points in the computational domain, thus removing the

stability constraint associated with the explicit algorithm. The procedure

is second order accurate in time and space, unconditionally stable in time,

and block bidiagonal in form.

3.2.1 Model Equation

The basic theory and implementation of the explicit/implicit algorithm

can be demonstrated using a model convection equation:

(qi)u =~ 0f.~

The explicit part integrates equation (41) using a predictor/corrector

method:

= -AU K)

P 
K

~'+g

C:
1  Lfl++ IA + U6

In the predictor step, a known field at time t - nAt is used to provide an

initial estimate for the new field at time level t - (n+l)At by using one

sided spatial difference to compute the dependent variable change, au, for

the hyperbolic equation. The estimates uin+l are used in the corrector

step with opposite one sided differencing to compute a second estimate of

the change Auin+ l. The new prediction is then the previous value plus an

average of the two estimates. This can be clearly demonstrated by
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rewriting the finite difference equations (42) as an Euler predictor

followed by a modified Euler corrector [18]:

g3)( 4 L4 +

These are equivalent to MacCormack when the time derivatives of a

hyperbolic equation (u') are computed using forward spatial differences in

the predictor and backward spatial differences in the corrector. Hence, by

equation (43) the change in the dependent variable (u) is the average of

the changes at the predictor and corrector levels. The method is second

order accurate and stable if the time step satisfies the usual CFL

condition:

At . x c

Since C in Eq. (41) is the slope of the characteristic in the physical

domain, this restriction simply insists that the computational domain of

dependence must include the physical domain of dependence (figure 2).

The stability constraint is removed by including both current (t

nAt) and new (t - (n+l)At) time levels in the finite difference

approximation of equation (41). Along a negative slope (c<O), forward

spatial differencing is appropriate since the information is propagating

from larger x at earlier time. Therefore an implicit form for equation

(41) becomes

(Ai Ah W ra )j 'I-

The constant (a) essentially determines the "degree of implicitness" in the

equation. If (a - 0), the original explicit equation is recovered; if

(a - 1), equation (44) is fully implicit. On collecting terms, Equation

',, • , " i 1 ii i ~ ~~ - I II I I I I "..
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(44) can be written in the following form:

4)4. (. t

where ' IA'

(LI') v%- n

Similiarily, if C>0

+C - .At . 1

(L, AX) Ax K -

where

For stability, it can be shown that

('is) > C. (~
A t)

Note that the first term on the right hand side of equation (45) is the

explicit approximation (42) to the model equation. Hence, the implicit

extension of the original MacCormack explicit scheme is

A U4, e.p i-it

+ ~ j =A . 6c~ ~," 4. X t 1A

V" -

iTI explit .

( 'lb ~ X. ai  +  (A' A ) " L& z "-TI + X, .t &, (AUl

(4 1b)c. /- A_ X)

=i L.Au ~ + (A 4



31

This system is unconditionally stable for integration in time if X

satisfies the constraint equation (48). In addition, both predictor and

corrector procedures involve bidiagonal matrix equations so that only a

single sweep through the computational domain is necessary for each level.

The bidiagonal structure can be seen from:

IM N, ,,

rX N3 ,.

C).

where ML . I + \ A_t
Ax

A

3.2.2 Euler System

Using the basic algorithm, the scheme is applicable to the

nonequilibrium Euler System (19) as represented by:

',. + A Tj + H = 0
The explicit/implicit algorithm for matrix equation (49) is

-Tj( L
-- + i

I ~ I l I I I -- - i I l , ,
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c~+ a tA-t I A I V " A V AC.T• v' 4- V . V

where

A I^1
a.1 K A "

The matrix IAI is related to the eignevalues of the system by

where

X,4j0

Ao XA1
A'

XA= V"~ k "-1 a d ,A t0

A, = " i -1 - 6X,,,t , .o

AA = r ftx -t ,X/t, o.o

A = m4 jIal 4(A tO

The matrix of elgenvectors (Sx ) satisfies

A= Sic-' A A SA
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where AA is the diagonal matrix of eigenvalues of (A). (Appendix A

provides a derivation of the eigenvalues and eigenvectors for both the

equilibrium and nonequilibrium equations). For regions which satisfy the

usual one dimensional, compressible, explicit stability criteria

LAI t 0
all XA will be less than or equal to zero. In such cases the XA are set to

zero (see equation (52)) and the set of difference equations (50) reduce to

an explicit form. When all 1A are positive the implicit equation can be

expanded to examine the matrix block bidiagonal form. For example, the

Implicit predictor equation (50a) can be written as

(sv)+ 'dt + A7 .6 t IAI 1 ,
and solved by a single mesh sweep In the decreasing (i) direction. The

corresponding corrector sweep is in the opposite direction. Appendix A

provides a detailed description of the block-bidiagonal solver.

This explicit/implicit method has several significant advantages over

other implicit methods. One major advantage is the block-bidiagonal

structure. Numerous other implicit schemes (e.g. Beam and Warming [19])

employ a block-tridiagonal solution algorithm which tends to increase

computer time per iteration. In addition the bidiagional method is

straightforward to program and does not require matrix inversion.

An area of difficulty is the inclusion of a source term (H) in the

implicit stage of integration. For an ideal gas, the quasi-one dimensional

source term is not time dependent and therefore, does not effect stability.

However, the nonequilibrium source term contains the time dependent

reaction rate (w). (See equation (19)). As will be shown in Chapter 4,

. .7.
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the implicit stage of integration will provide sufficient stability for

moderate reaction rates. But, sufficiently high reaction rates effect

stability since w is only evaluated during the explicit stage of

integration.

3.3 Boundary Conditions

The solution procedure for the block bidiagonal matrix equation (48)

assumes that all dependent variables are known at the boundaries. For

certain types of boundaries (such as supersonic inlets or outlets) the

boundary conditions are straightforward. However, for supercritical nozzle

flow the boundary conditions require special attention.

Characteristic theory provides a basis for the construction of stable

implicit boundary conditions. As noted in reference [20], a correct

formulation of boundary conditions are of extreme importance as they are

the governing elements of the computation. Porous boundaries in hyperbolic

problems are represented schematically in Figure 3 for one dimensional

ideal gas flow. (Reacting flows have one additional characteristic; see

Appendix A). At a subsonic inlet, two positive eigenvalues (X1 - u, X2 -

u+d) define paths along with information is transmitted to the boundary

from outside the integration domain. Consequently, two boundary conditions

are needed [21]. Along the remaining negative characteristic, information

is transmited from inside the domain; forward spatial differences then

correctly account for the influence of such characteristics at the

boundary.

To apply these characteristic constraints to the implicit algorithm,

the following time linear approach was used [22]. The boundary conditions

(SS) 3i ( U) = 0
Can be written in time linear form:
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Recall (Chapter 3) that the boundary conditions for a subsonic inlet are

that total enthalpy and entropy are fixed at the inlet. Equation (49) in

characteristic form is

(S7) p Tt + A Pu t PH o

where A =  AP
At the inlet, the eigenvectors corresponding to the positive eigenvalues

are replaced by the boundary conditions (56). Therefore equation (57)

becomes

(si + Pa AtDr.+ PH=0

where P1  2 .

2.

or

t + P A'P ,A1 P"' H --

Equation (19) is a modified partial differential equation to be solved at

the boundary using the explicit/implicit method (50). Equation (50) need

not be modified at the supersonic outlet since there eigenvalues are

positive, implyi.ng that all information at this boundary is transmitted

outward from the interior of the domain. Thus, the boundary condition

procedure involves the use of forward difference at the inlet and backward

differences at the outlet. The implementation of this procedure is

represented schematically by Figure 4. Notice that the mesh sweep was

applied in alternating directions to eliminate oscillations.
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Chapter 4

NUMERICAL SOLUTIONS

4.1 General Description

A computer program has been developed from application of the physical

modeling and numerical techniques of Chapters 2 and 3 to a quasi-one

dimensional, nonequilibrium, supercritical, streamtube flow. Code

validation and case studies (operating on a PDP 11/23 computer) are

presented here to indicate the utility of the code and some advantages

relative to earlier algorithms.

Memory limitations (28 Kilobytes) required a sequentation of the

domain in order to achieve larger area ratios. An upstream segment (see

Figure 5) contained the streamtube minimum section and required the

subsonic inlet boundary condition discussed in Chapter 3. Once supersonic

flow velocity was achieved, a fixed supersonic boundary condition was used

at the inlet of any additional downstream streamtube sections. This

procedure allowed for expansion to an arbitrarily large area ratio without

either exceeding the memory limitations of the system or sacrificing

accuracy as would be required by an otherwise decrease in the number of

mesh points for a given area change.

Initial conditions (t-0), boundary conditions (inlet, outlet), and

computational methods were explored in the selection of example cases for

numerical evaluation. Table 1 indicates the individual parameters and

specifications for the study, but only some combinations of the overall

possibilities were actually used as a basis for the solutions. A majority

of cases were considered with the larger stagnation species concentration

(referred to as the "hot gas" case). However, a selected set of results

AI
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for the lesser ("cold gas") species concentration are also presented. The

area distribution along the streamtube was chosen to be parabolic, the

larger area ratio level refers to the exit maximum of any extended

supersonic section (Figure 5). Initial conditions are the assumed

distributions of dependent physical property variables. Typically, a

decreasing (downstream) linear variation was employed in order to be

consistant with the trends of expanding flow.

4.2 Numerical Validation

It is informative to compare any results with the corresponding

expected trends from analytical considerations such as described in

references [1], [13] or [23]. Some important checks for consistency are:

constant mass flow rate along the streamtube, achievement of sonic velocity

at the minimum section in the limiting frozen or equilibrium calculations,

and appropriate shifting of the sonic point to a downstream location for

nonequilibrium flow. Of course, accuracy of a numerical result depends

upon the number of mesh points in the computational domain, integration

step size, and the enforced convergence criteria. The latter was taken

here to be

as the criteria for all computed results.

For frozen flow, computed results were compared with tabulated,

analytical results, e.g. [23]. Table 2 summarizes the numerical solution

of an ideal gas flow (y = 1.4) and compares the solution with the exact

analytical values. The important conclusions are first, that the accuracy

of the code is demonstrated by excellent agreement between computed and

analytical solutions. That is, the maximum error for any variable at any

CFL number is 3.OZ with the average cr. r generally below 0.5Z.
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Second, the characteristic boundary conditions discussed in Chapter 3 do

satisfactorally "find" the correct set of inlet variables such that

supercritical flow is achieved. Third, the computed Mach number at the

throat deviates from unity by a maximum of 0.3%. Finally, the number of

iterations decrease with increasing CFL (i.e. increasing At), but with an

expected decrease in accuracy.

Numerical solutions for equilibrium calculations were validated by a

comparison between computed results and; the law of mass action (10) for

consistency, an equilbrium sonic speed at the throat, and for constant mass

flow rate along the streamtube. In all cases where mass action was checked

the agreement between the numerically computed concentration and an

analytically computed concentration from equation (10) was accurate to six

significant figures. The equilibrium Mach number departed from unity by at

most O.15Z (for a CFL number equal to 10). As in the case of frozen flow,

the accuracy of the numerical solution improved with an increase in mesh

points or a decrease in CFL criteria. For all cases the steady state mass

flow rate varied by at most 0.15% and for nonequilibrium flow the flux had

the same accuracy as for isentropic flow at a given CFL number.

In addition to mass flow consistency, nonequilibrium flow was

validated by verifying that the sonic point moved downstream of the minimum

section as the rate coefficient (0) increased (Equation 1). Also

qualitative behavior was compared with the results of Reference [3]. For

all cases, the equilibrium and frozen limit data banded that of

nonequilibrium flow. For example, an increase in rate coefficient causes

the species concentration to depart from near equilibrium' farther

downstream and the flow temperature to increase. It appears from the cited

general results that the computer code does output results which are

.. . . l I I'' ' = " ' "I m i a , . , =
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consistent with the physics of rhe problem.

4.3 Integration Difficulties

Consider problems related to numerical instability as specifically due

to the explicitly modeled source term. The species equation source term,

w, was evaluated at the current time level as outlined in Equation (50).

Such a basic for estimation of the local change in concentration due to

chemical reactions can be extremely unaccurate when the rate coefficient

becomes large. Figure 6 illustrates the relative scale of the reaction

rate compared to temporal step size. As the reaction coefficient

increases, some flow regions tend to remain in near equilibrium, as is made

clear by the slope of the fast reaction rate in Figure 6. Essentially, in

such "fast" cases any small deviation from equilibrium produces a large

initial rate to bring the concentration back to an equilibrium level. This

initial rate quickly decreases as the chemical relaxation follows an

exponential decay. If the integration step is a sufficiently small

fraction of the relaxation time (tchem) such as used in Reference [101, the

initial rate (or slope) will decrease at the next iteration level due to

then updated values for dependent variables. However, if the time step

exceeds the characteristic relaxation time, the concentration may (and most

frequently does) overshoot the equilibrium level, thus leading to numerical

instability.

ror all nonequilibrium explicit cases, the basic predictor/corrector

scheme was unstable unless the time step was taken as some fraction of the

smallest relaxation time in the mesh. This constraint is apparent from the

stability restriction of Equation (40).

When computing using the explicit/implicit algorithm, the local

concentration can easily (and frequently does) overshoot the local current

• "... . . . ... . .. G. "'. . .,. .. .- . . .
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equilibirum level without achieving numerical instability for rate

coefficient magnitudes less than 0 = 104 . A possible explanation is that

the implicit stage of integration modifies the explicitly computed local

evaluation by distributing these changes globally, thus effectively damping

out oscillations. Nevertheless, as the rate coefficient increases such

numerical damping is insufficient to maintain stability.

Four distinct methods were employed in attempting to improve numerical

stability. Two methods used a cut off criteria to prevent the

concentration from overshooting an equilibrium level. A third method used

a point by point "type" splitting calculation for equilibrium and

nonequilibrium regions. That is, either equilibrium or nonequilibrium

equation were locally solved depending upon a type splitting criteria. A

fourth technique consisted of a modification of an analytical/numerical

approximation suggested by Bray [3]. A brief description of these

algorithms will be presented in chronological order.

The "type splitting" (Method I) procedure employed a crossover

criteria to determine which equation set (i.e. equilibrium or

nonequilibrium) was to be solved at each mesh point (Figure 5). If the

local reaction rate at a given grid point was sufficiently large such that

the change in concentration exceeded the change to the current, local

equilibrium level, identical equilibrium was assumed for that mesh point

and time step. Therefore, equilibrium Equations (22) were applied at such

points and nonequilibrium equations (19) at all other points in the mesh.

This procedure met with some limited success. With this technique the

explicit stability limit was, in fact, substantially increased. By

eliminating the explicit relaxation time constraint, the temporal step

limitation was determined by the CFL criteria. This algorithm proved to be
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stable for reaction rates up to 0 - 104. To add an implicit stage (and

hopefully further increase the system stability limit) required an

assumption be made for changes in concentration (Aa) at "equilibrium"

points. For identical equilibrium, a is completely specified by the law of

mass action. However, for this method any given mesh point in the

computational domain could be in either equilibrium or nonequilibrium at

different time levels. This required that a concentration change be

specified regardless of the point type. Applying an estimated change did

not improve stability. In fact, this method did not yield any stable

implicit results.

A second method (II) employed an analytical approximation by Bray [3]

to essentially remove the singular perturbation region. Bray assumed that

in regions of the flow field for which the dissociation rate term was

significantly larger than the species convection term, the flow was "in

equilibrium." That is, the suggested criterion is:

d K

Bray considers a lower limit of 20 as the level at which nonequilbrium

should be appropriate. A starting point was chosen based on this

criterion. Figure 7 indicates that the procedure is not unstable, but does

result in an oscillatory solution near the starting point. It was decided

that the oscillations were related to the near equilibrium nature of the

starting point, which lead to overshoot for large time steps.

The remaining two algorithms (III,IV) employed explicit damping of the

species equation in order to improve and control stability. The first of

these (Method III) used a cut off criterion based on the local, time

dependent, equilibrium concentration. Any concentration change that
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exceeded the change to the current local equilibrium level was restricted

(cut off) so as to proceed at some fraction of the maximum possible change

(a* - a ). This procedure produced numerically stable results for largei i

time steps (CFL - 10) but did produce some "chatter" that could not be

damped. The results of Figure 8 indicate the oscillations in a typical

solution.

The final algorithm (Method IV) eliminated the chatter (of III) by

basing a cut off criterion on the local steady state equilibrium

concentration in contrast to the local, transient equilibrium. This

procedure, in effect, provided a lower bound on the concentration

distribution, and added the necessary stability to permit consideration of

nonequilibrium flows with large time steps (Figure 9). The next section

provides results that indicate the significant improvement that becomes

available for nonequilibrium flow evaluation.

4.4 Results

Method IV algorithm implementation was as follows. First, the

computation of both frozen and equilibrium limiting cases established an

upper and lower bound to the nonequilibirum distribution behavior. The

finite rate chemistry cases were then solved using an initial (t - 0)

concentration distribution selected to be greater than the equilibirum

lower bound over the entire domain. During the explicit portion of the

algorithm, if an implied concentration change was larger in magnitude than

that required to achieve local steady state equilibrium, the allowed change

was "cut off" at some fraction of the difference. That is

(6.%) +-her% K( K aII!

-7~rc 7-
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The entire domain was scanned at each step to locate the most downstream

point for which a cross over of the equilibrium "stability" boundary would

result if not constrained by the cut off condition (Equation (63)). The

cut off rule was then applied at that point and all proceeding upstream

points. By this means, an extremely inaccurate estimate of the

concentration change was inhibited in the near equilibrium region. This

effectively restricted the consequences of the local reaction rate so that

the transient concentration distribution remained above that for the

equilibrium limit. Essentially, imposing the lower bound provided the

additional stability for the explicit/implicit algorithm in the singular

perterbation region. That is, since the chemical reaction rate (w), is

time dependent and only evaluated at the current time level the inaccuracy

of the explicit estimate of the rate is compensated by using a known lower

bound to inhibit overshoot and oscillations. The individual solutions

provide some evidence of the utility of Method IV.

The purpose of the completed sample cases was to explore the ability

of the algorithm to produce results consistent with the physics, and to

demonstrate the relative gain or penalty in computation time. Five cases

(i.e., parameter sets) were considered in order to indicate a range of

applicability and determine possible regions of difficulty. The five cases

were as follows:

Case a, CFL 0

1 0.67 0.9 0,10 3 ,5xI03 ,104 105 ,.

2 0.67 5.0 0,10 3 ,5xl0 3 ,104 ,105 ,m

3 0.67 10.0 0,10 3 ,5xI03 ,104 ,.

4 0.40 0.9 0,i0 4 ,-

5 0.40 5.0 0,104,.

i- -
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In all cases, a segmented solution procedure was employed using 57 points

between computational boundaries. The first segment, contained the minimum

section which expanded the fluid to supersonic velocity (¥max 2.0). The

second, completing supersonic section expanded the flow further over

2.0 4 y 4 10.0. The large area ratio was introduced so as to demonstrate

chemical freezing even more clearly. The convergence criterion (Equation

(60)) was e - 10- 4 . The initial conditions for all computed solutions were

the same. That is, for the first segment (Ymax - 2.0) a decreasing linear

distribution for density, velocity, and temperature and a constant

concentration distribution. When comparing iterations to convergence for a

given stagnation condition, the same initial profile was always employed.

Table 3-7 summarize iterations and cut off criteria for each case. When

comparing relative near time note that an explicit/implicit iteration is

2.25 times an explicit iteration.

4.4.1 Case 1 - Hot Gas Explicit Solution (CFL - 0.9)

Results for explicit integration (CFL = .9) are illustrated in Figure

10-14 and iterations and cut off conditions are summarized in Table 3. The

concentration profiles of Figure 11 demonstrate the freezing phenomenon as

supersonic flow continues to expand. In addition, this figure shows the

tendency of the concentration to maintain a near equilibrium distribution

for larger area ratios for increasing I. The initial spatial departure

from equilibrium is more easily seen in Figure 11 which is an exploded view

of the throat region. The temperature, velocity, and density follow

expected trends for nonequilibrium flow. That is, temperature and velocity

increase and density decreases with increasing 4. An interesting

consequence of applying the cut off algorithm is that the explicit

integrate stage (generally restricted by chemistry dominated flows) may
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then be integrated using only a CFL stability criterion. More will be said

regarding the quantitative improvements after the implicit results are

discussed.

4.4.2 Case 2 - Hot Gas Explicit/Implicit Solution (CFL - 5.0)

Some numerical results obtained for this explicit/implicit case are

summarized in Table 4. The graphed distributions (Figures 15-19) of

dependent variables (p,u,T,a) indicates excellent agreement with the

explicit (CFL - 0.9) solution. For example the exit concentrations for

both 0 - 104,105 differ by less than 0.1% for either 0. Also, from a

comparison of Figures 11 and 16 it can be seen that the concentrations at

the intermediate y - 2.0 are indeed virtually identical. However, the

implicit (CFL - 5.0) algorithm converged in approximately 0.56 the time

required for the explicit (CFL - 0.9) method.

4.4.3 Case 3 - Hot Gas Explicit/Implicit Solution (CFL - 10.0)

When the CFL number was increased to 10.0 a significant decrease in

accuracy was noted for higher rate constants. Table 5 lists the iteration

and cut off coefficient (K) for the results plotted in Figures 20-24. Note

that results for 0 > 104 are not presented for CFL - 10.0. In order to

obtain a sufficiently accurate solution for 0 - 104 a cut off criterion of

0.2 was necessary. This increased the number of iterations to 300, three

times the number for CFL - 5.0 (compare Tables 4 and 5). Figure 25

illustrates the substantial inaccuracy that corresponds to a 4 - 104

evaluation with K - 1.0 used as a cut off basis. The plot of those results

(inverted triangles in Figure 25) indicates a virtual equilibrium

concentration distribution out to y - 2.0. However, both Cases 1 and 2

indicated that departure from equilibrium occurred at a substantially

smaller area ratio for the same rate parameter (see Figures 10 and 15). A

II 
I Ii
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decrease to K = 0.2 (larger values were tried) led to solutions for Cases 2

and 3 which were nearly identical, as indicated by the upper concentration

distribution in Figure 25, but with a run time increased by a factor of

three.

A measure of the error for 0 - 104 and the range of CFL numbers is

plotted in Figure 26. The error is defined as:

r P°-
[~~~to Im~7]

The CFL - 5 case converges much more rapidly than the CFL = 0.9 case (100

uses 410 iterations) and produces virtually identical results. Similarly,

for CFL - 10 with a K - 1.0 cut off condition, convergence is quicker than

for either 0.9 or 5.0, but as discussed above (Figure 25) the results are

quite inaccurate. The K - 0.2 iteration history plot (Figure 26) indicates

the substantial increase in iteration count (from 60 to 300) and suggests

that CFL - 10.0 would be less efficient than an explicit case for 0 - 105.

That is, when the acceptable error level is below that corresponding to the

explicit stability limit then an explicit method becomes preferable to an

implicit method (Figure 27). The conclusion is that for a sufficiently

large CFL number the inaccuracy introduced by the implicit method produces

a sever constraint on the cut off condition. Therefore, at sufficiently

high f, a lower CFL number is favorable for a more accurate solution in

fewer iterations.

4.4.4 Comparison of Computation Time

The improvement in number of iterations and computer time can be seen

from Figures 28 and 29. Results for Cases 1 and 2 are compared with an

explicit calculation employing Tchem stability constraint instead of the
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cut off algorithm. As discussed, for reaction dominated flows the explicit

time step is determined by the characteristic relaxation time. (e.g. for

an upwind algorithm equation (40) determines the step size). In practice,

ntunerical investigation has indicated [10] that for stability in a reaction

dominated flow

(o') At

where

That is, for stability the integration must proceed at some fraction of the

smallest relaxation time in the field. The results shown in Figure 28 for

the explicit integration without the cut off criterion were computed with B

- 0.3. This value was determined by decreasing 0 until a stable solution

was obtained. The results plotted in Figure 28 indicate that the "Tchem"

case deviates from the others downstream of the throat. As would be

expected the cut off algorithm does introduce solution error but the

results differ by only 0.1% at y - 2.0. The other dependent variable

(p,u,T) indicate similar results with the maximum error at any mesh point

being less than 3.0%. The significant improvement in computer time

realized for this small decrease in accuracy is summarized below:

Method Iterations Average At Relative Run Time

Explicit - CFL = .9 B - 0.3 3470 0.04 1.0

Explicit - CFL - .9 K - 1.0 430 0.2 0.15

Implicit - CFL - 5.0 K - 0.5 100 1.0 0.08

This chart illustrates a drastic immprovement in run time for a small

decrease in accuracy. The iteration history plot (Figure 29) shows

graphically the difference in convergence rate.

. . . . I J il - . . .I III I II i
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4.4.5 Cases 4 and 5 - Cold Gas

For completeness, results for two CFL numbers with lower stagnation

conditions (corresponding to ao - 0.40) are illustrated in Figures 30-33

for CFL - 0.9 and Figures 34-37 for CFL - 5.0 and iteration and cut off

conditions are summarized in Tables 6 and 7. The graphs and tables

indicate quite similar qualitative behavior and conclusions witl' regard to

the numerical algorithm consideration.

4.4.6 Boundary Conditions

Characteristic boundary conditions were presented in Chapter 2 and the

numerical procedure was discussed in Chapter 3. The characteristic

boundary condition provided stable inlet condition without overspecifying

the problem, which otherwise may have prevented the automatic development

of a proper supercritical flow. As discussed in the section on code

validation (Chapter 4), a choked flow condition was achieved using this

characteristic treatment of boundaries. Figures 38 and 39 indicate the

solution of the inlet velocity to a steady state value consistent with

critical mass flow and unit Mach number at the minimum section for an

equlibrium (0 = -) calculation. Figure 39 is an enlargement of Figure 38

for iteration count less than 100. For all CFL numbers the inlet velocity

overshoots the steady state value with subsequent oscillation to a final

value.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

Considerable savings in computing time has been demonstrated using an

explicit/implicit algorithm in conjunction with a cut off condition on the

explicitly computed reaction rate (;). For results presented in this

paper, the explicit/implicit algorithm was two to three times faster than

the explicit stage along, when the cut off condition was employed for both

the explicit and explicit/implicit methods. In addition, when comparing

this algorithm with other explicit integration methods for stiff equations

such as presented in Reference [10] the explicit stage was seven times and

the explicit/implicit algorithm twelve times faster for the particular case

investigated (0 - 105). MacCormack's explicit/implicit method [151 was

proven to work for a system of stiff equation and with the addition of the

cut off algorithm was extended to cover a wider range of nonequilibirum

flow (0 ( , 4 105).

Characteristic boundary conditions have also been devised for

quasi-one dimensional supercirtical flow. These boundary conditions

permitted the solution of an unsteady system of equation (to a steady state

final value) without a priori specification of inlet conditions consistent

with supercritical mass flow. Results presented indicate that with these

characteristic boundary conditions the Mach number at the minimum sections

for the limiting equilibrium and frozen cases was accurate to 0.15%.

An extension of the approach may be fruitful in three areas: 1)

increased number of dimension; 2) higher order reaction systems; 3)

different integration algorithms. The extension of the current method to

higher dimensions will require careful consideration of the stability

~-~-- ~-
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boundary concept when applying a cut off condition. It may be possible to

simply apply the cut off condition in an analogous manner. That is, solve

the two dimension equilbrium case and use this as the local lower bound.

For higher order reaction systems possible concentration stability

boundaries might be defined by considering the equilibrium distribution of

each species with all other species frozen. Finally, for improved

integration techniques, a more extensive parametric study of cut off

condition with reaction rate coefficient and CFL number must be performed

to provide more data regarding the optimum cut off criterion combination in

terms of a given reaction rate coefficient and step size. In addition, as

discussed in Chapter 3, inclusion of the source term in the implicit stage

of integration should be investigated to determine if numerical

instabilities due to explicit evaluation of the rate term can be eliminated

without losing the advantage of the bidiagonal structure of the

explicit/implicit algorithm.

In all, substantial improvements in computation time for a system of

stiff equations have been demonstrated. Application of characteristic

boundary conditions in conjunction with an unsteady system of Euler

equations has eliminated the two point boundary value problem. The cut off

algorithm has extended the range of applicability of the MacCormack

explicit/implicit scheme. The success of this numerical method provides a

basis for extension to higher dimensions and more complex reacting

systems.
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Table 1

INVESTIGATED NUMERICAL MODEL PARAMETERS

Method CFL Number

Explicit 0.9
Explicit/Implicit 5.0, 10.0

Initial Conditions

Dependent Variables - Constant stagnation level
(p,u,T,a) - Linear between spatial

boundaries
- Equilibrium distribution

Configuration

Maximum area ratio 2.0351, 10.31
for parabolic distribution

Stagnation Conditions

Concentration 0.4, 0.67
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Table 2

MACCORMACK EXPLICIT/IMPLICIT
ALGORITHM WITH CHARACTERISTIC BOUNDARY

CONDITIONS

Input data: y - 1.4, Ymax - 2.0351,
No. mesh points = 57, e - 10-6

Location CFL P u T Max Z Error Iterations

Inlet Exact 0.9564 0.2973 0.9823 -

0.9 0.9563 0.2976 0.9823 0.1 600

5.0 0.9565 0.2975 0.9824 0.07 120

10.0 0.9574 0.2977 0.9827 0.13 80

Throat Exact 0.6339 0.9128 0.8333 -

0.9 0.6341 0.9129 0.8333 0.03 600

5.0 0.6337 0.9114 0.8330 0.16 120

10.0 0.6338 0.9091 0.8327 0.40 80

Outlet Exact 0.1806 1.5743 0.5044 -

0.9 0.1809 1.5741 0.5051 0.17 600

5.0 0.1817 1.5730 0.5081 0.73 120

10.0 0.1827 1.5721 0.5119 3.0 80
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Table 3

CASE 1 SUMMARY

a- 0.67, CFL - 0.9, c 10-4

2 !mx10

Iterations K Iterations K

0 400 - 180-

103  410 1.0 180-

5xl03  400 1.0 190-

104 410 1.0 200-

105 430 1.0 220 1.0

CD 460 - 210 -

Table 4

CASE 2 SUMMARY
a0 - 0.67, CFL - 5.0, c 10-4

0 Ymax

2 10

Iterations K Iterations K

0 90 - 60 -

13 100 1.0 60 -

5xl03 90 1.0 60 -

14 100 1.0 60 -

15 100 0.5 70 1.0

-100 - 60 -
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Table 5

CASE 3 SUMMARY
Qo 0.67, CFL - 10.0, £ 10 - 4

2 10

Iterations K Iterations K

0 80 - 50 -

103 60 1.0 50 -

5X103 60 1.0 50 -

104 60 1.0 60 1.0

300 0.2 60 0.5

d 60 - 50 -

Table 6

CASE 4 SUMMARY
o w 0.4, CFL - 0.9, - 10 4

2 10

Iterations K Iterations K

0 410 - 180 -

104 430 1.0 200 -

- 460 - 210 -

7L "
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Table 7

CASE 5 SUMMARY
a0  0.4, CFL -5.0, c 10-4

0 Y3Ax

2 10

A Iterations K Iterations K

0 90 - 60 -

104 100 1.0 60 -

-100 - 70 -
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Fig. 2. Domain of Dependence for Hyperbolic Equations
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Fig. 3. Characteristic Boundary Conditions

V



60

14J

$)4

z) 0
1.-4

00

0I-

4)0

04

.14
4

4-4

$4 4J 04

4 -4-4

4.) C 4 s-4 C:-U

-4 14 fa -4 40

00 14 r0) u

-,4 .0 Ii(



61

Supersonic

subsonic Outlet/Inlet
Inlet

I <

1 2 i i i+l I

y

Ymnax

0 X L x

Y (Y 1-) _I 2 +1

Fig. 5. Streaxutube Segmentation anid Parabolic Area Distribution



62

Slow reaction

cut-off Explicit

Approximation

Fast reaction

Overshoot
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Appendix A

EIGENVALUES, EIGENVECTORS AND BOUNDARY CONDITIONS

Diagonalzation of Euler Equation

As noted in Chapter 3 the system of nonequilibrium unsteady Euler

equation can be solved using a block bidiagonal implicit scheme. In order

to implement this algorithm, eigenvalues and eigenvectors of the system

must be computed. This section will cover their deviation following

procedures similar to Reference [24].

Nonequilibrium Case

For the nonequilibrium case the system of equations is:

LA- 0 o

44(A A.j I

T 0 PT,o / 0 T

L 0a 0 ( J o

+ 0

or

(Ag k AtJ, 4 =0
To diagonalize this set of equations the eigenvalues and eigenvector of A

must be found from the relations

(A3) X, A
or

I

* - ~ .~-.
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(A q) ~ A- Xir' 0

where xi and Ii are the row elgenvector and elgenvalues of matrix A.

The elgenvalues are computed by:

which becomes

(ACL) (R+Cv)

Here a2 . .RT which is the ratio of the local frozen speed of
yoRoCv

sound to the stagnation speed of sound. Hence the eigenvalues are

'~ L --- Ct-

X'I = 4

The eigenvalues are calculated by substituting the eigenvectors into

Equation (A.5)

(AS') R 0

X3  VOQ

IRTT

These eigenvectors form the rows of a matrix Sx . Nov the matrix A can

be diagonalized by the similarity tranform

I * -
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where A is the diagonal matrix of eigenvectors

(Ao=) R.

1 00

RT T R

0 0 0

Lk- A0

R+ c0
0 Lk k



99

Equilibrium Case

For the equilibrium system of equations:

e 0

(4k + + k f%

1~3) T tre

p A .

A

By the same procedure, the eigenvalues of A are here
@ILI)

NI +

where

which is the ratio of the local equilibrium sound speed to the stagnation

sound speed.

The matrix of eigenvalues is then computed using (A.5)
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(A Is

Boundary Conditions

The Implicit boundary condition at the subsonic inlet is applied as in

Reference [22]. For the case of equilibrium flow there are two positive

and one negative eigenvalue. Therefore two boundary conditions can be

applied:

S - constant

ho - constant

For an Ideal dissociating gas

(A17) 53 ~

LA-,

Appling these boundary conditions in time linear form

: o - o

,/ t_ t
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Therefore,

CA I?) + j _

T TP

+

+ 4- (T (T)
(Au7-) 

r

By eliminating the eigenvectors of the positive elgenvalues and replacing

them with the boundary conditions

(,qq +x) T

(A 2) _ _

T T

00 0

L . -
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Therefore, the system of equations at the boundary becomes

(AAb) P, t +9. 4P A t +4 P1,k 

.or
O(,,17) t - .( A-U. +H)

The explicit/implicit algorith is used at this point with forward

differences only. At the supersonic outlet all eigenvalues are positive

thus no special treatment is necessary.

Algorithm Implementation

With the eigenvalues, eigenvectors and boundary conditions specific,

the implementation of the implicit scheme is as follows:

Recall that the bidiagonal matrix equation is

AtK

Rather than invert the matrixl~ X/
The following matrix algebra may be performed

(A -4) a X S

or

T KC
The diagonal matrix
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proves to be much more easily Integrated.

The complete sequence is as follows: (Reference [17j)

2) ( - sr.

3) 10I6t~e

4) '

5) ~ ,1l = s t I

6)
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Appendix B

COMPUTER PROGRAM INPUT VARIABLE NAMES

The following is the list of user supplied input variable names for

the computer program. The definition of some geometric variables are

illustrated in Figure Bl. Dimensions are given where appropriate.

CAI Species concentration at i - 1

CF Chemical rate constant
(Reference [13]) page 231)

CFL Courant number

DELMAX Convergence criteria (Equation (60))

ETA Temperature exponent

(Reference [13] page 231)

IBUG Debug printout if - 1

ICHEM Nonequilibrium if - 2
Equilibrium if - 3

ICON Detail printout for specified mesh

point if - 1

ICTOFF Apply cut off criterion if - 1

IGEO - 0 no minimum section
- 1 minimum section

INLET - 0 characteritic inlet boundary
conditions
- 1 fixed inlet boundary condition

IPT Specify mesh point for detailed printout

IREAD - 1, read initial conditions from unit 98

ITAPE - 1, write dependent variables of final
iteration to unit 99
- 2, write error history to unit 77

ITHAX maximum number of iterations

IWRITE interval for writing data to output file

NMAX number of mesh points
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PO Stagnation pressure [Atm]

RD Characteristic dissociation
density Pd [g/cm3]

RBO1 Initial inlet density

RH02 Linear decay coefficient

THD Characteristic dissociation
temperature

TRLX Reaction rate coefficient (0)

TO Stagnation temperature [°K]

T1 Initial inlet temperature

T2 Linear decay coefficient

VO Initial inlet velocity

V1 Linear growth coefficient

XKCHEM Cut off coefficient (K)

XL Distance from miminum section to
point where YB is specified (Figure Al)

XLT Total length if IGEO - 1
length to exit from origin if IGEO - 0

XMA2 Molecular weight of diatomic species

YB Half height at X = XL
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All data entered is formated. Real variables are read using F10.0

format, except for TRLX and CF which are read in E10.3 format. Integer

variables (those beginning with I or N) are read with 15 format. The data

entry sequence is as follows with each line representing a data card or

line entry:

NMAX ITMAX IWRITE IBUG DELMAX

XL XLT YB CFL

RHOl RH02 TI T2 VO Vi

ICHEN TO P0 XMA2

RD THD ETA TRLX CF

ICON IPT

ICTOFF IGEO INLET IREAD ITAPE

CAI XKCHEM
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y

YB

XL -~X

XLT
(IGEO = 1)

.- XLT -

(IGEO = 0)

Fig. B 1. Geometry Input Variable
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Appendix C

PROGRAM SUBROUTINE DESCRIPTION

The following is a list of subroutines used to solve the

nonequilibrium streamtube flow probvlem. A description of each subroutine

is provided below.

MAIN

- executive routine to manage input, output, initialize data,

and check convergence.

INTEG

- integration subroutine. Computes explicit and implicit changes

in dependent variable Ul and applies cut off criterion if ICTOFF

- 1. Called from PROGRAM MAIN.

EVECT

- computes matrix of eigenvectors (SX) and its inverse (SXINV).

Called from SUBROUTINE INTEG.

BNDRY

- calculates the characteristic boundary condition. Called from

SUBROUTINE INTEG.

CHEM

- calculates the species continuity source term OMEGA. Called

from PROGRAM MAIN.
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Appendix D

COMPUTER PROGRAM LISTING

The following pages contain the complete listing of the nonequilibrium

streamtube flow program described in this paper.

. y 1
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%N IV V020", Mon 24-J,n-93 13:46:37 PAGE 001

PRCGRAM MAIN
COMMON U1 ( &114 7.X(4 -X INV(4 14 ) vDUJ( 61 o4 ) 'p'1'(6 1,4 )'-

1 A (61) iC iC L %PT -I qCA,1,NAX 4I: w5LU)(S) ,ilCALL

3 ')M 1 P CN )

4 Pt-),0 I4')0FOTI","LXTOPCE-(61) ,)CrR~c)CDT1 0 'PIEQRAT
5 ,ECr"N(b1) ICTrFXKCHE%',IINLET,'l uN

1 -)UIS( L1 94 ) -vP'X( ~61 ) ,XbICCT (61)
C----- --

C---------- INPUT !nATA

PE AD (4,2'00)V~MAX i I TM Y I WR I TE i 13UG ,DELM4AX
RrAD(4q?10)XLXLrY '9CFL
READC49220)PHO1,'-HC2qTl'T2,iV0Vl
RAD(W,2)CH4E~,TP0iYM1A2

READ(4q?21) TClN i!PT
REAr)(4,1?21)rCTrFF,:CFr',INLETIREADITAPE
RreD(4-)2W3)CA1,YKCHEM,

Ic(ICTOFF *F0o C) GO T!2 ?000
REA D(78 qQ0 ) (A(I) )U (1-)1 ),-U(I 1 -) -U ( I-,3) prr-e, !(1) I=1 tNmA X

2000 CONTIN~UE
C -- -- -- --
C---------- PPINT INPUT DATA
C -- -- -- --

WP!TE (61v?25)
WQ T (1 ? r M~ I't~l4I -vE G 9 L A
WP ITE (61, 240) CFL ,XLi'XLTY .
WRITE(619?50)RHClRr'~??T1,T2,V0,Vl
WRITE(61q?52)ICHT MTCP,Yw~A?
WRITE(6li253)ROTHDiFrATPLXCC
WPITE(6l,2FI):CCNIPT
WR ITE (6li ?e4)IC7OF F , IL9NL=ETIRE AD ,ITAPE
WPITE C619256)CAlvXKCHF '

C -- -- -- --
C---------- NOZZLF GEOMETRY
C -- -- -- --

Al = XLT
IFCIGEO *En. 0) Al =XLT - XL
DX = A1/FLOIAT(NMAX-1)
A2 = XLT
IF(IGEO PO0. 0) A2 = 0a
DO 5 1 = 19NMAX
X(I) XL -AZ + DX*FLOAT(I-l)
AM! (Y! 1@O)*X(I)**2/(XL**2) + 1.0
! CONTINUE

C---------- INITIAL C0NDITI0N
C -- -- -- --

QU v 80315
IEOPAT 0
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TIMv = 0.0

Sw = 0on
ITER 0
ISAVE I
CFLMIH I.CE.Ot
NMIN =1
IF(TNLET .ro. 1) N!,4.!1=2
00 10 1 = I1,NMAN

UCI-p3) = '41 - T2*(X(I) - X(1))/ Al
U(192) =Va +' V1*(X(I) - X(1))/ Al
XMCI) = U(I-)2W/QRT(U(I, 3))
U(1I94) = 0.0
CNCI) = 0.0
PXN(I) = 0.0

10 CONTINUE
IF(IPEAD .e=G 0) Ct! T' -2010

CLnSE(UNIT=98,DI5PCSF='S-AVE'tEPR=999)
21010 CONTINUE

XI= U(NmXq)U(Nt' X-))*A(N41AX)
00 11 K =l1-4
FLUYS(K) 0 .
DO) 11 I = 1,tNMAY
UlICI'K) =U(IiK)
U1SCI9K) =U(I,K)

XMDVTCI) U(1,1)*U(1q?)*A(I)/X'i1
11 r0NTIMUE

RA2 = RU/XHA2
RO = PA2
CVF = RO/(GPMO-1.)

C---------- STACNATIom rHE?ISTPY

IFCICHEM 9FO. 1) GO TO 14
PO = P0*l0+05/09?69
PA = 2o*RU/XMA2
RA2 = RU/XI'A2
CVF = 3e*RA2
Al = 1.0E406*RA2*TOso'O*CXP (-THOD/TO)/PO
CAO = SORT(A1 + AI**2)/(A1 + le)
R0 = (le + CAO)*PA

RHO= P0/(PO*Tlns1.V'+06)
GAMO = (P0 + CVF)/CVF
RDR = RO/RM0O

Al = 1. - CAO
DSTG = (A1**A1)*(CAO**U..9CA0))
IF(IREAD .rc. I) CC T1 3
00 13 1 = 1,NMAX
A?:= Tt4/(TO*U(193))
IFCA2 *GTs PS.) 11(T14) =0.0
IF(A oGT. 85s) Cn T1' 1?
Al PD*EXF(-THD/(TC*iJl(T ,3)))/(RHOOSU(I 1) )
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U(Iv4) =C-Al + SCRT(4&*Al + Al**!)/(2*)
IF(ICTOFF .EOe 1) U(li4) :2CAl

12 Ul194) ~U(1104)

R = RA2's(1. + LI(1I14)
GAM =(P +CVF)/CVF
XMCI) = U ,)T~**( 3/CAl~~)

13 CCNTINUF
IFCICHEM eFCs 3 *DP* . l eEO. 0.0) GO~ TO 3
U(194) CAI
Ul(194) CAI
U1SC194) C41

3 CONTINjUE

C- -- -- -- -- PRINT !NITIAL/nCUNlAqY CINDITICNS

WRITE (6192.60)DX
IF(ICHFM *NE* 1 )WRITr(61 ,261)RA2vCVFvlHO0iF0

WRITE(61,4%0)!TFPgr!mE9rTIEn9AT
WRITE(61 ,410)

I ~u(I,4),CNI(t),rXN4(I) XMODT(Il,=lNMAX)
IF(IBUG .E.0) 'ZO TO 6C3
WRITE (61 ,32C)

50 FOPMAT(//q1X,'MAIN IN~ITIAL CJN!DITIiNS, Ul')

60c CONTINUF
IF(ICON. Crne 0) GO Tf) 3%r
WRITE(61'4lC) IPT

3co CONTINUE

C C
C INT CRATIDN LOOP C
C C

rCOUNT = IWPITE
ITEF = 1

100 CONTINUE

C---------- FINITE RATE CHEM~ISTPY

TMIN a le0Ee06
TMIN = XKCHEM*TV!N

C---------- CALCULATE TIME FTFP

sq VMAX 0*3.
DO 60 T = 1,NMAY
P (lo + U1(!,4))*PA'

Al =(R*.'7 + V*)*?'*0C
TEST x AlSCU(I< )) + FQPT(Al.U(I93))
IF(TEST onT. VMAX) VMAY = TEST
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60 CONTINUP
DT = CFL*DX/VIAX
IF( IC HEM *I~ 2~ ') r' T 11 62
TFLCW = DX/VMAX

62 DO 61 I = IiNMAX
R (I (1.( 1 ))*PA
Al =(R**s2 CVF*R)/(,G'Avo*90*CVF)

Ic(CN(1) *LT* CFLMIN) CFLMIN = CN(I)
IF(CN(I) eCTo 1.0 .r -. flFL *LT. 1e0) GO2 TO 63

£3 CONTINUE
61 CONTINUF

TIME = TIP4E + OT

C---------- PREDICTOR STEP

TCALL = 1
D0 70 1 = 1,NMAX
A? .THD/(TO.U1 (Iq3))
IFCA2 *GT* 95s) CUI) = 000
IF(A2 eGTe 85e) GO T'1 70

7 0 CONTINUE
IF(ICHEM sEO. 2) CALL Cl-zEM
CALL INTEG
D0 15 K = It4
DO 15 I = HNMIN0,1MAX
Ul(1,K) =U(19K) +tU(TgK)

15 CONTINUF
C -- -- -- --
C --- -- ----- OUNDAPY CONDITIONS
C -- -- -- --

IU(INLET 9EQ* 1) G'm Tn' 2320
Al = PD*EXPC-THD/(TO*Ul(1,3) ))/(RHOO*U1(1,1))
IF(ICHEM' 9NF. 2) Ul(l14) z (-Al +SQRT(49*Al + Als*2))/Z*
GAM = (4..+ Uj14))/3*
CV2EF =GAMO/GAM
Al = CAO - U1(194)
A2 = I* - U1(194)
A3 z U I1,4 )
A4 = CRD2**fll)*(A3**., .A3)) .(42**A2)* -XP(Al)
COEF = DSTtr/A4

* U101,1) = (COEF*U1C1 ,3)**3)**(1e/(1e.A3))
U1(192) zSORT(2..PA2.'(4..CAO-(4..A3)*Ul(l,#3) +
1 A1STHD/T0)/(GAMO*RO) )

2(120 CONTINSUE
* IF(IPUG *E0* 0) Gn Tri 610

WRITEC61,5fl0)
WRITEC61 9510) (Ul (Igl) ,u1(I,2) 'UlCI 3) iU1(1,4) PI=lgN ;X)

S00 FORMAT(//,lXqMA?. "rEDICTOR U1')
s10 FORMAT( 1X94E14s6)
610 CONTINUE

C -- -- -- --

-.. .Soma-
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C---------- CORPECTOR STrp
C -- -- -- --

ICALL2

DO 76 1I ,NP!AY
A2 = THD/(Tn*u1(I,3))
IF(A2 oGT. Ero) CE(T) 0.0
IF(A2 *flTo q5o) CO 'n 7f.
CFCI) = Rfl*Fxp(-TH'/(TC'*UlI ,3)) )/(PH2O*U1(I ,1))

76 CONTINUE
IF(ICHEM .ECe 2) CALL CIcm
CALL INTEG
DO 24 1 =1,NMAY
RWN(l) =TZ'HSM(T)

?.4 cflNTINU17
DO 25 K = 1,4
00 LI5 I = NMINNMAY
Ul(IK) = 05*(uCI9r) + U1CIK) +DU(IK))

25i CONTINUE

C----------1301'NDAry CONDITInNSI

IF(INLFT oEr. 1) Cn' Tn p030
Al = RD*EXO(-T/(TO*1(1,3)))/(PHOrO*Jl(l1) )
IF(ICHEV &NE* 2) ul(lw4) = (-Al + SORT(49*A1 Als*2))/29
GAM = (4. + U1(194))/Io
COEF = CAMO/GAM
Al = CAO - 11(1,)4)
A2 = 1. 111~(194)
A3 = IJI1l4)
A4 = (Rt1**A1)*(A3**(2.*A3) )*(A2-**A2)*EXP(A1 )
COEF = PSTG/A4
Ul~i q1) = (CnEF.u(1l)**3)**C1./(1 .4A?))
U1(192) = !CRT(,'.;f'A,*(4.+CAO-(4.+A3)*Ul(l,3)

20CI1 NIU Al*THr/TO)/(GAMO*P0))

IF (IBUG oEO. O)CO TV S20
WPITE C619530)

530 FOlRfAT(//qlXq'MA7N COPRECTOR Ull)

620 CONTINUE
C -- -- -- --
C---------- PRINT PUTPUT

IF(ICON *Eno 0) GG Tfl 11

sa TO 35

31 IF(ITER *NE* ICONurT) Co TO 35
ICCUNT = IT'JUNT + IWPlTTr
XM1 Ul(NmAX,1) *Ul ('tAN,?)*A(NMAX)
DO 301 I 1NMAY
IFC!CHEM ec0s, 1) C! TIJ 33
P z PA2.*(1. Ul194))

GAM z (P + CVc)/C'JF

OWN___ _
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1F(ICHE1M *F0. fl) G) '7' 12

A,. TO*U1(!,3)/THr

A4

AS SOFTCAl/A4)
X !(I) = A5*XM(I)
GO TO 3?

33 CONTINUF

32 c nNTINUE
XMOOT(I) = Ul (lvl )*UI(I,2)eA(I)/XMI

30 CON TI LIE
WRITE (61W~fO) IT[R ,TMfE DTiIECRAT
WRITE (619410)

1 ~~Ul C I 4) CN( I) ,RXN( I) ,XMnOT(1) '1=1sN4AX)
35 CONTINU=

C---------- CfNVFPIrFNCE TF5 T

!F(ITEP eNF. 10) GO Tfl 154
SUM z 00
)149 K =194

DO 149 1 = 19NMMIAX
SUM zSUM +((U1(IgK) - UlS(I,K))**?)

149 CONTINJUE
SUMI= SORT(SUM/FLr AT(.',iX)

1'Q CONTIN'UE
IF(ISAVE eNE* 10) sr T.7 41
ISAVE = 0
DEL =0.0
SUM z 000
DO 40 K = 1,4
00 40 1 = 1,NMAY
TP> T = ARSCU1(!,K) - UlF(I9K))
IF(TEST *GTe DEL) PF= TEST
SUM = SUM *CCUI1I,) - t1S(I,)K))**?)

40 CONTINUE
SUM = S0PT(SUM/FL1)AT0'PfX))
SUM =ALOGIC(SUP/SUM1)
IF(ITAPE ePCq 2) WO"TTF(7790O0)1TEPSUM
IF(DEL &LT. DFLPAX) rl TO 993
DO 42 K = l14
DO 42 1 = lNMAY

'? CCNTIN'UE
41 CONTIfiUF

C -- -- ---

C---------- RFSFT A~tZAYS 'fl "JW VALUES

ITEP =ITFP + I
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ISAVE = ISAVE + 1
IF(ITEP *G!. ITPAX) 31 TO 999
DO 45 K = 194
DO 45 1 = INP
U(19K) = u1(r9K)

45 CONTINIJF
GI TO 100

C
C ENO rF LOCP
C C

909 XM1 = Ul(NMAX,1)*t1(tX2i*A(NMAX)
DO 55 I = 1,NIAX(

R = RA?.(1. Ul(I14))
GAM = (r + CVF)/CV--
XM(I) = U1(1,2)/St~qT('.gM*R*Ul(I,3)/(% AMO*RO) )
IF(UCHFM ocOv 2) CC Tfl 54
Al = U 1 ( 94 )
A2 = TO*ul(1,3)/THr
A3 = C4.+Al)*(1.+r,1)*(Ul*U9-Al).3.*( 2.-Al)*A2**2)
A4 = oA * l Al *

AS =SCRT(A3/A4)
XM(T) = ASsXM(I)
GO TO 54

53 CLINTINUh
X'1(I) = Ul(TI,?)/Gfr,"T(Ul(I-)3))

54 CONTINUE
XbICOT CI) =Ul (lg1)*Ul1(1 2) *A(I) /Xml

55 CONTINUE
WRITE(61 ,4C0) ITEPTlM~qDT,[E-lAT
WRITE (61 ,41C)

I Ul(1i04) 'CN(I) ,RXN(1 ) ,XMDOT(I) ,I=1,NMiAX)
999 CONTINUE

WRITE(61'445) CFLmI'!
CLOSEUNIT61D!PCS=AVF')

1 Ul CI94) gIzgNmAX)
STOP

C -- -- -- --
C- -- -- -- -- FORMAT STATEPI-TS

2CC FCRMAT(415 qF10 cc)
20! FfRMAT(?clOoO)
210 FfnRMAT(4FIO.C)
220 FORMAT(6F10*O)

i'i FORPAT(51';)
221 FflRMATC?I'S)
2?? FrPMAT(I5,3F1C0)
223 FORMATC 3FlO*0qE1C.1)
224 FCRMAT(4E14o6)
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230 FfR'AT(l~,'NMDPX= I%'iX,'TMAX= vI5'3Xi'lWIWTEa ,15,3X,

251 F0RMIAT(/ilX,'TCON=' ,Te .39X,IT= ,10 iY
254 0~MT(/IXTIiZ'CFFiX'y2=l'*IE72' O3X9NE',5,

561 FORMAT (/ 91X,2 9 'CO=1 1, 3X CV I IPT= 19 15

270 FORMfAT(1XtTCFF=2,3X,'XX',E1GE,3X,'A' XE14.)LT*l3X

250 FORM~AT(//,X, TH' ,14,-l3Xi T1M'-El ,E4.63XlO'TZ' ,E14.
1 , 3X,'lXM A= I'1) 3

413 FORMAT(/,4X,!' ,SX,,X, ,1?X,'TH)z',12X,'U'3X'T=13X,'M,12
1 3C'1X,'CJ,X=i'PXN',1XX MJF=EO')

?5 FVRMATM IIILOUDP C 3X I13,OE 1406

256 FORMAT(//,1XvtCAL1= ,E*14.6
41 IX ,E14.i6,//)

900 FORMAT( 1iX,Sjr14.

901 FORPATCATF1414)
4 0 FORM T / 4 9 T i X ' ' l X l~ ' l X ' l l X ' ' l X ' ' l
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SURROUTINF INTFC
COMMON (11 (6! v4) ,c X(4 -4 ) i'3XIf!V(4,4) 0''J61-94) iU(6194)A(61),
1 CgCFL. rTv^X f ',IIN~4AX9,%,I::uGFLUXS(4) 'ICALL

ST "NO
,OMFCA(61) ,TCHt4M(61),1(61) ,ACtHEMCVFFTAICHE-M

4 ,r'A2,iCP,"iCTHn),TILXTCCE(61) ,PCDR1,OCDTlDMPIEC7'
5 ,ECr'N(61) ,ICTncrgXKCHI!MINLFTNMIN4
DIMENSION DA(4) ,OAI'4V(4) ,FLUX(4) ,W(4) 'X(4) ,Y(4) ,!(4)

C---------- EXPLICIT STAGE

C IFCICTOFF .eO. 0) CC Ti' 2000

JE0PAT =0

DO 80 I 29NMAX
IF(I eN~e NMAX) GO TO 71

GO TO 72
71 C4 = (lo-SW)*Ul(Il14)-(lo-2@*SW)*UI194)-SW*UI(1-194)
72 DUCl14) = -fT*(Ul(J,?)*C4)/DX + DT.ClMEGA(I)

nEG = ErONCI) - Ul(I'4l)
IFCABS(nU(!,4)) *G~s ACF(CFO)) IEORAT I

s0 CONTIN~UE
2000 CONT7NUF

IND =0

DO 5 1 =NMINNMAX
IFCI eNEe 1) GC TG
Cl Ul1I+191) -U1(I,1)

C? =Ul1e,2) -ul1-9-:

C3 =Ul(l-t13) -Ul(1i3)

C4 UI(1+l,4) -Ul14)

CS ALOG(A(1+1)) - ALC'C(ACI))
GO TO 4

2 lEA! .riF. NMAY) G!' TOl 3
Cl =UlCIq!) - Ul1-191)
C2 = Ul(I-w?) - U1(I&-lv2)
C3 = U1(193) - UI1-1'3)
C4 = Ul(194) - Ul1-194)
CS = ALOG(A(I)) - ALnC(ACT-1))
GO TO 4

3 CONTINUE
Cl = C10-Sw).Ul(I+191) - (16-2..Sw)'sU1(Iq1) - SW*U1(I-Lg1)
C2 = (I*-SW)*Ul(i1,29) - (le-2**SW)*UlCI,2) - SWJ.Ul(I-lv2)
C3 = C1.-Sw)*Ul(T.1'') - (1*-2s.'SW)*Ul(T13) - SW.UI1-193)
C4 = (1.-SW)*Ul(I1,kq) - (l.-2&*SW)*UICT,4) - SW*Ul(I-194)
C5 = C1.-Sw)*ALOC(A(I+1)) - C1.-Ze*SW)*ALOC.(ACI))

1 - SW*ALOG(A(I-I))
4 CONTINUE

DCoP =09
DCDT a 0.0
DU(194) 10
IF(ICMPM aF~s 3) r.' T' F-
IF(!CMFI4 *CC* 1) OMIFCAMT 0.0
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DUCI,4) =-fT'(U(lI,2)wC4)/DX *DT.*0lFGA(I)
ICUT =0
IF(ICTOFF *Eno 0) C"' TC 5
DFO a XIKCHF'*(ECO2N(l) - l(l14))

C'3NP = U10!,4) + DU(Y,4)
EQCPIT = Ul14) + ncl
IF(CONP *LF. 0.0 *CF. Ct2JP *GEe 1.0) SJ Ta 58
EQQAT z CONICE(fl
IF(I .oT9 !FOPAT) ra TO 55

SR ICUT I
OU(114) E
OMECAMI DU(I,4)/CT + Ul(192)*C4/OX
0(l) = 0P..eAC)*THP/Cj..TO)

55 IF(ICALL eEQe 2) GO TC 56
TCHEM~(I) = 1.0
IF(ICUT oEll. 1) TCHFM(I) = 3o
GO TO 60

56 IF(ICUT *EO. 0) CO TO 60
IFCTCHEM(T) *Eno. 3.0) CC To 57
TCHEM(I) = 2.0
Gfl TO 60

57 TCHEMCI) = 4.0
GO TO 60

C---------- EOUILISPIUM

534 Al = CF(I)
42? Ul (I1,A)
UI(I,4) = (-Al + "'FI(4,*Al + 4**?))/2%
')UCI,4) =Ul(T-)4) - A
OMFCACI) = 0.0l
aCX) = P.0
C4 =00
Al sUl194.)
A? m HDT
A3 =Al*(le-Al)/C2.- 1)
DCDIr = -A3/UlCIil)
PCOT a A2*A3/CUl(l,!)*.')
!P(! &Us. 1) CCR1 = Dn
!FC1 .Eno 1) DCOlTI = ocrT
TCHEM(I) = 4.0

C---------- NONEO0UTLIRRIU!"

6 0 CONTINUTH
R =RA2*C1. + Ul(I,4))

I? =THDs'0CR/C'..T3)
SU I q 1) =-P T. 01 ( I )^-)1 * UIC( 1 1 C 2 + U 11 lIl1 2)CC.)/ID X
MU192) =-CT*UI(li,)*C?/DX - DT*(R*C3+RA2*UlCI,3)*(C4
1 *nCCF*Cl + ",CfT*C3)

2 +r*ui(T,3).Cl/Ul(I'l))/CGAM3*90.DX)
IC(CP4EM *FP* 1) CMI 0.0
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-I)13)~ T*Ua(lg?)*C'4/rx) - DT*s!l.(?b*Ul(I3)/CVF -2ulg,

1 *(C2 +UI12)*C5)/DX - DT*^4(1)
5 CONT~ftJr

DU(194) = *
IFC1SUC- F' * 0) GO To 7-1r)o
URITEC6I ,1OC)

100 F0RMAT(//,1Xq,!T-G EXPLICIT DUI)
WRITE(61 9110) (DU( r') iDU( 1,2) ,CU(1 ,3) ,1UC1,4) ,MECA(I ) CE( I),

1 1=1'NMAY)
110 FOPmAT( IYi614.o)
200 CONTINUF

IF(INLFT Fro* C) CALL r-DR

C---------- STAPTLITY CHECK

IF(CFL eLFo 1.0) rFTUP.

C--------- BOUNf)A1?Y C()NDIT!CNS

1) f 4 7 K 4 '
FLUY(K FLUXSMK

47 CONTINUE
1SAVE =?

ISAVE = 0
DO 410 K = 194
FLUXS(K = 0.0

41r' CONTINUE
010 CONTINUE

IF(SW *eQ* 1.0 .ANr.- VCLL *E')* 1) IS'AVE = NkAX-1
IF(FW o.e. -'0 .ANr, TCPLL *EO9 ') ISAVE =NM~AX-1

I --------- INOPLICTT STA'OE

IliNv = 1
Dn 40 N =NIIINgNMAY
I SW*N + (1o-cW)*UIMAY+NMIN-N)

IrCI .NE, 1) GO TO 13
CALL PN!DRY
00I 11 K =194
X(K M Cel
00 11 L = 194
X(K M Y(K + SY(I(gL)*FLUX(L)

11 CONTINUE
11O 12 K = 1,o4
FLtJXCV) = X(K

12 CrNTINUE
13 CnNTINUF

CALL EVECT
D1. 10 K = 1,4
W(K) = DU(19K) * I)*FLI,'Y(K)/DX

10. rCNTIMUr
DO 15 K z 194
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X(K) = 0.0
00 15 L = 194
)(CK) = X(K) + SX(KPL)*W(L)

15 CONINUF
n4l'C) =AR50(Ul!2') - CHEM*C) - (DX/)T)
DAM z A~lr(Ul(Iq?)) -(flX/CT)

0.AC4) = APe(U1(li,)) (DX/DT)
DAM3 = ACS(Ul(i'?) ArHEM*C) - (DY/0T)
IFCICHFM elr 2 eOP. T Z*. 1) flA(4) z0.0

DO 20 K = l14
DAMK = AMAX1C0A(K)iC.C)
DAINV(K) = ./(l. +' rT*t0A(K)/9X)
IF(ICHE" * N5. 2 *OR*~ T .E09 1) DAINV(4) Oe0.

Y(K) = DAINV(K)*X(K)

20 CONTINUF
IFCI eNE. !) GC TO 24
Al = OAINV(1)
A2 = ((UlCI,?) - ACIHE"*C)/UI(1v2) + ACHEM.C))4'OAC1).Al.OT/ox
Y(l) =AI*X(1)
Y(?) =X(2)

YC3M X(l) - A2*X(l)
Y(4) =COO

Ort' 25 K = l14
DU(IK) = 'o
D1. ?5 L = 194

25 C0NTINU'
POc 30 K = 1-)4
ZCI") = nA(K)*Y(K)

3(l CflNTINUF
DI 35 K = 1 14
FLUX(K) = *
DO 35 L =1 4
FLL'X(K) =FLUX(K) +' S'~I'V(KL)*2(L)

3s ClNTrINUF

00 18 K =194
FLIIXS(K) =FLUY(f<)

3F CrHTIt4UE
37 CONTIN~UE

IF(IStJO *E. 0) Gn T7 Z I0
WPITE (61, 12C) IiPXq

1?C FCQMAT(//,IXI IKTeE IIDLICIT ST 'P' ,3' 91=' ,13,3X,'')X'l
1 F7 o4,3X,'7'T=',F74,/,1X0'Wg(YZilUFLUX' )
WRITE(6I, 130)(CW(K),X ('<) (K) 2(K) ,DU(1,K) FLUX (K) ,K=194)

130 FCRt4AT(IX,6El496)
* 211D CflNTINUF

40 CONTINUE
RET UR N
FNP
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Su~rlUTli-- EVECT

COMFN (61),cCF,4r),cSXIV(,4II ,~t~x,w,.U(,f-luvS4),IA

I F N r
3 ,fMEAUi!) ,rC-<(6l),tl(61),AcHE:-mCVFErAItME-l,

4 RFA2,9FrICOPrTHCTRLXTO,~cE(61) ,DCDR1,DCDTl1DCFP'iEC-
, FCON(61 ) ,C T rcXKCIEM

C = SORT(t(I,))
R =RA2(Io + U1(li'.))
DCDP = .
nCDT = 0.3
ACHEM = SOc'T((CVF*"' + P**.)/((GAMO*PO*CVF))
IF(!CHEM *e.l~ 3) GP TO)
Al =Ul(Iy4)
A2 = TO.UI191')/THD
A3 = GAtA1.cC.(Alw( 1.-Al)+3*3.(.-A)*A2o*?)

AC'4FM = Sr)PT(FA2*A4/A3)
RIl = U1(1,4)*(1.-UI (1 4))/(2.-U1(I ,4))

P2= THD/Tfl

DCOT = C*1(ll *'
' CONTINUE
Al = I*/(1. + THlr,*fCCTI(3o*T0))
A2 = THD*DCrR/(!eoTC)

IFCIUG .Er, 0) -10 TO :rl

WqvTE (61, 1CC)19 ACHF ',C

200 CONTINUF

C---------- CALCULATE MATRI1X IF 7IGENVECTCIPS

SX(1-t4) =C.

S XC?,v4)
S X(3 14) .

SX(41) = I.

SX(192) = 0. ECCOCR*lIl/(~l(v)

SX(193) = 1. l)Ll1q)

*(PRA?*U1(I ,3).pCDT)/(q+PA?*Ul(l,1)*DCCR)

* SX(32,1) If1
SXC?92) = c.(9-

S X( 491 ) = 1.

SXC492)
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'~IV VOZ.5 Pton I.-Jzn-?3 13:49:13 DAGE 00?1

S x(41 0.
IF(ICI4EM *r.2 oq, r .=-o. 1) G-1 TO 10
SX (I -4 ) = P? I I-)
Sx(?,04) = P.
SX(394)='Y14
SX(494) 1.I

C---------- CALCULftTF IkVrmcS tM'TR!X

SXINV(lii-) = C

SXINV(214) = 0
SXIKV(3,4) = Co
SX(INV(451) 0.
SVINV(492) =0.

SXINV(4,3) = 0
SX!NU(4914) 0.
SX ! PIJ( 1 1) -SX(3,)2)*cY(2,3)/Al

S'(INV(l,) =SX(ls2)v'-X(2i3)/Al

SXI Y( 2,91) ( = ( ~?2) SX(393))/Al
SXINV(2q?) -1
Sx~tJV(2,3) =-SY r 1V(?I1
SXTNV(391) S 9)A
SX INV (3-)2 ) ( (S Y(l12) - X3?/A

SXIP'V(3%3) =SXTN',(?v1)

IF(C1CHEt . !E. 7.CF. I sEoo 1) Gr. TO 20
A2 = 1#/(r? + cvr'

SXT".V(?i4) = 0.*AIC:*lli/

SXPI'V(?4 ) = 0.

SXINV(4,) = 0.

S'(INV(493) 0.
SXINV(4i4) le

L0 C 0N T IMU F
IF(12UG *r'7. 0) GC TO -I)
Jr1TE(61 -010)

11(l F0PPMAT(//,lX,'EVECT CXSXINV@ )
WRITE (61, 120) (SX CL i !N(L 2) CXL ,3) SX CL 4) ,SXINV(L,1),

',X Pt CL ?) ,5 XI NV CL,3)'S XlNV (Li 4) ,L= 1 ,4)

120 F0PrAAT(1X,8EI4*6)
210 CnNTINUE

RETURN
END



SIV V 0 2 Von 24-Jan-F'? 11:49:13 PACE 001

SUSPOUTI%17 7!N''Y
COMMON Ul 1(611i4) )'X (4,4) 9SX I NV(4,j4) *DIJ(b1 94) *1I(61 ,4 9
1 A~(61) ~C:LCi ,~mi~ NX5W!2UgFLIXS(4),ICALL

3 ,flbarG A (Cl) 9T~liF -( 6 1)91C(61 ) A CHEM t1CVrPT A-)I C HEM q

4 - -

----- CALCULATE Fl1P2 :qATrIX

R = (I.* + U1(194))*FA2
Z = Ul( 114)
Al = SCFTC((P**2 +CtVFeP)/GAMO*RO*CVF)
IF(ICHFM .PNE* 3) CC2 T!

=1 Ul(1''-)
P2 =TO*Ul(ltl)ITHC'

Al scTR=F/'-
2CONTINUF
A? (Ul 1 91 + r -/r')c cON11

A A CU 1(192 + T Hr / T 3 C r'T 1
A4 =CAINO*rC/RA2

A5 = THn*DClP1/(TC*lU1(1,-3))
A 6 = THV~*CT/T*U(l13))
A 7 = A I* GA fit, *? 0U 1(1-j1 ) *S P T( U 1(1 3 R )(*1(1 93

+ R A 2 *I1,( 1,3)L! 1(1,1*O0nR 1)

A8 (-(1*.)/Ul ( 1 1) + P) * ( 7 ( ', +A 3 A A4 *U 1(1,2)A 9
I +~ (!3./LlCI-3).A6)*(A4*Jl(1,)?)

PIZ = -A2*(3./Ul (1 )+.t)i+(-( 1.+Z)/Ul(1 g1)+A5)*

Pil = -A4*l'(1,? )*(-(1.+2l)/Ul (1,l)+A5)
SX(l91) = Pll/A?
SX(192) = -PllA7/AS
SX(193) = l*9A
SXC194) = 0.0
SX(?vl) =P12/AS
SX(292) = -P12*A71AR
SX(293) = 012*AQ/AE
SX(294) = .
SX(391) =P13/AR

SXC393) = P13*A9/AP

SX(494) =C.s
I F(,) =ND*eoW TP
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N IV VCZ.5 Mon 24-icn-P3 13:49:53 PAGE C02

C --- -- ---- CALCULAT17 DL(l-)
C -- -- -- --

DO 10 K = 194
DUI (K) = 0.
nt0 10 L = 1 94
DUlCK) = nUl(K) + SX(KiL).DU(1,L)

10 C nN TI ?..IUE
0o 20 V 1.

?v CC'NTINUc
!F(IBUG .Ele 0) GOJ Tn ?00

100 F0PkMAT(//qXi1r.:r)RY PIP2%DUll)

20C CCNTINUE
9ETURH
END
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I~ IV V 02 S Mon ?4-J~n-13 13:jO:30 PACE 001

SUEPPOUTINF HC
COMMO1N LII 1 o4) SX (4 C 4) %S XTMV (4s4) oDU ('1 )4) U (b1 -4)
1A(61)irL I T DX C A" -o I 1 0 1 AX I: FUYS )11CL

5 qFCCN(61 ) !CT!CFFXKCHEi

No------- CALCULATP C -M TCAL PRODUCTION RATr'

or) 10 I = 1 01MAY
! F(CE ( I) .'IF. O.C) r~j TO 2
OMSCA(I) 00
Q I) 0
GO TO 10

2 Al =EXP(-THD/(T0*Ul(!,3)))
A" = l,(Iq4)**2/(1.-t't(T,)4))
A3 Ad2/CC!7()
OM FGA(I) = (l.-tA3)*(1 .-I'(T4))*A1*TRLX*ul(I,1)*ul(T,3)**ETA

10 CflNTINUT
I.F(IPUS *vn C) C-2 TO' '('v)
w*lTE (61q7'2lr%)
WIPTF(61 1210) (Ul'(1,1) iLl(l 93) iUI(i -4) JE(I),=,A)

0 c FrPMAr(//qoCHF" 9' TCHFM')
210 FfPMAT(lX,4FlP.lC)
?:pl FCPt'AT C Y 1~4qFl 40- )
3C0 CnNTINUT-

' T Tl PN
END



A


