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ABSTRACT

New second- and third-order algorithms are presented for cal-

culating translating and rotating steady-state solutions of the 2D

incompressible Euler equations (which we call V-states). These are

piecewise constant regions of vorticity and the contours bounding

them are obtained by solving iteratively a nonlinear integro-differential

equation. New limiting contours with corners are obtained and compared

with local analytical solutions. The precise results correct mistakes

for limiting contours that were previously given.
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H.. M. Wu , E. A. Overman, II, and N. J. Zabusky

Institute for Computational Mathematics and Applications
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15261

1. INTRODUCTION

Solutions of the two-dimensional incompressible Euler equations

will elucidate properties of very large Reynold's number flows, as

may occur in planetary atmospheres and oceans. The method of contour

dynamics, introduced by Zabusky, Hughes and Roberts (1], provides a

computationally convenient approach because a two-dimensional problem

is reduced to one-dimension. That is, in contour dynamics the sources

of the flow are piecewise-constant regions of vorticity, which we call

PAVR's (finite area vortex regions) or, equivalently, the contours

bounding these regions.

The parameters that describe the range of existence and stability

of steady-state PAVR configurations may elucidate properties of these

flows. Kirchoff [2] found that an elliptical PAVR was a steady-state

solution and Love (3] Investigated its stability. No other closed

form solutions have been found. Deem and Zabusky [4] found new steady-

state FAVR configurations by solving numerically a nonlinear integro-

Permanent Address: Computer Center, Academia Sinica, Beijing, Chink.
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differential equation for the contours using a Newton-Raphson pro-

cedure. For example, they found several isolated rotating states of

m-fold symmetry that are bifurcations from harmonic waves on a cir-

cular FAVR and one isolated symmetrically-shaped dipolar (i.e.,

oppositely-signed vorticity) translating state. Examples are sketched

in Fig. 1. They considered these regions of piecewise-constant

vorticity as members of larger sets of steady-state solutions and referred

to them generally as "V-states". Saffman and colleagues also applied

this technique to calculate shapes of doubly-connected rotating V-states

[5] and periodic states modeling free shear layers [6] and wakes [7].

Pierrehumbert (8] applied an efficient first-order relaxation method

and obtained twelve members of the set of symmetrically-shaped dipolar

translating states. Pierrehumbert and Widnall [9] also applied this

algorithm to calculate free shear layer models. Burbea and Landau [I0]

applied the same algorithm and obtained further examples of m-fold

symnetric rotating V-states for 3 < m < 6. In both (8] and (10] the

limiting V-states, where the contour is nonanalytic, are defective.

This occurs because their algorithms seem unable to handle singular and

near-singular contours and because the spatial resolution is inadequate

in regions of large curvature. In the latter paper, this results in

errors in the numerical calculation of the parameter range of existence

of rotating V-states. The analytical calculation by Burbea [111 of

this range is also incorrect and both calculatiods are discussed in

Section 6.

In this paper we present a new, fast, accurate and computationally

efficient algorithm which requires about the same number of iterations

to converge as those described above and is capable of treating the limiting

V-states. Our numerical results are compared with a loca: analysis in

, 4 -L.-.,. +..



the neighborhood of nonanalyticity. For the translating V-state,

there are two possible limiting cases: the two regions may touch

at one point or they may have a common boundary. Analytically, we

have been able to exclude the former case. For the latter case we

have established analytically that the two (one-sided) tangent angles

at a nonanalytical point may differ only by w/2 (i.e., a corner).

Numerically, we have confirmed the existence of this solution as

shown in Fig. 4b. For the rotating V-states we have established

analytically that the tangent angles at a nonanalytical point may

differ only by 0 (i.e., the tangent angle is continuouat) or w/2.

Numerically, we have confirmed the existence of the w/2 corner for

3 < m < 6 as shown in Fig. 7.

In a recent letter, Saffman and Tanveer [12] also did a local

analysis of the limiting translating case and obtained a w/2 corner.

They also used numerical methods to calculate this state, but only

provide a gross figure and insufficient information to allow a detailed

comparison of results.

In Section 2 we present analytical preliminaries and derive two

nonlinear integro-differential equations for the boundary which are

the basis for our new second- and third-order accurate algorithms. In

Section 3 we analyze the limiting cases in regions where a contour may

become non-analytical and prove the claims made above. In Section 4

we present the discretized versions of the integro-differential equations

and iterative algorithms for obtaining both translating and rotating V-

states. In Sections 5 and 6 we discuss properties of the numerical

solutions for translating and rotating V-states, respectively. In both

oases, magnified views of the contours are given in the region of

_ _ _ _ __ 4II .
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nonanalytical behavior and they are compared to the local solutions

of Section 3. We also present a thorough discussion of the sensitivity

of the results in the neighborhood of nonanalytical points to:

algorithms; discretization procedures; error criteria; and boundary

conditions.

2. THE INTEGRO-DIFFERENTIAL EQUATIONS FOR V-STATES

The Euler equations can be written in vorticity-stream function

form as

o aws + uW + vW 0, (2.1a)

l ~.where

A* -W, (2.1b)

and

(u,v) 3 (, -x . (2.1c)

If the vorticity is represented by a set of N. piecewise constant

functions of strength w in regions Dj with boundaries 3D , we

can express the stream function as

NC

*(X. a-i (I I G(x-Ey-1)ddn, ),

where 0 is the Green's function for the Laplacian in the unbounded

dusain

G(z-4(.Y-n) -(2v)i1jogC(x_-)2 + (y..)231/2 a.(2)- 11og t.

(2.3)

4j .... .. .... _- .1
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If Green's theorem is applied to the result of substituting (2.2)

into (2.1o) we obtain an expression for the velocity as a sum over

the N contour integrals, namely

N
c j

(u,v) (u(x,y),v(x,y)) - (2w) -I  [ log t(d&,dn), (2.4)
J I J fJ

where [Nj is the Jump in vorticity (outside-inside) at 9D and

where the dependence on time has been suppressed. If we integrate

by parts we obtain

(u,v) - (2r 1  - - - (2.5)
a-i C1 xD,-ijL

The contours aie assumed to be piecewise Liapounov, where a Liapounov

curve is one which possesses a unique continuous tangent angle, a,

but not necessarily a curvature, at each point [13,14]. Thus, we

require that each contour consists of a finite number of segments,

each of which possess a unique a at every point but may have an

infinite curvature at the ends.

Kelvin's theorem requires that a particle on the boundary remains

on the boundary. Hence, for steady-state solutions

nYparticle n •Vboundary, (2.6)

where -particle (u'v)3D and a is the outward normal to the con-

tour. For translating V-states (2.6) can be written as

u sin a - (v-V)cos a *0, (x,y) a aDI and D2, (2.7T)
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where V is the translational speed (the velocity is in the y-direction

from Fig. la). For rotating V-states (2.6) can be written as

u sin a - v cos a - -OR dR/ds, (x,y) e 9D, (2.7R)

where a is the angular velocity of the state, s is the arclength,

and e(s) is the radius from the origin to the contour as shown

in Fig. lb. Note that for simplicity in (2.7) and henceforth we

label equations with "T" (translating) or "R" (rotating) according

to the state being considered. We now assume that the contours are

"starshaped", where the single-valued R(e) is defined with respect

to a convenient origin as shown in Fig. 1, so that

(x,y) - (R(e)cos e + x0, R(e)sin 8),

where (2.8)

R(e) - C(x(e) - x )2 + y2 (e)]i/2

(xo - 0 for the rotating case). Hence, (2.7) becomes

u dy/dO - (v-V)dx/dO - 0, (x,y) e aD1  or 3D2, (2.9T)

or

u dy/dO - v dx/de + OR dR/de a 0, (x,y) e 3D. (2.9R)

Also, we can use (2.8) to write (2.9) explicitly in terms of R(O)

as

dR/de - R, (2.10)

I.
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where

X [(V-v)sin 8 - u cos 8]/[(V-v)cos e + u sin 8] (2.11T)

or

X -[u cos e + v sin e]/[u sin e - v cos e + iR]. (2.11R)

As discussed in Section 4 we will use (2.9) for our second-order

scheme and (2.10) for our third-order scheme.

An alternative "stream function" form of the integral equations

is obtained by writing (2.9) as

(3 4y)(dy/de) + (V + a x)(dx/d8) - 0, (x,y) e 3D1  or 3D2, (2.12T)

or

(y q)(dy/de) + ( qX)(dx/de) + DR dR/de = 0, r a R(e), (r,e) e 3D,

(2.12R)

and integrating to obtain

4(x,y) + Vx - c3 , (x,y) 3DJ, 3 - 1 or 2, (2.13T)

or

4(r,e) + (9/2)R2 (0) - c, r - R(e), (r,e) e 3D. (2.13R)

Pierrehumbert [8] used (2.13T) and Burbea and Landau (14 used (2.13R)

to obtain steady-state solutions, whereas we use the "velocity" form

as described above.

In this paper we solve two classes of problems:

1~d
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PROBLEM T: (symmetric dipolar translating V-state)

This state is symmetric about both axes as shown in Fig. la with

vorticity W1 = +1 and w2 = -1. Then, given xB = 1 and 0 < xA < 1

find R(S) and V that satisfy (2.9T) or (2.10) with (2.11T).

PROBLEM R: (m-fold symmetric rotating V-state)

This state with vorticity +1 has m identical sef 's each of

which has two reflectionally symmetric subsectors as sht - Ln Fig. lb

1for m - 3. Then, given m, RB R(7r/m - r w) = 1 and RA R(-w/2) > 1

find R(8) and 0 that satisfy (2.9R) or (2.10) with (2.11R).

IL

.. . -
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3. ANALYSIS FOR LIMITING V-STATES

3.1 Introduction

In this section we summarize the local analysis of V-states, pre-

sented in detail elsewhere [151. We use a local expansion to obtain

the equation for the boundary of a symmetric dipolar translating or

m-fold symmetric rotating V-state in the neighborhood of a possible

singularity. The analysis provides a necessary condition for the

behavior of the boundary. Namely, the difference in tangent angles

at a singular point can be only w/2 (i.e., a corner) or, for the

rotating case, 0 (i.e., the tangent angle is continuous). For the

corner V-states we obtain the local equations of the boundary and

compare them with the numerical results in Sections 5 and 6. In

Section 3.4 the analysis is applied to Kirchoff's elliptical vortex

to validate the procedure.

the general method of analysis is as follows. For convenience we

use polar coordinates, (r,e), with the singularity at the origin. As

shown in Fig. 2 we assume that the V-state can be oriented so that

(it is symmetric about the y-axis and lies in the upper half plane

(i.e., the vorticity on the negative y-axis is 0). We do all cal-

culations in the right half-plane, i.e., -w/2 < e < r/2, using symmetry

to complete the V-state. We assume in some neighborhood of the origin,

0 < r < 6, that the boundary, e - e(r), is once continuously differentiabl

so that the tangent angle is continuous. (However, this does not pre-

clude lim dO(r)/dr a + -. ) We expand the integral expression for
r.O

in (2.2) in terms of r to 0(r2 log r). Since the V-state is

stationary in the appropriate reference frame, the value of the stream
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function, *s, is constant on its boundary and so, without loss of

generality, *S(r,0(r)) - 0 for 0 < r < 6. We write e(r) as

8(r) - e + e (r) (3.1)

where 80 is the tangent angle of the (right half of the) V-state

at the origin, i.e., lrm e(r) - 80, and so
r+O

lrm 1 (r) - 0. (3.2)r-*0

Since *s, the solution of Poisson's equation, (2.1b), is once con-

tinuously differentiable in all of 3R2  we can expand it in a Taylor

series with remainder, or

0 *s(r,e(r)) - *S(r,e 0+el(r)) = *S(r,8 0 ) + ae*S(r,a)e1 (r), (3.3)

where a S a(r) is in the open interval between 0 and 0 + el(r).

Thus,

el(r) " -Vs(r,e0 )/a0eS(r,a(r)). (3.4)

We obtain the possible values of e0  from (3.2), i.e.,

lim *S 5r,e0)/3e*8(r,a(r)) - 0. (3.5)

where 60 can be substituted for a(r) in (3.5) since lrm a(r) - eO.
r.O

In those cases where *s(r,eO) 0 0, which includes the corner cases,

-/ - -~ _
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we then expand s up to 0(r2) and solve for ep(r) from (3.4).

(To lowest order in r we can replace a(r) by e0.)

3.2 Translating V-states

The limiting symmetric translating V-state consists of two FAVR's

with a common boundary on the y-axis and with vorticity w1 W +1 and

= -1. The right FAVR is composed of two contour segments, namely

8(r) as described above and 8 a r/2 which is the common boundary.

At the end of this subsection we will show that the two FAVR's of a

limiting-case V-state cannot touch at only one point. (However, we

cannot rule out the possibility of an isolated V-state whose FAVR's

have one point in common.)

For 0 < 6<< l and r << 6, we find that [15]

i S(r,8) = [v + - cos f dpdfJr cos 6

- (4w)-l(l + cos 2e0)r2 log r sin 28 + o(r2 log r),

(3.6)

5where V is the speed of the V-state. Note that 'S(r,8) - 0(r)
if the leading term of (3.6) is non-zero. Thus, from (3.5) cot 6 0

so 0 - w/2. If the leading term vanishes, i.e.,

V - iIf cos dpd#, (3.7)

1

then (3.5) yields tan 20 0 0 so 8 - 0 or + w/2. We first

discuss 80 . 0.

.For 80 0, from [15]
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1S(r,e) - (2w)-r 21og r sin 2e + (2w)-l(C +C2 )r2 sin 20

V , if w/2 > e > o

wcos 2e, if 0 > e > -w/21

+ o~r 2 e(r)), (3.8)

where

C, " -1 sin 20 dpd$ + (1/2)(1 + 2log 6), (3.9a)

C2 -_ p-1 sin2 el(p)dp, (3.9b)

0

and DI(S) is that subset of DI whose distance from the origin is

> S. From (3.4) we find that

-2e (r) - (w/4)/(-log r + C1 + C2) + o((log r)-). (3.10)

Substituting (3.10) into (3.9b) we obtain a quadratic equation for

C2 and find that

22

C2  [ s (log 6 - C1 + ((log a - C1 )2 - (W2/4))-]+ 0((log 8)-2).

(3.11)

The singular behavior of the curve near the origin, where

el(r) << 1 can be seen from the slope,
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i d sin e(r) + r coo 6(r) e,(r) e2
cos xr) - r s+n-r) 'r) 1 r(3.12a)

and the curvature,

28'(r). + r2 e(0(r))3 + re"(r)
(1 + r2 (e,(r))2)3/2

= (8/W)e 2(r)/r + 0(63(r)/r). (3.12b)

Note that the tangent angle is 0(1/log r) and the curvature is

0(r-l(log r)-2) so that lrm K - . Also, the velocity at anyr-P0
point (r,e) is

r log r cos 9 + w-1 (C +C2 )r cos eu~ 2i

( -rVsin e, wf/2>8O1
- (2w) r -2e sin e + + 0> _ + r),

I-w sin S. 0 > e >_ -w/2

(3.13a)

v V r log r sin 8 + WI (Cl+C 2 )r sin 8

(2w)-5r[2e coo 0 + w Cos 0 + o(r2 el(r)), (3.13b)

so that on the curve u = O(r log r) and v a 0(r).

For 80 a + v/2, we show in [15] that

*3(r,e) - C0 r coso + (2w 1 C1 r2 sin 26 + o(r2 cos e), (3.14)

• -. .......... ........
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where

C0 - V + ,-I JJ cos * dpd# (3.15a)
Dl

and

C- f p-1 sin 2# dpd,. (3.15b)
D1

p1

Substituting 8 - e0 + 81 (r) in (3.14) we obtain

0 - *'(r,00+01 (r)) - -C0 r sin 01(r) - (2w)- I C1 r
2 sin 201 (r)

+ o(r2 sin el(r)). (3.16)

If we divide (3.16) by r sin 81 (r) and let r b 0, we find that

CO - 0. If we then divide (3.16) by r2 sin 81(r) and let r . 0

we find that C1 - 0. However, C1 - 0 in (3.15b) if and only of

the origin of the coordinate system is on the horizontal line through

the centroid of D1 . That.is, the two FAVR's touch at only one point.

This follows because the integrand of CI , (3.15b), is antisymmetric

about # - 0 and the V-state is assumed to be symmetric about this

horizontal line of symmetry of DI. If we do the same analysis for

00 - -u/2 we obtain the same result.

We now show that this configuration leads to a contradiction.

If the analysis is repeated with the origin on this line of symmetry

[13], then we again obtain (3.14) and so, again, C0 - 0 which contra-

dicts the value obtained from (3.15a). To see this we use the numerical

solutions obtained in Section 5 (or in (8]). We estimate the integral

in (3.15a) by taking the limit as xA  0 of a circle of radius

- 2.aa II
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(1-XA)/2 centered at ((l+xA)/2,0). From Pig. 4 this circle,

which we denote by C(xA), lies inside the corresponding V-state,

denoted by D1(XA). Thus,

J cos dpd fJ cos # dpdf - (w/2)(1 - 2( + xA ) ,

D1(xA) C xA)

(3.17)

and so

fcos dpd > 1/2. (3.18)
D1

Prom Table I, 0 > V > -.258 for all the V-states and so CO > 0.2.

(Actually C 0  0.6 for xA - 10-7.) Thus, solutions with FAVR's

touching at one point are excluded so the only possible solution is

the corner solution shown in Pig. 3a.

3.3 RotatinE V-states

Por the rotating V-state we let w " W2 a +1 in Fig. 2 and find

n [15]

**(r,Oe) - [w"l fJ sin * dpd$ - Jfr sin e

+ (J) -l sin 20, r2 log r cos 2e + o(r2 log r), (3.19)

where 2 is the angular speed of the V-state about the centroid at

(0,Y). Note that *B(r.) 0(r) if the leading term In (3.19) is

non-zero. Thus, from (3.5) tan 60 - 0 so go a 0. If the leading
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term vanishes, i.e.,

a ()-lJ sin 0 dpd#, (3.20)
D1

then (3.5) yields cot 280 M 0 so 0 + w/4. We will investigate

only 80 - + w/4, since the numerical results in Section 6 indicate

that -0 M -w/4 is not a limiting case. The two solutions 80 = 0

and w/4 are shown in Fig. 3b.

For 80 a i/I, from [15]

vS(r,O) - (n)-lwr2 log r cos 26 + (2w)-i(Cl +C2)r2cos 28

4 -r [-2v + (I/2)cos 20 + (T/2)0 sin 20

if ff/ > er > r/,
+ sin 2e,if w/4 > e >-w/2 + o(r r)),

(3.21)

where

C p-  cos 2# dpd# - (1/4)(1 + 2log 6), (3.22a)
1

and 6

C2 * p- sin2 1 (p)dp. (3.22b)

Thu , from (3.4)

e (r) a [g-(3/8)]w/(log r + 2(C +C2)) + o((log r) 2). (3.23)
12]

_ _ _ __ _ _ __ _ .
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Substituting (3.23) into (3.22) we obtain a quadratic equation for

C2  and find that

C2 * -(1/4)[log 6 + 2C1 + ((log 6 + 2CI) 2 - 8w2[-(3/8)] 2 )11

+ O((log )-2 (3.24)

In this case the slope is

dy/dx - 1 + 2el(r) + 0(6 (3.254)

while the curvature is

K - -2([-(3/8)w)-le 2(r)/r + O(03(r)/r), (3.25b)

which is similar to the translating case, Eqs. (3.12). The velocity

is also similar to that previously given.

3.4 Elliptical V-state

The analysis in the rotating case above is also valid for

analytical V-states since the only constraints we have used are that

the origin lies on the V-state and the V-state is symmetric about the

y-axis. We will now consider the rotating case when 0 - 0 to show

that we obtain the correct result for ellipses.

From (15],

p~~-'- -- - - - -- - - - - - ~ - - -
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* 5 (r,O) - cc r sin 0 + (2w)-1 c 2 2 cs2
11/2) cos 2e

- (1/4)r 2 [-2fl + 1(1/2)cos 2e, v/2 8 >r + O(r3 ),
(/2)cos 28 0 > 8 > -/

(3.26)

where

CO- T-i JJ sin 0 dpd$- , (3.27a)
D1

= J p 1 COS 2 dpdo, (3.27b)

DC(6)

and

C2 - -(1/2) f p 1 sin 2e (p)dp. (3.27c)
0

From (3.4) we obtain

el(r) --(2C0 )-- (Cl + C2 + wK - (/ 4 ))r + O(r2). (3.28)

Substituting this into (3.27c) we obtain

C2 - (2C0)-I (C1 + Q - :/4)6 + 0(62), (3.29)

so

e1 (r) -'(2 0 ) 1  (C1 + wO - v/4)(i + (2CO)- 8)r + O(r4 ). (3.30)

Prom Section 6 we find that for an analytical V-state C0 > 0 and

CO * 0 as the limiting V-state is approached so that K * + -. At

W - 7 ;Jxs4
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the limiting V-state the equation of the curve Jumps to (3.23).

We now show that if the equation for an ellipse in our coordinate

system,

2sne/co2 e I2
r a / 2 ), + in 2 (3.31)b a2b2

is expanded near the origin, the result, r z 2a2 8/b, agrees with

(3.30). First we substitute (3.31) into (3.27a) and (3.27b) and

obtain

CO Mb[ a, (3.32a)

and

! 2)1 a - + 0(62-. (3.32b)

For the ellipse 9 - ab/(a+b)2 [2] and if we substitute for Q, CO

and C1  in (3.30), we obtain 01 (r) - (2 b/a2 )r + 0(r62) which

agrees with the expansion of (3.31) for e << 1. (Note that if

a = b then, for arbitrary fl, 0(r )  r/a + 0(r62)  as it

should since the circular FAVR is a V-state for any 9.)

3.5 Summary

In this section we have examined the behavior of a V-state in

the neighborhood of a singularity. To apply the analysis we put

the origin of the coordinate system at the point in question and then

require that the V-state can be oriented to be symmetric about the

y-axis as in Fig. 2. This can be done for both the symmetric dipolar

translating V-state and the a-fold symnetric rotating V-state as shown

Ji
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in Figs. 4b and 7. (The analysis can also be done without assuming

symmetry.) In the translating case we find that the difference in

tangent angles at a singularity can be only w/2. We examine this

corner case further and find that for r << 1 the curvature, K,

is O(r-l (log r -2 ) which indicates the difficulty in numerically

calculating the V-state. In the rotating case we find that the

difference in tangent angles at a singularity can be 0 or w/2.

Again, for the corner case K = 0(r-l(log r)-2) From numerical

results 0 corresponds to an analytical V-state and w/2 to the

limiting state for 3 < m < 6 (and we assume for all m).

I

.V
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4. NUMERICAL ALGORITHMS

4.1 Velocities

We present ew second- and third-order accurate algorithms.

They both use a econd-order accurate representation of the velocities

on the contours (u,v)3D, namely a trapezoidal discretization of (2.5)

Nc  N( )  . .(J) (QJ)

-1 ii T (xk-gi+ , Yk-ni+

j= (J i)[(

" k,i+l k,i '

where (t(j ) n Q ) e aD3 , N(J) is the number of points on aDJ,

and the mean pos tions are given by

= (f +fi 1 ) (4.2)

and

k - I (i))2 +kc,i

4.2 Second-Orde Alorithm

The second- rder accurate algorithm is used to obtain trans-

lating V-states or 10- T < xA < 0.90 and rotating m-fold symmetric

V-states for 1. 5 < RA < RA(m), where RA(m) Is the value at the

corner. It cony rges more rapidly than the third-order iterative

algorithm to be resented in the next subsection. However, for the

limiting nonanal tical contours the third-order algorithm .ives more
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accurate results as shown in Sections 5 and 6.

We use the .second-order accurate discretizatton of (2.9),

uk+Ayk - (vk+ - V)Axk - 0, 1 < k < N, (4.4T)

or
2

uk+Ayk - Vk+hAxk + (Q/2) R= 0% 1 < k < N, (4.4R)

where Afk - k+l - fk and (uk+ ,Vk+ ) are defined in (4.2).

Here, N + 1 is the number of points on the segment of the contour

for -w/2 < e < 0 in the translating case and -w/2 < e < w/m - 1 w

in the rotating case (the solid lines in Fig. 1). We define

(xk-xoyk) = R(ek)(Cos ek'sin Gk) (4.5)

where xo a 0 for the limiting translating V-state and all rotating

V-states and xo - for the analytical translating V-states.

Substituting (4.5) into (4.4), we obtain

Rk Fk+;Rk+l - 0, 1 < k < N, (4.6a)

or, alternatively,

- 2 < k < Nl, (4.6b)

where Fk+j is defined as

P+ _Uk %s sin ek+1 - (vk+h-V)cos ek I  (4.7T)
A uk+j sin e k  (Vk+-V)cos ek

or
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F Uk+ sin Ok+ 1 - Vk+ Cos 8k+l + (9/2)Rk+4k4k Uk+& sin Ok - Vk+ cos 0k  + (Q/2)Rk (.7R)

To obtain convergent algorithms, we find it necessary to use a

three-point scheme and a relaxation procedure. First we average (4.6a)

and (4.6b) to obtain

1k -F 1R = 0, 2 < k I N, (4.8)
2 k-gi k-i k -2 k+;I k+l

where RI RA and RN+I = RB. This discrete representation of our

nonlinear integro-differential equation can be solved for R k  if we

know Fk+;. Thus, if we have Just completed. the n-th iteration we

know R(n) and so can find (u(n) from (4.1). We then cal-kk+hVk+h rm(41 ethncl

culate the new velocity by summing (4.4) to obtain

v(n) 0= N U( n ) - (n) V( n )  (n)]/(xAxB) (4.9T)

or

,(n) -2 kN (n)k, 2 (4.9R)kll)= uk+j Yk Vk+41 k AB

Thus, we can calculate by (4.7) and solve the linear equation

(4.8) for Rk * n+l) We obtain R(n+l) by "relaxing" (h ) and

j(n+l)
)by

k k k

where u* - 0.6. We discuss the initial guess used in the appropriate

section.

4.3 Third-Order Algorithm

Chronologically, we first obtained the second-order algorithm
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given in Section 4.2 but found that in the limiting cases it could

give inadequate results. A third-order algorithm is readily obtained

by using the differential equation for R, Eq. (2.10), and weighting

three adjacent Rk in the manner described below. First, we dis-

cretize (2.11) using a midpoint method

ARk/Aek = Ak+ R k+. (4.11)

We rearrange and obtain

Rk- Gk+ Rk+l -0, 1 < k < N, (4.12a)

or

-GklRkl_ 1  C. 2 < k < N+. (4.12b)

Here Gk4h is defined as

G - (l - 1 X+Ae )/(l + X Aek)" (4.13a)
k+k 2 k+11 k 2 k+h k

where

k+- (Uk+, Vk+, k+;, (sin e)k+' , (cos e),+, )
(4.13b)

and X is defined in (2.11). The third-order property is achieved

by weighting Rk  in the following manner:

L 8k- -Ik~kl -_ + R. - (l0_k)Gk+.Rk+ 1 - 0, 2 < k < N. (4.14)

The local analysis, carried out in Appendix A, shows that terms

0((Ask )3) cancel exactly if

- k(Aek-l) 3 + (1-8k)(Aek)3 - 0. (4.15)
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(The algorithm discussed in Section 4.2 could be made third-order

by the same type of procedure but it was easier to expand Gk+;,

(4.13), rather than Fk+i, (4.7).)

In the translating case it was found that convergence could not

be obtained for the limiting V-state, even for the third-order

algorithm, when the boundary condition at the singularity was a fixed

angle as opposed to a fixed point. (This is discussed further in

Sections 5 and 6.) The solution oscillated over a small range in

the neighborhood of the singularity.

Hence, to obtain convergence we use a two-step procedure: a

method of stabilization [16] followed by a method of relaxation. For

the method of stabilization we replace LRk = 0 in (4.14) by a dis-

cretized version of LPk+ U k = 0 where RkR k as t That

is, we solve for the (n+l)st iteration by

L(R(n)) R(n+l) + (R(n+l) - R(n) 0, (4.16)
.k k kc k

where we have introduced the intermediate variable g(n+l)ank
U - 0.1. We again obtain Rk n + l ) by "relaxing" R(n) and kn+l)

by (4.10). (Note that (4.10) and (4.16) are readily combined into

one equation in out program.) If Ok - 1/2 in (4.14) the algorithm

is second-order accurate but not identical to the algorithm in

Section 4.2. We have not used this second-order algorithm in this

paper.
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4.4 Summary and Convergence Criteria

The second- and third-order algorithms are summarized as

follows:

(1) Compute (Uk+)Vk+ from (n) using (4.1)

(2) Compute V(n) or S(n ) from (4.9).

(3) Compute F(n) from (4.7) or G(n) from (4.13) for the second-
~k+ j k+3j

or third-order algorithms, respectively.

(4) Compute R~n+l) from (4.8) for the second-order algorithm or
from (4.16) and Rn+l) from (4.10) for the third-order

algorithm. In either case use Gaussian elimination to invert

the tridiagonal matrix.

(5) Continue the iteration until the error criterion is satisfied.

A run is terminated if

N+1 (n+l) (n),-k1 n - n < (4.17)

k-l

where

- 5 x 10 - 7  for translating states
16

5 x 10 -  for rotating states.

When convergence is obtained we find that the original integro-

differential equations are satisfied to 5 x 10-8, i.e.,
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max ~k+%Ayk - (Vk+-v)&k l < 5 x 10 - 8

k

or

max I uk+;gAy k - Vk+;,Ax k + (9/2)Altl < 5 x 10-8

k

This accuracy was verified on the DEC-10 (a 36-bit machine)

at the University of Pittsburgh by continuing runs in double-

precision once the required accuracy was obtained in single-

precision.

1
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5. NUMERICAL CALCULATION OF TRANSLATING V-STATES

5.1 Analytical V-states

To compute the sequence of states with 10-  < xA< 0.90, we

use the second-order algorithm. For case 1 the initial state is a

half-circle of radius 0.05 centered at (x0,0) = (0.95,0), with N + 1

equally spaced nodes, i.e., Ae - w/N. For the remaining cases in the

sequence, the initial state is obtained by expanding linearly the

previously obtained solution with (x0,0) = ( (l+xA),0). For cases

1-14, when the error, E, (4.17), < 10-4 we adjust the nodes so

that the distance between the adjacent nodes is inversely proportional

to the curvature, R Ae k 1 This makes the local error the same

in each interval [17]. For cases 15-17, Aek is the same as obtained

for case 14. With this discretization, we continue iterating until

convergence is obtained. t
The results obtained with the second-order algorithm and N - 120

are summarized in Figs. 4 and 5 and Table I. Fig. 4a represents one

sector, i.e., 1/4 of the V-state, for cases 1 (xA - 0.90) through

13 (xA - 10-4). To show the power of the algorithm we have enlarged

the scale by z 400 in Fig. 4b and show cases 14 (xA - 10-5 ) through

17 (xA - 10-7). We observe that the contours are nested and tend to a

* limiting contour, the lowest in Fig. 4b, discussed below.

In Fig. 5 and Table I we present properties of the sequence of

states where A is the area of one side, P is the perimeter,

is the x coordinate of the center of area, V is the translational

speed, V/V0  is the normalized translational speed where V0 - A(4wi) - I

is the translational velocity of two point vortices with circulation
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+ A and separation 2i, R - (A/w)v, H - maxlyl is the maximum

vertical extent of a sector, and a - 2H/(l-xA) is the aspect ratio.

The dots in Fig. 5 are the results of Pierrehumbert (8] and the com-

parison is excellent except for H in the limiting cases as discussed

below. The convergence criterion that e < 5x10-7 is obtained with

the second-order algorithm in less than 70 iterations. An iteration

step with N = 120 requires 8 seconds of CPU on the DEC-10. Most of

this time is consumed calculating the velocities at the nodes. A thorough

discussion of accuracy and sensitivity is given in the following subsectior

5.2 Limiting V-state (xA = 0)

As indicated in Fig. 4b the V-states tend to a limiting state. In

Section 3 we observed that a limiting contour could approach the y-axis

only when the tangent angle at the axis, al' is 0. In this subsection we

investigate the sensitivity of this approach angle with the second- and

third-order algorithms. The following paragraphs discuss the boundary

conditions, initialization and discretization of this nonanalytical state.

We assume that the boundaries of both contours of the limiting V-

state lie on the y-axis from (0,-y*) to (O,y). We let the center

of our polar coordinate system be at (0,0) and compute the velocities

(uk,Vk) in two parts. First, we do a numerical integration, Eq. (4.1),

for -w/2 < 8 C 0 as previously and, second, we do an analytical in-

tegration of Eq. (2.4) from (0,0) to (0,-y*) as discussed in [1].

Two types of boundary conditions are used at 8 - -w/2. First,

to find the corner solution we set dy/dxlsiw/2 - 0 by fitting a

quadratic polynomial, symmetric about the y-axis, through the second

and third points. The resulting matrix can be transformed

___
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to a tridiagonal form and solved as previously. This limiting case

is shown in Fig. A4b. We call this the corner boundary condition.

Second, we fix the point on the y-axis, R(-w/2), which enables us

to determine the sensitivity of this limiting V-state.

Because of its singular character, as discussed in Section 3, the

limiting case is approached very slowly and the selection of a "tgood"

initial state is important. As described in Appendix B the initial

state is derived by smoothing the last analytical state (i.e., No. 17,

xA = 10- 7 ) with a high density of nodes near the corner as shown in

Fig. 4b. We find, using the third order algorithm and the corner boundary

condition, that y* - 1.66855, 1.66898 and 1.66911 for N - 30, 60 and

120, respectively. The convergence is very slow as the solution

exhibits a damped oscillation around y* and requires - 3,000 iterations

to satisfy the error criterion. The second-order algorithm solutions do

not converge but simply oscillate slowly about y* with a range of (
Z0.001.

The calculations of y* are consistent with the fact that the

algorithm is actually only second-order accurate near the y-axis because

(u,v) cannot be expanded in a Taylor series at the singularity (see

(3.13)). Using second-order Richarddon extrapolation on N - 60 and

120, we find to five significant figures

1.6691 ' y* < 1.6692. (5.1)

Note that Pierrehumbert's limiting V-state has a cusp for the

singularity and y* - 1.705 (- 3.41/2). It seems to us that his die-

tribution of nodes in the neighborhood of the singularity was in-

-NO
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adequate since we could obtain "V-states" with a -7r/2 and

+w/2 when the neighborhood of the singularity was inadequately re-

solved. (In Fig. 4b, Ax1 z 1.4 x 10-5 .)

In Fig. 6a we have plotted the limiting V-state in the neighbor-

hood of the singularity for N - 60 and 120 (the dots). This is a

magnification of z 30 over Fig. 4b. Note that in Fig. 4b the tangent

angle at x = 0 does not seem to be 0 (even with a magnification of

0.200) but is seen to be much closer to 0 in Fig. 6a (a magnification

of = 6,000), which shows the singular nature of the curve.

Also in Fig. 6a we plot the equation for the curve (the solid

line) from Section 3, Eq. (3.10), with parameters C1  and C2 obtained

from the solution with N - 120. C1  has been calculated numerically

from (3.9a) and C2  from (3.11). For 6 - 0.000014, C1 + C2 - 0.1196

while even for 6 - 0.049, CI + C2  .106. In Fig. 6b we continue

this comparison on a larger scale to show the quality of the asymptotic

formula. Also, the velocity of the V-state as calculated from (3.7)

is -0.25797 while numerically it is -0.25793.

To determine the sensitivity of the algorithm we use the second

boundary condition, i.e., fix R(-w/2), near y*. In Table II we show

the results using both the second- and third-order algorithms for

N a 60 where the x coordinates of the nodes correspond to those in

Fig. 6a. Note that in all the cases the solution tends very rapidly

to the corner solution. (We have given 7 significant figures for

comparison purposes, but trust only the first 5.) For example, the

maximum difference in R 1  is 1.673000 - 1.668973 - 0.004027 and in

R5 is 0.000060 (where x5 0 0.00013). In all runs using the fixed-

point boundary condition convergence is obtained in Z100 iterations.
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6. NUMERICAL CALCULATION OF ROTATING V-STATES

6.1 Analytical V-states

We compute the sequence of states for 1.05 < R < Rm with the

second-order algorithm, where R,5 is the value obtained for the limiting

V-state. Our initial state is, for -w/2 < 8 < m- 7,

Is t&? R(0 )(8) - RA + (I-RA)@ (2-@) (6.1)

where 8M a w/m, where * a (e +-w)/Om and A8k  is constant. Fig. 7

shows (x,y) and curvature plots for one analytical V-state and the

limiting V-state for 3 < m < 6. In the curvature plots the abscissa

is the arclength scaled so that it is 0 at RA and 1 at RB. The

properties of the analytical V-states are given in Table IlIa. The

limiting cases (0) are given for comparison and discussed below.

6.2 Limiting V-state

For the limiting V-state our initial state is

R (0) R + (1-RA) 0(3-20) (6.2)A A

where RA = 1.73, 1.44, 1.32 and 1.24 for m - 3,4,5 and 6, respectively.

The angular difference AOk is either constant as in the analytical

case or increases nearly linearly with k as discussed in Appendix B.

For the latter we start withA$ - 0.10, 0.010 or 0.001 e. We again

use two types of boundary conditions at 0 a -w/2: the corner

boundary condition, d:-/dxt% .-w/2 a +1; and the fixed-point boundary
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condition, i.e., R(-wr/2) - RA ' This corner boundary condition is

obtained by using a linear combination of either the first 3 or 4

points, as described in Table IlIb.

Our results for 3 < m < 6 are contained in Table IIIb for the

corner boundary condition. Since the total number of points on the

V-state is 2mN the time required for each iteration increases as

m2 and so we will only consider the case m = 3 in detail. At the

end we will comment about the other cases.

WC perform a sensitivity study for m - 3 using various

algorithms, boundary conditions and discretizations as shown in Table

IIIb. With the "linearly" increasing discretization (AeI = 0.10, 0'.010

and 0.0010) we find

0 - 0.30120 + 0.00004,
3

(6.3)

R- lT352 + 0.0003.

In the rotating case, unlike the translating case, both the second-

and third-order algorithms converge to the limiting V-state for the

corner boundary condition. The second-order algorithm converges in

= 500 iterations while the third-order algorithm requires = 2000

iterations because the stabilization and relaxation procedures delay

the convergence. Since the second-order algorithm is also much faster

with the fixed-point boundary condition, we use only the third-order

algorithm when high accuracy is required.

The range of existence of Qm for 2 < m < 6 is shown as the

solid vertical lines in Fig. 8 and 00, the lower end of these lines,

can be fit with
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m -. m 21__ m - 1.195 ], (6.4)
(2 )[m2 - 2.071m + .2085

where -*1 < 10- " In previous analytical work [i] the

lower end of the range of existence was given as (I/2)(m-2)/(m-l),

shown in Fig. 8 as the dots. This result is incorrect because Burbea

linearized about the circular V-state and interpreted his results as

being valid in the nonlinear region. In previous computational work

numerical solutions were obtained below our range of existence.

For example, for m = 3 they presented a solution at f9 - 0.2822

which had regions of negative curvature. These incorrect results are

probably due to inadequate discretization procedures and to the fact

that spurious "solutions" can be obtained for RA > R*, as we will

discuss below.

Since the range of existence of Om was missed previously DO],

we present the results of several sensitivity studies for m - 3 and

RA near 9. First, the dots in Fig. 9 show the maximum curvature

as a function of RA obtained with the third-order algorithm, N = .60

and a discretization of 0.010 for RB < 1.70 and 0.001 °  for

h > 1.70. The x's are due to Burbea and Landau [M] and we have not

plotted their last value of K - 236 at RA - 1.923, which is well

to the right of the figure.

Second, we used the fixed-point boundary condition, both algorithms

r and various discretizations to obtain the results in Fig. 10a, where

we have plotted the tangent angle at the singularity, i.e., al vs RA.

The solid line shows the small range obtained for RA, 1.735 < RA < 1.736,

using the third-order algorithm and 0.010 (0.001° is not shown since

it is undistinguishable from 0.010). Also note that all solutions cross
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0" 450 at RA z 1.735. In Fig. 10b we show the behavior of the

contours near R* using the third-order algorithm and 0.0010 where

RA - 1.73333, 1.73493 and 1.73559.

As shown in Fig. 10a, we can also obtain "solutions" for RA > R*A 3
and, indeed, for a, " 900. This is due to the fact that the various

discretized forms of Euler's equations have different solutions than the

continuous equations, Eqs. (4.1). For larger values of RA we still

can obtain convergence, but we find that the solutions behave in a strange,

algorithm-dependent, noncontinuous fashion. For example, for the third-

order algorithm with N - 60 and 0.0010 the solution jumps back from

al ~ 90* to ali 0@  as RA is increased slightly (to =1.7358). For

the remaining cases, R(e2) decreases as RA  increases until for

RA - 1.80 we find that R(ek) = 1 (- RB) for 2 < k < N+l so that the

solution looks like a circle with a sharp spike. We take this as evidence

that we have passed the range of existence of steady-state solutions to

the continuum equations, which do not have V-states with cusps.

Finally, in Fig. 11 we compare the numerical results (the dots) for

the 0.010 run with the 4 point boundary condition in Table IIIb to the

formulas in Sec. 3, Eq. (3.23). C1  has been calculated numerically

from (3.22a) and then C2 from (3.24). For 6 = 0.00044 then

C1 + C2 - -0.692 while even for 6 - 0.085, C1 + C2 - -0.694. The

comparison is excellent for the entire sector, -w/2-< 8 < -w/6. Also,

0 is 0.30122 from (3.20) while it is 0.30121 in Table IIIb. In Fig. 12

we compare an analytical V-state, Eq. (3.30), with the solution of

the third-order algorithm, N - 60 and 0.001 for RA a 1.7349. In

this case the equation requires 0 as well as the nodes on the con-

tour from the numerical calculation. Using the value of Q - 0.301170

a i ,Im nm • l a un -
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we find that CO  0.00052, C1 - -4.4489 and the curvature at RA

obtained by differentiating (3.30) is K - 1495, which agrees with

the numerical solution to three significant digits. We consider all

of the above a sufficient validation of our calculations of the limiting

V-states.

The only difficulty we have encountered for 3 < m < 6 is that

the curvature oscillates near 6 = -n/2 as the limiting V-state is

approached. In fact, the calculations of the V-states in Fig. 7 were

done with the nodes equally spaced in angle (see Table IIIb) and for

m = 4,5 and 6 it is just possible to see wiggles in the curvature plots

near the singularity (i.e., s = 0). (For m = 3 it is possible to

remove the oscillations by a judicious choice of discretization while

for 4 < m < 6 the size and location of the oscillations change with

the discretization but do not disappear.) However, for 3 < m < 6, the

curvature does have the correct sign at 6 = -w/2. That is, from (3.23)

the curvature at RA  should be + - for m - 3 and 4 since (3/8) - > > 0,

while it should be - for m > 5 since (3/8) - Q < 0. With

sufficient nodes we believe these oscillations would disappear.

.- ........... -, ,- --,, - - --I i
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7. DISCUSSION AND CONCLUSIONS

We have presented new accurate (and fast) algorithms and refined

procedures for computing symmetric translating and rotating V-states

of the Euler equations in two dimensions. These include limiting non-

analytical contours with corner singularities that are compared with

analytical solutions (151. The agreement is excellent! These

singularities were missed in previous numerical work [8,101.

Burbea and Landau (10] proposed calling the rotating V-states

"nonlinear Kelvin waves". However, "V-states" (vortex states) seems

more appropriate since there are already at least two types of Kelvin

waves aid since Deem and Zabusky first showed their existence [4] and

coined the expression.

In all but the limiting cases the second-order accurate algorithm

converges to the V-state quickly, both in the number of iterations

2(-i100) and the CPU time. The CPU time per iteration is 0(N2) compared

to Newton-Raphson which is 0(N3). The algorithms of Pierrehumbert [8]

and Burbea and Landau [10] are also 0(N2).

Our development of the third-order algorithm may seem ad hoc butI
came about in a search for an accurate method to calculate limiting

V-states. We have used refined procedures to validate our results in-

cluding Various discretizations in the neighborhood of the singularity

and two boundary conditions. In this paper we have not attempted to

find procedures to minimize computation time. However, since most of

the time in an iteration is taken up calculating the velocities, in

recent work we have recalculated them every 20 iterations when

S< 10- . We find it reduces the computation time by a factor of 3.
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We are presently using the new algorithms and have obtained

asymmetric translating V-states and V-states with nested contours.

The latter involves the solution of coupled integro-differential

equations, one for each contour. However, there is a constraint

that the velocities V or 9, for all contours must be equal.
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APPENDIX A: DERIVATION OF A ThIRD ORDER ALGORITHM

Since the velocities (uk,vk) are calculated by the trapezoidal

rule (4.1), they are accurate to second order. Here, we show that

we can obtain a third-order algorithm by properly weighting two

equations.

Let X and R be the solutions of R'(e) - AR, (2.10), (where

primes denote differentiation with respect to e), and Rk R(ek)

be the solution of our self-consistent discrete representation (4.11).

Let

Ak+4 = Xk+ + e k+31 (A.1)

where ek+3 1 0((Aek )2). Then after some algebra (4.12) yields

k4

Gk+11 Gk+ k (1-ek+ Aek) + 0((Aek) 4 ), (A.2)

where Gk+ G(+ )" If we expand Rk  in (4.11) about Rk we

obtain

A A

R- Gk+Rk+l Ek(Aek)3 + 0((Aek)), (A.3)

where
E(e) - (R"'/24) - (LR"/8). (A.4)

If we substitute (A.2) into (4.11a) and subtract (A.3) we obtain

(Rkk )iK* + Ek+
(- k) -ak+;(Rk+l- kA ek+IAe k G+E +k+(Ak k 0((Aek)).

(A.5)



We apply the same technique to (4.11b) and find

(Rk-Rk) - Gk_(Rkl-Rkl) - ek_ Aek GklR - Ek_(Aekl) 3 - ((&lk

(A.6)

To remove the leading order error, 0((Ae)3 ), in (A.5) and (A.6), we

multiply (A.4) by 1 - 8k  and (A.5) by 8k to obtain

.0k Gk- (Rk_- k-A + R -Rk (- k)k+;I k+l -k+1

+ [l + Ek_(Ae )3) +
k Ekek- A k-1 Gk ;R.kl + k-h k-i

(l-8k)( ek+Aek Gk+Rk+l + E k+(Ae k)3)] = O((A) 4). (A.7)

Thus, we must choose Sk  so that the term in brackets is 0((AO) ),

namely k

-k(Aek-l) 3 + (l-8k)(Aek)3 = 0. (A.8)

A -

This follows because, to lowest order, Gk - Gk+ = 1, -i " Rk+l'

Ek_3 - Ek+1, ekh = c(Aek-l)2  and ek+; - c(Aek)2 (for some c),

where the latter three expressions are valid if the contour is analytic

in the region from k - 1 to k + 1.

* . - - -.
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APPENDIX B: INITIAL DATA AND DISTRIBUTION OF THE NODES FOR LIMITING
CASES.

B.1 Translating Case

In order to obtain the initial approximation R(0)(e) we begin

with the nodes, {(xk,yk) I 1 < k < N+1}, from the 17th state, i.e.,

xA = 10-7. We find the value of k at which Yk is a maximum, say

k = K. Then we modify all (xk,yk) for k < K+2 by

x, = xK+3 [(k-l)/(K+2)] 2", 1 < k < K+2,

to obtain a nearly geometric ratio and

yi - P(x9, 1 < k < K+2,

where P(x) is the unique quadratic function satisfying YK+3 - P(xK+3)'

YK+5 - P (xK+5) and dP/dx 0 = 0.

B.2 Rotating Case

The interval -w/2 < e < 8 -W/2, where em w/m, is divided into

N + 1 angles by

8k -W/2 + Gm[(l+L) (k-l)/N - 1]/L, 1 < k < N+l.

For m - 3 and N 60 if Ae 1 a0.01* then L - 691, &ON = 6.2"

and the ratio of the largest Ae to the smallest is z 620. If

AO1 0.001, then L a 9950, AON a 8.50 and the ratio is 2 8500.
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TABLE II

The Limiting Translating V-state in the Neighborhood of the
Corner (N - 60).

Algorithm al R1  R2  R3  R4  R5

89.30 1.665000 1.668862 1.668942 1.668964 1.668972

37.60 1.669001 1.669015 1.669012 1.669010 1.669006

2nd -0.8e 1.669015 1.669014 1.669012 1.669009 1.669005

-13.20 1.669021 1.669014 1.669012 1.669009 1.669005

-89.7* 1.673000 1.669162 1.669069 1.669040 1.669023

89.7* 1.664974 1.668814 1.668894 1.668915 1.668924
42.00 1.668956 1.668973 1.668970 1.668967 1.668963

3rd -0.50 1.668973 1.668972 1.668970 1.668967 1.668963
-23.40 1.668980 1.668972 1.668970 1.668967 1.668963

-89.7 1.673000 1.669162 1.669069 1.669040 1.669023



Table IIIa

Properties of Rotat:Lng V-states

m RA a A p I/RA

3 1.05000 0.33310 3.2967 6.4440 0.95238
1.22128 0.32843 3.7967 7.0463 0.81881
1.39256 0.31996 4.2382 7.7082 0.71810
1.56384 0.30948 4.5909 8.4021 0.63945

* 1.73512 0.30122 4.7291 9.0652 0.57633

4 1.05000 0.37460 3.2947 6.4488 0.95238
1.14709 0.37153 3.5684 6.8154 0.87177
1.24418 0.36620 3.8046 7.2310 0.80374
1.34127 0.35938 3.9870 7.6811 0.74556

* 1.43836 0.35395 4.0546 8.1380 0.69524

5 1.05000 0.39945 3.2927 6.4555 0.95238
1.11587 0.39705 3.4726 6.7259 0.89616
1.18174 0.39313 3.6263 7.0389 0.84621
1.24761 0.38815 3.7426 7.3859 0.80153

* 1.31348 0.38425 3.7842 7.7534 0.76134

6 1.05000 0.41596 3.2909 6.4641 0.95238
1.09855 0.41395 3.4193 6.6827 0.91029
1.14711 0.41087 3.5284 6.9388 0.87176
1.19566 0.40701 3.6097 7.2271 0.83636

* 1.24421 0.40407 3.6375 7.5415 0.80372

t
i Designa e the limit g cases as is aussed in lectioni 6.2.



TABLE IIIb

Properties of the Limiting Rotating V-states

m N algorithm BC discretizationa R* A I/Rm

3 60 2nd 3 1. (C) 0.30126 1.7331 4.7273 0.57701
60 2nd 3 0.10 (L) 0.30123 1.7349 4.7280 0.57640
60 2nd 3 0.010 (L) 0.30122 1.7349 4.7281 0.57639
60 3rd 4 0.010 (L) 0.30121 1.7353 4.7308 0.57626
60 3rd 4 0.001-(L) 0.30117 1.7355 4.7337 0.57620

120 2nd 3 t (L) 0.30124 1.7349 4.7283 0.57640

4 60 2nd 3 0.75* (C) 0.35392 1.4381 4.0541 0.69537
60 2nd 3 0.010 (L) 0.35397 1.4383 4.0551 0.69528

5 60 2nd 3 0.60 (C) 0.38419 1.3137 3.7840 0.76123
60 2nd 3 0.010 (L) 0.38429 1.3133 3.7842 0.76143

6 60 2nd 3 0.50 (C) 0.40399 1.2446 3.6376 0.80350
* 60 2nd 3 0.010 (L) 0.40411 1.2441 3.6375 0.80382

a C Constant, L - "Linearly" Inereasing
t Corresponds to 0.01*- with N - 60 and with an additional node midway

between these nodes.



FIGURE CAPTIONS

Figure 1: Schematic and notation for V-states (the lines of symmetry

are dotted. (a) Translating. Dipolar vorticity, w2 M-l"

(b) Rotating. The FAVR shown has 3-fold symmetry.

Figure 2: Schematic and notation for a representative FAVR used in

the analysis in Section 3. (Only in this section is the

origin of the coordinate system at the singularity.)

Figure 3: Schematic showing the local behavior of the limiting V-state

near the singularity at the origin. The possible values of

e0 are described in Section 3. (a) Translating. The

vertical line is the line of intersection of the two FAVR's.

(b) Rotating.

Figure 4: (a) A sector of the translating V-states for cases 1 through

13 given in Table I. (b) A 'agnified view of the V-states

in the region of high curvature for cases 14 through 17 and

the limiting case (the lowest curve). The dots are the nodes

used in the numerical calculation.

Figure 5: Global properties for one contour of the translating V-state:

A (area); P (perimeter); ( Cx coordinate of the centroid);

and, V/V0 (the normalized speed). The.dots are the corres-

ponding values from [8].

- -



Figure 6:. A magnified view of the corner for the limiting trans-

lating V-state. (a) The dots are the numerical solutions

obtained with the 3rd order algorithm and the corner boundary

condition for N - 60 and 120. The solid line is the local

solution, (3.10), fit to the N = 120 solution (b) The

comparison of Figure 6a on a larger scale.

Figure 7: Rotating V-states and their curvatures, K(s), for 3 <m < 6.
1

(The arclength is normalized so s - 0 at e = - 7 r and

s = 1 at w/m w .) The dashed curves are RA = 1.39256

(m = 3), 1.14709 (m - 4), 1.11587 (m - 5) and 1.09855 (m = 6)

in Table III. The solid curves are the limiting V-states.

Figure 8: Range of existence of rotating V-states for 2 < m < 6. The

dots are the lower end of the range from the incorrect

analysis of Burbea [11).

Figure 9: Maximum curvature versus RA for m - 3 rotating V-states.

The dots correspond to the third-order algorithm (used with

Ae1 - 0.010 for RA < 1.7 and 0.0010 for RA > 1.7). The

x's correspond to the results in [I].

Figure 10: A study of the behavior of the m w 3 rotating V-states near

RI using the fixed point boundary condition. (a) a, is the

tangent angle of the contour at 0 a -w/2. The algorithms

and discretizations are: (A, dotted line) 2nd order and 10

(constant); (B, dotted-dashed line) 2nd order and 0.1



Minearlf' increasing); (C, dashed line) 2nd order and

0.010 Minearly'increasing); (D, solid line) 3rd order

and 0.010 linearlf increasing). (b) The behavior of

selected contours near R! for the 3rd order algorithm

and 0.0010 Clinearl?'increasing).

Figure 11: A comparison of the limiting m - 3 rotating V-state for

-w/2 < e < -w/6 using the third-order algorithm with 0.0010

(the dots) and the analytical formula, Eq. (3.23).

Figure 12: A comparison of an analytical m - 3 rotating V-state,

RA - 1.73493 (the middle curve in Figure 10b), with the

analytical formula, Eq. (3.30).
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