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I. INTRODUCTION

Research areas in experimental mechanics have been greatly expanded since
the introduction of the He-Ne laser in 1960. Initial engineering applications
utilized holographic interferometry to measure surface deformations of opaque
solids. Original applications suggested that the modern techniques in coherent
optics would possibly change the method of measurement of strains and stresses;
however, this has not been the case, although many engineering examples have
been successfully demonstrated. Some of the authors' contributions are listed
in references [1-7]. Although interference fringes are well defined in holog-
raphy, difficulties exist because of the sensitivity of the measurements which
require vibration isolation and the ability to separate displacement components
from a single hologram. Thus, holography has not developed as a general tech-
nique of experiemtal stress analysis, and still remains a techniquie of the
specialist.

Objects illuminated with coherent light are observed to have a granular
appearance known as the laser speckle effect. The details of this structure
do not resemble the microscopic character of the surface, but rather appear to
be random in nature. This effect is described in terms of the interference of
the microscopic nature of the surface when illuminated with a laser. Inter-
ference of the dephased, but coherent, waves results in this speckle effect [8].
This effect has provided for a method of surface displacement measurements
known as laser speckle interferometry, which does not require vibration isola-
tion. In addition, this technique is a direct measure of in-plane displacements;
thus, the separation of components is accomplished easily [7]. All coherent
optical methods are a measure of surface displacements or its derivatives on
the boundary of a solid; thus, the need still excists to calculate stresses and
strains at any desired point in a three-dimensional body from the surface data.

The concept of speckle was first applied to optical systems; however,
modern applications reveal that the speckle effect occurs in many areas of
physics and engineering [8-10] as a result of the ubiquitous character of the
random interference phenomenon. Examples of analogies to the laser speckle
effect include radar astronomy, synthetic aperture radar, recent developments
in ultrasonic holography, and theory of spectral analysis of random processes.
Goodman [8] illustrates that the basic concepts of speckle are much broader
than originally envisioned with the laser, and that the results apply to all
related phenomena, so long as the basic statistical assumptions are satisfied.
Because of these parallels, the results of the laser speckle effects in optics
suggest the possibility of an acoustical speckle effect utilizing ultrasonics.
The direct extension of substituting an ultrasonic wave for coherent light is
an obvious one, since it was first performed in the acoustical holography. An
acoustical speckle interferometry study has been demonstrated to be a direct
measure of object motion [11,12], which closely parallels laser speckle inter-
ferometry. The particular significance of the ultrasonics is the fact that
subsurface scattering points can be recorded and correlated to measure acous-
tical signals. Thus, acoustical speckle interferometry has the potential to
measure displacements of interior points in opaque solids. The extension to
include measurements of deforinable bodies will result in a technique to measure
directly strains at interior points in otherwise opaque solids.
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II. ELASTODYNAMIC THEORY

Acoustical speckle interferometry is based locally on the elastodynamic
response of solids subjected to ultrasonic waves. The basic theory will be
governed by the following set of field equations for a homogeneous isotropic
medium.

The stress tensor a (X) is related to the gradient of displacements by
the following equation

- XU 6 + V(U + U )(1)ij k,k ij i,j j,i

where the comma denotes partial differentiation and X and V are the Lame's
constants.

Balance of linear momentum yields the following equation of motion writ-
ten in terms of displacement gradients.

ij Jii + pU = f (2)

where p is the mass density and fi are the components of the body force per
unit volume.

Solution of the equations of motion (2) must satisfy appropriate boundary
conditions. The displacemelit boundary value problem assumes a knowledge of
displacements on the entire surface S.

uX -u (x) (3)

when X denotes the orthogonal coordinates X1 , X2 , X3 and U are known values
of the surface displacements. The traction boundary valueiproblem is

t i (x - ai t _: (x) (4)

when the vector function ti(X) is prescribed for XCeS. Unit vector ni is the

outward normal vector for the body P.

As an initial approximation to the local response of an elastic body to
an ultrasonic wave, consider a plane displacement wave propa~atin with phase
velocity C in a direction described by a propagation vector p as 113].

U Aleif (5)

where

- (* ct)

Equation (5) describes a nlane haronicwave with constant describing a
plane normal to the propagation vector p.

Two types of plane harmonic waves described by Equation (5) exist which
are solutions to Equation (2). Waves of the type where f are called
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longitudinal waves and the phase velocity is denoted as C . Waves of this

type, where d. p = 0, are called transverse waves, and the phase velocity for
this type of wave is denoted as CT.

Substitution of Equation (5) into Equation (1) yields the following form
for the components of the stress tensor.

aij = [X6ij (dtp£) + p(di p. + diPi)] ikAeifl (6)

when the summation convention is employed.

The presence of a subsurface layer or disconunity generally produces a
change in the wave propagating in a medium. Acoustical speckle interferometry
utilizes the reflection, refraction, and mode conversion of incident elastic
waves at the interface of two elastic media as a basic description of the
transmission and reflection of elastic waves. Consider initially two joined
elastic half-spaces, as illustrated in Figure 1. An incident longitudinal
wave, denoted as a p-wave, is incident on the boundary of the two elastic
half-spaces. At the interface, boundary conditions and conditions of conti-
nuity will result in both reflection and refraction of longitudinal and trans-
verse waves from an incident p-wave. The notation and description of the
waves will be the same as described in reference [13] and repeated here for
completeness of discussion. Unit propagation vectors are illustrated in
Figure 1, with material properties of the incident medium denoted as X, p, p.

B B B
Material properties of the refracted medium are labeled X p . Super

n
scripts, p , on the propagation vectors are used to describe the reflected
and refracted waves as given in the following equations.

Incident Longitudinal wave (p-wave), n = 0.

The incident P-wave will be described by the unit propagation vector p
when

0~

P cos E)o0iI + sin 80 12 (7-a)

o -)o

Displacement vector is described as = p ; therefore

r1- 1efl
U =A0 [cos e il + sin 0j2]e inO  (7-b)

and

n= K [X1 cosO + X2 sin 0 - C t] (7-c)

Stress components for the incident p-wave are calculated from Equation (6)
and are

0 2 ino
T21 = ik (X + 2V cos A e (8-a)

o A

0 0



X2

P

190 0

.INCIDENT P-WAVE (JO)

Figure 1. Incident, reflected and refracted elastic waves
at the boundary of joined half spaces.
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0 in
T2 2 = 2ik 0± sin 0 cos 0 A e 0 (8-b)

Reflected longitudinal wave._ n = 1.

The reflected p-wave is described by the unit propagation vector as

-*I = 
t(9a

p = sin 01 il -cos 01 i2  (9-a)

Lisplacement vector is d1 
= p

U1  A1 [sin 0111- cos 01i2 e (9-b)

vhere

n= k IX1 sin 0 1 - X 2 cos 01 - CIt] (9-c)

Stresses for this wave are

1 in

T21 = ik 0 u sin 201A, e 1 (10-a)

T22 = i k I X + 2p cos2GJ A1 e i1 (10-b)

Reflected transverse wave (sv-wave), n = 2.

Propagation vector, displacement vector and stress components are
given by the following equations.

p= sin 02l1 - cos 021 2  (11-a)

The description of a transverse vertical wave is given by

21 3 + P2, which yields the following form for the dibplacement vector.

A2 [COS 021-sn0i]il (11-b)

n= k2 1XIsin 01 - X2 cos 02- C2 t] (11-c)

2 ikCL in
T21 = cos 202A2e 2 (12-a)

2
T22 = -ik2Psin 202A2e

in2 (12-b)
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Refracted long itudina waen3.

-13 _ s n 0 -.
p = Sin +3ii + cos 0312 (13-a)

- A3 [sin 031, + cos 0312] e'n (13-b)

q3 - K3 [xI sin 03 + cos 03 - C3t] (13-c)

3 iKoCL i3
T21= - B B sin 203A 3 e (14-a)

CL

= ik X + 2 B cos 2 03] A3 e
in 3  

(14-b)

Refracted transverse wave, n = 4.

The transverse vertical wave in the refracted medium is described

by d3  13Xp where

p = sin 04il + cos 0412 (15-a)

= A4[-cos 04 1 + sin O42e n  (15-b)

n4 = K 4 jx1isin 04 :- X2 cos 04- C4 t] (15-c)

T1 = iK4 B cos 20zA4e in4 (16-a)

T22 = iK41B sin 204Ae tfl (16-b)

At the interface, a condition of perfect contact will be assumed and the
displacement and traction vector at the interface X2  0 must be continuous

for all X1 and t.

0 + UI + U2 = + (17-a)

-0t + -1 + - +2 -"+ (17-b)

These equations written in component notation are

+ + = + (18-a)
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1 2 3 4
1 +2 + T 2  = + T2  i = 1,2 (18-b)

Equations (7-c, 9-c, 11-c, 13-c) require that boundary conditions are satistieu

for all X1 and t yields the following.

K0 sin 0 0 = KI sin 01 - K2 sine2 = K3 sin 03

= K4 sin 04 (19-a)

K0 CL = KI CL = K2 CT = K3 CL B= K4 CT B (19-b)

Equations (17-a) and (7-b, 9-b, 11-b, 13-b) yield the following conditions on

continuity of displacements at the interface.

A0 sin 00 + A, sin 01 + A2 cos 02

-A 3 sin 03 - A4 cos 0 4  (20)

A0 cos 00 - A1 cos 01 + A2 sin 02

-A 3 cos 03 + A4 sin 04 (21)

Ecuation (18-b), coupled with Equations (8, 10, 12, 141 yield the following
conditions for conditions on the components of the stress tensor at the
interface.

pA0 sin 200 - pAl sin 20i - pA2CT cos 202

CL B CL B
B B' A3 sin 203 - A4 -L-V cos 204 (22)

CL CT

K, [ + 2p coB2 E00]Aa + K, [ + 2 11 cos 2 01] A1

Ik - K2 p sin 20 2 A2 - K3 LIXB + 2pB cos20 3] A3

B+ K4IJ sin 20 4 A4  (23)

Equations (20-23) can be put in a matrix form amenable to computation
for a system of n layered media.

fM
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[A] [x] = [B] (24)

where

-sine1  -cosO 2  sinO3  -cose4

CosO1  -sinO 2  cos0 3  sine4

[A] CL CL B CL B
psin201  I,- cos202 BP sin2O3  B p cos204

T CL CT

C.CL BCB-(X+21icos 2 L) X-Bsin22 A +2pBco2 G3 -L Bsin204

B1 -_co1i s sin2E'2CT CL  CT

A1 /A0

x] = A2 /A0

A3 /Au

A4 /AO

sin e 0

cos 
00

V sin 2e0

X + 2iicosejo

Equation (24) forms the solution for the amplitude ratios Ai/A0 for the reflec-
tion and refraction of an incident P-wave of two perfectly joined half-spaces.
For a system of n-layers, Equations (19) and (24) can be utilized to determine
the propagation and energy partition at the boundary of each layer.

Some special cases of the interfaces are of primary importance for
problems in acoustical speckle interferometry. A liquid-solid boundary usually
forms the initial interface, and a solid-liquid boundary forms the last bound-
ary interface for a solid immersed in a liquid. In addition, a subsurface
layer from a practical point forms a boundary of an elastic body with air,
which is the condition of a subsurface void. At this irterface, the refrac-
tion of elastic waves will be neglected; therefore, only the reflection of
elastic waves at a free surface will be considered. Since these special
cases are of particular importance in acoustical interferometry, they will be
examined in some detail.

12



A. Liquid-Solid Boundary

Suppose that the medium comprised of the incident p-wave is liquid
and the refracting medium is an elastic solid. For this condition, the
reflected SV-wave is zero; therefore, the boundary conditions reduce to the
following form.

4 (i = 1,2) (25)

0 1 3 4
T22 + T22= 22 + .22 (26)

3 4
T21 + T21 = 0

Equations (25) and (26) are solved for the amplitude ratios Ai/AO, and
are displayed in matrix form for computation.

-sin 0I sin 03 -cos 04 AI/A0 sin *0

cos 0i cos 03 sin 04 A3 /A0  = cos 00 (27)

CL [XB B23] CL  I~

B L + 2  CO B Bn 204 A4 /A0 A
CL CL _ _ _

B. Solid-Liquid Boundary

The boundary between the .two layers is comprised of an elastic solid
reflecting medium and a liquid refracting medium. The p-wave (p0) represents
the incident wave and the transmitted sv-wave is zero. Boundary conditions
reduce to the following.

0~ + u +u2  =u (i = 1,2) (28)

0o 2 4

uI +u I + u I  = U i  ( ,)(8

0 1 2 4

T22 + .[22 + T22 = T22 (29)

o 1 2
T2 1 + T21 + T21 = 0 (30)

Equations (28, 29) are solved, and in matrix notations are written in

terms of Ai/AO as

13
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-sin 01 -cos 02 sin 03 Al /A0  sin 00

cos 01 -sin 02 cos 03 A2 /A= cos 00 (31)

2/ 0CL  C A 3 + 2pcos2E

T CL

C. Free Boundary

At a free surface, the following boundary conditions are satisfied
for the stress components.

0 1 2
T2i + T2i + T2i = 0 i = 1,2 (32)

Solution of Equation (32) in terms of the amplitude ratios are [13]

A sin 20a sin 202 - K2 cos2 203

A0  sin 200 sin 202 + Kz cos2202

AL = 2K sin 290 cos 202 (33-b)
A0  sin 200 sin 202 + KI cos'20 2

where

K [2(1-v)[L1 -2v)

III. NUMERICAL RESULTS

The numerical solution for a layered elastic half space immersed in a

liquid medium involves the solution of Equations (24), (27), and (31) for the

amplitude ratios AI/A0, A2/A0, A3/A0, and A4/A0. Equation (27) is utilized

to determine the amplitude ratios at a liquid-solid boundary for an incident

p-wave in the liquid. At each solid boundary, Equation (24) is used to cal-

culate the amplitude ratios. At the solid-liquid boundr , amplitude ratios

are calculated by Equation (31). Thus, for a multiple-layered medium, these

equations are repeatedly applied for the number of interfaces.

As an illustration of the liquid-solid boundary equation, consider an

incident p-wave in water at a steel interface for various angles of incidence

00. As expected, an incident p-wave gives rise to a reflected p-wave and

transmitted p-waves and sv-waves in the solid. Equation (27) was solved

numerically for the following data.

14
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X steel = 16.42 x 106 psi

p steel = 0.284 ibm/in
3

V steel = 11.6 x 106 psi

$ water = 0.318 x 106 psi

p water = 0.0361 lbm/in
3

Amplitude ratios for various values of the incident angle 00 are given in
Figure 2.

An incident p-wave in a solid at a water interface gives rise to both

reflected p-waves and sv-waves and a transmitted p-wave. Equation (31) is
used to calculate the amplitude ratios at this boundary and in Figure 3 the
amplitude ratios are shown versus the angle of incidence 00.

A solid elastic half space for an incident p-wave in one solid gives rise
to both reflected and refracted p-waves and sv-waves in each solid. The amp-.
litude ratios for this boundary are calculated from Equation (24). As an
illustration of this solution procedure an incident p-wave in steel at a
steel aluminum boundary is used as data for the calculation of the amplitude
ratios for various angles of incidence 00. Data for the aluminum are shown
in Figure 4.

X Aluminum = 7.42 x 106 psi

p Aluminum - 4.00 x 106 psi

p Aluminum - 0.100 lbm/in3

An example problem of a two-layered elastic half space immersed in water
is chosen to illustrate the solution procedure for the layered medium problem.
Geometry for this example is shoi. in Figure 5, and only reflected and refracted
p-waves at each interface are shown in this illustration; however, sv-waves
exist at each solid boundary. The particular significance of the p-waves is
in the application of acoustical speckle interferometry to object motion
measurements in layered media. Reference [12] illustrates that the p-waves
are amenable to object motion measurement; therefore, this discussion will be
restricted to p-wave propagation. Consider an incident p-wave in water at
interface I which is a liquid-solid boundary. Solid 1 is taken to be steel
with the same properties for the liquid-solid example. Superscripts refer to
the particular wave component, as discussed in the previous section, and sub-
scripts refer to each boundary. A transmitted p-wave at boudary3l will
become an incident p-wave at boundary 2 and incident angle 02 - 01. For the
two-layer elastic half space, the incident waves at each boundary are listed
in the following:

Boundary 1: P = 0 , 01 00

Boundary 2: P2 P , 02 -

15
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Figure 2. Amplitude ratio of a water steel interface
for an incident p-wave in water.
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Figure 3. Amplitude ratio of a steel water interface
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Figure 5. Reflection and refraction of p-waves in a layered medium

for an incident p-wave in the liquid medium.
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-+1 0 0
Boundary 3: P3  - P 2  , 03 = 02

+0 -3 0 3
Boundary 4: P4  . P2  , 04 - 02

-+5 -+1 1 1
Boundary 5: P0  , P4  , 05 = 04

-+0 -3 0 3
Boundary 6: P6 = P5  , 0 = 05

Amplitude ratios at each interface for an initial incidence angle 00 00

are listed in the following for the two-layer elastic half space. The com-
puter program for these calculations is listed in Appendix A.

Liquid-Solid 1 Boundary 1

alAo f 0.93810

A 3/A0 = 0.061905

A4lAO= 0.00

Solid 1-Solid 2 Boundary 2

AI / A = -0.45965

A2 / = 0.00

A3 /A0 - 1.4597

A4/A 0 = 0.00

Solid 1-Liquid Boundary 3

A,/AO - -0.93809

A2/A0 = 0.00 •

A/AO - 1.9381

Solid 2-Liquid Boundary 4

A/A 0 = -0.8411

,21% = 0.00

A3/A 0 = 1.8411

Solid 2-Solid 1 Boundary 5

Aj /A 0 = 0.45965

A2 /A0 = 0.00

A3/A0 = 0.54035

A4/A O - 0.00

Solid 1-Liquid Boundary 6

A1 /A 0 - -0.93809

A2/1O - 0.00

A3 /A0 = 1.9381

20
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Am litude ratios at each interface for an initial incidence angle

0'= 209 are listed as follows:

Liquid-Solid Boundary 1

Aj/AO = 0.92684

A3/A0 = 0.17302

A4/A 0  = 0.65243

Solid 1-Solid 1 Boundary 2

Aj/A0 = 0.44433

A2/A0 = 0.09316

A 3 /A0  = 1.4611

A4 /A0  = 0.017700

Solid 1- Liquid Boundary 3

At/A = 0.81650

A2 /AO = 0.69193

A 3/A0 = 2.0430

Solid 2- Liquid Boundary 4

A1 /A0  = 0.72645

A2/A f= 0.65056

A3 /A0 = 1.9423

Solid 2- Solid 1 Boundary 5

Aj/A = 0.44651

A2/O = 0.08059

A3/AO = 0.53946

A4/A0  - 0.0077461

Solid 1- Liquid Boundary 6

At/A0 - -0.81650

A2/A 0 = 0.69193

A 3 /A0 - 0.02430

IV. ACOUSTICAL SPECKLE INTERFEROMETRY

As a tool of quantitative nondestructive testing of materials, the

spectral analysis of ultrasonic pulses in elastic solids has attracted wide

attention in recent years. Krautkrmer [14] suggested in 1959 that measure-

ment of the pulse shape could be used to determine the size and orientation

of flaws in materials. Methods for determining the spectral content of

broad-band ultrasonic pulses reflected and scattered in materials were subse-

quently developed by Gericke [15]. In his pioneering work, he showed that
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the spectral content of pulses propagating in steel specimens was greatly
dependent on the material's microstructure. In later work [16], he investi-
gated the spectral content of echoes from cylindrical cavities oriented
perpendicular and parallel to the direction of wave propagation. From these
experiments he concluded that it might be feasible to use ultrasonic-spec-
troscopy measurements in conjunction with normal pulse-echo techniques to
determine not only the location of a defect, but also its shape. Brown [17]
has reviewed some results obtained by Lloyd [18] on the spectral response of
various conical and flat-topped cylinders, which could be explained quali-
tatively in terms of the cylinder's dimensions and geometry. Sachse [19]
has reported an experimental investigation of the spectral analysis of wide-
band ultrasonic pulses as scattered by a circular, cylindrical, fluid-filled
cavity in an elastic solid. It was shown that either the diameter of the
cavity or the wave speed of the fluid can be determined from the time record
of the scattered pulses. Furthermore, an empirical formula was developed to
relate the diameter and the wave speed to the intervals between the minima
or maxima of the power spectra. The author concluded that the method of
ultrasonic spectroscopy which are originated by Gerick can be used to detect
the dimensions and mechanical properties of flaws and impurities inside
elastic solids.

Theories of the scattering of acoustic waves have been extensively
devleoped since the fundamental work of Lord Rayleigh [20]. A review of the
existing theories as well as some numerical results of scattered waves in

elastic solids have been published in the monograph by Pao and Mow [21]. The
case of a circular, cylindrical cavity inside an elastic solid was investi-
gated in detail by White [22]. He measured amplitudes and arrival times of
plane harmonic waves with long duration, using standard ultrasonic techniques.
His measured angular distributions of the scattered wave amplitudes for both
incident longitudinal and shear waves agreed very well with his theoretical
analysis.

The interaction of sound waves and pulses with solid cylinders immersed
in a fluid has been of interest in underwater acoustics for some time. Most
extensively studied has been the scattering of pulses incident normal to the
axis of the cylinder. In 1967, Goodman, Bunney, and Marshall [23] reported
the existence of a Rayleigh-type circumferential wave propagating around a
solid cylinder. Later, Neubauer [24-26] reported the results of experiments in
which pulses were used to study the propagation of the circumferential waves on
aluminum cylinders immersed in water. In 1969, Bunney, Goodman, and Marshall
[27] also reported observation of the Rayleigh-type wave. Several experiments
of the scattering of broad-band ultrasonic pulses by cylindrical inclusions in
elastic solids have been performed by Sachse and Chian [28] and Bifulco and
Sachse [29]. The inclusions were fluids or solids whose wave speed was less
than that of the solid matrix material. It was shown that in a non-destructive
testing application, the size and wave speed of the inclusion could be deter-
mined from measurements of the arrival times of various scattered pulses. In
a recent work [30] measurements are reported of the arrival times of broad-band
ultrasonic pulses scattered by a circular, cylindrical solid inclusion imbedded
in a matrix whose longitudinal wave speed is lower than that of the scatter.

In many instances in practice, it is highly desirable to obtain an
accurate and rapid measure of the stress in a structural member. Ultrasonics
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offers a great tool for the realization of a system capable of performing this
task. Ultrasonic-pulse spectroscopy measurements has been used to measure the
stress-induced interference effects between two shear waves propagating in
uniaxially deformed specimens of aluminum [31]. This technique shows consid-
erable promise as a means for measuring and monitoring the applied stresses
in materials.

Ensminger [32] documents many modern applications dealing with topics
such as thickness measurements, inspection of metals and non-metals and the
determination of bond integrity. Ultrasonic inspection is further being
extended to tissue examinations and bone scans in the medical field [331.

As an experimental nor -destructive stress analysis, the polarized trans-
verse ultrasonic waves have provided a new method of measurements which is
christened the acoustoelasticity. Similar to the phatoelastic effect, the
velocity of the transverse soundwaves traversing a stressed elastic solid is
not a constant as it would be in an isotropic solid. The velocity depends on
the direction of the particle motion (polarization), the direction of wave
propagation, and the state of stress. With the recent advancement of ultra-
sonic techniques, one can generate, transmit and detect plane poLarized ultra-
sounds. Therefore, stress-induced acoustical birefringence can be measured.
As in photoelasticity, the difference of propagation velocities in shear waves
polarized in principal stress directions is proportional to the principal-
stress differences in the plane-stress state. Thus, this technique is a
nondestructive test method and determines stresses by ultrasonic shear waves
which do not require a transparent plastic model [34-36].

Plastic deformation in crystalline solids by means of high-frequency

stress wave propagations has been studied by a number of investigators [37,38].
The study of the relation between the propagation of ultrasonic waves and plas-
tic deformation in single crystals has been discussed in detail. Specifically,
changes in attenuation and velocity of ultrasonic waves have been measured as
a function of plastic strain during the deformation process. These techniques
have also been applied to the investigation of some aspects of strain hardening
mechanisms [39].

Knowledge and control of the transmission and reflection of ultrasonic
waves in layered media is an important basic problem in underwater acoustics.
The problem of transmission of sound at oblique incident angles through a
solid multilayer system of plane parallel plates was treated by Thompson [40],
Brekhovskikh [41], and others. The most detailed solution of the multilayer
problem is by Shaw and Bugl [42], whose theoretical approach was directed
toward the investigation of conditions under which interface waves may be gen-
erated. In a recent work [43], the wave equation was solved to determine the
transmission and reflection coefficients for plane waves at obli-ue incidence
on a system of n layers of plane parallel plates.

Acoustic holography is the newest branch in acousting imaging technology.
It is directly comparable with optical holography in the phenomenological
sense, because to make a hologram it is necessary that the two beams of radia-
tion used have the ability to interfere with one another. Acoustic holography
underwent very rapid development during the last few years, and simulated the
general field of acoustic imaging through the introduction of novel techniques
for visualizing acoustic excitation. In contrast to optical holography, which
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has sometimes been described as a solution looking for a problem, acoustical
holography was from the outset developed for a specific purpose. This purpose
is that of all acoustical probing systems, namely, detecting, locating, and
imaging a structure immersed in a medium opaque to electromagnetic raeiation.
This description encompasses a variety of specific problems, such as non-
destructive testing, medical imaging, oil exploration, and underwater imaging.

A recent development in laser technology, referred to as speckle inter-
ferometry, has provided for a new technique in experimental mechanics to
measure surface displacements of deformed solids. Basically this method
records the laser intensity variation across the surface of an object due to
the random interference of the microscopic character of the illuminated sur-
face. Figure 6 illustrates the basic method for recording a double exposure
laser speckle photograph. A high resolution photographic film records the
granular pattern on the film plane of a camera. If the object is displaced
from a reference configuration, the speckles are mapped to a new location on
the film plane corresponding to the object motion. Data analysis consists
of pointwise filtering as illustrated schematically in Figure 7. This method
of data analysis assumes a constant value of displacement within the small
area of illumination, and the resulting interference pattern is obtained by
taking optically the Fourier transform of the amplitude transmission function
of the photographic transparency. Interference fringes are therefore a direct
measure of local object motion within the area of illumination. The discrete
global response of the body is obtained by pointwire filtering of many small
areas of the photograph transparency.

Because the speckle effect is statistical in nature and the basic con-
cepts occur in many areas of physics and engineering, the previously develpd
techniques in optics suggest a parallel development in ult.:.sonics. In a
recent work [11,12] a basic theory of one-dimensional pulse-echo and continu-
ous wave acoustical speckle interferometry was developed. This method utilized
the statistical concepts of speckle and one-dimensional correlation of ref er-
ence and displaced signals to determine object motion of subsurface scattering
layers. This study established the feasibility of the acoustical speckle
concept for object motion measurements.

V. BASIC THEORY OF DISPLACEMENT MEASUREMENTS UTILIZING ULTRASONICS

This section presents the geometrical concepts of displacement functions
of a continuum and the correlation of a reference and deformed ultrasonic
signal as a measure of object motion. The basic problem may be described in
the following way: given the measured ultrasonic global response of signals
before and after deformation, it is then required to calculate the local
object displacement vector from the global reference and deformed configurations
of a body. Thus the basic problem is geometrical in nature and initially is
not concerned with the external forces necessary to cause the geometrical
deformation.

Let the position of the points in a continuum in the initial (unstrained
state) be given with respect ot the coordinates X1, X2, X3, as illustrated in
Figure 8. The body is deformed with respect to the unstrained coordinates
and points are displaced to new coordinates denoted as Xj, X5, X; (Figure 8).
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Figure 8. Displacement components of a deformed body.
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The coordinates of an arbitrary point in the deformed configuration are
expressed in terms of the original coordinates by the following equation.

X: = Xi + Ui(XI, X2 , X 3 , t) (34)

where U. are called displacement components and are taken to be continuous

functions of the original coordinates X1, X2 , X3 . Thus, in general, the
displacement functions vary from point to point in a deformed body.

Suppose a continuous mode or pulse echo ultrasonic scan is made of a
rough scattering surface with reference area M as illustrated in Figure 9.
The field reflected from the scattering surface at the plane of the receiving
transducer in a plane immediately adjacent to that surface is described by a
complex function ( ,n), which represents a reflected p-wave or SV-wave from
an incident p-wave in an elastic solid. The complex field P(X) where X = (X1 ,X2 )
denotes the ordered pair of numbers in the plane of the receiving transducer
which is parallel to (,,n) and represents the amplitude of the reference
signal, which is the field of interest from the acoustical signal. Details
of both pulse echo and continuous mode scanning techniques of scattering sur-
faces are described in reference [11,12].

Now suppose that the receiving transducer is returned to the original
position and the scattering surface is displaced from its reference configura-
tion. A complex field P(X') represents the amplitude of the received signal
where the coordinates X = Xf,X; are parallel to the plane (&,n). If the
displacements functions in Equation (34) are substituted into the representa-
tion of the displaced signal, the special form reduces to the following:

PX) - P(X1 + U1, X2 + U2) (35)

where the received signal is assumed to be a function of the coordinates
parallel to the plane of the scattering surface. The reference and displaced
signals are illustrated in Figure 10.

The problem now becomes one of correlating the signals P(X) and P(X')
to measure the local displacement components U1 and U2. The basis for this
measurement is the autocorrelation function of the two signals which is given
in the following equation:

C(UIU 2) f P(XIX 2 ) P(X1 + U 1 ,X2 + U2) dX1dX2  (36)

M

The one-dimensional correlation of continuous mode scanning for a rigid
deformation is discussed in reference [12]. This study demonstrated that
Equation (36) forms the basic concept for object motion measurement of sub-
surface acoustic scattering layers which agrees with the statistical rela-
tionships in laser speckle interferometry.

Although Equation (36) has been demonstrated to be a measure of object
motion, some limitations are imposed on the applications because the
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displacement functions U1 and U2 are, in general, continuous functions of the
initial coordinates (XI,X 2) and are the unknown quantities to be determined.
If the displaced surface is just a uniform translation in the X1 ,X2 directions,
then U1 ,U2 are constant and the application of Equation (36) is straightforward;
however, in the presence of a deformed surface, U1 and U2 cannot be interpreted
in terms of a global uniform translation. The basic approach used in computing
the correlation of P(X) and P(X') is to assume the basic theory of data analysis
in pointwise filtering used in single beam laser speckle interferometry
(Figure 11). Object motion displacements are obtained by passing a laser beam
ttMrough a small area of a double exposed transparency which contains both the
reference and deformed images. Interference fringes are observed as intensity
of the light amplitude in the transform plane. This analysis utilizes the
shift theorem which restricts the displacement components to be constant with-
in the area of illumination. Practical applications for a He-Ne laser restricts
the area to be a circular region approximately 2 mm in diameter.

This restriction in optics suggests the following approach in acoustical
speckle interferometry. Let the reference scan be recorded over some reference
area M in the X1,X2 plane, as illustrated in Figure II. Suppose that within
scme small neighborhood of a point P cP(X) the displacement is assumed to0 ~

be uniform. The acoustical signal corresponds to a small neighborhood of the
point P 0P(X). Therefore the Equation (36) can now be used in the form

AC(UI,U 2) = f AP(XI,X2)AP(XI + U1 ,X2 + U2) dXldX2  (37)

M

where AP(X) and AP(Xo)correspond to a small surface surrounding the points of
interest. The correct values of UI,U 2 corresponding to the object motion
displacement will result in a maximum value of the correlation function
AC(UI,U 2). This correlation procedure corresponds to the data analysis at
pointwise filtering in optics and thus completes the analysis of the displace-
ment of a point. The procedure to determine the discrete displacement values
will follow the procedure in optics as discussed in reference [7].

A discussion of the cross-correlation peak should include the effects
of deformation on the local accuracy of the correlation function. This prob-
lem in local deformation of an object is similar to the problem of image
correlation with geometric distortion on the accuracy of image restoration
[44]. Basically, the image restoration is investigated for distortions
represented by an affine transformation of image coordinates, which is an
offset plus scaling and rotation of each image coordinate axis [45-47]. The
image analysis assumes a fixed geometric distortion and then a proper choice
of integration area in the cross-correlation can be optimized for minimum
local error. Geometric distortion for deformable bodies is generally unknown;
therefore, this represents the inverse problem to image registration. A
discussion of this problem will include the restrictions and assumptions in
the linear theory of elasticity and an example problem will be chosen to
illustrate the effects.

Let a point P be displaced to a point Po, and point Q displaced to Qc.
The displacement of point Q can be expanded in a linear Taylor's series as
expressed in the following form.

31



IP

P(x) " P 1

0

P 0

ii ii

X2

AREA OF THE
REFERENCE SCAN

X1

Figure 11. Reference and displaced subsets of the original
and displaced surfaces.

32



au au
U1 I Q = U1 I P + ax AXI + 3_1 hX 2  (38)

1 2

au au
U2  = U2  P +-M- Ax +--x 2 x2aX 1 x2

1 2

Equation (38) can be expressed in terms of the infinitesimal strains and
rotation components which results in the following expression [48].

U1  Q = U1 I P + AU1  (39)

U2  Q = U2 I P + AU2

where

AU1  = Ell AXI + (C12 - W3)

AU2 = (C12 + W 3)AXi + e2 2AX2

The correlation function can now be. put in the following form.

AC(Ul + AU1 , U2 + AU2) = JAP(XI,X 2) AP(XI+ U1 + AUI,X 2

+ AU2) dx dx2 (40)

Equation (40) has been demonstrated to be a measure of object motion,
taking into consideration the restrictions and assumptions in the linear theory
of elasticity; however, Equation (36) represents the general measure of object
motion. In the presence of a largely deformed surface U1 and U2 can be inter-
preted in terms of a rigid body translation and rotation and normal and shear
strains. Several numerical examples will be discussed in order to illustrate
the application of numerical correlation in object motion me"surements.
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VI. NUMERICAL EXAMPLES ANDl CONCLUSIONS

Several numerical examples will be discussed to illustrate the application
of the numerical correlation in object motion measurements. A reference signal
P00) corresponding to the undeformed scan is illustrated in Figure 12. A line
along the X, axis is shown in Figure 13. The reference area M for all exam-
ples presented will comprise an array of 100 x 100 data points. The displaced
signal P(X) will be correlated with the reference signal for the specific cases
of displacement components U1 and U2. A correlation computer program is listed
in Appendix B.

For a case of uniform translation in the absence of geometrical distortion,
some simplifications in the integration area M allowed for a considerable reduc-
tion in computer time. The procedure utilized was to perform the correlation
over two orthogonal lines of data points which comprise a length where object
motion is assumed to be uniform. In the examples discussed, the five data points
for this interval were used. Figure 14 is a graphical display of three examples
of uniform translation. Figure 15 shows the surface P(X') for a uniform trans-
lation in the X1,X2 directions. In order to demonstrate the generality of the
computer program, an example of non-uniform translation without geometric dis-
tortion is discussed. The displacement along a line y = sin x for 0 < x < nr
is chosen to illustrate non-uniform translation and the results are sho'wn -in
Figure 16.

Several examples for the case of uniform and non-uniform translations in
the presence of geometric distortion (deformation) were solved. The results
illustrated that for infinitesimal deformation (linear elasticity), geometric
distortion had no effect on the correlation between reference and deformed
signal.

Several examples of large deformations on the correlation of reference
and deformed signals were considered to determine the accuracy of Equation (40)
for large strains. Figures 17 through 19 are examples of the deformed surface
P(X) corresponding to large strains without rigid body motion. A comparison
of these surfaces with the reference surface, as illustrated in Figure 12,
shows the effect of geometric distortion relative to the reference surface.
In each example of large geometric distortion the correlation accuracy was the
same as the cases considered for uniform translation and infinitesimal defor-
mat ions.
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Figure 14. Uniform translation of a point P initially
located at the origin.
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Figure 15. Acoustical surface corresponding to a uniform translation

without geometric distortion -5 units XI direction
-8 units in X2 direction.
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Figure 17. Acoustical surface P(X) corresponding to a

large strain cX = 0.2.
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Figure 18. Acoustical surface P(X') corresponding to a
large strain c = 0.2.X2
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Figure 19. Acoustical surface P(.') corresponding to a

large strain yXIX 2 = 0.2.
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APPENDIX A

PROGRAM TO CALCULATE THE AMPLITUDE RATIO

FOR A TWO-LAYER ELASTIC HALF SPACE IN A LIQUID

43



C PROGRAM TO CALCULATE THE AMPLITUDLE FA1ID
C FOR A TWO LAYER ELASTIC HALF SEPCE 114 A
C LIOtJIE
C EACH NUMB~ER CORRESFONDS TO AiN INTERFi^SCE
C
C PROPERTIES OF THE LIQUID

XLAL=318000.
RHL=.*0361

C PROPERTIES OF SOLID 1
XLA1=16420000.
XM1=1 1600000.
RH 1=.*284

C PROPERTIES OF SOLID 2
XLA2=7420000.
XM2=4000000.
RH2=. 100
CLL=4863.
CL2=20341.
CT2=10360.
CL 119348.
CTI= 10469.

C LAYER 1 --- LIQUID-SOLI' 1 INTERFACE
THETAO=20.*3. 1416/180.
XLAM=XLAL
RHO :RHL
XLAMB=XLA1
XMUB=XM1
RHOE'=RHI
WRITE( 5p3)

3 FONMAT(3Xv'LIQUIE'-SOLID 1 INTERFACE')
WRITE(5,4) THETAO

4 FORMAT(3Xv'THETA0='vE12.5)
CALL WASO(THETA0,XLAMYXMUBXLAM',RHORHOB)
CL=CLL
CLB=CLI
CALL CRCSUE4(CLPTHETAOPCLBPYB)
THET31=YI
WRITE(5r5) THET31

5 FORMAT(3Xv'THETA31='rEI2.5)
C LAYER 2 --- SOLID 1-SOL II 2 INTERFACE

XLAM=XLAI
XMU:-XI
RHO=RH1
XLAMB=XXLA2
XMUEI=XM2
R FO0F,= RH2
THE TAO =THE T31
WRITE(5v6)
FORMAT (3XY 'SCILID 1-SOLID. 2 INTERFACE')
WRITE(5,7) THAETAO

7 FORMAT(3Xv'THEVAO='pEl2.5)
CALL SOL ID (THETA , XMU XLAMXt-Uij'PXLANE'rRHO rRHOB)
CL=CL1
CLB=CL2
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CALL CRCSUE((CLTfiEl'AOCLbvYC)
THET32 YC
WRITE(5r8) THET32

6 FORMAT(3XP'THEIA.12='PE12.5)
CALL CRCSUIB(CLvTHETAC),CLfYA)

THET12=YA
WRITE(5v9) TIIET112i.

9 FORMAT(3Xv'THETA12= vE12.5)
C LAYER 3 --- SOLID' 1-LIQUiD INTERFACE

XLAM=XLAI
xmumXM1
RH'O = RH 1
XL ~ ME4 XL AL

T HE~TA0=THE r 1
WRITE(5v, 0)

C0 FOfRhAT?3X, 'StJLItI -I ~ IN!'EFACE )
WRITE(5A1) 'TH!ETA 0

I I FORMATr(3X 'HrQ'E i,, ;)
CALL SO L ( lE'~~>Li%;, "'" ;:' j-H y H B

C LAYER 4--SOLiI:' 2-L2IGUIID iNTEkih*, L-
XLAM=XLA2
X MU =X M2
RHO -RH 2
XLH -.~XlAL

'T HO E~ RH A 1 - 3
THE1:: ORMAJ k 3X-'SLII IUI ~iEF CE

WR17*E(5,l3-) 16EVrAO
3 FORMAT(3Xv TlHETA0=' PE12.5)

CALL SOLLI (THETAOXAMXMU XLAi3 , RHF RHO()
CL=CL2
CALL CRCSL'D(CLvTl-EiA0,:CLyYA)
THET41=YA

14 FORMAT(3X 'THETA,'71 =' PE 12. %')
c L AYE R 5 ---- SO0L I 1. 2-SOL I D 1 1i % P~F ICE

XL.A M=XL A2
X MU X M 2
R CI J H 2
XLAtlB:-:XLAl

101 If R H i

THIEkO bI1ET 4

1J FORMAT(X 'cO'-A 2-OLI E' 1 INTERFACE

1L FORMAT(UXv HE'tft~m- 9E25
C45LL SOL 1i THET1 )O * )iiU, PLi~ A~~'' rj, RHOEk)
CL =CL 2
UC P::C L I
"ALL C.- .SUEJB(C-L~ P r K_: L- V'I
T HE T"3 -*
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WRITE(5y17) THEI*35
17 FORMAT(3Xy'THETA35='vE12.5)
C LAYER 6 --- SOLID' 1-LIQUID INIEE<FACE

X LAM =XLA 1

RHO=RH1
XLAI4E=XLAL
RH 3D =RHL
T H E 1AO= T HET 3

iS FOiRMAI ( 3X. SOii- 1 z.2I' 1, I'NERFACE'
I4RITE(5p19' i)~

CALL Oi'-:.
STOP
END
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SUBROUTINE WASO(THETAOXLAtMPXMUBPXLAMBPRHORHOB)
CL=SORT (XLAM*2 *683/RHO)
CLB=SQRT( ((XLAMB+2.*XMUB) )*2.66.3/RHOB)
CTB=SQRT(CXMUB*2.*683/RHOB)
CALL CRCSUB (CLi THETRO ,CLp YA)
THETA1=YA
WRITE(5i2) THETAI
CALL CRCSUB(CLPTHETAOPCLBYY4)
THETA3=YB
WRITE(5,3) THETA3
CALL CRCSUB (CL, THETAOPCTF rYC)
THETA4=YC
WRITE(5p4) THETA4

2 FORMAT(' THETA1='iFlO.4)
3 FORMAT(' THETA3= PF10.4)
4 FORMIAT(' THETA4='PF1O.4)

Cll=-SIN(THETAl)
C12=SIN( THETA3)
C13=-COS C THETA4)
c21=COS(THErAI)
C22=COS (THETA3)
C23=SIN (THETA4)
C31=--XLAM/XLAM
C32=CL*(XLAMB+2.*XMUEB*COS(T'HEi*A3)*CQS(TIHETA3) )/(CLB*XLAM)
C33=(CL*XMUB*SIN(2.*'HEIA4) )/(XLAI~I*CTB)
B1=SIN(CTHETAO)
B2=COS(CTHETAO)
B3=XLAM/XLAM

WRITE(5,1) C21PC22PC23YB2V
WRITE(5pl) C31FC32PC33YB3

IFORMAT( 1XPE12.5, 1XPE12.5, 1XE12.5, 1XvEl2.5)
CALL D3(EEERMC11 YC12,'C13,C21 ,C22PC23,C31,C32,C33)
WRITE(5vl0) DETERM

10 FORMAT(5XPtIETERM=#,E12.5)
CALL D3(rIPBlPC12PC13,B2,C22,C23,B3,C32,C33)
Xl =E'I DE TERM
WRITE(5,20) X1

20 FORMAT(5Xr'Al/A0='vE12.5)
CALL E13(EIICllBlC13,C21,E'2,C23,C31 PB3vC33)
X2=DI 1/DETERM
WRITE(5?30) X2

30 FORMAT(5X, 'A2/AO=' E12.5)
CALL D3(DIII ,C~l ,Cl2iPB1C21,C22,B2vC31 ,C32PB3)
X3=DI I /DETERM
WRITE(5P40) X3

40 FORMAT(5X,'A3/AO='PE12.5)
RETURN
END
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SUBROUTINE SOLLI(THETAOvXLAMXMUXLABRHRHO4)
CT=SQRT(XMU*2*683/RHO)
CL=SQRT( ((XLAM+2.*XMU)*2.683)/RHO)
CLB=SORT (XLAMB*2 .683/RHO)
CALL CRCSUB(CLPTHETA0'CL' YA)
THETA 1=YA
WRITE(5p2) THETAl
CALL CRCSUB(CLPTHETAOPCTFYB)
THETA2=YB
WRITE(5,3) THETA2
CALL CRCSUB(CLPTHETA0PCLBPYC)
THETA3=YC
WRITE(5v4) THETA3

2FORMAT(' THETA1='PFI0.4)
3 FORMAT(' THETA2='PFlO.4)
4 FORMAT(' T*HET*A3='PF1O.4)

Cll=-SIN(THETAI)
C12=SIN( THETA2)
C13=SIN( THETA3)
C21=COS(THETAl)
C22=-SIN(THETA2)
C23=CDS(THETA3)
B33=XLAM+2.*XMU*COS(THETAO)*COS(THETAO)
C31= (XLAM1+2.**XMU*COS (THETA ) *COS (THETAl) )/F33
C32=CL*XMU*SIN (2. *THETA2 ) / CT**33)
C33=CL*XLAM4/ (CLB*B33)
Bl=SIN(THETAO)
B2':=COS (THETAO)
B3=(XLAM+2.*XMU*COS(THETAO)*COS(THETAO) )/EB33
WRITE(5, 1) Cli ,C12PC13,B1
WRITE(5pl) C21PC22PC23PB2
WRITE(5pl) C31PC32,C33E43
WRITE(5p5) B33

IFORMAT( 1XrE12,.5, iXE12.5, lXE12.5, lXE12,5)
5 FORMAT(' E33='iE12.5)

CALL D3(DE'ERMC11 ,C12,C13,C2 1 C22,C23,C31 ,C32,C33)
WRITE(5,1O) DETERM

10 FORMAT(5Xv'DETERM='vE12.5)
CALL r'3(DI ,E'i Cl2,Cl3,B2vC22,C23EB3,C32PC33)
X =D I /DE TERM
WRITE(5P20) X1

20 FORMAT(5X,'A1/A0='rE12.5)
CALL 13(tIICllBlC13,C2lip2C23,C31 ,B3,C33)
X2=DI 1/DETERM
WRITE(5P30) X2

30 FORMAT(5XP'A2/AO='PE12.5)
CALL D3(DIII PC11,C12,B1 PC2l C22,E42,C31,C32,PB3)
X3=DII I /DETERM
WRITE(5Y40) X3

40 FORMAT(5XP'A3/AO='PE12.5)
RETURN
END

48



SUBROUTINE SOLIEI(THETAOPXMUXLA1IXMUBXLAMBRHORHOB)
CL=SQRT( (XLAM+2.*XMU)/RHO)
CT=SQRT (XMU/RHO)
CLB=SQRT ((XLAMB+2.**XMUB )/RHOE4)
CTB=SQRT (XMUB/RHOB)
CALL CRCSUB(CLPTHETAOPCLPYA)
THETA 1=YA
WRITE(591) THETAl
CALL CRCSUB(CLTHETAOCTYYB)
THETA2=YB
WRITE(5y2) THETA2
CALL CRCSUEI(CLYI'HETAOPCLBYYC)V THETA3=YC
WRITE(5p3) THETA3
CALL CRCSUB(CLYTHETAOYCTBYYD)
THETA 4 =YE
WRITE(5y4) THETA4

I FORMAT(' THETA1='YE12*5)
2 FORMAT(' THETA2=',E12*5)

3 FORMIAT(' THETA3='YE12#5)
4 FORMAT(' THETA4=',El2.5)

Cl1=-SIN(THETAl)
C12=-COS( THETA2)
C13=SIN(THETA3)
C14=-COS (THETA4)
C21=COS(THETAl)
C22=-SIN (THET A2)
C23=COS(1HETA3)
C24=SIN (THETA4)
E433=XMU
C31=XMU*SIN(2.*THETA1 )/B33
C32=(XMU*CL*COS(2.*T'HETA2) )/(CT*EB33)
C33=XMUB*CL*SIN (2.* *THETA3 ) /(CL-B*B33)
C34=-XMUE'*CL*COS (2. *THETA4 )/ (CTB*E433)
B44=XLAM+2.*XMU*CoSuHETAO)*COS(HET'Ao
C41=-(XLAM+2.*XtU*COS(THETA1)*COS(THETAl))/B44
C42=XMU*CL*SIN (2, *THETA2 ) /(CT *i444)
C43=CL*(XLAMB+2.*XMUB*COS(THETA3)*COS(T'HETA3) )/(CLB*B44)
C44=XMUB*CL*SI(' ( **THETA4) / (CTB*B44)
Bl=SIN( THETAO)
B2=COS (THETAO)
B3=XMU*SIN (2. *THETAO )/B33
B4=(XLAM+2.*XMU*COS(THETAO)*COS(THETAO) )/B44
WRITE(5p5) ClI ,C12YC13PC14YB1
WRITE(5p5) C21PC22PC23PC24PB2
WRITE(5p5) C31 ,C32PC33YC34PB3
WRITE(5r5) C41PC42PC43PC44PB4

5 FORMAT(1XE12.5, 1XE12.5,1XE12.5v1XPFEi2.5piXvE12.5)
CALL D4(t'ETERMtC11 ,C12iPC13,C14rC21 vC22YC2 3vC24,C3i

XC32PC33PC34PC4i vC42PC43PC44)
WRlTE(5v10) PETERI

10 FORMAT(5X,'E;ETERM='vE12.5)
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CALL D4(DI ,B~IC12vC13PC14,B2tC22PC23,C24P
XB3vC32PC33PC34PB4vC42PC43xC44)
X1IEhI/DETERM
WRITE(5P20) Xl

20 FORMAT(5Xv'Al/AO= vE12.5)
CALL D4(DII ,Cl1 ,Bl C13,C14,C21 ,B2,C23,C24vC31t
XB3pC33PC34PC41PB4pC43PC44)
X2=E'I /LIETERM
WRITE(5P30) X2

30 FQRMAT(5XP'A2/AO='PE12.5)
CALL D4(DIII ,Cii C12PBl ,C14,C21 ,C22,B2,C249
XC31,C32,'-B3,C34,C41,C42,B4,C44)
X3=DII I /DETERM
WRITE(5P40) X3

40 FORMAT(5X,'A3/AO='FE12.5)
CALL E4(DIVC11,C12,C13,BlC21,C22,C23,B2,C31g
XC32PC33 B3vC41vC42PC43, B4)
X 4=DIV/EETERM
WRITE(5P50) X4

50 FORMAT(5XP'A4/AO='PE12.5)

RETURN

END
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SUBROUTINE D4(E',A1l ,A12,A13,A14,A21 '22A23,A241M31 ,A32,
XA33PA34PA41 ,A42PA43YA44)
CALL D3(DAA22,A23 iA24PA3 2.'A33,A34,A42vPA43,A44)
CALL E3(DiBA21 iA23,A24,A31PA33YA34,A41vA43,A44)
CALL E3(DCPA2liA22,A24vA31PA32,A34YA41iA42,A44)
CALL D3(DDiA21 ,A22,A23PA31,A32,A33,A41 ,A42,A43)
D=A1 1*DA-Al2*E'B+Al3*DC-Al4*DD
RETURN
END

C
SUBROUTINE D3(EiAll1 A12,A13,A21 PA2'A23,A31,

XA32PA33)
CALL D2(DEvA22rA23 ,A32vA33)
CALL E2(DFrA21vA*23vA31rA33)
CALL E2(EGA21PA22vA31vA32)
E'=A1 1*DE-Al2*'F+Al3*'G
RETURN
END

C
SUBROUTINE L2(E'AlvA12rA21rA22)
D=A1 1*A22-Al2*A21
RETURN
END

SUBROUTINE CRCSUJB(APBPCPY)
X=A*SIN(B)/C

X+35.*(X**9. )/576.
RETURN
END
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APPENDIX B

TWO-DIMENSIONAL CORRELATION

OF TWO LINES X =Y = UNIFORM TRANSLATION
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DIMENSIUN A)tJ 0, 0 ' , , ),AY( O), ,I .iOc)

FORh'I F Iu. 4)
DO 1,.. = v 0
DO 13 J1,NpI

3 CON I NUE

K=N--M
DO) 9 1i?=).hPM

NN-=Mh

AX ( I ):s.-(MM + I, I+NN)
AY(1,A" ,+MMNN+l)

7 CONTINUE
CALL C0RI(AAXyAYNMIN)

9 CONTINUE
STO P
END
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c
SUPROUl NL Cdh. iL ~X lq 11 1 L,~1

30 F 0L)R,,M( A f jX P C,0R d

.J2 1 Ji.-,:"2',.

L!C J, 2 .ityJ

00

1= C; + c. i *C 1i
3 CONTi1.NUE

IF(S.LT.S2) S~
IF:(CLT,C2) IMWN-L
IF kC .LTr.C 2) C2:

1 CONTINUE
2 CON rI NUE

DX=OOO1*F'LOAT( INM*IC)
DY=O .001*FLOAT ( IiN*IC)
WRITE(5p9) S2

9 FOkMA±T(5XP 'CORREL.ArIION-X:=',E12.5)
WRITE(5y7) C2

7 FORMAI'(5XCORREALTION-Y=',E12.5)
WRI'TE(5y8) E'XL'

8 FCORMAT( 5XLIDX.-',F1O.3,3X,'DIY--'F1O.3)
RE TURN
END
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LQIN-.fVL .Q V 0 U:t.:~ T) 0 V 0

rix= 0.000 11:, olo
C ORR 1
CURRELA2T I 0,.qX=: 0. 0 uUUOO+(. K'

COR.FAT !ON-Y.I 0. (Xj%)00E+0
0.(=005 it 0.001"

C RR E L A FI 0!, 0. 0000~0E+00

C~lN.l-'fL Q1N-Y .. 0 . CuUi OE+0
X :.()()I li D 0. (1 b

C0R R KL A I )N . X::: 0. 0000o0E+00
CORREALT1ION-Y= . 0 OOOE+00
fi:= 0.020 li ;:: 0.020
CORRI
CQRRELAf lQN-X=~ O.OOOOOE+00
CtJRREiM iIJON-Y= 0.OOOOOE+00
DlX= 0.025 LlY::.- 0.025

C ,0 REL L H N -X - 0.00000E+00
CQRREALl I0N-Y;:- o.o0000E+00
DX= 0.030 DY= 0.030

CORRELATIOiN-X= 0.OOOOOE+00
LG0RREALTION-Y= 0. OOOOOE+00

EI= 0.035 L'Y= 0.035
£A3RRI
CGRRELArtQN-*X= 0. OOOOOE+00
CORREALTION-Y= 0 *OOOOOE*00

f)= 0.040 i:y= 0.040
CORRI
C MR Rk-*L. Al ON .j- X(=. 0 C'0E+00
(Ct.RRELTIIJN-Y= 0.OOOOOE+00

r)= 0.045 D) 0.045
CORR[
CORRELATION-X= 0. OOOOOE+00
CGRREALTIQN-Y. 0.00000E+00
03x= 04050 1~.6 0.050
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CDiRFA
CIIE-' luN -X - 0 * A~t+00

COlRRErALI1N-Y= 0.0'u000E+00
11 X;! 0.* 055 11)0 0

CORRE'L~YIt UN-X=: 0.00000FO+00
CORFREALTION -Y= 0.0, )( , i00E+0
Dix ~ j060 i? 0.060

Co R RIEL 1)N-X: N)00O

CORRE.LTION-Yo- k) (AOOE+V0-
DX - o .061z * 0.065
COhRI
CORREL-.Ar ICN--X;: 0*OOOOOF.+00
CORREALTION-Y= 0.* OOOOE+-00
DlX= 0.070 fDY:= 0.070
CORRI
CORRELA'IION-X= 0.OOOOOE. '+00
CORREALTrION-Y= 0.OOOOOE+00

II= 00075 ly=: 0.075
C ORRI
CORRELA'T10N-X= O.O0000L+00
CORREALTION-Y= 0.OOOOOE+00
LIx= 0.080 ll'y= 0.080
CORRI
CORRELATION-X= 0 * 0000E+00
C()RREAL.T"ION--Y- 0,OOOOOE+00

rl= 0.085 Ely= 0.085
CORkI
CORF:'ELATION-X= 0.OOOOOE+00
CORREAL'TION-Y= 0,OOOOOE+00
DIX= 0.090 £IY= 0.090
CORRI
CORRELAl ION-.: 0.OGOOOE+00
CORRLALTION-W OOOOOOE+00
EiX:.- 0.095 Di'- 0.095
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