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I. INTRODUCTION

Research areas in experimental mechanics have been greatly expanded since
the introduction of the He-Ne laser in 1960. 1Initial engineering applications
utilized holographic interferometry to measure surface deformations of opaque
solids. Original applications suggested that the modern techniques in coherent
optics would possibly change the method of measurement of strains and stresses;
however, this has not been the case, although many engineering examples have
been successfully demonstrated. Some of the authors' contributions are listed
in references [1—7]. Although interference fringes are well defined in holog-
raphy, difficulties exist because of the sensitivity of the measurements which
require vibration isolation and the ability to separate displacement components
from a single hologram. Thus, holography has not developed as a general tech-
nique of experiemtal stress analysis, and still remains a technique of the
specialist.

Objects illuminated with coherent light are observed to have a granular
appearance known as the laser speckle effect. The details of this structure
do not resemble the microscopic character of the surface, but rather appear to
be random in nature. This effect is described in terms of the interference of
the microscopic nature of the surface when illuminated with a laser. Inter-
ference of the dephased, but coherent, waves results in this speckle effectﬂﬂ.
This effect has provided for a method of surface displacement measurements
known as laser speckle interferometry, which does not require vibration isola-
tion. In addition, this technique is a direct measure of in-plane displacements;
thus, the separation of components is accomplished easily [7]. All coherent
optical methods are a measure of surface displacements or its derivatives on
the boundary of a solid; thus, the need still exists to calculate stresses and
strains at any desired point in a three-dimensional body from the surface data.

The concept of speckle was first applied to optical systems; however,
modern applications reveal that the speckle effect occurs in many areas of
physics and engineering [B—lO] as a result of the ubiquitous character of the
random interference phenomenon. Examples of analogies to the laser speckle
effect include radar astronomy, synthetic aperture radar, recent developments
in ultrasonic holography, and theory of spectral analysis of random processes.
Goodman [8] illustrates that the basic concepts of speckle are much broader
than originally envisioned with the laser, and that the results apply to all
related phenomena, so long as the basic statistical assumptions are satisfied.
Because of these parallels, the results of the laser speckle effects in optics
suggest the possibility of an acoustical speckle effect utilizing ultrasonics.
The direct extension of substituting an ultrasonic wave for coherent light is
an obvious one, since it was first performed in the acoustical holography. An
acoustical speckle interferometry study has been demonstrated to be a direct
measure of object motion [11,12], which closely parallels laser speckle inter-
ferometry. The particular significance of the ultrasonics is the fact that
subsurface scattering points can be recorded and correlated to measure acous-
tical signals. Thus, acoustical speckle interferometry has the potential to
measure displacements of interior points in opaque solids. The extension to
include measurements of deformable bodies will result in a technique to measure
directly strains at interior points in otherwise opaque solids.




I1I. ELASTODYNAMIC THEORY

Acoustical speckle interferometry is based locally on the elastodynamic
response of solids subjected to ultrasonic waves. The basic theory will be
governed by the following set of field equations for a homogeneous isotropic

medium.

The stress tensor ¢
the following equation

13 (X) is related to the gradient of displacements by

g,, =AU .. + u( ) @)

1] +U
ij k,k "ij i,j j,i

where the comma denotes partial differentiation and A and y are the Lame's
constants.

Balance of linear momentum yields the following equation of motion writ-
ten in terms of displacement gradients.

v + (G +uw) U +pU =f (2)
¥ M, j,i1 P 1

where p is the mass density and fi are the components of the body force per
unit volume.

Solution of the equations of motion (2) must satisfy appropriate boundary

conditions. The displacemept boundary value problem assumes a knowledge of
displacements on the entire surface S.

Y &) =, (X) (3)

when X denotes the orthogonal coordinates X;, X,, X3 and U, are known values
of the surface displacements. The traction boundary value problem is

g ® =0, n = (eI (4)

1)

when the vector function E;(g) is prescribed for XeS. Unit vector n, 1s the

h|

outward normal vector for the body P.
As an initial approximation to the local response of an elastic body to

an ultrasonic wave, consider a plane displacement wave propq§atin with phase
velocity C in a direction described by a propagation vector p as fl3].

U= Aﬁein &)
where
n = KEp - ct)

Equation (5) describes a plane harmonic wave with %P - constant describing a
plane normal to the propagation vector P.

Two types of plane harmonic waves described by Equation (5) exist which
are solutions to Equation (2). Waves of the type where & = iﬁ are called

.
e ——— . . = = T R OREAN - T, s




Jongitudinal waves and the phase velocity is denoted as CL' Waves of this

type, where R ; = 0, are called transverse waves, and the phase velocity for
this type of wave is denoted as CT'

Substitution of Equation (5) into Equation (1) yields the following form
for the components of the stress tensor.

- in
oy = [AGij(dzpz) +uld py djpi)] ikAe (6)

when the summation convention is employed.

The presence of a subsurface layer or disconunity generally produces a
change in the wave propagating in a medium. Acoustical speckle interferometry
utilizes the reflection, refraction, and mode conversion of incident elastic
waves at the interface of two elastic media as a basic description of the
transmission and reflection of elastic waves. Consider initially two joined
elastic half-spaces, as illustrated in Figure 1. An incident longitudinal
wave, denoted as a p-wave, is incident on the boundary of the two elastic
half-spaces. At the interface, boundary conditions and conditions of conti- -
nuity will result in both reflection and refraction of longitudinal and trans-
verse waves from an incident p-wave. The notation and description of the
waves will be the same as described in reference [13] and repeated here for
completeness of discussion. Unit propagation vectors are illustrated in
Figure 1, with material properties of the incident medium denoted as i, p, u.
Material properties of the refracted medium are labeled AB, uB, pB. Super-
scripts, pn, on the propagation vectors are used to describe the reflected
and refracted waves as given in the following equatioms.

Incident Longitudinal wave (p-wave), n = 0.

The incident P-wave will be described by the unit propagation vector ;0,
when : .

p° = cos GOII + sin Ooiz (7-a)
) 30 >0

Displacement vector is described as = p ; therefore

ﬁo = A° [cos e Il + sin 0612] eino (7-b)

and
= ‘ + - -

n Ko [X1 coseo X5 sin 00 Co t] (7-¢c)

Stress components.for the incident p-wave are calculated from Equation (6)

and are

in

2
o)
= o -
T21 =1k, (A + 2ucos 0 ) A e (8-a)

R T e A

- R, -
-
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INCIDENT P-WAVE (P©)

Figure 1. 1Incident, reflected and refracted elastic waves
at the boundary of joined half spaces,
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in

192 = 2ik_p sin©® cos © A e'Mo (8-b)
(o] (o] o [o]

Reflected longitudinal wave, n = 1.

The reflected p-wave is described by the unit propagation vector as

-
;1 = sin 0, ;1 - cos 07 i, (9-a)

. . *1 e
Lisplacement vector is d' = p

o= Ay [sin 01;1- cos Olzz]elnl (9-b)
vhere
n = kl[*l sin 0 - X, cos 0 - Clt] (9-c)

Stresses for this wave are

1 in
101 = iko u sin 20] A e 1 (10-a)

1
Top = 1 Kk [x + 2u coszal] Ay einl (10-b)

Reflected transverse wave (sv-wave), n = 2.

Propagation vector, displacement vector and stress components are
given by the following equations.

P2 = sin 0,0 - cos 01y (11-a)

The description of a transverse vertical wave is given by

d; = i3 + Py, which yields the following form for the displacement vector.

W2 = As [cos 62;1- sin 62;2]e1n2 (11-b)
ny, = ky [Xlsin 01 - X, cos Op~ Czt] (11-c)
2 ikCu
Ty = - ——%%li—— cos 202A2ein2 (12-a)
T
2
Top = -ikpusin 20,ApeiM2 (12-b)




Refracted longitudinal wave, n = 3.

-

sin 0%1; + cos 031,

s -]
(]

> >
v = Aj [sin 051 + cos 6312] e

ins

ny = Kjy [Xl sin 03 + cos 03 - C3t]

iK C

Tgl = __QEL uB sin 203A3 e

‘L

3
T22

Refracted transverse wave, n = 4.

injg

lk3[XB + 2uB cos? 03] Az e

ing

(13-a)

(13-b)

(13-c)

(l4-a)

(14-b)

The transverse vertical wave in the refracted medium is described

by a3 = ;3Xp where
;“ = sin Ouzl + cos Guiz
o = A“[-cos qul + sin Ouié]ein“
ng = Ky [Xl sin Qy + X cos Oy- Cut]
4 B ing
T91 = 1iKyn" cos 204Aye

4y
Tp9 = quuB sin ZGQAgein”

(15-a)

(15-b)

(15~c)

(16-a)

(16-b)

At the interface, a condition of perfect contact will be assumed and the
displacement and traction vector at the interface X, = 0 must be continuous

for all X; and t.

0+ +02 =03 + O

+ + -+
€0+ Tl 4+ T2 = ¥3 4 b

These equations written in component notation are

0 1 2 =713 4
U1+U1+Ui U1+Ui

10

——— W -

(17-a)

(17-b)

(18-a)

s ———




1 2 3 L
Tzi + Tzi + Tzi = Tzi + Tzi i=1,2 (18-b)

,% Equations (7-c¢, 9-c, ll-c, l3-c) require that boundary conditions are satistiec
for all X; and t yields the following.

Kg sin @y = K; sin 07 = K; sin@; = K3 sin 093

= K, sin 04 (19-a)

= KI C. = Kz C,. = K3 CL = Kq CT (19-b)

Ky C L

L

Equations (17-a) and (7-b, 9-b, 1ll-b, 13-b) yield the following conditions on
continuity of displacements at the interface.

Ag sin Qg + A; sin 0; + Ay cos 0

= A3 sin 03 - Ay cos Oy (20)
Ag cos ©g - Ay cos Oy + Ay sin 07

= A3z cos 03 + Ay sin Q4 (21)

Equation (18-b), coupled with Equations (8, 10, 12, 14), yield the following
conditions for conditions on the components of the stress tensor at the

interface.
CL
Ay sin 20 - pA; sin 29, - "AZET cos 20,

C C
= _Lf uB A sin 205 - _LE uB cos 20, (22)
CL CT

Ko [* + 2u cos? 0] A0 + Ky [\ + 2 cos? &1] &
B B 2
- Kou sin 265A; = K3[} + 2y~ cos 63] Aj

+ KuuBsin 204 Ay (23)

Equations (20-23) can be put in a matrix form amenable to computation
for a system of n layered media.

11
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(a1 [x] = [5] (24)

where
~ -
-sin®, -cos03y sinOj -cos@,
080, -sin0, cos03 sin0Oy
A =
[ ] CL CL B CL B
usin20, vt—-cos262 —g¥ sin2063 - —* cos20y
1 CL CT
C. C c
-(A+2uc05201) EﬁusinZGQ —LE XB+2uBcosze3 —Lﬁszinzeq
T C C
L T
L‘ —
FAl/Ao
Ay /Ag
(x] =
A3/Ay
Ay /A9
sin ©p ]
cos Op
(8] -
u sin 20,
A + 2ucosfy
L s

Equation (24) forms the solution for the amplitude ratios Ai/A; for the reflec-
tion and refraction of an incident p-wave of two perfectly joined half-spaces.

For a system of n-layers, Equations (19) and (24) can be utilized to determine

the propagation and energy partition at the boundary of each layer.

Some special cases of the interfaces are of primary importance for
problems in acoustical speckle interferometry. A liquid-solid boundary usually
forms the initial interface, and a solid-liquid boundary forms the last bound-
ary interface for a solid immersed in a liquid. In addition, a subsurface
layer from a practical point forms a boundary of an elastic body with air,
which is the condition of a subsurface void. At this ir:erface, the refrac-
tion of elastic waves will be neglected; therefore, only the reflection of
elastic waves at a free surface will be considered. Since these special
cases are of particular importance in acoustical interferometry, they will be
examined in some detail.

12
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A. Liquid-Solid Boundary

Suppose that the medium comprised of the incident p-wave is liquid
and the refracting medium is an elastic solid. For this condition, the
reflected SV-wave is zero; therefore, the boundary conditions reduce to the
following form.

0 4yl = 3 4yt 1 =1 25
Ui Ui Ui Ui ( »2) (25)
0 1 _ 3 L 2
To2 ¥ Top = T2z + Ta2 (26)

B +13 = O

Equations (25) and (26) are solved for the amplitude ratios Ai/A0, and
are displayed in matrix form for computation.

—

-sin 0y sin @3 -cos Oy AllAa sin GJ
cos 0, cos O3 sin Q4 Az/Ag cos Op| (27)
c C
-A ~L§ [}B + ZuBcos203 —LE uBsin 20y | [Ay/Ag A

B. Solid-Liquid Boundary

The boundary between the.two layers is comprised of aq*elastic solid
reflecting medium and a liquid refracting medium. The p-wave (po) represents
the incident wave and the transmitted sv-wave is zero. Boundary conditions
reduce to the following.

0 1 2 n - .
Ui + Ui +U, = Ui (1 =1,2) (28)
0 1 2 Y
To2 + T2 + T22 = 122 (29)

]
o

0 1 2
T21 + 121 + 121 (30)

Equations (28, 29) are solved, and in matrix notations are written in
terms of Ai/A0 as

13




~sin 0 ~cos 0s sin 0;- (k]/Ao [ sin Qg
cos 6 ~sin 9, cos 03 A2/Agl =) cos © (€3]
‘L €, B| - |as/ 2
D + 2ucos2®ﬂ ~usin20, L 3780 A+ 2ucos™0g
Cr c B - -
- L ]

C. Free Boundary

At a free surface, the following boundary conditions are satisfied
for the stress components.

0 1 2
T21+T21+T2i = 0 i=1,2 (32)

Solution of Equation (32) in terms of the amplitude ratios are [lﬂ

A _ sin 29p sin 207 -~ K2 cos220, (33-a)
Ag sin 20p sin 20, + KZ cos”20, 2
Ay 2K sin 209 cos 205 (33-b)
Ay sin 20y sin 202 + K? cos®20,

where ) -
K 21 - V)
~ 1 =2y

I11. NUMERICAL RESULTS

The numerical solution for a layered elastic half space immersed in a
1iquid medium involves the solution of Equations (24), (27), and (31) for the
amplitude ratios A1/Ap, A2/Ao, A3/A0, and Au/A0. Equation (27) is utilized
to determine the amplitude ratios at a liquid-solid boundary for an incident
p-wave in the liquid. At each solid boundary, Equation (24) is used to cal-
culate the amplitude ratios. At the solid-liquid boundr - , amplitude ratios
are calculated by Equation (31). Thus, for a multiple~layered medium, these
equations are repeatedly applied for the number of interfaces.

As an illustration of the liquid-solid boundary equation, consider an
incident p-wave in water at a steel interface for various angles of incidence
0p. As expected, an incident p-wave gives rise to a reflected p-wave and
transmitted p-waves and sv-waves in the solid. Equation (27) was solved

numerically for the following data.

14
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A steel = 16.42 x 10% psi
p steel = 0.284 lbm/in?

u steel = 11.6 x 10% psi
B water = 0.318 x 108 psi
p water = 0.0361 lbm/in3

Amplitude ratios for various values of the incident angle Gg are given in
Figure 2.

An incident p-wave in a solid at a water interface gives rise to both
reflected p-waves and sv-waves and a transmitted p-wave. Equation (31) is
used to calculate the amplitude ratios at this boundary and in Figure 3 the
amplitude ratios are shown versus the angle of incidence Og.

A solid elastic half space for an incident p-wave in one solid gives rise
to both reflected and refracted p-waves and sv-waves in each solid. The amp-
litude ratios for this boundary are calculated from Equation (24). As an
illustration of this solution procedure an incident p-wave in steel at a
steel aluminum boundary is used as data for the calculation of the amplitude
ratios for various angles of incidence 9p. Data for the aluminum are shown
in Figure 4.

A Aluminum

7.42 x 10% psi

4.00 x 108 psi

[

p Aluminum
p Aluminum = 0.100 lbm/in3

An example problem of a two-layered elastic half space immersed in water

is chosen to illustrate the solution procedure for the layered medium problem.
Geometry for this example is showi. in Figure 5, and only reflected and refracted
p-waves at each interface are shown in this illustration; however, sv-waves
exist at each solid boundary. The particular significance of the p-waves is
in the application of acoustical speckle interferometry to object motion
measurements in layered media. Reference [12] illustrates that the p-waves
are amenable to object motion measurement; therefore, this discussion will be
restricted to p-wave propagation. Consider an incident p-wave in water at
interface 1 which is a liquid-solid boundary. Solid 1 is taken to be steel
with the same properties for the liquid-solid example. Superscripts refer to
the particular wave component, as discussed in the previous section, and sub-
scripts refer to each boundary. A transmitted p-wave at boupdary 1 will
become an incident p-wave at boundary 2 and incident angle @; = 0. For the

. two-layer elastic half space, the incident waves at each boundary are listed

" in the following:

Boundary 1: E? = 50 , 9? = 0

0 3
Boundary 2: ;2 = ;f ’ Gg = 6
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Boundary 3:

Boundary 4:

Boundary 5:

Boundary 6:

Amplitude ratios at each interface for an initial incidence angle o0 = o°
are listed in the following for the two-layer elastic half space.

+0 +1

P3 = P2 , 03 = 02
3e = B35, e = o5
T
32 = 33 s Gg = Og

puter program for these calculations is listed in Appendix A.

Liquid-Solid
Ay /Aq
Ay/Ag
A /Ay =

1 Boundary 1
0.93810
0.051905
0.00

Solid 1-Solid 2 Boundary 2

A, /Ay
A, /Ay
A3 /A,
Ay /By

-0.45965
0.00
1.4597
0.00

Solid 1~Liquid Boundary 3

AI/AO =
ay /8y =
A3/A0 =

-0.93809
0.00 -
1.9381

Solid 2-Liquid Boundary 4

Ay /A
Ay /g
Asz/Ay

-0.8411
0.00
1.8411

Solid 2-Solid 1 Boundary 5

Ay /A
Ay /Ay
Al/A,
e

0.45965
0.00
0.54035
0.00

Solid 1-Liquid Boundary 6

A] /Ao =
My /Ay =
A, /A =

-0.93809

0.00
1.9381
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Amplitude ratios at each interface for an initial incidence angle
0% = 20" are listed as follows:

Liquid-Solid Boundary 1

Aj/Ag = 0.92684
A3/Ag = 0.17302
Ay/Ag = 0.65243
Solid 1-Solid 1 Boundary 2
Ay/Ay = 0.44433
Ar/Ag = 0.09316
A3z/Ay = 1.4611
A, /Ay = 0.017700
Solid 1- Liquid Boundary 3
A /Ay = 0.81650
Ax/Ag = 0.69193
Ax/Ag = 2.0430
Solid 2- Liquid Boundary 4
A1 /Ay = 0.72645
Ar/Ag = 0.65056
Az/Ap = 1.9423

Solid 2- Solid 1 Boundary 5
A /Ay = 0.44651
Az/Ag = 0.08059
A3/Ap = 0.53946
Ay/Ay = 0.0077461

Solid 1- Liquid Boundary 6

Ar/Ag = -0.81650
Ay/Ay = 0.69193
A3/Ag = 0.02430

IV. ACOUSTICAL SPECKLE INTERFEROMETRY

As a tool of quantitative nondestructive testing of materials, the
spectral analysis of ultrasonic pulses in elastic solids has attracted wide
attention in recent years. Krautkridmer [14] suggested in 1959 that measure-
ment of the pulse shape could be used to determine the size and orientation
of flaws in materials. Methods for determining the spectral content of
broad-band ultrasonic pulses reflected and scattered in materials were subse-

quently developed by Gericke [15]. In his pioneering work, he showed that
21
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the spectral content of pulses propagating in steel specimens was greatly
dependent on the material's microstructure. In later work [16], he investi-
gated the spectral content of echoes from cylindrical cavities oriented
perpendicular and parallel to the direction of wave propagation. From these
experiments he concluded that it might be feasible to use ultrasonic-spec-
troscopy measurements in conjunction with normal pulse-echo techniques to
determine not only the location of a defect, but also its shape. Brown [17]
has reviewed some results obtained by Lloyd [18] on the spectral response of
various conical and flat-topped cylinders, which could be explained quali-
tatively in terms of the cylinder's dimensions and geometry. Sachse [19

has reported an experimental investigation of the spectral analysis of wide-
band ultrasonic pulses as scattered by a circular, cylindrical, fluid-filled
cavity in an elastic solid. It was shown that either the diameter of the
cavity or the wave speed of the fluid can be determined from the time record
of the scattered pulses. Furthermore, an empirical formula was developed to
relate the diameter and the wave speed to the intervals between the minima
or maxima of the power spectra. The author concluded that the method of
ultrasonic spectroscopy which are originated by Gerick can be used to detect
the dimensions and mechanical properties of flaws and impurities inside
elastic solids.

Theories of the scattering of acoustic waves have been extensively
devleoped since the fundamental work of Lord Rayleigh [20]. A review of the
existing theories as well as some numerical results of scattered waves in

elastic solids have been published in the monograph by Pac and Mow [21]. The
case of a circular, cylindrical cavity inside an elastic solid was investi-
gated in detail by White [22]. He measured amplitudes and arrival times of
plane harmonic waves with long duration, using standard ultrasonic techniques.
His measured angular distributions of the scattered wave amplitudes for both
incident longitudinal and shear waves agreed very well with his theoretical
analysis.

The interaction of sound waves and pulses with solid cylinders immersed
in a fluid has been of interest in underwater acoustics for some time. Most
extensively studied has been the scattering of pulses incident normal to the
axis of the cylinder. 1In 1967, Goodman, Bunney, and Marshall [23] reported
the existence of a Rayleigh-type circumferential wave propagating around a
solid cylinder. Later, Neubauer [24—26] reported the results of experiments in
which pulses were used to study the propagation of the circumferential waves on
aluminum cylinders immersed in water. In 1969, Bunney, Goodman, and Marshall
[27] also reported observation of the Rayleigh-type wave. Several experiments
of the scattering of broad-band ultrasonic pulses by cylindrical inclusions in
elastic _solids have been performed by Sachse and Chian [28] and Bifulco and
Sachse [29]. The inclusions were fluids or solids whose wave speed was less
than that of the solid matrix material. It was shown that in a non-destructive
testing application, the size and wave speed of the inclusion could be deter-
mined from measurements of the arrival times of various scattered pulses. 1In
a recent work [30] measurements are reported of the arrival times of broad-band
ultrasonic pulses scattered by a circular, cylindrical solid inclusion imbedded
in a matrix whose longitudinal wave speed is lower than that of the scatter.

In many instances in practice, it is highly desirable to obtain an
accurate and rapid measure of the stress in a structural member. Ultrasonics
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offers a great tool for the realization of a system capable of performing this
task. Ultrasonic-pulse spectroscopy measurements has been used to measure the
stress—-induced interference effects between two shear waves propagating in
uniaxially deformed specimens of aluminum [31]. This technique shows consid-
erable promise as a means for measuring and monitoring the applied stresses

in materials.

Ensminger [32] documents many modern applications dealing with topics
such as thickness measurements, inspection of metals and non-metals and the
determination of bond integrity. Ultrasonic inspection is further bein
extended to tissue examinations and bone scans in the medical field [33 .

As an experimental nor -destructive stress analysis, the polarized trans-~
verse ultrasonic waves have provided a new method of measurements which is
christened the acoustoelasticity. Similar to the photoelastic effect, the
velocity of the transverse soundwaves traversing a stressed elastic solid is
not a constant as it would be in an isotropic solid. The velocity depends on
the direction of the particle motion (polarization), the direction of wave
propagation, and the state of stress. With the recent advancement of ultra-
sonic techniques, one can generate, transmit and detect plane polarized ultra-
sounds. Therefore, stress-induced acoustical birefringence can be measured.
As in photoelasticity, the difference of propagation velocities in shear waves
polarized in principal stress directions is proportional to the principal-
stress differences in the plane-stress state. Thus, this technique is a
nondestructive test method and determines stresses by ultrasonic shear waves
which do not require a transparent plastic model [34—36].

Plastic deformation in crystalline solids by means of high-frequency
stress wave propagations has been studied by a number of investigators [37,38].
The study of the relation between the propagation of ultrasonic waves and plas-~
tic deformation in single crystals has been discussed in detail. Specifically,
changes in attenuation and velocity of ultrasonic waves have been measured as
a function of plastic strain during the deformation process. These techniques
have also been applied to the investigation of some aspects of strain hardening
mechanisms [39].

Knowledge and control of the transmission and reflection of ultrasonic
waves in layered media is an important basic problem in underwater acoustics.
The problem of transmission of sound at cblique incident angles through a
solid multilayer system of plane parallel plates was treated by Thompson [40],
Brekhovskikh [41], and others. The most detailed solution of the multilayer
problem is by Shaw and Bugl [42], whose theoretical approach was directed
toward the investigation of conditions under which interface waves may be gen-
erated. In a recent work [43], the wave equation was solved to determine the H
transmission and reflection coefficients for plane waves at oblizue incidence
on a system of n layers of plane parallel plates.

Acoustic holography is the newest branch in acousting imaging technology.
It is directly comparable with optical holography in the phenomenological
sense, because to make a hologram it is necessary that the two beams of radia-
tion used have the ability to interfere with one another. Acoustic holography
unierwent very rapid development during the last few years, and simulated the
general field of acoustic imaging through the introduction of novel techniques
for visualizing acoustic excitation. In contrast to optical holography, which
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has sometimes been described as a solution looking for a problem, acoustical
holography was from the outset developed for a specific purpose. This purpose
is that of all acoustical probing systems, namely, detecting, locating, and
imaging a structure immersed in a medium opaque to electromagnetic raciation.
This description encompasses a variety of specific problems, such as non-
destructive testing, medical imaging, oil exploration, and underwater imaging.

A recent development in laser technology, referred to as speckle inter-
ferometry, has provided for a new technique in experimental mechanics to
measure surface displacements of deformed solids. Basically this method

records the laser intensity variation across the surface of an object due to
the random interference of the microscopic character of the illuminated sur-
face. Figure 6 illustrates the basic method for recording a double exposure
laser speckle photograph. A high resclution photographic film records the
granular pattern on the film plane of a camera. If the object is displaced
from a reference configuration, the speckles are mapped to a new location on
the film plane corresponding to the object motion. Data analysis consists

of pointwise filtering as illustrated schematically in Figure 7. This method
of data analysis assumes a constant value of displacement within the small
area of illumination, and the resulting interference pattern is obtained by
taking optically the Fourijer transform of the amplitude transmission function
of the photographic transparency. Interference fringes are therefore a direct
measure of local object motion within the area of illumination. The discrete
global response of the body is obtained by pointwire filtering of many small
areas of the photograph transparency.

Because the speckle effect is statistical in nature and the basic con-
cepts occur in many areas of physics and engineering, the previously devel._,.d
techniques in optics suggest a parallel development in ult.asonics. In a
recent work [11,12] a basic theory of one-dimensional pulse-echo and continu-
ous wave acoustical speckle interferometry was developed. This method utilized
the statistical concepts of speckle and one-dimensional correlation of refer-
ence and displaced signals to determine object motion of subsurface scattering
layers. This study established the feasibility of the acoustical speckle
concept for object motion measurements.

V. BASIC THEORY OF DISPLACEMENT MEASUREMENTS UTILIZING ULTRASONICS

This section presents the geometrical concepts of displacement functions
of a continuum and the correlation of a reference and deformed ultrasonic
signal as a measure of object motion. The basic problem may be described in
the following way: given the measured ultrasonic global response of signals
before and after deformation, it is then required to calculate the local
object displacement vector from the global reference and deformed configurations
of a body. Thus the basic problem is geometrical in nature and initially is
not concerned with the external forces necessary to cause the geometrical
deformation.

Let the position of the points in a continuum in the initial (unstrained
state) be given with respect ot the coordinates Xj, X3, X3, as illustrated in
Figure 8. The body is deformed with respect to the unstrained coordinates
and points are displaced to new coordinates denoted as Xj, Xj, X§ (Figure 8).
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Figure 6. Formation of a laser speckle photograph.
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Figure 8. Displacement components of a deformed body.




The coordinates of an arbitrary point in the deformed configuration are
expressed in terms of the original coordinates by the following equation.

x; = X ¢+ ui(xl, X5, X3, t) (34)

where Ui are called displacement components and are taken to be continuous

functions of the original coordinates X;, X;, X3. Thus, in general, the
displacement functions vary from point to point in a deformed body.

Suppose a continuous mode or pulse echo ultrasonic scan is made of a
rough scattering surface with reference area M as illustrated in Figure 9.
The field reflected from the scattering surface at the plane of the receiving
transducer in a plane immediately adjacent to that surface is described by a
complex function a(f,n), which represents a reflected p-wave or SV-wave from

an incident p-wave in an elastic solid. The complex field P(X) where ¥ = (X;,X;)

denotes the ordered pair of numbers in the plane of the recei@ing transducer
which is parallel to (£,n) and represents the amplitude of the reference
signal, which is the field of interest from the acoustical signal. Details

of buth pulse echo and continuous mode scanning techniques of scattering sur--
faces are described in reference [11,12].

Now suppose that the receiving transducer is returned to the original
position and the scattering surface is displaced from its reference configura-
tion. A complex field P(X”) represents the amplitude of the received signal
where the coordinates X~ = Xy,X, are parallel to the plane (£,n). If the
displacements functions in Equation (34) are substituted into the representa-
tion of the displaced signal, the special form reduces to the following:

P(X") = P(X; +U;, X5 +Up) (35)

where the received signal is assumed to be a function of the coordinates
parallel to the plane of the scattering surface. The reference and displaced
signals are illustrated in Figure 10.

The problem now becomes one of correlating the signals P(X) and P(X")
to measure the local displacement components U; and U,. The basis for this
measurement is the autocorrelation function of the two signals which is given
in the following equation:

CW,Up) = J P(X1,X2) B(Xy + Up,Xp + Up) dXpdXy (36)
M
The one-dimensional correlation of continuous mode scanning for a rigid
deformation is discussed in reference [12]. This study demonstrated that
Equation (36) forms the basic concept for object motion measurement of sub-

surface acoustic scattering layers which agrees with the statistical rela-
tionships in laser speckle interferometry.

Although Equation (36) has been demonstrated to be a measure of object
motion, some limitations are imposed on the applications because the
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displacement functions U; and Uy are, in general, continuous functions of the
initial coordinates (X),X2) and are the unknown quantities to be determined.

If the displaced surface is just a uniform translation in the X;,X, directions,
then U;,U; are constant and the application of Equation (36) is straightforward;
however, in the presence of a deformed surface, U; and U, cannot be interpreted
in terms of a global uniform translation. The basic approach used in computing
the correlation of P(X) and P(X”) is to assume the basic theory of data analysis
in pointwise filtering used in single beam laser speckle interferometry

(Figure 11), Object motion displacements are obtained by passing a laser beam
ttirough a small area of a double exposed transparency which contains both the
reference and deformed images. Interference fringes are observed as intensity
of the light amplitude in the transform plane. This analysis utilizes the

shift theorem which restricts the displacement components to be constant with-~
in the area of illumination. Practical applications for a He-Ne laser restricts
the area to be a circular region approximately 2 mm in diameter.

This restriction in optics suggests the following approach in acoustical
speckle interferometry. Let the reference scan be recorded over some reference
area M in the X;,X; plane, as illustrated in Figure ll1. Suppose that within
scme small neighborhood of a point Po eP(X ) the displacement is assumed to

be uniform. The acoustical signal corresponds to a small neighborhood of the:
point Po eP(X). Therefore the Equation (36) can now be used in the form

AC(U;,Up) = j' AP (X1 ,X2)AP(X; + Up,Xp + Up) dX;dX, (37)
M

where AP(X) and AP(X”) correspond to a small surface surrounding the points of
interest. The correct values of U;,U; corresponding to the object motion
displacement will result in a maximum value of the correlation function
AC(Up,Uz). This correlation procedure corresponds to the data analysis at
pointwise filtering in optics and ‘thus completes the analysis of the displace-~
ment of a point. The procedure to determine the discrete displacement values
will follow the procedure in optics as discussed in reference [7].

A discussion of the cross-correlation peak should include the effects
of deformation on the local accuracy of the correlation function. This prob-
lem in local deformation of an object is similar to the problem of image
correlation with geometric distortion on the accuracy of image restoration
[44]. Basically, the image restoration is investigated for distortions
represented by an affine transformation of image coordinates, which is an
offset plus scaling and rotation of each image coordinate axis [45—47]. The
image analysis assumes a fixed geometric distortion and then a proper choice
of integration area in the cross-correlation can be optimized for minimum
local error. Geometric distortion for deformable bodies is generally unknown;
therefore, this represents the inverse problem to image registraticn. A
discussion of this problem will include the restrictions and assumptions in
the linear theory of elasticity and an example problem will be chosen to
illustrate the effects.

Let a point P be displaced to a point P~, and point Q displaced to Q~.

The displacement of point Q can be expanded in a linear Taylor's series as
expressed in the following form.
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3
Uyl Q = u, | P+ E—L AX, + ==L AX, (38)

Equation (38) can be expressed in terms of the infinitesimal strains and
rotation components which results in the following expression [48],

Uy | @ = Uy | P+ ay (39)

U, | Q U, | P+ AU,

where

AU]_ = €11 AXI + (g12 - m3)

AU, (e12 + w3)AX1 + €,74X,

The correlation function can now be, put in the following form.

AC(Uy + AUy, Uy + AU7) = fAP(X),X2) AP(X1+ Uy + AUL,X,

+ AUR) dxldxz (40)

Equation (40) has been demonstrated to be a measure of object motion,
taking into consideration the restrictions and assumptions in the linear theory
of elasticity; however, Equation (36) represents the general measure of object
motion. 1In the presence of a largely deformed surface U; and U, can be inter-
preted in terms of a rigid body translation and rotation and normal and shear
strains. Several numerical examples will be discussed in order to illustrate
the application of numerical correlation in object motion mersurements.
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VI. NUMERICAL EXAMPLES AND CONCLUSIONS

Several numerical examples will be discussed to illustrate the application
of the numerical correlation in object motion measurements. A reference signal
P(X) corresponding to the undeformed scan is illustrated in Figure 12. A line
along the X; axis is shown in Figure 13. The reference area M for all exam-
ples presented will comprise an array of 100 x 100 data points. The displaced
signal P(g') will be correlated with the reference signal for the specific cases
of displacement components U; and U,. A correlation computer program is listed
in Appendix B.

For a case of uniform translation in the absence of geometrical distortion,
some simplifications in the integration area M allowed for a considerable reduc-
tion in computer time. The procedure utilized was to perform the correlation
over two orthogonal lines of data points which comprise a length where object
motion is assumed to be uniform. In the examples discussed, the five data points
for this interval were used. Figure 14 is a graphical display of three examples
of uniform translation. Figure 15 shows the surface P(X”) for a uniform tranrs-
lation in the X;,X,; directions. 1In order to demonstrate the generality of the
computer program, an example of non-uniform translation without geometric dis-
tortion is discussed. The displacement along a line y = sin x for 0 < x < 7 .
is chosen to illustrate non-uniform translation and the results are shown in
Figure 16.

Several examples for the case of uniform and non-uniform translations in
the presence of geometric distortion (deformation) were solved. The results
illustrated that for infinitesimal deformation (linear elasticity), geometric
distortion had no effect on the correlation between reference and deformed
signal.

Several examples of large deformations on the correlation of reference
and deformed signals were considered to determine the accuracy of Equation (40)
for large strains. Figures 17 through 19 are examples of the deformed surface
P(X") corresponding to large strains without rigid body motion. A comparison
of these surfaces with the reference surface, as illustrated in Figure 12,
shows the effect of geometric distortion relative to the reference surface,.
In each example of large geometric distortion the correlation accuracy was the
same as the cases considered for uniform translation and infinitesimal defor-
mations.
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APPENDIX A

PROGRAM TO CALCULATE THE AMPLITUDE RATIO
FOR A TWO-LAYER ELASTIC HALF SPACE IN A LIQUID
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A

FROGRAM TO CALCULATE THE AMPLITUDE R&TIO
FOR A TWO LAYER ELASTIC HALF ZFACE IN A

LIQUIL
EACH NUMEBRER CORRESFONDS TO AN INTERF&CE

FROFERTIES OF THE LIQUID
XLAL=318000,

RHL=.0361

FROFERTIES OF SOLID 1
XLA1=16420000,

XM1=11600000.

RH1=,284

FROFERTIES OF sOLID 2

XLA2=7420000.

XM2=4000000.

RH2=.100

CLL=4863.

CL2=20341.

CT2=10360.

CL1=19348.

CT1=10449,

LAYER 1---LIQUIL-SOLIU 1 INTERFACE
THETAO0=20,%3.1416/180.

XLAaM=XLAL

RHO=RHL

XLAMER=XLA1

XMUBR=XM1

RHOE=RH1

WRITE(S»3)

FORMAT (3Xy ‘LIQUID-SOLID 1 INTERFACE")
WRITE(S»4) THETAO

FORMAT(3Xy ‘THETAO="»E12.3)

CALL WASO(THETAOsXLAMy XMUERy XLAME»RHO sy RHOE)
CL=CLL

CLB=CL1

CALL CRCSUE(CLyTHETAOSCLEsYR)
THET31=YF

WRITE(S,5) THET31

FORMAT(3Xy "THETA31="'»E12.3)

LAYER 2---S0LLID 1-S0LID 2 INTERFACE
XLAaM=XLAl1

XMU=XM1

RHO=RH1

XLAMEB=X1.A2

XMUR=XM2

RHOB=RH2

THETAO=THET31

WRITE(Sy6)

FORMAT (3Xy " SOLID 1-SOLID 2 INTERFACE”)
WRITE(Sy7) THETAO
FORMAT(3X» ' THETAO="»E12.3)

CALL SOLID(THETAO»s XUy XLiai4s »HUE » XLAMEyRHO s RHOR)
CL=CL1

CLE=CLZ2
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CaLl. CRCSUE(CL»THETAO»CLE YD)
THET32=YC
WRITE(S»8) THET32

e FORMAT(3Xy ' THETA32='»E12.5)
CALL CRCSUER(CL»THETAOsSCL,YA)
THET12=YA
WRITE(S+9) THET12
Q? FORMAT(3Xy ' THETA12="»E12.3)
(o LAYER 3---SOLID 1-LIQUL1DIN INTERFACE
XLaM=XLA1l
XMU=XM1
RHO=RH1
XLAMB=XLAL
RHOER=RHL
THETACG=THETI1Z
WRITE(SDy10)
HEY FORMAT 3Xy “SO I 31-TQ0IL InNVERFACE )
WRITE(S:-11) THETAQ
12 FORMATC(IXy "THETAQ="sEL1Z2.357
CALLL SOLLICTHETAQ Y LA s s e s RHOs KRHOED
(o LAYER 4--SOLIDI Z-LIGUID INTERFALZ
XLAM=XLAZ
XMU=XM2
RHO=RH2
XLAMEB=XI.AL
RHOE=RHL
THETACG=THZ13%
WRITE(SY 12
12 FORMAT(3Xx»Z0L 1D 2~ 1QUIL INTERFACE)
WRITE(S»13) THETAC
13 FORMAT(3Xy " THETAO="+E£12.3)
CALL SOLLICTHETAO LMy XMU» XLAHEs REGyRHOE)
CL.=CL2 .
CALL CRCSURBC(CLy THETAC:CLYA)
THET41=YA .
WRITE(Sy14) THET41 .
14 FORMAT(3Xy "THETM41="9E12.,3)
C LAYER S-=--S0LII Z2-800I0 1 [nTERFACE
XLAM=XLAZ
AMU=XM2
RHO=RH2
ALAMB=XLA1
AMUER=XHM1
RHOR=KHi
THETAC=THET1
WRITE(Sy 1S
15 FORMAT(3X» “50L 1100 Z~-50LTI0 1 INTERF&CE D
WEITE(Sy16) THETHQ
14 FORMAT(3IXy "THETAG="»EL12.5)
COLL SOLIGCTHETAQ» AmUs Xidfis Xrilib e XListiBy AnQ s RHOE)
CL=CL2
ClLE=CLL
Akl CROSUBCCL s Trilyn s Gzl
THET3IO=YLC
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WRITE(Sr17) THET3S
17 FORMAT(3Xy 'THETA3O="»E12.3)
C LAYER 6---S0LID 1-LIQULIL INTEKRFACE
XLaM=XLAl
XMU=XM1
RHO=RH1
XLAMB=XL AL
RHIB=RHL
THETAO=THET 3T
WRITE(S»187
iE& FORMAT(3Xy "30i.10 1-L1GUIL INTERFACE')
WRITE(S»19 iz lhav
19 FORMAT(IXy ' THETHO= sE12,.0)
CALL SOLLIOTEETADy Xy vl s XLAMByRHI vy RHGE)
STOF
END
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SURROQUTINE WASO(THETAO» XLAM» XMUR» XLAMEy RHOyRHOE)
CL=SQRT(XLAMX2.683/RH0O)

CLE=SART( ( (XLAME+2.%XXMUER) )X¥2,.683/RH0OB)
CTB=SART (XMUEX2.4683/RHOB)

CALL CRCSUR(CLsTHETAOsCL»YA)

THETA1=YA

WRITE(Ss2) THETAL

CALL CRCSUR(CLyTHETAOCLEyYE)

THETA3=YR

WRITE(S»3) THETA3

CALL CRCSUE(CL»THETAOSCTEB,YC)

THETa4=YC

WRITE(Sy4) THETAA4

FORMAT(‘ THETAl1='yF10.4)

FORMAT(’ THETA3='sF10.4)

FORMAT(’ THETA4="»F10.4)

C11=-SIN(THETAL)

C12=SIN(THETA3)

Ci13=~COS(THETA4)

C21=COS(THETA1)

C22=COS(THETA3)

C23=SIN(THETA4)

C31=~-XLAM/ XL AM
C32=CLX(XLAME+2 « XXMUBXCOS(THETA3)XCOS(THETA3) )/ (CLEXXLAM)
C33=(CLXXMURXSIN(2.XTHETA4) )/ (XLAMXCTE)
Bi=SIN(THETAOQO)

E2=COS(THETAO)

BRI=XLAM/XLAM

WRITE(S»1) C11+C12+yC13sE1

WRITE(S»1) £21sC22,C23yR2

WRITE(S»1) C31+C32yC3I39R3
FORMAT(1IXsE12.,591XyE12.591XsE12.591X/E12.5)
CALL D3I(LETERMsC11yC12sC13sC21sC22yC239LC31yC32+L33)
WRITE(S5y10) DETERM
FORMAT(SX s ‘DETERM='»E12.5)

CALL D3(DOI,B1+C12yC13yB2+C229C2T9RB34C3I2»C33)
X1=DI/DETERM

WRITE(S,20) X1

FORMAT(SXrs 'A1/780='yE12.5)

CALL D3(DOIIsyCilsEB1syC139sC219HB29C23+C31yEB3+C33)
X2=DII/DETERM

WRITE(S,30) X2

FORMAT(SXy 'A2/80="yE12,5)

CALL D3(DIII,C11+C12yR1yC21,C22yRB2yC31¢C324E3)
X3=DI1II/DETERM

WRITE(Ss40) X3

FORMAT(SX» "A3/7A0="3E12.,5)

RETURN

END
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SUBROUTINE SOLLI(THETAOrsXLAMsXMUysXLAMB,RHO»RHOR)
CT=SQRT(XMU%2.683/RH0O)
CL=SORT( ( (XLAM+2.%XXMU)%2.683)/RH0)
CLB=SAQRT (XLAMBX2.4683/RH0O)
CALL CRCSUR(CL»THETAO»CL+YA)
THETA1=YA
WRITE(S»2) THETA1
CALL CRCSUB(CLsTHETAOsSCT»YER)
THETA2=YER
WRITE(S»3) THETAZ2
CALL CRCSUR(CL»THETAOCLR,YC)
THETA3=YC
WRITE(Ss4) THETA3
FORMAT(’ THETA1='»F10.,4)
FORMAT(’ THETA2='»F10.4)
FORMAT(’ THETA3='»F10.4)
C11=~SIN(THETAl)
C12=SIN(THETA2)
C13=SIN(THETA3)
C21=COS(THETAL1)
C22=~SIN(THETAZ)
C23=COS(THETA3)
| B33=XLAM+2 . ¥XMUXCOS(THETAO)XCUS(THETAOD)
i C31=(XLAM+2 « XXMUXCOS(THETA1 ) XCAOS(THETA1) ) /E33
CI2=CLAXMUXSIN(2.XTHETA2)/(CTXR33)
C33=CLAXLAMEB/(CLEXE33)
E1=SIN(THETAOQ)
E2=COS(THETAO)
E3=(XLAM+2 . XXMUXCOS(THETAO)XCOS(THETAD) ) /B33
WRITE(Sys1) C11+C12,C13sR1
WRITE(S»1) C21,C22,C23»R2
WRITE(S»1) C31sC32,C335R3
WRITE(S,S) ER33
FORMAT(I1XrE12.591XyE12,.591XsE12.591X9EL12.5)
FORMAT(’ BR33='»E12.3)
CaLL D3(DETERMsC11yC12sC13sC21+C22yC23+C319C32yLC33)
WRITE(Sy10) DETERM
10 FORMAT(SXy 'HETERM='+E12.5)
CALL D3(OIsR1sCL12yC13)EB2,C22,023sB39C325C33)
X1=DI/DETERM
WRITE(S,20) X1
20 FORMAT(SX» ‘A1/A0=’»E12.,5)
CALL D3(DIIyCi11sR1+,C13yC21+,B2yC23»C31yE3+C33)
X2=DII/DETERM
WRITE(S5+30) X2
30 FORMAT(SXr» "A2/A0='+E12,5)
CALL D3(DIIXIsCl1yC12yEL1yC21sC22+E2+C31+yC32yR3)
X3=NIII/DETERM
WRITE(Ss40) X3
40 FORMAT(SXy» ‘A3/A0="»E12.35)
RETURN
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SURROUTINE SOLIDCTHETAO» XMUrXLAM» XMUE» XLLAME s RHO» RHOE)
CL=SQRT((XLAM+2.%XXMU)/RHO)

CT=SGRT(XMU/RHO)
CLER=SQRT( (XLAME+2 . XXMUR)/RHOR)
CTE=SART(XMUBR/RHOE)

CALL CRCSUBR(CLsTHETAOsCLsYA)

THETAl1=YA

WRITE(Ss1) THETA1

CALL CRCSUEBR(CLyTHETAOLCT»YR)

THETA2=YR

WRITE(Sy2) THETAZ2

CALL CRCSUER(CLsTHETAOsCLEYYC)

THETA3=YC

WRITE(Sy3) THETA3

CALL CRCSUR(CLyTHETAOCTEyYD)

THETA4=YD

WRITE(Sy4) THETAA4

FORMAT(’ THETA1='yE12.5)

FORMAT(’ THETA2=‘yE12.3)

FORMAT(’ THETA3=‘yE12.5)

FORMAT(’ THETAA4='+E12.5)

Cl11=~-SIN(THETAl)

C12=-COS(THETA2)

C13=SIN(THETA3)

C14=-COS(THETA4)

C21=COS(THETA1)

C22=-SIN(THETA2)

C23=COS(THETA3?

C24=SIN(THETA4)

EBE33=XMU

C31=XMUXSIN(2.XTHETA1)/R33
C32=(XMUXCLXCOS(2.%THETA2))/(CTXR33)
CII=XMURXCLXSIN(Z2 . XTHETA3)/ (CLEXR33)
C34=-XMUBRXCLXCOS (2. XTHETA4) /(CTEXR33)
EB44=XLAM+2 + XXMUXCUS(THETAO )Y XCOS(THETAQ)
C41=~(XLAM+2., kXMU¥COS(THETA1)XCOS(THETA1))/E44
CA2=XMUXCLXSIN(2,XTHETA2)/(CTXEB44)
C43=CLX(XLAMEB+2 XXMUBXCOS(THETA3)XCOS(THETA3) )/ (CLEXE44)
CA44=XMURBXCLXSIN(2.XTHETA4)/(CTEBXE44)
B1=SIN(THETAO)

B2=COS(THETAO)

E3=XMUXSIN(2 . XTHETAO)/R33

B4=(XLAM+2 . XXMUXCOS(THETAO)YXCOS(THETAO?>)/B44
WRITE(SyS) C11,C12yC139C14sE1

WRITE(SyS) C21+C22yC23+C24yR2

WRITE(SsS) C31,C32,C339C349R3

WRITE(SyS) C41,C42yC43yCA44R4
FORMAT(1XsE12,591XyE12.591X9E12.591XsE12.591X,E12.5)
CALL DA(DETERM»C11yC12+C13vC14sC219C229yC239L24»C31>
XC32,C33yC34+C41yC42yC431C44)

WRITE(S»10) LETERM

FORMAT(SXy "DETERM="sE12.9)
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CALL D4(DI,»B1,C12,C13,C14,E2,C22+C23+C24,»
XB3»C32,C33,C347E4,C42,C432C44)

X1=DI/DETERM

WRITE(S»20) X1

FORMAT(S5Xs 'A1/A0="9E12.5)

CalLlL D4(DII»C11,BR1yC13+C14,C21+E2,C23+,C24+C31y
XB3»C33+C34,C41+E4,C43,C44)

X2=DII/LETERM

WRITE(S»30) X2

FORMAT(SXr "A2/A0="3E12.5)

CALL D4(DIII»C11sCi12+B15sC14+C21yC229sR2+C24,
XC31,C32+B3,C345C415C42,E4,C44)
X3=DITII/DETERM

WRITE(S59+40) X3

FORMAT(SX» ‘A3/A0="»E12.3)

CALL D4(DIV,C11,C12,C13sE1,C21,C22yC239B25C31 >
XC32yC33yB3yCA41yC42yC439E4)

X4=DIV/DETERM

WRITE(S5»50) X4

FORMAT(SX» "A4/A0=">E12.5)

RETURN

END

30
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SURROUTINE D4(DyA11,A12,A13sA149yA21yA22,A23/A24rA31+A32,

XA33rA345A41,AR42+A43A44)

CALL D3(NAYA22yAR3vA24rA321A33yA34rA42rA431A44)
CALL D3(LBryA21»A23yA249A31+A33+A347A411A431A44)
CALL D3(DCrA21+A22,A245A317A32+A34vA41,A421A44)
CALL DI(DODsA21yA22,A235A317A32)A33rA419A421A43)
I=A11%DA-A12XDE+A13%XNC-A14%XDD

RETURN

END

SURROUTINE D3(DI'»A11,A12,A13sA21+,A22»A237A31,
XA32,A33)

CALL DZ2(DE»A22yA23yA32,A33)

CALL D2(DF»A21,A23yA31,A33)

CALL D2(DGrA21yA22,A31,A32)
D=A11XDE-AL12%DF+AL3%DG

RETURN

END

SUBROUTINE D2(D1yA11sA12sA21,A22)
[=A11%A22-A12%A21

RETURN

ENL

SUBROUTINE CRCSURCAYEsCrY)

X=AXSIN(R)/C

Y=X4 (XkK34) /76043 K(XKKS,) /40,45, K(XX%k7,)/112,
X+3S .k (Xk%kP,.)/576.,

RETURN

END
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APPENDIX B

TWO-DIMENSIONAL CORRELATION
OF TWO LINES X = Y = UNIFORM TRANSLATION
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F,.
-

DIMENSTIUN NCiO0stu 9 HACIO)s@aT el Uyt idriOG)
READCT 9 201 1y NE

REAQLC/s L1y LELA

FORMAT L5

FORMAT Fiu.4)

DU L2 T feidey

DO 13 O-lened

Sllrdyoag.

CONTYIMUE

FEALCy 20 WIIChksblos s 191O0)
FORMAT(F 10,47

DO 3 I=lsluusel

AMIyl)=D1 {11

A1y 1)=DT<1s 1)

CONTINUE

DO 5 I=1»99»1

DO & J=199991

ACIHL s L) =ACT+H Ly LI RGCLy J+1) /3
CONTINDE

K=N--M

0U 9 MM=0sKrM

NN=MM

o0 7 I=1emsl

AXCT =AM+ L e THNN)

AY (T =R{I+MMyNN+1)

CONTINUE

CAaLl CORRICAYAXYATsNsMINF)
CONTINUE

STOF

END




ry =

SURRKOUT i CORSLICaymaXsd oiNse I0 T

WRITE (G300

FUORMAT(UX s "CORKE 72

DEIMENSEON Q0100 00 v X L0 9V (20D

S2=1QEG(

L= Ui 2@ ;
INM=Q

LM

LTUNM=N-~#

L2 J=lsIlning ;
GO 1 L=0sI0NMe '
G550, 0

C=0.,0

D0 3 II=1»Mrl

S1=AX{II)-A{JyIIri :
Cr=aY{II)~-AC(1I+L .2 l
S=5+51%561 :
C=C+C1xC1 i
CONT LNUE i
TF(H.LT82) INM=L

IF(S5.LT.52) 82=5

IF(CLTC2)0 IMiN=L

IF(C.LTC2)Y C2=¢

CONTINUE

CONTINUE

DX=0.,0031kFLOATCINMXILC)

LY=0., 001 %FLOAT (IMNXIC)

WRITE(Sy®?) 92

FORMAT (55X s ‘CORRELATION=-X="9sE12.5)
WRITE(S5+7) €2

FORMAT(5Xs “CORREALTION-Y='yE12.3)
WRITE(S»8) DXsDIY
FORMAT(SGXy “NxX= s FL10.393Xe "IV=/9yF10.32
KRETURN

END
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CORRY
CORREAL TLON-Y:=

[X== Q.000
CORRY
CURRELAT LON~X:=
CURREALTION~Y=
InX == V005
CORRL

CORRELATION-X -
CORBE SV TON-Y =
X = GeOLQ
CORRKI

LORRECAT DON-~-Xa
CukiEal 1 L ON~Y=
DX D.Q1LG
CURKI
CORREL & TON- X=
CORREALTION-Y=
X= 0,020
CORRI
CORRELATION-X=
CORREAL I TON-Y=
CORRI
CORRELATLON~ K=
CORREAQL VLIUN~Y=
DX= 00030
LORRI .
CORRELCATION~X=
CORREALTION-Y=

[X= 0.035
LCORRI
CORRELATION~X=
CORREALTION-Y=
X = (.040

CORRT
CORRELGT LUN-Xs=
CORREAL TION-Y=
Ox= 0.045
CORR T
CORRELATION~X=
CORREALTION~Y=
X = 0,030

[ IVIVIVISI VIR R V1V
JeOO000EFO0

Iy =

G000

O GOOO0ESC
0. QUGQOE+GO

[EAR

G008

A IRVIVISTRIV] ok 14 1V)
T QUOOGESGO

HEES

Q20

J LOUWOETOO
O GUOQOESQO

0y=

0,010

(PRRVIVIVIUINI S0 SOLY
G QUCUOE+00

Iy =

0.020

0. 00000E+400
0.00000E+00

oy ==

0.02%5

¢, 00000E4+00
UL U0000E+00

LY==

0.030

0.00000E+00
0.00000E+00

[0y =

0.035

0.00000E+00
0.00000E£400

Y=

0.040

(. GOGO0EHOO

0, 00CO0E+$0O
0y = 0.045
0.00000E+00

0. 00000E+00

iy -
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CURR1
CORRELATIUN~X=

CORREALTION-Y=
DX= 0.055
CORRI

CORRELAT LUN-X=
CORREALTION-Y=
nX= $.060
CORRI

CORREL &7 T8~ K
CORREI’]LT .[ ON-— Y::.

LiX= 2,065
CORRI

CORRELATION-X=
CORREALTYON=-Y==
onx= 0.070
CORRI

CORREL AT ITON-X=
CORREAL TION=-Y=
DX= 0.075
CORRI

CORRELATION-X=
CORREALTION-Y=
DX= 0.080
CORRI

CORRELATION-X=

CORREALTION-Y=
LiX:= 0.085
CORRI
CORRELATION-X=
CORREAL TION-Y=
OX= 0,090
CORRI

CORRELATION~X:=

CORREALTION-Y==
[1X= 0.09%

Qo +00
Q0. 00Q00E+00
Ly = Q. 000

0. 00000E+00
0, 0uG00E10Q
ny-s 0.060

GD00NCE+00
Q. GLO00E+TGO
fry:s 0.065

0. 00000E+00
0. 0GUO0E+OO
ny:= 0.070

0.,00000E+00
0.00000E400
nys= 0.075

0. 00000E+00
0.00000E+00
nys= 0.080

0.00000E+00
0.00000E+00
nyes 0,083

0.00000E4+00
0.00000E+00
ny= 0.090

0.00000E+00
0, 00000E+Q0
Ly 0.093
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