D-R126 665

A STUDY OF QUANTITATIVE MEASUREMENTS OF PROGRAMMER

PRODUCTIVITY FOR FLEET MATERIAL SUPPORT OFFICE (FMS0)
., (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA D _J SPOON

UNCLASSIFIED DEC 82 F/G 972

1

=3

e R @n e

; SENTRANCRINERAR MOMOMORORENE S g NG G SRR TR TR YA S e e e

AV | DS SRS (R T I : . - .

b ; . . S . . . -, o LT s A e T L Y
. . PR BT PP, 4!|»,-..F0’.\‘.(fu . R PRI A

AT

owle
Ay

RIS
T

16

“
L

g | _ A2 =l
HEEE

K EEFFFEITH

14

——
—
—
——

I

1.0
.1
125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

s——— m—— —
I, —— —— ———
— ——— ——

.

.

o
¥

. |

»

.

B

*

-

—v, v e .-

_... e g S e .f T % h Ve YTEYY -

Fr. Sl PR T P LR 4
Catalalt I RO B P alalalm®

ad a0

-

na126665 |

oM FILE COPY

P R P

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

A STUDY OF QUANTITATIVE MEASUREMENTS
OF PROGRAMMER PRODUCTIVITY FOR
FLEET MATERIAL SUPPORT OFFICE (FMSO)

by

Daniel John Spooner
December, 1982

Thesis Advisor: Dan C. Boger

Approved for Public Release; Distribution Unlimited

Ry g Lk

|

SECUMTY CLASIFPICATION OF THIS PAGR (Phen Date Bntored)

e ————————————— e
READ INSTRUCTIONS
AR L LA L] X (1 zo CCIPIENT'S CATALOG NUMBER
4. TITLE (and Subeitte)) S. TYPE OF AEPORT & PEMOD COVERED
' .
A Study of Quantitative Measurements Master's Thesis

December, 1982

of Programmer Productivity for T T TR T

Fleet Material Support Office (FMSO)
e T CORYRACY SR GRAR Y WCaS TR

Daniel John Spooner

I3 S CAPORMING GROANIZATION NAME AND AGORESS T GRogRAE CLEMENT Pwo ETT. YAt
Naval Postgraduate School
Monterey, California 93940
1. CONTROLLING OFFICE NAME AND ADODRESS 12. MEPORT DATE
Naval Postgraduate School Decembf:, 1982
Monterey, California 93940 ' "“"'8‘;° AcEs
NCY NAME & ADORESS(I! difforent from Centreiling Oftice) 1. SECURITY CL ASS. (of thie rapert)
Unclassified

L'|'l'-.' 51'6& ASSIFICATION/ DOWNGRADING '1
SCHEDULE

6. DISTRIBUTION STATRMENT (o] thie Ropert)
Approved for Public Release; Distribution Unlimited

17. OISTRIBUTION STATEMENT (of the abetract sntored in Block 20, i different frem Repert)

18. SUPPLEMENTARY NOTES

v". KEY WOROS (Continue en roverse side |l noceseary and tdentify by dleek number)

Programmer Productivity, Software Development Productivity,
Programmer Metrics

“%e' ABSTRACT (Continue an reverse side if ary and ideniify by deeh manber)

The demand for software products has grown, but the number of
quality programmers has not kept vace. Therefore, programmer
productivity has become a major area of discussion throughout the
software development industry. This paper examines the various
measures discussed in the literature and used in selected corpora-
tions which develop software. It presents several methods for
measuring programmer productivitv. Included in the (Continued)

FORM 1473 €DiTiON OF ! NOV €8 13 ORSOLATE N

t JAN 7
. . B o T Oy T — GOy
S/N 0102014~ ¢80 SECURITY CL 881PICATION OF THIS P AGE rWhen Date Batered)

S D) I P BT S S P S G e SR G T G R I

MDY W O VI "-...:“4 A b r.';-_. e

P W

PN W ST W T S S N Sy St

>, JABSTRACT (Continued) Block # 20

discussion are the salient points where managers must devote special’

attention if they are to use programmer productivity measures ef-

fectively. This paper is part of a group of papers which together

. provide recommendations to the Fleet Material Support Office (FMSO0)
to enhance its software development organization.

a

s g

DD ggrm 1473
s/N 012 014-6601

B SV UPL RPN

[§)

SECUMTY CLAGRIPICATION OF THIS PAGENen Date Bnitsred)

e PP .

D K - LY ~ LY ~ - L i e P L T P T
SN EEREN § LA LR DGR Ry S W P R P A S T S T A S AT

Pl R0
POLITOY Iy Iy W NP

Approved for public ralease; distribution unlimited.

R A Stuﬂ; of Qnantitntiva !easurelents
rogramsar Producti i for
Fleet natet al Support Office (FHNSO)

3 by

Daniel John Spodaar
Lieutenant, Urited States Navy
B.Se, Pennsylvan*a State University, 1377

Submit+ted in arti 1 fu%fialment of the
requiren nts or t agree o

MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE S5CHOOL
Dezamber 1982

Aut hor: 6“'“1::7 _._-
Approved by: (j a-*ty__ (\ &Q—V

rhes~s Advisor

Second Reader

1
e]
I
(&}
h
o
[s 1)
=]
]
-
n
ct
w
r
'J
<
®
(7]
Q
P
1]
o]
Q
D
n
IETY W

Dear 5>f Informatiosn and Pslicy Sciences

ISP W

P

Cius suin Aen g o

PN S SR I R SRR

ABSTRACT

The demand for software products has grown, but <+he
nuaber of gquality programmers has not kept pace.
Tharefore, programmer prodcutivity aas become a major area
of discussion throughout the software developma2nt industry.
This paper 2=sxamines th2 various aeasures discussed in the
literature and used in salect2d corporations which develop
sof tware. It presents several methods £o5r measuring
programmer productivity. Included ia the discussion are the
salient points where manajyars must 3Iavote special attertion
if they are - to use programmer productivity measures effec-
tively. This paper is part of 2 group of papers which
together provide recoamsadations t> the PFlast Material
support Office (FMSO) +to enhance its software development
organizatiog.

\

Al Al e At P et et

TABLE OF CONTENIS

I. INTRODUCT mu - - L] L - L] L] L] L L] L] * L] L] - L J * L] L] 7
Il WHOSE PRODUCT IS BEING MEASURED? o« o o ¢« o « « « « 11

III. WHAT IS THE PRODUCT? « « « « « o o o o « « « o o« « 18
"~ A. PROJECTS AS PRODUCTS « « « « o o o« « o o« « o« o« 19

B. MILESTONES AND YANASEMENT/SUPPORT .« « « « . o 21

C. DESIGN AND FUNCTIONAL SPECIFICATIONS « . « . o 23

D. LINES OF CODE AS A PRODUST ¢ v o o « o « o o o 24

E« MODULE AS PRIDUZTS « « « o + o o o o o o o o o 27

F. USER FUNCTIONS AS PRODUCTS o o « « o « o « o « 31

G. TESTING, INTEGRATION, AND IMPLEMENTATION . . . 30

Ho DOCUMENTATION o o « o o « o o « o o o o o o o 35

Iv. THE MEASURES o o « « o o o o o o o o o o o o o o o 37

A. LOC PER PROGRAMMER-MONTH . . & « ¢« ¢ « o« « « o« 38

B. MODULES PER MONTH . ¢ ¢ ¢ o ¢ o o o o o « « o 40

- C. FUNCTION POINT JDELIVERED PER WORK HOOR 40
D. SELECTED INDUSTRY METHODS FOR MEASURING

) PRODUCTIVITY . « o « ¢ o @« o o o e o o o o« o o« o o U1

il To IBM & v v e o o o o o o o o o o o o o o o W1

= 2 AmAahl . . o o e e o e o e o o o o o & o o UU

3. Systems Devz2lopaent Corporation (SDC) e o U7

Be TRU o o o o o o o o o o o« o « o« s o o « o« U8

E‘ v. CONCLUSIONS AND RECOMMENDATIONS o« o « o « « o o« o 49

LIST OF PEPERENCES .« « ¢ o o o o o o o o o o o o o o o o« 51
ke BIBLIOGRAPHY ¢ o o o o e o o o o o o o« o o o o o o a o« o 5S4
g_ APPENDIX I o o o o o o ¢ o o @ o @ o « o o o o o o« o o o« 57

AEPENDIX II L] [e o - . - L]] . - . . - - -] - - [- . - 59

b
E! INITIAL DISTRIBUTION LIST 2 o = ¢ o o« o o « o« » = o« s« « « 80
4
;
L

CIAD)

ACRAPILIREL I IO RN

LIST OF PIGURES

1.1 FMSO Program Library Srowth . ¢ ¢ ¢ ¢ ¢ ¢ ¢ « « 10
2.1 Kiser: Levels of Note in Software Productivity . 11
2.2 PMSO Major Mission AL28S « « o ¢« o o « o o o o « 12
2.3 PMSO CDA Primary Product ACL32S ¢« « o « o o « o o 13
3.1 Software Developaant Products .« ¢« « ¢« o o o ¢ « 19
4.1 Assembler Languags vs HOL . <« « ¢ « « « o o o « 39
4.2 Halstead Element Relationships « « ¢« ¢ o o « o o 42

3

.

ki

3

[

H

P_

3 6

.

i

}_

LT, W . S VR S Y S N R e I T T U T - j

e 4

Y — i
v~ S

- P 0
M MM ROMECENS QARERNENINR

RAAR AR o A ALY

.,

I. LEIRODUCIION

In the past two decadas, as computer hardware costs have
fallen and software costs have risza, there has been an
increasing interest in programmer productivity. This
interest has become particularly intense during the last
decade as the general purposz computer markast has £flour-
ished. Customers are bacoming mwmuch more aware of the
flaxibility that diffsrant softwars2 packages provide ¢o
corputer hardware. Thay, therefore, are demanding more and
more software products to upgrade 2xisting hardware facili-
tiss, Withington (Ref. 1] cf Arthar D. Little Inc., 2
Caabridge (Mass.) consulting firnm, states that the throt-
+ling factor in <the evolurion of the data processing
industry is the pace of software dsvalopment. Revenues in
tha data processing industry are expected to reach $95
billion by 1984 but have the potential to reach $125 billion
if the software developmeat coastraiat did not axist. This
software demand has precipitatad a large demand for program-
mers. But prograamers, especially skilled ones, are hard +¢o
find and take time *o train. Sinc2 there has been such an
astronomical growth in the computar softwars industry,
finding sufficient numbers of well trained and experiencai
programmers is prohibitivaly diffizult. ([Ref. 2], According
to Digital Equipment Zorporation _Ref. 3], the biggest

problem Is identifying “a2 f2w g521 programmers. Of <hs
many applicants they <cecz2ive, mo>3t are not capable of
writing sophisicated softwars. Zonsequently, softwars

developers are turning towazds incr23asing ths productivity
0of programmers in an att2apt to k=22p pace with the demand
for current and future software desijyn needs.

v!, v ".

K~ AR

- EMACA JU Jub suck i 4T \ ag v
. o AACSATIMIR A A YT VY
RN ‘ . . . St
N PA et ot

There have been a number of papers written discussing
productivity. Some 3dissuss det2rainants of prograaming
productivity (Ref. 2], othars provida tools [Ref. 4], which
purport to improve productivity. Interestingly, few of
thase studies discuss or nake refarance to others who have
discussed how to actually measure this productivity. The
philosophical approach £>c many yesars was that programming
was an art. This made it virtually impossible to measure,
for it would be similar to measuring the progrzss or produc-
tivity of a Picasso or Michelangelo as he was painting or
sculpting. Obviously, ther2 1is 15 way to measure the
progress of art aside from personal spinion. This, however,
is not acceptable in an injustry bas2d on the profit motive.
Ir +the late 1960's the tera "Software Enginsering" was
coipred and with it cam2 21 number »>f ideas that served to
pull programming out of +thz world of art and into the world
of the engineer, a world wheras nsasurement is of vital
importance. Software devalopment was shown t> be an area
that required discipline ard a process-oriented approach
[R2f. 5].

Sof~ware engineering has grown through thes 19701's +¢o
virtually become the rule for the management of programmirng.
It has led to the developmant of nesw strategiess for software
development. These stratagies, top-down design, bottom=-up
desigr, structured prgraaming, mdo3iular decomposition and
metaprogramming, have provided 2 bet+er foundation £from
which software dJevelopars can attsmpt to meet the growing
demand for software prodicts. Although +hese developmen:z
*echniques have mde sof+tware dJevalopment easizr and helpei
tc control the cost growth, <they havs had little impac® on
productivity measurement.

Sf+war= devzlopment or

w

To discuss the @measaring of

mn

‘rst deteraine what

4
rs

programming productivity, one must

of

!
[Sul =
D

Ww

S
praoduct is, From the fizst day o9f programmiag urctil

DI T A P s S S Rri o 2L
e o e et

RIS S

prasent, the predominant product >f discussion has besen the
"line of code®" (10C). This is th2 product on which nearly
all research and the database information are based. If one
were a constraction enjyineer one would not discuss 2
building or bridce based on the numbsr of bricks and girders
usad. Instead, rooms »r floors or spans amight be much more
appropriate. These itams are 1iatsgral but separately
measureable components »>f the final product. So why,
rhetorically, do res2archers anl 3Jata base information
collectors continue to insist on LJC measures instead of an
integral and separately m2asureablz and meaninyful componant
of software 2ngineering? TIhis not a question for this paper
to ansver but one for th2 reader to consider when planning
his own research or data base collaction.

The Fleet Material Support 0ffics (FMSO) is 2xperiencing
th2 same problems as th2 ra2st of the software injusrty. I+
is faced with a huge dsmand for Juality software <£from the
orjanizations it is taskel to support. The tasking of the
past five years is shown ia Figure 1.1 below. These figurss
are only for the Central D2sign Agsnzy, the primary mission
of FMSO. The figures show an incr2ase in FMSO maintained
praograms of 75.4 percant in this shor*t period. Thess=

figures are expected *o zontinue t> rise at a significant
rate as the Navy continu2s %o automite more 3and more func-
tisns. Ano-her problem facing FM50 is the salaries of th2
** programmers., According t> Business d2ek [Ref. 6] prcgrammer
3 salaries are rising at 31 rate of 15 percent annually and
; salaries for top systems 1i1alysts can reach $50,000 a year.
This places an extreme burien on ths psrsonnel japartment %>
k‘ acjuire top personnel +hen hiring new programmers and
3 systems analysts. Th2 productivity issue becones
increasingly critical for FMS) in the light 5f +he hiring
frseze Imposed during th2 Cartsr 2dministration and *h=
3 drive *o reduce the cost >f governaent in “he present Reagan
f4 adminpistra*ion.
[

CDA Program Growth

77 XXXXXXXXX 5,389

78 XXXXXXXXXXXXX 6,420

79 XXXXXXXXXXXXXXXXXX 7,722

80 XXXXXXXXXXXXXXXXXXXXx 7,938

81 XXXXXXXXXXXXXXXXXXXXXXXXXX 9,)30

82 YXXXXXXXXXXXXXXXXXXXX XXXXXXXXX 9,454 ({April)

Figure 1.1 PASD Program Library Growth.

This paper attempts to presa2nt a number of issues
related to the measuring of progranmer productivity. It
will show that there ara a2 other factors that impact on how
on2 interprets the productivity figuces. The manager needs
to realize there are several differeat levels of the organi-
zation, each with its 2wn prcduct or set of products.
Therefore, each level has a productivity rating for whichk it
must be responsible. In fact, thes reader should note that
the programmer is not the predominant 1link in the cutput of
a programming project. The requirzments of the Department
of Deferse and conscientious softwar2 developers throughout
th2 industry has placed increasing impor+tance on the relia-
biblity and maintainability of softwars This new emphasis
has produced a whole array of corresponding products which
must be accounted for and new prcductivity levels which must
be examined.

1

oo caanEa i P PP : PP S S LSRN

.............................
...
. B e R S L B e L i S I SRV

II. SHOSE PBODUCT IS BEING MEASURED?

Wher discussing productivity, before one can consider
who to measure, one must first deteramine what the product is
and then who makes the proiuct. Witaout a ratisnal visuali-
zation of the product it is unint2lligent ¢2 discuss the
ability of a person's, gJroup's or machine's ability to
deliver +that product. Depending upon the 1level of the
organiza*ion at which onz looks th2r2 will be 23 variety of
goals, objectives and products. Both Kiser [Ref. 7, p. 244)
ani the IEEE Workshop »o>5n Softwar2 Productivity ([Ref. 8]
address this impcrtant issue.

) any

r———rry—r
A i

Where the IEEE Workshop focus2d sr the general area of
praoductivity, Kiser was most concarn23 with software marage-
ment productivity. She focused on thzs idea that the manager
often has as much to do with 3 programmer's productivity as
do2s the programmer himself or his t>51ls. This is a nonr*ri-
vial dissue. She lookz1 at th2 +top <+hrse 1lavels of

cCrp. goals <-=-=-> top mgmt {=-==> corp.prod.

preduc* goals <--=-> piddle {-=-> prodact
projec* goals <-=-=-> first line <--=-> project
P task goals <---> programmsr <---> task

F Pigure 2.1 Kiser: Levels of Note ian Software Productivity.

management, shown in Pigur2 2.1 . Many managers have failed

to understand why <+heir people, b2ing well-*rainsd ani

11

Trfr'—rr‘v-vv —
]
p
a
}
y
1
t
1
i
1
4
|
f
F
3
1

LA SRS Sunds Seamh e fen i duas seace g oy oy Plia e - — v
A RAA AT IS A R O . R T O A A S i e W A A = o M A I Taw
o D I I R A - et e PR AR TN Ple e L. SR A e

provided with excellent tools, continue to proiuce at unsa-

R

tisfactory lavels, Quita often, from this researcher's
experience and the experiance proviisd by Kiser, the poor
production level is caused by higher level managerial poli-

Ty
ar

N cies or actioms. This can be understandable when one
) examines the concerns of the various aanagement levels.

At +the corporate 1lavel, top amanagement is usually
concerned with profit maximization and market share. FNSO,
being part of the public sactor, d>3s not have this parti-
cular concern but there ar2 comparable goals (Pigqure 2.2)

CENTRAL DESIGN AGENCY (CDA)
RETAIL NAVY STOCK FOUND
OPERATIJNS ANALYSIS

SOPPLY OPERATIONS SOPPORT
INTERNATIONAL LOGISTICS

Figqure 2.2 PMSO Major Mission Areas.

which are <£flest support 21d effactive management of their
approxima“e 33.8 billion, FY82, procur=men* authority. When
on2 considers the impact 2f money management 2at this level
it is undec-standable that <concerns for indiviual programmer
productivitiss @n get Llost, The iInterpretation of top
level maragement polices oy lower Llavel managsrcs can also
affect productivity.

At the middle maniyement laval, manzgjers become
cencerned with specific oroduct davelcopment and rascuzce
allocaticn. For FMSO, in i*s primary mission ar=a as a CDA,
manegement 1s ccncernel w4 itk allozation of ressourzces 4o

12

...

- - Aadi « il . . - a . P - o~ , ® % G T e e e e g v)
3 R ._'._'..‘_"‘v'_r\.__...‘._..,_,‘_‘ L e e A S DRI AN P I A B I S S T AL s
PR e e I T PN I I B B - R PR N N PRI IR S W S L I N T L T
..
~
w

UNIPORM AUTOMATED DATA PROCESSING SYSTEMS (UADPS)
Uniform ADP Syst2e for Inventory Control
Points (UICP)
UADPS Stock Points (JADPS-5P)
Level II/III Stozk_ Points
Disk Oriented Supply Syst2a (DOSS)

HEADQUARTERS PINANCIAL SYSTEMS

MANAGEMENT INFORMATION SYSTEM FOR INTERNATIONAL
LOGISTICS - (MISIL)

SPECIAL DA?A_PROCESSIgG SYSTEMS PROJECTS
Requisition Matarial Monitoring and
Exgedltlng (RMMEE)
Triden .
Naval Aviation Logistics Command Managament
Information 3ystam (NALZOMIS)
Naval Autgmatad rransportatian Data Systen

NATD!
Naval Automatesd Pransportaion Documantatiorn
System (NAVADS)
Resolicitation

Figure 2.3 FMSO CDA Primary Product Areas.

respective product areas as shown in Figure 2.3 below. The
allocation of the resourcess 1is t=2mparad with the command
goals and the budget proviied by th2 various sponsors.

The first iine level >f managam21t, project management,
is where one fizst encouaters the sige of software prcduc-
tivity, the area with whizh this papar is concarned. Her2

th2 prcjec* manager is concerned #ith meeting prescribel
L milestones within budget. The proiucts at this 1level are
+hz various "ieliverables®, such as func*ional specifica-

“ions, conceptual designs, program 3:sign, test plans, e%c.,

,‘ that are required in an 2ffectivaly managed project wit
1 - .

» miles+one requirements. These are the products one must
P' . . [

t measure against +their resvactive costs.

3

L

¢

v

13

s G e o
r

r*i R
3

b

y

b

!

4

4

e

............................

At the line lavel itsalf thers are two groups, project
teans and the individuals who make up the teaas. The teanm
must be measured against iis ability to deliver integrated
software products. The individuals aust he measured against
thair ability to deliver specific portions 5f <the tean
assignment. This is the point whers programmer productivity
is discussed by most rasearchers. A special note |is
reguired at this point. While onz usually assumes that the
delivered products are 5f a specific juality, this seems to
be missed quite often when discussing programmer products.
Tha idea of quality in th2 produzt must always be consid-
erad. A person who can leliver five programs in one day
that are incorrect or 3o not provids consistent results is
not nearly as productive as one who delivers one product
every five days but which 1is correct and easily maintained.
Very few productivity measuras take guality into
consideration, as will be shown later.

After realizing th2 various prolucts made by different
levels in the organization, one must *hen consider who is
viawing thes= measures, managemernt 25rC labor. The views and
concerns of each are usually gquite 3ifferent unless thers
has been a considerable aadunt of a2ducation on =2ach side.

Management must understand ther2 is an ovarhead =2xpense
to developing, collscting and apalyzing productivity

measures which mast be Justified. Intuitively, one must
have a set of measures b2fore cn2 zan determine constant,
- "normal" or changing productivity. Also managsa=nt needs %o
know how it ip+ends ¢to use th2s: measures. The TIEEE
i (R2f. 8, p. 341] sees four major uses for productivity
measures: 1) motivation; 2) understanding; 3) evaluation;
ari 4) management.

Productivity measures can be us=2d for motivational
purposes in +three ways which proviie +angible benefit.
First, researchers [R2f. 9,] hava2 shown *hat by paying

14

N : Y

AN) M AROACMSOC S SESCR S '—v ADCRMACIP I CHMIARES A SR o NI it s iRt o A '..\..-‘.l\'.-."\"‘_alU'..(‘...~.." ---------- -,

attentiorn to a person or 3Jroup, pecrformance lavels of that
person or group will improve or <chaagye to what the observee
perceives as 2xpected performance. This is known as tha
Havthorre Effect. When managers tak2 the time to do produc-
tivity studies the Hawthorne Effact may occur, albeit
temporarily. Second is the ability to focus attention on
desired behaviors, events and obja2cts or products. The
measures selected will place relative 4importance on th2
arzas being measured. For instaacs, if 3 series of
measures are selected which include speed of production and
maintainability the perc:ived relation between them by the
programmer will dJetermin2 which @m2asure they emphasize.
Tha+ percep+ion of relative importancs can have a profound
effact on the final product. If projrammers see speed being
rewarded or emphasized aore than maintainability, the
manager should expect to see prograas produced rapidly but
which are hard to understand and hava little documentation.
. If the reverse is perceiva2d, then the manager should expect

+c see longer programminy timas withi much easier to under-

s+«and and better documented codz. The third motivating

fzactor occurs through fea2dlback of ra2sults. The effective

feedback of productivity measures =>an lead t> changes in

pecformance in several ways. Quit

w

tz often performarnce will
imprcve +hrough the personal prii

in accomplishment or

m

p: competition with peers. Also i a corresponding and
; effective =rswards and p2nalty systza, eithsr formal or
i informal, exists, performance as2crmally will follow <h2
system correspondingly.

Secord, productivi<y measursmsnts help maragers %o
unjerstard *he factors unlarlying pro>3uctivity. Measuremznc
is fundamen=-al =0 scienc2 in +hat it forces managsts and
researchecs *o conceptualize the ar2a under study. Usina
various concepts will 3et:rmine which measurss <o use as

managers continue to “ry to model tasz =2nvironraent in which

TP

———

| N s c s A NP a2 . S Y S W P s oy YN

. . . . K . BN
........ TAm L e R L B AR A s D DA I DR e LT W

P P T

ap ey

wr

.............

...............

......

thay operate. Failure to develop a model will hirnder
managers in improving pe2rformanc2 and will ksep software
development an art insteal of 1 sciencs.

Third, productivity measures help managars evaluate
perfcrmarce because they juantify performance. It is easier
to evaluate perfcrmance over tims within a siangle group or
oryanization because the reasures r2main constant. It is
also very important +¢o track performance s> that proper
fezdback to personnel can be proviiai. It is also important
to evaluvate between groups to see hovw one stands against an
injustry average. This has provea t> be particularly 3iffi-
cult £for software develdpers. Ped groups use the <same
measures. Those +that us2 similar sounding m2asures often
have significantly diffsr2at da=finitions for thz irdividual
parts of the measure. Ld2, which will be discussed later,
is a most common area of iisagreem2nt. Nevertheless, it is
importan+ for each organization to =2stablish a2 baseline and
to build a database of informa tioa. This information can
than be used for measuriay the evolution of nethodologies
ani technologies used in software javalopment.

Fourth, productivity measurement imposes 2a managerial
discipline. Normally managers ars concerned with tracking
progress against a schedile and buige+.The <consistent us2
ard taking of measurements <an b2 2xtremely helpful in
making projectionms of progress 21gainst schedules and
buigets. The manager must rememba2r <+that a productivity
measure Is only a snapshot. It must be analyzed in relatio:z
+o i+s environment. In particular, managers aust rzalizs
the difference in the learning curvss of vac-ious projects.
A "first-of-its-kind" project will have a much ifferen*
leazrning curve than a simpla modification t> a generic
prd ject, The productivity ratss will normally changs
proportionally to the l=zarning curve.

The manager's need for measures and his goals can differ

significantly from thoss >f the workforce. MNanagement often
vants to use the measures to identify exceptional perfora-
mers or those wvho need adi3d traininang.

The workforce, howevar, may viav the measures as a vay
to generate either mors products from the same work effort
or to generate the same number of products froa a reduced
workforce. When the work force sees the second side there
can be severe implications, particularly if they are
organized.

The workforce will rapidly wonler what *h2ir benefits
vill be from all this new attention. Will the mesasures leail
tc more money for the sam2 hours, ths same amoney for less
hours for the good performmers ani/or lost Jjobs for the
poorer ores? 1In an effort at job praservation, productivity
may fall or s<%tagnate at a predetermined 1lavel. This
researcher has seen delibarate proiuctivity stagnation by
bricklayers, both in the housing 2n31 steel industries, and
by electricians working for a telephons company, all at well
below reasonable levels >f capability. For c2>ne to think
that programmers and thsir industry would not tend to act in
a similar fashion is ¢t> approach this area with <“unnel
vision. This may becom2 a primary concern £or FMSO whers
some of thei:s government 2mployees 1513 specific 3S ratings
and incomes based on the number >f pszrsornel they marnage.
Coamand level management aust take ==are in ths int-oduction
of the productivity metriczs s> that personnel in these 3S
ratings do not feel that their Jobs or ratings are in
jeopardy if there is siyaificant ijgrzase in produczivity

F

which leads to a reduction in forcz (RIF).

17

2t - y———
AR RN B
AP A S oSy

R

A A & o4 o

ITII. WHAL IS [HE RR2DUCI?

This researcher has letermin2d <that the predominant
measure of programmer productivity is <he guantity of lines
of code written. This 13ads to savaral interasting conclau-
sisns. First, the prograamer only #rites deliverable code.
Second, the prcgrammer is the sinjyle dominant entity in
sof tware development. A23 third, there are no other rsle-
vant products or by-p-doiucts in 1 software developament
project. Anyone who has the oppoctunity to study or +¢o
vork in the software development ar2na realizes the fallacy
of these conclusions. Pro>jyramaers 3> considerably more than
write deliverable cod=. There are many oJther peopl2
involved, each 2adding 1iwmportant contributions <to the
project. There are several equally important products.

From the previous chapter it was noted that <there are
many levels of an organization whos2 productivity should be
measured. Those involval in softwaire development realize
that various lewvels of ti2 orzanization make contributions
to the various products of each prajzct. This chapter will
look at the different products that this researcher feels
ac2 relevan*t to the measurs of software development produc-
tivity. This discussisn will bz3yin with wmiddle 1level
managemernt and wcrk towaris *he indivijual. As we prograss
down *+he organization <“ha2 product wil become easier to
graspe. The span of manajy2ment contr>l and rssourcs respon-
sibili+ies will decreassz. Therefsr:z, one must remember t>
ensure the product arnd tha level of the organization match.
All too of+ten people ar=s evaluatel on <their ability +to
produce a product which they wers 10%* assignzi +o prcduce
nor Lad any role in producing.

13

.................

Unfortunately the r2ader will find in this section
several teras that have multiple amas21iags. This is inesca-
pable because there has been no accapted set of standard
definitions within the software development industry.

A. PROJECTS AS PRODUCTS

The "contracted projact", geasrically, is a software
development tasking for which an o>rganization contracts
another to produce. It nay consist of a number of sub-
projects or prograams, An example 1is the development of an
oparating system which iacludes a job scheduler, process
scheduler and file managar, FPigure 3.1 shows the various

contracted project assignei project
milestones (1) manag2m2at/support (1)
design specifications functional specifizationms
lires of code modulas

function (user) function (computer)

test code documantation

(1) not deliverable proiucts

[P

Figure 3.1 Software Development Products.

component products of a pra ject. The projec:, an operating
system, must integrate 2ach of th:sses various parts %o be
complete, Therefore, tha2 quastion of productivity here is
whather or not the project can be i:2livered on budge: and on
scha2dule.

13

..................

..

If the contracted projact is larje, as in the operating
system example, it will ba broken down into saveral smaller
projects, which I call "assigned projects" since there is
little choice as to vho will manag2 tham once tha2 contracted
pr>ject is accepted. The assigned projects will be given to
several project managers who will report to the central
contracted project managar. Tha ro2le of each of these
- project mazagers is +o daliver a fully complet2 integrated
oparatirg product.

The question at this point is, "Are these 3o0d items by
'g vhich to measure productivity?m, VYas, they are, for several
i reasons. First, for this leve]l of mapnagement they are +the
only products that are producei. S2:59nd, the reason for the
; manager to hold the particular job of project manager is for
*3 him/her to deliver a projsct on tim2, withinp budget and to
tha satisfaction of the customer s> that the srganization
may make its profit. What about the 1ifferencs in languages

usad or the sizes of varisas projects? These questions need
to take their rightfal place in the 1ata base 2f informa+ion
of the corporation. Each productivity measure has a set of
parameters within which it can only be used. There 1is a
definite need to know how capable a project amanager is at:
1) develcping any project; 2) using a1 specific language; 3)
developing various siz=2d projscts;) developing machine

dependert projects; 5) jeveloping first-of-i+s-kini
projects; or 6) modifying 2 generi:z sroject.

Each of =these paranaters gives added insight ¢to 2
p-> ject manager's productivity ratirng. The first lzts on=2
know heow produc+ive ha/she is r=zlative o all *he o*=her
project managers regardless of proj=ct specifics, Bach of
tha other measures provide additional informatiom on the
relative productivity of 2 project manager within *the diffe-
rent parame=ers. Use of 3all of *h:zss productivi+y z-a<ings
[by <the next higher leval of manag2men“ may improve Dboth

2)

...............................

levels of managsament's productivity provided project
managers are vwell matched to projects where their
praductivity is highest.

B. HILESTONES AND MANASBHNENT/SUPPORT

At this point it may be advantageous to discuss a
management tool that many may consider ¢o b2 or confuse
with, a product. A "milaston2" is a1 point in the life of a
development project when a deliverabls product, as listed in
Fijure 3.1 , should be coapletad. Many would think that the
ability to meet project milestones shows great productivity.
This is not true. For if it were trus, first the milestone
must, 3in fact, mean the productio>r of a deliverable itea.
Second, +*he deliverable item must b2 something of value t>
th2 project. If the delivarable is, in fact, of significant
value to the project then the production of that item is the
basis for one's measure ani not ¢the meeting of a milastone.
The meeting of the milestone shows only that the project is
proceeding as planned. The milest>12 has no other inherent
value. That is, one do2s not deliver a2 milsstone as one
would a program. The milastone is only another management
051 jus*t as is a producztivity measur=a.

Like milestones, Manajya2ment/Suppsrt is not a product but
a maragemen: tool. Howevar, the type, quality and quantity
of the support nust be consiiered very carefully.
Managemen+/support exacts a2 price in tha¢t it is an coverhead
€eXpense. Its wvalue is not as 2 product but as a tool.
Nearly all presenta*ions discussing productivity refer +»
the maragement/support tools. This is where th2 vendors and
consultants make a3 gr=2a: deal of adn=zy. They speak of
produc=ivity improvement and the aids that proviije :it.

21

an

AR AG AL A an 4 o

There are two parts to this concept, manageaernt tools
and support tools. The management side deals with systeas
that help predict costs and time schedules and <those that
track the progress against the pre2dictions and plans. At
FMSO, this function is unler the auspices of the Management
Department, Code 92 [Bef. 10] where PAC-II is used to track
ani DOD MICRO and SLIM ar2 used t> estimate software costs
and time schedules. The valus of this support can be very
sub jective. Of ten the value 5f ¢th2 management aid is that
it gives the manager much more confidence in his/her deci-
sions. The effect of th2 use of thase kinds of tools may
also be seen on the ledjyer. If th2 systems help manageaent,
all else being equal, on2 would =2xpect to see fewer cost
ovarruns and better personnel managsaant.

The support side has a miriad of tools that predict
sure-fire ways to improve productivity dramatically. These
tools irclude various design procedurzss (i.e. structured,
top~-dowrn, modular desigan), on-lins programming and provision
for each programmer ¢> have his/har own CRT terminal to
mention a few. T.C. Jones [Ref. 11] 31iscusses more of these
to2ls and their respectiva limitatioas.

The fac* that manajem2nt/suppadrt is not a produc+* does
not minimize its importanca. On th2 contrary, it is vital
to effective software devalopment. But the manager must
realize that the addition of each piece of management/
support costs mcney for whizhk azsounting must be made,.
Although, there are many manigemant/support systems which
may improve productivity, the indissriminate implementa+ion
of <*heir use will 1not necessarily lead to productivity
improvements. The use anl expansi>a of management/support
is an area worthy of furthar study.

22

F— PR S P D S T S I . e T T T

................

................

C. DESIGN AND FUNCTIONAL SPECIPICATIONS

Design specifications are usuially thought of as a
product cf the contractiny organization. They are used as
tha basis from which to make a contractial bid and to write
the functional specificatisons. Howevar, the design specifi-
cations, as delivered, oftan must be rewritten by the
contractor in close conjunction with the contracting organi-
zation so +that they are a2xplicit 2nough to properly write
tha functional specifications.

p‘ Both Keider ([Ref. 12] and Howiszan [Ref. 13] discuss th2
4 need for well thought out and well written design specifica-
tions. Keider's article, "Why Projects Fail", shows how

poorly planned projects waste aoney and resources. Howden's
*i article, "Life~-Cycle Software Valilation“, jiscusses the
ne2d for project design spacificatisis ¢to meet five proper-
ties. First, the spacifisations must b2 consistent
internally as well as in ary relatzd documents or other
portions of the project. Second, th: specifications must be
complete. Th2y must b2 2¢xamined £>r wmissing 5 incomplets

information requirements and to ensure data propertias ace
included. Thirg, the specificatisns should only includs
necessary items without ra2iundancy (not to be zonfused with
hardware redundancy to =sasure reliability). Fourth, <the

system must be feasible with =xisting technology and hard-
ware. And fif+h, *he spacificatioas must use correct ma%h
formulas and decision tablas.

Mgin o gn cn oo e o
-

The reader should racognize that the wvalidation of
design specifications ani functionil specificatiors is 1a

n-civial task. The systeams 2nalysts who validate the

[

sign specifications ard who writs and validate +he func-

oy vy v vV
Qa
® O

tional specifications must b2 held accountabls for <their
resource use iIn the prodaction »>f <+hese products, The

——

spacifications need “o be eyamiped carefully, as discussed

——Y

23

——
-

T

L .

-

IO T T YTy pe———"

.

above, especially when >Sne consilers that approximately
forty percent of a projects resourcas are used in the design
phise [(Ref. 37]. Poor Jjuality, h2rs is very difficult and
costly to try to overcome later in the software development
cyzle.

D. LINES OF CODE AS A PRODUCT

The line-of-code (LOC) is, by far, the predominant
measure used throughout inlustry to liscuss program size and
productivity ratings for all levels >f software development.
Irterestingly, <+“hough th2 entires industry usss LOC as 2
measure cf product definition, £2w agree as t> what a LOC
is. One of the first quastisns asked is, "Do you mean 2
line of cbject ccde or source cods?", The industry has hai
soxe success in distinguishing betwz2en them but not in
chdosing one or the other as 3 univarsal measure. Source
coie is that written by th2 programaer while objec*t code is
ths compiled code stor2d in aemory. Source co>de 1is mora
ofter used to describe programmer projuctivity than objec:
cole which 3is usually used *o J3d2fire <the quantity of
conputer memory requir2l to storz the program c¢ods
(Raf. 141].

Assuming one has settl2d on sourc2 code as a part cf *hs
measure, what determines a l1line of code? Some have said
each line or statement written bv th2 programmer regardless
of length. Others try to force tha 1line %o have eigh%y
chiracters., Still others 4ry +5 iefipe i+ by statemen+*
punctua+tion characters by language (i.e. periods in COBOL or
semicolors in PASCAL).

If this weren't bad 21nough, the nex+t juestion I3,
"Wnich of the lines are 'zountablist??, That is, some wan“
to differeonziate between 2xecutabiz statements, data decla-
raticns, comment s, nondeliverable d=sbugging or t2stingy aids,

etc. Use of LOC each of these 2arsas must ba axplicitly
defined because studies have shown 1line count variations of
more than two-to-one on th2 same projyram [Ref. 15].

After the LOC is well defined 22031 published, one must
vatch carefully because, just as the measure helps manage-

ment to rate personnel, s> does it halp personnel to promots
themselves, often by manipulating th2 rules in their favor.
Here are several examples. dJne coapany settied on every
line written regardless of 1length. After some examination
of several programs, lina2s were <£ound not to be complete
statements nor eighty characters in length, thus padding th2
true productvity levels. Another may decide t> use eighty
characters as the definad line. In this case it would not*
be unusual to find variables with 2xtremely long names or
usz of the “bplank" charaster to fill up lines and thus pad
the productivity rating. Paradoxically, the pragrammers may
be <£forced to have 1larg2 numbers >f blank characters if
panagement requires +the us2 of structured programming tech-
nigues. Another problam is that programmers may fight %h2
use of higher 1level languages so they may program in 1
language in which they are2 comfortaple and which requires
more lines <to accomplish the samsz task. Jon2s [Ref. 15,
P-¥1-43] discusses the LIC measuraz more 2axtensively +than
prasented hers.

Since the measure is so difficult to define and may lead
<0 unacceptable programiiaj practizss, as stated above, or
cause paradoxical conclusions, as iiscussed in the following
chaipter, *his researchar feels LIC is a poor producs
measure. However, this ioes not m2an to say that there is
nc use for LOC as a product measur2. In fact it is the only
measure available when on3 1is performing maintenance on
programs which entails changing individual 1lines in a
program. Therfore, we must have 2 i2finition £for a LOC.

25

There are many diffacrent languages 4in which one can
program. Since each has its own rules of construction the
definition of a LOC will necessarily be different for each
language. This researcher prefers to> view a lina of code in
tha context of a complate santencs or phrase of spoken
language. Each programming languag2 has a defined equiva-
lent of a complete statem2nt >r phrase, Just as Hemingway
and Faulkner had differsnt styles of conveying information,
so will programmers. This is not a iatriment :o programming
any more than it is to writing. Programmers will set+le
into s%tandard line 1lengths with whizh each 1is comfortable.
As long as management is satisfied that the style fits well
into the structure of th2 lanjyuage :-hen there should be no
problenm. This does require manag2m2nt to sup2rvise and to
train those that are not chnsistent in their own programming
or are far from <*he "average" line l=ngth of ths rest of th2
programmers.

The countable 1lines shoull be those that are wvital to
ths program quality and spacific laanguage. The lines that
ar2 niceties but which aii in the r2adability of progranms
have good reason to be in programs. They should be cournted
but not with full credit. The coma2nt line is an example.
It <Is recessary for reaiability bat a one hundred 1line
program does not need an additional hundr2d 1lines of
comments. Contrarty t2 others, %tiais researcher believas
sone credit should be given for commz2n+ lines. However, to
kesp verbosity out o©f programs du= t5 comment lines and t9>
be consistent with ¢the creiit jiven €for r=2used cods
{Ref. 16], *hey should only count ais “wanty percent and zhen
should be a full eighty =zharactars long. Lines +*hat ars
exacutable or data deciirations 2111 the liks2 shculd be
counted fully as one line,

e

If LOC is used as a measure far program length, i«
should be measured as a block of L)C, haing at least one
hundred 1lines ard not wmire than o5ne thousand lines ez
block. Thers ace two r2asons to d> this. Pirst, each block
of LOC can have a time valu2 assdciation. This allows
developers to speak in ta2rms of time per block of cods.
This is valuable when trying to estimate the time required
to develop a2 program estimated to bz some number of blocks
of code long. Second, ci?le must hav2 an intriasic quality.
It makes little sense to discuss >n2 tested, debugged arnd
documented LOC. But it Joes make s2nse to discuss a block
of code with the same qualitiss. This tends to force *he
cole to have some miniaum 1level >f Juality. The quality
rejuirement takes into considaration the time spent by the
programmer in writing non-3elivered test code and debugging
aids ard in correcting logic errors. When LI a.e reused
ths count value should bs 3 psrcentage of one osriginal LOC.
Basili and Freberger [Ref. 16] use twenty percant in their
research. This researchsr recommenis starting with twenty
percen*t and then ad justiny it accoriing to the psrcentage of
tine required to locate r=usable <cs53e instead >f developing
oziginal code.

E. MODULE AS PRODUCTS

A module is a single, intellactually managabls por+tion

th

of a program which is ssparat2ly zonpilable but which mus=
have connections to other modules. I%s size is variable but
it contains only one compla2te responsibility assignment of 1
pr>gram. It has only one 2ntry point a3ad one =2xit pgoint and
conforms +o the permitt23 logic structures of structured
programminge. The responsibility assignments ar2 detarmined
during +he design phas: before any wotk on individual
mciules iIs begun. One 5f the key 2r2as of modular design is

27

T ey v

tha selecticn of module contents bas23 on the probability of
change during the maintanance phase. 1In other words, assign
thd>se portions of programs/projacts that ara 1likely ¢o
change due to hardvare >r technology to their own respective
modules. The advantage gainad by this bit of overhead is
found in the cost avoidanc: which follows during the mainte-
nance stage, where up to seventy percent of a project'’s
costs lie.

There is a paradox concarniny maintenanc2 and well
written code. If one measures productivity during +he
maintenence phase by cost per dz=f2ct, a popular method,
he/she will find that very poorly wcitten code has a lower
cost per defsct than well written c532. This occurs because
poorly written code has many 2rrors which programmers must
spand much time2 correcting. They, therefore, become very
familiar with the progranm. The initial costs 2f relearning
th2 prcgram logic are spread over many errors in poorly
written code, and over very few errors in well written code.
Howesver, the total cost >f maintaining well writtaen code is
usually much lovwer. If one werz to take ¢thz samz2 well
written modular code and compare it to tne same well written
non-modular code one should find: 1) <£fewer 1logic errors
because ¢f the extensive analysis during *he Jdesign phase;
2) iI4's easisr to locat2 errors since +they can often bs
traced o one module or at least t5 2 branch of the program;
3) 1it's easier to9 relearn the 1lozic because o2f the need %>
only 1learn one or a few moiules instead of the entira
proygram. If any or all of <hsse points are realized, FMSO
could save 3a great deal in resourc2s and improve customer
satisfaction. Since FMS) presently aust maintain over 9400
programs and respond t> >ver 3203 srogram <“rouble reports
(PTR) anrually, any reduction in th2 cost, in :ime or mor2y,
cn & per i*em basis coulil lead +o significant saviangs and
hijher productivity ritings for program maintenancs
personnel.

23

o
-

1R

The use of modular programming allows two other areas to
be explored. The first is Parnas' [Raf. 17) idea of prograna
families. The idea is t> 1look at similarities in programs
before looking at +tha2ir differanc2s and write generic
praograms based on the similarities. Then one adds the
mojules that will make the programs individualistic. In
this way programmers can reus2 existing code which is well
tested and with which progyraammers are thoroughly familiar.
This helps to reduce initial project developaant time and
costs and to reduce maint2nance costs,

The second area is that which 2511 (Ref. 18 , p. 51]
refers tc as "metaprogramming". This is the use of data
base libraries of modular codz to build complste programs.
The code is generic and the metaprogrammer merely researchs
+h2 data base and selects thos2 md>3ulss which will meet the
pragram logic. In this way prograamers write much 1less
original code. Lanergan and Poynton [Ref. 19] report that
at Raytheon Company some na2w applications software have baen
developed forty times faster than by wusing traditional
development methods. R2a1sed modulss have been averaging
between for+ty and sixty parcent of +he total LOC on major
pryjects. The probability o5f iniucing 1logic errors is
reduced significantly and the probability of taxtual errors
is also reduced due %+o thz reduced amourt of sriginal cods
rejuired. Kendall and Laab [Ref. 23], in their research at
IBM, have reported data which shows <that mstaprogramnmin
from a data base o9f modula2s shouli b2 seriously considered.
Their study showed +hat 2ighty percant of +he applications
programming effort goes into production of programs whose
us3d life is less than 2ighteen a2aths. Thsrefore, any
rejuctior in *he effort to develop these programs and any
reductior in the maintarnance effort >f “hese programs vwill
prcovide a factor of four iIncrease in the =savings %o bz
apolied to *he maintenanca2 of thsz twan“y vercent pcr:ion of
“ha programs with a siginficantiy longsr life cycle.

23

o a e e o P Sy S S v PO S

............

The added attraction of modular <code is the idea of
completeness of the task. Por a gquality amodule to be deliv-
erad for integration it must be: 1) 1scumented; 2) coded in
its entirety; 3) testedl; and 4) dsbugged. These are auch
more difficult tc attain with LOC as the product. In parti-
cular, it is very difficult to tsst a block of LOC since it
relies heavily on the ramainder of tha code. Therefore, it
can only be examined by inspection while moiules car be
inspected and machine d2bajyged to a near zero dafect condi-
tion prier to integration. Althouyh the docuamentation is
] not vital for module delivery, it can be and should be an

orgyanizational requiremant.
The idea of designing projects, especially large ones,

&; by dividing them into subprograms or modules is a very olil
' concept in programming. Duriny the 1970t's it became a topic
t of high interest as a way to iaprovs program reliability and
; maintainablility. Ross 2t al [Ref. 21], Liskov [Ref. 22]),
f Crossman [Ref. 23], and Parnas _Raf. 24] (Ref. 17] wrota
r! formidable papers extolliagy the virtues of modular program-
ming. Yet there are many software iszvelopment o>rganizations

that do not understand th2 teranm, as2 or value of modular

a programmZng. The Departma2nt of Da2f2nse (DOD) appears to ba
on2 organization tha+* does no%t fully understand the value of
modularization and reusiay code. Yanson [Ref. 25] points

this out ir his short pap2r o5n r=zducing sof*ware costs by
reusing code. Elshoff [Ref. 26] observed this problem at*
. the General Motors Research Lab wizre mcdularization no<
' only appeared foreign to analilysts and prograaza2rs but was
viawed as de*rimental t> the softeare 1life cycle. Ths
unfamiliarity with modularity is also present at the US
Navy's Fleet Numerical and Jceansjyraphic Ceanter in some
anilysts and programmers. While this does rot appear %o be
a problem a* FMSO at +*he pressnt, internal training may t=
rejuired because of <*iarnovar of sof+ware development

personnel.

39

This section concerns quality aodules. These are
molules that are cdoded in their entirety, tested, debugged,
and documented. Each organization will have t> set up the
requirements for a countable md>dul2. This researcher recoa-
aends these attributes. Th2y 2nsure attainament of the
organization'!s minimum gJuality standards and take 4into
consideration the programm2r's time in debugginy and testing
th2 module. When reused modulas ar2 a part of the deliver=3
product <+hey sbhould be cour-sd as a percentage of one
moiule. Basili ([Ref. 15] used twenty percent in his
research. This is a g>>d startingy point. But if <+h2
organization finds that +:his is not an accurate percentage
of the time required to 3evelop original modulss then the
percentage should be adjusted accordingly.

F. USER PUNCTIONS AS PRODOCTS

The previous section dealt with functions based on
program s*Tucture. This section i=2als with fuactions based
on user rsquirsments. While modules may vary in length by
approximately one hundr2d lines of z>3s, wuser functions can
vary up to several prograams. An =xaaple of +his is a singls
entry accounting systea. A company may want a system which
pecrforms several functioas such as: ledger maintenance,
invoicing, file maintenanc2, weekly rsporting, ztc. Each of
these opera*ions or functiosns, is 21 deliverabls product t>
th:2 customer as a part of the single en*try accournting
package. The quality of +he entir=s piackage is 3i2tarmined by
th2 customer sazisfactisnr with =2ach individual function.
Albrecht, [Ref. 27] of IBM Ccrporation, uses “his measure as
th2 primarcy means of deteraining pro>ductivity ratings in ths
Appiications Develcpment 3roup. Hz points out that one mus<
be carsful when wusing this measurs >r any other measure by
keeping <*“he major projeczt objectivss in perspsceive: on

“ine, within budget, and 3 satisfiad customer.

KN

The specific product aeasure is what Albrecht calls a
function value. The approach to 3etermine the function
value is to count the numbar of external user inputs, inqui-
ries, outputs and master files that the project aust develop
as a part of the user reaquirements. An external user input
is a communication from the user t> <the computer such as
data forms, terminal scresas, keyboard transactions, optical
scanner forms and the lika. Thas2 30 not include inputs
from tapes and data sets, which ar2 considered as intecrnal
and part of the file count. Eich of these user functicns is
weighted by a value dssiyned ¢> reflect that <function's
value to +the customer. Appendix I shows tha details of
determining the functisn value and Appendix II shows <¢h2
details of determining the sizing and compl2xity of an
entire project using function value -omponents. Appendix II
uses the same external uszr inputs 3and some int2rnal inputs
as components +to comput2 *hz funstion points but also
provides for the the coamputation of 2 development time esti-
mation. I+ is important +to pot2 that Chrysler [Ref. 2]
showed in an unrelated and indspeadent study that <thess
components were most significant in predictiny development
time,

Albrecht's function value concep* has several advantages
ovar those measures previocisly mentisned. First, it is *he
only measure tha* deals spacifically and directly with user
satisfaction. The othsr neasurses virtually igaore the user

between *the functional spzcification phase and the iImplemen-
tation phase. This method constantly works with the user.
Secondly, since itz f2cas is on us2r requiczaznts and not

ST PPy

cn ccun=ing lina2s or blocks cf codsz >r modules, i* tends %>

1init programmer gaming to improv:z his/her productivisy

rating ar<ificially. Thizd, ths asasure breaks +he projesce

into user defined portions of iapcrtancs. This focuses <h=2
‘ effort towards +eamwcrk since it raguirss +he development
L 32

Py

| e _ _ :]

....................................

..

group to work as a team toward the production of functioms
to which the user has placed a w2ll defined importance.
Lastly, the method proviias more opoortunity f>r a smoother
evdlution of change than the others. It focusas attertion
on the cost of each function and the effects on cost of
mii-development changes. The constaat attention to cost and
usar involvement providas a better aschanism t> control the
change process during devalopmant. It enables the planner
to design for changes that may occur during the life cycle
that may not e cost =2ffective to include during th2
developaent phase.

The furnction wvalue concept has three disadvantages.
First, there may some Juestion as to whether to call 2a
component an inquiry or an input. These are not always
dis+inct i+ems. If tha waighting factors are differert for
each this may significantly alg%r the final function value.
Second, users play a largs part in 32t2rmining the weighting
factors, as it should b2. Users can be fickle, therefore,
it is often extremely difficult to g2t +hem to admit "=ruth-
fully" what they desire mdost. It is rno* so much that thay
are hiding information but that <+h2y don'% really know what
tha2y want., Thnerefore, it requires talsnted interviaswers and
designers to determine th2 true Jesires of the users. The
third disadvantage is that this 12asure is 350 good tha*
managers may tend to ra2ly on it too heavily. This is not
tha ultimate or universal measure but 1%+ is a 3924 sne. The
other measur2s can give insights 21 products and produc-
tivity that this measursz =-an not. Th2 functisn value Is an
agjregate measur<e and must be ussd zs such. As Stevens
[(Raf. 28] of Performanc2 Manigema2nt Associatas Inc. o34
Scottsdale (Az.) points out, *her2 is no univarsal measurs:
yet. We aust use all the imperfect nsasures availakls in an
effort toc describe the progyramming activi=y.

33 !

G. TESTING, INTEGRATION, AND IMPLEMENTATION

One of the concerns of @manajers, vhag discussing
programmer productivity, is how to iicorporate non-delivered
code in the calculation of productivity. The non-delivered
cols consists of test coila, debug3ying aids and incorrect
cole. The ipcorrect ¢2d2 is a function of ths programmer's
skill and is a penalty to his/her pr>ductivity rating. The
test code and debugging 2ids are n>t mistakes. They are
us2d by skilled programmsrs to ensare coding juality and
correctress, There has been s>me concern that the
programmer should have this code included with the delivered
cole for productivity calculations. Thkis researcher does
not concur that the test -ode and d2bugging aiis should be
inzluded. The programmar's job 1is to delivsr code that
meats *+he specificationms. The only way to ensure *he code
actually meets those specif ications is to perfsrm some type
of test. Test code ani debugging aids are tools of the
programmers just as milestones and management/support are
todls for others in th2 s>f+ware izvalcpment arena. They
are a necessary overhead shich proyrammers must employ if
thay are to deliver the quality products discussed
praviously.

The Integration, testing and iamplementation pkase of
software development utilizes approximately forty percent of
the project's resources (R2£f. 37 ,p.18]. Intuitively, on=2
would think that an area which uses 55 much of the resourcss
would be a prime placz %5 4o som2 productivity research.
This, unfortunately, is not *ths case. One of the prime
reascns has been the inability of *az indus+tcy to detesrmine
th2 role these activitizs play. Ss2cifically, <theres is a
quastion as to whether testing is 3 oart of devalopment or 2
part of quality assurance. If it 1is var* of juality assu-
rance then i1t is an cverh2ad and not 31 productivity concern.

EMat Angi Rt A Sttt S B Paali it L A R L o A SR - M /gl Sangs Mg) TN T S T VY T W v
Bl . N N T e T T e T T N T N T R TN T N RSN R T T R B A SO
....................................

RARNRA
v
:
[l
.

T

If it is a part of development thea “he product is tested
anl acceptable code, But what detecnines how productive the
testing is? The time axpendel in tasting does not help to
deteraine the productivity of testiny because the time used
in testing is a function o5f the +tast plan and the number of

Trv‘rvf; . bt

PN AT
S,

defects found. Defects frund does halp to determine produc-
tivity. It shows either pd>or design, poor programming, poor
gquality assurance practic2s or any coabination thereof.

T '.r".r

Integration is left with the same type 2f problems.

This activity takes projact portions, modules, Loc, or
programs, and brings th2a togethar to form a cohesive and
integrated product. But if thar2 are major 1ifficulties
ercountered are they tha ths fault of <the integrators?
Probably not. The fault probably liss with the designers or
th2 programmers.

The manager must b2 aware of th2 problems that develop
during this phase and ke2p records >f then. Though thers
were no conclusive reports found oa how to d2al with the
irformation, the consensus from th2 literatur2 is that it
must kept in a data bass for later study and consideration.
Th2 science 2f software ia2velopment has not progressed far
endugh *o completely handl2 ths tast, integra%ion and imple-
mentatior problem. Most research2rs are of th2 belief that
if we ge* control of the i2velopment proczsss in 3 scientific
way these problem areas may disapp2ar.

He DOCUMENTATION

The primary belief 3ia the Iniuscty and parcticularly in
DOD is that software development pry>jacts have two separate
& products: program code ani progran i>cumentation. This is
an extremely shcri-sigh+t23 but undecrstandable belief. As
long as software develdpment s viewed as having <wo

psoducts, +his belief praserts <hz oppor=unity ¢ iiscari

N ST TN w e W O R T e T S g W Cad RS MM AAC M I A i A A Sk gass Tt St T S AL AN IS i At I
» . . - Lo = - - - - - " . T A
. - D T IR B S T T T P P ‘.

one. Since the program is what is wanted, all to>0 often the

documentation is reducel ia an att2a3t to reduce development:
costs. The view that thare are tw> products and the prac-
ticze of reducing the documantation tirive on tha belief that
softvare development anid softwarz maintenaance are not
related. This is not trus. The d>cumentation is required
to learn the prograa logic and codiny structure. A software
project that was poorly d=s3ignad and poorly or not

documented is extremely 31ifficult anl much mor2 costly t>
maintain than ore that was well d2sign2d ani well docu-
mented. Nearly every other industry (i.e. automobile,
elactrorics, machine tdols, etc.) that produc2s a complex
praoduct provides documentition on ti2 logic and design of
that product so <that maintenance parsonnel <can proviis
quality and cost effectivsz maintenan:za. There is no reason
to believe that the software Jdevelopment industry should be
any different.

This researcher beliaves <that 3ocumentation is not a
separate product but an inteqgral pact of all wa2ll developed
software projscts. This chaptar <consistently discussel
fully coded, well docum2nt2ad quality software. It should be
intuitively obviocus that 3 program that does not operat=2
properly is of little or 21> value. And that ons tha* oper-
at?s properly but is difficult t5 1nders+and 2and mairntaia
because of poor documentation is of auch less value than one
with superior documentation. Thus, the documentation has 1o
spacific measure of length only onz of quality. I« is a
problem for the developacs and quality assurance experss o
ensure that the documentation is p-ovided and adequa<e in
desczibirg “he cprogram 1o3ic and coding struzturs of <h2

projec=t.

IV. DTHE MEASURES

During the research f£or this paper it was noted that
thare is a great deal of a3isunierstaading both in the liter-
ature and in the industry about programming and software
development productivity. The misuaderstanding lies in the
ar2a that, when questioned about the product that is
produced, one will receiva quizzical 1o0ks or long spells of
silences. People immediat21ly want t> jump to discussions on
coaplexity, language, tools or the iavelopment envirormen<.
These have 1lit+tle to do with <calculating productivity.
Thair roles are as parametars withia which one must analyze
the specific productivity rating. r'his is not to belittla
tha importance of these areas. It is simply 3 matter of
orjanizirg one's thoughts. One can not intelligently speak
of improving productivity antil one first has a quantita+ivs
measure and secondly a deszription 5f the environment. Too
often people in the industry look i+ the environment not
only first but exclusively. Without a product defini+ion
and the measurs, the environment canas* be understood.

Produc+ivity has two components: outputs and inpu<s.
Th2 outputs, locsely da2fianed, are the products previously
discussed: projects, projrams, functions points, modules,
anl LOC. They are depeniant on th: corporate hierarchical
level and ths philosophy ased for software developmen:. Ths
inputs vary considerably depending upon which productivity
measure one is interestzi. The md>st common input used is
+h2 person-month, 160-175 hours. This can ba broken down
into its various parts by programascs, managsman+t/support,
sys“ems analysts, and projram analysts. Bu+ +hare are othsr
inputs that may be worth consideriag such as CPU <*ime or
terminal connect tinme, Though, th:sz2 are rarsly if ever,
censidered.

37

Laun gin m ot Yoy TYY PR "
. S S e et R A A]
P PR A | P .
Lt . s e et

A. LOC PER PROGRAMMER-MONTH

The most comaon measur3 used for assessing productivity
throughout the industry is LOC per programmer-ad>nth. Though
a very popular measure, it is not vary gcod. Since it is
based on LOC it is subject *o the Lline courting variatioms
mentioned in the previous chapter. This variation <can b2
limited, +to 2 certain a2xtent, by setting organizational
stardards as rec mmendel 2arlisr. This would permit consis-
teacy ir the organizatisa but ndt across the ipndustry.
Recall, one of the reaso>ns for measuring is to make compari-
sons across organizational 1lines. As long as there are
variations in % he definitions of coamponents nd> intelligent
comparisons can be made.

LOC per prograammer-md>nth is ins3ffective for noncoding
tasks. The tendency when computing this measure is to use
programmer-month as tha +total dav=lopment time which
inzludes these monccdiag tasks »of 12sign, d>cumentation,
testing and management/support. Sinz2 no codiny is going on
during these stages it maka2s little s2nse to include thea in
the coding effort. Tharafore, ¢that would imply that this
measure should be wused oniy for th2 coding phase. of
coirse, *+hat fccuses attan*tion on the codiny task exclu-
sively, which is a minimal poction of the software
development effort.

Finally, this measure tends t> penalizz high-order
laaguage (HOL) programs in favor >f proygrams written in
Assembler language. Jonz2s ([Ra2f. 29, p. 21] provided %h=
example shown ia Figurs 4.1 . This is an example of the
same program wri*ten in “w> differ=nt laguages. Two of ths
purposes of using HOL ar2 to cut costs and improve produc-
tivity. But the exaample shows th:z paradox of this measure.
I+ appears that Assembler languag2 is more productive *han
tha HOL even thcugh thz)L program took one ad>nth less +o

33

PP TRE U L . P UL Y WIS S U U GO PR WL S TN U P - .

.........................

-

p Ac*ivity Assembler HOL

b Language
B;;i;;-- - R 4 weeks 4 we2ks
Coding 4 2

‘ Testing . 4 2 ‘
Documentation 2 2

3 Mgmt/Support L 2 _ 2

;é Tctal Effort 15 weeks 12 weeks

g {4 months) (3 months)

i Lines of code 200 500

:. LOC per prog-mson 500 167

;:

-

»

3

.

Figure 4.1 Assembler Lanjuage vs HOL.

produce, Notice also that Jones us2d the term "programmer-
eponth"™ to medan the entire program iavalopment time, a common
practice, as nmentioned =arliar. The actual programming

Y f:ﬂ'_.*,f.

tiavs were one month ani one-half month £5r Assembler
ianguage and HOL, respectively. Evan if +his time frame is
used, +hough, +the Asszmbler 1lanjuage at 2000 LOC per
programmer-month appears to b2 twic2 as productive as the
HOL at 1000 LOC per programmer-month, This pecints out zhe

T

problem of not being consistent 2abdut terms. Jones uses
programmer-month &> mean the sntirs

F N

avelopment time which
Te

i
vyia2lded an average productivity f£figu which included 2

oy wey

period when no ceding was being don2 a% all. Using the ternm
s*ric*tly and comparing it to Jones' usage leavss us with 2
four tc ore difference in productivity for Assemble:

e SN o o 0e 4B oe o)

language and a six to one iiffarenca2 in productivity for <hes
HOL.

33

PR

Y Ty
Y STEEE .

L WS W I e

B. MODULES PER MONTH

This particular measure was prsserted in a paper by
Crossman [Ref, 23]. sSurprisingiy, tais researchsr cculd not
find any other references that have attempted to duplicate
his findings. Yet he po>inted to saveral advantages which
this measure and its m2thodology of program development
support.

Modular design programming -.=nds +o minimize the
conpiexity of projects. Minimizing the complexity parameter
allows the manager to reduce the numbar of variables he must
consider when making prodactivity coaparisons. The defini-
tion of a module appears to be mor2 coansistant throughout
injustry than LOC which jives it a potentially much better
comparative capakility between orgaaizations, provided th2
other organizations use this measur2. The use 92f modules as
a product provides a consistency throughout tha development
cy-le. It includes the design, <¢>5ding, testing, docu-
meating, and management/sup port phasss. Yet it can also ba
broker down into its irdividual component efforts to deter-
mine which effort has th2 gr2atest impact on development
tiae ard thes impact of 2ach modulz on the project as 2
whole.

C. FUNCTION POINT DELIVERED PER WORK HOUR

Albrech- [Ref. 27] discussed th2 =2ffects :this approach
has on showing the relative produc*tivitias between
ianguages, project size and various programming technolo-
gies. The methcd focusss on th2 2%%2rnal attributes of a
program and the work~hoirs =zcontributed by both IBM and
customer personnel assigan2d %o work on <+he project. It
covers all phases of +thsz project. The goal 5f this method
of measurement is o stzt2 devalopmelrt costs in terms of +h2
work-hours nsed to design, program anil test *hs applications

49

) S A AL GI s SR SE ey .
. -

T—

project. Althcugh thera is not =2nough data available
pr2sently to give conclusive rasults, the report does indi-
cate the capability to show the rzlative productivities of
dif ferert languages and davelcpament tachnologies. This is a
major advantage that is rnot possibls with LOC and has not
yet been explored using moiules.

D. SELECTED INDUSTRY METHODS POR MEASURING PRODUCTIVITY

The preceding sections of this chapter discussed various
methods used in research to study »>rogrammer productivity.
Each method mentioned usas a rati> of outputs (project,
program, specifications, m»>dulss, LOZ o5r function value) to
irputs (person-months, programmer-m>nths, or work-hours).
Praviocus sections proviizd recomn2nded definitions for
selected output and input components., This section presents
measures used by several prominant corporations that develop
sof tware.,

1. IBM

Measurement of programs is still a1 fairly subijective
process. We can measur2 size, bas2d on 'lines of codet
3r ‘'rumber of statments', but acceptance of <+hese
measures Is not universal. Acceptance of lines of code,
as _an example, seems to be ased on, the visw that
1lthough lirnes of cod2 13y 0be an iaprecise aeasure, it

1S sométhing that can b2 epumeratsi, and unti] something
better is _discovered we #1ll contijue “o use 1t. Theré
is a veiled lngﬁtatlon nere to find somethiag better.

[Ret. 30 'po

This is the philosophy uaszd <o approach +<hs=
meisuring of preogrammicg activitiszs at the Santa Teresa
Labora*tory of I3M. The "somethinag b2tter"™ that IBM has been
trying *o refine <for the last thra2s to four ysars has been
the scitware science metzics izveloped by Halstead
[Ref. 31]. Figure 4,2 shows *h2 major elements in use by
I3M (Ref. 32] [Ref. 30]. The phildsophy for using sof*wacsz

L1

™— 14% o s ———TVTY v
o P ™.

. . .

o4 2 B L. N

. TR —

N . PRI S S ST P T A N T

LPAL Il e e PR et Sush Sun M eriben- Man-Datun Saae et or iy S it han Sage 4 W, e - T N —
. B . - C e PR PR B Pl Nt . SN e VLN

Operards = va%ges that are chanj2l or used as a
reference £>r change” (constants, variables

Operators = elements that operate op or with operands
(operation zodes, d=2limiters, punctuation,
arithmetic s;nbols branches (DO WHILE,
IP THEN, LP THEN ELSE))

n/= number of unique operators used

‘Qg= number of unique 2 perands us=3

pq/= number cf times the operators are used
P42= number of times the operands are used

Vocabulary (77) = the sum of unique operands and
oge;ators used "in _the program.
It is a measur2 2f the reper*toire
of elaments a programmer uss3s to
implanent a progranm.

=7+

Length (N) = the sum of th2 ogar;tor usage and _the
operand usage. t is a measurz of
program size.
N = N/ + NZ

Difficul+ty (D) a measure of ths difficulty of
writing c2de ani, intui<ively, a

measure of eass of reading.
D = .7.7./. X Ng
2 77&

Fiqure 4.2 Halst2ad Blement Relationships.

science metrics is buil:z on <che £3llowing belisfs, Fi

(3]

st,
in 2ny given language, on2 *ype of program iIs no harder %o
cole thar anrother, Ths 2xperiencs at Santa Isresa labora-
tory over +h2 last fiv2 y2ars is that the only “hings “ha+
affect productivity are the 1languajye and the tools used.
Thay have fcund tha* HOL is about “%wice as productive as
Assembler language. Sezoal, aside from language, =zhe

42

P U U O S

......

S~ EESRmEe e oo

kA

——TTY

development tovls are what affects programmer productivity.
To this end, IBM has consistantly 3iied to th2 "workbench"
of their programmers. Thay have provided on-line progranm-

ming capabilities, given each programmer his/her own
terminal in hissher office, proviied a dedicated progranm
development computer and variosus programming aids such as
Script. Third, the definition of opesrators and operands is
consistent across lanquajes barriers. This gives softwvara
science metrics a significant advantige over other measures.
Adiitionally, 1IBM research has showna that the size metrics
usad by Halstead are as accurate as LOC for measuring
program size.

Since programming productivity is believed to be
constant for all programm2rs, dJgiven the same environment,
IBM has looked primarily at th2 difficulty metric.
Difficulty is defined as 3 metric that expresses the diffi-
culty of writing code. It takss int> consideration decision
noies, the repertoire of operators used and how concise the
usage of the variables is. The measure, then, also appears
o be one for ease of reaiing. It io=s not tell how diffi-
cult the program must ba. I+ only te2lls how difficult the
programmer made the prograa. High 1ifficulty can come from
poor programming skills, poor program structure, inexperi-
ence with the language or the complaxity of ths algorithm.
Ths value of this metric is *hree f>ld. It tends “o indi-
cate errcr-proneness mnuch earlier in the development cycla
than +radi<ional methods. Intui+*ivaly, the mare 31ifficult
th2 program, +he more =2rror-prone 1i¢ is. The measure can
only be “aken af+er coding has be2n completed but it can be
calculated :immedia*ely following th2 first clean <compile.
There Is no need to wait for tasting. Secondly, it peints
out thcse programs which ns2ed <cework Jue to high difficuley
values. Third, It points out programmers who consis%ently
have high difficulty wvaluas. This 2nables thz manager >

43

ensure that the programmar receives added training in the
techniques available to r2iuce program difficulty. IBM has
fourd that the difficulty measure tz2nds to rangye from three
to eight. Rhen ever <they see that a difficulty measurs
exceeds five, they <call the programaer in o have him/her
recode the program to reduce the difficulty msasure <o five
or less. If the programa2r consistantly delivers code with
high difficulty measures he/she is provided aided training
in techniques which can lower the program difficulzy.

411 this only gives measures of the program not ths
prodcuctivity of the prograamer. For IBM to datermine tha*
all programmers had the samze productivity, they had to test.
The test measure was and csntinues, o5n a minor basis, +to b2
LOZ per person-year. LOC is definzd as data declarations
and executable s*atments. The use 2f this measure, now, is
only to check for changes ir productivity due to new tools
and for reasonable production rate r:2lative to the iniustry.
IBM reccgnizes the comparability problem of the LOC measure.
However, <*he IBM perceiv2l industry average ranges betwe=2n
800 and 2500 LOC per year, given th2 line counting varia-
tiors. They cortinue to neasure productivity using LOC pe:
man-year o ensure that IBY remains wihtin this range.

2. Andahl
a. System Softwar:

Amdahl's appro>ach +o systems softsare develop-
men+t is different from most of <the iIndustry. As a2
manufacturer of IBM compatible hardwacs and sof:tware, their
approach is *o use IBM software proluc+s and modify =hem %o
operate more efficiently on Amdanl hardware. This means
placing "hooks" into the IBM softwiacs %o operate special
Amdanl procedures. Sinc2 +heir goal 4is develop mor>2 effi-

cian* sol<tware, these hodks must bz mirimal ia both leng*%h

4y

o

—r—
-

—

and interference with the existiny software and 1logic.
Amdahl places a wmuch higher emphasis on gquality ¢than
quantity.

In this light, none of the previously discussed
mea sures apply. Amdahl wuses a management by objectives
(MBO) approach to measurz performanca, Their hiring prac-
tices aim towards acjuiring thd>sz programmers who are
experienced, skilled ani senior in the industry. The
programmers are organiz2d into jroups of ¢two to three
assigned to one team leadsr. Each group has its own area of
responsibility fer program developasnt/modification. The
assignment of tasks and thz2 time constraints are determined
by mutual agreement betw2sn the marager and team 1leader.
The schedules are recorded and each programmer is evaluated
on hiss/her perfermance. The evaluation is discussed with
the respective programmsrc at th2 periodic performance
review. Since each group has specific areas of responsi-
bility ard those areas are limiced, any trouble reports
received are easily assign2d ¢5 th2 group andsor individual
responsible. These are also included in <«h2 performancs
Teviev, This scenario 31oes allow any specific measure to
quantify programmer perforaancs. However, <*he prog-aaming
section Is a small organizition, 5)-75 programmars, so *hey
t-ack the type of modificatior against the time requi-sd and
th2 quali+y of the programaing. Th2y do no* use any parti-
cular measure ou*side of budget and schedule. [Ref. 33]

b. Applications 3oftware

Amdahl's applicza*ion projyraam develdspment is very
siaiiar to +he systems software devaldopment in that *hay us2
MB) as the predominant measure. They dc use LOC pe
pcogrammer v2ar *5 do s>m2 measuriay but it has very littla
siynificance +*o “he operation. LIXC 1is defined as al
programmer-origiral COBOL statments. No credi:t is giver for

—TT T

PR PRSP - U N SRS et e e . P S W .
B A I T T A R SN

E i T S e M s i S R Vit TSR S S St A~ "It i M it e i -2t h s “Bites s Lue Juect SN ety aren Mo sm s b

reused code, although, they admit some credit should be
giver. This wculd appear to discourage reusing code but
thair inpcentive, reward and penalty system provides the
necessary encourageasent. How the system functions was not
spacified. Management doa2s raquire programmers *o use data
dictionaries, and code libraries ar=2 kept in an on-line data
base. The primary measurz2 used to> measure perfarmance is 1
review of the programmer's schedulsz. The programmer submits
a schedule of +task accoaplishment to the manager. The
manager vreviews it to =2nsurz it 1is realistiz and then
comapares the schedule to the <task completion 3dates as the
programmer delivers the assignasd tasks. Here, as in sys*ems
development, the primary ingrediant for measuring is
programmer and manager 2xparience. Ref. 34]

The measure used ts evaluate maintenancs
prograaming is built arouad the nunber of trouble reports
received. Each programming group is responsibla for mainte-
nance of its assigned s>ftware. TI=2an leaders must emphasizs
high quali*y in <the scftware to avoid having £o reschedul=
programmers onto maintanance from davelopment. This does
nct prevent errors but it does cut them down. The main
emphasis from +he Applizations Projramming Manager is to
ensure as rapid a responsz time as possible on the *trouble
Teports. The reguired tacnaround tiaes for trouble reports,
prasently, is not to exce23i six montas. They us2 the turna-
round measure because it tands to injicate fto “he users *ha%
th2 company is genuinely interest2d ia the productivity of
sof tware maintenance. I“ 31lso gives the respective managars
arn addi+iornal reason #hen regquasting mOoI2 Tr=2souIces,
Finally, it gives a busiiass value *> organizsd main“ernancz

to s

because I+ forces the variosus manajscrs to scheduls cesources

fer program main+*snance.

B B B el ol ol . P e - .

CheCarLam BA g

Amdahl uses program packages pradoainantly in
th2ir applications prograzaing sectisn. These packages coame
with their own documentation which allows Amiahl to take
take an approach significantly diffa-ent from this research-
er's view point. iaiahl believss prograa code and
dozumentation to be sep2zrate and uisjual products. This
belief is made pcssible bazause th2y have prograams that can
analyze code and tell tha programm=2r the structure of the
coie. therefore, thay feel tha*t program maintenanca
without the documentation is not 1as difficult one might
assume. However, docam2nation is sncouraged. The method
usad is to request documantation anl to make it as easy to
provide as possible. To make the documentation easier, it
is all written on-line using Script and a variety of user-
developed macros that provide som2 jyraphics to enhance *he
prose. The documentatioson juality is a1ow much higher and the
decunentation is much easiar for ths programmers to deliver.
{(Ref. 34]

3. Systems Developmeat Cozporatiaza (SDC)

SDC's cost estimating proceiaures use LOC and pages
of documentation as th2 primary productivity inputs ¢to
conpute costs. They catagorize tha2 various types of LOC
(data definitiosrs, executable statsm2nts, reused code, etc.)
+o determine the subtask cost for 2ach activity. The LOC
are weighted by an in-house <zomnplexity measure which
includes parameters for pragram sizs, security, and reli-
abili+y. Each productivity measurz is computel rala%«ive %>
th2 type of program (real-time procass con%rol, interactive,
repcrt generator, data bas2 coatral, etc.| tha< was
produced. Documentation is mesurel by pages produced perc
day per type ¢f program. Although thay call documentation 2
separate product, +hey consider 2ll projects to be inse-
grated ©packages of both software :5ode and doscumen+a‘ion.
(Ref. 35]

4?7

4. 1IR¥

TRW uses a weighted LOC p2r man-month method +o
measure productivity. Th2y raviewel Halstead's metrics but
concluded, as 4id IBM, that source LIT is equivalent to ths
size metrics developed from counting operators and operands,
They do cuncede that tha difficulty metric daserves more
stady but +they have no rasources avialable at present to
conduct such a study. They have found ¢that weighting the
L0C with an in house factor for =conplexity and reliability
is sufficient. The LOC is defined as 2 deliver=2d4 well docu-
mented and well engineerel lins equal to a card image. The
card image is an eighty <character line. Comm2nt lines ars
not included but 2all lina2s which hold ‘*computing" informa-
tion are (e.g. job contr>l languags, edit 1links, format
statements, data declaratisns, exacutable stateaznts, etc.).
TRW defines a man-month, 152 hours, to> include all personnel
hours direc*ly chargeabie to the project.

At present, TRW do2s pot m2asure mainta2nance produc-
tivity. However, the interview with Dr. Boehm (Ref. 36],
recommenéed the methol 3iscussed in his book Softwars
Enyipeering Economics ([R2f. 37]. This method equates *h2
annual maintanance effort to the annial change traffic (ACT)
multiplied by the estimatsl devslopm=snt effor-. ACT is <the
fraction of the software product's s>urce inszrucztiosns which
unierqgo change during a typical y=2ar, either through addi-
+ion or modification.

TRW inciudes docuamentatisn in i<s definition of 2
Loc. This ccrresponds with th2 philcsophy of +this
researcher. TRW does not treat s>ftvare code and documenta-
«isn as separate products but as integral parts of th2
software project.

43

N
.....................

V. CONCLUSIONS AND RECOJNENDATIONS

This paper has attempted to point out the major areas
wvhich must be explored in order t> measure and discuss
programmer productivity or softwars developaent produc-
tivity. The w®manager aust deciis vhat 1lavel of the
orjanization he wishes to measure. He then must determine
vhat, specifically, th2 product is which that level is
making. Before proceeiiny any further, he should examins
tha quality assurance procedures and practices to ensurs
that they are both in us2 ari that they do =stablish and
chack for a ainimum quality standacrd. From hers the manager
can select the various inputs which he feels ara2 relevant to
study. The productivity rates he coaputes need to be s*torad
in a data base so that they may b2 used as comparators
against *time and other >r3yanizations. Finally, 2ach measur:
must be kept in the context of its =2avironmert. This condi-
tion provides two functioas. First, i+ keeps the measurs:
meaningful. Second, by s2lectively changing on2 elemen* of
tha environment at a tinme, the maniger can determine cause
and effec* relationships that can l224 to establishing the
optimun software developm2at environmen+.

The LOC measures are poor for s>ftware dav2lopment and
lead to paradoxical canclusions in many instancas.
Remaining with any measur: that us2s LOC will tend <o bind
+h2 orgarization to tezchiaolcgies ra2juiring ths development
of totally original cods >a every prcoject. This will teni
tc prevent *he use of mataprogramminy and the 3svelopment of
program families, Thes2 programaing +technologies <show
significant promise to reiduce devalopment costs and improve
programming productivity iramatically.

43

--

Modular measures proviie the opportunity to explore and
develop the metaprogramainy practice. They also have over-
heads that must be acceptad as development parsonnel learn
tha technology, the aidsd effort rejuired in the design
phase, particularly for "small" projscts, and the possible
inafficient use of CPU tim2 due to 2aa increase in the number
of LOC. These are small overheads t> pay if ths development
tiae can be reducei by as auch as Laiergan [Ref. 19] claiams.
The @measure can be used in conjunction with any other
measure to help define ths programming activity better. It
may be especially wus2fal in conjunction with function
points.

In closing, it is apparent for the 1literature and the
discussions with the selacted industry corporations that
thare is 1o perfect anl correct measure or method for
measuring programmer productivity. However, th2 vital point
to understand is that nearly 2all organizations do measur2
programmer productivity ia soma fashion. Several organiza-
tions admit that their methods 1lack some possibly importan+
inputs or parameters. dowvever, 2ach crganiza+tion does
attempt *o0 measure productivity s> that each <c=an gain some
unierstarnding of the orgaaization's particular environment.
With an understanding of “he environaant, each organiza<ion
and researcher is able o conceptualize the software devel-
opmaent process s that the managsc can make intelligent
assertions about how it is affectei.

5J

LIST 2P REPERENCES

1. %evis, rigg- "uissinge:onputa Softwara", Business

)
¢ PPDe 53, 1 Sapteaber 1380.

Chrysler, Earla "Some Basic Daterminants of Computer
1

Programming Productivity® coamunjication the A
Vol TN D PR99NE5Y) 1Yy, S220udications of the ACH,

. an i R £ i a4 -
. RO ANl :'.....‘- ‘I"',"'.'-'.
. SR E s e e ey DA
[

3. "A Rush of New Coxpaniss to Mass-produce Software®
Business Week, pp. 54-56, 1 S2ptsmber 198).

4. Azuma, M. and Mizua>, Y.,"STEPS: 1Integrated Software
siandinds amg iz B3 ductieiiy IaPESbcoRBEg:FORRISEE
B3SHE Sy, FEsERIce Eneaeedilas T icombeol AINL 00

S. Wasserman, Anthonz I. and .Baladz, L.A., "Software
Englneermnq: The Tacning Point", Computer, pp.30-39,
September 1978. .

6. "An Acute Shortag: of Programmsrs" Businsss Week, pp.
49, 1 September 198)J.

7. Kiser, = Barbara C. Stewart, "Software Management
groduct%v1§¥ - gnietgtandlng tthe S%ftware Development
rocess oapater 3o0c¢cia conferencs Praceedings
FaZi°T3gh, BT SRARACSE 200e2il onterencs Bracsedi i

8. Mursun, J.B. and Ysh, R.T. (:D-chairmang "Repcrt from
the Measurements Workshop of +he IEEE Workshop, on

’ Software Productivity", SEEE ggm%uger Socisty
: Cerference Proceelliays Fall 1331, pp. 339=307.
3

9. Simon, Julian L.,is™ Basic Ressarch Methods ip Social

cience, pp. 287-2%1, Randona I5use, "New York, ~V.Y.,

i‘ 78,
:- 10. Pazur, _Ron, inter

view 2 p za
Materzal Support Office coda 212 Machanicsbur
Pa.. i¢ 43028855, “r-*c% ‘ 3

; 11. Jones, T.C., _"Th2 Limits of P:oqrammin% Productivicy"
¢ Proceedings of ths Joint SHARE/ZGUIDE/IBYM Appl:ication
E : Developmen® SymposSiud, OUndated
-

12. Keider, tephen P,, "Why 2ro>jscts Fail" Datamation,

Ep. 53-55, December, 197%. -~ = TToTEEEEEE

evereer

51

haa Z3E G0 0 SuD A A a4 g

v

—————

D gl JN0 S e Sn S SR S SN Ao aa
V- - .

p—

p

...........
...

.........

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

..

Howden, William E, "Life-Cycle Software Validation®,
Computer, ppP. 71~ 78, February 1978.

Fox Joseph M. Soyftware ani its Development
2262251, Prentict-uill, Ergliwsod CliFre--Rod - -47655,
Jones, T.Cop “Maasuring Programming ?uall*y and
Product1v1+ e IBM Systemas Joucnal, vol. no. 1,
pp.39-63, 1978.

Basili, Victor R. 2ad Frebergsr, Karl, "Programming
Measurament and Estlnatzon in"the Softwars Engineering
Laboratory" The Journal 2f Systams and Saftwafe, vol.
2, pp. 47-57, T98T,

Parnas, DiL., "Dasigain Software for Ease of

Extension and Contract.on é__ Transactions on
Software Engineering, pp- 26-23 Rarch, 1979:"

Zoll, Peter P., "M2asuring Programming Productiv 1tz"

Computer § tmans2 Evaluatisn Users gSroup 16%th

Hseting, 5B=507-65y, pp. 39-52, 1980.

Lanergan, Robert 3. and Poynt>n, Brian A., "Reusabls
Code - The Appll*atlon Devalopment Techuzgue of the
Future™ BLo «% of the Join* §_HA§_L§UIDE4IB!

dpplications=°Beveidifient” StReoSiTdT poi-CT2743E
cT

Kendall, R.C. and Lamb, E.C., "Management Perspectives
on_Programs, Prograaning and Productivity"®, GUIDE 45,
A<lanta, Ga., Novemba2r, 1977.

Ross, Douglas T., ,ood=nough, John B., and Irvine,
C.A,, "sSoftware Engineerin Process Principles and
Goals", Computer, pp. Su4-64, Miy, 5.

Liskovw, B.H., "A Design.
Softvare Systems" P;_ eed;gg§, all
Corference, pp. 65-737°79723

Crcssman, Trever D., "Taking ta2 Measure >f P
Productivizy", Datamation, pp. 144-147, May 1

Parnas, D.L., "Jn the <Criteria <o be used in
Decomposin S§s+ems into Modulas", Communications of
the ACM, pp. 220-225, Macch, 1379,

Nunsonl John 3., "Imgrovxng Software Engineering
Preductivisy”, IEEE =Qmputsr Sociely confarencs
2roceeiings’ (LoMpTOR=81); pb. 3719, SEbtEnber ~T987:

52

P S . P S - P - .

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

Elshgff, James L., "p 3
Stud at General ot

eviaw o
S / EgE gggange
E5ets %g&%, 33 ALRYLRFEE 3853ad

f Softwvare Measurement
search Laboratories"
1

Lige cicle Management

Albrecht, Allan J., "Measuring Appl*cat‘on Development
CAiitiiEon popfiRERtAE Bhorondhne shhBosinn? Bt
33 gzlﬁulgﬁél 1&;3 1&atiOp Yeveropaent 1 esium, PP-
stevens, Barry, "productivity: The FPFirst Step",

Scftware News, pp. 28-30, March 1, 1982,

Jores Capers am Qi1ali ani rogramme

%goduét;_isg TR 02. gaed “IBn 3orp§1 Genera%’?goau%€§
vision 80 Cottls f£sad, 3in Jose, Ca. 93193,

January 28,1977.

Chrlstensen' K.' ?ltSDS, J- Po r Smith c- P- I} "A

perspectlve on 50f+ware Scliencs", IBM §1§£gg§ Journal,

vol. 20, No. 4, pp. 372-387, 1381.

Halstead, M.H. Elements of Software sScience, New

York, New York, "1977:

Christsnsen, Ken, Interview, IBM Santa Teresa

Laboratory 555 Bailey Avenus, P.0O. Box 50020, San

Jose, Ca. §5150, 403-463-3127, September, 1982,

Patrick, Rlch Amiahl Corporat on 1250 East Arquez
Avenue . 70, Suanyvale, Ca. 94086, 4308-746-8916,
Septemﬁe

Berr; Mike, Amndahl Corgoration, sunnyvale, Ca.,
408-706-6000, Decembar, 1982. Interview.

donq, Carolyn, SDC 2500 Colorali> Averue, M.D. 32-61,

Sar*a Monica Ca. 90406 213-820-4111, Intervi ew,
Decnmber, 1985.

Boehm, Barry, TRW-DS53 1 Spacs Park, R2-1)76, Redondo
?gggh, ca. '8 278, 213-535-218%, Interview, December,
Ecehnm, Barty Saftware Eng;negrlga Ecoromics,
Prentice-Hall, 1IccC., Englesw>23 CIIEZs, New Jersey
07632, 1981,

53

PR Y S S P S S AL o o "~

N

:
b
b
%
=

.........

RS

e

BIBLIOGRAPHY

%lbgecgt, "uegsurin éic;tion Develo ;en~
roductivi a T o s
BT fci it B SBBE . S9gaiy, Contersice EicCaallla
gargggﬁﬁen WDeHe . Cg?ro%nctlgiti= agggg thgc3 gevgl pent
Env
Fall 1981, Wash% fo--seg:ii 29¢iaty Conferencs DProce ngs
Basili,.V.R d Pr o "p t
Est Imation ina%he SO PtNdrs’ pglnescily Labota 8%?'f°'38u na
of Systems apd §g§:ga;§, val 2, Fabraary 1981. PpPe.
Basili, V.R. and Philips, = Tsai-Yup, "Evaluating
Eogpar%ng "Software uetr&vgl 8 ths ioftwa'e Ena serl

orator ERmancs eview, vol. rin
Labor pp.y -ggg__- g2 Evaluation Review, pring
B L.L. "Solutions to Productivit blems"
_%agxstemg fapagemspi, vol. 5 Januaryy1g§ Lzal

Jou
PP. -35—
92

Cbapln, N., "A_Measure of Software :3m9%ex1ty" dings

of the National Computer zonferenc: 1373, pp. 59525553

d

gheg,ct ETﬁ EEE"¥§ggramt_ :omp%axi§£- agd Proqramnf"
roductiv isaztions of Soffware esrs, vol.
SE24, no. 37 SR EEE pp. 187=T9F - === Enginescs,
Chrysler, Ee "The Impact of P:ogram gramner
Chatactefis*ics cn Projyraa Size", AFIPS g_g;ggg Céaputer
Conference, 1978. pp. 581-587.
Curtis, B., Sheppard S.P., Borst, 4.A., Milliaan, P. ani
Love, T., Scme istiactions Between Psychologica and
gomputa %g%%lSCompéaxitz of iiftéar%", grocig%;ggg, gé§.
pug | E eCco ire gcycls anfarence clanta a.
xﬁ§§s€, 1978, 355 1 Te6=T7T. = 1< mESsEasn=ss !
Curtis, B., Sheppard, S.P., Borst, %.A., Milliman, P. and
Loye, T., "Measuring Psycholygical _Complexity of ngtware
Maintenance", ;gEg geadzactions 2f Softwar: Engineers,
March, 1979. pp. 956=-108,
Curtis, B., Sheppargd «P., Borst, M.A., Milliiman P. and
Love, ' T.. FRRERCepPa2 v, Chata", ngcggagngé, fourth
Internat_onal ~ Conferenc2 ~ on S2£iWais ERJineeTINGT,
September, 1979. pp. 356=350
Figzsimmons, A. ard Love, T., "A R2view and Evalua=ion of
?8;§ware Scisnce", Computiag Surveys, vol. 10, no. 1, March,
Gilb T oftware. Metrics Wiithrop Computer Sys:tems
Seriés, wiﬁ*n%Bﬁ“PﬁBIisifijatﬁﬁpany, Enqlgwood? N.J. 1976.
Ha%sgead,AM.H.gQQSagtgagﬁ zcienge_- A Piogrgss‘aﬁport"A ;ggg
eSe Im Wire if2 Zyzl= ozksh3 ugdst
41233, 10h50L,22 Q04 3pteale Laiz cysie Hozgshap, 49
qg;;tead. ¥.H., Elements 2f Sof:wars 3cience, N2w York, Y.Y.

54

....................

1

ryrre Gl i]
. O R A T A A A
B . L CR A

‘VI"_ Lan r_'_‘.vﬁi p——
0 .) 1

v

PP P
-

 anl am o e 0 A aan g

e ot et
. . .

Lt . bl A
B Y

R e

-

.....
..........................

...........................

Jeffery, D.R. and Lawrance M.J., "Some Issues in the
Measurement and Control o Projraaming Prodnsg%vity",
« PPe.

*%Sg§’§§;gg and Managepept, vol. 4, September, 1

T IR SIS J I L L T AT Inter'°£§$§§§%ti°°3§
gg soceet B 42 1Y4

FR%ineoFRRETD 193850 fRRR202Y,, Caaflce

Johnson J.R ®"A Workin M2asure__of Praoductivityn
Datamation, vol: 23, no. 5, Pgbruary, 5877° PP. 136-1*2. Yo

Jones, T.C. "productivity Mea suras"® oceedings Gu
4u, San Francisco, Ca. uayy197?. » Broceedings of Guige

v.. TeCo “The Limits Of Projramming_Productivity®,
i

es EY)
di the Joig: SHA gaid B icati
Bracaitinss b, e d9at 3RaeE, g,00lde 2 1en Reelicetiond

-n
~
=
®
~g
-

"ggggranner Productivity", Datamation, vol.
' -

Je Loy
no. 5, May PP. 63-639.

R
VOMd Wi
meD oD

M.M. "Prograani Prodystivity -~ A Life Cycla
EP{"o IEEE'QQQE“t L ESEEgEZ QQQE%E%QEQYEEQEQE insg. ;ail

Yol el

tware Development™,
ags, Fall 1981.

~

[T

(1 M-

Ll Xag

[[§R21]

oo
fcts3
<
g
nn
HIxe]
®a
e

-
jus & WwQ

.y M"Software Metric
gs_of Iremds __at

Technal3d e IEBET

row

o
[>%] o
e > ik

na 24 5 1R
rht) gg
o
[T
s
o
LN e
(TR
(W]
oge
1]
&
Ol
L Ve
e
IQAP
2o
100
W =W
P = ,33 <
lOlO (a2
Moo ro
Imonrn 1w
sjoun Op
pojin
[\ L

be, T.Jd. A Complaxity Measuca® Tr actions on
afe Engiggg;;gg,pSE-Z,Y197 Y pp.'30§§%%07°§a§ """""

Richards P. apd_wWalter G. "Mety
iy ByaluAtisn ang Praézctién", 'Procggi
e}

!U)t!

o0 disrctp | FR
< %

o
Hae

(1]

B

(3
Hi— ON®

o]

-»

£d Seconi summer Engineerini

O IEnx
OH- ®Ix00
B cr OINrR)

¢ - "productivity
society Confersniz BIo
as
t

o _ Girish, How to Me
Erterprises, ChRiiga133d,

¢ "Probing Productivity", Datamation, September

210.

Ret N
S ED
=

o Ho

o X

e

.

-}

s |HE= OH

. Sayward F. G and Shaw M. eds cftwars
g'≫£§is and gvaiugtgon,'MIT Préss,"19 T7“§§?

11937]
iNe

“ a4 2.

tzsiamons, A. "Es+imatin %oftware
cl. 725, no. 15, September 197%, pp.

Qo
os
!/ ¥sd
o+
hp
=8

-«
[

.
=

L]
25
- 0
<
‘.l

n2lysis of Programmin
tae

¢ "A Softwar-~ 2 Sz ammin
a -29,77980,°55. 17957857

4 .30, e
saville, Ta.,

18
It hiD
o
2
]
In 0
I
-«
o

P PR e o, P e CE P RPN . XY P P

......

...............
.................

Walston, C.E. and Felix C.P., "AMethod of Progranl%gg

gg?sgfen t'agg Egti’stzon o IBM Systaas Jouznal, vol.

A A A A A e PPy ‘ - P - PR T PRPRTY e - P e

APPENDIX I
=== = OP STAVICES Datas
SFETR TUNCTION VALUEZ INDEX WORKSNEET Preject 10:
Project Bame:
Prepazed by: Dates . Beviewod bys Date: .

Projoct Summary: gStyre Ogtw £nd Dace Work-Hours Punction Poings Delivered or Desfgned
+ (from caleulsation),

Function Points Calculation (Celivered or Dcosigned):

Allocstion estimated by Project Nanager

-
[}
Wote: Oefinitions | Delivered Delivered by Delivered ! Totals
on back of form. ! pelivered by Moditying Installing by Using | (dentity
’ by Newv Existing and Testing a Code Preponderant
H Code a Package Generator ; Language)
] 1
Language [
Inputs 1 : X 4
Outputs ' X S
Files ’] X 10
Inquiries ' | T:ta:
Work~hours 1 i
Design] t Unadjusted
iImplementation Punction
Lo===-T==——..T-T=w--TtTo=zod punctd
Cooplexity Adiustment: (Zstimate degres of influence for each factor)
On-line data entry is provided in
faliahle backun. Pacovery. and/nr — X
T system availability are provided the eppliveison.
by the application design or on-1ine dats entry {s B
plt . provided in
implementation. The functions the application and :in addition
say be provided by :pccxf&cnlly the data entzy \s conversational
“"92'4 application °:d; :' by requiring that an input trans-
use of functions provided by action be built up over sultiple
standard software. For example, operations
the standard IMS backup and *

Tecovery functions. — Wastar files are updated on-line.

Data communications are provided

in the epplication. anu:s. outputs, files, or
inquiries are complex in

Distributed processing functions i

are provided in cthe application. this epplication,

Performance must de considered
in the dosign or implementacion. Internal processing is comple
In addition to consilering in this apglication.

performance there is the added
complexity of a heavily utilized
operational configuration. The
customer wznts to run the

Influence on Function
application on cxisting or Degree of Influ !

0 None 3 Averaqe
committed hardware that, as a 1 Incidentsl & Significant
consequence, vill bs heavaly 2 Medcrate $ Essential

utilized.

Total Degree of Influence (N)

Complexity adjustment equals (0.75 ¢ O.O0)

Unadjusted Total X Complexity Adjustment e Function loints Delivercd or Designed
x -

[

57

LI T - R R R T R A P N e <t
pstinsrions:
Qeneral Instrvetion: Qutpet _Counts

Count all isputs, owtputs, mester files,
iasquiries, and fuactions that are made available
Lo the customer through the project s deeign,
Prograrning, or testing efforts. Por example,
count the functions provaded by an Iur, roP, or
Program product if the package was modified,
intagcated, tested, and thus provided to the
custoner through the project’s efforts.

Yeck-bours:

The work-hours recorded should be ¢

customer hours spent on the DP Sorv?:t:.“ and
standard tasks applicable to the project phase
The customer hours should be adjusted to 1BN
oquivalent hours eonsidering exparience,
training, and work effectiveaess.

Input, count:

Count each systes input that provides business
function cosmunication from the users to the
computer system ror exasple:

¢ data forms o scanner forms oOr cards
@ terminai scswens o heywd transactions

Do not double count the inputs. FPor example,
consider a manual operation that takes data
from an input form, to LOIM twO input screens,
using a keyboard to form each sCreen before the

entry key is pressqd. This should be counted
a9 two (2) inputs not five (S).

Count sll unigue inputs. An irput transaction
should be counted as unique 1f it required
different processing 1o0gic than other inputs.
For example, transactions such as add, delete,
or change may have exactly the same screen
format but they should be counted as unique
;np:tl if they requare different processing
ogic,

are needed by the system only because of the
specific technical implemcntation of the
function. For example, DMS/VS scrcens, that
are provided only to qget tO the next screen
and do not provide a busincss fuanction for the
user, should not be counted.

Do not count i1nput and output tape and file data
sets. These are included in the count of files.

Do not count inquiry transactions. Thase are
covered in a subseguent question,

Do not count input or output terminal screens that o other system as files.

Count eséh systes Output that prevides business
function communication from the computer system
to the users. For examples

o terminal printed outpuy]

o printed reports
. inal o oparater sessages

Count all unique 1 puts. An put is
considered to be unique if it has a format

that differs (rom other external outputs and
imputs, or, if it requires unique processing
logiec to provide or calculate the output data.

Do not include output terminal screens that
provide only a sinple error message or
acknowledgemont of the entry transaction,
unless significant unique processing leogic
is zequired in addition to the editing
agssociated vith the input, which was counted.

Do not include on-line inquiry transaction
OUtpuULS vhere the response occurs irwmediately.
These are included ia a later question.

2ile Count:

Count each unique machine readable logical
file, or logical grouping of data from the
viewpoint of the user. that i1s generated,
used, or natn:a;nii‘S# the system. Por
exanple:

e input card files o tape files

e disk files
Count major user data groups within a data base.
Count logical files, not physical data sets.
For example, a customer file requiring a
sevarate :ndex f{ile because of the access
method would be counted as one logacal
file not two. HMowever, an alphabetical
index file to aid in establisning customer
identity would be counted.

Count all machine readable interfaces

Inguiry Count:

Count each input/response couplet where an on-
1ine input generates and directly causes an
tmpediatc on-line output. Data 1s not entered
except for control purposes and thercfore only
transaction logs are altoered.

Count esch uniquely formatted or uniquely
proccssed inquiry which results i1n a file searce
for specific information or summarics to be
prescented as response to that inquary.

Do not also count inquiries as inputs or
outputs.

53

APP ENDIX II

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY PACTOR ESTIMATOR FORM 12-31-78
Customer: Project ID:

2878 % -

Project Description:

Prepared By: Date Prepared:

When Prepared: (check one block)

Before any Phase Completion
Requirements Complete

External System Design Complete
Internal System Design Complete

Coding Specs Complete
Integration Complete
System Test Complete

(
(
(
(System Demo Complete

-t
on S g N
-~ W

DESIGN PHASE
SIZE AND COMPLEXITY
FACTOR -
ESTIMATOR FORM

DP SERVICES
DATA PROCESSING DIVISION
IBM CORPORATION

53

P PP T PP R Ny Uy s, I G Y S

.ﬁi‘{‘?"f"

iTYTY Y Y
PGS
AR

LT
P

vy

i an

DP SERVICES DESIGN PHASE : . . Section 6.2
SIZE AND COMPLEXITY PACTOR ESTIMATOR FORM) 12-31-78

QUESTION DEFINITIONS v . -

1. SCOPE OF THE INVOLVEMENT WITHIN THE COMPANY

b.

Ce

Company Functional Organizations:

Identify the number of independent organizational entities which
will be involved either directly or irdirectly in the project
ror example, if the system includes two business functions
inventory control and billing, at least two organizations
probably would be involved. Direct involvement refers to actual
participation in the requirement study or design. Indirect
involvement refers to review and approval of the requirements or
design. The organizations may be counted separately in each
location. For example, if the accounting department has a
subdepartment in each of three geographic locations, and if each
must either be interviewed or included in the approval cycle,
then the accounting function should be counted as three
organizations rather than one. Always include the data
processing organization.

Company Locations:

Identify the number of company locations that require travel for
information, interviews or approvals. The primary location must
also be counted. Each city involved would be a location. Where
sultiple locations exist in the same city, consider each as half
a location.

Number of people in the organizations involved:

Identify the number of hundreds of people in each organization
identified in question l1a) above. For example, a project
involving two organizations, one with 135 people, and one with 50
people would count as three hundreds of people. This provides a
definition of complexity of interviews and requirements
definjition.

2. FUNCTIONAL SIZE OF THE APPLICATION

Mumber of Major Subsystems:

63

P S S} . - A (PP R S 3 PR . ‘e .

A B R R SR AR AR A AR SR g RN DR
'V::V - - wT Tl et e e e P T Tt AT ~ -~ e *
[+
s
. DP SERVICES DESIGN PHASE . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-79
1. SCOPE OF THE INVOLVEMENT WITH THE COMPANY
a. HNumber of company functional
N organjzations involved: x4 =
= b. Number of company locations
| involved: x 12 =
Cc. Number of 100 (8) of people in
the involved organizations: x2=
F1
I'.
61
|
- 3 s A i. S h . . SN o : 1

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM : . » 12-31-78

b.

' reasonably significant in size then count it as. a subsystem.

In general, a major subsystem is equivalent to a major
application or system function. Examples of subsystems within an
Ordexr Processing System might bes

Order Entry

Accounts Receivable
Inventory Update
Inventory Replenishment
Shipping

Recovery and Restart
Invoicing

Management Reporting
Pile Administration
Pile Conversion

If you think that a function is logically separable and

Numbexr of External Inputs:

This question addresses all system input vehicles that provide
business function communication from the users to the computer
system (e.g., data forms, terminal screens, keyboard
transactions, optical scanner forms). It does not include
internal inputs such as tape and file data sets. These are
included in the count of files. It should not include input
screens that are needed by the design only because of the
specific implementation (e.g., DMS/VS screens that are only
provided to get to the next screen but do not provide input of a
business function or business information for the terminal user.)

It should include the inputs associated with all the functions

committed in the design. 1If such functions as File Conversion

and Data Base Maintenance are to be supported their inputs must
be counted even if they are used only once.

on-line inquiry transactions should not be counted here since
they are included separately in a later question.

The objective of this question is to enumerate all unique inputs.
An input transaction should be counted as unique if there is any
possibility that it will require different processing logic than
other transactions. For example, transactions which have exactly
the same screen format and differ only in a code used to indicate
transaction type (e.g., add, delete, change) should each be
counted separately as unique transactions.

Number of External Outputs:

O S et A e SR P T R g Sl Al S T
- : - et - 2 " w’ * .t et V. - - - . . - - - - » -
- - - W e e et aYara

DP SERVICES DESIGN PHASE . . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

! 2. FUNCTIONAL SIZ2E OF THE APPLICATION

a. Number of Major Subsystems: x10 =

b. Number of External Inputs: x 3=

R e S o 0 s ame s aae o

Nt g i amn o

63

| RIS e oa i e

.-.,_'

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY PACTOR ESTIMATOR FORM : 12-31-78

As with the External Inputs this question addresses all system
output vehicles that provide business funstion communication from
the computer system to the users (e.g., printed reports, output
screens, hard copy terminal output operator messages). On-line
inquiry transactions, where the response occurs immediately on-
line should not be included in this count. However, printed
reports which are triggered by off-line or on-line inquiries
should be included in this count. The count should not inlcude
output screens that are needed by the design only because of the
specific implementation (e.g., DMS/VS screens that are only
provided to get to the next gscreen but do not provide a business
function or business information for the terminal user.)

An output is considered to be unique if it has its own format
which differs from other external outputs, or if it requires
unigue processing logic to provide or calculate the output data.

Number Of Files:

This count should include each planned unique machine readable
logical file, or logical grouping from the viewpoint of the user,
that is to be generated by or input to the system (e.g., card
types, data base files, disk files, tape files). This question
is oriented toward logical files not physical data sets. For
example, a customer file requiring a separate index file because
of the access method chosen during design would be counted as 1
logical file not 2. However, a special alphabetical index file
to aid in establishing customer identity would be counted
separately.

This count should include all machine readable interfaces to
other computer systems.

Number of On-line Inquiry types:

This question addresses conversational input/response couplets
where the on-line input generates and directly causes an
immediate on-line output. These couplets generally do not enter
data except for control purposes and therefore alter only
transaction logs.

In determining this count consider each uniquely formatted or
uniquely processed inquiry (input/response pair) which results in
a file search for specific information or summaries of groups of
information to be presented as output response to that inquiry.

Inquiries should not also be counted as inputs or outputs.

64

V.
-"_1

B R T I R B R O P P N

DP SERVICES DESIGN PHASE ‘ . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM . 12=-31-78
jod ' T

€. NBumber of external Outputs: x3=

d. Number of Files: x7= r

.. Nuntie: of On-Line Inquiry Types: x 4=

F2
j RN
65

PO P S ko ol - PP WL TP PO P — PR VN SR S . vy PRI G Y a PP S S S G SR

(et "‘i"i‘i"‘)'"l'H"A- LN

DP SERVICES DESIGN PHASE . : Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM : 12-31-78

3. COMPLEXITY OF THE OVERALL DESIGN PHASE

Ce

Customex Capability:

Consider whether the customer has data processing or user
capability that will provide a good environment for requirements
definition and system design or whether his people will require-
more that normal explanation and justification for routine
decisions.

On the other hand does the customer have so much expertise that
his design convictions will complicate the job beyond that
normally expected. (e.g., an application well suited to IMS but
the customer wants to develop his own TCAM data base system.)

Both situations would hinder the project.
Existing Customer Function:

Does the customer currently perform the business functions that
are to be included in the system or is this a new business area?

An example of a new function that would result in a "no" answer
would be, an insurance company that does not currently handle
group dental pl.us but wants to develop an automated system to
process group dental claims so that they can compete for that
type of business.

Existing EDP System:

If the answer to the previous question was No, then this question
must also be answered No. 1If the customer currently is
performing the majority of the business functions to be included
in the system and a significant number of these are being
supported by existing EDP System(s), the answer should be Yes.
Otherwise, the answer is No.

First of a Kind:

Has this application ever been computerized before, anywhere? 1Is
this the first attempt to automate a significant business
function in the application? A Yes to either question should
make this system the First of a Kind.

Hardware and Software Operational Environment:

This question is addressing the overall complexity of the
estimated operational system. An example of a Simple system

66

— e S

» e

PP

DP SERVICES DESIGN PHASE

SIZE AND COMPLEXITY FACTOR ESTIMATOR

Ll

3. COMPLEXITY OF OVERALL DESIGN PHASE

Section 6.2
12-31-78

-y

1eq |
S0 TQeia . v

S ool iGe

a. Will the customer®'s capability hinder:

No (0), Yes (10)

b. Existing customer function to

be automated:
No (10), Yes (0)

c. Does an EDP system exist
to perform the function:

No (6), Yes (0)

d. 1Is this system the first

kind anywhere:
No (0), Yes (10)

of its

67

............

DP SERVICES DESIGN PHASE . . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

environment would be S/370 Models 115 or 125, DOS or DOS/VS and
the IBM Standard TP and data base products that operate on that
level CPU.

An example of an In Between system environment would be S/370
models 135 or 145, DOS, DOS/VS or 0OS/VS and CICS or DL/I or
something equivalent.

Large computers or more sophisticated operating System (e.g.,
MVS) or TP or DB environment (e.g., IMS or TCAM) would be
considered as Complex. Distributed processing and programmable
terminals would also be considered complex. -

4. SOPHISTICATION EXPECTED OF THE SYSTEM

In answering the availability question consider how important it
is that the system be kept available to the users. The whole
data processing system including communications and terminals
should be considered. Can work be postponed?

Will comronents be duplicated to increase system availability?
This can indicate critical availability. Will the system be
designed to recover quickly from failure? This can indicate
iaportant availability.

A batch system usually requires normal availability. A data
collection system with non-perishable inputs, such as paper claim
forms, might justify important availability. A passenger
reservation system or bank funds transfer system might require
critical availability.

Will a major or important design consideration be, that each
operation or functicn identified as critical have an alternate
method. The alternate may involve manual operations and may take
longer but the function is provided.

Will the system contain data that must be protected against loss?
Will the function require special recovery design in either
procedures or system? If so, the answer is yes.

Data Traffic Load or System Performance:

In some systems, the volume of data to be handled is not a design
concern. Other systems require special design considerations
such as: use of file access optimization, simplified input
notation, or extensive use Of exception reporting. Transaction
rates may be a problem in either on-line or batch systems. Large

63

. Ny TR LW RadC Pl
S A S A AN A RCRID I OREN

s

.
d.

b.

Ce

Ll S Sy o

ey

. T T . . LR R

DP SERVICES DESIGN PHASE
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM

Hardware and software system
operational environment to be

required by the application:

Simple (0), In-between (5), Complex (10)

—

.........

Section 6.2
12-31-78

K¢

N-14
g
o Ok

VITE T

SOPHISTICATION EXPECTED OF THE SYSTEM

Availability is: Critical (8),
Important (4), Normal (0)

Is an alternate method, for
pexforming the functions of the
system, non-routine consideration:
No (0), Yes (6)

Is system recovery or protection
against data loss a non-routine
consideration:

No (0), Yes (5)

63

F3

"
]
T

——— gadtan ine .

.- ta

DP SERVICES DESIGN PHASE . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

volumes of data in short periods (peak loads) or volumes of data
large enough to cause machine availability problems are all
considered data traffic considerations.

System performance is often a significant design consideratiom in
systems that are intended to handle large volumes of data. It
can also be of major concern in the design of systems with
relatively low transaction rates but with constraints (perhaps
economic) in terms of the prescribed hardware and software
environment. For example, there may be limitations on the size
of main storage, control program multi-programming capabilities,
or transmission line speeds.

Nature of the Application:

A batch system operates as a job shop, often scheduled.
Transactions are typically batched external to the computer and
periodically processed sequentially against the master files.

An on-line system generally requires a more sophisticated
man/machine interface than a batch system. It is generally a
system where transactions are entered as they are received with
no opportunity for time saving sorting. The inputs are not
perishable (i.e., they can be re-entered if necessary). An on-
line order entry system, or an on-line stock location and.
inventory control system would be examples of on-line.

A real-time system is similar to an on-line system in that it is
available on demand, but it has an additional requirement to not
postpone its main line processing. Response time is
exceptionally important. Immediate processing and response is
necessary to meet the functional requirements of the systea.
Process control, production test stand control, and airline
reservation systems are examples of real-time systems where
degraded performance may cause lost production or lost business.

Processing Complexity:

This question addresses the internal processing logic required to
provide the majority of the proposed system functions.
Straightforward logic would involve simple transformations or
mapping from the system inputs or files to the system outputs.
For example, a transaction is read, verified to a limited degree
and used to update a simple master file or to generate a simple
report. Processing is a straightforward set of pre-specified
rules. Few, if any, data transformations are done. Outputs are

7

TV e " . T3
. .'.'.'."
PRSP AP R

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY PACTOR ESTIMATOR FORM - : 12-31-78

d. 1Is data traffic load or system
performance an important
design consideration:

No (0), Bither (10), Both (20)

e. Nature of the Application:
Batch (0), On~Line (10), Real-Time (20)

A

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR PFORM : 12-31-78

mostly collections in various sets, of established data from

files.

Complex should be checked if the system has a preponderance of
exception processing resulting in many incomplete transactions
that must be resolved later or again. Complex logic would also
be the answer if there are many interactions and decision points
and extemsive logical or mathematical equations. In-between is
used if it fails to meet either of the above definitions.

Exception Corxrection:

Systems which are designed primarily to process correct data and
to detect and present bad or unusual data for manual review and
correction are manual exception systems. If the system is to be
designed not only to detect, but also, automatically to correct a
significant number of unusual conditions, the system is an
automatic exception system. This is true even if the options
selected or corrections applied are to be reviewed and verified
manually.

5. KNOWLEDGE WE HAVE FOR THIS PROJECT

b.

consider the Services area in general and specifically the people
who may influence the project through:

Project Management
Proposal Preparation
Systems Assurance
Project Team Performance

Consider the Area's current knowledge and the available Industry
knowledge. If none of the people in the performing Area have
designed or implemented this type of application before, the
answer should be Completely New. If informed consultation and
review is available with people in the Area the answer should be
Some Familiarity. If Services people, clearly expected to
participate significantly in the proposal and project, are
currently assigned to the performing Area and have recently
performed on a similar project the answer may be Have Done
Similar Job Once.

To answer Extremely Thorough the proposal should contain a
technical baseline that shows excellent understanding of the
tasks in the Statement of Work. The Customer User, IBM Branch,
and DP Services must have contributed and concurred with the
approach. Everything else should be moderate unless we lack

72

- - -) » - - . - - - . - 1 » - - - » -
e e T N s S e N s S s N e N e e N N o L s L L L e s T RS
D A R L T R A L MR D e R S B T O Rl e A e i A e I
.
*

R DP SERVICES DESIGN PHASE : Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM - 12-31-78

- .

&. f. Processing complexity:
Strxaightforward (0),
Complex (30), In~between (15)

g. Exception Correction is mostly:
Manual (0), Automatic (20)

S. KNOWLEDGE WE HAVE FOR THIS PROJECT

a. How familiar is the proposed
Services Area with this Application:
Completely New (30), Some
Pamiliarity (15), Have done
Similar job once (0)

——
-
>
. N
»
(..‘
LI T S T P T, P - LN SO s T P S -— L PN SO NDNE SPU S N Ry P SN P -_:;A,;,J

DP SERVICES DESIGN PHASE . Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

customer agreement either through lack of contact or because of
direct Adisagreement.

b 6. READINESS TO PERFORM THIS PROJECT

a. Consider the location of the project with respect to the home
location of the people expected to work on it. Onless local

3 commuting habits and ground rules jindicate otherwise, travel of
more than one hour each way to the work location thould be
¥ considered Significant Commuting.
Ej b. Consider the proposed manning on the project. Normally the
' manning on DP Services projects comes from DP Services, the IBM
Branch, or the Customer. If the manning is proposed with
#‘ elements other than these, (i.e., subcontract or shop order) mark
an equivalent answer from the viewpoints of Project Management

control and the resource's ability.

2 ¢. All temporary or permanent moves of project team members should
[be considered whether they involve IBM people or customer people.

THE SIZE AND COMPLEXITY FACTOR COMPUTATION:

To compute the Design Phase Size and Complexity Pactor that will be used
to validate the task-by-task estimate follow these steps:

1. Review and sum up the weighted answers to the questions to
determine factors F1 through Fé.

2. Enter F1 through P6 and evaluate the equations on page 19.

3. Sum the results of (1), (2) and (3) to obtain the Design Phase
Size and Complexity Pactor.

1
d
4 ESTIMATE VALIDATION:
S

Use the Design Phase Size and Complexity Pactor and the plots provided
. in Section 6.2 to determine the average number of hours that the

- standard tasks took on completed DP Services projects with similar

. Design Phase Size and Complexity Factors. Enter these hours in the
appropriate blanks on page 20.

}4 If the data is sparse, the information on each standard task may not be

- provided as a separate number. However, the hours spent on that task
are in the totals and in the associated standard task. (e.g., the hours

74

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM - . 12-31-78

b. Services Preproposal Analysis:
Extremely thorough (0),
Moderate (10), No customer agreement with
approach (20)

F5

6. READINESS TO PERFORM THIS PROJECT

a. Where is project to be located:
No unusual commuting (0),
Significant Commuting (S), .
Temporary or permanent moves
required (10)

b. Manning:

: All Sexvices (0), Mixed IBM Manning (5),
customer and IBM Mixed (10)

€. Number of temporary and permanent
moves required

X 5= —m—m——

Fé

g Mt Rt
- .

o

75

we

N T e Y

PP SN S - Y

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM : 12-31-78

for implementation planning may not be separately identified, but they
would be in the internal system design task and in the total hours.)

Map the task-by-task estimate into the same standard tasks and compare
the estimates. The Proposal Manager should analyze and explain any

di fferences Or make the appropriate adjustments in the task-by-task
estimate and the proposal.

FEEDBACK PROJECT RESULTS:

After the project is completed and the PCAR is available, adjust the
Design Phase Size and Complexity Factor. The factor needs to be
adjusted to account for changes (approved PCR(3)) that occurred during
the project. This adjustment provides a factor that should bhe related
to the completed project's results:

Original s § C The original size and complexity factor computed

at proposal time on page 19.

Change Hours - The total estimated hours of approved changes
taken from the PCAR. . :

Total Hours -
Multipliex The current factor multiplier for the total

hours plot in the design phase estimator.

Adjusted S § C The size and complexity factor used for project
feedback of results adjusted for the approved

changes.

Change Hours ¢+ Original s ¢ C
Total Hours Multiplier .

adjusted § ¢ C

The results of the completed project standard tasks and the delivered
reports are also taken from the PCAR. If the project does not represent
a complete design phase, the numbers must be used with care. (e.g., a
requirements only design phase can give a good requirements number. It
certainly won't give any design numbers. Less obviously, it won't give
any management numbers or total hours numbers either).

75

T

" -

WY T VY T

-
o

A 5+ 4G i

L3 -

LI T A A R IO PO T I A ST

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

THE SIZE AND COMPLEXITY FACTOR COMPUTATION:

1. Orientation Pactor:

€) (100 + () ¢« ()) x .9/1000 =
n FS ré

2. Requirements Analysis Factor:

() (100 + ¢) e ()
¥z S 73
. ()710 ¢) ¢ ")) x .6/1000 =
. b3 . Fé R

3. System Design Factor:

¢) (100 + (Y2+ y/3
7 B o I
. C)/8) 1.7/1000 = .
rs .

S8ize and Complexity Factor =

Sum(1),(2),(3)

77

0
.......

PO I S I) PSRRI
LIRS WP N S L I e Y

- .

DP SERVICES DESIGN PEASE
SIZE AND COMPLEXITY FACTOR

ESTIMATE VALIDATION:

Total Hours
System Design
External System Design
Internal System Design
Inplementation Plan
Requirements Definition
orientation
Management
System Design Repozi Size
Requirements Report Size

-

LS oW g e, RS A N S
et et et At T A At AL AL NI T e

i

8 § C Pactor

i

Task-By-Task

Section 6.2
12-31-78

COninnts

g

R

' DP SERVICES DESIGN PHASE
SIZE AND CCMPLEXITY FACTOR ESTIMATOR FORM

:j FEEDBACK OF RESULITS:

b Adjust Size and Complexity Pactor:
b ¢) ¢ () =

) ()

‘ Completed Project Results:
(| Total Hours
Systen Design

External System Design’

Internal System Design
Implementation Plan

Requirements Definition
Orientation
Management

. System Design Report Size

Requirements Report Size

Section 6.2
12-31-78

By: Date:

Adjusted Size and Complexity
Pactor

Bys Date:

vi

3.

4.

5.

9.

10.

1.

.............................

INITIAL DISTRIBUTION LIST

Defense Techilcal Information Canter
Cameron
Alexandria, Virginia 22314

Librgrg Code 0142
Nava ost graduate Sch
Monterey, lifornia

Curricnlar Offi o
Naval Postgra ate ‘sch
Monterey, California

Dan C, Boger

égnéngstratlve Sciences Departaant
Naval Post ate School
uonterey. gr%ggornla 33940

LCDR John Hayes, $C, USN
Administrative §c1 ces Departmant
Code_54ht

Naval Postgraduate Schyal
Monterey, California 93940

Lieutenant Daniel J. Spooner, USN
124 Brownell Circle
Monterey, California 93940

Norm Lyons . .

Admin.strative Sciences Departmant
Code 541b

Naval Postgraduate Schdsl
Mcnterey, Califoriaia 939uo

Chairpgan

Adm‘nlstrablve 5c1en-es Departmant, Code 54
Naval Postgradnate Schaal

Monterey, California 339uQ

LCDR D?v F, Spooner, 4C, USNR
6435 Wing Polint Road §.E.
Balnbrldge island, washtng.on 98110

Caro;zn Hong
oloradc Avenue
HOD. 2 6

Santa Monica, California 30405
Dr. Barry Boehm

TRW-DSG

1 Space Park, R2-1076 |

Redordo Beacﬁ California 90278

89

.................
.....

No. Copies
2

P B N SV S S

et S 4 + N SN AL IED A SO de 4
P - B .

o

o4

prpn—yY

Ty

12.

13.

14.

15.

ich patrick

mdahl Corporation

230 E%gt rquez Avenus3
unnyvale, California 94086
1
o

gtg%aterial Support Office
Mechanicsburg, Pennsylvania 17055
Plget Material Support Office

Code 92E . -
Mechanicsburg, Pennsylvania 17055
Fleetgu%terial Supp>rt Office

Code . -
Mechanicsburg, Pennsylvania 17055

O ivg

Ll

81

