
7D-A126 665 A STUDY OF QUANTITATIVE MEASUREMENTS OF PROGRAMMER /
PRODUCTIVITY FOR FLEET MATERIAL SUPPORT OFFICE (FMSO)

U R, (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA D J SPOONER

UNCLASSIFIED DEC 92F/G 9/2 N

pL5.

2.

'1W Al

1.2 1 32

MIRCP ESLTOi-S HRAI OA BUEUO-TNAD-93

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A STUDY OF QUANTITATIVE MEASUREMENTS

OF PROGRAMMER PRODUCTIVITY FOR
FLEET MATERIAL SUPPORT OFFICE (FMSO)

by

Daniel John Spooner
*December, 1982

Thesis Advisor: Dan C. Boger

Approved for Public Release; Distribution Unlimited

7n

SaCuov CLw :ASOICAGTION of 704161 PA46 (1111 o 14 m

liiS qmqPIPM~ lIMEIJT~lL~lI &I DAJI.J IRILAD DlNTRU TI N S

REPORT DOUMTNTATION PACECO&IG mmM

4. TITLE Ad 1 0e) TYPE9 or REPORT a 0tmoo CovEnt a
Master's ThesisA Study of Quantitative Measurements December, 1982

of Programmer Productivity for Dembere 1982
Fleet Material Support Office (FMSO) 6. N TE'om NuNSER

7. AuTNOIR'O) 0. cONTRCT OR GRANT 061N1.6rg(a)

Daniel John Spooner

-9. ognp ~lsiia 00OsIIZATION 14AME AN0 A0011168R 10. POGRM 01 EMENT. P*OJIECT. T&SK

AREA A WO09 U1NIT NU11IiSE0

Naval Postgraduate School
Monterey, California 93940

II. CONTROLLING OlFPCf NAMC AND AODRSS 12. REPORT DATE

Naval Postgraduate School December, 1982
Monterey, California 93940 Is. HNMEROF PAGES82

14. N9I6TORING AGEMCY NAMC & AONCRSSO d.m" hum- - 10'seI Office) IS. SECURITY CLASS. rtel this e)

Unclassified

IS. OlC. ASSIICATION/DOWN GAOING
SCD £OULC

I-. DISTRIOUTION STATEIMEINT el rhle Re

Approved for Public Release; Distribution Unlimited

17. OiSTRI SUTION STATEMENT (O1 t 64e 4 06t 64Wd I 8104i 20, 11 di fs "*am Rltfiet)

Io. SUPPLEMENTARY1 NOTES

IS. I EY WORDSO (CAUMuOllN 4en veew..I 1* i lt***?1i en #4mI #fr hP SleeS men,)

Programmer Productivity, Software Development Productivity,
Programmer Metrics

10. AUSTORACT (C.Ufl01, , e Od* It neeoee nd ads g fr &, or N. i mr)

The demand for software products has grown, but the number of
quality programmers has not kept Dace. Therefore, programmer
productivity has become a major area of discussion throughout the
software development industry. This paper examines the various
measures discussed in the literature and used in selected corpora-
tions which develop software. It presents several methods for
measuring programmer productivity. Included in the (Continued)

OI N 1473 EDITION Or I NOV OfilS O1O5LETED JAN 73l

S/N 00~01 4- 001 |SCURITY CLASIFICATION OV TNIS PACE (01e Dao De0ele)

I

ABSTRACT (Continued) Block # 20

discussion are the salient points where managers must devote specia
attention if they are to use programmer productivity measures ef-fectively. This paper is part of a group of papers which together
provide recommendations to the Fleet Material Support Office (FMSO)to enhance its software development organization.

NTIS C;q& .DTIC TAU

DXst I/Sp olal .

DD Forra 1473 2
51/ 01%2-n14-6601 IlCUmIfv C6ANI.I Cg TIONl Fp Tg p l PAGg ,e . ,

Approved for public r.lease; distribution unlimited.

A Study of Quiatitative leasurements
of Progr mnear Productivity for

Fleet Material Support Office (FESOJ

by

Daniel John Spooisr
Lieutenant, United States .Navy

B.S., Pennsylvanti Staite t1nLvecsity, 1977

Submitted in artil fuf let other-luireagnt s 1rthieii egreeo

MASTER OF SCIENCE IN INF3RIATION SYSTEMS

from the

NAVAL POSrGRADUATE 5ZHOOL
De:zmber 1982

Aut hor: ~/~~

Approved by a---
Thesis Advisor

----h------------
Second Reader

Chal an, De~ar* nt of Admiistrative Sciences

- - - - - --- - - - - - - -

Dea.n of Iaform.ation and Policy Sciences

3

&BSTRICT

The demand for software products has grown, butth

number of quality programmers has not kept pace.

Therefore, programmer prodcutivity cias become a major area
of discussion throughout the software development industry.

This paper examines the various measures discassed in the

literature and used in selected corporations which develop

software. It presents several methods for measuring

programmer produtity Included i2 the discussion are the

salient points where managers must levote special attention

if they are -to use programmer produ,:tivity measures effec-

tively. This paper is part of a group of papers which

together provide recoamecidations to the Fleet Material.

Support office (FM!SO) to enhance its software development

organization.

L4

TABLE OF ONTB5rS

I. INTRODUCT . .M 7

II. WHOSE PRODUCT IS BEING MEASURED? 11

III. WHAT IS THE PRODUCT? 18

A. PROJECTS AS PRODUCTS 19

B. MILESTONES AND IANA3EMENT/SUPPORT 21

C. DESIGN AND FUNCTIONAL SPECIFICATIONS 23

D. LINES OF CODE AS A PRODU. 24

E. MODULE AS PRODUCTS 27

F. USER FUNCTIONS AS PRODUCTS 31

G. TESTING, INTEGRATION, AND IMPLEMENTATION . . . 34

H. DOCUMENTATION 35

IV. THE MEASURES 37

A. LOC PER PROGRAMMER-MONTH 38

B. MODULES PER MONTH 40

C. FUNCTION POINT)ELIVERED PER WORK HOUR 40

D. SELECTED INDUSrRY METHODS FOR MEASURING

PRODUCTIVITY 41
_ I1. 1IBM 41.. ;

2. Amdahl 44

3. Systems Dev:!opient Corporation (SDC) . . 47

14. TRW . . . 48

V. CONCLUSIONS AND RECOMMENDATIONS 49

LI3T OF REFERENCES 51

BIBLIOGRAPHY 54

APPENDIX I 57

i NPP:-'.DIX 11 59

4 INITIAL DISTRIBUTION LIST

5

LISr OF FIGIRES

1.1 FESO Program Libriry 3rovth 10

2.1 Kiser: Levels of Rote in So~tvare Productivity . 11

2.2 FMSO Major Missioa Areas 12

2.3 FMSO CDA Primary Product krais 13

3.1 Softvare Development Products 19

4.1 Assembler Language vs HOL 39

4 4.2 Halstead Element Relationshtps 2

6

4:

In the past two decades, as computer hardware costs have

fallen and software costs have risen, there has been an

increasir.g interest in programmer productivity. This

interest has become particularly intense during the last

decade as the general purpose computer market has flour-

ished. Customers are becoming much more aware of the

flexibility that different software packages provide to

computer hardware. They, therefore, are demanding more and

more software products to upgrade existing hardware facili-

ties. Withington (Ref. 1] of Arthir D. Little Inc., 1

Cambridge (Mass.) consulting firm, states that the throt-

tling factor in the evolution 3f the data processing

industry is the pace of software development. Revenues in

the data processing industry are expected to reach $95

billion by 1984 but have the potential to reach $125 billion

if the software developmea-t constraint did not exist. This

software demand has precipitated a large demand for program-

mers. But programmers, especially skilled ones, are hard to

find and take time to train. Sin:e there has been such an

astronomical growth in the computer software industry,

finding sufficient numbers of well trained and experienced

programmers is prohibitively diffizult. (Ref. 2], According
to Diqital Equipment Zorporation :Ref. 3], the biggest

proble% is Identifying tta few g3ol programmers. Of the

many applicants they receive, %Dst are not capable of

writing sophisicated software. :Dnsequently, software

developers are -urning towards inzrasing the productivity

of programmers in an attept to keep pace with the demand

for current and future software design needs.

7

There have been a number of papers written discussing

productivity. Some dis-uss deterainants of programming

productivity (Ref. 2], others provide tools (Ref. 4], which

purport to improve produrtivity. Interestingly, few of

these studies diecuss or make reference to others who have

discussed how to actually measure this productivity. The

philosophical approach f~c many years was that programming

was an art. This made it virtually impossible to measure,

for it would be similar to measuring the progress or produc-

tivity of a Picasso or Mi:helangelo as he was painting or

sculpting. Obviously, there is 2o way to measure the

progress of art aside from personal Dpinion. This, however,

is not acceptable in an iniustry based on the profit motive.

In the late 1960's the term "Software Engineering" was

coined and with it came a number 3f ideas that served to

* pull programming out of the world of art and into the world

of the engineer, a world where aasurement is of vital

importance. Software development was shown to be an area

that required discipline and a process-oriented approach

[Ref. 51.

Software engineering has grown through the 1970's to

virtually become the rule for the management of programming.

It has led to the development of new strategies for software

development. Thsse strat3.gies, top-down design, bottom-up

design, structured prgrrmming, moiular decomposition and

metaprogramming, have provided a better foundation from

which software developers can attempt to meet the growing

dezand for software prodjzts. Although these development

techniques have made software devalopment easier and helpel

tc control the cost growth, they have had little impact on

productivity measurement.

To discuss the measiring of sof-ware development or

programming productivity, one must first determine what th=K product is. From the f--.st day of programming until -hi
L,

t8

I
°

. - . -

present, the predominant product of discussion has been the

l"line of code" (LOC). This is the product on which nearly

all research and the database information are based. If one
were a construction engineer one would not discuss a

building or bridge based on the number of bricks and girders

used. Instead, rooms or floors or spans might be much more

appropriate. These items ire iategral but separately

meisureable components of the final product. So why,

rhetorically, do resaarchers and data base information

collectors continue to insist on L3: measures instead of an

integral and separately m.isureable iand meaningful component

of software engineering? rhis not a question for this paper

to answer but one for the reader to consider when planning

his own research or data base collection.

The Fleet Material Support office (FMSO) is experiencing

the same problems as the cest of the software inlusrty. It

is faced with a huge demand for guality software from the

organizations it is taskel to support. The tasking of the

past five years is shown la Figure 1.1 below. rhese figures

are only for the Central Design Agen=y, the primary mission

of FMSO. The figures show an increase in FMSO maintained

programs of 75. 4 percent in this short period. These

figures are expected to :ontinue to rise at a significant

rate as the Navy continues to automate more and more func-

tions. Another problem facing FMSO is the salaries of the

programmers. According to Business Week (Ref. 6] programmer

salaries are rising at a rate of 15 percent annually and

salaries for top systems iialysts can reach $50,000 a year.

This places an extreme burden on the personnel lapartment to

acguire top personnel when hiring new programmers and

systems analysts. Tha productivity Issue becomes

inzreasinqly critical foc FMSD in the light of the hiring

freeze imposed during the CartZ: administration and th_

drive to reduce the cost of governeat in the present Reagan

a4 minis±tration.

9

CDk Program Growth
FY
77 XXXXXXXX 5,389

78 XXXXXXXXXXXXX 6,420

79 XXXXXXXXXXXXXX 7,722

80 XXXXXXXXXXXXXXXXrXX 7,938

81 XXXXXZXXXXXXXXXXXXXXIXXXZX 9,330

82 XXXXXXXXXXXXXXXXXXXX XXXXXXXX 9,454 (April)

Figure 1.1 FESO Program Library Growth.

This paper attempts to present a number of issues

related to the measuring of prograimer productivity. It

will show that there are i other fa.:tors that impact on how

one interprets the productivity fiu:es. The manager needs

to realize there are severil differeat levels of the organi-

zation, each with its cwn product or set of products.

Therefore, each level has i productivity rating for which it

must be responsible. In fact, the reader should note that

the programmer is not the predominant link in the output of

a programming project. rEe requirements of the Department

of Defense and conscientious software developers throughout

the industry has placed increasing importance on the relia-

biblity and maintainability of softwre. This new emphasis

has produced a whole array of corresponding products which

must be accounted for and new prcductivity levels which must

be examined.

1)

when discussing produ=tivity, before one can consider

who to measure, one must first determine what the product is

and then who makes the proluct. Without a rational visuali-
zation of the product it is unintelligent to discuss the

ability of a person's, group's or machine's ability to

deliver that product. Depending apon the level of the

organization at which on= looks there will be a variety of

goals, objectives and products. Both Kiser [Ref. 7, p. 2441

and the IEEE Workshop on Software Productivity [Ref. 8]

address this important issue.

Where the IEEE Workshop focused on the general area of

productivity, Kiser was most concerned with software manage-

ment productivity. She focused on the idea that the manager

often has as much to do with a programmer's productivity as

does the programmer himself or his tils. This is a no.tri-

vial issue. She looked at the top three levels of

corp. goals <---> top mgmt <---> corp.prod. I
product goals <---> 3iddle <---> product

project goals <---> first line <---> project

task goals <---> programmer (---> task I

Figure 2.1 Kiser: Levels of Note in Software Productivity.

management, shown in Figure 2.1 . lany managers have failed

to understand why their people, being well-trained and

11

provided with excellent tools, continue to proluce at unsa-

tisfactory levels. Quite often, from this researcher's

experience and the experience proviled by Kiser, the poor

production level is caused by higher level managerial poli-

cies or actions. This can be understandable when one

examines the concerns of the various sanagement levels.

At the corporate level, top management is usually

concerned with profit maximization inl market share. FMSO,

being part of the public sector, dDes not have this parti-

cular concern but there are comparable goals (Figure 2.2

CENTRAL DESIGN AGENCY (CDA)

RETAIL NAVY STOCK FUND
OPERAT13NS ANALYSIS

SUPPLY OPERATIONS SUPPORT

INTERNATIONAL LOGISTICS

Figure 2.2 FSO Major Sission Areas.

which a-re fleet support aid effective management of their

approximate $3.8 billion, FY82, procurement authority. When

one considers the impact of money management at this level

.- is unde-standable that concerns for indiviual programmer

productivities can get Lost. The interpretation of top

level management polices oy lower lavel managers can also

affect productivity.

At the middle manigement level, managers become

concerned with specifiC product development and rescurce

allocation. For FMSO, in its prim.ry mission area as a CDA,

management is ccncernei iith allozation of re:sources to

12

UNIFORM AUTOMATED Dirk PROCESSINs SYSTEMS (UADPS)
Unifoi. ADP Systam for Inventory Control

Points (UI-P)
UADPS Stock Points (JADPS-SP)
Lqvel IT/III Stozk Points
Disk Oriented Supply Systel (DOSS)

HEADQUARTERS FINANCIAL SYSTEMS
MANAGEMENT INFORMATION SYSTEM FDR INTERNATIONAL

LOGISTICS - (HISIL)

SPECIAL DATA PROCESSI G SYSTEMS VROJECTS
Requisition Material Monitoring and|- ~Triden dtn
Naval Aviation Logistics Command Management

Information _ystem (NALjOHIS)
Naval Automated rransportaiton Data System

J Nav TD S)
Naval Automated rransportaion Documantation

System *N&V&)S)
Resoli citatiom

Figure 2.3 FSO ZDA Primary Product Areas.

respective product areas is shown in Figure 2.3 below. The

allocation of the resour es is tempered with the command

goals and the budget proviled by the various sponsors.

The first line level ff managemit, project management,

is where one first encounters the adge of software produc-

tivity, the area with whi:h this paper is concerned. Here
the prcject manager is concerned ith meeting prescribel

milestones within budget. The prolucts at this level are

the various "deliverables", such as functional specifica-

tions, conceptual designs, program dsign, test plans, etc.,

that are required in an elffeztiv-l' managed project with

milestone requirements. These are the products one must

measure aqainst their respactive costs.

13

I

it the line level itself there are two groups, project

teams and the individuals who make up the teams. The team

must be measured against i.s ability to deliver integrated

software products. The individuals sust be measured against
their ability to deliver specific portions of the team

assignment. This is the point where programmer productivity

is discussed by most researchers. A special note is
required at this point. While one usually assumes that the

delivered products are of a specific quality, this seems to
be missed quite often when discussing programmer products.

The idea of quality in the produzt must always be consid-

erad. A person who can leliver five programs in one day
that are incorrect or do not provide consistent results is

not nearly as productive as one who delivers one product

every five days but which is corre-t and easily maintained.

Very few pro duc tivit y measures take quality into

consideration, as will be shown later.

After realizing the various prolucts made by different

levels in the organization, one must then consider who is

viewing these measures, management or labor. The views and

concerns of each are usually quite different unless there

has been a considerable axount of education on each side.

Management must understand there is an overhead expense
to developing, collecting and analyzing productivity

measures which must be Justified. tntuitively, one must

have a set of measures before one zan determine constant,

"normal" or changing produtivity. Also managespnt needs to

know how it intends to use these measures. The IEEE

(Ref. 8, p. 341] sees four major uses for productivity

measures: 1) motivation; 2) understanding; 31 evaluation;

ani 4) management.

Productivity measures can be used for motivational

purposes in three ways which provi.e tangible benefit.

First, researchers (Ref. 9,] have shown that by paying

|

|

attentiot to a person or group, performance levels of that

person or group will improve or chaaige to what the observes

perceives as expected performance. This is known as the

Hawthorne Effect. When managers take the time to do produc-

tivity studies the Hawthorne Effect may occur, albeit

teuporari1y. Second is the ability to focus attention on

desired behaviors, events and objects or products. The

measures selected will place relative importance on the

areas being measured. For instamce, if a series of

measures are selected which inzlude speed of production and

maintainability the percaived relation between them by the

programmer will determiaB which measure they emphasize.

That perception of relative importance can have a profound

effect or. the final product. If programmers see speed being

rewarded or emphasized more than maintainability, the

manager should expect to see programs produced rapidly but

which are hard to understand and have little documentation.

If the reverse is perceived, then the manager should expect

to see longer programming timas wit i much easier to under-

stand and better documented code. The thirl motivating

factor occurs through feedback of results. rhe effective -

feedback of productivity ieasures --an lead to changes in

performance in several ways. Qui6te often performance will

iiMprcve through the personal prids in accomplishment or

competition with peers. Also !.E a corresponding and

effcrctive =awards and penalty system, either formal or

informal exs s, perforcmance normally will follow the

system correspondingly.

secornd, productivity measuremstnts help marnagers to

understand 'he factors underlying pro)ductivity. Measurement
is fundamen-:al to science in :hat i-t forces manags:s and

researchers to conceptualize the'.i area under study. us i r.
various concepts will determine which measurss to lise as

managers continue to try t6o model ttls envirorment in which

15

they operate. Failure to develop a model will hinder

managers in improving p3.rformance and will keep software

development an art instead of a scieace.

Third, productivity measures help managers evaluate

* performance because they quantify performance. It is easier

to evaluate perfcrmance over time wthin a single group or

or;anization because the ueasures remain constint. It is

also very important to track performance so that proper

feedback to personnel can be provilal. It is also important

to evaluate between groups to see how one stands against an

9 industry average. This has proven t7 be particularly liffi-

cult for software developers. Fed groups use the same

measures. Those that use similar sounding measures often

have significantly different definitions for the individual

parts of the measure. L3:, which will be discussed later,

is a most common area of disagreement. Nevertheless, it is

important for each organization to establish a baseline and

to build a database of information. This information can

then be used for measuria; the evolution of methodologies

and technologies used in software development.

Fourth, productivity measurement imposes a managerial

discipl.ine. Normally managers are concerned with tracking

progress against a schedaie and budget.The consistent use

and taking of measurements can be extremely helpful in
making projections of progress igainst schedules and

budgets. The manager must remember that a productivity.4
measure is only a snapshot. It must be analyzed in relation

to its environment. In particular, managers must realize

the difference in the learning cucv-s of various projects.

A "first-of-its-kind" project will have a much different

le.arning curve than a simple modification o a generic

project. The productivity rites will normally change

proportionally to the learning curve.

15

The manager's need for measures and his goals can differ

significantly from those of the workforce. Management often

wants to use the measures to identify exceptional perform-
mers or those who need adlad trainin.

The workforce, however, may view the measures as a way

to generate either more products from the same work effort
or to generate the same number of products from a reduced
workforce. When the workforce sees the second side there

can be severe implications, particularly if they are

organized.

The workforce will rapidly eoaler what their benefits

will be from all this new attention. Will the measures lead

to more money for the same hours, the same money for less

hours for the good performmers anl/or lost jobs for the

poorer ones? In an effort at job preservation, productivity

may fall or stagnate at a predetermined level. This

researcher has seen deliberate productivity stagnation by

bricklayers, both in the housing anl steel industries, and

by electricians working for a telephone company, all at well

below reasonable levels 3f capability. For one to think

that programmers and their industry would not tend to act in

a similar fashion is to approach this area with tunnel

vision. This may become a primary concern for FMSO where

some of their government employees old specific GS ratings

and incomes based on the number of personnel they manage.

Coamand level management itst take =are in the introduction

of the productivity metrizs so that personnel in these 3S

ratings do not feel that their jDbs or ratings are in
jeopardy if there is s5.iifiz-ant ra in productivity

which leads to a reduction in force (RIF).

17

.

IMI fl U ZU 1122991?

This researcher has determined that the predominant

measure of programmer productivity is the quantity of lines

of code written. This leads to several interesting conclu-

sions. First, the programmer only writes deliverable code.

Second, the programmer is the single dominant entity in

software development. Aal third, there are no other rele-

vant products or by-prolucts in i software development

project. Anyone who has the oppo:tunity to study or to

work in the software development arena realizes the fallacy

of these conclusions. Programmers .D considerably more than

write deliverable code. There ire many other people

* - involved, each adding important contributions to the

project. There are several equally important products.

From the previous chapter it was noted that there are

many levels of an organization whose productivity should be

measured. Those involved in software development realize

that various levels of tie organization make contributions

to the various products of each proje-ct. This chapter will

look at the different products that this researcher feels

are relevant to the measure of software development produc-

tvity. This discussioi will begin with middle level

managemett and wcrk towards the individual. As we progress

4 down the organization the product will become easier to

grasp. The span of management control and resource respon-
sibilities will decrease. Therefore, one must remember to

ensure the product and the level of the organization match.

All too often people are evaluated on their ability to

produce a product which they were aot assigned to prcduce

nor had any role in producing.

4A

Unfortunately the raider will find in this section

several terns that have multiple metaiags. This is inesca-
pable because there has been no a:-epted set of standard

definitions within the software deveLopment industry.

A. PROJECTS AS RODUCTS

The "contracted pro j:t", generically, is a software

development tasking for which an organization contracts

another to produce. It aay consist of a number of sub-

projects or programs. An example is the development of an

operating system which iazludes a job scheduler, process

scheduler and file manager, Figure 3.1 shows the various

I I
contracted project assignel project I
milestones (1) minagemert/support (1)

design specifications functional specifi-ations I
lines of code modules

function (user) function (computer)
test code documentation I

(1) not deliverable prolucts

Figure 3.1 Software Development Products.

component products of a pr ject. The project, an operating

system, must integrate aich of these various parts to be

complete. Therefore, the question of productivity here is

whether or not the project can be IeLivered on bdlt ad 2a

sched 21.

If the contracted project is large, as in the operating

system example, it will be broken down into several smaller

projects, which I call "assigned projects" since there is

little choice as to who will manage them once the contracted

project Is accepted. The assigned projects will be giveL to

-. several project managers who will report to the central

contracted project manager. The role of each of these

project managers is to deliver a fully complete integrated

operating product.
The question at this point is, "Are these good items by

which to measure productivity?". fes, they are, for several

reasons. First, for thi§ Je%_ 2f . gent they are the

only products that are produced. Se:ond, the reason for the

manager to hold the particular job of project manager is for

him/her to deliver a projet on time, withi budget and to

the satisfaction of the zastomer s3 that the organization

may make its profit. What about the lifference in languages

used or the sizes of various proJects? These questions need

to take their rightful place in the data base of information

of the corporation. Each productivity measure has a set of

parameters within which it can only be used. There is a

definite need to know how capable a project manager is at:

1) develcping any project; 2) using i specific language; 3)

developing various sized projects; 4) developing machine

dependent projects; 51 developing first-of-its-kind

projects; or 6) modifying i generiz 3roject.

Each of these paramaters give- added insight to -

project manager's productivity rating. The first lets ons

know how productive he/she is rClitive to all the other

project managers regardless of project specifics. Each of

the other measures provide aiditional information on the

relative productivity of a project 3ianager within the diffe-

rent parameters. Use of ill of th-se productivity :atings

by the next higher level of managament may improve both

|" 23

levels of management's productivity provided project

managers are vell mat-hed to projects where their
productivity is highest.

B. KILESTOINS AM RANUREINT/SUPPORr

At this point it may be adviatageous to discuss a

management tool that many may consider to be or confuse
with, a product. & "milestone" is a point in the life of a

development project when a deliverable product, as listed in
Figure 3.1 , should be completed. Many would think that the

ability to meet project milestones shows great productivity.

This is not true. For if it were true, first the milestone
must, in fact, mean the production of a deliverable item.

Second, the deliverable item must be something of value to
the project. If the deliverable is, in fact, of significant

value to the project then the production of that item is the

basis for one's measure aal not the meeting of a milestone.

The meeting of the milestone shows only that the project is

proceeding as planned. rhe milestDe has no other inherent
value. That is, one does not deliver a milestone as one
would a program. The milstone is only another management

tool just as is a productivity measure.
Like milestones, Manaiement/Support is not a product but

a management tool. However, the type, quality and quantity

of the support must be considered very carefully.
Management/support exacts a price in that it is an overhead

expense. £ts value is not as a product but as a tool.
Nearly all presentations 1iscussing productivity refer to
the management/support tools. This is where the vendors and

consultants make a great deal of noney. rhey speak of

productivity improvement and the aids that provile it.

21

There are two parts to this con:ept, management tools

and support tools. The management side deals with systems

that help predict costs and time schedules and those that

track the progress against the predictions and plans, it

MFSO, this function is under the auspices of the management
Department, Code 92 [3ef. 10] where PkC-II is used to track

and DOD MICRO and SLIM are used to estimate software costs

and time schedules. The value of this support can be very

subjective. Often the value of the management aid is that

it gives the manager much more confidence in his/her deci-

sions. The effect of the use of these kinds of tools may

also be seen on the ledger. If the systems help management,

all else being equal, one would expect to see fewer cost
overruns and better personnel manageaent.

The support side has a miriad of tools that predict

sure-fire ways to improve productivity dramatically. These

tools include various design procedures (i.e. structured,

top-down, modular design), on-line programming and provision
for each programmer to hive his/her own CRT terminal to

mention a few. T.C. Jones [Ref. 11] liscusses more of these

tools and their respective limitatioas.

The fact that manage29nt/support is not a product does

not minimize its importance. On the contrary, it is vital

to effective software development. But the manager must

realize that the addition of each piece of management/
support costs mcney for which z.-ounting must be made.

4 Although, there are many manigemnt/support systems which

may improve productivity, the indiszriminate implementation

of their use will not necessarilT lead to productivity

improvements. The use aa expansi)n of management/support
4is an area worthy of further study.

22

: ". C. DESIGI ALID FUNCTIONAL SPECIFICTKEOIS

Design specifications are usully thought of as a

product of the contracting organization. They are used as

the basis from which to make a contractdal bid and to write

the functional specifications. However, the design specifi-

cations, as delivered, often must be rewritten by the

contractor in close conjun:tion with the contracting organi-

zation so that they are explicit enough to properly writs

the functional specifications.

Both Keider (Ref. 12] and Howden (Ref. 13] discuss the

need for well thought out and well written design specifica-

tions. Keider's article, "Why Projects Fail", shows how

poorly planned projects waste money and resources. Howden's

article, "Life-Cycle Software Valiation", liscusses the

need for project design sp.cificatiois to meet five proper-

ties. First, the specifications must be consistent

internally as well as in any related documents or other

portions of the project. Second, the specifications must be

complete. They must be examined f:r missing oz incomplete

information requi-ements and to ensure data properties are

included. Third, the s.ecificati.ns should only include

necessary items without redundancy (not to be zonfused with

hardware redundancy to easure reliability). Fourth, the

system must be feasible with existing technology and hard-

ware. And fifth, the specificatioas must use corzect math

formulas and decision tables.

The reader should recognize tat the validation of

design specifications and functional specifications is a

non-wivial task. The systems analysts who validato the

4design specifications and who write and validate the func-
tional specifications must be held accountable for their

resource use in the prolaction of these products, The

specifications need to be examine! carefully, as discussed

23

above, especially when one considers that approximately

forty percent of a projects resources are used in the design

phase (Ref. 37]. Poor juality. her is very difficult and

costly to try to overcome later in the software development

cy-le.

D. LIVES OF CODE AS A PRODUCT

The line-of-code (LOC) is, by far, the predominant

measure used throughout industry to liscuss program size and

productivity ratings foc all levels Df software development.

Interestingly, though the entire industry uses LOC as a

measure of product definition, few agree as to what a LOC

is. One of the first qustiDns asked is, "Do you mean a

li.e of object ccde or source -ode?". The industry has had

some success in disting~aishing between them but not in

choosing one or the other as i universal measure. Source

code is that written by the programier while object code is

the compiled code stored in zemory. Source code is more

ofter. used to describe programmer productivity than object
code which is usually used to define the quantity of

conputer memory requires to srore the Program code

[Ref. 141.

Assuming one has settled on sourze code as a part of the
measure, what determines a line of :.ode? Some have said

each line or statement written by tha programmer regardless

of length. Others try to force the line to have eighty

characters. Still others try to lefine it by statement

punctuation characters by language (i.e. periods in COBOL or

semicolois in PASCAL).
If this weren't bad enough, the next guestion i-3

"Wm4 ch of the lie- are 'zountable'?'. That is, some want

to differqn-:iate between Ke cutabla statements, data decla-

raticns, comments, nondeliverable dabugging or t_=stirg aids,

etc. Use of LOC each of these areas must bR axplicitly

defined because studies have shown line count variations of

more than two-to-one on the same pro;ram [Ref. 15].

After the LOC is well defined and published, one must

watch carefully because, just as the measure helps manage-

ment to rate personnel, so does it help personnel to promote

themselves, often by manipulating the rules in their favor.

Here are several examples. 3ne company settled on every

line written regardless of length. After some examination

of several programs, lines were found not to be complete

statements nor eighty characters in length, thus padding the

true productvity levels. Another may decide to use eighty

characters as the defined line. In this case it would not

be unusual to find variables with extremely long names or

use of the "blank" character to fill up lines and thus pad

the productivity rating. Paradoxizally, the programmers may

be forced to have large numbers Df blank characters if

management requires the use of structured programming tech-

nigues. Another problem is that p:ogrammers may fight the

use of higher level languages so they may program in a

language in which they are comfortable and which requires

more lines to accomplish the same task. Jones [Ref. 15,

p.41-43] discusses the LOC measure more extensively than

presented here.

Since the measure is so difficult to define and may lead

to unacceptable program~i.; practi.e5, as stated above, or

cause paradoxical conclusions, as liscussed in the following

chapter, this researcher feels L)C is a poor product

measure. However, this loes not mean to say that there -s

no use for LOC as a produ=t measure. In fact it is the only

"4 measure available when on. is performing maintenance on

programs which entails zhanging individual lines in a

program. Therfore, we must have a lfinition for a LOC.

25

ii-

There are many different languages in which one can

program. Since each has its own rules of construction the

definition of a LOC will necessarily be different for each

language. This researcher prefers to view a liae of code in

the context of a complete sentence or phrase of spoken

language. Each programming language has a defined equiva-

lent of a complete statement or phrase. Just as Hemingway

and Faulkner had different styles of conveying information,

so will programmers. This is not a latriment to programming

any more than it is to writing. Programmers will settle

into standard line lengths with which each is comfortable.

As long as management is satisfied that the style fits well

into the structure of the language then there shoald be no

problem. This does require management to supervise and to

train those that are not zonsistent in their own programming

or are far from the "averige" line length of the rest of the

programmers.

The countable lines should be those that are vital to

the program quality and specific language. The lines that

are niceties but which ail in the readability of programs

have good reason to be in programs. They should be counted

but not with full credit. The comsent line is an example.

it is necessary for readability bit a one hundred line

program does not need a n additionl hundred lines of

comments. Contrarty to others, tiis researcher believes

some credit should be given for comment lines. However, to

4 keep verbosity out of pro:grams due t: comment lines and to

be consistent with the credit given for reused code

(Ref. 161, they should only count as twenty perzent and -hen

should be a full eighty cha-actecs long. Lines that are

executable or data declarations ial the like shculd be

counted fully as one line.

25

4

11 LOC is used as a measure for program length, it

should be measured as a block of LC, haing at least one

hundred lines and not mire than one thousand lines pe.

block. There ire two reasons to dD this. First, each block

of LOC can have a time value association. This allows

developers to speak in terms of time per block of code.

This is valuable when trying to estimate the time required

to develop a program estimated to be some number of blocks

of code long. Second, cole must have an intrinsic quality.

It makes little sense to discuss one tested, debugged and

documented LOC. But it does make sense to discuss a block

of code with the same qualities. This tends to force the

colae to have some minimum level of quality. The quality

reguirement takes into consideration the time spent by the

programmer in writing non-delivered test code and debugging

aids and in correcting logic errors. When LD3 a."e reused

the count value should be a percentage of one original LOC.

Basili and Freberger (Ref. 16] use twenty percent in their

research. This researcher recommends starting with twenty

percent and then adjusting it according to the percentage of

tize required to locate reasable code instead of developing
original code.

E. MODULE AS PRODUCTS

A module is a single, intelleztuailly managable portion

of a program which is sepirately -onpilable bat which must-

have connections to other modules. tts size is variable but

it contains only one complete responsibility assignment of a

program. It has only one antry point and one exit point and

conforms to the permittad logic structures of structured

proqramming. The responsibility assignments aram detesrminei

during the design phase before any work on individual

mcdules is begun. One of the key areas of modular design is

27

ths selection of module contents basal on the probability of

change during the maintenance phase. In other words, assign

those portions of progrins/proj-cts that are likely to

change due to hardware or technology to their own respective

modules. The advantage gained by this bit of overhead is

found in the cost avoidan C which follows during the mainte-

nance stage, where up to seventy percent of a project's

costs lie.

There is a paradox concerning maintenane and well

written code. If one measures productivity during the

maintenence phase by cost per defect, a popular method,

he/she will find that very poorly written code has a lower

cost per defect than well written -ol-. This occurs because

poorly written code has many errors which programmers must

spend much time correcting. They, therefore, become very

familiar with the program. The initial costs of relearning

the program logic are spread over many errors in poorly

written code, and over very few errors in well written code.

However, the total cost of maintaining well written code is

usually much lower. If one were to take the same well

written modular code and compare it to the same well written

non-modular code one should find: 1) fewer logic errors

because of the extensive analysis daring the design phase;

2) it's easier to locate errors since they zan often be
traced to one module or at least to a branch of the program;

3) it's easier to relearn the logic because of the need to

only learn one or a few modules instead of the entire

program. if any or all of these points are realized, FMSO

could save a great deal in resources and improve customer

satisfaction. Since FIS3 presently must maintain over 9Q0
programs and respond to over 3203 program trouble reports

(PER) annually, any reduction in the cost, in time or money,

on a per item basis could lead to significant savings and

hiIher product ivity r1tings for program maintenance

personnel.

I 23

I

The use of modular programming allows two other areas to

be explored. The first is Parnas' [Ref. 17] idea of program

families. The idea is to look at 3imilarities in programs

before looking at their differenzes and write generi.c
programs based on the similarities. Then one adds the

modules that will make the programs individualistic. In

this way programmers can reuse existing code which is well

tested and with which programmers are thoroughly familiar.

This helps to reduce initial project development time and

costs and to reduce maintenance costs.

The second area is that which Z~ll [Ref. 18 , p. 51]

refers to as "metaprogramming". This is the use of data

base libraries of modular code to build complete programs.

The code is generic and the metaprogrammer merely researchs
the data base and selects those modules which will meet the

program logic. In this way progcanmers write much less

original code. Lanergan and PoyntDn (Ref. 19] report that

at Raytheon Company some new applications software have been

developed forty times faster than by using traditional

development methods. REased modules have been averaging

between forty and sixty percent of the total LOC on major

projects. The probability of inlucing logic errors is

reduced significantly and the probability of textual errors

is also reduced due to the reduced amount of original code

required. Kendall and Lamb (Ref. 23], in their research at

IBM, have reported data which shows that metaprogramming

from a data base of modules shoull be seriously considered.

Their study showed that .eighty percent of the applicatioas
programming effort goes into production of programs whose

used life is less than eighteen noaths. Therefore, any

reduction in the effort to develop these programs and any

reduction in the maintenaace effort of these programs will

provide a factor of four increase in the savings to be

apolied to the maintenance of the tdenty percent pcrtion of

the programs with a siginficantly longr life cycle.

29

The added attraction of modular code is the idea of

completeness of the task. For a quality module to be deliv-

ered for integration it must be: 1) documented; 2) coded in

its entirety; 3) tested; and 4) debugged. These are much

more difficult tc attain with LOC as the product. In parti-

cular, it is very difficult to test a block of LOC since it

relies heavily on the remainder of the code. Therefore, it
can only be examined by inspection while molules can be

inspected and machine debigged to a near zero defect condi-
tion prior to integration. <hou;h the documentation is
not vital for module delivery, it can be and should be an

organizational requirement.

The idea of designing projects, especially large ones,

by dividing them into subprograms or modules is a very old

concept in programming. During the 1970's it became a topic

of high interest as a way to improve program reliability and

maintainablility. Ross et al [Ref. 21], Liskov [Ref. 22],

Crossman (Ref. 23], and Parnas "Raf. 24] [Ref. 17] wrote

formidable papers extollia; the virtues of modular program-

ming. Yet there are many software d-velopment organizations

that do not understand the term, ase or value of modular

programming. The Department of Deffense (DOD) appears to be

one organization that does not fully understand the value of

modularization and reusia; code. lunson [Ref. 25] points
this out in his short paper 3n reducing software costs by

reusing code. Elshoff [Ref. 26] observed this problem at

the General Motors Research Lab wiere modularization not

only appeared foreign to analysts and programiers but was

vi.wed as detrimental to the softiare life cycle. The

unfamiliarity with modularity is also present at t-he US

Navy's Fleet Numerical and)ceanoraphic Center in some

analysts and programmers. While this does not appear to be

a problem at FMSO at the present, internal training may ble

required because of tirnover :f software development

personnel.

This section concerns quality modules. These are

-modules that are coded in their entirety, tested, debugged,

and documented. Each organization will have to set up the

requirements for a countable module, this researcher reco-

mends these attributes. They ensure attainment of the

organization's minimum qu ality standards and take into

consideration the programmer's time in debugging and testing

the module. When reused 2odulas are a part of the deliverel

product they should be Cour.ed as a percentage of one

module. Basili [Ref. 15] used twenty percent in his

research. This is a god starting point. But if the

organization finds that this is not an accurate percentage

of the time required to levelop original modules then the

percentage should be adjusted accordingly.

F. USER FUNCTIONS AS PRODOCTS

The previous section dealt with functions based on

proqram structure. This section deals with fuactions based

on user requirements. While modules may vary in length by

approximately one hundred lines of code, user functions can

vary up to several programs. kn xianple of this is a single

entry accounting system. A company may want a system which

performs several functions such as: ledger maintenance,

invoicing, file mainteninze, weekly reporting, stc. Each of

these operations or functions, is a leliverable product to

the customer as a part of the single entry accounting

package. The quality of the entire package is determined by
thet customer saisfactioa with eac:h individual function.

Albrecht, [Ref. 27] of IBM Corporati:n, uses this measure as
th_ primary means of determining pDrductivity ratings in the

Applications Development 3roup. He points out that one must

be careful when using this measure or any other measure by

keeving the major project objectives in perspective: on

atie, within budget, ard a satisfid customer.

31

!.

The specific product zeasure is what Albrecht calls a
function value. The approach to Ietermine the function
value is to count the number of external user inputs, inqui-

ries, outputs and master files that the project must develop
as a part of the user reqairements. An external user input

is a communication from the user to the computer such as
data forms, terminal screens, keyboard transactions, optical

scanner forms and the like. These lo not include inputs

from tapes and data sets, which are considered as internal

and part of the file count. Each of these user functions is
weighted by a value desilned to reflect that function's

value to the customer. Appendix r shows the details of

determining the function value and Appendix I shows the

details of determining the sizing ind complexity of an

entire project using function value r-omponents. Appendix II

uses the same external user inputs and some internal inputs

as components to compute the funztion points but also

provides for the the computation of a development time esti-

matron. It is important to note that Chrysler [Ref. 2]

showed in an unrelated and indepeadent study that these

components were most sigaificant in predicting development

time.

Albrecht's function value zoncept has several advantages

over those measures previoisly mentioned. First, it is the

only measure that deals specifically and directly with user

satisfaction. The other neasures 7irtually ignore the user

between the functional specification phase and the implemen-

tation phase. This method constantLy works wi:h the user.

Secondly, since itz focis is on user require ants and not
on ccunting lines or blocDk of cod- Dr modules, it tends to

iizit programmer gaming to i-mprove his/her productivity

rating ar-ificially. thi.d, the measure breaks the project
into user defined portions of importanze. This focuses th:_

effort towards teamwcrk since it requires the development

32

group to work as a team toward the production of functions

to which the user has placed a well definel importance.

Lastly, the method provilas more opportunity for a smoother

evolution of change than the others. It focuses attention

on the cost of each function and the effects on cost of

mid-development changes. rhe =onstant attention to cost and

user involvement provides - better uechanism to control the

change process during development. It enables the planner

to design for changes that may occur during the life cycle

that may not he cost effective to include during the

development phase.

The function value zoncept has three disadvantages.
First, there may some question as to whether to call a

component an inquiry or in input. These are not always

distinct items. If the weighting fictors are different for
each this may significantly alter the final function value.

Second, users play a large part in latermining the weighting
faztors, as it should be. Users =an be fickle, therefore,

it is often extremely difficult to get them to admit "-ruth-

fully" what they desire most. It is not so much that they

are hiding information but that they lon't really know what

they want. Therefore, it requires talented interviewers and
designers to determine the true desires of the users. The

third disadvantage is that this measure is so good that
managers may tend to rely on it too heavily. This is not

the ultimate or universal aeasure but it is a good one. The

other measures can give insights oa products and produc-

tiwity that this measure :an not. The function value is an

aagregate measure and must be used as such. As Stevens

[Raf. 281 of Performance Manigament Associatas Inc. of
Scottsdale (Az.) points out, there is no universal measure

yet. We must use al. the imperfect nasures available In an

effort zo describe the Programming activi-y.

33

G. TESTING, IITMGRATION, &ND IMPLEHREI&TION

One of the concerns of managers, when discussing

programmer productivity, is how to iacorporate non-delivered

code in the calculation of productivity. The non-delivered

cole consists of test cole, debugging aids and incorrect

code. The incorrect code is a function of the programmer's

skill and is a penalty to his/her productivity rating. The

test code and debugging aids are not mistakes. They are

used by skilled programmers to ensare coding auality and

correctness. There has been sDme concern that the

programmer should have this code included with the delivered

cole for productivity calculations. This researcher does

not concur that the test -ode and debugging aids should be

included. The programmer's job is to deliver code that

meets the specifications. The only way to Pnsure the code

actually meets those specifications - to perform some type

of test. Test code and debugging aids are tools of the

programmers just as milestones and management/support are

tools for others in the s3ftware evwelopment arena. They

are a necessary overhead hich programmers must employ if

they are to deliver the quality products discussed

pr- viously.

The integration, testing and implementation phase of
software development utilizes approximately forty percent of

the project's resources [R.f. 37 ,p.18]. Intuitively, one
,4 woald think that an area which uses so much of the resources

would be a prime place to do some productivity research.

This, unfortunately, is not the case. One of the prime

reasons has been the inability of tae industry to determine

4 the role these activities play. Soacifically, there is a
question as to whether testing is a oart of development or a

part of quality assurance. If it is part of auality assu-

rance then it is an overh.ad and not a productivity concern.

43
3i.

4

If it is a part of development the2 the product is tested

and acceptable code. But what deteruines how productive the

testing is? The time expended in testing does not help to

determine the productivity of testin; because the time used

in testing is a function of the test plan and the number of

defects found. Defects found does help to determine produc-

tivity. It shows either poor design, poor programming, poor

quality assurance practices or any combination thereof.

Integration is left with the same type of problems.

This activity takes project portions, modules, LOC, or

programs, and brings the together to form a cohesive and

integrated product. But if there are major difficulties

encountered are they the the fault of the integrators?

Probably not. The fault probably lies with the designers or

the programmers.

The manager must be aware of the problems that develop
during this phase and keep records of them. Though there

were no conclusive reports found oi how to deal with the

information, the consensus from the literature is that it

must kept in a data base for later study and c3nsideration.

The science of software development has not progressed far

enough to completely handle the test, integration and imple-

mentatior, problem. Most researchers are of the belief that

if we get control of the levelopment process In a scientific
way these problem areas may disappear.

H. DOCUMENTATION

The primary belief ia the induszty and particularly in

DOD is that software development projects have two separate

products: program code and program locumentation. This is

an extremely shcrt-sighteal but understandable belief. As

long as software devel:oment 4_i viewed as having two

products, this belief presents "_ie oppor-.unity to liscard

35

I

one. Since the program is what is wanted, all too often the

documentation is reducel i an attempt to reduce development

costs. The view that there are two products and the prac-

tize of reducing the documentation thrive on the belief that

software development and software maintenance are not

related. This is not true. The documentation is required

to learn the program logi= and coding structure. A software

* project that was poorly designed and poorly or not
documented is extremely difficult and much more costly to

maintain than one that was well designed and well docu-

merted. Nearly every other industry (i.e. automobile,

electronics, machine tools, etc.) that produces a complex

product provides documentation on ta logic and design of
that product so that maintenance personnel can provide

quality and cost effective maintenan:e. There is no reason

to believe that the softwi.e development industry should be

any different.

This researcher believes that documentation is not a

separate product but an integral pact of all wall developed

software projects. rhis chapter consistently d-iscussed

fully coded, well documented quality software. It should be
intuitively obvious that a program that does not operate

properly is of little or a3 value. hnd that one that oper-

atas properly but is difficult to inderstand ind maintain

because of poor documentation is of uuch less value than one

with superior documentati3n. rhus, the documentation has no
specific measure of length only one of quality. It is a

problem for the develope.s and quality assuranze experts ,o

ensure that the documentation is p:ovided and adequate in

describigr. the program logic and coding struzture of th -
pro ject.

4

33

During the research for this piper it was noted that

there is a great deal of iisunaerstalding both in the liter-

atire and in the industry about programming and software

development prod utivity. The misunderstanding lies in the

area that, when questioned about the product that is

produced, one will receive quizzical looks or long spells of

silence. People immediately want to jump to discussions on

complexity, language, tools or the development environment.

These have little to do with calculating productivity.

Their roles are as parameters withi which one must analyze

the specific productivity rating. rhis is not to belittle

the importance of these ireas. It is simply a matter of

organizing one's thoughts. One cin not intelligently speak

of improving productivity antil one first has a quantitative

measure and secondly a des-ription of the environment. Too

often people in the industry look at the environment not

only first but exclusively. Without a produzt definition

and the measure, the environment can.ot be understood.

Productivity has two components: outputs and inputs.

The outputs, l.ocsely defined, are the products previously

discussed: projects, pro;rams, fanztions points, modules,

and LOC. They are dependent on the corporate hierarchical

level and the philosophy ised for software development. The

inputs vary considerably depending upon which productivity

measure one is interestel. rhe most common input used is

the person-month, 160-175 hours. rhis can be broken down

into its various parts by programmers, management/support,

systems analysts, and program analysts. But thre are other

inputs that may be worth consideria such as CPU time or
terminal connect time. rhough, th-se are rarely if ever,

considered.

37

k. LOC PER PROGIUKE-tOIZ

The most common measure used for assessing productivity

throughout the industry ise LOC per pcogrammer-month. Though

a very popular measure, it is not vary good. Since it is

based on LOC i~t is subjert to the Line counting variations

mentioned in the previous chapter. This variation can be

limited, to a certain extent, by setting organizational

statdards as recamuendel earlier. This would permit consis-

teacy in the organizatioa but not across the industry.

Recall, one of the reasons for measuring is to make compari-

sons across organizational lines. A~s long is there are

variations in the definitions of =ouponents no intelligent

comparisons can be made.

LOC per programmer-month is Ineaffective for noncoding

tasks. The tendency when computing this measure is to use

programmer-month as the total development time which

includes these :oncodiag tasks of lesign, dorumentation,

testi;'ng and management/support. Sinzza no coding is going on

during these stages It aakas little sense to inc;lude them in

the coding effort. Therefore, that would imply that this

measure should be used on.1.1 for the coding phase. Of

coarse, that focuses attention on the coding task exclu-

sively, which is a minaimal p ort ion of the software

development effort.

Finally, thi-,s measure tends to penalize h.-gh,-order
4 ~ laaguage (HOL) programs in favor :)f programs written in

Assembler 'Language. Jones (Ref. 29, p. 21] provided the-

example shown in Figure 4. 1 . rhs aIs an example of ths
sam pogam written in two differenat laguagss. Two of -he

purposes of using HOL are to cut costs and improve produc-

t i i t7. But the example ahows t.he paradox of this measure.

:appears that- Assembler language is more productive than

the HOL even though the i)L program took one a:onth less to

43

Activity Assembler HOLLanguage

IDesign '4 weeks 4 wee~ks!
Codig 4 2
Testing 14 2
Documentation 2 2
Mgmt/Support 2 2

Tctal Effort 15 weeks 12 weeks
(4 months) (3 months)

Lines of code 2300 500

LOC per prog-mon 500 167 I

L .

Figure 4.1 Assembler Language vs HOL.

produce. Notice also that Jones used the term "programmer-

month" to mean the entire program lavelopment time, a common

practice, as mentionel airli.r. The actual programming

timns were one month ani one-half month for Assembler

language and HOL, respectively. Even if this time frame is
used, though, the Assembler language at 2000 LOC per

programmer-month appears to be twit.c as productive as the

HOL at 1000 LOC per programmer-month. This points out :he
problem of not being consistent abDut terms. Jones uses

programmer-month to mean the entire evelopment time whizh
yielIded an average productivity fi;ure which included a

period when no coding was being done at all. Usinq the term

s-. ctly and comparing it to Jones' usage leaves us with a

four to one difference in productivity for Assemble=

language and a six to one 3iffarencz in productivity for the

HOL.

39

B. NODULES PER 9DNTH

This particular measure was presented in a paper by

Crossaan [Ref. 23]. Surprisingly, tiis resear:her could not

find any other rbferences that have attempted to duplicate
his findings. Yet he pointed to several advantages which

this measure and its methodology of program development

support.

Modular des ign programming t-ends to minimize the

complexity of projects. minimizing the complexity parameter

allows the manager to redu-e the number of variables he must

consider when making prodantivity coaparisons. The defini-

tion of a module appears to be more consistent throughout

industry than LOC which gives it a potentially much better

comparative capability between organizations, provided the

other organizations use this measure. The use of modules as

a product provides a consistency throughout the development

cy-le. It includes the design, cDding, testing, docu-

menting, and management/support phases. Yet it can also be

broken down into its individual component efforts to deter-

mine which effort has the greatest impact on development

tize and the impact of each modala on the project as a

who le.

C. FUNCTION POINT DELIVERED PER WORK HOUR

Albrecht [Ref. 27] discussed the effects this approach

has on showing the relative productivities between

languages, project size and various programming technolo-

gies. The methcd focuses on the external attributes of a

4program and the work-hoics zontributed by both IBM and

customer personnel assigned to work on the project. It

covers all phases of th- projeat. rhe goal of this method

of measurement is to state deveJ-opmei - costs in terms of the

work-hours used to design, program aal test the applications

40

.J

project. Althcugh there is not enough data available

presently to give conclusive results, the report does indi-

cate the capability to show the relitive productivities of

different languages and develcpment technologies. This is a

major advantage that is not possible with LOC and has not

yet been explored using molules.

D. SELECTED INDUSTRY BETEODS FOR 1EaSURING PRODUCTIVITY

The preceding sections of this chapter discussed various

methods used in research to study ?rogrammer productivity.

Each method mentioned uses a ratio of outputs (project,

program, specifications, todules, L3.- or function value) to

inputs (person-months, programmer-months, or work-hours).

Previous sections proviled recomiended definitions for

selected output and input components. This section presents

measures used by several prominant corporations that develop

software.

.1. I f

leasurement of programs is still a fairly sub jective
process. We can measuc3 size based on 'lines oi code'
or 'number of s-6atments', but acceptance of these
measures is not universal. Acceptiace of lines of code,
as an example, seems to be based on the view that
although lines of code uay be an imprecise zeasure, it
4s something that can be enumeratzl, and until something
better is discovered we will contylaae to use it. There
is a veiled invitation aere to find somethiag better.
Ref. 30 ,p. 372]

This is the philosophy used to approach the

measurina of prcgramming activities at the Santa Teresa

Laboratory of IBM. The "something better" that IBM has been

trying to refine for the last three to four years has been

the software science metrics Isveloped Dy Haistead

(Ref. 311. Figure 4.2 stows the mijor elements in use by

13M (Ref. 321 [Ref. 30]. The philos.phy for using software

141

Operands * values that are changed or used as a
refrence f~c change (constants, variables

Operators = elements that operate on or with opera;ds
(opration :odes, delimiters, punctuation,
arithmetic symbols branches (DO WHILE,
IF THEN, EF THEN ELSE))

77/ = number of unique operators used

7= number of unique operands used

N/= number cf times the operators are used

N2= number of times the operands ire used

Vocabulary (7)) = the sam of uniq'e operands and
ogeritors used in theeprogram.

is a measure of th repertoire
of elaments a programmer uses to
implnent a program.

77 Z=77/+ 772
Length (N) = the sum of tha operator usage and the

operand usage. it is a measure ofI
program size.

Difficulty () = a measure of the difficulty of
w wring code and, intuitively, a
measure of ease of reading.

77 N2

Figure 4.2 Halstead Element Relationships.

science metrics is built on the following beliefs. First,

n any given language, one type of program is no harder to

cole than another. The experience at Santa r=resa labora-

tory over the last five years is that the only things that
affect productivity are the language and the tools used.

They have found that HOL is about twice as productive as

Assembler language. Sezoal, aside f:m language, the

i

L!

I

development tools are what affects programmer productivity.

To this end, IBM has consistently illed to the "workbench"

of their programmers. They have provided on-line program-

ming capabilities, given each programmer his/her own

terminal in his/her office, proviled a dedicated program

development computer and various programming aids such as

Script. Third, the definition of operators and operands is

consistent across language barriers. This gives software

science metrics a significant advantage over other measures.

Additionally, IBM research has showa that the size metrics

used by Halstead are as accurate as LOC for measuring

program size.

Since programming productivity is believed to be

constant for all programmers, given the same environment,

IBM has looked primarily at the difficulty metric.

Difficulty is defined as a metric that expresses the diffi-

culty of writing code. It takes int3 consideration decision

nodes, the repertoire of operators used and how concise the

usage of the variables is. The measure, then, also appears

to be one for ease of reading. It does not tell how diffi-

cult the program must be. It only tells how difficult the

programmer made the program. High difficulty can come from
poor programming skills, poor program structure, inexperi-

ence with the laDguage or the complexity of the algorithm.

The value of this metric is three fold. It tends to indi-

cate errcr-proneness much earlier in the development cycle

than traditional methods. Intuitively, the more difficult

the program, the more error-prone it is. The measure can

only be taken after coding has been completed but it can be

calculated immediately foLlowing the first clean compile.

There is no need to wait for testing. Secondly, it points

out those programs which need rework due to high difficulty
values. Third, it points out programmers who consistently

have high difficulty values. This enables the manager to

43

d

ensure that the programmer receives added training in the

techniques available to reduce program difficulty. IBM has

found that the difficulty measure tends to range from three

to eight. When ever they see thit a difficulty measure

exceeds five, they call the programmer in to have him/her

recode the program to reduce the difficulty measure to five
or less. If the programi.r consistently delivers code with

high difficulty measures he/she is provided aided training

in techniques which can lower the program difficulty.

All this only gives measures of the program not the

prodcuctivity of the programmer. For IBM to determine that

all programmers had the same productivity, they had to test.

The test measure was and continues, on a minor basis, to be

LO: per person-year. L3C is defined as data declarations

and executable statments. The use of this measure, now, is

only to check for changes in productivity due to new tools

and for reasonable production rate relative to the industry.

IBM recognizes the comparability problem of the LOC measure.

However, the IBM perceived industry average ranges between

800 and 2500 LOC per year, given the line counting varia-

tions. They continue to measure productivity using LOC per

man-year to ensure that IB. remains wihtin this range.

2. Amdahl

a. System Softwac.

Amdahl's approach to systems softiare develop-

men is different_ from most of the industry. As a

ma.aufacturer of IBM compatible hardwa -e and software, their

approach is to use IBM 3oftware products and modify them to

operate more efficiently on Xmdahl hardware. rhhis means

plicing "hooks" into tte IBM software to operate special

Amdahl procedures. Sincz their goal is develop mor effi-

ci.3nt software, these hooks maust b minimal i both length

44

and interference with the existing software and logic.

Amdahl places a much higher emphasis on quality than

qantity.

In this light, none of the previously discussed

measures apply. Amdahl uses a management by objectives

(MBO) approach to measure performan=e. Their hiring prac-

tizes aim towards acquiring those programmers who are

experienced, skilled and senior in the industry. The

programmers are organized into groups of two to three

assigned to one team leader. Each group has its own area of

responsibility for program development/modification. The

assignment of tasks and the time constraints are determined

by mutual agreement between the maaager and team leader.

The schedules are recorded and each programmer is evaluated

on his/her performance. The evaluation is discussed with

the respective programmer at the periodic performance

review. Since each group has specific areas of responsi-

bility and those areas are limited, any trouble reports

received are easily assigned to the group and/or individual

responsible. These are also included in the performanci

review. This scenario does allow iny specific measure to

quintify programmer perforuance. fi wever, the progzamminq

section is a small organization, 53-75 programmers, so they

track the type of modification against the time required and

the quality of the programning. Th.y do not use any parti-

cular measure outside of budget and schedule. "Ref. 33]

b. Applications 3oftware

Amdahl's application prolram develDpment is very

siailar to the systems software devetopment in that they use

M B3 as the predominant measure. They dc use LOC per

programmer year to do som- measuring but it has very little

significance to the opera.tion. L3C is defined as all

programmer-original COBOL statments. No credit is given for

45

.I

reused code, although, they admit some credit should be

given. This wculd appear to discourage reusing code but

their incentive, reward and penalty system provides the

necessary encouragement. How the system functions was not

specified. Management does require programmers to use data

dictionaries, and code libraries are kept in an on-line data

base. The primary measure used to measure performance is i

review of the programmer's schedule. The programmer submits

a schedule of task accomplishment to the manager. The

manager reviews it to ensure it is realistic and then

compares the schedule to the task completion dates as the

programmer delivers the assigned tasks. Here, as in systems

development, the primary ingredient for measuring is

programmer and maniger experience. "Ref. 34]

The measure used to evaluate maintenance

programming is built around the nanber of trouble reports

received. Each programming group is responsible for mainte-

nance of its assigned software. rea leaders must emphasize

high quality in the softere to avoid having to reschedul

programmers onto maintenLace from development. This does

not prevent errors but it does cut them down. The main

emphasis from the AppliaLtions Programming Manager is to

ensure as rapid a response rime as possible on the trouble

reports. The required tacnaround time for trouble reports,

presently, is not to exceed six montis. They use the turna-

round measure because it tends to indicate to the users that

the company is genuinely interested in the prDductivity of

software maintenance. It also gives the respective managers

an additional reason ohen requesti.-.g more rssources.

Fially, it gives a business value to organized maintenancs

because it forces the various managers to schedule resources

for program maintenance.

45

Amda hl uses program pa:kages prsidoainantly in

the r applications prograiaing section. These packages come

with their own documentation whizh allows Amdahl to take

take an approach significantly diffa:aat from this research-

er's view point. Am ahl believes program code and

documentation to be sepiate and u2e9ual products. This

belief is made pcssible b-:ause they have programs that can

analyze code and tell the programmer the structure of the

code. therefore, they feel that program maintenance

without the documentation is not is difficult one might

assume. However, docamanation is encouraged. The method

used is to request documentation and to make it as easy to

provide as possible. To make the documentation easier, it

is all written on-line using Script and a variety of user-

developed macros that provide some graphics to enhance the

prose. The documentation iuality is aow much higher and the

documentation is much easier for the programmers to deliver.

[Ref. 34]

SDC's cost estimating procedures use LOC and pages

of documentation as the primary productivity inputs to

compute costs. They catagorize th' e various types of LOC

(data definitions, executable 3tat-mer.ts, reused code, etc.)

to determine the subtask cost for each activity. The LOC

are weighted by an in-house zonplexity measure which

includes parameters for program size, security, and reli-

ability. Each Froductivity measure is computed relative to

the type of program (real-time process control, interactive,

repcrt generator, data base cont.ol, etc.1 that was

produced. Documentation is mesurezl by pages produced per

day per type of program. Although they call documentation a

separate product, they zonsider all projects to be inte-

grated packages of both software -ode and documentation.

[Raf. 35]

4

TRW uses a weighted LOC per man-month method to

measure productivity. They reviewel Halstead's metrics but

concluded, as did IBM, that source LC is equivalent to the

size metrics developed from counting operators and operands,

They do concede that the difficultr metric deserves more

stidy but they have no resources ivialable at present to

conduct such a study. rhey have found that weighting the

LOC with an in house factor for -onplexity and reliability

is sufficient. The LOC - defined as a delivered well docu-

mented and well engineered line equal to a card image. The

card image is an eighty :haracter line. Comment lines are

not included but all lines which hold "computing" informa-

tion are (e.g. job control language, edit links, format

statements, data declarations, executable state ents, etc.).

TRW defines a man-month, 152 hours, to include all personnel

hours directly chargeable to the project.

At present, TRW does not measure maintenance produc-
tivity. However, the interview with Dr. Boehm [Ref. 36],

rezommended the method liscassed in his book Software

1Eninterin Ecoaomics C Ref. 37]. rhis method equates the

annual maintenance effort to the aanial change traffic (ACT)

multiplied by the estimated development effort. ACT is the

friction of the software product's s~urce instruztions which

undergo change during a typical year, either through addi-
tion or modification.

TRW includes docamentation in i-s definition of a

LOC. This ccrresponds with tha philcsophy of this

researcher. TRW does not treat s:ftiare code and documenta-

tion as separate products but as integral parts of the
software project.

43

V. OLMQIM MIR UQQIUAII

This paper has attempted to point out the major areas

which must be explored in order to measure and discuss

programmer productivity or software development produc-

tivity. The manager iust decide what level of the

organization he wishes to measure. He then must determine

what, specifically, the product is which that level is

making. Before proceediag any further, he should examine

the quality assurance procedures and practices to ensure

that they are both in use and that they do establish and

check for a minimum quality standard. From here the manager

can select the various inputs which he feels are relevant to
study. The productivity cites he coaputes need to be stored

in a data base so that they may be used as comparators

against time and other organizations. Finally, each measure

must be kept in the context of its eavironment. This condi-

tion provides two functioas. First, it keeps the measure

meaningful. Second, by selectively .hanging one element of
the environment at a time, the maniger can determine cause

and effect relationships that can laid to establishing the

optimum software development environnent.

The LOC measures are poor for software development and

lead to paradoxical zonclusions in many instancss.

Reaining with any measure thit uses LOC will tend to bind

the organization to techaolcgies requiring the development

of totally original code :a every p:.'ject. This will tend

to prevent the use of metaprogramming and the development of

proqram families. These programaing technologies show

significant promise to relace development costs and improve

programming productivity Icamaticall.

49

nodular measures provide the opportunity to explore and

develop the aetaprogrammiag practice. They also have over-

heads that must be accepted as development personnel learn

the technology, the added effort reguired in the design

phase, particularly for "small" projects, and the possible

inefficient use of CPU time due to am increase in the number

of LOC. These are small overheads to pay if the development

time can be reduced by as auch as La~ergan [Ref. 19] claims.

The measure can be used in conjunction with any other

* measure to help define the programming activity better. It

may be especially useful in conjunction with function

points.

In closing, it is apparent for the literature and the

discussions with the selected industry corporations that

there is no perfect and correct measure or method for

measuring programmer produz-tivity. .owever, the vital point

to understand is that nearly all organizations do measure

programmer productivity ii some fashion. Several organiza-

tions admit that their methods lack some possibly important
inputs or parameters. However, each crganization does

attempt to measure produztivity so that each =an gain some

understanding of the orgaization's particular environment.

Wirh an understanding of the environuent, each organization

and researcher is able to conceptualize the software level-

opment process so that the manager can make intelligent

assertions about how it is affected.

5)

LIST 3P REFERENIES

1. Lewis, Tim "Missing oput Software", §U
iike pp. 1-53, 1 September 1380.

2. Chryslerq Earl. "Some Basic Determinants of Computer
Programming Proau:tivity%. ;j_', igU2n . t_ AG_
vol. 21, pp. 471-483, 1978.

3. "A Rush of New Coupanias to Mass-produce Software"
Businesq _%h, pp. 5 -56, 1 September 1983.

4. Azuma, M. and Mizuo, Y.("STEPS: Integrated Software
Statdards and its Prcouctivi"y Impact", I EEj 1fop.tgr

5. Wasserman, Anthony r. and Bslidy, L.A., "Software
Engineerinq: The Tacing Point", CgrP.2t1r, pp.30-39,
September 1978.

6. "An Acute Shortag of Pr~gramm.rs" BUness Week, pp.
49, 1 September 198..

7. Kiser, Barbara C. Stewart, "Software Management
Productivity- Understanding the Software Development
Proce ss" IkE' Cate 3ociatZ onferenc insE'A_1._ 1211u pp. zWT- -- - - -

8. Mur.sun, J.B. and Yeh, R.I. (co-chairman), "Report from
the Measurements workshop of the IEEE Workshop. on
Software Product.vity", EE Computer SocietZ

Qs--fi -c =.nlla Fil 1 ~ pp glar 37. olt

9. Simon, Julian L. is" Basic Research Methods in Socialcleae2P7!291, -. 5.oi-159se. -14-?5rZ. -77-Y-,

10. Pazur, Ron, interview on 33 Spt.mber 1J82, Fleet
Mater:al Support Oflice, coe 9212, Mzchanicsburg,
Pa., AV 430-2434.

11. Jones, T.C., "The Limits of P:ogramming Productivity"
4 P-.ceedings of the Joint S4ARE/GUIDIB Applicatio.

U-f .2itl ymposiaflnd~

12. Keider, Stephen P., "Why Pc2Jects Fail" Datamation,
pp. 53-55, December, 1974.

51

13. Howden, William E "Life-Cycle Software Validation",
Comptr, pp. 71-78, February 1978.

14. Fox, Joseph M., Software 1nd its Devlompent. pp.
226-251, Prentice-Hartnglae ocli s, I. .3 6--67632,
1980.

15. Jones, T.C. "Measuring Programming uality andProductivity LM Iauil 1s.es Ju l, vol. 1,no. 1,
pp.39-63, 197

16. Basili, Victor R. and Freberg.r, Karl, "Programming
Measurement and Estization in the Software Engineering
Laboratory" The Journal of Systes and So_ wEe, vol.
2, pp. 47-577- 9UT- --- vo

17. Parnas, D.L., "Designinq Software for Ease of
Extension a.d Contracti.on". EEE Tr _sact-oas O
Soft wale Eaneeiln_, pp. 229-23 arn, T . --

18. Zoll, Peter F., "Measuring Programming Productivity"
Com :e* Perlformanza Evaluation Users Group~1t

19. Lanergan, Robert 3. and PoyntDn, Brian A.f "Reusable
Code- The Application Development Techi que of the
Futu;e". poceed i s of the Joint SH®UIDE/IBM
au37 o er-T7-M.

20. Kendall, R.C. and Limb, E.C., "Management Perspectives
on Proqrams, Prograning and Productivity", GUIDE 45,
Atl!anta, Ga., November, 1977.

21. Ross, Douglas T., ;oodenough, John B., and Irvine,
C.A., "Software Engineering: Process Pr'nciples andGoals", c ompe_r, pp. 54-6 , Mly, 197.

22. Liskov, B.R., "A Design Mathodology for R2.!iable
Software Systems" P oceedinas, Fall Joint ComPut
Coference, pp. 65-73 972:-

23. Crcssman, Trevor D., "Taking tae leasure of Programmer
Produc- ivi-y", Dat__ti pp. 144-147, May 1979.

24. Parnas, D.L., ": the ::--iteri_ to be used in
Decomoosinq S stems into Modules ' ,* Comruications of
t __ k, pp. 220-225, March, 1979.

25. MursonI John B. , "Imp roving Software Engineering
Prcduc-ivity ", IEEE omputer SocietZ Cn fn-renc=

eins (CO -81) ;-p.- ,--mb er Tg -

52

26. Elshoff, James L., "A leview of Software Heasurfment
Studies at General Motors Research Laboratories"
LM ERI pp 73 ugusE

27. kibrecht, Allan J., "Measuring Application Developaent
Productivity" P oceedings . of toat

28. Stevens, Barry, "Productivity: The First Step",
21wiel ews, pp. 28-30, Mar:= 1, 1982.

29. Jones, Capers, P_ gam i an _oramo-1
2ducti.ity, TR 02 761W -rBMo6r 1p. IGeral rlicts

D IMlon 0 Cottle foad, San Sose, Ca. 93193,
January 28,1977.

30. Christensen, K., Fitsos, 3 P., Smith C.P., "A
perspective on Software Scienca", IBM SZs ems Journaj,
vo l. 20 , No. 4, pp . 3 72-3 87, 1981

31. Halstead, M.H., Elements of Software Scienqe, New
York, New York, 1977:............

32. Christensen, Ken, Interview, IBM Santa Teresa
Laboratory 555 Baile venue, P.O. Box 50020, San
Jose, Ca. 45150, 409-493-3127, September, 1982.

33. Patrick, Rich Aziahl Corporation 1250 East Arquez
Avenue P.O. 410, Sunnyvale, Z-. 94086, 438-746-8916,
September, 1982.

34. Berr Mike, Amdahl Corporation, Sunnyvale, Ca.,
408-746-6000, December, 1982. Interview.

35. Wonq, Carolyn, SDC 2300 Colorado Avenue, M.D. 32-61,
Santa Monica Ca. 90406 213-820-u111, Interview,

4 December, 198.

36. Boehm, Barry TRW-DS3 1 Spaze Park, R27 1376, Redondo
Beach, Ca. 0278, 213-535-2184, Interview, December,
1982.

37. Bcehm, Barry SoEtware En~ineeri n Economics.Prent:.ce-H all, Inc.,C ITTi T 75-UY- T er-ey
07632, 1981.

53

BIB LIOGRAPHY

Albrecht, A. J. "Measuring A pplication Devel 1 en
Productivit Of~ 902.1,0U0 2Rn
Fall~I 1ashi .Cm8R~fA1
Bar qk at, D H. "Prodiuctivit -d the eloen

Enionet '0 ~ u~ 0 Deet~

Ba3'lj.i V * , and Pre berq er, B. "PrC; 1mjn Measurement an
Estiu aon In the SoMtw re Engn.eer3i gLabzoratory",Jgi1

§ vl 2, Pebruary 1981. pp. 47-=p

Basil., V.R. and Phil,;s, Tsai-f'un, "Elatjq n
Cpang Software Met r;.-s 3.n* the softare Eng anering

* . Lab oratory" Sgf2Eqa& -L~f Ei ,vo. 1, spring
1981. p.9

_na4Alta
qjjo.

Blars, L.L. "Solutions to Prod uctivit y1 ~~lm" Jun
kiiiem Laminint, Vol1. 3, Ja!x1lry 1 lpp._*,

Chapin, N., "A Measure of Software -m7,mlexity" Oro eediqg!
of the Naj~~ g!2ute feeL 97,p

Chen,*.. "Program Zomplexity and .Programmer
Prod - y E Tr-astions o o e-a .1,Vl

SE-4, no. 3p j o85-wa 9 ol

Chrysler,* ? "The Impact of Proqram apd programmerCharcteistics on Pro ra Size#', kFIPS a a1 mte
CofrL2f 1978. pp. 581-587.
Curtis, B., Sheppard iS P,, orst, N.A., Millia, P. and
Love, T, "Soime is; titons Between Psychologica . and
Computational Complexity of Softwae", Proceedings, U.
An! Y. IEEE Sec~ld Lire yj Cofrec-In , Ga.

C urtis , B., Sheppard, S.P., Borst, I.A. M i1Liman, P. andLove- T. "Measuring Psyzholpgicil -*omplx of ;9twa
Man.ena;,ce", ~E Laa~in F Software En
March, 1979. pp.+=~1Lr

Curtis, B., Sheppaid, . Borst, M.A,. MillV*an, P.f andi
Love . 1 ! Ii 'Th.ae 'a Chari",11 ro c'eedijqqorth

In rni-oa Con;erenca on Sgfinn eeFfTr

tizsimmons, A. ,and 0Love, .1T I "A Review and Evaluation of
Software Sclance", Co--PutIl g SuryeZ§, vol. 10, no. 1, March,
197 8.

4Gilb, T?, 2oftware Metrjcs, Wiathrop Computsr Svs~ems
series, Winthro PTis~rffj'5apany, Engle ood, N.J. 1976.

E~asted, 1.H "Software 3cience - k Progress Report" I~U.S. Arm! ecoa Sotwg if uy~ 42 so~ 4ff
12,19787, A !Tana, a.-

Ha ijtead, M.EI., jE12111 2f So2t ware New York, N.Y.

45

Jeffery, D.R. and Lawrenace M.. "Sm 13SUest i.n theMeasurement an ot o oi r;ramm ing Product vityl",
~ ~~uta~.vol. 4, September, 1981 pp.

Jeffery, D. I and Lav~sn--9. N.., *"an Inter-orqan~iona
Comparison o? Prograusian Producti.vity", I n~

Johnson, . "A workn Masae ofProdctiy"
2j&R23,2R no.: bru uay, 1977. pp 1 12.

Jones, T C. "Productivity Ne): ss", J~oc~gjas 9 u112
44, San Franc.isco, Ca. Nay 1977

Jones, T.C. "The Limits of Pro;Vamming Productivity",

Kickley, JL., "Programmer Productivity", DalI41a vol.
23, no. 5, Xaiy 1977. pp. 63-69.z

Lehiman M., "Progrimm i Prodgztivity f A .f Cyje
Concept", jff - £r.KI119S R122 flgYai
1981.

Linger, R.C. 11H an Prodaztivity in! Software Develo ment",
__I_ a-p~a- Zrz11 l Fil]. 19 1.

Markham D., McCal .,J. and Walters G. "Software Metrics
Applca 4 ons Techniques", .r _~ i~ of Trends n

4gl~cat-lop 198-1 ixfa~s In 5FE~ -TecMfl5,l7V7 IEEE;
pp. 3-=67

Mc:abe, T.J., "A.Coinplexity Me sur~e", IEjEE 21Stions on
Software Enlerjg, SE-2, 1976, pp. 30-30

Mc-a11, J., Richards,. P. aad ~at]erq, G., WIMetwjca for-
So?tware Quality Evaluation an Pre i.ction", Pcogeialnis ol

NAA Lgoddard4 ScaLn 2jMer 9Lgineerf-1 UN 52
35Pember, 1777.

Mitchell, 4. "Produ-tivity and Softwale Tools", IEE
-C1R12 .octu Q2ui§.ren=9 P~C sejna§, ral1 1981.
Pacikh, Girish, Hlow to Measure Prp-anrnr Uaoductiv4. Y,
Shat-al Erterprises, Ci~ffA;i5-rrJ7 T951
Patrick, R L. "#Probing Productivity", Datamation-, September
1930, pp. 207-210.
Perl.-s, A.J., Sa w4rd, F. G and $haw, LI. (edsj , Software
Metrigs: il andffj~ j va MIT Press, 1417-071r377--
P utn iam,. Li. "Measure ment Data to SUPRIort Sizin1
Estmatjjon, and "ontro.)f the- Software Life ycle" E

* ~2te: o.2~t~ 2nferenza Pro, elni, Spring 10t,

Put nam, L. H. and F-,tzsim mons, A. "Eslisatn Softwara
Costs" Datamat.4on, vcl. 25, ao. 13, September ~99, pp.

Smith, C.P. "A Softwar- Science hailysis of Pr grammin~
Siz&' e ~ 90i g, rocee diaz= of the Ann ual
CoaeL t79hil4 Tn., UE1591-27t-2 9,-T980,-3P. 179-1H3.

55

Walston, C.E. and Felix C.P., "&method of Programming
Heasurent andEti jtion, ji fistlig gURLI, vol. 16,no. 1, 1977 °p 5-73

pp.

-•.

b-

I

i' 55

&PPNDIZX I

IR bW~S E OF____ ___
MIXl

" -
1 SCIZOU VA&U 1 go VUS="tvZT PU IO,

Project same__

roupred by a D 2t 0 . "lewd by _ "tes.

Prolect Suime4ry Start Dat E End Date Work-Houra Function Points Delivered or DesLoned

*(from calaviatiofl.

Function Points Calculation (Delivered or Dosieneda_AL 7 oa ,,.--tZed b _F 0mcM 9 m n. I

Note: Oetinition@ Delivered Dellvered by Delivered Totals
om beck of form. Delivered by Nodifying Installinq by Using (Identify

bynow Existing and Testing a Code Preponderant
Code Code a Package Generator Language)

Language - -

Inputs
Outputs I--- -- 5
Tile I-- - - 0
Inquiries I- -- - 4
workhours -- Total

Desi-n Unadjusted
"opleaentatioa I- - .Function

Points

Complexity Adiustnent: (Istimate degree of influence fog each factor)

1 _r . On-line data entry is provided In

ihle bckun. recovery. snd/nrti s.
system availability are providedby the application design or On-line data entry is provided in

Implementation. The functions th application and in addition
may be provided by specifically the data entry is conversational
designed application code or by requiring that an input trans-
use of functions provided by action be built up over multiple
standard software. For example, operations.
the standard MNS backup and
recovery functions. Ra tester gIle are updated on-line.

Data con unications are provided
in the application. - Inputs. outputs, files, or

inquiries are complex inDistributed processing functions this application.
are provided in the application.

Performance must be considered
in the design or Implementation. __ Internal processing is complex

In addition to considering in this ap;lication.

performance there is the added
complexity of a heavily utilizcd
operational configuration. The
customer vants to run the Degreo of Influence on runctiont
appLication on existing or 0 Hone 3 Average
committed hardware that, as a I Incidental 4 Significant
consequonce. will be heavily 2 Moderate S -asential
utilized.

Total Degree of Influence (H)

Complexity adjustment equals (0.75 * .06 (H))

Unadjusted Total X Complexity Adjustment function Points Delivered or Designed

X

57

* a

2MI&l Instructions Con Cut
cmt all imputs. outputs. aeater fies. coust &Adb system output that provides businesa
imwis11o8. and functions that ar@ made available function Communication frem the cmputer system
to the cusomer through the project a design. to the users. far examles
p Mrg INSAm . Or teoutn efforts. For example.
0et the tunZESoaR provided by an ZUP. Mro. or 0 printed reports a tesmi a printed output
Program product It the package was modified. * tsrlal sorens a operator maapse
Integrated. tested. and thus provided to the
customer through the Project's efforts. count all unique external output*. An output Is

easidered to be unique if it has a foruct
that differs tm other external outputs and

Vorkobours aiMputsa. or. if it requires unique processing
1ogle to provide or calculate the output data.

The wrk-hours recorded should be the onK and Do at include output terminal sres c that
euctemer hours spent n the OP Services provide only a smple error mesage or
- apdard tasks applicable to the pro)ct Phase. ckn-uledgement of the entry transaction.
t Customer ours should be adjusted to IBM unless significant unique processing logic
equivalent hours eonsidering experience. it required in addition to the editing
tZain. ad work eftfectiveness. asoiated with the input, which was counted.

_Do not Include on-line Inquiry transaction
outputs where the response occurs immediately.

lae- Z~ut Counts tc" are Included in a later question.

CoUnt each system input that provides business
function communication from the users to the
.omputec system roe examples Film Count:

o data form. • scanner forms or cards Count each unique maChine readable logical
* te lna! oereeno 0 heyin tftact4.os file. or loqical qroupanq of data from the

viewpoint of the user that ias qenerated.
Do not double count the inputs. For example, used, or maintane;T' the system. For
consider a mans au oeration that takes dais example:
fro. an inpitiori. o arm two input screens.
uaing a keyboard to form each screen before the 0 Input card files • tape tiles
entry key is pressed. This should be counted a disk files
as two t2) inputs not five (5).

Count major user data groups vithin a data base.
Count all unique inputs. An input transaction Count loqical files, not physical data sets.
should be counted as unique if it required For example, a customer file requiring a
different processing logic than other inputs. seoarste Index file because of the access
F or exanple. transactions such as add, delete, method would be counted as one logical
or change may have exactly the same screen file not two. However, an alphabetical
format but they should bo counted as unique index file to aid in establisning customer
inputs if they require different proceassing identity would be counted.
logic.

I Count all machine readable interfaces
Do not count input or output terminal screens that to other system as files.
are needed by the system only because of the
specific technical implementation of the
function. For example. OS/VS screens, that Inouiry Count:
re provided only to qet to the next screen

and do not provide a busincss function for the Count each input/response couplet where an on-
user, should not be counted, line Input qenerates and directly causes an

immediate on-line output. Data is not entered
Do not count input and output tape and file data except for control purposes and therefore only
Sets. These are included in the count of files, transaction logs are altered.

Do not count inquiry transactions. These are Count each uniquely formatted or uniquely
covered in a subsequent question. processed inquiry which results in a file searc

for specific information or summaries to be
presented as response to that inquiry.

Do not also count inquiries as inputs or
outputs.

53

F:.

•W SERVICES DESIGN PRASE Section 6.2
SIZE AM COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

Custoinr: Project ID:

Project Description:

Prepared By: Date Prepared:

ihen Prepared: (check one block)

C) Before any Phase Completion () Coding Specs Complete
C) Requirements Complete C) Integration Complete
() External System Design Complete C) System Test Complete
C) Internal System Design Complete () System Demo Complete

DESIGN PHASE
SIZE AND COMPLEXITY

FACTOR
ESTIMATOR FORM

DP SERVICES
DATA PROCESSING DIVISION

IBM CORPORATION

59

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

QUESTION DEFINITION$

1. SCOPE OP THE INVOLVEMENT WITHIN THE COMPANY

a. Company Functional Organizations:

Identify the number of independent organizational entities which
will be involved either directly or iLdirectly in the project
For example, if the system includes two business functions
inventory control and billing, at least two organizations
probably would be involved. Direct involvement refers to actual
participation in the requirement study or design. Indirect
involvement, refers to review and approval of the requirements or
design. The organizations may be counted separately in each
location. For example, if the accounting department has a

* subdepartment in each of three geographic locations, and if each
must either be interviewed or included in the approval cycle,
then the accounting function should be counted as three
organizations rather than one. Always include the data
processing organization.

b. Company Locations:

Identify the number of company locations that require travel for
information, interviews or approvals. The primary location must
also be counted. Each city involved would be a location. Where
multiple locations exist in the same city, consider each as half
a location.

c. Number of people in the organizations involved:

Identify the number of hundreds of people in each organization
identified in question la) above. For example, a project
involving two organizations, one with 135 people, and one with 50

4J people would count as three hundreds of people. This provides a
definition of complexity of interviews and requirements
definition.

2. FUNCTIONAL SIZE OF THE APPLICATION

a. Number of Major Subsystems:

63

D, SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORK 12-31-76

1. SCOPE OF THE INVOLVEMENT WITS THE COMPANY

a. Number of company functional
organizations involved: . .___

b. Number of company locations
involved: x 12 =

c. Number of 100 (a) of people in
the involved organizations: x 2 -

F1

4

61

OP SERVICES DESIGN PHASE Section 6.2
S1ZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

In general, a major subsystem is equivalent to a major
application or system function. Examples of subsystems within an
Order Processing System might bes

0 Order Entry
* Accounts Receivable
0 Inventory Update

I Inventory Replenishment
0 Shipping
* Recovery and Restart
0 Invoicing
* Management Reporting
* File Administration
0 File Conversion

If you think that a function is logically separable and
reasonably significant in size then count it as. a subsystem.

b. Number of External Inputs:

This question addresses all system input vehicles that provide
business function communication from the users to the computer
system (e.g., data forms, terminal screens, keyboard
transactions, optical scanner forms). It does not include
internal inputs such as tape and file data sets. These are
included in the count of files. It should not include input
screens that are needed by the design only because of the
specific implementation (e.g., DMS/VS screens that are only
provided to get to the next screen but do not provide input of a
business function or business information for the terminal user.)

It should include the inputs associated with all the functions
committed in the design. If such functions as File Conversion
and Data Base Maintenance are to be supported their inputs must
be counted even if they are used only once.

On-line inquiry transactions should not be counted here since
they are included separately in a later question.

The objective of this question is to enumerate all unique inputs.
An input transaction should be counted as unique if there is any
possibility that it will require different processing logic than
other transactions. For example, transactions which have exactly
the same screen format and differ only in a code used to indicate
transaction type (e.g., add, delete, change) should each be
counted separately as unique transactions.

c. Number of External Outputs:

62

DP SERVICES, DSIGN PHASE section 6.2
SZE AND COIPLMITT FCTOR ESTIMATOR FORN 12-31-70

2. FUNCTIONAL SIZE OF THlE APPLZCATION

a. Number of Major Subsystems: xlO

b. Number of External Inputs: x 3

I

I 63

.. -. .'- - _. - . . . -....-. ." .- - .-. -..- .". .;,'. .' .. - ;." ;,.,

DP SERVICES DESIGN PHASE Section 6.2
SIZZ AND CONPLEXITY rACTOR ZSN&TOR TOM 12-31-78

As with the External Inputs this question addresses all system
. output vehicles that provide business function communication from

the computer system to the users (e.g., printed reports, output
screens, hard copy terminal output operator messages). On-line
inquiry transactions, where the response occurs immediately on-
line should not be included in this count. However, printed

*. reports which are triggered by off-line or on-line inquiries
should be included in this count. The count should not inlcude
output screens that are needed by the design only because of the
specific implementation (e.g., DMS/VS screens that are only
provided to get to the next screen but do not provide a business
function or business information for the terminal user.)

An output is considered to be unique if it has its own format
which differs from other external outputs, or if it requires
unique processing logic to provide or calculate the output data.

d. Number of Files:

This count should include each planned unique machine readable
logical file, or logical grouping from the viewpoint of the user,
that is to be generated by or input to the system (e.g., card
types, data base files, disk files, tape files). This question
is oriented toward logical files not physical data sets. For
example, a customer file requiring a separate index file because
of the access method chosen during design would be counted as I
logical file not 2. However, a special alphabetical index file
to aid in establishing customer identity would be counted
separately.

This count should include all machine readable interfaces to

other computer systems.

e. Number of On-line Inquiry typess

This question addresses conversational input/response couplets
where the on-line input generates and directly causes an
immediate on-line output. These couplets generally do not enter
data except for control purposes and therefore alter only

4 ttransaction logs.

In determining this count consider each uniquely formatted or
uniquely processed inquiry (input/response pair) which results in
a file search for specific information or summaries of groups of
information to be presented as output response to that inquiry.

Inquiries should not also be counted as inputs or outputs.

I6
.64

DI SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ZSTz4WOI FORM 12-31-76

|V

c. Number of external Outputs: . 3 -

. Number of' Files: x7 -

e. Number of on-Line Inquiry Types: x -..

72

65

7-77- _477 -77 7'-

.-

oP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

3. COMPLEXITY OF THE OVERAL DESIGN PHASE

a. Customer Capabilitys

Consider whether the customer has data processing or user
capability that will provide a good environment for requirements
definition and system design or whether his people will require
more that normal explanation and justification for routine
decisions.

On the other hand does the customer have so much expertise that
his design convictions will complicate the job beyond that
normally expected. (e.g., an application well suited to INS but
the customer wants to develop his own TCAM data base system.)

Both situations would hinder the project.

b. Existing Customer Functions

Does the customer currently perform the business functions that
are to be included in the system or is this a new business area?

An example of a new function that would result in a *now answer
would be, an insurance company that does not currently handle
group dental plo us but wants to develop an automated system to
process group dental claims so that they can compete for that
type of business.

c. Existing EDP System:

If the answer to the previous question was No, then this question
must also be answered No. If the customer currently is
performing the majority of the business functions to be included
in the system and a siqnificant number of these are being
supported by existing EDP System(s), the answer should be Yes.
Otherwise, the answer is No.

d. First of a Kind:

Has this application ever been computerized before, anywhere? Is
this the first attempt to automate a significant business
function in the application? A Yes to either question should
make this system the First of a Kind.

e. Hardware and Software Operational Environment:

This question is addressing the overall complexity of the
estimated operational system. An example of a Simple system

6

66

-. -. . - .

VP SERVICES DESIGN PHASE Section 6.2

SIZE AND COMPLIITY FACTOR ESTIMATOR FORM 12-31-78

.uo G

3. COMPLEXITY OF OVERALL DESIGN PHASE

a. Will the customerls capability hinder':
NO (0), Yes (10)

b. Existing customer function to
be automated:
No (10), Yes (0)

c. Does an EDP system exist now
to perform the function:
So (6), Yes (0)

d. Is this system the first of its
kind anywhere:
No (0), Yes (10)

67

DP SERVICES DESIGN PHASE Section 6.2
SIZE ARID COMPLEXITY FACTOR ESTIMATOR FOR 12-31-76

environment would be S/370 Models 115 or 125, DOS or DOS/VS and
the IBM Standard TP and data base products that operate on that
level CPU.

An example of an In Between system environment would be 5/370
models 135 or 145, DOS, DOS/VS or OS/VS and CICS or DL/I or

* something equivalent.

Large computers or more sophisticated operating System (e.g.,
MVS) or TP or DB environment (e.g., IMS or TCAM) would be
considered as Complex. Distributed processing and programmable
terminals would also be considered complex.

4. SOPHISTICATION EXPECTED OF THE SYSTEM

a. In answering the availability question consider how important it
is that the system be kept available to the users. The whole
data processing system including communications and terminals
should be considered. Can work be postponed?

Will com'-onents be duplicated to increase system availability?
This can indicate critical availability. Will the system be
designed to recover quickly from failure? This can indicate

"- important availability.

A batch system usually requires normal availability. A data
collection system with non-perishable inputs, such as paper claim
forms, might justify important availability. A passenger
reservation system or bank funds transfer system might require
critical availability.

b. Will a major or important design consideration be, that each
operation or functioni identified as critical have an alternate
method. The alternate may involve manual operations and may take
longer but the function is provided.

c. Will the system contain data that must be protected against loss?
Will the function require special recovery design in either
procedures or system? If so, the answer is yes.

d. Data Traffic Load or System Performance:

In some systems, the volume of data to be handled is not a design
concern. Other systems require special design considerations
such as: use of file access optimization, simplified input
notation, or extensive use of exception reporting. Transaction
rates may be a problem in either on-line or batch systems. Large

i63

Io

I

OP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORK 12-31-78

fir-

e. Hardware and software system
operational environment to be
required by the application:
Simple (0), In-between (5), Complex (10)

F3

4. SOPHISTICATION EXPECTED OF THE SYSTEM

a. Availability is: Critical (8),
Important (4), Normal (0)

b. Is an alternate method, for
performing the functions of the
system, non-routine consideration:
No (0), Yes (6)

c. Is system recovery or protection
against data loss a non-routine
consideration:
No (0), Yes (5)

69

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

volumes of data in short periods (peak loads) or volumes of data
large enough to cause machine availability problems are all
considered data traffic considerations.

System performance is often a significant design consideration in
systems that are intended to handle large volumes of data. it
can also be of major concern in the design of systems with
relatively low transaction rates but with constraints (perhaps
economic) in terms of the prescribed hardware and software
environment. For example, there may be limitations on the size
of main storage, control program multi-programming capabilities,
or transmission line speeds.

e. Nature of the Application:

A batch system operates as a job shop, often scheduled.
Transactions are typically batched external to the computer and
periodically processed sequentially against the master files.

An on-line system generally requires a more sophisticated
man/machine interface than a batch system. It is generally a
system where transactions are entered as they" are received with
no opportunity for time saving sorting. The inputs are not
perishable (i.e., they can be re-entered if necessary). An on-
line order entry system, or an on-line stock location and.
inventory control system would be examples of on-line.

A real-time system is similar to an on-line system in that it is
available on demand, but it has an additional requirement to not
postpone its main line processing. Response time is
exceptionally important. immediate processing and response is
necessary to meet the functional requirements of the system.
Process control, production test stand control, and airline
reservation systems are examples of real-time systems where
degraded performance may cause lost production or lost business.

f. Processing Complexity:

This question addresses the internal processing logic required to
provide the majority of the proposed system functions.Straightforward logic would involve simple transformations or
mapping from the system inputs or files to the system outputs.
For example, a transaction is read, verified to a limited degree
and used to update a simple master file or to generate a simple
report. Processing is a straightforward set of pre-specified
rules. Few, if any, data transformations are done. Outputs are

1

DP SUVICES DESIGN PHASE Section 6.2
SIZE AND C014PLZXITY FACTOR ESTIMATOR FORK 12-31-78

-c.

d. is data traffic load or system
performance an important
design considerations
No (0), Either (10), Both (20)

e. Nature of the Application:
Batch (0), on-Line (10), Real-Time (20)

71

4e

DP SERVZCZS DESIGN FUA Section 6.2
.Z. D AD CCNPLZZITY FACTOR ESTIM1AT FORM 12-31-78

mostly collections in various sets, of established data from
files.

Complex should be checked if the system has a preponderance of
exception processing resulting in many incomplete transactions
that must be resolved later or again. Complex logic would also
be the answer if there are many interactions and decision points
and extensive logical or mathematical equations. In-between is
used if it fails to meet either of the above definitions.

g. Exception Corrections

Systems which are designed primarily to process correct data and
to detect and present bad or unusual data for manual review and
correction are manual exception systems. If the system is to be
designed not only to detect, but also, automatically to correct a
significant number of unusual conditions, the system is an
automatic exception system. This is true even if the options
selected or corrections applied are to be reviewed and verified
manually.

5. KNOWLEDGE WE HAVE FOR THIS PROJECT

a. Consider the Services Area in general and specifically the people
who may influence the project through:

* Project Management
* Proposal Preparation
* Systems Assurance
* Project Team Performance

Consider the Area's current knowledge and the available Industry
knowledge. If none of the people in the performing Area have
designed or implemented this type of application before, the
answer should be Completely New. If informed consultation and
review is available with people in the Area the answer should be
Some Familiarity. If Services people, clearly expected to
participate significantly in the proposal and project, are
currently assigned to the performing Area and have recently
performed on a similar project the answer may be Have Done
Similar Job Once.

b. To answer Extremely Thorough the proposal should contain a
technical baseline that shows excellent understanding of the
tasks in the Statement of Work. The Customer User, IBM Branch,
and DP Services must have contributed and concurred with the
approach. Everything else should be moderate unless we lack

72

OP SfvfICZS DESIGN FUSE Section 6.2
SIZE AND COMPLE3XTY FACTOR ESTIMATOR FORK 12-31-78

f. Processing complexity:
Straightforward (0),
Complex (30), In-between (15)

g. Exception Correction is mostly:
Manual (0). Automatic (20)

- F-

5. KNOWLEDGE WE HAVE FOR THIS PROJECT

a. How familiar is the proposed
Services Area with this Application:
Completely New (30), Some
Familiarity (15), Have done
Similar job once (0)

I

73

~ ° " - " -" -" -" - • -• - "- - " . ° °- , ". ° .. ° .° o "- °' V .

DP SERVICES DESIGN PHASE Sect.on 6.2
SIZR AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

customer agreement either through lack of contact or because of
direct disagreement.

6. READINESS TO PERFORM THIS PROJECT

a. Consider the location of the project with respect to the home
location of the people expected to work on it. Onless local
commuting habits and ground rules indicate otherwise, travel of
more than one hour each way to the work location should be
considered Significant Commuting.

b. Consider the proposed manning on the project. Normally the
manning on DP Services projects comes from DP Services, the IBM
Branch, or the Customer. If the manning is proposed with
elements other than these, (i.e., subcontract or shop order) mark
an equivalent answer from the viewpoints of Project Management
control and the resource's ability.

c. All temporary or permanent moves of project team members should
be considered whether they involve IBM people or customer people.

TE SIZE AND COMPLEXI TY FACTOR COMPUTATION&

To compute the Design Phase Size and Complexity Factor that will be used
to validate the task-by-task estimate follow these steps:

1. Review and sum up the weighted answers to the questions to
determine factors F1 through F6.

2. Enter F1 through F6 and evaluate the equations on page 19.

3. Sum the results of (1), (2) and (3) to obtain the Design Phase
Size and complexity Factor.

ESTIMATE VAULDATION:

Use the Design Phase Size and Complexity Factor ahd the plots provided
in Section 6.2 to determine the average number of hours that the
standard tasks took on completed DP Services projects with similar
Design Phase Size and Complexity Pactors. Enter these hours in the
appropriate blanks on page 20.

If the data is sparse, the information on each standard task may not be
provided as a separate number. However, the hours spent on that task
are in the totals and in the associated standard task. (e.g., the hours

74

Or SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM4 1-31-78

b. Services Preproposal Analysist
Extremely thorough (0), areetwt

Moderate (10), Nocutmraemntwh
approach (20)-

F5

6. READINESS TO PERFORM THIS PROJECT

a. Where is project to be located:
Ngo unusual commuting (0),
Significant Commuting (5),
Temporary or permanent moves
required (10)-

b. Manning:
All services (0), Mixed IBM4 Manning (5),
customer and IBM Mixed (10)

c. Number of temporary and permanent
moves required--

F6

75

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND CONPLEZXTY FACTOR ESTIMATOR YORM 12-31-78

for implementation planning may not be separately identified, but they
would be in the internal system design task and in the total hours.)

Map the task-by-task estimate into the same standard tasks and compare
the estimates. The Proposal Manager should analyze and explain any
differences or make the appropriate adjustments in the task-by-task
estimate and the proposal.

FEEDBACK PROJECT RESULTS:
After the project is completed and the PCAR is available, adjust the
Design Phase Size and Complexity Factor. The factor needs to be

adjusted to account for changes (approved PCR(8)) that occurred during
the project. This adjustment provides a factor that should be related
to the completed project's results:

Original S G C - The original size and complexity factor computed
at proposal time on page 19.

Change Srours - The total estimated hours of approved changes
taken from the PCAR.

Total Hours
Multiplier - The current factor multiplier for the total

hours plot in the design phase estimator.

Adjusted S £ C - The size and complexity factor used for project
feedback of results adjusted for the approved
changes.

Adjusted S C - Change Sours + Original S C
Total Hours Multiplier

The results of the completed project standard tasks and the delivered
reports are also taken from the PCAR. If the project does not represent
a complete design phase, the numbers must be used with care. (e.g., a
requirements only design phase can give a good requirements number. It
certainly won't give any design numbers. Less obviously, it won't give
any management numbers or total hours numbers either).

76

VP EM VZS DESIGE PEASE Section 6.2
ESIE AND COHILEXZTT FACTOR ESTXNATOR FORM 12-31-78

TRE 8SZZ AMD COMPLZXIT FACTOR CONPUTATION:

1. Orientation Factor:

C) (100 * C) * ()) z .9/1000 -
. F5 16

2. Rquiremts Analysis Factor:

C) (100.().()
F1 P3

* ())/10 • C) * ()) l .6/1000 -

3. System Design Factor:

()(100•()/2 ()/3
72 r3 F4

+ C)/4I) 1.7/1000 -
P5

Size and Complexity Factor -_

Sum(1) (2) (3)

77

L

m . - *

OP SERVICES DESIGN PEASE Section 6.2
SIZE AD COMPLEXITY FACTOR ESTIMATOR FORM 12-31-76

--- ESTIMATE VALIDATIONs

From From
S £ C Factor Task-By-Task Comments

Total Hours

* System Design

External System Design
Internal System Design:-* Implementation Plan

Requirements Definition

*.-- Orientation

Management

System Design Report Size

-- Requirements Report Size

I'.

78

12.

7 + 777 77 71-67 -777

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITZ FACTOR ESTIMATOR FORM 12-31-76

FE"DBACK OF RESUTS:

Adjust Size and complexity Factor: Sy: Date:

,) * C .) - () Adjusted Size and Complexity
Factor

Completed Project Results: By$ Date:

Total Hours

System Design

xternal System Design' .,,
Internal System Design _

Implementation Plan

Requirements Definition

Orientation

Management

System Design Report Size

Requirements Report Size

7

i7

.o

INITIAL DISTRIBOTION LIST

No. copies

1. Defense Technical Information Canter 2: Cameron Station
Alexandria, Virginia 22314

2. Librlry, Code 0142 2
Naval Postgraduate SchoolMonterey, California 93940

3. Curricular Office , cola 37
Naval Post raduate Scho1
Monterey, California 93940

4. Dan.C, BogeV
Ad mmnstrative Sciences Departmant
Code 54bk
Naval Postgarfate School
Monterey, California 93940

5. LCD4 John .Hqyes $C, USN
Administrative 6clences Departm.nt
Code 54ht
Naval Post raduate Sch33l
Monterey, California 93940

6. Lieutenant Daniel J. Spooner, USN
124 Brownell Circle
Monterey, California 93940

7. Nor ;yons
Admlnistrative Sciences Departm nt
Code 541b
Naval Post qraduate School
Monterey, California 93940

8. Chai..r~an 1
adm'r.astrative Sciences Dqpartment, Code 54

Naval Post raduate Sch Dl
Monterey, California 93940

9. LCDR David F, Spooner. MC, SNR
6435 Wing Point Road .E.
Bainbridge Island, Washington 98110

10. Carolyn Won q
2500 Colorado Avenue
M.D. 32-61
Santa Monica, California 90405

4 11. Dr. Barry Boehm
TRW-DSG
1 Space Park R2-1076
Redor.do Beach, California 90278

I
l8

I !

12. Rich patrick1
Andai Corp oration
1250 East Arquez &ventAs
P.O. 470
Sunnyvale, California 94086

13. Fleet9 aterial support office 2

Mechani.csburg, Pennsylvani& 17055

14. Fleet Material Support Office1
Code 94E
Mechanicsburg, Pennsylvani& 17055

81

AIL,

