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INTRODUCTION AND OBJECTIVES

Practical applications of computational fluid dynamics within the foreseeable
future must necessarily utilize some form of turbulence modeling. Computations
based on the Reynolds-averaged equations of motion require all turbulence trans-
port of momentum and energy to be modeled; wkile large-eddy simulations require
the subgrid-scale turbulence to be modeled. In both cases, the uncertainties in
modeling turbulence within the viscous sublayer constitute 2 major weak link in

the overall numerical computation.

During the past twq decades a great deal of new experimental information has
been assembled on the physics of organized eddy structures in turbulent ﬂoﬁ, espe-
cially within the viscous sublayer (see, for example, the recent review of Cantwell,
1981). Yet it has not been possible thus far to incox;poraté this body of physical
information within the framework of Reynolds-averaged turbulence modeling. The
reason is fundamental, reflecting a well-known limitation in the Reynolds-average
approach which begins by time averaging the dynamic equations of motion. In this
initial mathematical step important physical aspects of organized eddy structures,
such as phase relationships and coherent structure dynamics, are obliterated irre-
versibly. Consequently, some totally different approach is required if the observed
physics of coherent eddy motions are to be incorporated within the framework of a

turbulence model.

Quite recently a new approach has been developed for modeling viscous sub-
layer turbulence in incompressible flow without heat transfer (Chapman and Kuhn
(1981). Their method models directly the essential organized eddy structures ob-
served in experiments. The principal steps in this “coherent-structure mo'delling"
are: first, to model velocity boundary conditions at the outer edge of the viscous sub-

layer, then to compute time-dependent dynamics, and finally to time average com-
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puted results. Thus, time averaging is the last operation performed on computed
dynamics, rather than the first operation performed on the dynamic equations. This
initial effort, although far from fully developed, already has been surprisingly suc-
cessful in modeling some important characteristics of viscous sublayer turbulence.
The over all objective of the present research is to develop, using the Navier—
Stokes equations, a computational model of viscous sublayer turbulence applicable
to flow with heat transfer and to compressible flow. Specific tasks within this
objective are to utilize the model to compute the distribution of turbulent Prandtl
number within the viscous sublayer (a) for fluids of various molecular Prandt!
number, and (b) for flows with adverse, zero, and favorable streamwise pressure

gradients.

Navier-Stokes computations of the turbulent Prandtl number Pr; are significant

because experimental techniques have been unable to provide reliable measurements

within the viscous sublayer. This parameter, of course, affects turbulent heat

transfer. Since by definiticn,

)(8})

(@) %X

Prg ==

an experimental determination would require accurate measurements near a wall
of the Reynolds stress ww, the correlation dv between temperature # and normal
velocity, the mean velocity gradient 3U//dy, and the mean temperature gradient
89/dy. To date, it has not been possible to make reliable measurements of these four
quantities in the viscous sublayer. The band of uncertainty from one set of data for
air (Simpson et al. (1970)), is illustrated in fig. 1. Other sets of experimental data,
e.g. Fulachier (1972), indicate that the overall uncertainty band is even broader than
this one set of measurements would indicate. Experiments are unable to determine

whether the values of Pr; near a wall are large, small, or intermediate. Experiments




also have not been able to define how Pr; varies with molecular Pr or with pressure

gradient. We believe that Navier-Stokes computations can shed much light on these

uncertainties.

MOTIVATIONS FOR COHERENT STRUCTURE MODELING OF
VISCOUS SUBLAYER TURBULENCE

Coherent-structure modeling departs markedly from Reynolds-averaging model-
ing, and thereby offers the potential of some entirely new advances in turbulence
computation. Both the motivations and the payoff for this type of research are
quite different from those for more conventional turbulence modeling. In addition
to the specific motivations outlined above for the objectives of the present research,
there are other important motivations that will affect different areas of turbulence

computation. It is appropriate, therefore, to outline some of these.

Three other motivations for developing a realistic coherent-structure model of

viscous sublayer turbulence are:

1. - To Strengthen a major weak link in present Reynolds-Average closure Schemes.
Conventional turbulence closure methods (e.g. k—e¢, other 2-equation methods,
and Reynolds-Stress transport methods) all employ differential transport equa-
tions that are “modeled” forms of exact transport equations. The exact equa-
tion for the transport of dissipation, for example, contains very complex tur-
bulence terms involving pressure-velocity correlatioas, triple correlations of
velocity gradients, correlations of second derivatives of velocity, and correla-
tions between pressure gradient and velocity gradient. Such correlations are not
measurable with present experimental technology. Because modeled equations

for free turbulence yield demonstrably incorrect results near a wall, various ad

Aoc functions (up to 5 in number) are added in an effort to mend this shortcom-
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ing. Without any guide or test basis from experiment, the inevitable conse-
quence is that different models with different ad hoc functions yield different
results for technically important quantities such as skin friction in flows with
pressure gradient (Patel et. al 1981). If, however, a realistic Navier-Stokes
computational model were developed for the time dependent dynamics of vis-
cous sublayer flow, then all the terms in the exact transport equations could
be computed. When compared with corresponding modeled terms, a rational
formulation would be obtained of the wall damping functions for integrating
turbulence models across the viscous sublayer. This would strengthen a major
weak link in conventional turbulence models. Reynolds-average modeling, of

course, will be the mainstay of practical turbulent flow computation for years

to come.

- To provide a simple test flow against which subgrid scale models of turbulence
in large eddy simulations can be tested. The simple flow of homogeneous shear,
for example, computed in detail from the time-dependent Navier-Stokes equa-
tions (Rogallo 1977) has been used effectively as a test flow for assessing sub-
grid scale turbulence models for application in the outer region of a turbulent
boundary layer or in free shear layers (e.g., Clark et. al. 1979, McMillan
and Ferziger 1979, Shirani 1981). A realistic coherent-structure model of vis-
cous sublayer turbulence, likewise computed from the time-dependent Navier—
Stokes equations, could similarly be used to test subgrid-scale models for large

eddy simulations of turbulent flow in the region adjacent to a wall.

- To provide a guide for modeling the lower boundary conditions for the outer
turbulent region in large eddy simulations of boundary layer flow. If a realistic
boundary condition of this type could be developed, the entire viscous sublayer
could be modeled rather than directly computed. The required computer power

-4 -




for large eddy simulations at high Reynolds numbers would thereby be reduced

by a very large factor (about 10%; Chapman, 1980).

In summary of the motivations for developing coherent-structure turbulence
models, it is clear that the potential payoffs are significant and of much broader
scope than the specific objectives of the present research. Benefits are anticipated
to conventional Reynolds-average models of near-term application, as well as to

future large eddy simulation models of longer range application.

FORMULATION OF COMPUTATIONAL MODEL

Differential Equations

The numerical scheme selected to solve the Navier-Stokes equations is an
adaptation of the Pulliam and Steger (1980) code for vcomprwsible flow. Velocities
in the physical z, ¥, Z domain are u, ¥, W. In the computational ¢, 5, ¢, domain
the dependent variables are p, pu, v, pw, and ple; + (u® + v + ©2)/2], where ¢; is
the internal energy per unit mass. Pulliam and Steger use z as the coordinate
pormal to the surface, and ¥ as the spanwise coordinate. In ordex; to minimize code
changes, we use this coordinate system in the numerical computations and then, at
the end, change Z to g, @ to v, ¥ to z, and ¥ to w in order to present results in the
more familiar boundary layer coordinate designations. We employ simple cartesian
coordinates in the streamwise z—- and spanwise y-directions, and a stretched mesh
in the normal 7 direction in order to concentrate points both near the wall and the
outer edge. The metrics for the transformation are §; == 1, yy = 1/AF,, ¢y = 1/A%4
where Ay, and Az, are the mesh spacings in wall units in the spanwise and normal
directions respectively.

The same basic physical approximation is made as in Chapman and Kuhn

(1981), namely, that coherent sublayer eddy structures are highly elongate stream-
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wise. In our case we assume-in accordance with experimental observations (e.g.
Iritani et. al (1981)) — that the temperature eddies are also highly elongate stream-
wise. In the notation of Pulliam and Steger, the corresponding divergence form of

the Navier-Stokes equations is
31q = dg(Fy, — F)+ 8(Gy — G) + 8¢Fy ()

where the vectors F, F,, @, G, and § are identical to the conventional ones used
by Pulliam and Steger for the case of orthogonal coordinates corresponding to the

metrics of equation (1). However, the vector

0 A
Pe
Fp=u"11 © (2)
0
[ 5ZyPebate]

differs from theirs due to our assumption of highly elongate eddies in the streamwise
direction. Thus, streamwise derivatives other than the mean streamwise pressure
gradient dp./dz are neglected relative to derivatives in the spanwise and normal
directions.

This basic approximation, which involves computation of 3 velocity components
in 2 space directions, has been variously termed “2.5D flow”, or “slender turbulence
theory”, or “slender eddy theory.”

Since Pulliam and Steger used the thin-layer form of the Navier-Stokes equa-

tions, we write, in order to retain a tridiagonal structure,

oF, - F) - oF

aq n'a‘;-Bo'*'Bg .
-8 -
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:

where the matrices A, and B, contain no cross derivative terms, while A; and B;
contain all such terms. The detailed structure of these matrices is given in Appendix
I. Our basic factored algorithm becomes

2 2
(1 = Sh8,ATXT = ShEBEAG™ = 2h[5,F™ +9,G"] + 2ha, 20"

Wi

2. .- 4
+ gM;B:Aq" + shﬁfpp + %Aé" “

this differs from the Pulliam-Steger algorithm by the addition of the last four
terms on the right hand side. Of these, the last one corresponds to a three—point
backward Euler difference scheme for time derivatives (added for accuracy and
stability reasons explained later); the next to last term corresponds to body pressure
gradients imposed by the large scale eddies, while the third and fourth from last
represent the additional terms required for the full Navier-Stokes equations in place

of the thin-layer equations used by Pulliam and Steger.

BOUNDARY CONDITIONS

The primary element in formulating our computational model involves the
construction of realistic time— and space-dependent boundary conditions for the
fluctuating temperature ¢ and the fluctuating velocity components u, v, w at the
outer edge of the viscous sublayer. Various experimental observations are used as a
guide to this construction. Computations using the time-dependent Navier-Stokes
equations are then made over a length of time long enough for the various statistical
quantities, e.g., mean values, correlation coefficients, rms fluctuating intensities,

etc., to reach a periodic state within the viscous sublayer.

Our general approach is an extension of that employed by Chapman and Kuhn
(1981) for incompressible flow without heat transfer. They considered two coherent

components of turbulent motion at the outer edge of the viscous sublayer (lower

-7-
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edge of the logarithmic region). One component represents the small scale eddies
(SSE) responsible for the principal production of turbulence and Reynolds stress. A
second component represents the organized large scale eddies (LSE) which interact
with the small scale eddies. They used a simple initial construction for purposes
of illustrating the potential and main characteristics of this type of turbulence
modeling. With all quantities expressed in conventional dimensionless wall variables,

their velocity boundary conditions for the outer edge of the viscous sublayer were

Component 1-SSE Component 2-LSE

U4+ = 2ay sin Ny Tsin¢ + 2a? — a)sin(Ny2T + du2)

ve+ = —2fsin N T'sin¢ (5)

Wes = 2Bcos NiT cos + -2 4 gy)

where a, 4, v are the rms intensities of fluctuation of u., ve, we, respectively, Ny is
the mean frequency of SSE burst events (ejection/sweep events), N2 is the mean
frequency of LSE, ¢ = 2xz/\ is a dimensionless spanwise distance variable, T is the
dimensionless time, ) is the mean spacing between high-speed or low-speed streaks,

a/a is the uv correlation coefficient (0.45), and ¢,2 and $,,2 are phase angles. The

flow model is periodic both in time and span. Hence the boundary conditions for

the spanwise side walls of the computational domain were

.ﬂ(" 0, ‘) -— “ﬂ('y xo t)
"C"’('v 0, ‘) -— "ﬁ(’; X, ‘) (ﬂ)
wﬁ(" 0,t) = ey, M, 1)

w——— —

e . ” R
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and at the surface
u€+(0, 2, t) = Uc+(0, z, t) = w¢+(0, z, t) =0

This construction of velocity boundary conditions was guided by experimental
observations of organized sublayer structure. For example, the sin¢ factor for u.4
corresponds to the observation of high- and low-speed streaks spaced spanwise a
mean distance of A apart, while the factors sin¢, sing, cos¢ in the uey, vesr, wes
equations, respectively, correspond to a simple modeling of the observations of
contra-rotating vortical motion near a wall. The absence of a phase angle in time
between u.+ and ve4 corresponds to the observation that the v — v correlation in
the log region is maximum with zero time delay between their respective signals.
The 180° phase difference between u.4 and v,y corresponds to observations from
conditional samples in the sublayer that u and v are 180° out of phase during the
Reynolds-stress intensive ejection-sweep event. The 90° phase difference in time
between v, and w,. corresponds to the observation that the derivative (8vZ/dy4).
at the outer edge of the viscous sublayer is zero.. A comparison of a number of
turbulence characteristics computed from this simple model with those measured
in experiments showed surprisingly good agreement. This model was developed for
flows with a mean streamwise pressure gradient, although numerical computations
were made by Chapman and Kuhn only for the relatively small pressure gradients

that exist in incompressible pipe and channel flow.

The above two-component velocity boundary conditions at the outer edge
of the viscous sublayer are fully compatible with the concept of “active” and
“inactive” components of turbulent motion in the log region as characterized by
Townsend (1961) and Bradshaw (1967). Component 1 is active, involving small
scale eddies, producing the Reynolds stress, being rotational, and being dependent

on wall variables. Component 2 is inactive, involving large-scale eddies, producing

-9-
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energy but no Reynolds stress, being irrotational, and being dependent on outer
variables. There is much experimental information that turbulent flow in the log
region, and hence at the outer edge of the viscous sublayer, comprises these two

distinct types of motion.

The computational model of Chapman and Kuhn is not regarded as sufficiently
realistic for purposes such as outlined in the section above on motivations. Their
results do illustrate, however, that the general approach employed has the potential
of eventually leading to a sufficiently realistic model. Towards this end, it is believed
that at least three additional aspects of turbulence physics will have to be introduced
into the model. First, production of Reynolds stress should be intermittent in
time, rather than sinusoidal-like as in boundary conditions (5). Second, conditional
samples for v(t) in ejection/sweep events indicate that the v? turbulent energy
contained in these SSE events should be only a fraction of the total v? energy,
rather than the entire amount as in equation (5). Third, visualizations of viscous
sublayer flow exhibit a mixture of order and disorder, rather than coherent order
only. To date, in work supported by another contract, progress has been made on
modifying the outer edge velocity boundary conditions to account for the first two
of these three physical aspects. We will incorporate this progress into our velocity
boundary conditions. In addition, for the heat transfer case we must also construct
an appropriate boundary condition for the fluctuating temperature 8. at the outer

edge of the viscous sublayer.

One important guide to the construction of boundary conditions is provided
by measurements of spectral density f. Fortunately, spectra for 4, u, v, and v, have
been obtained by Fulachier (1972) at y-positions near the outer edge of the viscous
sublayer. Data for y., ~ 40 (interpolated between his measurements at y, = 31

and 77) are shown in figure 2. Since

- 10 -

D et A e s L



/owjdk=/oookfd(lnk)=l

the areas under curves of u%kf,, v2kf,, and w2kf,, versus logk are proportional to
the relative amounts of kinetic energy in these velocity components. Along the wave
numbér scale k, pips are shown corresponding to LSE eddy scales of x/§ (where §
is the boundary layer thickness) and to SSE eddy scales of x/\. It is seen that,
whereas both u and # exhibit eddy scales ranging from large [O(6)] to small [O()\)],
v exhibit scales ranging only from medium [0 (several )\)] to small. Our boundary
conditions will be constructed to be as consistent as possible with experimental data

" of this type.

A relatively simple method (developed under a separate contract) is used to
simulate the intermittent character of Reynolds-stress production. Since @v is
produced only by the active component of small scale eddies (SSE), only the time
functions sin N}T and cos NyT in equation (1) need be modified. For this purpose
we use a simple Fourier series approximation H(¢) to a rectangular pulse function,

where ¢ = N|T.

H($)

-
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For M terms in the approximating Fourier series, we have

M .
H(¢) = Z(a,. cos ng + by sin ng)

Fi=2z( M2)

an = -1— sinnX) — %smnXZ]

@

= -—[ L(cosnXz — 1) + (cos nXy — 1)]

" values of M in the range of 3 to 5 are anticipated. Since the skewness of the

rectangular pulse function is

2r (X2—X1)

S, =
¢ X1Xs \/X2 +X1

we can build skewness into H(¢) simply by having X7 different from X;. Initial
computations, however, are planned for zero skewness at the outer edge, and with
X = X3 == 0.25r, since hot-wire measurements have indicated that the principal
@wv is produced in about 25% of the time, with relative o quiescence the remaining
75% of time.

In conventional wall variables, the outer edge boundary conditions constructed
to date include terms representing small scale eddies (SSE) of length scale X, large
scale eddies (LSE) of length scale >10\, and medium scale eddies (MSE) of inter-
mediate length scale 3\. Computations are made within a domain covering 3 span-
wise cells each ) in width. The LSE are treated as being of sufficiently large scale
that their time-dependent velocity component does not vary across the spanwise
extent of the computational domain. The equation of continuity precludes having

a LSE component in the boundary condition for v..

- 18 -

S St . Moty BstA Wiyt wd S wenn v o



N — T ., S S SN e e

SSE LSE MSE
Scale )\ Scale >10\ Scale 3\

ue = V2ay, Fu(¢)sing  + \/2(&2 — o})sin(NyaT + $u2)
'* ve = V21 Fu(¢)sing

r ! we = V281 Fu(d)coss  + \/2(72 — A})sin (%‘ET + ¢wz)

+ 282 sin (3Ny2T) sin %

®)

0. = VZay, Fy(@)sin + \/2(a? — a3 sin (NuaT + é12)

where, in addition to the quantities already defined, a = \/(Oi)e, $g2 is a phase angle

in the large-eddy component of temperature, and

H(¢)
Fy(¢) = —Fu(¢) = Fy(¢) = '?
H (¢) i
H(6 + u1) '

are the intermittent time functions normalized such that F2 = 1. The boundary

conditions for the spanwise side walls of the comutational domain are

"e+(v. 0’ t) = “e+(% 3Ar ')
”¢+(v' 0, t) = v¢+(y, 3x’ ‘)
"e+(lh 0: t) = we‘l'(”t 3*; t)

Fowons alrbe s -t

Thus the computation allows for flow interaction between the center ceil and the

two outside cells unconstrained by specific boundary conditions. i

- 18 -
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As in the model of Chapman and Kuhn: e, 8, 4, a are determined from
experimental data on the intensities of turbulence fluctuations in wall units at the
outer edge of the viscous sublayer (a =~ 2,8 =~ 1,7 = 13,8 = 1.3); éy2, 602, $2,
are determined by computer trial to conform to the mean-velocity law of the wall,
mean-temperature law of the wall, and u-velocity skewness, respectively; ¢y is
determined analytically by the requirement that (9v2/dy), is zero; a; is determined

by the correlation coefficient 0.45 = —(Ry,), = @18)/aB; ay is determined by the

correlation coefficient 0.8 ~ —(Ry¢), = g%l + ;‘;\/(az ~ a?)a? — a%)cos (d92 — Su2);
. and #,/8 is determined from conditional samples of the ejection/sweep event. This
latter determination is made by assuming that the peak to peak amplitude ratio
< v >ppa | < 4 Sppa, from the conditional samples is equal to the ratio g1/a;,
and then using the above equation for (Ry,). to compute both £;/8 and aj/a. An
independent determination of a;/a has been made from direct measurements of
the fraction of total u? energy that exists during bursts, snd hence also of 8;/8
from the equation for (Ryy).. Still a different determination has been made from
< w >ppa [ < 4 >ppa= P1/a1 coupled with the equation for (Ryy)e- Results of these

determinations (made on a separate contract) are:

Data Source Method A/B
Chen & Blackwelder (1978) <v> [ <u> plus Ry, = —.45 53
Nakagawa & Nezu (1981) <v> [/ <u> plus Ry, =—.45 72
Blackwelder & Kaplan (1979) | < v > [ < u > plus Ry, = —.45 .49
Kim (1982) < u > [ < u > from LES computations, | .60

plus R, = —.45
Kim, Kline & Reynolds Fraction of totaﬁfenergy during 59
(1971) ~..| bursts (.68), plus Ryy = —.45
Blackwelder & Kaplan (1879) | <w > / < u > plus Ry, == —.45 .64

On average, the value of 8,/8 appears to be near 0.6.
It is to be noted that the structure of boundary conditions (8) comprises in equal

proportions both ejection/sweep events (where a sweep follows an ejection), and

- 14 -
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sweep/ejection events (where an ejection follows a sweep). The recent experiments
of Johansson and Alfredsson (1982) clearly reveal that both types of event occur.
Their experimental VITA data for the smallest threshold values and the longest
integration times employed, indicate these two event types to be about equally
numerous. Both types have also been observed visually by Offen and Kline (1974)
who use the term “cleansing sweep” in an ejection/sweep event to distinguish from

sweeps in a sweep/ejection event.

STATUS OF RESEARCH

As outlined above, research on formation of the differential equations and the
initial trial boundary conditions is completed. We also have (1) essentially completed
a survey of various existing theories for turbulent Prandtl number, and have (2)
made most of the programming modifications necessary to utilize the Pulliam-

Steger code in our computational model. Some details of progress in these latter

two areas are presented in the sections which follow.

Survey of various theories for Pr,

Without a reliable guide from experiment as to how Pr; should be modeled near
a wall, the various theoretical models advanced to date have differed greatly. This is
illustrated in figures 3, 4, and 5 showing our compilation of various theories for fluids
of molecular Prandtl number 0.72 (air), 6 (water), and 1000 (oil), respectively. Our
survey of existing theories is near completion, although not yet fully complete. The
various theories explored clearly demonstrate that a very wide range of uncertainty

exists for Pr; in the viscous sublayer. Present theories do not attempt to define how

Pr; may vary with pressure gradient.

- 15 -
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Programming of Navier-Stokes Code

Our plan is to develop a single Navier-Stokes code which can be used either for
low-speed subsonic flows (M << 1) with heat transfer, or for high Mach number
flows. Since the Pulliam-Steger code was written for the thin-layer approximation
to the Navier-Stokes equations, a number of programming modifications are re-
quired to adapt this code to the computation of viscous sublayer dynamics. These

‘Te:

1. Change variables from free stream reference to nondimensional wall variables.

2. Add subroutine for the boundary conditions on velocity and temperature fluctuations

at the outer edge of the viscous sublayer.

3. Change the time-derivative algorithm to a stable, second-order accurate algo-

rithm.

4. Add the spanwise viscous stress terms, plus the associated cross derivatives

terms.

5. Add a global streamwise pressure gradient term, associated with the large scale

eddies, to the right hand side of the basic algorithm.
6. Add a block periodic solver for the spanwise direction.

7. Add appropriate nonperiodic terms in the spanwise boundary conditions for p,

p, T.

An outline of the progress status of each of these seven items is given in the sections '

which follow.
1. Completed i

2. Subroutine coding of the boundary conditions for the initial test case has been

completed. This case comprises the same velocity boundary conditions as
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used by Chapman and Kubn (1981), plus a temperature boundary condition
representing small-scale and large-scale eddy components. The subroutine will
be used to check resﬁlts against the previous results of Chapman and Kuhn
for low-speed subsonic flow without heat transfer. Once a check is obtained, a
modified boundary-conditions subroutine will be written to represent boundary
conditions (8) which simulate intermittent Reynolds stress production, rather
than the sinusoidal-like production contained in the Chapman-Kuhn boundary
conditions (5).

Completed. In order to test the algorithm accuracy for the time derivative
terms, an exact analytical solution was derived for incompressible oscillating
shear flow with heat transfer. This solution is an extension of the Chapman—
Kuhn solution for flow without heat transfer. Mathematical details of the
analytical solution are presented in Appendix II. It was found that neither of
the two option algorithms in the Pulliam-Steger code (i.e., Euler implicit first
order, or trapezoidal second order) were sufficiently accurate and stable. With
helpful guidance from Dr. Pulliam, a three-point backward Euler algorithm
was coded and found to be satisfactory. The very close agreement obtained
with this second-order accurate algorithm, between numerical computations
and the exact analytical solution, is illustrated in figures 6 and 7 for the
adiabatic—wall case and the heat-transfer case, respectively. Since oscillating
shear flow with heat transfer involves viscous and heat—conduction terms as
well as time-derivative terms, this test flow provides a check on the accuracy
of the numerics for all three types of terms. It does not provide, however, a
check on the accuracy of the convection terms which are zero in oscillating
shear flow.

Completed
Completed

- 17 -




6.
7.

T

Completed

Not yet undertaken. This coding modification apparently is not needed for low
speed subsonic flows. The necessary code changes are not planned to be un-
dertaken until we begin to model high Mach number flows. With fluctuations
in spanwise body pressure gradient, all three velocity components remain peri-
odic spanwise, but the state variables p, p, 8 do not. The linear body pressure
gradients create step discontinuities at theA spanwise boundary points. ‘This can
induce numerical oscillations near the boundaries with the central differencing
scheme used. At low subsonic Mach numbers these discontinuities are very
small, so that the block periodic solver can be used with little problem. At
high Mach numbers, however, the relative pressure fluctuations Ap/p increase,
and the magnitude of the step discontinuities can increase sufficiently to cause
numerical problems if periodic boundary conditions are imposed on the state
variables. Our plan to handle this for high speed flows is to decompose p, p and
T into a spanwise periodic component determined by small scale eddies, plus a
nonperiodic component determined by large scale eddies. The latter would be
included as a right-hand-side term, and the overall set of equations cast into

a form for which periodic boundary conditions are applicable.

- 18 -
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PROGRESS SUMMARY

During the first contract year (CY 1982) we have made progress as follows:

- Survey of theories for Pr; essentially complete.

- Exact analytical solution derived for incompressible oscillating shear flow with

heat transfer.
- Using analytical solution, satisfactory test conducted on accuracy of numerical
algorithms for time-dependent, heat—conduction, and viscous terms.

- Most necessary programming modifications to the Pulliam-Steger Navier-Stokes
code completed (but not yet debugged).

- A boundary condition for fluctuating temperature has been formulated for initial

trial computations.

Some of the subsequent steps to be conducted in CY 1983 are:

- Complete necessary programming modifications to Pulliam-Steger code (e.g. various
statistical space-time averages for fluctuation intensities, correlations, skewness,
flatness, dissipation, Reynolds stresses, etc.

- Debug code and run check case for incompressible flow without heat transfer
using same boundary conditions as employed by Chapman and Kuhn.

- Make computer runs to develop temperature boundary conditions that are as

T N R

realistic as possible, testing computations against experimental data.

- Make computer runs for fluids of various molecular Prandtl number and stream-

wise pressure gradient.

-19 -
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APPENDIX I
DECOMPOSITION MATRICES

The derivatives 87 /dq and 8G/dq are each decomposed into two matrices, one
(subscript zero) that does not contain cross derivative terms, and another (subscript

z} that contains all such terms.

ok
T A, + A,
aG
"a—q = B, + By
where the matrix A, is
0 0 Ny 0 0
—unyv nyv nyy 0 0
(62 —v8)  —n(r—1u  —gu(v—1) —gr-1w plv—1)
Ao =— —wnyv 0 nyw nyv 0

'Iy”[2¢2 - 75] —(7 = Dumyv (7= Dgye? + | (v = Dwnye  ynyv

PSRy P

'Iy[’Yf, - ¢2]

0 0 0 0 0

—618(u/p) 815,,( 1) 0 0 0

—~a26q(v/5) 0 ags,,(}) 0 0

J-! '
+5- —8185(w/p) , 0 0 815,,(}) 0o {|J _
ol Z2] - ai(3) Camein() -eom(s) wn(l)
+ (85 — 02)5,,(1'3) - 355,,(;92-) F
- 928 -

] o

e




¢ = %(7 - l)(u2 +vi4 wz)

4
n=py  m=za  s=y
Re=9££=—-—-—'7 w$

vy vy
J = Jacobian = Kﬁ
and the matrix A, is

0 0 0 0 0
0 0 0 0 0
~a5;(%) 0 0 s5:(1) 0
Ay = —s38¢(2) 0 235;(1) 0 0
~ o3| 260 + wa,(g)] 0 aalbsw+ syus(1) s0is(1) +a3liv 0

- 34[%6,-10 + v&;('ﬁ)]

83 == uny¢,

=24

4 3%

The matrix B, is
Sz w 0 0 $z 0
—u; w S W 0 Sz U 0
Bo = — —V§; W 0 0 [v3] Q
§z¢2 - 'lzfz —¢z(y—1)u —¢z(v ~ 1 —¢z(7—~ 2w s(v—1)
mw[u’ ~ 1;‘] (- ugw (v - vgw ss['rﬁ - -(1- l)v’] 2w

- 24 -

S ——— e p—n o




0 0 0 0
~Tys(2) Tyés(1) 0 0
~Ty6(2) o T5(l) 0

+‘—’}-;:' ~T35(%) 0 0 7351)

+(Ts - T&(%) - Tss,(ﬁ)

0 0 0 0
0 0 0 0
—335,,(%) 0 0 os&,(})
B, =~ —a4t(3) 0 s46n(3) 0
-~ .3[§6,,w + 06,,(%)] 0 aw.s,,(},) + a3 by ast-,(}) +o4l8yv
—.4['-%,,0 + wa,,(g)]

0
0
0
0
0

0
0
0
0

m-1os(2r) | @-mn(3) @-mn(3) @-m(s) 73
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APPENDIX II
An exact analytical solution has been derived for oscillating shear flow with heat
transfer in an incompressible fluid with constant properties. Since the momentum

equations are independent of the thermal energy equation in incompressible flow, the

velocity field is the same as for the case without heat transfer derived by Chapman
and Kuhn (1981). With y as the coordinate normal to the infinite flat surface,
and u and v as the velocity components in the streamwise and spanwise directions,

respectively, we have
v = A[sin nt — ¢~ kn¥ sin(nt — k,.y)] +ecy

v= B[sin(mt +(4) — ¢~*mY gin(mt — k,,.y)]

1 where

n m
“—VE kn =[5,

The oscillating frequencies are n in the streamwise direction and m in the spanwise

direction, and the mean velocity profile is # = cy. For this velocity field, the

solution to the thermal energy equation
80 9% au)? . [av)?
ot o “‘[(5;) +(&)
is
T(z,t) = Biy® + c1y + ¢3 + B;2n¥ 4 Bye=2kmy

+ Age~ ¥ [sin(nt — kny) — cos(nt ~ k,y)] — Age~2¥n¥ cos 2(nt - kay)

~ Age2EmY cos Amt + ¢ — kmy) — Age™P1Y sin(nt — f1y)

~ Age~P1t cos(nt — Byy) + AseP2Y cos(2nt — Bay)

+ AqeP3Y cos(2mt + 26 — Byy)




ﬂ] = EP"‘—‘ . ﬂz = "ﬂPr; ﬂ3 == "mPr;

2Ack,
A= 2k2
By = _Prc:" C’,Rc(n - 7#'{5)
2C,
2
By = —Az.& Ay = Ak ok
4Cy C',Re(?n - —’é'l_! )
Pr
=—p2— 2,2
Bs s 40, Ay = B%ky,

C,,Re(2m - 8—:%‘;,‘5)

1 Prczyzl
Ci=—|To—-Co+ —=+%

Pr(A® 4+ B?)

Co=Ty+ 40’
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Figure 1. -~ Envelope of experimental uncertainty for turbulent Prandtl number
from data of Simpson et. al. (1970).
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Figure 2. Spectral depsity of the three components of velocity fluctuation at
Yy = 40 from data of Fulachier (1972).
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