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LIST OF SYMBCLS AND NOMENCLATURE

The collection of all gravity and infrasonic—acoustic modes
which constitute a signal train that has arrived at the
recording site from the source by traveling the shortest great-
circle (direct) route.

The gravity-infrasonic acoustic wode wave train which travels
the antipodal great circle route from the source to the
receiver. Some authors refer to this as Bj.

Atmospheric guided waves, commonly called gravity modes, charac-
terized by well-defined, upper—frequency cutoffs. Gk modes are
numbered in inverse order of the proximity of their modal sur-
faces to the origin.

A relatively non~dispersive gravity mode characterized by
periods greater than 270 seconds and group velocities of 310 +
12 m/sec. Faster velocities in the downwind direction.

A gravity mode considerably more dispersive than GRg with group
velocities of 225 + 25 w/sec. Although GRj is theoretically
predicted, it has not been observed.

Transfer function relating infrasonic atmospheric pressure
variations to vertical earth movements.

Cross—power spectral deusity between the vertical seismograph
power and microbarograph power spectra.

Greens function for vertical component of displacement caused by
wind noise.

Greens function for vertical component of displacement caused by
an infrasonic signal.

Volcanic column height (km)

Difference in signal-to-noise ratios on vertical~mode
seismograms and mictobarograms

Mass flux (g/sec)

Microbarograph power spectra

Output of a microbarograph

Microbarometric noise corrected for instrument responses

Vertical component of seismic noise
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Estimated power spectra of vertical seismic noise
Turbulent noise created by the wind

Infrasonic pressure signal

Thermal energy flux (ergs/sec)

Response of microgarugraph

Response of the seismograph

Atmospheric guided waves distinguished from the GR modes in that
they have no upper frequency cutoff. Numerical ordering is
related to the proximity of the modes' surfaces in the
frequency—-phase velocity space to the origin. Frequently
referred to as infrasonic-acoustic modes.

An acoustic mode with appreciable amplitude only for periods
between 300 secoi.ds and 150 seconds. The group velocities are
310 + 20 m/sec for wave periods from 220 seconds and 150
seconds.

Highly dispersive acoustic modes in which composite Lamb and
ray-refraction directing mechanisms are important. $S; modes cau
contribute significantly to the A trains for wave periods from
210 seconds to 90 seconds. For wave periods frow 210 secouds to
135 seconds, the group velocities increase from 200 + 5 w/sec to
300 + 15 n/sec. From perious of 135 seconds to 90 seconds, the
group velocity is constant at 300 + 15 m/sec.

Hic** dispersive acoustic modes similar to S§;. Principally
contribute to A trains at periods from 165 seconds to 90
seconds. Group velocities at the longest periods are 200 + 10
m/sec and 280 + 10 m/second at periods approximately 90 seconds.
Higher order acoustic modes whose principal contribution to the
A trafus are as highly dispersed waves with wave periods less
than 90 seconds and group velocities from 200 to 300 m/sec.
Vertical seismic infrasonic SNR

Signal-to-noise ratio for earth motion

Microbarometric seismic infrasonic SNR

Signal-to-noise ratio for pressure field

OQutput of a vertical seismograph
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Seismograph vertical power spectra

Denotes convolution
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1. BACKGROUND

1.1 RATIONALE FOR INFRASONIC-ACOUSTIC SIGNAL DETECTION RESEARCH

It is reasonable to assume that, within the next five years, a relatively
large number of new nations will acquire a nuclear weapons capability.
Moreover, it is likely that their initial tests of this capability will be
carried out in the atmosphere. Recent events have indicated the need for
additional, independent data sources to verify or corroborate the information
provided by current atmospheric nuclear test monitoring systems. This need
can readily ve met by providing a means for detecting and identifying the
infrasonic signals generated by atmospheric nuclear explosions.

1.2 THE PREVIOUS METHOD TO DETECT AND ANALYZE INFRASONIC SIGNALS

In the past, the capability to detect and identify infrasonic signals was
vested in a network of small microbarograph arrays. These arrays, which are
now largely abandoned, consisted of 4-6 microbarographs which had the intrin-
sic sensitivity to detect atmospheric pressure variations as small as a few
tenths of a mirrobar in the frequency range of 0.001 to 1 Hz. Thus, in the
absence of contributions from external noise sources, these arrays had the
potential for detecting infrasonic signals generated by atmospheric nuclear
explosions in the low kiloton yield range at distances up to a few thousand
kilometers or so. Unfortunately, this potential could never be realized in
practice because the relatively large atmospheric pressure fluctuations
created by the local surface wind can easily be of the order of a few tens to
a few hundred microbars.

In order to combat the wind noise problem, pipe arrays were commonly attached
to the inlet port of the microbarographs (cf Daniels, 1959). The pipe array
typically consisted of a hollow tube, several hundred meters in length and a
few centimeters in diameter, with inlet ports spaced at intervals of a meter
or so. Given this configuration, the pipe array functioned as a passive
wavelength filter which would selectively attenuate short wavelength con-—
ponents of the atmospheric pressure field relative to the longer wavelengths.
In the idealized case where the infrasonic signal field is completely organ-
ized and the wind noise field is completely disorganized, the pipe array will
provide an SNR gain equal to N2 where N is the number of inlet ports.
Experience demonstrated that this gain could generally be approached at fre-
quencies greater than about .l to .2 Hz for most commonly observed wind
conditions. However, for moderately high winds and frequencies below .l Hz,
the wind noise field became organized on a scale comparable to the maximum
feagsible dimensions of the pipe array (McDonald et al, 1971). Consequently,
its capability to suppress wind noise was seriously degraded under these
conditions. In order to achieve greater noise suppression at frequencies
less than .1 Hz, plans were under way in the early 1970's to deploy large-
scale arrays of microbarographs. While implementation of this approach 1is
certainly well within the current state of the art, the probable cost of
developing and operating an advanced network leads to the consideration of
alternate methods.
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1.3 AN ALTERNATIVE METHOD TO DETECT AND ANALYZE INFRASONIC SIGNALS

During the early 1970's, the AFOSR sponsored basic studies of the relationship
between local atmospheric pressure changes and low-frequency seismic noise
(Sorrells, 1971; Sorrells and Goforth, 1973; Sorrells and Douze 1974; Savino
et al, 1972; Savino and Rynn, 1972). An important result of these investiga-
tions was the prediction and experimental confirmation that the quasi-static
earth movements triggered by the passage of infrasonic waves could be
detected at the outputs of a sensitive, long-period seismograph system. This
prediction was verified for the case of large, atmospheric nuclear explosions
through observations by Sorrells et al (1971) and Savino and Rynn (1972).

In addition, later research by Sorrells and Douze (1974) demonstrated that
relatively weak infrasonic signals from naturally occurring sources also were
detectable seismically.

Equally important was the prediction and observation that the earth acts as a
passive wavelength filter with respect to the atmospheric pressure fields,
selectively attenuating the shorter wavelength components to a greater degree
than the longer wavelength components. The properties of this filter are
controlled by the local distribution of elastic constants and the depth of
observation and are virtually independent of the state of organization of the
input field. Since, for a given frequency, the convective wavelenyth of
wind-generated pressure noise may be an order of magnitude shorter than that
of an infrasonic signal, relatively large SNR gains are theoretically
possible regardless of the state of organization of the signal aad noise
field. This point is 1lllustrated by the results shown in figure 2. This is
the theoretical infrasonic SNR gain, predicted for observations made at a
depth of 100 meters in a !.wogenous, isotropic, perfectly elastic half space
with equivalent Lame -onstants. The results shown are appropriate for a ver-
tical seismograph and assume that the propagation speed of the signal is 330
m/sec while convection velocity of the wind-generated noise is 10 n/sec.
Observe that the predicted SNR gain is greater than 30 dB throughout the
entire frequency range of interest.

Thus, Installation of a seismograph system at au approprilate depth in a given
location is functionally equivalent to attaching a pipe array to the inlet

port of a microbarograph, insofar as the enhancement of infrasonic signal-to-
noise ratios is concerned.
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2. RESEARCH PROGRAM

2.1 PROPOSED RESEARCH OBJECTIVE

The primary goal of this research program is to assess the capability of
detecting and analyzing infrasonic-acoustic signals recorded by
three-component, long-period selsmograph systems. Accomplishment of this
program goal required completion of three particular tasks. The first task
was to obtain comparable data from a collocated, standard microbarograph
array and three-component KS-36000 (SRO) seismograph systems. Since these
data were not available at the inception of the program, appropriate instru-
mentation had to be installed to collect the data. This phase of the program
wil be discussed in section 2.2. The second task was to analyze the data
collected and evaluate the relative capabilities of the microbarograph array
method versus the alternative seismic method for discrimination of infrasonic
signals. These analyses required investigations of spectral characteristics
of both the ambient noise fields recorded by the two sensor systems, investi-
gations of identified infrasonic signals and analysis of the earth response
transfer function. The analyses of the ambient noise fields and their
effects on infrasonic signal discrimination and the theoretical and observed
earth response transfer functions will be discussed in section 2.3.
Comparative analyses of recorded infrasonic signals, with emphasis on the
detonation and the explosion sequence of El Chichon volcano, will be
discussed in section 2.4. The third and final task of this research program
was to lnvestigate an alternative method to enhance detection of infrasounic
signals produced by low-yield (< 10 KT) nuclear weapons tests. Initially, it
was proposed that recording and utilizing multicomponent earth strain data in
conjunction with inertial data may enhance significantly the capability to
detect iInfrasonic signals. Because of delays in fabrication, installation,
and effective operation of a strain—-inertial system (a contemporaneous
research program), however, this research objective was not accomplished aund
will not be discussed in this technical report.

The results of this research program are summarized in section 3 of this
report. Conclusions and recommendations for further research also are
included in this section.
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2.2 INSTRUMENTATION AND DATA COLLECTION METHODOLOGY

Comparative analysis of the capability to record and detect infrasonic-
acoustic signals via a conventional microbarograph array and a three-
component, borehole seismograph system required the installation and operation
of collocated instrumentation. A temporary site for simultaneously recording
earth motions and atmospheric pressure variations was established near
McKinney, Texas, (approximately thirty miles north of Dallas) late in 1980.
The experimeiital sensor system consisted of a three-component, long-period
borehole seismograph (Teledyne Geotech model K$S-~36000), five model M-4 micro-
barographs (loaned by Southern Methodist University) and a high~resolution
anemometer. The spatial configuration of the instrumentation is illustrated
in figure 3. The location of the KS-36000 seismograph is illustrated as a
solid circle and is at 33°14'56"N latitude, 96°36'07"W longitude at a depth
of 152 meters below the surface. The sites of the microbarographs are
illustrated in figure 3 as open circles. One of the microbarographs and the
anemometer are surface collocated with the KS-36000 seismograph. The dis-~
tances and azimuths of the outer four microbarographs from the central facility
are given on the illustration. Microbarographs MKB3, MKB4, and MKBS5 were
located in shallow vaults; the other two, MKBl and MKB2, were located on the
surface. Lach microbarograph was fitted at the inlet port with a fifteen-
meter length of garden hose (19mm ID) perforated at one-meter intervals.

The purpose of this pipe was to attenuate undesirable high~frequency,
atmospheric turbulence effects.

A schematic diagram of the total experimental instrumentation is illustrated
in figure 4. Signals from the five microbarographs and the anemometer are
hardwired into the recording trailer where they are amplified and filtered.
These signals are recorded simultaneously in analog format on l6mm devel-
ocorder film and in digital format at a sample rate of two samples per second
on a Kinemetrics 43419 digital recording system. The signals from the three-
component KS-36000 seismograph also are hardwired into the recording trailer.
There, they are split and separately filtered into a long-period and
intermediate-period analog format. These seismic data are recorded on the
l6mm develocorder film and added to the digital data string. Thus, with this
data collection system, simultaneous well-calibrated, well-timed data from a
collocated, standard microbarograph array and three-component, long-period,
borehole seismograph were obtained for analysis.

The unity-gain displacement amplitude responses as a function of frequency
for the seismograph and microbarograph systems are illustrated in figure 5.
The microbarographs characteristically have flat responses for barametric
pressure changes with periods between 2.5 hertz and 0.06 hertz. The atten~
uation for frequencies higher than 2.5 hertz is 36 dB/octave, and is 6
dB/octave for frequencies less tha 0.06 hertz. The seismographs, on the
other hand, have a peak response at 0.033 hertz and attemate at 18 dB/octave
for ground displacement frequencies either greater than or less than 0.033
hertz. Because the response curves of the microbarographs and seismographs
are so different, post-recording filter processing is necessary before visual
comparison can be meaningful.
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2.3 EVALUATION OF AMBIENT NOISE FIELDS AND EFFECTS ON INFRASONIC SIGNAL
DISCRIMINATION

In section 1.3, we suggested (based on previous studies of Sorrells) that the
infrasonic signal discrimination problem may be more easily approached using
seismic rather than microbarometric data because the passive wavelength
filter properties of the earth permit enhanced infrasonic signal-to-~wind
noise ratios using seismic data. This would be the case if all of the noise
observed seismically were of local barometric origin. In actuality, however,
the seismic noise field has components which are correlated with local baro-
metric noise and components which are uncorrelated with the local barometric
noise field. Thus, determination of actual signal-to-noise ratio (SNR)
enhancement requires power spectral analyses of the two pure noise fields,
investigation of the degree of coherence of the noise fields, and an
understanding of the earth response transfer function.

The principal contribution to the microbarowmetric noise field is wind-
generated pressure variations. Thus, it is necessary to study the microbaro-
metric noise field under a variety of wind conditions. Further, correlation
studies of random wind noise on microbarographs and seismographs require both
data segments to be uncontaminated by infrasonic signals or seismic signals
from earthquakes. 1In addition, the data segments must be of adequate length
to ensure proper spectral and coherence estimations via available computer
techniques. Finally, there must be sufficient numbers of samples to be a
statistically meaningful set. In practice, samples meeting all of the above
criteria are suprisingly difficult to obtain.

The sample selection procedure we followed was first to examine the analog
develocorder film for time segments which were visually uncontaminated by
obvious infrasonic or seismic signals. The transit time across the micro-
barograph array could be used relatively successfully to screen out micro-
barometric record segments with signals traveling at approximately 300 w/sec.
Once a data segment was selected from the aunalog records, the corresponding
time period on the digital tape was isolated in a computer file. The digital
data then were plotted to ensure that the digital sample segment corresponded
to the chosen analog data and was free of undesirable defects such as glitches
or data digitization ertors. Power spectra, corrected for calibrated instru-
ment response, then were computed from the time series data via a conven-—
tional Fourier analysis technique. The spectra were examined for obvious
signal contamination effects and were discarded if contamination was
suspected. Following this procedure, although laborious, yielded a suite of
uncontaminated noise samples which covered a wide variation of wind
velocities.

Two .ypical wmicrobarometric noise power spectra are illustrated in figure 6.
One corresponds to a mean wind velocity of approximately one mile per hour
and illustrates spectral characteristics under low wind conditions. The
other spectrum illustrated is for a time period of moderate wind conditions.
Comparing these two noise spectra illustrates several interesting charac-
teristics of the barometric noise field. The low wind condition power
spectrum decreases relatively constantly as the frequency increases at a rate
of approximately 25 dB/decade for the frequency range from 0.008 hertz to 1.0
hertz. The spectrum is generally featureless indicating little preference
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for convection cells of a2 specific dimension. The spectrum for the thirteen
miles-per-hour wind condition, on the other hand, displays a continuously
variable attenuation gradient over the frequency range 0.008 hertz to 1.0
hertz. The frequencies between 0.008 hertz and .08 hertz display power atteu-~
vation as a function of Increasing frequency of approximately 3 db/octave,
whereas the frequencies higher than 0.2 hertz have an attenuation rate of at
least 24 dB/~ctave. Thus, as the velocity of the wind increases, not only is
there an increase in the integrated RMS barometric noise power level, but
there 1s also a trend to excite preferentially the lower frequencies more
dorinantly than the higher frequencies. Unfortunately, the infrasonic-~
acoustic signals to be discriminated also lie in the spectral band with
periods greater than ten seconds. Therefore, as the wind velocity increases
from low to moderate conditions, the ability to discriminate low-amplitude
infrasonic signals from the ambient barometric noise significantly degrades.
Furthermore, the degradation is a nonlinear function of increasing wind
velocity.

The displacement power spectra (corrected for instrument response) in nanome-
tersz/hertz for the three components (vertical, north-south, and east-west) of
the seismic noise field contemporaneous with the periods of low and moderate

wind conditions illustrated in figure 6 are illustrated in figures 7 (vertical)

8 (north~south), and 9 (east-west). Comparing figures 6 and 7, for example,
illustrates that the seismic noise field in the frequency band from 0.008
hertz through 0.3 hertz is actually dominated by noise which is uncorrelated
with the local microbarometric noise field. In fact, only at frequencies less
than 0.02 hertz (T = 50 sec) is there a significant correspondence between
the microbarometric and the vertical seismic noise fields. Comparing figures
7, 8, and 9, it is obvious that the horizontal seismometers are affected more
dramatically by increasing wind velocity than is the vertical seismometer.

In section 2.4.2, it will be shown that there is also a corresponding
apparent increased sensitivity of the horizontal seismometers to infrasonic
signals than would be predicted theoretically. The reason for this phenome-
non is under continued investigation. To demonstrate the coherence of the
two noise fields in a more robust manner, ordinary coherences between the
microbarvmetric data and the three orthogonal components of the seismic data
were computed. Figures 10 and 11 illustrate these coherences under low and
moderate wind conditions, respectively. Under low wind conditions, there is
little conherence between the microbarometric noise field and any of the cou-
ponents of the seismic noise field. There is a higher degree of coherence
with the horizontal components (figures 10 b and c) than with the vertical
component (figure 10a). This apparent lack of correlation may itself be
erroneous because the background digital RMS count and variance for these low
wind conditions are very small. Thus, rather than reflecting true indepen-—
dence of the microbarometric and seismic noise fields, this figure may only
be a measure of the correlation of the random system noise with superimposed,
extremely low resolution data. The coherences exhibited by the moderate wind
condition of figure 11 are more definitive. For these analyses, the digital
RMS count was sufficiently large to ensure that it was well above the system

noise level. In this case, the microbarometric and vertical mode seismic noise
is relatively incoherent. The horizontal mode seismic noise, on the other hand,

exhibits h'gh correlation with the microbarometric noise in two frequency
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bands; 0.006 hertz to 0.018 hertz and 0.035 hertz to 0.05 hertz. These
correlations clearly illustrate that the long-period, horizontal seismic
noise field is dominated by local microbarometric fluctuatioms. Furthermore,
these noise fields are composed of preferred convection cell dimensions for
given wind conditions and are definitely non-white in character. .
Having examined the characteristics of the microbarometric and seismic noise .
fields, we shall next quantitatively assess the limiting nature of the SNR

for detection of infrasonic signals using seismic data. Following the method N

of Sorrells (1981) which is detailed in appendix A, the infrasonic SNR a
observed on the seismogram recorded by a long-period, vertical seismograph

installed at moderately shallow depths, relative to that observed on a micro- .

barogram recorded on the surface, 1is given by ;

SNR, Nz(f)|2 :

= IGz(f)|2 (1) :

SNy Np(£)] 2 y

where SNR, and SNR; are the vertical seismic and microbarometric infrasonic
SNR's, |Nz(f)l2 and le(f)l2 are the estimated power spectra of the vertical
seismic noise and the microbarometric noise corrected for instrument
responses, and G,(f) is the transfer function relating infrasonic atmospheric
pressure variations to vertical earth movements. G,(f) can be calculated if
the local distribution of elastic constants is approximated (Sorrells and
Goforth, 1973), or, alternatively, it can be measured experimentally. The
theoretical vertical and horizontal transfer functions computed for McKinney,
Texas, using a seventeen—layer earth model are illustrated in figure 12. j
Utilizing the theoretical vertical traansfer function illustrated with the
observed low and moderate wind condition microbarometric and vertical seismic
noise fields, we shall next examine the relative infrasonic signal detection y
capabilities from vertical seismic versus microbarometric data.

e S vy

A quantity useful in the comparison of SNR gain of the vertical seismogram to

the microbarogram is I,;, which measures the difference between the infrason~ b
ic SNR observed on a vertical seismogram and on a microbarogram expressed in o
dB. I,y is defined as, ‘
L.
10%1 (SNRZ) A
I = 0 og —_— |
zm 10 SNR,, !
Estimated values of I,, for low and moderate wind conditions as a function of
frequency are shown in figure 13. During times characterized by low wind

conditions, the microbarograph has a superior SNR throughout the spectral
band from 0.005 to 0.5 hertz except for a small window from 0.015 hertz
through 0.033 hertz where the vertical seismograph is moderately better.
During times of wmoderate wind conditions, however, the SNR of the vertical
selsmometer is significantly better than that of the microbarograph. Several
important spectral limit points are worth noting on the moderate wind con-
dition curve illustrated in figure 13. The 0 dB points are at wave periods
of 143 seconds and 9 seconds respectively. Infrasonic waves with periods
between these limits will be recorded better with the vertical seismometer
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than the microbarograph. Outside these limits, the microbarograph remains the

i instrument with the better SNR. The +6 dB points are at wave periods between
100 seconds and 11 seconds. For this spectral band, the vertical seismoumeter
has a SNR at least twice that of the microbarograph under moderate wind
conditions. The notches in the moderate wind condition SNR gain curve are

' obviously related to the well-known microseismic noise bands. Since this

] curve was developed from one empirical data set, the significances of these
notches to the SNR gain curve must be considered variable. At times of high

] microveismic storms, the SNR gains for infrasonic signals are undoubtedly

degraded significantly. It is worth noting, however, that the time periods

of both the low and moderate wind condition records are times when micro-

seisms were moderately high; thus, the curves illustrated in figure 13 can be

considered as relatively mean rather than optimum conditions.

The previous SNR analysis was dependent upon a theoretical transfer function
for earth response. Before discussing observed signals, we will compare the
theoretical and emiprically derived earth respounse functions. The method

used to obtain the experimentally derived values for G,(f) is outlined in
appendix B. The methodology for horizontal components is similar and is

not given. Comparison of the theoretical and observed vertical component
transfer functions for McKinney, Texas, 1Is illustrated in figure 14. The
extremely small residual between the observed and predicted vertical-
component earth response functions indicates that the computed values of (,(f)
may be used with a high degree of confidence in estimating the ratio

SNR, /SNR,, «

Unlike the vertical-component earth response traansfer function, the theoreti-
cal and observed horizontal component earth response transfer functions have
relatively large residuals. This is apparent in figure 15 which is a com-
parative plot of theoretical and observed horizontal transfer functions from
signals produced by explosions of El Chichon volcano. The theoretical calcu-
lations consistently underestimate the amplitude of the observed horizountal
displacements as a function of frequency by a factor of at least three. The
exact reason for this departure of theory from what Is observed is not clear.
One explanation may be that there are significant anisotropic differences
between the vertical and horizontal component elastic parameters. This
explanation is relatively unsatisfying, however, because it requires the dif-
ferences in the =lastic parameters to be unreasonably large to account for
the observed differences. An alternative explanation may be that one or more
of the assumptions in the calculation of theoretical displacements is
incorrect and that a significant contribution to the total horizontal displa-
1 cement field is being made by a component assumed to have insignificant
contribution. Consldering that all of the observed infrasonic signals were
from one source at one azimuth, it is also possible that the differences bet-
. ween theoretical and observed curves may be azimuth dependent. Further ana-
lysis is obviously required to definitely state the reason for this departure
of theory and observation.
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2.4 COMPARATIVE ANALYSIS OF RECORDED INFRASONIC SIGNALS
2.4.1 The eruption sequence of El Chichon volcano 29 March - 6 April 1982

The most-significant infrasonic signals to be recorded during the data
collection phase of this research program were produced by a sequence of
explosive eruptions of El Chichon volcano in southern Mexico. This eruptive
sequence provided an excellent opportunity to record and analyze the infra-
sonic signatures of explosion-like sources. In addition, individual events in
the sequence had energy releases which varied over several orders of
magnitude. Thus, these events also provided the opportunity to estimate the
approximate yield threshold for discrimination of seismically recorded infra-
sonic signals from atmospheric detonations.

The E1 Chichen volcanic complex is located at 17.33°N, 93.20°W in the state
of Chiapas, Mexico. The principal volcano is approximately 700 km southeast
of Mexico City and 16.16° (1797 km) south of the Mckinney, Texas, experimen-—
tal recording site. The elevation of the central vent is 1350 meters above
sea level. A NOAA weather satellite infrared image (see figure 16) produced
on 29 March at 0730 UCT (universal coordinated time) clearly illustrates the
extent of the inftial eruption cloud two hours after the eruption began. The
location is indicated on figure 16 by the white arrouw.

Prior to the eruption sequence which began abruptly on 29 March 1982, there
were no records of previous activity. Information about the eruption
sequence which continued from 29 March through 6 April 1982 has been
published in the SEAN Bulletins of the Swmithsonian Institution. To ensure
that this information is available with this technical report, we have
included the El Chichon reports from SEAN Bulletin, volume 7, numbers 3, 4, 5,
and 6 as appendix C. Origin times of five identifiable eruption phases,
extracted from the SEAN reports, are listed in table 1. The Volcanic
Explosivity Index (VEI) number assigned by the Smithsonian Institution (Tom
Simkin, personal communication) is also included in table 1. Criteria used
to estimate the VEI are listed in table 2 from Newhall and Self (1982). The
events listed in table 1 yielded infrasonic signals which were discriminated
easily on the develocorder film records. These are the initial events on
Julian date 088, the two events on 093, and the two events on 094. Time fra-
mes of the digital data corresponding to these develocorder film locations
then were isolated and processed further.

The signals from the five microbarographs were delayed appropriately and
summed to create an array beam for the locatiou of MKB#1l oriented at an azi-
muth of 168° (the great circle back azimuth from McKinney, Texas, to El
Chichou). These array beam microbarograms for the five events are
illustrated on figures 18-32 as red lines. Because the spatial dimensions of
the array were not significantly different from the ambient wind convection
cell dimensions at low frequencies, the noise reduction potential of beam-
forming was not optimized. The beam forming procedure did improve the higher
frequency resolution of the microbarograph data, however, and, therefore, is
considered to be justifiable.

Processing of the seismic data was also relatively simple. Because the raw,
long-period data were dominated by six-second microseismic noise, it was
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TABLE 1. ORIGIN TIMES OF TEN IDENTIFIABLE ERUPTION PHASES

Date Julian date Time (UCT) VEI
29 March 1982 088 05:32 4
03 April 1982 093 08:50 2-3t
03 April 1982 093 09:12 2-31
04 April 1982 094 02:00 U
04 April 1982 094 11:22 4

t+ Estimation by Mauk

U Unassigned VEI

necessary to apply a low-pass filter to the digital data to improve the
signal-to-noise ratio in the infrasonic signal frequency band. We applied a
low-pass filter with corner at 0.0417 hertz (T=24 svconds) and high-frequency
roll off of 24 dB/cctave ( ~%) to all seismic data. The effect of this
filter .n the displacement response of the selsmometer is illustrated in
figure 17. The filtered horizontal seismograms were rotated computationally
from a NS, EW orthogonal pair to a radial and transverse orthogonal pair
oriented at 168° and 78° respectively.

The filtered, vertical seismograms for each of the five events are
illustrated as black lines on figures 18, 21, 24, 27 and 30. The filtered,
radial seismograms for each of the five events are illustrated as black lines
on figures 19, 22, 25, 28, and 31, and the filtered, transverse seismograms
are on figures 20, 23, 26, 29, and 32. An ambient noise sample having wind
conditions equivalent to those at the times of the Lkl Chichon infrasonic
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signals was filter-processed in an equivalent manner as the signals for
comparison. The horizontal components were not rotated for the noise sample.
Plots of the vertical, the north-south and the east-west seismic components
are illustrated as black lines on figures 33, 34 and 35 respectively. The
contemporaneous microbarogram 1s illustrated on these figures as a red line.
The equivalent displacement amplitude is nanometers for a wave period of
thirty seconds is illustrated for the seismograms in figures 18-35 as a ver-
tical black bar. The equivalent pressure amplitude in microbars of the
microbarograms at a wave period of fifty seconds 1s 1llustrata: on the
figures as a vertical red bar. To facilitate comparison, figures 18-35 have
all been reproduced at the same scale.

Before discussing the quantitative analysis of these data, it is useful to
examine some of the qualitative aspects of figures 18-35, since these aspects
offer some lnsight into the potential discrimination capabilities of both the
microbarometric and seismic data. First, we will compare the microbarometric
signals recorded during a typical background period and those recorded at the
arrival times of the A; Signals from the indicated El Chichon eruption
periods. The nomenclature and symbols used to identify infrasonic signals
throughout this report have been tabulated at the beginning of the report.
Comparing the microbarometric trace of figure 33 with those ot figures 18,
21, 24, 27, and 30 clearly demonstrates the complexity of the discrimination
problem. The typical random noise on the microbarograph is large and
complex. 1In fact, highly complex signals like those exhibited in figures 18,
27, and 30 could easily be misidentified as a high-level noise 1if there were
not significantly differeat ambient data surrounding the A; train. Observers
at E1l Chichon have reported that the 088 and 094 eruptions were quite complex
with repeated injections into the plinian column over periods of thirty to
sixty minutes. Thus, the infrasonic acoustic signal could be expected to be
similarly complex. On the other hand, the events on 093 were explosive erup-
tions of short duration without significant repeated injections. The signa~
ture of the A} wave trains for these events (figures 21, 24) are
correspondingly much simpler and, in fact, are more representative of
atmospheric nuclear detonations previously reported (Donn and Ewing, 1962;
Wexler and Hass, 1962; Bhartendu and Currie, 1963; Harkrider, 1964; Donn and
Shaw, 1967). Note that the A; signals for the 093 events can be discrimi-
nated relatively easily from the ambient background because of the dispersed
character of the S, modes (0<n<10). The overall amplitudes of the signal and
noise, however, are nearly equivalent; thus, discrimination is possible only
because of the defined complex character of the A; wave train as opposed to
the relatively random nature of the noise. It is concluded from qualitative
examination of the microbarometric data that simple explosive sources can be
discriminated relatively easily from the noise even though the signal-to-
noise ratio may be 1:1 because of the excitation of dispersed infrasonic
acoustic modes. Furthermore, for volcanic explosions, the complexity of the
Ay train 1s a direct consequence of the complexity of the injections into the
plinian column. Therefore, by examining the infrasonic acoustic, Ay, train
at observatories quite distant from a volcanic eruption, a great deal may be
learned about the temporal characteristics of the eruption sequence. In
addition, by examining the complexity of the Aj trains produced by erupting
volcanoes, it would be possible to separate a suite of simple volcanic explo-
sion signatures of differing energy release with which to compare the yield
of atmospheric nuclear detonations.
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For brevity, qualitative discussion of the seismically recorded infrasonic
signals will be restricted primarily to the El Chichon eruption on 093 with
origin time approximately 09:12 UCT (figures 24, 25, 26). Comparing the
filtered seismograms (black lines) with the microbarograms (red lines), it is
obvious that the low-order atmospheric acoustic modes (0<{n<2) are recorded as
well on the seismograph systems as on the microbarogtaph;. Because of the
required low-pass filtering to remove the microseismic noise, however, the
higher order acoustic mode signals are also lost. Although this loss may not
be important in quantification of energy and yield since higher order modes
are notorious for displaying significant multipath effects, nevertheless, it
does make positive identification of the A; train less reliable than with the
microbarograph data. If extraction of the higher order modes as well as the
low-order modes is significant to the discrimination and yield determination
process, alternative filter operators, such as an adaptive prediction error
operator, would have to be used to suppress the effects of microseisms.
Additional or alternative processing techniques will be discussed further in
section 3 of this report.

Further examination of the three-component seismic data from the 093 explo-
sion reveals other interesting aspects of the data which could play important
roles in the problems of detection and discrimination of infrasonic-acoustic
signals from explosive sources. Some coupouents of the A) train, for
example, are equivalently prominent on the radial and trausverse seismic
channels. Thus, the relative horizontal versus vertical signatures of these
compounents could be an aid to extraction of the infrasonic signals from the
seismic noise field. Additional insight into this aspect of quantitative
signal analysis will be discussed later. Another feature of the seismic data
which may assist in the discrimination of the infrasonic signals is the pres-
ence of typical seismic surface waves appropriately preceding the A; train.
For example, Rayleigh wave arrivals are apparent at the beginning of figures
24, 25 and 26. Since there are no earthquakes listed in the PDE (Preliminary
Determination Epicenters) with which these Rayleigh waves could be related,
it is logical to assume that they were also generated by the El Chichon
explosion. The fact that the Rayleigh waves persist on the transversely
rotated, horizontal seismogram is clear evidence that the arrivals are from
multiple paths other than the great circle route. Since the Rayleigh waves
are not from a direct route, the origin time caanot be determined uniquely.
However, the combined seismic and infrasonic acoustic signal pattern on the
selsmograms is stroug evidence for a near-surface explosive source. Thus,
certain infrasonic signals which are not "explosive-like” (Chimonas and
llines, 1970; Larson et al, 1971) may be discriminated eftectively from
further consideration; while others with both seismic and infrasonic acoustic
signatures would be highly suspect as weapons tests.
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FIGURE 30, EL CHICHON ERUPTION ORIGIN TIME 094 ~
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2.4.2 Quantitative Analysis of the El Chichon Eruptions

In the previous section, we discussed some of the qualitative aspects of the
recorded infrasonic-acoustic signals from five of the explosions in the El
Chichon eruption sequence. This section will focus on more quantitative anal-
yses of the E1 Chichon explosions. The ccoherences of the microbarograms and
the seismograms for the five eruption periods are examined first. The
measurements of the amplitudes and periods of various identified infrasonic-
acoustic/gravity modes recorded on seismograms and microbarograms are
discussed second. Specific emphasis is placed on the determination of the
microbarometric amplitudes of infrasonic signals from seismic displacement
measurements. Likelihood errors associated with such determinations also are
discussed. The utilization of the infrasonic-acoustic data to estimate the
energy release or approximately equivalent yield of the explosions will be
discussed in section 2.4.3.

The ordinary coherence estimates of the microbarometric and seismic noise
fields during two ambient wind conditions were discussed in section 2.3. The
coherences of the noise fields for RMS wind velocities of one mile-per-hour
and thirteen miles-per-hour are illustrated in figures 10 and 11. Utilizing
the same algorithm, we have performed coherence estimates between the beam-—
steered microbarometric data and the vertical, radial and transverse com—
ponents of the seismic data illustrated in figures i8-35. These coherence
studies serve two important functions. First, they yield insight into
cospectral power levels of the signals observed on different instruments.
These can assist significantly in design of more complex detection
algorithms. Second, they yield insight into the likely detection threshola
spectrum. If the event studied can be related to a defined energy release,
then this information can be related to the yield detection threshold.

The coherences between the microbarograms and the vertical, radial aund trans-
verse seismograms for the five E1l Chichon eruptions are illustrated in figures
36, 38, 40, 42, and 44. The coherences between the vertical and radial, ver-
tical and transverse, and radial and transverse seismograms for these events
are illustrated in figures 37, 39, 41, 43, and 45. The RMS wind velocities
during the times of these recordings were generally in the range of seven
miles—-per-hour or less and, therefore, are representative of moderately low
wind conditions. Comparing the coherences of the microbarograms with the
three seismogram components results in several conclusions. The correlation
of the transverse sismograms and the microbarograms is negligible for the
spectral range from 0.1 hertz to 0.001 hertz for all eruptions studied. (m
the other hand, both the vertical and radial seismograms display well-defined
spectral components which strongly correlate with the microbarograms. In
addition, there is a slight tendency for a higher level of coherence between
the radial seismogram and the microbarogram than between the vertical
selsmogram and microbarogram for nearly all events.

The coherences between the microbarograms and the vertical seismoprams
generally display three distinct spectral regions of high coherence separated
by two spectral regions of low coherence. The high-coherence lobes are be-
tween 0.0025 and 0.0035 hertz (400 - 285 sec), 0.006 and 0.02 hertz (167 ~ 50
sec), and 0.04 and 0.06 hertz (25 - 17 sec). These three spectral bands
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correspond well with the defined limits of the GRg + Sp, S; + Sy, and

S, (n>3) infrasonic-acoustic modes defined by Pierce (1966). Comparing the
two lower frequency spectral lobes of the events for which relative size has
been estimated (088, 093-A, 093-B, and 094), there is a tendency for the
centroids to be at higher frequencies for smaller events, and the spectral
lobe to be of more limited extent. Finally, as the event size decreases,
there 1s correspordingly less correlation between the microbarogram and the
seismogram. This is a result of decreased signal-to-noise ratios.

Comparing the coherence of the vertical, radial and transverse seismograms
(figures 37, 39, 41, 43, 45), there are no similar, obvious features. The
coherence of the radial and transverse components generally is the lowest
correlation for all events, while vertical and radial and vertical and trans-
verse coherence generally appear to be approximately the same. The simi-
larity of the two horizontal component coherences with the vertical component
undoubtedly 1s related to the high level of Rayleigh mode microseismic noise
which, without filtration, dominates the records. 1In fact, the only energy
lobe from the infrasonic signal spectrum which is marginally coherent is the
low~frequency lobe corresponding to the Sy mode. The conclusion which can be
drawn from these results is that filtration to remove the microseismic noise
is required if seismic data are to be used without a collocated umicro-
barograph for successful extraction of the infrasonic signal information.

Utilization of observed infrasonic-acoustic signals to determine reliably the
yield of atmospheric nuclear detonations or energy release of volcanic explo-—
sions is a similar problem to estimation of the yield of underground nuclear
explosions or magnitude of earthquakes from surface wave measurements.
Analogous to surface wave quantitative analysis procedures, we measured the
periods and amplitudes of the individual waves comprising the A; signals as
well as the maximum amplitude in and duration of the Aj wave trains from the
five principal eruptions of El Chichon. All measurements were corrected for
instrument response. The results of the five microbarometric record measure-
ments are summarized in table 3 and illustrated in figure 46. To facilitate
discussion of these results, the frequency limits of some of the infrasounic-
acoustic modes and the gravity mode, GRg, are illustrated at the top of each
period~amplitude graph in figure 46. The identification code for the event
from which the datu: were derived is given in the lower right-hand corner of
the individual diagrams. Measurement range bars are lllustrated about most
mean measurements. In general, these represent total ranges of measurements
and are not related to a robust statistical uncertainty level. No range bars
are indicated when a single wave of specific amplitude and period was
measured. The dashed lines connecting separate observations or observation
means on each diagram are to illustrate general period-amplitude trends of
the data and are not indicative of a continuous wave dispersion. 1In fact, we
will illustrate a standard moving window analysis (Landisman, Dziewonski and
Sato, 1969) of the 093A event which clearly demonstrates the classical guided
wave character of the infrasonic-acoustic wave train.

Comparing the period-amplitude graphs of the microbarometric signals from the

five different explosive eruptions results in several interesting
observations. With the exception of event 088 (figure 46a) which is known to
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FIGURE 36. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 088
BETWEEN THE MICROBAROGRAPH ARRAY BEAM AND THE VERTICAL (a),

RADIAL (b) AND TRANSVERSE (c) SEISMOGRAMS. (9 BLOCK SAMPLE/75%

OVERLAP)
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FIGURE 37. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 088
BETWEEN PAIRS OF THE THREE SEISMOGRAM COMPONENTS: (a) VERTICAL
AND RADIAL, (b} VERTICAL AND TRANSVERSE, (c) RADIAL AND TRANSVERSE,
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FIGURE 38. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 093-A

BETWEEN THE MICROBAROGRAPH ARRAY BEAM AND THE VERTICAL (a),
RADIAL (b) AND TRANSVERSE (c) SEISMOGRAMS,
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FIGURE 39. ORDINARY COHERENCE ESTIMATES FOR THE €L CHICHON ERUPTION 093-A
BETWEEN PAIRS OF THE THREE SEISMOGRAM COMPONENTS: (a) VERTICAL
AND RADIAL, (b) VERTICAL AND TRANSVERSE, (c) RADIAL AND TRANSVERSE.
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FIGURE 40. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 093-B
BETWEEN THE MICROBAROGRAPH ARRAY BEAM AND THE VERTICAL (a),
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FIGURE 41. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 093-8
BETWEEN PAIRS OF THE THREE SEISMOGRAM COMPONENTS: (a) VERTICAL
AND RADIAL, (b) VERTICAL AND TRANSVERSE, (c) RADIAL AND TRANSVERSE.
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FIGURE 42, ORDIMARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 094-A
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FIGURE 43. ORDINARY COHERENCE ESTIMATES FOR THE EL CHICHON ERUPTION 094-A
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Event No. 088 093A
Period Amplitude Phase Period Amplitude
(Seconds) (Microbars) (Seconds) (Microbars)
210 * 35.8 So 312 * 81
174 48.6 + 20.5 Sg + 51 + 52 246 + 66 60 + 29.8
138 43.7 + 16.8 5; + 52 + 53 180 * 38 + 4
117 + 15 31.8 + 9.2 Sy + S + 83 51 +3 6.6 + 0.1
90 * 12.8 Sy + S3 27 +3 4.0 + 0.1
63 + 15 15.8 + 4.3 Sn 3 6 1.9+ 3
30+ 6 10.6 + 4.3 Sn n>3
15.5 + 0.5 16.8 + 6.4 Sn 3
11 +1 8.3 + 1.2 Sn 3
7+3 5.1 + 2.1 Sn w3
174 48.6 + 20.5 A 312 81
Duration
Aj (minutes) 8l

it ot U Iy

Phase Period
(Seconds)

GRg 180 + 36
So 63 + 15
Sog+ 8 + 5 30+6
Sn 3 7+1
Sn n23
Sn w3
Ay 144
>81




Period
(Seconds)

63 + 15

30+ 6

144

180 + 36

093B

Ampl{itude
(Microbars)

17.3 + 4.5

22

* Indicates single wave measurement

Table 3.

Amplitude and Period Measurements of Microbarometric Signals
from Five Eruptions of E1 Chichon Volcano

Phase

Sgt 5 + 52
Sn 3
Sn 3

Sn 3

Al

26

E——— T T eS

Period
(Seconds)

276 %
168 *

71

I+
t

54 +

+
o

37

1+
[

25

|+
w

276

094A

Anmplitude
(Microbars)

104
69
36 + 8.9

27

|+

6.2

19 + 7.3

|+

12

14+

3.6

104

B R TR 2k T T

GRp t+ Sp

So
Sn

Sn
Sn

Sn

Sn

Al

30

0948

Period Amplitude
(Seconds) (Microbars)
348 * 165.2
225 + 15 94.6 + 21.4
135 + 9 60.2 + 7.4
99+ 9 39.8 + 11.2
23+ 1 15.4 + 6.3
15 + 3 8.0 + 6.5
743 4.5 + 1.4
348 165
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Phase

GRo
So
S) + 8y

S§; + 53 +53

Sa n>3
Sn n23

Sn 23
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be a complex eruption with many injections into the plinian column over an
extended period of time, all of the other eruptions display a logarithwmic~
linear relationship between period and peak-to-peak microbarmetric amplitude
with a slope nearly equal to one. Given the twenty amplitude-period measure-~
ments listed in table 3 (events 093A, 093B, 094A, 094B) for periods greater
than fifteen seconds, a linear regression of the data pairs yielded an
inverse frequency slope of 1.029 + 0.277 at the 95% confidence level. This
is an extremely good agreement between the observed and theoretically pre~
dicted relationship between microbarometric amplitude and wave frequency.

All of the events have observable high-frequency (T=5 to 10 seconds), high-
acoustic wode number waves which do not vary in amplitude by more than a fac~
tor of three, even though, from other observations (Silva, Cocheme, Canul,
Duffield and Tilling, 1982; De La Cruz-Reyna, 1982; Harskov, De La
Cruz-Reyna, Singh, Medina and Gutirrez, 1982), it is known that the dif-
ference in energy release between event 093B and 094B is at least two to
three orders of magnitude. This suggests that the high-frequency data may be
useful in analysis of event complexity, but the high mode number data will
not be particularly sensitive as a yield determinant. On the other hand,
there appears to be a reasonably clear relationship betweecn the longest
period, and therefore largest amplitude, wave in the A; train and the
"magnitude” of the eruption. This hypothesis is supported by the sequence c,
b, d, e of figure 46. Complex eruptions like that of 088 do not appear to
follow this trend since it is known that the 088 and 094B events are of simi-~
lar energy release. Since this data set is of limited extent, from a single
distance and azimuth, additional analyses would be required to formulate a
more definitive relationship among amplitude, period and distance. This will
be discussed in greater detail in section 2.4.3.

The seismic period-amplitude data (corrected for instrument response) for the
five eruptions of El Chichon are summarized in table 4 and illustrated in
figures 47 (vertical) and 48 (radial). The peak-~to-peak amplitudes are given
in nanometers of displacement. The discussion of symbolism given previously
for figure 46 also applies to these figures.

Comparing the five period-versus-~amplitude graphs of the vertical component
data (figure 47), it is apparent that the relatively well-behaved rela-
tionships between the microbarometric wave amplitudes and periods illustrated
in figure 46 are not reproduced in the vertical component seismic data. All
vertical component seismic data exhibit large amplitude noise contamination
of the signals for wave periods shorter than forty to sixty seconds. The
general shape of these displacement-amplitude spectra is similar to those
illustrated by Fix (1972) for the vertical power spectra of ambient noise at
a variety of sites. Thus, only at the long~period end of the observed ver-
tical component spectra is there a sufficient signal-to-noise ratio to
resolve infrasonic signal amplitudes with any confidence. From these data,
there is a suggestion of an w=2 relationship between wave frequency and
amplitude as compared with the w=1 relationship illustrated by the microbaro-
metric data, as predicted by theory for a homogeneous isotropic half space.

The period-versus—amplitude relationship of seismically recorded infrasonic
data is more apparent in the radial (figure 48) than the vertical (figure 47)
components. Unlike the microbarometric data which displayed a definite
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lengthening of the maximum measurable period in conjunction with the increase
in amplitude as a function of source event energy release, the radial and
vertical seismic data display only an increase in amplitudes of the observed
waves. There appears to be a maximum wave period observed for all events,
regardless of source dimension, of between 200 and 300 seconds. In fact,
this 1s an observation limit imposed by the recording system. Wave periods
longer than 200 seconds have so little amplification with respect to the
center frequency of the McKinney recording system that the signal digital
count begins to approach wmachine noise levels. Thus, it is likely that an
extension to longer periods as a function of source dimensions as observed
for microbarometric data also may exist for the seismic data. Because of
instrumentation limitations, however, this period extension was not observed.

Civen the twenty-six amplitude-period measurements listed in table 4 for
radial component seismograms (events 093A, 0938, 094A, 094B), a linear
regression of the data pairs (for periods greater than 24 seconds) yielded an
inverse frequency slope of 2.86 + 1.65 at the 95% confidence level. Theory
predicts an inverse slope of three which is within the 95% confidence limit
associated with these data. In fact, these data only fail correspondence
with an w3 slope at a confidence level less than 50%.

There are several important conclusions to be drawn from these results.
First, the infrasonic-acoustic signals observed for “simple” explosive erup-
tions of El Chichon volcano have microbarometric amplitude-versus—frequency
spectra with slopes of nearly w1, Secoad, all analytical microbarometric
signals had high mode number infrasonic waves which were relatively the same
amplitude and period regardless of significantly different source dimensions.
GRg mode excitation occurred only with the largest explosions of the
sequence, and both the amplitude and period of infrasonic waves in the period
range of S, S; and Sy modes tended to decrease with reduction of source
energy release. Third, the radial seismic signature of infrasonic signals
displayed an approximate w3 slope between wave frequencies and amplitudes.
Because there is an additional w™2 dependency of the seismic signals compared
with the microbarvmetric signals, the radial component seismograms should be
more useful for yield or source dimeusion determination than the
corresponding microbarograms.

In addition to the standard period-amplitude relationship, we have also exam-
ined using the moving window analysis technique (Landisman, Dziewonski, and
Sato, 1969) to extract useful quantitative data about the infrasonic-acoustic
signals. This analysis methoud results in contoured relative energy levels in
a period-versus-velocity space. The input to the aljorithm consists of the
digital time series data and parameters such as the distance to the event,
origin time, start time of the data string and filter characteristics.
Because the exact origin time is uncertain, there is a comparable uncertainty
in correctly locating the energy contours with respect to the velocity
coordinate. Since the GRg and S3 modes are essentially nondispersive, and
the effects of wind shear on their propagation velocities are relatively well
known (Pierce, 1966), the origin time can be adjusted until the energy lobe
associated with these modes is best-fit to the appropriate velocity range.
Through this procedure, the exact origin time can be approximated with rela-
tively small error, and the relative velocities of the other modes can be
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Event No.

093A
Vertical Radial Vertical
Period Asplitude Period Asplitude Period Amplitude Period
(Seconds) ) (Seconds) (N ) (Seconds)  ( ) Seconds)
234 + 16 4520 + 480 £
132 * 3758 210 + 40 460 + 140
126 19336 195 + 45
11 * 3056 186 + 14 673 + 127
105 + 10 1367 # 133 87 + 13
90 820 63 265 + 85
68 ¢ 4 433 ¢ 65 55+ 5 162 + 34
60+ 6 250 + 28 54
“8 136 # 17 /2 11 # 25
47 243 + 67 27 +3 296 + 86
32+5 193 + 59 2%
8 +2 295 ¢+ 32 18 + 2 744 4+ 217
24 576 + 236
21 +2 700 + 76
18 * 2002

ial
Amplitude
(Nanometers )

16141 + 3859

4573 + 2927

240 + 125

172 + 78

Ve
Period
(Seconds)

206 + 16

47
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Table 4. Amplitude and Period Measurements of Seismically Recorded Atmospheric Signals
from Five Eruptions of El Chichon Volcano

0938 0944 0948
Vertical Radial Vertical Radial Vertical _Radial
Period Anplitude Period Amplitude Period Amplitude Period Amplitude Period Amplitude Period Asplitude
(Seconds) (Nanometers) ( ds) ( rs) ( ds ) ( ers) (Seconds) (Nanometers ) (s ds) ( s) (s ds) ( ters)
330 + 20 9600 + 2900 180 6500 + 500 300 » 20544 + 5869
210 + 30 2500 # 1500 150 + 20 1972 * 972 210 + 40 3475 + 450 210 * 16142
204 + 16 968 + 132 145 + 5 5230 + 833 189 + 9 6656 + 1613
180 + 20 1750 + 300 120 + 10 1352 + 648 150 = 2870
100 + 20 538 + 112 1o = 1830 ; 1 * 2132 I
63 + 7 242 + 48 78 * 928 96 . 1383 9 . 1171
47 148 + 26 75+ 5 oo+ 350 68 + 3 610 + 230
42 » 103 + 17 WS 732 # 166 55+ 5 270 + 20
38+2 106 + 10 65+ 5 B0 + 35 52+ 2 340 + 121
2842 202 + 3% 47 %2 372 + 15 4143 360 + 262
2 +1 262 + 22 4zt 4 170 + 50 w 160
3 20 21 515 + 107 4u + la 320 % 30 » 110
3542 499 + 145 31 +2 320 4 122
0+ 2 B0 + 324 26 + 3 456 + 207
24+ 4 372 + 62

®# Indicates single wave measurement
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defined. Using this procedure, we have analyzed the microbarometric signal
of event 093A (figure 22, red line). The results of these analyses are
illustrated as figures 49 and 50. From the period-versus—amplitude study
(figure 46b), it is known that the signal amplitude varies almost two decades
over the period range covered by the A; time series train. because the
amplitude resolution of the moving window analysis is linear, plotting the
entire spectral band results in contouring only the most prowinant energy
features. This is illustrated in figure 49. Enhanced resolution of the
shorter priod spectrum is possible by plotting only the period range below
the major energy lobes. This is illustrated in figure 50.

An examination of figure 49 reveals one principal energy region centered
approximately at a period of 290 seconds and a velocity of 310 meters/second.
This corresponds well with the major energy feature of figure 46b which is
the GRg and Sy model frequency band. Interestingly, a second eneryy lobe at
approximately the same period, but with mean velocity near 255 m/sec and one
third the energy, is also apparent. This energy lobe may be the signature of
the elusive GRj mode. Although this observed velocity difference between
GRp and GR; is approximately equivalent to theoretical predictions, the
calculations of Pierce (1966) indicate that the amplitude difference should
be over an order of magnitude rather than a factor of three different. Two
additional energy lobes with roughly one tenth the amplitude of the maximum
occur at periods of 50 to 80 seconds and mean velocity 300 m/sec, and 80 to
200 seconds with mean velocity of 280 m/sec.

Figure 50 illustrates the energy distribution in the period rauge from five
to one hundred seconds in greater detail. The hummocky topography of the
energy in the period-velocity space of figure 50 is typical of discrete wave
guiding rather than continuously dispersed propagation of waves. We conclude
from this preliminary study that a wealth of information pertinent to yield
determination may be embodied in moving window analyses of infrasonic-
acoustic data. In particular, energy distribution in higher modes cau be
evaluated more exactly. This could be important for the design of optimum
filtration schemes to enhance signal-to-noise ratios of marginally observable
infrasonic—-acoustic signals.
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2.4.3 Estimation of Energy Release from the E1 Chichon Explosions

In the previous section, we demonstrated the comparable procedures of
detecting and identifying infrasonic signals using seismic as well as micro-
barometric instrumentation. We have shown that for five explosive eruptions
of E1 Chichon volcano, there is a well-defined w=3 relationship between
anplitude and period of infrasonic-acoustic waves recorded on radial com-
ponent seismograms. Similar analyses of contemporaneous microbarograms
yielded approximate w1 relationships. This supports strongly that
radial-component, long~period seismograms may be utilized wore effectively
than microbarograms to determine yield of atmospheric nuclear weapons tests
or, alternatively, energy release of volcanic explosions. Derivation of a
reliable yield estimation procedure based on the current data is not possible
because there are several important relationships for which robust limits
have yet to be determined. 1In this seciton, we will examine several of these
deficiencies and requirements to formulate a reliable yield estimator.

The principal obstacle to formulation of a yleld determinant is insufficient
data. Currently, there are no calibrated atmospheric nuclear weapons tests
with which to reference observations of events with unknown explosivity.
Volcanic explosions are relatively abundant sources of infrasonic-acoustic
signals and have energy releases known to cover several orders of magnitude.
Unlike thermonuclear devices, however, the mechanism of volcanic energy
release is generally temporally complex and involves both thermal and mecha-
nical energy components. For these reasons, it is difficult to estimate
exact energy release, the coupling of total energy release to atmospheric
perturbation, and, ultimately, the simplicity of the volcanic and nuclear
detonation sources.

Fortunately, determination of volcanic explosivity has been one goal of
volcanology for many decades, and there is a variety of techniques reported
in the literature. A bibliography of selected references on volcanic
explosivity, energy, and magnitude is included as appendix D of this report.
Observations used to estimate volcanic energy release include measures of
volume and areal dispersion of ejecta, phenomena related to airblast such as
treefall, etc., and various aspects of plume rise. Most techniques reported
to estimate energy release by volcanoes have relatively restricted applica-
tion and rely on empirical observiations without equivalent counterpart in
atmospheric nuclear weapons tests. Nevertheless, these restricted techniques
do provide alternative methods to estimate limiting energy release conditions
and thus may assist in ultimate scaling of nuclear weapons tests. Currently,
there is no quantitative volcanic explosivity scale correlative with the
Richter earthquake magnitude scale. The volcanic explosivity index (VEI) of
Newhall and Self (1982) (table 2, this report) is an attempt to qualify
volcanic eruptions and is similar to an earthquake Mercalli intensity scale.
Like the Mercalli intensity scale, however, the VEI has generally defined
arbitrary limits for many unrelated phenomena and, none of the “"quantitative”
limits can be related explicitly to either total energy or energy release
rates in conventional units. The reason for this 1s obvious: there are few
instrumental measurements, particularly far field, which are included in this
explosivity scale. 1In fact, the far-field measurement of infrasonic-acoustic
wave trains may prove to be the most useful technique to evaluate volcanic
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explosive energy in a repeatable robust manner once proper scaling has been
achieved.

Given the state-of-the—art quantification of volcaric explosivity, one of the
most useful measurements currently made is the height of the volcanic erup-
tion cloud. Factors governing eruption column height have been discussed by
Briggs (1969), Settle (1976, 1978), Wilson (1976), Wilson et al (1978, 19890),
Kienle and Shaw (1979), Wilson (1980), and Sparks and Wilson (1982).

Factors such as vent diameter, ejecta velocity and fragmentation (mass flux),
eruption duration, atmospheric thermal stratification, wind shear, latitude
and elevation have been demonstrated to be important in controlling ultimate
cloud height of nonsubmarine eruptions. Although these factors blend both
thermal and kinetic energy, it has been shown that total plume height is
dominated ultimately by thermal convective rise (Wilson, 1976; Settle, 1976,
1978). Since energy release from surface-located atmospheric thermonuclear
detonations also result in plumes dominated by thermal convective rise, anal-
yses of plume heights from short-duration volcanic explosions may provide an
independent, useful measure of energy release which is applicable to estima-
tion of nuclear test yields. Because the source dimensions and dynamics of
volcanic explosions and nuclear weapons tests are vastly different, however,
an energy estimation of one based completely on the data of the other can
never be fully satisfactory. It is the proverbial comparison of apples and
oranges.

Given the preceding precautionary note, we will assign an energy estimation
for the El Chichon explosions based on observed plume heights. Assuming that
these estimates are approximately correct and that the eruptions are reason-~
able facsimiles of surface~based atmospheric nuclear weapons tests, we will
estimate the threshold yields which may be discriminated with far-field,
infrasonic-acoustic data. These extrapolated conclusions are based on very
little data. A scheme for reliable estimation of yield would require a more
extensive and robust treatment.

Settle (1978) has shown that the maximum height attained by volcanic eruption
clouds is directly correlated with the mass flux rate of the volcano when the
data are corrected for known controlling factors. Given a mass flux rate, it
is relatively simple to estimate a kinetic energy rate, which if integrated
for a specified period of time, ylelds an eruptive kinetic energy. Figure 51
illustrates a graph of eruption kinetic energy versus maximum eruption cloud
height. Several sets of data have becu incorporated in this illustration.
The maximum cloud heights and estimations of kinetic energy release frow six
volcanic eruptions derived from Settle (1978) are illustrated as solid
circles. The kinetic energy estimations were computed from the reported
kinetic energy rate by Integrating the kinetic energy flux for sixty seconds.
Although this integration time constant is arbitrary, it was used assuming
that the major drive to most explosive eruptions occurs within the first
minute of eruption. Near-field observations of eruptious like that at Mount
St. Helens on 18 May 1980 certainly support this hypothesis. Estimations of
kinetic energy release and maximum cloud height for three eruptions of Mt St.
Helens, which were taken from USGS Professional Paper 1250, are {llustrated
as solid triangles on figure 51. The kinetic energy release of the 18 May
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1980 Mount St. Helens eruption is from Doun and Balachandran (1981) and the
corresponding cloud height is from the USGS Professional Paper 1250. The
maximum cloud height attained by this eruption is unknown because it exceeded
the lidar observation limit of 25 kilometers. This eruption 1s symbolized on
figure 51 as an arrow truncated at the 25 kilometer cloud height. One obser-
vation from Mount Asama of kinetic energy and cloud height, which is taken
from the Smithsonian SEAN Bulletin, is illustrated as a solid square on
figure 51. Finally, using the formula of Morton (1956), we have calculated
the atmospheric perturbation heights for an equivaleunt one kiloton and one
megaton Impulsive explosion. These are illustrated as solid diamonds. A
curve fitting these data is relatively well constrained for events with
energy releases greater than 1021 ergs. The functional relationship between
cloud height and kinetic energy is poorly constrained for energy release less
than 1021 ergs.

The maximum cloud height attained by the 088 and 094B eruptions of E1 Chichon
were reported to be 16.8 kilometers based on lidar observations and satellite
images. Utilizing the relationship of figure 51, this would yield an energy
release between 1 * 1023 and 2 * 1023 ergs. Similarly, a cloud height of 3.6
kilometers, reported for the smaller eruptions would suggest an energy
release in the neighborhood of 1019 ergs. Although the energy release of the
larger events seems approximately correct, the energy estimation for the
smaller events appears to be too low by at least an order of magnitude.

Comparing these energy estimations with observations made during the era of
atmospheric nuclear weapons tests also suggests that these energy estimations
are approximately correct. It is known from observations of infrasonic waves
generated by atmospheric nuclear detonations that excitation of GRg modes
occurred only for devices with yields exceeding one megaton (Al Bedard, per-
sonal communication). Since the 094B El Chichon explosion excited a GRp mode
wave (see figure 46e), it is obvious that the yield-equivalence exceeded one
megaton. The 093A and 094A events were both marginally into the GRg mode
range and likely were in the high hundreds of kilotons to low megaton yield
range. The 093B eveunt, however, not only did not excite GRg oscillations,
but barely excited oscillations in the low Sy mode range. Thus, it is likely
that this explosion was less than 100 kT yield-equivalence.

Observations of maximum amplitude A) microgarograph signals from a 58-megaton
weapons test at Novaya Zemlya on 30 October 1961 also offer some insipht into
the yleld-equivalence problem. These data were examined by a number of
investigators (Wexler and Hass, 1962; Harkrider, 1964) to determine atten—
uation characteristics of infrasonic-acoustic waves. The results of Wexler
and Hass are illustrated as figure 52 and indicate that a fifty-eight mega-
ton explosion generated a maximum A; train signal of 2213 microbars at a
distance of 16°. The waximum amplitude oscillation of the A; wave train
from the 094B El Chichon explosion was 165 wmicrobars at 16°. If the 094B
event is scaled for yield-equivaleuce from these data, it is 4.5 MT. This
yleld seems approximately correct for the 094B event. However, when this
method is used to approximate the yield of the 093B event, it results in a
yield-equivalence of 446 kT which seems to be an overestimation by possibly

an order of magnitude.
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FIGURE 52. RELATIONSHIP BETWEEN THE MAXIMUM AMPLITUDE OF INFRASONIC-ACOUSTIC A; WAVE
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Utilizing the recorded infrasonic—acoustic data, it is possible to estimate
the energy release of the El Chichon explosions from a formulation of Posey
and Pierce (1971).
E 13P [R sin (—%-)]1/2 H (cT)3/2
where:
E = Energy in ergs
P = Amplitude (peak-trough) of pressure change in microbars

R = Radius of earth (6.371 x 108 cm)

A = Great circle distance (source-receiver, cm)
H = Atmospheric scale height (8 x 10° cm)

C = Velocity of observed wave (cm/sec)

T = Period of observed wave (seconds)

Following the Wexler and Hass methodology of using the largest amplitude wave
of the A) train (i.e., the largest period observable), the energy releases
for the five explosions of El Chichon were computed and are listed in table
5. For comparison, the energy release from the Mt. St. Helens 18 May 1980
eruption is also given in table 5. Enerpy estimations based on microbaro-
metric and radial mode seismic data are included. Note the close correspon—
dence of the energy releases estimated for events 093A, U94A ana C94B to
those estimatiouns previously mentioned. Also note the reasonable agreement
between the estimations based on microbarometric and seismic data. Although
the energy of the 093B event is estimated by tliis method to be 4.2 x

1021 ergs, it is likely an overestimation. The reason for this
overestimation, like the Wexler and Hass method, is that the methods both
were formulated to use the nondispersive GRp and S modes. It is unlikely
that the higher acoustic modes attenuate in a similar manner to these longer
period modes and so, strictly speaking, the formula of Posey and Pierce
(1971) 1likely 1is not applicable.

In conclusion, these estimations of energy release by the El Chichon explo-
sions suggest that the yield threshold for these observations is likely in
the range of a few tens of kilotons. Further, SRy derived estimatiouns are
within a factor of 2-4 of the equivalent microbarometric data derived
estimations. Additional analyses will be necessary to improve these
capabilities.
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TABLE 5. ENERGY AND EQUIVALENT YIELD ESTIMATIONS FOR
THE EL CHICHON EXPLOSIONS

Event
Number Code Microbarograph Energy
1 088 1.10 x 1022
2 093A 4.49 x 1022
3 093B 4.20 x 1021
4 094A 4.79 x 1022
5 0948 1.08 x 1023
6 Mt. St. Helens 1.48 x 1024
(Donn and
Balachandran,
1981)
* assumes 1 KT = 4.22 x 1019 ergs
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259.5

1.06

99.5

1.14
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35.0

KT
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3. SUMMARY CONCLUSION AND RECOMMENDATIONS

The primary goal of this research program has been to assess the capability
of detecting and analyzing infrasonic signals recorded by three-component,
long-period seismograph systems. Accomplishment of this goal required
installation and operation of a collocated standard microbarograph array and
three-component KS-36000 (SRO) seilsmograph system to provide data with which
to make a meaningful comparison. A discussion of the data acquisition task
of this program has been given in section 2.2. During the performance
period, we examined the relative effects of the ambient noise fields on
discrimination of infrasonic-acoustic signals recorded microbarometrically
and seismically. A discussion of this aspect of the research is summarized
in section 2.3. Based on the results of these analyses, we have made several
conclusions about the relative infrasonic signal discrimination capabilities
of standard mircrobarometric recording versus seismic recording methods.

During times characterized by low wind conditions, the microbarougraph system
has a better signal-to-noise ratio for the spectral region from 0.00l1 hertz
to 0.1 hertz than does the vertical component seismograph. During times
characterized by moderate to high wind conditions, however, the vertical com-
ponent seiswograph has a significantly better signal-to-noise ratio than does
the microbarograph. High-amplitude microseismic storms periodically can
obfuscate infrasonic signals recorded only on seismograph systems; and,
although low-pass, prediction error, and ft-k filtering can reduce this
interference, there may not be sufficient post—filtration digital count reso-
lution to discriminate infrasonic signals.

In addition to noise field analyses, we had the opportunity to study
infrasonic-acoustic signals generated from several sources. Of these, the
two most important were the Millrace detonation and an explosive-eruption
sequence from E1 Chichon volcano. The infrasonic signal generated by the
Millrace explosion was not capable of being discriminated from the ambient
noise on either the seismic or the microbarometric digital records. This is
an important result because it establishes one observation threshold limit.
On the other hand, five explosive eruptions of El Chichon volcano were
recorded well on both the seismic and microbarowetric records.

Comparison of the signals recorded on the seismograph system and the micro-
barograph array has demonstrated extremely good agreement between the theoret-
ical and observed vertical mode earth response function in the frequency

band from 0.1 hertz to 0.00l hertz. On the other hand, the observed radial
mode earth response function is a factor of five larger than was theoreti-
cally predicted. The exact cause of this discrepancy has not been determined.
1f this specific case is generally valid, then the resolution of infrasonic
signals on radial mode seismograms is significantly better than was thought
previously.
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Additional analyses of the infrasonic signale from the El Chichon explosive
eruptions are discussed in section 2.4. The cesults of these analyses indi~
cate that "size"” of the eruptions varied considerably, and certain conclu-
sions about the characteristics of the assoclated infrasonic signals have
been drawn. In general, there are linear relationships between amplitudes
and periods of waves comstituting the A; signals on both the microbarograph
and seismograph records. The slopes of the amplitude~versus—-period rela-
tionships are approximately @™l and w~3 for the microbarograph and radial
seismograph records respectively. As the intensity of the source increases,
there is an increase in the longest period observed. All observed explosions
had high acoustic-mode number waves in the A; wave trains. The amplitudes of
the high mode number (high~frequency) waves were relatively constant, even
though the “"magnitudes” of the explosions varied by at least two orders of
magnitude. Although these high-~frequency waves were useful for examining tem-
poral complexity of the source function, we concluded that they are not use-
ful for determining yield.

Because these explosions produced signals which varied considerably in their
signal-to-noise ratios, it would be useful to know what their yield-
equivalent energy release was. The two event extremes were the 093B and the
094B explosions.

Attempts to assign yleld~equivalences to these events have demonstrated the
need to develop such a capability for small yield explosions which currently
does not exist. Utilizing a variety of techniques which are discussed in
section 2.4.3, we suggest that the yield-equivalence of the largest explosion
(094B) is approximately two to four megatons. On the other hand, the yield-
equivalence of the smallest explosion studied (093B) 1s appruximately twenty
to ninety kilotons. If the dimensioun of this latter event is correct, then
the yield of the smallest explosion resolvable is in the neipghborhood of a
few tens of kilotons. Because of the large uncertainties involved in these
calculations, however, these limits must be regarded with caution. We recom-
mend that significant additional research be conducted using, both historical
atmospheric nuclear explosion data and current volcanic explosion data to
reduce these uncertainties and formulate a more robust yield estimation
technique.
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APPENDIX A

DERIVATION OF INFRASONIC SNR

Let m(t) and u,(t) denote the outputs of a microbarograph and vertical
selsmograph, respectively. With the wind blowing, and an infrasonic signal
present:

n(t) = rm*(ps + Pn) (1)

where ry is the response of the microbarograph, pg is the infrasonic pressure
signal, p, is the turbulent noise created by the wind, and (*) denotes
convolution. Similarly,

uy(t) = rg*(8zg*pg + 8zn*pPn + 1z) 2)
where rg is the response of the seismogrsph, g, and g,, are the Greens func-
tions for the vertical component of displacement caused by an infrasonic
signal and wind noise, respectively, and n, is the vertical component of
seismic noise. For a vertical seismograph located at a depth of 150 meters,

it can be shown that the expected value of the noise due to atmospheric noise
will be much less than that of other noise sources.

<(gan * Pn)2> << (ng)?> 3)
So, equation 2 may be approximated as
u(t) = 1, * (gz5 * pg + ny) (4)
The corresponding power spectra of m(t) and u, (5) may be written
M(w) = ,Rm'?- (Pg + Py) (5)
Ugw) = lelz (|st|2 Py + Np) (6)
where M, U,, Pg, P, are the power spectral density functions associated with

m, U,, Pgy Pp» and nz. Ry, R, and G5 are the complex temms for functions
associated with ry, r, and g,g. Rewriting eugation 5 as:

M{w)

!E;F = Py + P, a

and equation 6 as

Uzlw) N,
= Py + 8)
le‘Z |Czs|2 ® Gzs 2 ¢
= Pg + Pr:'
A-2
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It can be seen that the term

: Nz ©

p'n = )
‘Ezsl2

and can be thought of as an equivalent pressure noise power spectral density

estimate for the earth motion field.

Let (SNR), and (SNR), be the signal-to-noise ratios for the earth motion and
pressure fields, the

Pg
(SNR),; = FON (10)
n
and
Pg
(SMR)y, = — (11)
Pn
The ratio, I, of the signal-to-noise ratios can be written
(SNR),
Ig = —— (12)
(SNR)y
and will reduce to
P
= 0 (13)

~

Therefore, if we restrict our attention to an interval in time where Pg = O
and we know the module of the tramsfer functions Ry, R;, Gg;, we can estimate

I,, for the outputs of a microbarograph and vertical seismograph.
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APPENDIX B

EARTH TRANSFER FUNCTION

From equations (5) and (6) of appendix A the seismograph vertical power
i spectra, U,(w) and microbarograph power spectra, M(w) are

|

Ug(w) = IRzlz (|st|2 Ps + N;) (1)

|

M) = [Ra]? (2g + Bo) 2

e
o

The cross—power spectral density between the vertical seismograph power
spectra and microbarograph power spectra i1s defined as G, (w), which equals

.

Gap(w) = [Rp(Gzg Pg + N;)]* * Ry(Pg + Pp) 3)

! where (*) as a superscript is a complex conjugate.

—

Expanding equation (3),

Gym(w) = Rp*Gg*Pg*RpPg + R,*N *RgPg (4)

+ RZ*GZS*PS*RIIIPH

i + RN *RyPp

. If we restrict our interval In time to one where other imputs to the
selsmograph are uncorrelated with changes in the local atmospheric load, then
' the cross power spectra reduces to
]
| Gom(®) = Rz"‘st""RmPs2 (5)
Taking the magnitude of the cross spectrum, equation (5) is transformed to
|oaa| = [Ro] [ozs@]| |ra] |rel2 )
Dividing the cross spectra magnitude by the power spectrum of the
microbarograph
lczm(“’)l - lel les(“’)l 'le %
M(w) |Ral 2 (Bs? + Bp2) o)
equation (7) can be reduced to
|sz(“’)l - Gzg(w) Rzl (8)
M(w) Ro| (1 + PnZ)
B-2
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We assume that during an infrasonic signal, the power spectra of a signal will
be >> than the noise spectra and equation (8) reduces to

lem(‘L)l . (9)
M(w) Ry

We can then solve for the earth transfer function G,g(w) by equation (10)

|Ra| |Seat] _
el - e
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VOLCANIC EVENTS

El Chichén Volcano, S Mexico (17.33°N, 93.20°W). All times are local (= GMT - 6
hours) .

After several weeks of local seismicity, explosions from El Chichén in late
March and early April ejected a series of tephra columns, 2 of which penetrated well
into the stratosphere. No previous historic eruptions are known from this volcano,
situated to the SE of México’s main volcanic belt. Officials reported that as many
as 100 persons may have been killed by the eruption and associated seismic activity.
Tephra falls were very heavy near the volcano, forcing tens of thousands of residents
to flee their homes, and causing major damage to crops and livestock.

28-29 March

The eruption began 28 March at 2332 and NOAA geostationary weather satellite
imagery showed that the eruption column was about 100 km in diameter U0 minutes
later. Analysis of an infrared image returned at 0300 yielded a cloud top
temperature of -75°C, corresponding to an altitude of 16.8 km, about 1 km above the
tropopause. Surface and vault microbarographs and a KS36000 (SRO-type) seismograph
operated by Teledyne Geotech near Dallas, Texas (1797 km from El Chichén) received 22
minutes of infrasonic signals generated by explosive activity. Nine distinct signals
were recorded, including a strong gravity wave, indicating that the eruption column
struck the tropopause. Instruments at McMurdo, Antarctica, 11865 km from El1 Chichdn,
recorded about 2 hours of infrasonic signals. Nine intensity peaks were detected, of
which 5 were clearly from the eruption.

Vigorous feeding of the plume continued for several hours but had clearly ended
by 0600. A dense tephra cloud drifted ENE from the volcano and a much more diffuse
plume moved in roughly the opposite direction (see Figure 1). By 0530 the next
morning, satellite images showed the main plume extending from the Yucatin Peninsula,
S of Cuba, to Haiti, and remnants of the more diffuse plume over the E Pacific Ocean
at about 15°N, and 118-119°W. The U. S. National Weather Service analyzed wind
directions and speeds at different altitudes near the volcano, and concluded that the
ENE drift of the dense cloud indicated that it was in the upper troposphere, whereas
the diffuse plume blown to the WSW was in the middle troposphere at roughly 6-7.5 ka
altitude. 1Initially, none of the tephra appeared to be drifting in a direction
consistent with the lower stratospheric circulation, but significant aerosol
development in the stratosphere is indicated by the LIDAR measurements described in
the next-to-last paragraph of this report.

Excerpts from the geophysical section of the SEAN Bulletin are printed in EOS, a pub~
lication received weekly by members of the American Geophysical Union (2000 Florida
Avenue NW, Washington, DC 20009). The complete Bulletin is available in the micro-
fiche edition of EQS, as a microfiche supplement, or a paper reprint. For the micro-
fiche, order document number E82-003 at $1.00 from AGU. For reprints, order SEAN
Bulletin (give date an¢ volume number) through AGH} Separates: $3.50 for the first
copy of any issue to those who do not have a deposit account; $2.00 to those who do;
additional copies are $1.00. Orders must be prepaid. SEAN Bulletin subscriptions
are available from AGU at $18/year to US addresses and $28/year to other countries.

The SEAN Bulletin is also available from the National Technical Information Service
(U. S. Department of Commerce, Springfield, Virginia 22161), publication number
PB82-9157. Annual subscription fee for North American continent countries is $40.00;
elsewhers, $80.00 One calendar year of the Bulletin on microfiche is available at
$6.25 and $12.50 respectively for the above geographic areas. PB82-915703
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El Chichén Volcano (continued)

Heavy ashfall was reported from towns near the volcano. At Pichucalco, about 20
km NE of the summit, 15 cm of ash was reported, and 5 cm of ash fell at Villahermosa
(population 100,000), 70 km NE of the volcano. Residents of Nicapa, a village on the
NE flank, took refuge in a church that was toppled by a magnitude 3.5 earthquake,
killing 10 people and injuring about 200. Initial estimates of the number of
additional deaths varied, ranging as high as 100, and many more were probably killed
on the SW flank during this or subsequent eruptions (see 5 paragraphs below). Most
of the casualties on the N flank were reportedly caused by fires started by
incandescent airfall tephra. Tens of thousands of people fled the area, The heavy
ashfall forced the closure of roads and the airports at Villahermosa and Tuxtla
Gutierrez (about 70 km S of the volcano). Cocoa, coffee, and banana crops were
destroyed, and the cattlemen’s association requested that animals from a wide area be
transported for butchering because ashfall had made grazing impossible.

30 March-3 April

A second but much smaller explosion was observed on the satellite imagery at
about 0900 on 30 March. A thin plume drifted E about 120 km before dissipating. A
somewhat larger explosion that was first visible at 1500 produced a cloud that rose
into the mid-troposphere and moved about 350 km to the N. Activity was declining by
1900. Haze was widespread over central Mexico, reducing visibility to about 8 km in
Mexico City (about €50 km WNW of the volcano) and to only about 3 km in Tampico
{(about 750 km NW of the volcano). A small explosion shortly before 1330 on 31 March
produced a plume that reached the upper troposphere and blew to the E but dissipated
quickly.

A small explosion during the early afternocon of 2 April ejected a
mushroom-shaped cloud that rose to about 3.5 km altitude in 30 minutes., Satellite
images showed renewed explosive activity early 3 April. An eruption column was
emerging from the volcano by 0300 and blew to both the NE and SW. A series of
gravity waves and acoustic signals from this activity were again recorded by Teledyne
Geotech instruments near Dallas, Texas. The calculated start time for this activity
was 0250 and signals continued for 14 minutes. As with the initial explosion 28
March, the powerful gravity waves generated by this event indicated that the eruption
column struck the tropopause forcefully. Smaller explosions, calculated to have
begun at 0312, generated aco:stic waves and a single gravity wave that were received
near Dallas for 10 minutes. During the next 5 hours, ash drifted over N Guatemala
and Belize, At Nicapa, on the NE flank, 7.5 cm of new ash was reported and a haze of
S0; was visible during the day. Explosive activity resumed about 2000. Acoustic
data recorded by Teledyne Geotech indicated that explosions probably occurred every
2-3 minutes, generating a few initial gravity waves and a complex series of acoustic
waves that continued for U8 minutes. The total acoustic energy of this activity was
significantly greater than that produced by the early morning explosions, and the
eruption plume was denser and probably rose somewhat higher. It was initially
elongate NE-SW and drifted over S Mexico, N Guatemala and Belize. By noon the next
day, a faint plume extended to about 25°N, 79°W, almost to Cuba, and lower altitude
material, probably at only about 1.5 km, was drifting directly northward along the
95°W meridian,

Y Aprid
A stronger explosion, possibly larger tnan the initial event 28 March, first

appeared on the NOAA geostationary weather satellite image returned at 0530 L April
and was reported by ground observers to have started at 0522. An infrared image 3.5
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El Chichén Volcano (continued)

hours later showed a temperature of -76°C at the top of the eruption cloud,
corresponding to an altitude of 16.8 km, identical to the altitude measured from the
28 March plume. Wind speeds near the volcano apparently remained relatively low and
most of the cloud remained over S Mexico and N Guatemala more than 24 hours later.

In Pichucaleco (about 20 km NE of the summit) incandescent tephra could be seen rising
from the volcano and the ash cloud darkened the sky during the morning as though it
were night. Felt earthquakes were also reported early U4 April., At Ixtacomitén, 18
km ENE of the summit, there was a heavy fall of tephra no larger than 4 cm in
diameter and the army was sent to evacuate 3,000 residents. No casualties were
reported. All villages within 15 km of the summit had previously been evacuated and
tens of thousands of people had fled their homes. Government officials reported
ashfall over an area of 24,000 km® and crop damage of $55,000,000.

A pumice flow deposit from the ¥ April eruption extended about 5 km NE from the
summit, terminating about 2 km from Nicapa. At its distal end, the deposit was about
100 m wide and 3 m thick and contained pumice blocks 1 m in diameter. Temperatures
measured by a thermocouple at 40 cm depth on 8 April averaged 360°C, and were as high
as 402°C. The pumice flow deposit appeared to have been emplaced as 2 separate
events in rapid succession. Shortly afterward, an ash flow flattened trees in the
valley surrounding the pumice flow deposit and left a relatively thin layer of ash
that had a temperature of 94°C at 10 cm depth 3 days later.

Airfall tephra thickness in Nicapa, 7 km NE of the summit, totaled 25-U40 cm
after the 4 April eruption. Bombs as large as 50-60 cm in diameter had wade numerous
holes in the roofs of houses and many otner roofs had collapsed. In hand specimen,
the tephra appeared to be a crystal-rich andesite or dacite containing hornblende and
considerable feldspar. In Ostuacén, 12.5 km NW of the summit, tephra was 15-20 cm
thick after the 4 April eruption, including pumice as large as 15 cm in diameter.
Many roofs had been destroyed. Extreme heat made it impossible to approach the
village of Francisco Leén, 5 km SW of the simmit. Midway between Ostuacén and
Francisco Ledn, a river was boiling and flattened trees could be seen upslope.
Geologists thought it was likely that pyroclastic flows had moved through the area,
Of the roughly 1000 residents of Francisco Ledn, about half had reportedly left
before the eruption because of the many felt earthquakes in February and March, but
the remainder were missing in early April. A helicopter flight over the village
during the first week in April revealed no signs of life. Because of the danger of
mudflows when the rainy season begins around the end of April, authorities
established a prohibited zone extending outward 10 ikm from the summit.

By 5 April, the low-altitude plume from the second 3 April explosion had reached
the S Texas coast and Brownsville reported visibility of only 6.5 km in haze. A few
flights into small S Texas airports were cancelled, but winds initially forced most
of this material into the Gulf of Mexico. Low-altitude (1.5-2 km) ejecta from the 8
April explosion also moved northward, and a slight change in wind direction blew the
ash cloud further N and inland over Texas by late 7 April. A light ashfall occurred
in Houston during the night of 7-8 April and samples were collected for analysis by
NASA geologists.

5-11 April

A plume generated by a smaller explosion was observed on satellite imagery at
1130 on 5 April. Ground observers reported that the comparatively minor activity
lasted about 3 hours and that no incandescent tephra was ejected. A similar but
possibly slightly larger explosion could be seen on the satellite image returned at




El Chichén Volcano (continued)

0930 on 6 April. Geologists reported that earthquakes as strong as magnitude 1.5
were recorded about every 3 minutes 6 April. Geologists working a few km NE of the
summit reported that about 2 mm of wet ash fell at about 1000 on 8 April and 1130 on
the 9th. Satellite images returned at 0728 on 9 April and 0238 on 10 April both
showed small diffuse plumes, drifitng NNE and SSE respectively.

Data from laser radar (LIDAR) measurements at Mauna Loa Observatory, Hawaii
(about 19.5°N, 155.6°W) during the nights of 9-10 and 10-11 April indicated that El
Chichén had injected large quantities of volcanic material into the stratosphere (see
Table 1). Several layers were detected, with strongest backscattering at an altitude
of 25.7 km. Analysis of wind conditions at 25 km altitude in Hawaii and México
indicated a likely drift of about 5-7 m/second (roughly 430-600 km/day) towards the
W, which would carry volcanic debris from E1 Chichén to Hawaii in 1 1/2 to 2 weeks.
Inspection of a satellite image returned late 11 April showed a moderately dense
cloud extending from México to just W of Hawaii, spreading from roughly 300 lm wide
near the Mexican coast to nearly 850 km near its distal end.

No previous eruptions of El Chichén are known in historic time. Before the 1982
eruption, the volcano was heavily forested, with a ashallow crater, 1900 m by 900 m,
elongate NNW-SSE. Solfataras and hot springs were present in the crater and on the
flanks. Mullerried (1933) describes voluminous airfall deposits from previous

eruptions that he believed to be post-Pleistocene.

References: Hﬁllerried, F.X.G., 1932, Der Chichén, ein bisher unbekannter
taetiger Vulkan im noerdlichen Chiapas, México; Zeitachrift fur Vulkanologie v. 14,
no. 3, p. 191-209.

Mullerried, F.K.G., 1933, El Chichén, Unico Volcén en Actividad en el Sureste de
México; Universidad de México, v. 5, no. 27, p. 156-170.

TABLE 1
DATE AND TIME LAYER ALTITUDE IN KM (peak in parentheses) BACKSCATTER
10 April, 0600 GMT 19-20.6 (20.6) 3.5
21.5-23 (22) 48
23-2U4.5 (24) 25
11 April, 1400 GMT (13.7 60
(22) 32
(23.8) 112

Table 1: Altitudes of layers of material, probably from El1 Chichén, observed by
ruby-wavelength LIDAR from Mauna Loa Observatory, Hawaii. The backscattering ratios
given are peaks for each layer. A layer of volcanic debris of unknown origin,
observed during each LIDAR measurement since late January, is not included in this
table but is described in the "Atmospheric Effects” report at the end of the Volcanic
Events section.

Information contacts: Cinna Lomnitz, Instituto de Geofisica, Universidad
Nacional Auténoma de México, México 20, D.F. México; Servando de la Cruz and
Francisco Medina, Instituto de Geofisica, Universidad Nacional Autbnoma de México,




El Chichdn Volcano (continued)

Ciudad Universitaria, 04510 México D.F. México; Maurice Krafft, Centre de
Volcanologie Vulcain, B.P. 5, 68700 Cernay, France; Dennis Haller and Charles Kadin,
Synoptic Analysis Branch, NOAA/National Earth Satellite Service, S/0P33, Camp
Springs, Maryland 20233 USA; Michael Matson, Land Sciences Branch, NOAA/National
Earth Satellite Service, Camp Springs, Maryland 20233 USA; H. M. Johnson,
Applications Laboratory, NOAA/National Earth Satellite Service, Camp Springs,
Maryland 20233 USA; Arthur Krueger, Climate Analysis Center, NOAA/National Weather
Service, Camp Springs, Maryland 20233 USA; Fred Mauk, Teledyne Geotech, 3401 Shiloh
Road, Garland, Texas 75041 USA; Charles Wilson, Geophysical Institute, University of
Alaska, Fairbanks, Alaska 99701 USA; Kenneth Coulson, Mauna Loa Observatory, P.0O. Box
275, Hilo, Hawaii 96720 USA; Charles A. Wood, NASA, Johnson Space Center, Code SN-§,
Houston, Texas 77058 USA; Notimex Radio, México City, Mexico; The New York Times;

United Press International.
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Figure 1: NOAA geostationary weather satellite image returned 29 March at 1000, about
10.5 hours after E1 Chichén’s initial explosion. A dense upper tropospheric eruption
cloud drifts ENE, and a more diffuse cloud drifts WSW, probably in the

mid-troposphere.

See also the addendum at the bottom of page 23,
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Missouri (continued)

Information Contact: Gary Baird, Route 5, Box 568A, Carthage, Missouri 64836
UsaA.

W Texas, USA, 27 February, 044520 GMT (214520 Mountain Standard Time)
Observers: | Hore than 50 local citizens; 1 airline pilot, who gave the time
Location: El Paso (31.23°N, 106.45°W)

Path: E to W, nearly straight down (deviating from the vertical only about 5°)
Duration: u-5 seconds

Magnitude: 1/8-1/2 the size of the full moon; like a magnesium flare

Color: Brilliant bluish white, to bright then dark red, to orange

The pilot observed the fireball, traveling steeply downward, appear to expand
and brighten before it reddened and disappeared below his altitude of 11.2 km. An
observer on the E side of E1 Paso reported that fireball )it the E slope of Mt.
Franklin, in the center of the city. Observers on the W side of the city heard 2 or
3 booming noises that rattled windows about 3 minutes after the fireball had
disappeared. A rancher between El1 Paso and Deming, New Mexico reported that the
fireball extinguished at about 30° above the horizon. In Deming an observer
described it as small and brilliant, then red, then orange, and appearing to travel
very slowly.

Information Contact: Donald Rathbun, M.D., El Paso Medical Center, Suite 1-C,
1501 Arizona, El1 Paso, Texas 79902 USA.

Addendum

El Chichon Volcano

Hector Galindo provided the following additional information about the eruption
at press time.

The initial vulcanian eruption started suddenly at 2332 on 28 March, ejected
about 1/3 km of ash, and deposited pumice more than 10 km from the summit. After
several days of relatively minor activity, a similar eruption began 3 April at about
1933 and lasted for about an hour. At 0536 on 4 April, a third strong eruption
ejected large quantities of ash and pumice as well as several pyroclastic flows
that were no longer than 6 km. In mid-April, continuous emission of ash limited
visibility to several hundred meters and flights around the volcano were precluded
by the large number of particles suspended in the atmosphere.

Most of the ashfall from El Chichon has been N of the volcano, with reported
thicknesses of 0.1 cm at 200 km distance, 0.3 cm at 100 km, and 25 cm at 10 km.
The total volume of ejecta was estimated at 0.5 km .

Installation of a seismic net around the wolcano began 31 March. As of
mid-April, 10 portable seismographs from the National University of Mexico were
in place, as were several radon detectors.

Information Contact: Hector Galindo, Director, Instituto de Geofisica, Univ-
ersidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. Mexico.
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VOLCANIC EVENTS

El Chichén Volcano, S México (17.33°N, 93.20°W). All times are local (= GMT - 6
hours),

A major eruption of El Chichén, its first in historic time, began with a large
explosion late 28 March (see last month’s Bulletin). This explosion produced heavy
tephra falls N of the volcano, but the initial press reports of the thickness of ash
deposits, included in last month’s Bulletin, were exaggerated (see below). As many
as 100 persons may have been killed on the N side of the volcano and flank villages
were badly damaged. Tens of thousands of people fled the area, and damage to crops
and livestock grazing areas was substantial. Intermittent weaker tephra emission
continued for the next several days. A series of 3 explosions of increasing size
occurred 3-4 April, the last of which, at 0522 on 4 April, was the largest of the
eruption and produced a major stratospheric cloud, described below. Pyroclastic
flows moved several km down flank valleys (see description in last month’s Bulletin).
Conflicting reports persist about the fate of the approximately 1000 residents of a
SW flank village that was apparently in the path of one or more pyroclastic flows
ejected 28 March or 3-4 April.

Infrasonic Data

In addition to the infrasonic data collected from near Dallas, Texas (see last
month’s Bulletin), the array at McMurdo, Antarctica (11865 km from El Chichén)
recorded about 2 hours of acoustic waves from the 28 March explosion. At College,
Alaska (6634 km from the volcano), about an hour of acoustic signals were received
from both the 28 March and 4§ April explosions. Antipodal acoustic-gravity wave
signals from the first 3 April and 4 April explosions were detected at Tennant Creek,
Australia (19.52°S, 134.25°E).

Volume and Composition of Tephra

Tephra samples were collected from about 100 sites around El Chichén in
mid-April. Near the volcano, 3 separate layers were evident, ejected by explosions
28 March, 3 April (at 2000) and 4 April, Farther away, only 28 March and 4 April
tephra had been deposited. The axis of maximum deposition extended approximately N
from the summit for the 28 March tephra and roughly E from the summit for the 4 April
material. Both of these layers were normally-graded but the 3 April layer, where
present, consisted only of fine ash. James Luhr calculated that about 0.20 lam *of
tephra (converted to a density of 2.6 grams/cm %) had fallen within the 0.1 cm isopach
(see Figure 1). X-ray fluorescence analyses of pumice samplesa showed no significant
variation in chemical composition, either within individual units or between units,
The pumice, a porphyritic trachyandesite, has a whole-rock silica content of about
57.5%; silica content of the glass is about 61%.

Minor Activity April-May

No large explosions have taken place since 4§ April, but occasional minor ash
emission continued. The active crater, about 600 m in diameter in early May, was
located within the pre-existing shallow summit crater that had dimensions of about
1900 m by 900 m. A 12-km prohibited zone around the summit remained in effect in
early May. A 4-station seismic monitoring network operated by the Universidad
Nacional Auténoma de México (UNAM) recorded 6~8 small earthquakes per day in early
May, including some B-type events., The ejection of a minor ash column on 11 May was
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El Chichén Volcano (continued)

accompanied by a few small discrete earthquakes centered at about 2 km depth, and
additional seismicity that may have been harmonic tremor.

Stratospheric Cloud

Careful inspection of visible satellite imdgery from the NOAA 6 and 7 polar
orbiters, the GOES East and West (U.S.), GMS (Japan), and Meteosat (Europe)
geostationary weather satellites has permitted the tracking of the densest portion of
the 4 April stratospheric cloud as it circled the globe from E to W. The cloud
reached Hawaii by 9 April, Japan by 18 April, the Red Sea by 21 April, and had
crossed the Atlantic Ocean by 26 April, dipping.S to about 5°N at its W edge.
Diffusion into higher latitudes appeared to be very limited. During its first
circuit of the globe, the cloud could be seen in part (but usually not all) of the
range 5°-30°N, sometimes occupying a band roughly 15°-20° wide. Tracking of the
cloud after late April has been difficult, but careful work may allow the position of
the cloud front to be established after that date. Ozone data from the NIMBUS 7
polar orbiting satellite, available for the 2 weeks following the cloud’s ejection,
allowed its path to be clearly traced, and scientists at the Goddard Space Flight
Center hope to continue observations of its position as more satellite data arrives.
A balloon flight from Laramie, Wyoming {(41.33°N, 105.63°W) in mid-April detected a
sharp peak at 17 km (Jjust below the tropopause at 18 im).

Laser radar (LIDAR) stations in the United States, Japan, and Europe recorded
enhanced backscattering in the stratosphere at times that correlated well with
satellite observations of the cloud’s movement (see Table 1). Very strong signals
were detected by stations at lower latitudes, while the cloud appeared to be present
only intermittently and near the base of the stratosphere over mid-latitude stations.
A possible northward diffusion of the cloud, probably on its second circuit of the
globe, is shown by the sharply higher backscattering ratios detected at Fukuoka,
Japan (33.65°N, 130.35°E) in May. At lower latitudes, the strongest layers were
centered above 25 km. The highest layer detected was at 29.7 km altitude.

Persons in the SW United States observed phenomena that indicated the presence
of stratospheric layers. A Bishop’s Ring was first seen from Houston, Texas on 11
April and has been intermittently visible since. The 22° angular distance from the
sun indicated a particle size of 0.7-0.9 microns. Unusual sunrises and sunsets have
been reported from E Texas since 24 April. From Tucson, Arizona, Aden and Marjorie
Meinel observed a primary scattering layer at 13.2 km and a weaker layer at 20 km
around sunset on 30 April. By early May, the aerosol cloud had become extremely
dense, with most of the material between 14 and 18 km and a trace to 20.5 km. The
main body of the layer appeared to pass NW of Tucson during the evening of 7 May.
Long windrows of aerosol were visible, similar to the phenomenon seen after the 1976
Augustine eruption. The conspicuous clouds had nearly disappeared by 9 May, but a
strong aureole remained around the sun all day 10 May.

The high altitude of the cloud made direct sampling difficult and none has been
possible in the densest portion above 25 km. Flights from the NASA Ames Research
Center near San Francisco to about 23°N on 19 April and 5 May sampled the base of the
cloud at about 19 km altitude., Optical depths of the cloud as measured with a sun
photometer reached 0.3-0.4, increasing southward. Particles ranging in size from 0.1
to 3 microns were collected. Sulfuric acid droplets were common, but there were very
few silicate particles. However, NaCl crystals were a significant component and salt
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El Chichén Volcano (continued)

has apparently never before been found in significant quantities in a volcanic cloud.
Measurement of the degree of depolarization of layers detected at 15-16.5 km and
24-25.5 km 22 April by LIDAR equipment at Nagoya Universaity (about 35°N, 137°E)
suggested that particles in the lower layer were strongly non-spherical, while those
in the upper layer were mostly spherical droplets.

Information Contacts: Francisco Medina, Instituto de Geof{sica, UNAM, Ciudad
Universitaria, 04510 México D.F., México; James Luhr, Dept. of Geology and
Geophysics, University of California, Berkeley, California 94720 USA; Michael Matson,
Dennis Haller, and Charles Kadin, NOAA/National Earth Satellite Service, Camp
Springs, Maryland 20233 USA; Bernard Mendonga, NOAA/ERL, Air Resources Laboratory,
Code RF 3292, 325 Broadway Avenue, Boulder, Colorado 80303 USA; Kenneth Coulson,
Mauna Loa Observatory, P.O.Box 275, Hilo, Hawaii 96720 USA; Motokazu Hirono,
Department of Physics, Kyushu University, Fukuoka 812, Japan; William Fuller, NASA,
Langley Research Center, Hampton, Virginia 23665 USA; Yasunobu Iwasaka, Water
Research Institute, Nagoya University, Chikusa-ku, Nagoya 26i4, Japan; Raymond Chuan,
Brunawick Corporation, Costa Mesa, California 92626 USA; Charles Wilson, Geophysical
Institute, University of Alaska, Fairbanks, Alaska 99701 USA; D.R. Christie, Research
School of Earth Sciences, Australian National University, Canberra, ACT, Australia;
James Rosen, Dept. of Physics and Astronomy, University of Wyoming, Laramie, Wyoming
82071 USA; Aden and Marjorie Meinel, Optical Sciences Center, University of Arizona,
Tucson, Arizona 85721 USA; Michael Helfert, NOAA, 1050 Bay Area Blvd., Houston, Texas
77058 USA; W.F.J. Evans, ARPX-AES, 4905 Dufferin St., Downsview, Ontario M3H 5TX
Canada.
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Pigure 1: 1Isopach map showing thickness of compacted ash at a density of 1.2 g/cm’,
for tephra ejected from El Chichén Volcano, 28 March-% April,
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El Chichén Volcano (continued)
TABLE 1
LOCATION AND DATE LAYER ALTITUDE IN KM BACKSCATTER
(peak in parentheses)
Mauna Loa, Hawaii (16.4) 2
(19.5°N, 155.6°W) (17.8) 2
23 April (21) 6.5
(24.4) 2.4
5 May 13.7-14.3 (14.0) y
(18.4) 5
21=-22.6 (22) 50
25-28 (26.8) 118
11 May (21.4) 17.5
(22.3) 22.4
(25) 21.6 :
(27.1) 83.9 i
Fukuoka, Japan (16) 6.2 ;
(33.65°N, 130.35°E) (24) 3.2
18 April (25) 2.3
(26) 5
4 May (17 12.5
(21.5) 18
(23) 24
(24.5) 470
(26) 57
(26.5) 52
Langley, Virginia (16.3) 1.9
(37.1°N, 76.3°W) 29 April (19.2) 1.8
4 May no layers detected
10 May 16.7-17.7 (17.4) 2.3

Table 1: LIDAR data from various stations showing altitudes of aerosol layers. The
altitude of the peak backscattering ratio in each layer is in parentheses, All
backscattering ratios are for the ruby wavelength of 0.69 microns. For earlier data
from Mauna Loa, see last month’s Bulletin,

Mt. St. Helens Volcano, Cascade Range, S Washington, USA (46.20°N, 122.18°W). All
times are local (= GMT - 8 hours through 2i April, GMT - 7 hours thereatter)

The eruptive episode that began 19 March included the first large explosions
since October 1980 and the extrusion of 2 new lobes onto the composite dome (see last
month’s Bulletin). The tephra volume of the 19 March eruption column was of the same
order of magnitude as (but probably slightly less than) that of the October 1980
cloud (not 20-60 times less, as reported in last month’a Bulletin). Extrusion of
lava onto the N side of the composite dome stopped by 10 April and seismicity had
dropped to low levels by the 12th, but another dome-building phase began on 14 May.

During the 19 March activity, the crater floor thrust fault scarps near the dome
were either buried or scoured away. Measurement of the rates of movement of these
small faults had previously been an important deformation monitoring technique. By
early May a number of small new thrusts had formed on the crater floor W and SW of
the dome, but had not yet yielded useful deformation data. Data from a
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VOLCANIC EVENTS

El Chichdn Volcano, S México (17.33°N, 93.20°W). All times are local (= GMT - 6
hours).

The following summary was prepared by L. Silva, J.J. Cochemé, R. Canul, W.
Duffield, and R. Tilling.

"Violent eruptions of the strato-volcano El Chichdén destroyed its summit dome
and formed a 1-km-wide crater. Field studies and eyewitness accounts indicate that
the initial activity (28-29 March) was phreatomagmatic, and produced a plinian column
over 15 km high and tephra deposits extending more than 200 m downwind. More
vigorous activity 3-4 April produced several pyroclastic flows, some more than 15 m
thick, followed by 2 airfall deposits. Distal sections consist of 3 airfall layers
whereas proximal sections include pyroclastic flows. The total volume of eruptive
products is probably less than 0.5 km?, much of which is juvenile pumice, which is
highly porphyritic with plagioclase, amphibole, and clinopyroxene as major
phenocrysts. Petrographic and chemical data suggest an alkali-rich "andesitic"
composition. The high alkali content of the pumice, occurrence of anhydrite in
tephra, and presence of halite in the stratospheric cloud reflect contamination by
evaporites, Villages within a 7-km radius were entirely destroyed or heavily
damaged. Pyroclastic flows dammed a river and created a 5-km-long lake of hot water;
the failure of the natural dam on 26 May caused a destructive flood. Study of
pre-1982 deposits indicates that El1 Chichdn has developed by several cycles of
pyroclastic eruptions, with or without a subsequent growth of domes, with the last
pre-1982 pyroclastic eruption about 130 years ago. The current activity may continue
and could include dome emplacement."

Premonitory Seismicity

During field work at El Chichdn between December 1980 and February 1981, more
than 1 year before the eruption, René Canul heard loud noises and felt small
earthquakes near the central dome, and could also feel some events while on the
flanks of the volcano. People 1iving near the volcano reported felt earthquakes
several months before the eruption.

March-April Explosions

The March and April explosions destroyed most of the former central lava dome
and formed a new crater, about 1 km in diameter and slightly elongate NW-SE. In

Excerpts from the geophysical section of the SEAN Bulletin are printed in EOS, a pub-
lication received weekly by members of the American Geophysical Union (2000 Florida
Avenue NW, Washington, DC 20009)., The complete Bulletin is avaiiadle in the micro-
fiche adition of EOS, as a microfiche supplement, or a paper reprint. For the micro-
fiche, order document number E82-005 at $1.00 from AGU. For reprints, order SEAN
Bulletin (give date and volume number) through AGU Separates: $3.50 for the first
copy of any issue to those who do not have a deposit account; $2.00 to those who do;
additional copiles are $1.00. Orders must be prepaid. SEAN Bulletin subscriptions
are available from AGU at $18/year to US addresses and $28/year to other countries.

The SEAN Bulletin is also available from the National Technical Information Service
(U. §. Department of Commerce, Springfield, Virginia 22161), publication number
PB82-9157. Annual subscription fee for North American continent countries is $40.00;
slsewhere, $80.00 One calendar year of the Bulletin on microfiche is available at
$6.25 and $12.50 respectively for the above geographic areas. PB82-915705
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El Chichén Volcano (continued)

early June, there were several explosion pits on the floor of the new crater, all of
which were filled with boiling water or mud and were emitting vapor. Although heavy
rains had compacted the ash, 3-4 B remained at the rim of the new crater.

The army reported that 187 deaths were caused directly by the eruption. Among
the deaths were one geologist and 32 soldiers sent to the village of Francisco Ledn,
about 6 km SW of the summit, after the 28-29 March explosion. The pyroclastic flow
that traveled through Francisco Leén left only a thin deposit, but of the structures
in the village, only one wall o. the church, parallel to the direction of the
pyroclastic flow’s movement, remained standing.

All of the volcano’s major drainages contained pyroclastic flow deposits, which
were more than 15 m thick in some of the deeper valleys. These deposits were still
hot in late May and were occasionally the source of small secondary explosions. In
the 2 months since the March-April explosjions, as much as 20 m of erosion has taken
place in some areas and fan deposits have formed at the base of the volcano.

May Activity and Flood

Lakes formed behind natural dams of new pyroclastic flow deposits at several
sites around the volcano. The largest lake, in the valley of the Rio Magdalena at
the SW foot of the volcano, grew about 1 m deeper each day until 26 April, then more
slowly, eventually reaching 5 km in length and several million m*® in volume., Late 26
May, the pyroclastic dam holding back this water failed. Seismographs recorded the
draining of the lake over a period of about 1 hour, sending a flood of hot water
downstream. At Ostuacan, more than 10 km from the dam, the water temperature was
measured at 82°C. Most residents of low-lying areas had been evacuated, but at a
hydroelectric project 35 km downstream 1 worker was killed and 3 were badly burned by
52°C water. The flood also destroyed a bridge several km from the pyroclastic dam.
Geologists inspecting the former lake bed in early June saw a series of strand lines
several m high, indicating that the lake had been draining slowly before the dam
failed.

No large explosi- 's have occurred at E1 Chichén since 4 April. Minor ash
emission continued through early May but none has been reported since the 11th (see
last month’s Bulletin). A 4-station Instituto de Geofisica seismic net N of the
volcano recorded 4-7 very small events per day in late May.

By late May, significant revegetation had begun in some areas devastated by the
eruption. Near Nicapa (about 7 km NE of the summit), coconut trees totally denuded
by the 4 April explosion showed new leafy growth. C“ome residents had returned to
Nicapa and cattle were grazing in the area. Closer co the summit, fields that had
been completely buried contained tufts of grass about 1/3 m high.

Stratospheric Cloud

The major stratospheric cloud ejected by El Chichdén has remained concentrated
over lower northern latitudes, but laser radar (LIDAR) data and observations of
brilliant sunsets appeared to indicate the beginning of significant northward
dispersal in early June. However, with NASA’s SAGE satellite no longer functional,
determination of the extent of the cloud at any given time is very difficult,

Through mid-May, wind data from Hilo, Hawaii showed a strong (up to 240 km/hour),
steady W to E flow between 10 and 20-22 km altitude, and a steady, 50-60 km/hour E to
W flow above 25-26 km. Between these levels, winds were light and variable. No




El Chichén Volcano (continued)

significant N-S component had developed above 10 km since the E1l Chichén eruption.
LIDAR at Mauna Loa, Hawaii (19.5°N, 155.6°W) and Fukuoka, Japan (33.65°N, 130.35°E)
continued to detect dense layers of stratospheric material through early June, at
altitudes of as much as 32 km over Hawali (see table 1). University of Wyoming
balloon flights from Laredo, Texas 17-19 May passed through 2 primary layers, at
15-20 km and 24-27 km altitude. In the upper layer there were more than 500
particles of less than 0.01 micron size per cm® and about 20 particles larger than 1
micron per cm?. April 1982 NOAA 7 satellite data between 120°E and 122.5°W showed an
apparent increase in albedo (visible band) and an apparent decrease in outgoing
longwave radiation (thermal infrared band) between 15°N and 35°N, peaking at
23°~26°N, when compared with the zonal average from the previous 4 years. Further
analysis of samples collected 5 and 7 May during NASA Ames Research Center flights
south from San Francisco shows particles ranging from less than 0.1 microns to
several microns at the base of the cloud (about 19 km altitude). Silicates and
halite crystals of several microns in size were found. Halite concentration was only
a few percent of the amount of H SO, sampled, but H SO, was not as dominant as in
many previous volcanic clouds. Geologists suggested that the halite sampled by NASA
and anhydrite found in tephra near the volcano are probably the resvlt of
contamination by evaporites, which were found in bedrock penetrated by 2 Petroleos
Mexicanos drillholes near E1 Chichédn.

From Tucson, Arizona on 14 May, Aden and Marjorie Meinel observed a roughly 40
by 400 im band of smoky clouds pass overhead during the afternoon, but at sunset
these clouds appeared to be at an altitude of only 8 km. A dense velil covered the
sky 15-16 May. A brilliant fiery red glow appeared 35 minutes after sunset on 16
May. The top of this glow was at 24 km, the highest altitude observed from Tucson
thus far. A feature similar to Bishop’s Ring was observed 17 May and windrows ot
aerosol moved over Tucson later that aftern.on. A dense veil was present 18 May but
was nearly gone on the 19th and skies were almost normal early 20 May. From Kitt
Peak National Observatory near Tucson, extinction of 2 times normal at 3900 Angstroms
was measured in mid-May. Scattering was about equal at all wavelengths except
near-infrared, where the cloud was more transparent. Unusual twilight colors were
observed through mid-May from Flagstaff, Arizona, and extinction coefficients
measured there were about 3 times the normal value. A strong haze has been present
over Houston, Texas since early May. Spectacular sunsets were observed there in late
May and early June and the haze blotted out stars during the night of 2-3 June.
Similar conditions plus a Bishop’s Ring were seen from Austin, Texas during the night
of 5-6 June. From Norwich, England, H.H. Lamb observed a rose-colored pillar of
light at sunset 27 April and 9 May. At sunset 10-12 May, this phenomenon was
accompanied by brilliant orange to fiery red diffused light that extended to 3-4 sun
diameters. Strongly diffused light extended 2-3 diameters from a fiery red sun on 23
May. From the dimensions of the extended twilight illumination, Lamb estimated that
the layer was at very roughly 20 km altitude. Lamb saw no abnormal effects on other
evenings, although poor weather frequently made observations impossible.

By early June, laser radar (LIDAR) observations and reports of unusual sunsets
indicated that the cloud was beginning to move northward. LIDAR operated by NASA at
Langley, Virginia (37.1°N, 76.3°W), began to detect layers at higher altitudes in
early June. After a brilljant sunset on 14 June, a dense layer at 20.2-23.1 km was
accompanied by material at 26.5 km (see table 1), However, as of early June, LIDAR
stations in Italy and West Germany had not detected layers at these altitudes.
Enhanced sunsets with definite striations began 4 June in Boulder, Colorado and
continued for the next several days. Residents of Jacksonville, Florida also began
to see brilliant sunsets 4 June.
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El Chichén Volcano (continued)

TABLE 1
LOCATION AND DATE LAYER ALTITUDE IN KM BACKSCATTER
(peak in parentheses)
Mauna Loa, Hawaii 20.5-22 (21.4) 13
(19.5°N, 155.6°W) 23.2-25.3 (24.1) 40
14 May 25.3-30 (26.8) 153
30 10
3 3
3 June (15.2) 6
22-31 (23.2) 36
(24.1) 38
(28.1) 89
Fukuoka, Japan (18) 5
(33.65°N, 130.35°E) (23) 40
3 June (25.5) 150
(28) y
(28.5) 10
(29) y
Langley, Virginia 15.5-20.4 (17) 1.5
(37.1°N, 76.3°W) 2 June (23.4) 400 m thick 2.7
9 June 16-19.5 (18.6) 1.8
(19.5) 500 m thick 1.6
(20.5) 600 m thick 4
(21.5) 5-600 m thick 2
14 June 16.5-19.5 1.5
(19.9) 400 m thick 3.5
20.2-23.1 (20.4) 2
(22.2) 3
(22.6) 8
(26.5) 800 m thick 1.6

Table 1: LIDAR data from various locations, showing altitudes of aerosol layers. The
altitude of the peak backscattering ratio in each layer is in parentheses. Note that
some layers have multiple peaks. Backscattering ratios from Hawali and Virginia are
for the ruby wavelength of 0.69 microns. Those from Japan are for the YAG wavelength
of 1.06 microns.

Correction: The caption for Table 1 of last month’s Bulletin incorrectly stated that
all LIDAR measurements were at the ruby wavelength. In fact, LIDAR data from
Fukuoka, Japan were at the YAG wavelength of 1.06 microns, as they are in the table
above. The relationship between ruby and YAG values is on the average, approximately
r-1=k(y - 1), where r = ruby wavelength backscatter and y = YAG wavelength
backscatter., The value of k is not constant and its variation provides information
on the size distribution of the aerosols. Motokazu Hirono provided a preliminary
estimate for the present value of k at 0.4,

Information Contacts: Luis Silva M. and Jean-Jacques Cochemé, Instituto de
Geologia, UNAM, Ciudad Universitaria, México, D.F., México; René Canul D., Comisidn
Federal de Electricidad, Gerencia de Geotermia, Morelia, México; Servando de la Cruz
R., Francisco Medina, and Manuel Mena, Instituto de Geofisica, UNAM, Ciudad
Universitaria, O4510 México, D.F., México; Jens Hauskov and Shri Krishna Singh,
Instituto de Ingeneria, UNAM, Ciudad Universitaria, México D.F., México; Robert
Tilling, USGS, Stop 951, National Center, Reston, Virginia 22092 USA; Wendell
Duffield, USGS, Majil Stop 90 C, 345 Middlefield Road, Menlo Park, California 94025
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El Chichén Volcano (continued)

USA; William Fuller, NASA, Langley Research Center, Hampton, Virginia 23665 USA;
Thomas DeFoor, Mauna Loa Observatory, P.0. Box 275, Hilo, Hawail 96720 USA; Motokazu
Hirono, Department of Physics, Kyushu University, Fukuoka 812, Japan; Bernard
Mendonga, NOAA/ERL, Air Resources Laboratory, Code RF 3292, 325 Jroadway Avenue,
Boulder, Colorado 80303 USA; James Rosen, Department of Physics and Astromonmy,
University of Wyoming, Laramie, Wyoming 82071 USA; Raymond Chuan, Brunswick
Corporation, Costa Mesa, California 92626 USA; Michael Matson, Land Sciences Branch,
NOAA/National Earth Satellite Service, Camp Springs, Maryland 20233 USA; Aden and
Marjorie Meinel, Optical Sciences Center, University of Arizona, Tucson, Arizona
85721 USA; Brian Skiff, San Francisco Mountain Cosmographic Group, 421 W Aspen,
Flagstaff, Arizona 86001 USA; William Livingston, Kitt Peak National Observatory, Box
26732, Tucson, Arizona 85726 USA; Michael Helfert, NOAA, 1050 Bay Area Blvd.,
Houston, Texas 77058 USA; James Nania, Deaconess Hospital, West 800 5th Avenue,
Spokane, Washington 99210 USA; Numero Uno newspaper, Tuxtla Gutierrez, México.

Mt. St. Helens Volcano, Cascade Range, S Washington, USA (46.20°N, 122.18°W). All
times are local (= GMT -7 hours).

Increasing deformation and seismicity in early May was followed by the extrusion
of new lava onto the composite dome. Lava began to flow down the NE side of the dome
14 May, but the bulk of the new lava formed a lobe on the dome’s NW flank 15-19 May.
Since then, ejections of steam and ash, similar to those of July and August 1981,
have occurred about once a day. Two of these, on 7 and 8 June, caused 1ight ashfalls
on Portland (about 80 km to the SW). Gas emission rates remained high through early
June.

Deformation of the composite dome and the surrounding crater floor was slow
until early May, then accelerated (see last month’s Bulletin). The crater floor
deformation was blocky and incoherent, as it has been during previous pre-extrusion
periods. While a continuously recording tiltmeter at a new site on the W crater
floor recorded increasingly rapid subsidence (as did a dry tilt station at the same
location), reoccupation of dry tilt stations less than 100 m away showed accelerating
uplift. The development of a small thrust fault was observed between the dome and
the continuously recording tiltmeter, leading Dan Dzurisin to suspect that thrusting
was responsible for the different tilt directions at nearby sites.

Local seismicity had begun to increase on 8 May (see last month’s Bulletin).
In the 24 hours starting at 0700 on 13 May, 63 earthquakes were recorded (about twice
the previous day s number) and some were felt by geologists working in the crater
that day. Three radiating fractures, trending NE, N, and NW were seen in the April
lobe, on the N side of the dome. SO, emission remained at background levels of about
100 tons/day. The rapid subsidence measured by thc continuously recording tiltmeter
stopped about midnight. Harmonic tremor started shortly thereafter, at 0055 on 1l
May, and continued until about 0600. Bursts of seismic energy could be seen within
the tremor. During an overflight at 0415, spectacular, nearly continuocus cascades of
incandescent material could be seen on the NE flank of the dome, but an hour later
the rockfalls had ceased almost entirely. After dawn, a jumbled, blocky area could
be seen on the dome’s summit and upper NE flank and thesre was a rockfall apron on the
NE side of the dome. The jumbled area was larger by afternocon, but it was not
certain whether it was new lava or scoriaceous older material being uplifted by
endogenous dome growth. Episodic gas emission was observed on 14 May and by
afternoon the rate of SO, release had increased fourfold from the previous day, to
about 400 tons/day. The number of earthquakes decreased to 20 in the 24 hours

starting at 0700 on 14 May.
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VOLCANIC EVENTS

El Chichén Volcano, S México (17.33°N, 93.20°W). -

No large explosions have occurred at El Chichén since 4 April and weak ash
enission was last observed 11 May. Minor microseismic activity was continuing in
early July. The large stratospheric cloud ejected by the 4 April explosion remained
dense over lower northern latitudes, but lidar (laser radar) measurements indicated
that gradual northward dispersal was continuing.

Pyroclastic Flows and Casualties

Major erosion of pyroclastic flow deposits around E1 Chichén (see figure 1) has
taken place since the eruption. Some small accumulations of water remain associated
with these deposits, but there have been no recent observations of large lakes such
as the one that produced a fatal flood 26 May (see last month’s Bulletin). The
largest eruption killed many people in and near the village of Francisco Ledén (about
5 km SW of the summit), but initial reports that all of its residents died were
incorrect, according to an American missionary who had lived in the village for many
years. Many villagers who had fled the heavy tephra falls from the initial
explosions 28-29 March, however, returned a few days later. About 140 residents of
the village itself and a similar number from the countryside nearby were killed by
the pyroclastic flow that destroyed the village 4 April (see last month’s Bulletin).

Stratospheric Cloud

A late April - early May NASA flight collected stratospheric material at
altitudes above 18 km over the W United States (including Alaska). The flight crew
reported unambiguous evidence of the cloud as far N as the US-Canada border and
estimated that it reached more than 21 km altitude. A preliminary examination of the
material collected showed that it was a well-sorted assemblage of 5-10 micron
plagioclase crystals and silicic glass, with a small amount of a mafic mineral
(probably an amphibole) and traces of a Ca and S-rich mineral (probably a Ca
sulfate). Scientists proposing investigation of this sample should write to:
Curator, Code SN2, NASA Johnson Space Center, Houston, Texas 77058 USA.

Lidar data collected in June at Mauna Loa, Hawaii (19,5°N, 155.6°W) showed -
backscattering that typically increased from near the base of the stratosphere to a
peak at 26-27 km altitude, with significantly enhanced values to 33-34 km (see table
1). In June, the Mauna Loa data were less variable from night to night and layering b

Excerpts from the geophysical section of the SEAN Bulletin are printed in EOS, a pub- i
lication received weekly by members of the American Geophysical Union (2000 Florida |
Avenue NW, Washington, DC 20009). The complete Bulletin is available in the micro- =
fiche edition of EOS, as a microfiche supplement, or a paper reprint. For the micro-
fiche, order document number E82-006 at $1.00 from AGU. For reprints, order SEAN l
Bulletin (give date and volume number) through AGU Separates: $3.50 for the first

copy of any iasue to those who do not have a deposit account; $2.00 to those who do;
additional copies are $1.00. Orders must be prepaid. AGU will offer SEAN Bulletin
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El Chichén Volcano (continued)

within the cloud was less distinct than in May. The cloud above Hawaili has
apparently affected incoming solar radiation, measured for about 50 years by the
Hawaliian Sugar Planters Association. Although mean daily solar radiation would
normally have been about 110% of the long-term average (because precipitation in May
at the primary station was only 27% of normal), the measured value for the month was
only 92% of average.

Lidar at Fukuoka, Japan (33.65°N, 130.35°E), showed persistent but decreased
backscattering from the 21-29 km layer in late June, but backscattering increased
again in early July. The less dense layer at 18.5 km remained stable through this
period. In early July, backscattering detected by lidar at Langley, Virginia
{37.1°N, 76.3°W) increased sharply for the (highest) layer centered at about 25 km
altitude, approaching those values measured at lower latitudes for the first time,

To assess latitudinal variation in the stratospheric cloud, a lidar-equipped
NASA aircraft flew from Wallops Island, Virginia to Puerto Rico during the night of
8-9 July, to about 12°N (near the coast of Venezuela) 10 July, and from Puerto Rico
to the vicinity of Albany, New York (about 42°N) 11 July. From 25-30°N to the
southern limit of the flight, preliminary data show greatly enhanced backscattering
from a dense layer between 21 and 33 km altitude. Some material was present below 21
km, but it was much less dense., Strong local variation in the cloud was observed.
Although the cloud diminished in density N of 25-30°N, significantly enhanced
stratospheric backscattering was detected to the northern limit of the flight.

Brilliant Sunrises and Sunsets-Saudi Arabia

Weather satellite images first showed the front of the 4 April stratospheric
cloud (visible over water during the day) over the Red Sea 21 April. Edward Brooks,
who has made frequent sunrise and sunset observations from Jeddah, Saudi Arabia
(21.5°N, 39.16°E) saw WNW-ESE-trending bands of haze in the WNW sky after sunset 20
April and similar bands before dawn the next morning. The twilight of 24 April was a
brilliant pink from bands and patches of WSW-ENE-trending aerosol. During the next
several weeks, volcanic cloud effects could be seen in the sky around sunrise and
sunset most days, often as bands of material oriented within 45° of E-W. Brooks
observed a layer 10° above the horizon at twilight 18 May and calculated its altitude
at roughly 20-25 km. Multiple layers began to be visible in June. At sunrise on 5
June, criss-cross bands of aerosol trended SW-NE and SSE-NNW. Brilliant sunrises and
sunsets were common in mid-June. Beginning on 19 June, many sunrises illuminated 2
distinct layers, at about 30 minute intervals. This effect weakened later in the
month and by 30 June the higher layer (illuminated earlier in the morning) had
disappeared. Brooks and others also noted that on 6 July roughly the upper half of
the eclipsed moon was considerably darker than the lower half, which Brooks
interprets as indicating the presence of volcanic aerosols in the atmosphere of the
earth’s northern (but not southern) hemisphere.
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El Chichén Volcano (continued)

LOCATION AND DATE

Mauna Loa, Hawaii
(19.5°N, 155.6°W)
22 June

Fukuoka, Japan
(33.65°N, 130.35°E)
26 June

3 July

Langley, Virginia
(37.1°N, T76.3°W)
2 July

TABLE 1

LAYER ALTITUDE IN KM

(peak in parentheses)

16-34 (27)

(18)
(21)
(24)

(21.3)
(23.2)
(25)
(26.2)

15.0-19.5 (17)
(19.2)

19.8-21.8 (20.2)
2) 35

22.5-2305 (23)
24,0-26.8 (25.

90

Table 1: Lidar data from various locations, showing altitudes of aerosol layers,

Note that some layers have multiple peaks.
Virginia are for the ruby wavelength of 0.69 microns,

YAG wavelength of 1.06 microns.

Backscattering ratios from Hawaili and
Those from Japan are for the

For an equation expressing the average relationship

between ruby and YAG values, see p. 5 of last month’s Bulletin,

BACKSCATTER

Figure 1: Sketch map (adapted from

a map by Luis Silva) showing
approximate locations of

pyroclastic flow deposits around El
Chichén, and changes to the summit
area. The new crater (rim outlined

by the inner hachured ring) is
nested within the old crater.
of the former central dome was
destroyed by the eruption.
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El Chichén Volcano (continued)

Information Contacts: Servando de la Cruz R., Instituto de Geofisica, UNAM,
Ciudad Universitaria, 04510 México D.F., México; Luis Silva M., Instituto de
Geologia, UNAM, Ciudad Universitaria, México D.F., México; Robert Tilling, Stop 951,
USGS, National Center, Reston, Virginia 22092 USA; William Fuller and M. P.
McCormick, NASA, Langley Research Center, Langley, Virginia 23665 USA; Thomas DeFoor,
Mauna Loa Observatory, P.0. Box 275, Hilo, Hawaii 96720 USA; Motokazu Hirono,
Department of Physics, Kyushu University, Fukuoka 812, Japan; Edward M. Brooks, c/o
JECOR/ARMETED, P.0O. Box 8638, Jeddah, Saudi Arabia; Karl How, Hawalian Sugar Planters
Association, P.0. Box 1057, Aiea, Hawaii 96701 USA; William Wonderly, 4209 San Pedro
NE, Apt. 322, Albuquerque, New Mexico 87109 USA; James Gooding, Code SN2, NASA,
Johnson Space Center, Houston, Texas 77058 USA; Michael Matson, Land Sciences Branch,
NOAA/National Earth Satellite Service, Camp Springs, Maryland 20233 USA.

Nyiragongo Volcano, E Zaire (1.48°s, 29.23°E).

Lava fountaining began 26 June in Nyiragongo’s central crater and by 7 July a
lava lake covered the crater floor. No activity had been reported at Nyiragongo
since 10 January 1977, when the lava lake that had persisted since 1928 drained
through flank fissures in a 1-hour eruption that killed between 60 and 100 people
(see Tazieff, H., Bulletin Volcanologique, v. 40, p. 189-200 and SEAN Bulletin v. 2,
nos. 1-4),

On 26 and 27 June, two 5-10 m-high lava fountains were observed at the bottom of
the crater. By 30 June, only 1 fountaln was active, feeding a very small lava pool.
However., when a geologist climbed to the crater rim 7 July, a lava lake about 1/2 km
across covered the crater floor. In the center of the lake was a domical lava
fountain 30-50 m high and 150 m in diameter., The fountain and the rim of the lake
were bright orange, a color similar to that seen during periods of vigorous
fountaining before 1977. About 1/3 of the lake was covered by a fissured black skin.
Based on comparisons with known pre-eruption features in the crater, the lake level
was estimated to have risen 100-150 m between 26 June and 7 July. Most of the lava
seemed to be entering the lake from below, but a very small amount of lava was
emerging from a 10-m-diameter vent in the N wall of the crater, about 50 m above the

lake surface. This vent had apparently been more active a few days earlier, From
Goma, 17 km to the SSW, a glow was still visible over the crater 13 July.
Earthquakes during the night of U4-5 July shook furniture and formed fissures in old

houses in Goma.

Information Contact: Maurice Krafft, Centre de Volcanologie Vulcain, B.P. 5,
68700 Cernay, France.

Galunggung Volcano, W Java, Indonesia (7.25°S, 108.05°E). All times are local (= GMT
+ 7 hours).

Intermittent explosions from Galunggung began 5 April (see SEAN Bulletin v. 7,
no. 4), destroying about 90% of Gunung Jadi, the lava dome extruded into Galunggung’s
large breached summit crater during the last eruption in 1918. Lahars and nuées
ardentes flowed southeastward through the breach onto the upper portion of the major
prehistoric landslide deposit. The highest reported ash column reached 16.5 km,
pitting the windshield of a passing airplane. Ash fell as far away as the
Yogyakarta-Solo area, about 300 km to the E.

The 10 eruptive episodes that had occurred as of late June were separated by
quiescent periods that ranged from 3 days (early in the eruption) to 3 weeks (before
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An Approach to Estimation of Volcanic Explosion Energy Using
Propagated Infrasonic-Acoustic Waves

FREDERICK J. MAUK (Teledyne Geotech Geophysical Research Department,
GORDON G. SORRELLS 3401 Shilioh Road, Garlan., Texas 75041)
* LORI GRANT

3 KENNETH TAYLOR

A desirable and elusive geophysical measurement is the energy associated with
explosive volcanic eruptions. Total energy quantification is difficult
because it involves both thermal and kinetic energy contributions which are
temporally complex. Far-field volcanic explosion evaluation which is anala-
gous to earthquake moment estimation may be possible using propagated
infrasonic-acoustic waves. The method was first proposed by Gorshkov (1959)
who used the infrasonic signals recorded on remote millibarographs to esti-
mate large explosive energies of volcanoes in Kamchatka. Except for a brief
period during the era of atmospheric nuclear weapons testing, the technique
has been largly ignored. Utilizing data from the El Chichon eruption sequence
recorded by a collocated microbarograph array and SRO instrumentation near
McKinney, Texas, we have deomonstrated that infrasonic-acoustic signals from
volcanic explosions are well~recorded on SRO seismographs. By knowing the
appropriate earth response characteristics, it is possible to derive the
amplitude of the microbarometric fluctuations at the SKO site. Using the
published amplitude and wave-period empirical relationships detemined from
atmospheric nuclear weapons tests, the excitation energy of the source can be
derived. Estimations of the separate event energies for the El Chichon
sequence of 29 March through 6 April 1982, using this technique and alter-~
native methods, will be giveu.
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