
^n-A126 434 INTEGRATED APPLICATION OfIVARE SYSTEIMU) NAVAL
POSTGRADUATE SCHOOL ~ TERET CA J C WATERS DEC 62

(I '.' I I [) F/ 9/2 NL

111111i
UIIEIIIIIIIIIIIIu

IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
lllllllllllllu

1.0.

1.68

MICROCOPY RESOLUTION TEST CHART
OfAflONA4 UUAKAU OW STANI)Aftl- 96S A

~j4 NAVAL POSTGRADUATE SCHOOL
Monterey, California

4W

DTIC

THESIS 9D
A

ITEGRATED
APPLICATION

SOFTWARE~ SYSTEM

John Christopher Wiaters

a.. December 1.982

Thesis Advisor: Duman Zdenek Badal

mom Approved for public release,, distribution unlimited

83 O4O0 005

Awl
,

sekmv CLA"PtO*1V OP VIsNS fa(om 04" an"__________________

OPM WCUUOMU ATMO PAWSS WTUC"

Integrated Application Software System December 1982

9. CONTRACT ON URANY "'MMIRS)

John Christopher Waters
S *gmuumug UUZATU mm -U *00W.go. aOP AIE m. menjgcYA

Naval Postgraduate School
Monterey. California 93940

S.CONTROLLING OP9,3 m16006 400010t2 ~mYet
Naval Postgraduate School Decembe6 ar, 1982
Monterey, California 93940 172

inypgg ~ ~ ~ ~ ~ ~ ~ ~~s aug uuuN&.~i.M fe S C0INY CLAWS. (at we 6400"

A-pproved for public release, distribution unlimited.

As increa ew"ina da.= psoe.n poe bw~em avalbea

decreasing cost, greater numbers of nontechnical personnel

are gaining access to automated systems that enhance their

productivity. However, the sharp distinction between each

U,~~., 1O u.ev I, NOV. is a91004
MO *W.*em

4A

of the support packages, and the requirement for the user to

become familiar with different models. concepts and

vocabularies is a barrier to reaching higher effectiveness.

The premise is that these common support systems have

equivalent functions and a large intersection of operations

that can be integrated. It is the purpose of this thesis to

study a possible Integrated Application Software System

(IASS) that will combine the needed capabilities into a

functional system and present the user with a single data

model and vocabulary set. The data model which is proposed

for use by the IASS is the relational data model, since it

is universally understandable, and has a robust theoretical

foundation.

T" C-1A&

Ls It

4tV. -3

D04 14,#3 2
~ I~1IW14.6.1-f 86MM OW OPPm ~

&~

Approved for Public release, distribution unlimited.

Inteqratsd Appjlcation Software System

by

John Christopher waters
Lieut enant. United States Navy

38., Rensselaer Polytechnic institute, 1977

Submitted In partial fulfillment of the
reoulrements tor the deqree of

- MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
I

NAVAL POSTGRADUATE SCHOOL
December 1902

AUTHORS _____

APPROVED SYS
Thesis Advisor

Co-AdvLSor'Second Reader

i~was/> amm m
ChalrMan. Oearteent of Computer Science

Dean of Information and Policy Sciences

3

W. n

..... +++ + + ._ + + a. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _l__ _ _ _ _ _ _ _ _ _ _ _ _,_ _

, ,~ u ~------~ m- - - --

ABSTRACT

IAs Increasinq data processing power becomes available at

decreasinq cost. greater numbers of nontechnical personnel

are gaining access to automated systems that enhance their

productivity, However, the sharp distinction between each

of the suport packages, and the requirement for the user to

become familiar with different models, conc@ts and

vocabularies Is a barrier to reaching hiaher effectiveness.

The oeise is that these common supoort systems have

eoulvalent functions and a lora, Intersection of operations

that can be integrated. It Is the purpose of this thesis to

StUdy & possible Intearated Aoplication Software Systeq

(TAMS) that will combine the needed capabilitios Into a

functional system and present the user with a single data

model and vocabulary set. The data model which is proposed

for use by the TASS Is the relational data model, since It

Is universally understandable, and has a robust theoretical

foundation.

FIF, 4

, - .I . . II.. . .

TASLE or CONTENTS

K* INTRODUCTION .. **g~g** 7

I.DESCRIPTION Or SUPPORT SYSTEMS *.....,,,, it

As* TEXT EDITOR s~sbeeeeeueeee 12

B, WORD PROCESO *3...*.....e..... 14

C, DATSSASE "ANACEMENT SYSTEM*.*.*.*,* 1

0, ELECTPONICS3P49AD-SHECT *......... 20

to FnR"S GVNERATOR o*....****........ 23

F, tLECTRONIC MAIL *. 26

IITHE COMMON DATA 08JECT 20

As* TTXT. e... 30

9, DATABASE 34*.,*.****..,...*.

Do FORm ********,.****,***,* 35

to ELECTRONIC MAIL 37

IV, OPERATIONAL INTERSECTION 40

A, SASIC OPERPATIONS *g........ *0~e.000 41

9, SUITABILITY Or OPERATIONS *........ 48

V, APPLICATION LEVEL INTERFACZ 63

A, EDITOR/WOWO, PROCESSOR s.....6

So DATASASE "ANAMCWET SYSTEM Go...

C. SPRRADmSNUV?*.o............e 70

0. rOW dPEPA?OR es..e...... 74

to ELECTRONIC NAIL *sgeeeee.ee.ee 78

VT USIR INTERFACE ooo.oo.o.. o**o.. 04

A. USER INTeRFACE MODULE .*,... . 86

S, APPLICATION PROGRAM LEVEL ***90o*********** 90

1. ZASS Editor and Word Procssor .o..o.. *o 91

2. XASS Database Mnaqement System .,...,,, 95

3o * ASS SpreadmSheet .ooo....oo...... 101

4. lASS Form Generator ,.. 105

5. IASX Electronic Nal 109

VIZ. CONCLUSION .1.....***..o................. 114

APPENDIX A (Word Star) .. o****.*****. . oooo.oo.*** 1

APPENDIX 9 CVI) . 127

APPENDIX C (Edit) ******1**** ************ o***** 134

APPENDIX 0 (rof -Me) o.................... 139

WAPPrNDTX C (Obese IZ) 142

APPE4011 r (8eouitur) ,. 143

APPENDIX 0 c ical) ********* ****** 16

APPUDIX N (Zso) 163oo..oo...ooo.. 163

APPENDZX I ("alal) o16....o o.....

BILIOGRAPHY **.ooeo....o.. eeee..-........ 171

INTTZAL DISTRrISTZON LIST *.oooo.ooooooo.oo**ooooooooo, 172

76
E,

1, INTRODUCTION

The utilization af computers In many areaso Such as

personal computing or office and manutecturlna automation,

is rapidly *xpandinq. No lonqer is their use bela

relecated to sueport personnel, but is soreadinq Into the

ranks of lower and middle level manaqement. Tle majority of

such users are non-computer professionals who are coming to

depend an the computer to provide a supoort capability in

the accomplishment of their primary resoonsIbLItles.

Over the Past years, numerous software packaqes have

been made available to support a broad spectrum of users In i

vervinq environments. Capabilities stch as word orocessinq,

database manaaement, modelina, form qeneration, and

electronic mail have become essential. The point to be made

Is that the oriqinal purpose of introducing the computer was

to increase the effectivaness and efficlency of the

organization, While the present performance of each support

V oackaoe is satisfactory, the manner In which they are

oresented to the user is not. AS Illustrated in Figure 1.1P

each support system Is tyeLcally disjoint from all others,

ed the user is presented with differing models, commend

vocabularies, and operating instructions. This non-

inteqrated eomblnetion of applicatton software requLres a

qreat deal of effort on the part of the user to become

7

S- ---

familiar with a now system and remember it along with the

other systems that are used,

WEW
FiQure 1.1 - Disloint Support Systems.

What is needed to increase productivity is an integrated

system that combines the caoabilities of the supoort

packaoes into a system which presents the user with a

sinale, yet easy, conceptual data model and vocahulary set.

It ts such a system that Is called an Intearated Aoplication

Snftware System (TASS)* and the Purpose of this thesis Is to

develop a design for its Implementation. it Is imoortant to

emphasize that the ZASS Is not built around the already

existing application programs, but the reverse. Given an

TASS"s common user Interfaee and conceptual level, the

designer will evaluate each aoliLeation and design a now

apDlication program to capitalize on the 1433 capabilitles.

The design oblectives for the ASS are:

(1) Ensure a high degree of user friendliness and

emphasize simolilty,

"

t~t'

I!
(2) Minimize the initial and acquired user skill level

necessary to qain major functional use of the system.

(3) Minimize the learning time required to gain

functional use of the system.

(4) Present a loaleal interface between each of the

IASS8s capabilities, but mirimize the explicit user

navigation between them.

(5) Determine the largest intersection of functional

Caoabilitiel for the Individual application proorams and

integrate them into a common conceptual level.

(6) nevelop as small a command vocabulary as possible

at the user Interface. Ensure that these commands form an

intersection of the application program commands, and are

consistent between each of the apolications.

(7) Eliminate the dependence on user proarammina in

order to use the system.

(M) Embody the notion of software adaptivity whereby art

user, already familiar with at least one application in the

lASS, can learn a new aolication by studyinq only the small

increment of new commands and functions that are specific to

the new application.

(9) New aoliceations, not originally considered In the

original lASS, are imolemented by adding a small increment

of functions and commands to the ?ASS.

(10) Allow for the Interaction of the included

applications In support of each other.

9i

While the lASS cannot be expected to completely

integrate the separate features of each support package, It

can strive to maximIze the Intersection between theme Figure

1.2 shows a simple Illustration, In Venn Diagram form, of an

l ASS.

it

Figure 1.2 - lASS Support Package lntersection.

~In the fotlowinq ehapters the bests of an lASS design

will be discussed. Chapter 2 will describq. a seletedI group

N~~m of currently successful aplicati/on suppot': programs that

i: ewill be considered for integration into an lASS, Chapters 3

and 4 will cover the concetual level of the TARS8 which is

invisible to the user. Chapter 3 diSCUSSeS a common data

objet folr the lA8S, and Chapter 4 the conceptual level

ooeratiens allowed on ILt, Chapter 5 covers the use of the

conlceptual level by the included application programs,

~Chooter S covers how the user will interface to the][ASS,

Finally, Chapter 7 prosents the conclusions t:hat can be maeo

Irtopw thi~ls limi~ted study of an l[ASS.

10

TAOS,

-' -2

wil be'* conidre ta Inegato Int anI ,Catr

IT* DESCRIPTION OF SUPPORT SYSTEMS

In order to demonstrate t0 applicability of an

Integrated Application Software System (TABS) and its

conceptual level intearatlen aporoach, six common software

acolications were selected. The apolications were chosen

based on their oerceived effect in supoortina an office

b4sed user.

a. ?ext Editor
b. Word Processor
co Relational Database Management System
d. Electronic Soread Sheet
e. Forms Generator
f. Electronic Mail

As a mon-intearated collection of application software,

each of these packages is Imolemented to accomplish a 5et of

operations on a specific file type, and the set of included

operators is tailored for that type. Commands are not

usually transferable betveen applications and the

application vocabulary Is very *baroque" in that most of the

& operators exist as a matter of convenience to the user. Too

often it Is a very small oereentage of the overall

vocabulary that Is used over ninety percent of the time. The

majority of users only learn a subset of the vocabulary

necessary to aeccomlish the essential functions of the

application Packager and disregard the rest,

it

,ram 11

.

Representative commercially available software packages

corresponding to the six selected application types were

reviewed to determine the nature of the Pertinent tile types

and the essential functions required of the application. The

following sections will present the results of this review

as they apply to each application package.

A, TEXT EDITOR

The purpose of a text editor Is to prepare a text file

In am aooropriate form for use by a subsequent process.

"WORD STAP", and the "RV" and "EDIT" systems for UNIX were

analyzed. These systems are described in Aoendices (A),

(9), and (C).

The text editor can be divided into five major

functional cateqories of commands which are supportedy

<Create), <Insert), CModifYV> <Delete), <Move>, and

<Retrieve), t
1. Creation

4 facility used to define an empty tile into which

the text will be entered. This involves a directory entry

of some tyoe, the allocation of storaae space, and the

creation of a buffer area,

2@ Insertion

Done an object at a time in relation to some

referenced point In the text file, such as the cursor

position, It is oossible to insert any object at a

12

soecif ed point. Insertion is non-destructive in that the

object is inserted between existing contents, vithout

overwritinq, The oblect to be inserted may be entered by

the user, come from a buffer, or come from another file,

3. Modification

In relation to some referenced point in the text

tile the current contents are altered , Modification Is

destructive in that the current contents are destroyed by

writinq over them. Glohal modification is possible.

4. Oeletion

Tn relation to some referenced point in the text

file an oblect of any qranulartty level is removed, Global

deletion is oossible,

5, Movement

The current taint of reference in the text file is 13

changed to meet the desires of the user. Control of

movement is possible at any object level, The user should

have the capability to move to a oredefined location or to a

location that meets some condition.

6, Retrieval

While not directly responsive to user retrieval

Scommands, the text editor supoorts the user by displaying

the local area around the point of reference, In a general

sense this is a desired retrieval of text tram the file,

Retrieval is automatically done for the user when the point

13

ii

ot refierence changes to ensure the user can establish the

context of the point of reference.

S. WORD PROCESSOR

riles prevared by a text editor can be processed by a

Word Processor (WP). "WOPD STARP, an on-line WP, and opporF

-fEl, a V for the UNIX ooeratina system, were analyzed.

These two systems are described in Appendices CA) and (0),

Currently there are two aeproaches to word crocessina:

C() Off-Line Tormattinn. In addition to the actual

text In the edited file, a combination of special

characters, and characters strings, can be embedded in the

text file for use by the WP. These soecial embedded

character strtnqs are commands used by the word orocessor to

produce the desired orinted format of the text file. This

requires a two step procedure by the user, The user first

v~sualizes the desired iormat of the outout and then

translates It Into a combination of the actual text and the

embedded WP commands. The text file is then orocessed by

the WP. This Is-a level of indtrection that delays feedback

to the user as to the effect of a command.

(2) On-Line Formattinq. In this ease, while most

of the VP commands are still embedded in the text file, they

are Immediately executed. As the user Inputs the text, it is

displeyed on the screen In the desired format. The user

thereby receives Immediate fpedbaee as to the effect of

formettine commends. However, the problem of the disolay

14

-7- -

format being biqqer then the display dimensions is a

probleE, if only a minor one.

The VP# unlike the other application packages, does not

directly manipulate a data object In the course of Its

operation. Instead, It interceuts a stream of data from the

data object and alters the display format prior to output.

For this reason Is seems loalceal to consider the WP to be a

Dart of the editor - the aopllcation neackage that

vanipulates the data object uvon which the wP levends,

C, DAT4RASE wANAGEMNET SYSTEM

Data Is simply symbols which are stored. In and of

itself, a datum has no siqnificance, However, when coupled

to an entity, the class of a datum becomes an attribute of

the entity and the value of the datum can be used as

Information to describe an Instance of the entity, When

data Is stored In a comouter It is known as a database. To

transfOrm the raw data Into an abstraction suitable for a

person to use and/or modify is the major function of a

Database Manaeqent System (OMS). In a sense a DBMS acts

as an Interpreter between the user and the computer. It

interprets user statements describing what is to be done

with the database Into the lower level algorithms necessary

to perform the operation on the conceptual and eventually

the physical representation of the data In the commuter.

rrom the perspective of the compeute, the D5N5 translates

is t

t - 4'-

the physical implementation of the data throuQh the

conceptual representation to the appropriate user view, Zn

this way the DBMS provides two levels of data independence.

Oate independence Implies that modification can be made to

the Implementation of the data without affecting the loqic

of the opelication proqrems. Data Independence between the

conceptual schema and its physical Implementation allows

chanqes to the ohysical implementation of the conceptual

schema while oermittLno avolicaton programs to run as if no

chanqe had occurred. Similarly, data independence between

the Conceptual schema and a user view allows changes to be

made to the Conceptual schema while permitting aoclicatLon

oroorams to run as if no change had occurred.

Ir addition to the data manaqement function, a DBMS also

Provides functions to ensure system inteqrLty. Towards this

end a 0SW enforces database security constraints. The

security facility ensures that unauthorized access to data

is not allowed. A DMS8 typically ensures that the reouired

properties of data are ouaranteed. These properties can be

either syntactic, that Is structural, or semantic, for

instance contained within a specified domain. A DBMS

typically provides a mechanism to protect the database from

a system crash by regularly ma inq back-up copies of the

database. In the event of a system crash. a DIP8 typically

provides a facility to restore the database to a previously

consistent state. finally, In a multi-user environment, a

1G

DBMS typically provides a synchronization mechanism to

protect the database from Inconsistencies which might result

from simultaneous access to a database, especially If one

access entails a change to a shared data Item.

*DSASL TIX and WSEQUITUp were reviewed as

representative relational data base models and are described

in Apoendlces (E) and CF), A relational DBMS was selected

as an 18R conceptual database model due to Its familiar and

universally understood data object, the relational table.

The basic organizational unit in the relational table is the

named and domained field. A record of arlty "n" in the

relational table contains n fields, each containing a value

trap Its domain. A relational table Is the next higher

level of oroanlzational abstraction. The overall schema of

the relational table Is defined by physical properties of

the fields and embodies the relationship Which Is defined bY

the field set.

A DBMS can be logically divided Into three functional

Darts - data definition, data manipulation, and query

retrieval, These parts can be further refined into the

functional operators (Create), (Insert), (Modify), <Delete).

<Pove3, and <qetrieve>.

t. Creation

The existence of a relational table Is typically due

to a need Perceived by the user to organize date, Creation

Is therefore the Process by which the relational table Is

17

qmmmm-*--N-p-

defined In a database bY its Identity and composition. The

existence of the table Is noted in Some form of a database

table directory. The composition of the table dteflnes the

seheme of the relational table. Modificatlen of a user

defined table can be viewed as a special case of creation or

re-ereation. A table name can either be changed or the

schema redefined. In addition to these explicit methods of

creating relational tables, implicit methods also exist. As

a result of the relational eoeration JOIN. a now relational

table can be created. The method of naming the new

relational table is Implementation specific. The composition

of the table, however, is derived from the schema of the

operand relational tables.

2. insertion

Insert Is a component of the get of data

manipulation operators. The action of an Insert Is to place

a record Into the relational table. The origin ef the record

to be Inserted Is irrelevant to the operation. The effect of

the operation Is that a new relational table Is derived from

the old relational table, order not being signiftcant.

odity is a component of the set of data

manipulation eoeraters. The action of a medify is to chane

the date in a fields DsNss tytcally do not restrict the

ortin of the new data to what the user supplies at a

10

I_ _
terminal but can be as a result of evaluation o expressions

or derived frog other relations In the databases.

4. Deletion

4 Delete is a component of the set of date

manipulation operators and is In fact the inverse operation

of insert. The action of delete is to remove a record from

the relational table, the final disposition of the deleted

record is immaterial to the operation, A delete operation is

typically a two step process. A record is first marked for

deletion and then explicitly removed from the table.

* 5, Movement

4The movement operator can be viewed either as a

passive data manipulation overator or a query retrieval

operator. Movement encompasses the process of chanqinq the

current point of reference in the database. The ultimate

destination is determined from manioulatinq data in the

database or as a direct result of a query on the database.

the soint of reference can be of any orqanizational

abstraction from an entire relation to an individual

character in a field. This ranqe in movement implies that

this operator subsumes the theoretical relational alqebra

operators PROJCTION and SELICTZON. Movenent is a required

overater in order to seen and extract information from, or

in conlunction with, the serformance of any of the other

eseratiens on the database.

' A)

6. Retrieval

Retrieve is exclusively a query response operator.

The Condition of a query specifies the information to be

extracted or derived from a database. A neury -can be in

many ferms. Traditionally a query facility is embodied in a

sPeclalized laneuaqe which the user emeloys to extract

Information from the database. In this simplest form, a

query is eeuivalent to the relational algebra PROJECTIOW

operator ossibly following the SELECTION oeration on the

referenced relation. Oueries can exist In subtler forms.

Movement through a database can actually be the result of an

underlyine, Implicit retrieve operation. Some uses of forms

embody a retrieval operation as they extract information

from a database to derive its contents. Peorts also embody

the retrieve operator in the same way as a form. From the

database, Information is retrieved and dIsolayed in a user

s~ecif1ed format.

Do CLECTRONIC SPREAD-SKEET

An Electronic Spread-Sheet package provides an Important

numerical modelin9 capability to the user. This application

Provides tho user with a piece of "electronicO scratchoaper

ter doing fairly compliceted numerical preblems, and models

that are oi a recurrinq nature. Instead of reaching for

pencil, paper, and calculator each time, the user will call

the electronic spread sheet and by entering the needed

20

.... _____....__________ __ _ _ _ _ _ _ _

values cause the spread-shost to complete the

celculation/modelo It compliments the Inclusion of the word

ov-.elsor and database manaaement system In the IASS. The

commercially available OV1SCALCO system was reviewed, and

is described in Appendix G).

SPread-sheets are commonly divided Into addressable

Crow,column) entry positions, similar to a checkerboard, and

are used to graphically disolay numerical data In a tabular

format. A smell portion of the spread-sheet is Usually

visible on the screen at any one time and the user must use

window and screen commands to move across the entire sheet.

Each entry oosition Is an Independent entity and can contain

any of the data types - character, numeric, or functions

The contents of an entry Position can be exoressed In
relation to the value of a previous entry oositlonr

System operations consist of <Create), <Insert>,

<odify), <"ove), <Delete>, and <Retrieve>,

1. Creee

The user Initializes a data storage structure for a

new spread-sheet. The dimensions for the new spread-sheet

are Initialized and all entry oeltitons are set to null

values.

Given an already existinq spread-sheet, the user

adds a new column or row to the soread-sheet at an Indicated

location. This enlarges one of the spread-sheet dimensions

bY one.

21

!I

3. Modification

Change the current value in an existing entry

position to a new value or function.

4. Oeletion

Given an already existina spreadsheet, the user

deletes an entire column or row from the spread-sheet at an

indicated location. This will reduce one of the spread-

sheet dimensions by one.

5. movement

Allows the user to view the contents of the entire

scread-sheet through the limited dimensions of the screen

display by Permittino the user to maneuver the screen across

the sDreed-sMeet.

6. Retrieval

The tabular display of the spread-sheet on the

user's screen Is the result of a predefined retrieval from

the stored revresentation. As changes are made to entry

positions and they, in turn, effect other entry positions,

the tabular disnlay is kept updated by automatic retrievals.

Additionally as the user moves, or alters, the window into

the spread shet new information must be retrieved to meet

the changed request. The user cannot specifically ask for

information from the systems but instead accepts the sinale

retrieval the sereed-sheet packaqe was designed to

automatically produce.

22

*k~~ -

I. rORMS GENZRATOR

By definition. a "formO is a printed document with

blinks to be filled in and "format is the arrangement. or

pln" og a presentation. Traditionally, a document Is

assumed to be a piece of paper, and tho Input device used to

plac* values onto the document is the human.

In the Electronic Data Procosslnq (CDP) environment,

these notions are aenerallzed to where a document can also

be derived from, or stored into, a database or data file.

Regardless of the semantic qeneralizations introduced by

CDP, the looleal view of a form, as well as Its function.

remain the same. A form Is used as a template to disolay

Information and/or collect a set of data. A form Is

distinguishable from a report In that a form rearesents only

one instance, or a coalescence, of a set of data elements,

The rePort contains the form as a special case, hut repeats

it for each instance In the set of data elements.

A rorm Generater Is a utility to assist the user in

designinq a displayable form at Odesiqn-timew and emoloyinq

it at suse-timep . Since creation and use times are

different, the desiqn-time display must reoresent the use-

time display of th e form as closely as possible. From the

desin the Fore Generator must translate the visual

specifieatione into the epprepriate representation for use

by the display function at use-time. In addition to the

physical layout og the displayed torm, the design and

23

A internal representation must contain Information reqarding

the value association or derivation at use-time. The DRASt

It form generation facility, and the separate *ZIP* screen

oriented form generator were evaluated and are discussed In

Appendix (M).

The design-time environment Includes both Intlat form

desiqn and desiqn modification, Form design Is done by use

of en editor and an on-screen cacability is essential to

achieve deslan-time and use-time visual Proximity. The

editor could be an Integral pert of the form aenerator or

separate. Value association is not done by the forn

generator directly. The user states the value association

of a *block* in terms of tpe use-time function which must

evaluate the "block" values.

The orocess of form generation entails describing both

the display features of a *block* In the form and the use-

time association. The functional list of ooerators to

suoport a form oenerator are <Create>, <Insert>, (Modiy),,

(t ele0et, <Nove, and <Retrieve.

1. Creation

Ceetin a new form entails naming the form and

makinq it known to the rest of the system for use. Only the

empty structure ti created and will require the user to

enter Informetion Into It,.

24

- -- P

2. Insertion

The user adds a new *block' to the form bY

specifying its characteristics. Characteristics may be

position, prompt. input/output, tyoe, and processing

information. A groupin of these "blocks" will make a forms

Actual "block* specification and addition is done throuqh a

level of indirection where the user draws the "block(sl" on

the screen and the system determines the carameters

necessary to make the form.

3. Modification

The user chanqes one or more of the characteristics

of an already existinq *block*.

4. Deletion

The user removes an entire "block" ftom the form,.

5. Movement

The user has a noint of reference within the aiven

form. At any given time some "block' is the oint of

reference, and commands are available for the user to move

this ooint of reference.

6. Retrieval

The user desires to see the format in which the form

will be displayed both at desiqn-time and run-time. The

retrieval operation Is automatic and translates the

information stored in the form's structure into the

appropriate display. Actual desian and modification of a

form. is done on this display and the form aenrator

25

-- -- _ _ I)- ~
• b

determines the additional information it will need to

recreate the finished form on demand.

F, ELECTRONIC MAIL

Electronic Mail is a facility for sending messages from

one user to another. The "MAIL" system used by the UNIX

operating system was reviewed and a descriotio is Oiven in

ADDendilx ().

An Flectronic Mail system uses a oredetined messaoe form

which contains information, such as destination, subject,

and main body. Once created, the message is sent to the

destination where It Is placed in a message file, called a

"mailbox", for readina. The major functional onerations in

a mail system are <Create>, <Insert>, <Modify>, <Delete>,

<Movement>, and <Retrieval>.

1. Creation

The system nenerates an empty message form which the

user fills in.

2. Insertion

Messages are inserted into the various mailboxes

that the mail system maintains. A message is sent to

another user by storing It In the system mailbox.

3. Nodification

eessaaes are Initially ereated with no values In the

message form. Composing a message therefore, entails making

modifications to the null oarts oe the message,

26

Moditications can also be made to a message any time during

composition# before sending It to Its destination, rinally,

fields In a message may be modified by the reclpient, In

order to retransmit the message.

4. Deletion

By reviewing messages from the system mailboX, they

are deleted from the system mailbox and placed into a local

area. The user may delete messaoes from the system or local

mailboxes at any time.

S. Movement

All the previous commands are performed in relation

to a noint of reference. The Point of reference in a

mailbox can be chanqed by the user in order to browse

throuqh the messages, or edit them.

6. Retrieval

Roadlnq a message Is done by retrieving the contents

of the messaqe fields and displaying them to the user.

In review, Chapter 2 has shown that a oeneral

commonality exists between the functions of the glven

applications. This commonality has been presented as the set

of six command categories - <Create>, <Insert), <Modify),

<Delete., Nove%, and <Retrieve). The followinq chapters

will lead to an Integration based on this commonality.

27

-. -. -. r

11s!, THE COMMON DATA OBJECT

The Key to achieving an integrated system which can

support formatted and unformatted data 1 to map the logical

file types associated with the apolications, into one

conceptual data object. This conceptual data object Is then

part of a model of the applications and their use. The

functional Intersection of ocerations on the tiles can be

implemented by a slinale set of orimitive conceptual

operations on the comm on data oblect.

The TASS must reoesent each of the logeical file tyoes

associated With thelincluded apolications in such a way as

to support the essential functions ot each apOlication. The

data object chosen for this lASS desiqn Is the table. The

table is a natural me thod of oroaIzinq data and therefore

Should be understandable, even by naive users. A table Is a

two dimensional arra containino rows and columns. The lASS

uses te table to represent a Oreal-world* entity. Each

column reoresents on attribute of that entity and each row

represents a unique occurrence of an entity. A table is

almost equivalent to a relational database relation, except

that a table ipli1s that rows and columns have an order in

the table which can; be used in a positional addressinq

scheme. Rinle addtassinq is associative in a relation, the

table must include columns which represent key vdlues to

2-

uniquely identify each row. With this slight modification#

any datum In a table can be accessed by specifying the name

of the table, the value of the key# and the name of the

attribute containing the datum. Mereetter, the common data

oblect will be referred to as a relational tahle. Rows of

suc tables are usually referred to as "tuoles" and columns

are referred to as "attributes* , The assumotions to be made

concernino the relational table in this thesis are: (1) Pow

or column order Is not slanificant, (2) All columns are

named and must be uniaue within the table, and (3) Each row

Is unliuely Identifiable by a key value.

In the following sections each logical file type will be

described as a relational table. The attributes of each

table tybe were selected based uoen its perceived orimary

use. As such, the set of attributes associated with each

table was determined in order to Provide the information

necessary to support that primary aoplication. These tables

are merely special cases of a relational database table.

Based on their predefinition, their use can be bounded

within the Primary apolicetion and therefore can be "typed".

To be of a certain tyaee it Is sufficient that the table

contains the minimum set of attributes necessary for that

soecific type as a subset of its total set of attributes*

(e.0. A given system table might have five attributes. Three

of the" are the required attributes for a type-I

aoplication table. The, remainine two attributes could be tne

29

6 .- t

required attributes for a type-2 table,) This Implies that,

as an Implementation Issues a sinole table could be

considered to have multiple types, but for simplicity let us

assume that a table will have only one type. As

apolieations are added to the lASS, the accomoanyina minimal

set of attributes must be defined to represent the new table

troe. There are many structural orqanizations which coild

represent a loqical file tvoe. The final decision on the

oroanization of the table must be made to maximize the use

of the conceptual level operations that are available to

manioulate the data in the table. These conceptual level

ooerations will be covered In Chapter 4. It Is important to

note that the table Is a structural oroanization used as a

model and therefore problems may arise in expressino the

actual Aoplications by the table model.

A, TEXT I
Text, as data in a text file* Is a "continuous" strinq

of Individual characters from some character set (e.q.

48CII). The use of text as data is by character, where each

character is a unit of data used in an aoplication.

Objects such as words, sentences, lines, or paraqraphs

are loaical abstractions, hidden In the text, that are

useful as Information only to a human user. Any ZA38

manipulation that may alter this hidden logical abstraction

will directly effect the ability of the ZASS to transform

30

J

the data back Into information. Ceogo deleting every other

words) This will require the impostilon of limitations on

the use of table ooerators on the text table In order to

protect this logical abstraction. (l.e. operations incapable

of taking Into account the logical abstraction of text will

not be used.)

The only naturally occurring data elements in a text

file is the single character, and the entire character

stream. Their domain is all the elements in the apolicable

character set, These two problems, the continuous nature of

text and its discreteness being limited to a slngle

character or the entire tile, make the text tile the most

difficult file type to model as a relational table. The

table must quantize the continuous text stream into column

units, thus destrnyine the continuity of tho text.

Additionally, while the relational table ooerators recognize

the column as beina an object, In fact it has no natural

occurrence in the text file. Any definition of a column

which represents text objects between the single character

and the entire text file. is an arbitrary quantization of

the text stream. Fioure 3.1 illustrates the problem by

arbitrarily choosing a column size equal to ten characters

(the character 400 represents a carriage return and line

feed). This division of the text stream Into units, for use

as tvples in a table, has no corresponding unit In the

31

.

oriqinal text tile. and ne imposed structural limitations

by the column boundaries.

Ca) Test Stream

MR, JOHN SPITHO1349 WILMINGTON DR.ICARSON, CA

(b) Tutle Reoresentation

MR HNS

WINGT

Figure 3A1 Test Representation Problem

This problem Of usinq a Rdiscreten reoresentatlon will

have to be acknowledoed and steps taken at the apolicetlon

level to enmure the limitations imposed by the problem are

not violated. In determininq the SiZe of a text tuple,

neither the single character nor the entire file are

acceptable units to be used In the relational table model

since they would require a large amount of processing by the

application level to transform them Into Usable units. (The

argument ts similar to memory manacement questions of oaqinq

32

versus seqmentation and how larqe each unit should be.) Some

arbitrary size, between the tVo extremes, will have to be

chosen durinq Implementation. For now It Is assumed that the

size limit exists.

The text file can be conceptually viewed as a text

table# as In Fiqure 3.2. The text stream Is represented by

the set of rows in the table. Each "contents" column is

densely packed In that no unused space is left in any row,

except the very last row in the table. The text table does

not match In any way the oercelved "display" of the text

tile, as shown in Fiqure 3.1. The display structure (line-

oriented, screen-oriented, or whatever) Is considered an

application level issue and will be covezed there. Each row

In the text table has a unique sequence number, Old", to

mark the relative position of its contents In the text

stream,

I IId contents

i "~l-e- --

lino-2

-.

?lqure 3.2 - Text Table

33

- -4

Be DATABASE

A relation in a relational database is described as a

table, as shown In Figure 3,3 Relational database tuples

are represented as the rows of a table and the attributes as

the columns, The description of an attribute Is defined by

the user, and the set of attributes define the modifiable

structure of the relation table. Chapter 1, Section (C)

covers the concepts behind the relational DBMS in areater

detail,

id atr-l atr-2 atr-n

tuple-! I I I I
... I m II Inini n l .I I

tuole-2 I I I I
1 I !

tuple-n I I I, . m ' n m n I , , I " I

Flqure 3.3 - Relation Table

C, SPRCAD-SH E!T

A spread-sheet Is a database used as a numerical model J

in a predefined tabular disolav format, A spread-sheet can

be represented as a collection of entry position tuples in a

table, as shown In Figure 3,4. tech row in the table

represents a sinqle entry position In the spread-sheet, The

34

- -- ~ ---

I

table columns represent the predetermined elements necessary

to describe the entry position, Such as the location, values

and function,

Id location value function

-os I ioI ' " I

mpI Wmmmmn mmmn I mm -- W mmmmmmmminmoosition-2 I I I

osition-n I I I I

IIim.Lmr~m. m- .m. .iiiu.rij' I,, ,I

Flqure 3.4 - Spread Sheet Table

0, FORM

A form is a template throuah which input and output

values are transmitted. The information stored in a form

database Is used to precare the visual lmaqe of the temolate

in a user specified format.

The basic Subunit of the form Is called 4 *block"* and

It represents a basic unit of data for the form, The easiest

way to visualize a "block" is to consider the Internal

Revenue Service 1040 Tax Form. It Is used as an Input form,

and each entry has a correspondina number to identify it as

a separate entity, or "block*, Each Of these "blocks" has r
an a oosItion on the form, an ld~ntifyinq number, a prompt,

35

-S

and Space for an entry of some type, This means that the

form table must Include positional date for the block as

well as data to determine how the block is to be used for

specific applications.

A form can be represented as a collection of tuples

contained in a table, as shown in Fiqure 3.. Each row in

the table represents a single "block" on the form and

contains a description of the *block. The columns of the

table are the predefined attributes of a block - unimue Too

serpen location, prompt strinq, Input or cutout identifier,

and the functional use of the block. Each table column

represents an element of that descriotion.

Id location romot i/o function

block- - I I I ... I.

blok I I I I

block-n I o I I I m

Fnqure 3.S F orm Table

The Old* Is a unieue identifier for the blOck and would

be system controlled. *Location* soecifles the startinq

eosition for the *block* on the form. If reaulwed, a

oerompta strinq could be Included to Indicate the Durnoe of

3,

-- "

the entry position on the form (eog. Name# Addressr Number

of exemptions, etc.). The 01/Oa field will tell the Form

Generator how to interpret the *function" field. The exact

use of the 8i/o" field is implementation dependent, but some

ObVIlUS entries are Oinputfp "output** and Otextm, Lastly,

the "function* field will contain a command string for the

block. If it is an Input block, then the "function" field

miqht contain the location where the user entered value Is

to be stored. If it is an output bloCk, it Ttqht contain a

query to be made on a database, If It is a text block, it

micht contain the name of the text file that Is to be

Inserted in the form, As can be clearly seen, the actual

use of the form table will be very Imolementatlon dependent

and such issues will not be directly addressed in tIs

thesis.

to ELECTRONIC NAIL

Electronic Nal is a preformatted message sent to

another user, Date contained In a message can be used as

Information to determine addressee and subject associated

with a message. The date in a message is manipulated

typically In the course of an edltlno session or by an

application program to output a message to be read by the

recipients A *mailbox" can contain any number of messages.

Each message contains a unique I0 number, heading, and body,

The 10 attribute Is a unloue identifier of a message in a

37

• ' ' ' '' i "I

p|

mailbox, The domain of the ID attribute is all unique

identifiers as defined in the system, The 1D could be local

to a mailbox, or be of a global nature. The body of the

mesoaqe is textual and its domain is a continuous stream of

characters or a reference to a text file. Heading consists

of an orioinator, recoloent, date, and subject, The

orglinator, recipient, and Subject are character strlnqs of

some maximum lenqth. The date iS some allowable value as

determined by the date convention used by the system. Each

messaae tuole is a comPolete messeae beinq routed from a

sender to a receiver(s),

id from to date subi body

msq-1I I- I I1mm .mm. I mm.~m mnm I.mm I . . .
mns -2 I I II

I m mmm mmmm I mI n mm mmm I mmm

Flours 3,6 Maielbox Table

The mail file can be representec as a collection of mail

tuples contained In a table, as c"iwn in Floure 3.6. A

*"mailbox is a table with the rows reoresenting individual

messages and the columns representino the predetermined

I

I

format of the message, Such as from, to, date, subject, and

main body@

This will end the discussion of representin* the logical

file types as a single conceptual data object In the form of

a relational table. This chapter has shown that each of the

five logical file types can be mapped Into a table format

with varyinq dearees of success. A "secret" that Wil, be

Possessed by the aoolication level is lust how successful

this maooing was. Of the oresently included file types only

the text type has shown siqns of major oroblems. However,

similar situations could occur as new apolications are added

to the rASS. The solution to the Problem is to accomplish at

the aoollcation level what cannot be done at the conceotual

level due to the modelinq limitations. The next chaoter,

Chaoter 4, will cover the conceptual le,,el ocerations that

are available to manioulate the common data object tables.

39

IV, OPERATIONAL INTERSECTION

A major concept behind the Inteqrated Application

Software System is the existence of a common "conceptual

level" that is used by all the included aoplication

pronrams. it Is imoortant to note that it is the

anplicatlon proarams, and not the user, that will interface

with the conceptual level.

"APPLICATION LEVEL"

"CONCEPTUAL LEVEL"

I PRI iITIVE

1 OPERATIONS I

I COMMON I
I DATA I
I OBJECT I

C CIII

riqure 4.1 - IASS Conceptual Level.

This conceptual level will manaqe the data in the common

data object* described in Chapter 3. A set of primitive, or

basic, operations desiqned to manipulate the common data

object and enforce inteqrity constraints will be included at

this level. ?iqure 4o1 illustrates the conceptual level.

40

I e- I i _

The application packages will call these operations to

perform desired manipulations at the conceptual level in

support of the user. The specific application determines

the combination of primitive operations necessary to

retrieve date from the data tables In conformance with the

use of the table as a model of the application. Only those

ooerations that cannot be accomplished at the conceptual

level, due to modelina failures, need be included In the

aoplicatlon level.

A, SASTC OPERATIONS

The set of table primitive operations Is the source of a

malor TA38 ooerational Intersection. All aoolicatlons

attached to the 1ISS can use these commands in order to

perform their function. However, as modellnq problems will

exist, each application area may have limits that make a

certain ooeration meaninqlessI

Since the common data oblect is a relational table, the

natural set of primitive operations are the basic table

manipulation operations Inherent from relational database

theory. The operations are nomeds INSERTION, MOn!rICATION,

DELETION, PROJECTION$ SELPCTIfn, UNION, SET DIFFERENCE,

CANTESAN PRODUCT, INTRSECTONo QUOTIENT, JOIN, and NATURAL

JOIN. These operations are set theoretic In that their

operands are tables (sets of tuoles) and their results are

41

P

tables. This feature of the relational operators eliminates

the need for any application to be concerned with Iteration

centrol. These operators are divided into two qroups, Unary

and Binary, based on the number of operands recuired.

to Unary Table Operations

The first five operators are unary operators In that

they use a sinqle table operand. The operators are:

a. Insertion

Given a relation R, INSERTION adds a new tuole

to R at a specified, or default, location.

b. Modification

Given a relation R, MODIFICATION chanqes one, or

aore, of the components of a tuple, or tuples, in the

relation R,

c. Deletion

Given a relation P, DELETION removes a tuple, or

toples, from the relation R,

4. Preleetion

Given a relation R of arity "a*, a PROJECTION of

I Is a relatien fermed by removino some of the components of

R andier rearrenqinq some of the remaining components.

o, Selection

Given a relation N, a SILECTOt .n R Is the set

ef tmles In 3 that make true some conditional statement

based on the components of . The operands of the

ceditlonal statement are constants or the comeonents of R.

42

!

The operations of the conditional statement are the

arithmetic comparison operators - less than, equal to.

greater then, less then or equal too greater than or equal

to, and not equal to - and the logical operators - AND, OR,

and NOT.

2. Binary Table Operators

The seven binary operators will use two tables as

operands. A description of the seven ooerators follows and

for help in understanding them, some examples will be given.

For that purpose two "rearesentative relationsm are given in

Fiaure 4.1 for use In each o the descriptions and examples.

A I E H

Relation "RO Relation "S"

rigure 4.1 - Initial relational tables.

a. Union

esven two relations, R and g, the UNION ot R and

8 are those tuoles that are In N, or So or both. The UNION

operation i denoted by CR U S), and Figure 4.2 shows the

results, Oth tables most be of the same arity, and an

attribute in the first table must be matched by the lsme

SIEO

attribute in the second table, (ie. in this case D A, C

*Be and F' CO)

A a Cl

a b c
d a 9I
c b dl
b

Figure 4.2 -Result of CR U S)e

b, Set Difference

Given two relations, R and So the SET DMFERENCE

of P and S Is the set of tuples that are In R, but not In S.

SET DIFFEPENCR Is denoted (R - 8), and riqure 4.0 sh~ows the

results, Both~ tables must he of the same arity. and an

attribute in the first table must be matched by the same

attribute in the Second table. (i.e, In this case 0 h, E.

SoB and F CO)

A 9 C

Figure, 4.3 Result at CR *).

44

c, Cartesian Product

Given two relations, R of arity 441" and S of

arlty 0a20# the CARTESAZ PRODUCT of R and S Is the set of

tuples of arity =Cal # a2)Q whose first al components form a

tuPle in P and whose last a2 components form a tuple in S,

CARTESZAN PRODUCT iS denoted by (R X S), and Fiqure 4.4

shows the results, Each of the resultinq attributes of the

CARTESAN PROINUCT operation must be unique,

A C D E r

a b c b q a
a b € d a f
d o f b q a

c c b d b q a
, b d d a f

Fiqure 4.4 - Result of CR X 3). I'.
d. Zntersectlon

Given two ralatlons, A and 8, the INTERSECTION

of R and S is the set of tuples that are in both R and S

not those that only occur In one relation. INTERSECTION Is

a shorthand for R CR - 8). to denoted by (RfA S)# and

riqure 4,S shows the results. Both tables Must be Of the

same arlty, and an attribute in the first table must be

matched by the same attribute in the second table. C.e. In

this case 0 * At 9 a Be and r C,)

45

I I I

Fiqure 4,5 - Result of (R ft S.

e. Quotient

Given two relations, X of arity Ral and Y of

arity "a2" where al is areater than a2 and there is at least

on* tuple in 8, the QUOTIENT of X and Y Is the relation of

arity (al - a21 composed by: First take the PROJECTInN of X

over the first (KI-k2) comoonents and call the resultina

relation Ti Second, take the CARTESIAN PROWlUCT of T and Y

and call ths! res4ltin4 relation U. Lastly, determine the 3RT

DIFFEPENCF between U and X.

A 1 C D C n

a b , d c A

b c I f
• d a d Relation Y
e d f

a b 4 @ A a

a b
Relation X

cx* Y)

Figure 4.6 - Result of (X + Y).

46

QUOTIENT Is denoted by CX + y), and riqure 4,6 gives sample

X and Y relations, end the result of CX + Y).

9. Join

Given two relatlonsp R of erity *aim and Z of

arlty ',24, the result of a JOIN would be a relation of

arlty Cal + a2) containinq those tuoles in the CARTESIAN

PPODUCT ef R and Z where a component In R stands in some

rolatton to a component in Z, A JOIN Is denoted by R I Z,

and riqure 4,7 shows a sample relation Z and the results of

1%R 1Xl 2).

d n b d b

Relation Z CR II Z)

9=D

fioure 4.7 - Result of CR lXI Z).
BUD.

q. Naitural Join

Given two relatlons, P of arity "al" and U of

common, the result of a NATURAL JOIN Is a relation of erity

Cat a a2 * c) formed by takino the CARTgSZAN PRODUCT of R

and U. then performing a SCLCCTION baSed on the equality of

the coomon attributes In the tulPeIs and lastly performina a

47

PROJECTION with all possible attributes listed once. NATURAL

JOIN is denoted by (RnUu), and rigure 4.9 shows a samole

relation U and the results of (R 0 U).

Relation U (P XU)

riqure 4.9 - Results of CRIMIIJ).

S. SUITABILITY OP OPrRATIONS

Lookinq at the conceptual data object as the relational

tablo and qiven the list of operations from section CA),

above, it should be obvious that any oneration, or series of

operations, performed on a table Will produce a

theoretically useful relational table for some application.

It will have a valid table structure and therefore can be

manipulated by any operator. There are an infinit number

of manipulation possibilities which can result in a endless

speculation of apellcations. The conceptual view of the

table and its operators only takes on signlftcance when

bounded by some appl~catlen. It Is the application t~at

Owes meas::s to the usefulness or unsuitability of some

ooieratlon or series of operations. Therefore, the intention

of this section Is to measure the usefulness of the basic

48

- 4

relational operations within the functional scope implied by

the selected set of applications data types described In

Chapter 3.

Before describinq each of the operations it Is important

to define some of the descriptive words that will be used

for the ooerations:

Table Structure - the number of attributes, or fitelds,

the table contains and the characteristics of each (name,

types size).

Syntactically Correct - the results of the operation Is

within the bounds of the operation definitions oresented in

Section (4) above. There are two subsets of this

descriptor:

Meaninqful Result - The result of the operation will

be a table with an identified set of attributes and in all

probability, at least one tuple. The resulting table will

have the same structure as the oriotnal table, or one of the

original tables, and will therefore be of that Identifiable

type. The aoplleetion will be able to successfully use the

resultinq table.

meaninqless Result - The result of the operation

will Db a table with an Identified set of attributes end in

all probability, at least one tuple. The result will have

the seev structure as the oriqinal table, or one of the

original tables, and therefore will be of that identifiable

type. However, due to modelinq or inefficiency, the

49

I -

resultlnq table will create difficulties for the

<l amplicion.

Syntactically Incorrect - The operation violates one or

mort of the bounds stated in the definitions presented in

Section (A) above.

Ir the next two subsections the effects of the various

ooeratLons will he discussed. Subsection (1) will cover the

results when the operators are used on tables of the same

tYpe. Subsectinn (2) will cover operators used on tables of

differina types.

t, Intra-Type Operations

T"Is section will cover the effects of twelve basic

relational operations when the operands are the same tyve of

tables - text, database, soreod-sheet, form,. or mail. This

section does not cover the results of mixed type operations

as they will be covered in Subsection (2). At the conclnsion

of this Subsection# Table 4.1 will summarize the findinos. I.
The very simple ooerations such as INSERT, MODIFY, and

SOLRTI will not be discussed in the context of each table

type since they are the mints operations necessary to

manipulate data In any table type and therefore meaningful

for all table types.

a. Text Table Type Overations

The incompatibility between a text file and its

representation af distinct units are revealed when

attenoting to apply the relational operators to the text

So

table. What is In a tuple of text Is merely a substring from

the oriOlnal text stream. As such, the situations where a

tuol can stand alone as data for operations other than text

precesslnq are imited. Since the domain of the "contents*

field Is all character strlnas from the character set, there

is no canonical ordering between the character strinas.

Whereas ecuality between contents fields can be established.

there Is no other comoarison operator whieh will have

aoplicablllty.

(1) Prolectlon

The PROJECTION operation is meeninqful#

since It Is necessary to retrieve either the "contents" or

the Oid" field from the text table.

(2) Selectlon

The SELECTION operation is meanlnqful but

there are restrictions. Tuples would be selected from the

table by oerforminq the S9ECTION condition on the Oid"

field, The "contents" field oresents difficulties when used

as a basis of the SELRCTION condition since it can only be

compared for equality, and that requires an exact

specification of the contents in the condition.

(3) !Lnlon
The UNION operation Is meaninqful on text

fills and results In "eaoendinq" the Second file to the end

of the first. but there are modellnq problems, The

rosultInq text table could hae mere that one tople with the

Ii

same oido *ld, For this reason the UNION operation Should

be considered with care.

(4) Set Difference

The SET DIFFERENCE operation is meaningful,

but there are modelina probiems, This operation must be

used keeping in mind its exactness. Only tuples from the

first table exactly matchina tuples in the second will be

removed. It cannot be guaranteed to remove duplicate

strinqs from the text file since the text table model cannot

accurately represent the text file.

(S) Cartesian Product

The CARTESTAN PRODUCT is incorrect since

the resulting table structure will have duplicate

attributes.

() Intersection

The INTERSECTION operation is meaninqful, I
but there are modeling problems. The result would be the

removal of all tuoles from the first text table that were

not also in the second text table. It cannot be ouaranteed

to find the common strina(s) in two text files since the

text table model cannot accurately represent the text file.

(7) GQotient

The QUOTIENT operation is incorrect since 4
both text tables are of the same arity.

52

* ~~- - ~ ~ ~ - - -- _ _ - ~ 1

F -.. .

(8) Join

The JOIN operation is Incorrect since the

resulting table would have a structure with duplicate

attributeso

(9) Natural Join

The NATURAL JOIN operation Is meaninqful,

..bUt since it duplicates the effect of the INTERSECTION

operation In a less efficient manver it should be considered

meeninqiess.

b. Spread-Sheet Table Tyoe Operations

(t) Protection

The PROJECTION operation is meaningful for

such operations as retrievinq the Information contained In a

soecific column, or columns, of the table.

(2) Selection

The SELECTION ooeratLon is meaninqful for

removing a tuole, or tu les, from the table for processinq.

(3) union

The result of the UNInN operation on

spread-shet tables is meaninqful, but there are modeling

problems. The resulting table could now have more than one

tuple attempting to represent the same entry position,

tuoles no longer representing the proper entry cosLtLon,

and/or entry positions no longer relating to their proper

preceding entry positions. It to almost certain that such

53

problems will occur and for that reason the UNION operator

should be considered with care.

(4) Set Difference

The SET DIFrERENCE operation Is meaningful,

but there are modeling oroblems. The result of the

operation is basicly those entry positions that are unique

to the first spread sheet and not to the second, To ensure

usability the Implementation must Include Positional and

value Information In the tuole. The tuole cannot deoond on

order In the table for position, or functions relating to

other tuples for value, since these other tuales may have

been removed hy the SW1T DTFrERENCr operation.

Cq) Cartesian Product

The CAPTSIAN PRODUCT ooeratton Is

incorrect since the resultina table structure vould have

duplicate attributeS.

(4) intersection

The I.NTERSECTION operation on spread-sheet

tables is meaningful, but there are modelinq problems. The

reasons are the same as those given for SET OTVERENCE

above.

(7) Quotient

The QUOTIENT operation Is Incorrect since

both spread-Sheet tables are of the same arity,

C*) join

The JOIN operation Is Incorrect since the

resulting table structure would have duplicate attributes.

S4

(9) Natural Join

The NATURAL JOIN operation is meanlnqful,

but dupllcates the effect of the INTERSECTION operation In a

less efftclent manner and should therefore be considered

meaningless,

c. Form Table Type Operations

() Prolection

The PROJECTION operation Is meaninaful,

since it can be used tor retrievinq oarts of the block

description used In the apolication.

(2) Selection

The SELECTION operation is meaningful.

since It can be used for retrievinq the block descriptions

used by the aoplieation.

(3) Union

The UNION operation is meaningful, but

there are modelina oroblems. The resulting table could

contain tuples that are competina for the same position on

the display, For this reason the UNION ooeration should be

considered with care,

(4) Set Difference

The SET DIFFERENCE is meaninGful, but there

could be modeling oroblems, It would be used In finding

those blocks on a form that are not In common with those on

another form. Modelinq constraints require that the block*s

Jew

location Information be stored In the tuple and not depend

on order in the table.

(S) Cartesian Product

The CARTWSIAN PRODUCT operation Is

incorrect since the resulting table structure would contain

duplicate attributes.

(6) Intersection

The INTERSECTION operation Is meaningful,

but there could be modeling problems. It would be used in

finding those blocks on a form that are common with those of

another form. Modelinq constraints require that the block's

location Information be stored in the tuple and not depend

on order In the table.

(7) .uottent

The QUOTIENT operation is Incorrect since

both form tables will have the same arity,

(a) joinI
The JOIN operation Is incorrect since the

resulting table structure will have duplicate attributes.

(9) Natual Join

The NATURAL JOIN operation Is meaninagful,

but duplicates the effect of the INTERSECTION operation In a

less efficient manner and should therefore be considered

meaningless,

L "5'
7

d, mail ?able Type Operations

ci) Projection

The PROJiCTI0N operation is meaningful in

retrieving the contents of message fields for use in the
application.

12) Seletioln

~Tht SELECTIGY operation is meeninaful In

retrleving a message for use in ise applmcationf

(3) tynio,_n

The UNION operation is meaninqful in addies

new messaqes to the messae table by appendina mailboxes

tooether, but there are modelinq Problems. The resulting

mailbox could have more than one message with the same Old*

field. For this reason the UNION operation should be

considered with care.

(4) Set Difference

The SET DIMT!RENCE operation is meaningful

in finding those messages in one mailbox that are not in

another.

CS) Cartesian Product

The CARTESIAN PRODUCT operation is

incorrect since the resulting table structure will have

duplicate attributes.

C4) Intersection

The INTERSECYZON operation is maninaful in

finding those messaqes that are common to two mailboxes.

57

C7) Ouotlent

The QUOTtaNT operation is Incorrect since

both mal tables are of the same arity,

CU) join

The JOIN operation is incorrect since the

resultinq table structure will have duplicate attributes,

(9) Natural Join

The NATUPML JOTN operation is meanineful,

but produces the same effect as the INTEPSECTION operation

With less efficiency* therefore It should be considered

tmeanInqless.

This section has described the operational effects

of the basic operations when used on one or two tables of

the same type. Fiqure 4.1, on the next pace, summarizes the

findinas of this Subsection,

2. Inter-TyVe Operations

The previous section covered the effects of the five

binary operators when conducted on tables of the same type.

This section will cover these operators when used only on

tables of dlferlnq types. Table 4.2 will summarize the

findings of this Subsection.

a. Union

Since the UNION operation can only produce a

usable output table when the structure of the two tables ore

Identical, this binary eperator could only be meaningful

5,

~ !

when one of the tables was a database type that happened to

match the structure of the other tables In this special case

the result would be meaninqful, and In all other cases the

UNION omeration is Incorrect.

Table 4.1 - Intra-Type Operations.

TEXT DATA SPPEAD FORM ELECT.
OPERATION SASE SHEET GEN. %AIL

1, Insert M MM X

2, Modify M M M M
3, Delete V V M
4. Prolection V N N
S. Selection (?A I M M N

! 6, Union 041 M (M] [M] ("I

7. Set
Difference ["1 N CM] ["I

4, Cartesian
Product M Is OF

9o Tntersection C"] V4 CM] C]
10 Quotient -- -
11. Join - 4 - - -
12. Natural

M a Operation is meaninqful,
(M] a Operation Is veaninqfulp but there

are modelina oroblms,-
- a Operation Is Incorrect,

a 3 Oneration meaninqless due to duplication.

b. Set Difference

Since the SET DFrtmZNCt operator can only

produce a usable output table when the structure ot the two

59

-. ~..1

tables are identical, this binary operation could only be

meaningful when one of the tables was a database type that

hapoened to match the structure of the other table, In this

soecial case the result would be meaningful, and In all

other cases the SeT DTrPERCNCZ operation Is Incorrect.

c. Cartesian Product

The CARTESIAN PRODUCT operator can produce a

meaningful table structure for all combinations o table

types that will not result in a table with duplicate

attributes. The presence of duplicate attributes In the

resultinq table would make the CARTESIAN PRODUCT ooeration

incorrect.

d. Intersection

Since the INTERSECTION operator can only produce

a valid outout table when the structure of the two tables

are identical, the operation would only be useful when one

of the tables was a database type that happened to match the

structure of the other. in this special case the result

would be meanlnafulp and in 411 other cases the ZNTWRSECtTON

operation Is incorrect.

e, Quotient

t The OUOTTENT operator can only produce a

meaningful output table when the arity of the second table

is smaller than the tirst, and all Its attributes are also

found in the first table. This would then limit the type of

60

SO~

-'. i _ . . I . . I U - i a i

the second table to database, and then require the proper

table structure for the QUOTIENT operation.

f. Join

Given the faet that the actual structure of each

table type is an implementation issue and therefore

Variable, it iS conceivable that all table types could have

at least one column structure in common with another table

type and the JOIN operation would produce a meaninful

table.

q. Natural Join

For the same reasons as stated for the JOIN

operation, it Is conceivable the the NATURAL JOIN operation

would produce a valid and ootentially useful table.

Table 4.2 " Inter Type Table Operatlons

TABLE-2

TEXT DATA SPREAD FORM MAIL
OPERATION TABL9I- BASE SHEET

(TX) (DO) (SS) (F") (ML)

UNION TX ?-
DB ? +
SS - + -
PML ? +

SET Tx + =-o

ourancE Do 7 +

L ? + o
ML o? - *

i . + + . . ' ,

l - -_ .. -- -.-I -

Table 4.2 - (cont.)

TABLE-2

TEXT DATA SPREAD tORN NAIL
OPERATION TABLE-I BASE SHEET

(TX) (Do) (33) (F'4) 0ML)

CAPTESIAN TX + M N

PRODUCT Do 4 + M N

Iv)A + .

ML ? 4 M M •

INTERSECTION TX + - -
DB? •? ?

i, a 9 " • -
.41, ? - " •

QUOTIENT TX +. - "
Do ? + ???
39 ? 4 "

77 - ? - + -
ML - ?- a 4

JOIN TX • ? - U
Do ? + ???
33 ? +
77 " ? - + "

ML - ? + -

NATURAL TX + ?-=-

JOIN 8? ?

i7 - 7 f + "I4L ? 4-

m Operation Is Potentially meaningqful*
? Operatlon could produce a mee*nInqtul

result vat depends on the database
table structureo

- U Opers on Is Incorrect.
a a Intersection of same commend, effects

covered In section 4o..1 and Table 4.1.

62

V. APPLICATION VEL INTERFACE

In the precedinq chapters the structure ot the

conceptual level ot the ZASS has been covered. Chapter 3

discussed the table as a common date object, and Chapter 4

introduced the primitive ooerations allowed on the table,

This chapter will describe how each of the aoolication level

pac~aqes Intertaces to the conceptual level. All application

oackaoes In the I&S8 must make use of the common data object

as an Important part ot their modeling effort. It the common

date object can closely model n qIven application, then

maximum use can be made of t"..; onceptual level In order to

accomplish the application's functions. However, it the

common data object Is a oor model ot the aoolication, then

the aoplication will have to provide more of its own service

needs and therefore will create a larT* apolication specific

series ot operations.

In Chapter 4 the twelve basic pr~mlt~v* ooeratioas of

the conceptual level were dlscussed, and they are listed

aga iInT able S.l. ?hese operations will be discussed as

system leval operations where they are invisible to the IAS8

User, Those IASS operations that are visible to the user

will be discissed in Chaster Go

In Chapter 2 the basic user islble functions ot each

aPplicetion were groused Into Is command catecoriest

['3

- 4'0

<Create). (Insert)l (ModIfy). <Delete), (Mave). and

(Retrieve). 4hen issued by the uer they Will cause the

application to perform one or more operations in support of

the user. While the use of the conceptual level by the

aoplication Ls generally invisible to the user, the sample

list of included operations can be viewed as to how they

will suoport the six visible command cateqories.

Table 5.1 - Conceptual Level Primitive Operations.

OPERATION ABBREVIATION

I. insertion I
2. Modification H
3. Deletion 0
4. Prolection P
5. Selection S

6. UnLon UN
7. Set Difference SD
5. Cartesian Product CP
9. Intersection iS
10. Quotient QT
ii. join JI
12, Natural Join NJ

In the folloing sectlons each of the five included

aplication Packages will be covered as to use of the

Conceptual Level and their own *Wor space*. what is meant

by the applleation's OWorkspce" is that part of the

application program where the operationally specific

64

I I I ~ ii. -

I.I

'ifunlctionsI at the application occur, This would include

vertablee, Constentet prooren logic, buffer@, and whatever

other Implementation specific Itrems are necessary. The

Worksoace is What makes each application unique to the user

and is the part that must be inserted when a now application

is added to the IAS8. It Is not the intention of this

chapter to focus on the Worksaece, so its coverage will be

qendral and brief. The orimary ooint of interest will be how

each application can make use of the Conceptual level.

In discussing use of the conceptual level, application

specific operations will be described where eac?% requires

the use of one, or more, conceptual level onerationh. if

one application operation can be defined in terms of a

previously defined apliceation ooerationt the crevlous

operation will appear In brackets, W".

As EDVTORYWORD PROCESSOR

As discussed In Chanter 3, Section CA), the Editor/Word

Processor Cl/VP) presents the greatest modeling oroblem for

the conceptual level. This means that the E/WP will perform

the majority of Its operation In the workspace and not at

the conceptual level.

1.3/WVP Vertleace Oiezatleni

Alarple number of the oeerations necessary to model

the 9/WP will ha"e to be loeated tn te Workspace area since

the data-table 1se a oor moel of text. Some of the

Go

4---"No-

operations necessary at the Workspace level arej

reassembling text tuples Into a continuous text stream,

keeping track of the proper orderino of text tuples,

oerforminn strinq searches, block moves$ and character

replacements. All operations for formattinq and display

will be conducted here.

2. E/WP Conceptual Level Operations

Although there are modelinq problems with text, It

does not mean that the E/WP cannot make use of the

conceptual level. The following operations use the

conceptual level but do very little direct manioulation of

the text, since that Is performed in the Workspace. The

aoerations themselves were chosen based on a oerceived

mlnmum application need and the ability to use the

conceptual level, This is not a complete listina of

possible E/WP operations since that is a very Implementation

dependent question.

a. Insert Text Tuole

As the Workspace finishes with enough characters

to constitute the "contents" field at a tuale, It will

determine the prover "Id" field secuence for the new tuple

and then issue an ?NSCRT operation to place the tuple in the

table.

b, G t Text Tuplo

The C/WP must determine the Hid" of the next

tuple it needs, A CLICTION Is performed, based on that §Id§

| --

.4

.1

field. The resulting tuple Is than DELETE'od from the

oriQinal table and the "Contents" field of the result Is

PROJECTed out and placed in the Workspace.

C. Append Text Files

The Workspace will <Oet the lost tuple from

file-I and then Proceed to SELECT each tuple from file-2, in

order, PROJECT'Inq out the "contents" field, and place it in

the Workspace. As the Worksoace qets enouqh characters to

mate a comolete tuple, It will <Insert> the tuple into the

end of file-I.

d. Insert A Text rile

The Workspace will <Get> tuples from table-i

until it finds tle correct insertion point. Then all tuples

will be SELECTed from table-2, one at a time, in "id"

order. The "contents" field of each will be PPOJECTIed out

and placed in the Workspace. As the Worksoace qets enough

characters to form a comolete tuDle they will be <Inserted>

into table-i with the oroper "id" field. When all tuples

fram table-2 have been copied into table-I, the Worksoace

I will <Get> the remaininq original tuples from table-i and

<Insert,) them back into table-I,

e. Delete To A Buffer

The Workspace will Ge6t> tuPles from the

referenced table and <Insert> them "k into the table until

It finds the point at which the deletion is to beain. From

that point it will continue to (Get) tuples trom the table

67

until it finds the point at which the deletion is to Stop.

As the WorkspaCe collects enouqh characters to form a tuple.

it wIl asslqn a oroper 4idO and INSERT the tuple In the

buffer table. After the stop point, the Workspace will

continue to <Get) tuoles from the referenced table, and will

<Insert> completed tuples back Into it until the end Is

reached.

t. Copy To A Buffer

The Worksoace will <Get> tuples from the

referenced table and <Insert> them back into the table until

it finds the Point at which the copyine is to bentn. From

that ooint It will continue to <Get> tuples from the table

until It finds the point at which the cooYIno is to stop.

As the Wnrksoace collects enouqh characters to form A tuole

It will <Insert> them, with their ori1nal Rid", back into

the table. Simultaneously it will INSERT the same tuples,

with new "ld" fields, into the buffer table. After the stop

point, the Workspace will continue to <Get> tuples from the

referenced table, and will <Insert) comoleted tables back

into It until the end Is reached*

The use of the concectual level by the E/WP Is

~SUnliorized In Table S,2o

Be DATABASE MANAGEMENT SYSTEM

to Dat abase! WOrkDace

Since the DBMS packaae Is a relational database

system, the user will be permitted direct access to the

Go

conceptual level primitive operations without constraints

The user accepts complete responsibility for the validity

and usefulness of all actions, This means there is little

need for a Workspace since the user does Just about

everythinq.

Table 5. 2 Editor/Word Processor Interface.

CPRIMITIVE OPERATIONS

OPERATIONI I N D P S UN SD CP IS QT JN NJ

~a. Insert

TuPle X - - a - -
b. Get

Tule - X X X - - - a a a a
co Append

File X - X X X - W M - -

do Insert
rile x - X X X - - a a. .

e. Delete To
Buffer X M X X X a a a a a a a

f, Copy To
Buffer X a X XX a a a - a -

X x Primitive operation is used,
- a Primitive ooeration Is not used.

2. Database/Conceptual Level Operations

As stated above, the user Is permitted direct access

to all the conceptual level primitive operators, There are

no limits placed on the user in structurino these operators

to produce a desired result, However, it Is obvious that in

69

implementation some issues will be encountered that will

place limits on the user.

C, 8PREAD-S3EET

The soread-sheet Is very similar to a database In that

it stores the facts related to a user defined "real-world"

situation, i.e. It is a model. The major difference in that

the user Is limited to the predefined retrievals and

disIOayS provided by the spreed-sheet. The spread-sheet has

control and responsibility for the operation, while the user

has resoonsibility tor the content.

t. Soread-Sheet Workspace Ooerations

The Worksoace Is resoonslble for use of the spread-

sheet data table since the user does not see or manioulate

It directly. It contains t?e loic necessary to Interface

with the user and control the display.

2. Spread-Sheet Conceptual bevel Operations

As the user issues applicatlon specitic commands the

Workspace translates them Into a series of application and

conceptual level operations. The list of included

operations cannot be claimed to be definite or compolete

because that Is an Implementation Issue and really without

boundS. However, the list is considered to be a workable set

of operations otr a representative spread-sheet application.

70

woo - -

±||

a. Update Entry Positions

The Workspace must Know In which order entry

positions are to be updated, "row" or "columns order. Each

entry position is SELECTed In turn based on its "location"

field# and its "function" field Is PROJECT'ed out. The

WorksPace evaluates the contents of the *function" field.

and resolves references to other entry positlons by

SCLECT'Ine them and PROJECT'inq out the "value" field, When

the new value is finally computed, a MODIFY operation Is

conducted to chane the *value" field. The Workspace

continues until all entry positions are updatede.

b. Make An Entry In A Entry Position

The Worksoace must know which column and row

entry oosition is beina referenced, and the value or

function to be entered. 4 MODIFY operator will be used.

based on a condition statement, to find the tuple with the

proper "location" entry and then change its "function" and

"value" field. Itf the Spread-Sheet is in automatic

recalculation mode then related entry positions will have

to be 4Updated.

c, Add A Sew Column Or Now

The workspaee must know the column or row on the

spraed-sheet that to being referenced and where the new

column/row Is to be- Dlaced relative to It. The MODIFY

operator will be used to find those entry positions that

must be moved, and Chance their "location" and "function"

71

fields to take into account the shift In position. New

tuples, with *location* fields corresponding to the added

row/column will be ZNSERTED. Lastly, all entry positions

will be <Updated>.

d. Delete A Column Or Row

The Workspace must know the column or row on the

spread-shet t"at Is beinq referenced. A DELETION operator

Is issued with a condition statement corresoondina to the

proper *location". Next, a MODIFY operation is conducted on

the "Location* field of the prover entry positions necessary

to close the resulting gap, LastlY, all entry positions will

be <Uodated>.

e, Append Spread-Sheets

To Workspace must know whether sheet-2 is to be

appended to the side or bottom of sheet-I. Given that

information, a SELECTION is done on sheet-i to find the

maximum "locatlonO field and it is PROJECT'ed out and saved

in the workspace. A NOOIFY operation is next conducted on

all tuoles In sheets2 to add the proper, row or column,

value saved above to all entry position references In the

location and Ofunctions fields of sheet-2. Sheet-2 is

then UiION'ed to sheet-it and the resultina sheet Is

4Updated>,

to SpreadeSheet Intersection

Given that you want to display the common entry

positions of shot-i and sheet-2i Perform the INTERSECTION

72

-- -e4. ~

operation between sheet-I and sheet-2. Then <Update) the

resulting table.

9. Spread Sheet SET DIFFERENCE

Given that you went to disply those entry

positions that are unique to sheet-I and not found in

sheeto2t Perform the SET DIFFERENCE between sheet-I and

sheet-2. Then <Update) the resultinq table.

Table 9,3 - Spread-Sheet Interface.

PRIMITIVE OPERATIONS
APPLICATION
OPERADNt I M D P S. UN SD CP iS a? Jm NJ

a, Update ft X a X X - = . -/

b. make An
Entry 0 I - - - a -

. Add Ro
Or Column XX - XX- - -

do Delete Row
Or Column - X X X X - a - a o a .

e. Append
Sheets o X - X X = - a - a a

f, Intere
section oX = X X * a a X a a

a. Set
Difference X X X- X - a a a

USED .x x x X-x-- X -X - X - - =

x a Primitive operation Li used.
a U Primitive operatlon Is not used.

The se of the conceptual level by the IpreadSheet*

epplicatien Is smerised In Table 5.3.

73

a W

D. PORP GNERAOR

it is the purpose of the Pore Generator to create a

table that will be used at a later time in support of other

application packaees or the user directly. ?he Form table

is probably the met comolex table of the five included In

the ZA81 'since it will be called on to do so much. The table

reads like a set of step by step Instructions on how to

Input or output the provided data. As this is a heavily

implementetion dependent application, not much emphasis will

be placed on specific uses.

1. Form Generator Workspace Operations

The Worksoace in the rarm Generator must be fairly

lntelliaent since it has two modes of operation. The first

Is Qdesian-time when It must Interpret the user commands

irto a series of block entries In the form table, The second

is muse-time= when It must use the information in tie table

to create the desired output form, This reouires that the

eoplication loqic, its ability to Interface to the other

applications, and any needed structures be contained in the

Vorkspce.,

2, Form Generator Conceptual Level Operation!

The re Generator does little more than build the

table at OdesignN time, and read the Instructions In the

table at *use* time. it therefore seems that it can make

iatrly extensive use of the conceptual level oserators.

Nowever, a complete list of all possible operations is

74

, , .- -: , :: i ,• * .

Impossible since the torm Generator application seems to be

the most Implementation dependent application of all. The

list of operations that follow* Is intended as a

representative group of basle operations and Is not

definitive.

a. Clear Workspace

If the Workspace is empty, then do nothing,

However, If there are entries In the Workspece then issue a

MODIFY operation, based on *location", to ChanQe those

flelds that have entries. If, no block was found, then issue

an INSERT oceration to place the block In the table.

Lastly, erase the Workeree.

b, Find Block

Firstv, Clear> the workspace. Use a SELECTION

operation to find the new block being referenced. PROJECT

out the flocation" field, and any other fields that are

needed. If no block was found, then wait fot next user

command.

cs Add A New Block

Te Workespace must start blank since It cannot

have found a referenced block where a new block is'being

added. The user enters the proper Information Into the

Wor spece and when the user ts finished, the Workspace will

be (Cloared>.

7'

,.~N "-,q. . .. , , ,

d. Edit A Block

When the user edits an already existing block

then it will have been found by the orind Referenced Block"

operation described above. The Workspace will wait until the

user Is finished editing, and then <Clear> the Workspace.

e. Delete A Block

<Clear> the workspace. Issue a DELETE operation

based on the user generated condition,

f. Append Forms Together

<Clear> the Workspace. Given that form-2 Is to

be appended to the bottom of form-It Use the SELECT

operation to find the block with the highest row number and

lowest column number in form-to PROJECT out, and save In

the Worksoace, the "row" field. Issue a MODIFY ooeratton an

all blocks in form-2, and add the saved *row* number from

form-I to the "row" field In form-2. Then UNION form-2 to

form-I. I
q. Add A Blank Line To The Form

The Workspace must know the referenced row

number on the form. Clear the Workspace. Issue a MODIFY

operation on all blocks. on or below the referenced rov to

update their Olocation" field.

h. Form Intersection

Given that the desired display Is those blocks

that are found both In form-I and form-2, first 4Clear> the

Workspace.

76

It position on the form is Importants Perform

the INTERSECTION operation on form-i and form-2. Pass the

resulting table to the Workspace.

It position oan the form is not Important:

PROJECT out the "promptO, 'i/o'w and *function" fields of

form-I and form-2, Do an TNTERSECTION operation on the new

tables and then NATURAL JOrN the result to the oriqinal

table-i, Pass the resulting table to the Worksoace.

1. Form Set Differenee

Given that the desired display is those blocks

in form-i that are not found in form-2, first <Clear> the

Workspace,

It position on the form is important: Perform

the SET OIFFEPECCE between form-i and form-2. Pass the

resultinq table to the Workspace.

Zf position on the form Is not limportant:

PROJECT out the "promot', 0i0o36 and "function" fields of

iors-t and form-2. Perform the SET DIFFERENCE between thee

resulttiq tables, Take this result and NATURAL. JOIN it to

the original table-I. Pass the resulting table to the

Workspac,

The use of the conceptual level by the Form

Generator application is summarized In Table S.4.

77

'7

Table 5,4 rorm Geferator interfaces

P til-Vf OPUATIOMS

APPLICATION
OPERATIONI N D P 8 us so CP Is OT JN NJ

4, Clear

Workspace X X a o o o o ° - ° * -

b. Find
Block X X a X X

co Add
lock X o " a . a -. . . o

d. Edit
Block * X * m a o a a a a "

e. Delete
Block *-Xa- - -" - - . ,

f. Append
Frms XX - XXX - - o °

qo Blank
Line X X -.o - - ..-

h. Inter-
section XX - X - - - X - a X

etDifference X X X - - X - - - - X

USED X XX X X X X - X - - X

Xa. Primitive operatlon is used.
do a Primitive operation Is not used.

to ELECTRONIC NAIL

The Purpose of the Nall opliceatlon Is to enable the

user to leave messaqes for other users who are not presently

available. Again this Is a very Implementation deoendent

application In determlnlng exactly what services you wish to

provide. AS eore# implementatlon issues will be avoided as

such AS pesstble.

/0

1. Ilectronic Mail workspace operations

The Workspace Is responsible for translatinq user

commands into application overations necessary to create and

reed messaqes. It contains the logic necessary to use the

Mall table, interpret user commands, and control the

display.

2. ,Eectronlc Mall Conceptual Level Ooerations

A fairly wide ranqe of application ooerations can be

accomplished bY usinq the conceptual level eoeratlons.

While the followinq list of operations cannot be considered

complete or definite, it is reoresentative of an Electronic

Mall aoelieatton.

a, Pickup Nail

Uoon enterinq the IASS, the MAIL system is

automatically directed to pickup any mail for the users The

MAIL system generates a S3ECTION operation on the system

mailbox with the condition that the message(s) is addressed

to the user, The resulting table is SET DIrFEREWCeed with

the system mailbox and then UNIOX'ed with the user's

mailbox,

b. Reed wail

The workspace must have an Oide of the desired

messaqe. A 5ELECTION operation is performed on the user's

mallbox based on the Oid* field. The subparts of the

sessaqe are PNOJZCTOed out and Dlaced in the workspace.

79

a,. Find Mail

Given a user entered condition statement the

Workarea will generate a SELECTION operation based on that

condition. The proper field(s) of the messages will be

PROJECT*ed out and placed in the Workspace to support an

aporoDriate display.

d. Edit A Message

The Workspace will know the "id" of the message

being edited, When the user is coMpleted, a MODIFY operation

will be Issued based on that id to change any fields that

were edited. If no messace with that Rid" was found by the

Muory operation then It must be a newly created message and

the Workspace will INSERT it Into the user mailbox.

e. Delete Mail

The worKspace will know the "Ld" of the

messeae(s) or be given a user defined condition statements

Based on ttiase, a DELETION operation will be nerformed on

the user's mailbox,

f. MUlti-hat

Given that the Workspace has a sinqle message

with a multl-hat destinations PROJECT eut the contents of

the tog field In the meuSaae, and place It in the

Workspae*. ?he WerkspAce will find a database alLias" table

with that n&*e which has Rid* and "to* fields. The tuples in

this table correspond to the actual names In the multL-hat

nam. Taking the original messaeq PROJECT out the "from'

.

z. 4+ I+

| -II I I- I I l

"Subjit "date*, and "body* fields. Take the result ard

Perflr a CARTESIAN PRODUCT with the alias table. Now UNION

the results with the system mailbox.

a. Send Mail

Each time the user leaves the Mail application#

any outgoinq mail is automatically sent. The Workspace

generates a SELTCTION based on the condition to find all

messaces not addressed to the user. The resultino Ooutoolnq"

table is SET VMTRrNC'ed with the user's mailbox. A

SELECTION is then performed on the outqoine table to find

any multi-hat destinations. The resulting multi-hat table is

SET DIVFERENCed with the outgoing table, and the remaininQ

outaolne messaaes are UNIONled with the system mailbox. The

messaaes in the multi-hat table are then SELECT'ed one at a

time, OELET'ed from the multi-hat table, and then vrocessed

by the (Multl-Hat) operation.

M. Mail Synoosis

PROJECT out the "from, "to", and "subject"

fields of all the messaaes in the user's mailbox, The

Warkarea will use this new table by SELECT'inq each message

in Old" order, PROJECT'inq out the three fields, and using

the results to create the display.

The use of the conceptual level by the Mall

aoplicatlon ts summarized in Table 5.5.

1i

Table 5.5 " Nall Intersection,

PRIMITIVE OPERATIONS
APPLICATION -weimOPERATIONS I M D P S UN SD CP 1S OT JN NJ

a. Pickup - - - - X X X -
be Reed - x X -
c. Find - - - X X . . . - - -d , [dit x I - a.-

e, Delete - - x - a-a-a.
f. Multi-

Mat " - . X X a x
a. Semd - - X X X X X X
h. Syropsis. - - X X W aW.. .

USED XX X X X X X X . a .

X a Primitive operation Is used.
a • Primicive ooeration Is not used.

The results of the precedinq five sections are

summarized In Table 5.6. It shows that the application

packaqes can make extensive use of the majority of the

primitive operations found at the conceptual level. This

chapter has not tried to show all the possible application

operations and their use of the eonceptual level. Instead a

firly representative and basic set of operations was

discussed, The actual list of operations included In each

lASS apolication will be a very Implementation dependent

ss2

' .

Table 5.6 - Application Intersectlon Overview,

PRIMITIVE OPERATIONS

APPLICATION -N D P S UN SD CP IS OT J3 NJ

iED&

WP X " " X X X
2, DSMS x X X X X X X X X X X X
3. Soread

Sheet X X X X X X X - X - - -

4. Form
Gen, X X X X X. X X - X - X

S* mall X X X X X X X X

TOTAL S 4 4 5 5 4 S 2 3 1 1 2

X a Primitive operation is used,
- c Orimitive ooeration is not used,

(Li

I.!
33

_ _ __e_ _ _ _ _ _ z

V1. USER 1NTERFACE

The Integrated Application Software System (lAS3)

combines the capabilities of the five software application

packaqes described In Chapter 2. Each of these applications

performs a set of functions on an associated looleal file

type. Tnteoration of these distinct systems is brouqht

about by determinina the set of common functions performed

by each system on the associated logical file type, defining

a common data object to represent tme loqical file types,

and finally definino a system of primitive operations on the

common data object,

The Previous chapters have covered the integration

approach at te system level, where it is invisible to the

user. Another inteqration level Is vital to the TASS design

and It must occur where the usor interfaces to the !ASSs

applications. The result of intearatLon at the user

interface will be a system-wide, common set of user

operations and associated commands, and a regular disolay

organization of the logically distinct file types at the

user Interface. This is orobably the most Important command

Interface since it is the one the user can actually Perceive

and evaluate.

Implementatlen of the lASS requires desiqnino gor one

conceptual display model using a single physical

84

f,,-______

orqanizational scheme, The lASS will therefore ensure

minimal system complexity at both the user and system

interface. The baste ZAS3 hierarchy Is depicted in riqurte

Gel,

"USER"

I I
USER
INTErrACZ

ED BS P ORm MAI

PRIMITIVE
OPERATIONS

~COMMON
ODATA

~OBJECT

riqure G.1 - lASS Hierarchy

8

I
As USER ZNTERrACE NODULE

The Interface between the user and the system couples

the user to the aoplicetlons of the TASS, and allows control

of the operation of the system. The User Interface Podule

(UZP) ts an abstraction to contain the features at the TABS

which the user can assume are present in any context of

system use. The UIP encompasses both the environmental and

ovratlonal assumvtlons of the system.

The UIN Is not a stand-alone entity, It depends heavily

on each apolLeation Proaram to Interpret the user input, and

to determine the approoriate display struct4re. It is the

application Proqram that translates the common UZM commands

into a series of application operations that may, or may

not, make use of the conceptual level.

1. UX Oispiay rormat

The point of observation of the system Is the

terminal screen, which Is a finitely dlmensioned "window' (
into the logical file or data oblect in reference. For all

anplIcations the display size is not limited to the size of

the screen window. Itf the display is large, the user will be

able to use the UIM to maneuver the window over the display

to accomplish the desired tasks. The UIP does not control

the type of display presented to the user, since this is an ,

application dependent reaulrement. However, the UZM does

give the user a Consistent method of interacting with the

display as the apolications change.

"6

2. U!M Commend Line

?he U!M uses a common display organisation which Is

augmented by the specific application program In use, In any

context of use, the top line of the screen is dedicated for

presentation of the U!N command lines The next line will

always be used by the application program for tt command

line. Zn this manner, the top two lines of the screen will

always contain system Information and oromots for the user.

3. UIM Editinq

From the results of the requirements analysis Phase

of this study, the function which Is common to each utility

Is that of making chanoes to a referenced file. te.

editinq. All the Ulm really provides the user with is

screen editing features. It will be the apolication program

that Interprets the U14 commands into more complex

ooerations. tditlng should be done on-screen, with

Immediate feedback available to the user. For user

protectlen, a11 e4itnq will be done on a copy of the

deslnated file and only committed as a permanent

modification when explicitly directed by the user. The

common set of editing commands provided by the UM may be

agmented by functions from the underlying apolication

program to ensure that special editing actions, which arc

specifically associated with a logical fle type, are

executeble.

.7

o ['

4. UZ, Commands

The operational assumptions of the ZASS UlN

compromised a set of user commands, These commands can be

assumed to produce a similar effect when executed in any

context of system use. It is the ourpose of each epplicetion

to provide the appropriate translation between the UXW

commands, the display of the data object, and its conceptual

representation.

Based on the cateaories of commands defined in

Chapter 2, there are three major categories of commands In

the UlM. The first Is "Movement" commands that control the

oosttlon of the cursor on the screen, and the location of

the screen In reference to the application display. The

second category, Is "Editinq" commands that make additions,

deletions, and/or chanoes to the data In the display. The

third cateoory Is "System" commands that are not used bY the

application, but by the !ASS to perform its Ohousekeepinq*

functions. There are many different methods for attemoting K

to present these categories to the user, and they are all

implementation dependent. For the purpose of this thesis a

possible listing of standard Ulm commands is given in Table

All of the basic cateoeries presented In Chapter 2,

with the exception of the (modigfy command, are directly

implemented by Ulm commands, There did not seen to be any

5.

simple way# short ot accepting a complex command syntax, to

implement one Ulm command per cateqory.

Table 6.1 ulm Commands

Ulm Ulm CHAPTER 2
CATEGORY-- COMMAND CATEGORY

Movement I. Move cursor Move
- righ~t
- left
UP
down
top of screen
bottom of screen
start of file
end of file

2. Scroll Screen Move
- tight
- left
o up lI-
- down

EdItinq 3. rind Object Move a
Retrieval

4, Insert Object Insert
S. Copy Object Insert
6. Add Object Insert
7o Move Object Delete &

Insert
8. Delete Object Delete

System 9. Enter Application Creae
10. Output Retrieval
it. Save Changes
.%2. Ouit. Aplication

- - - - - - --- - - - _ _-- - - _ - _ _ _ " . _ _

The 4Modify) category did not need a command of its own

because It became apparent that the application itself will

be able to determine when modification Is necessary based on

t_7

use of the Uzm. in Section Ce) which follows, each of the

five applications will be covered with the Intention of

showinq how they use the standard UZM commands to implement

the command cateqories of Cheater 2,

Se APPLICATION PROGRAM LEVEL

The Apolication Proaram Level CAPL) consists of the

actual aoolieation proqrams that interface to the user

throuqh the UTM, and operate on the common data object by

the Prlmitive operations available at the conceptual level.

Each apolicatlon proqram has a specific user sueport

function and although It uses the common 'JIM it has certain

features that make it unique. Each of the ZASS aoplication

croorams will bO discussed In the f0olown I sections.-

'Pour areas of each application will be discussed.

first, the display format used by each aoolication to take

advantaqe of the features of the UZM. Since the screen will

be the common inPut/outout medium for the ASS It is

important that the Perceived use of the display be similar

between applications. Second, the editing features of the

application. Aoain, as this is part of the common interface 4
medium for the TABS it Is Important that the user Perceive a

similarity between editinq features In each application.

Third, Sme*.ial zed functions" of the aoglication, These

are te unique features of each application that will

differentiate them from other included applIcations.

90

-Alm.,

Fourth, use of the standard U!M commands by the applications

This will show how the application will use a standardized

command to perform an application specific operation,

1o JABS diteor/Word processor

The JABS text table Is not Limited by deslan to

supporting any one type of editor and word processor

arrenqement. However, as was pointed out previously, the

on-screen editor with on-line formattino is rapidly becomina

the accepted standard and any regression to line oriented

editors, or the lik, would meet with serious user

resstan..e For this reason an on-screen editor with on-

line formatter Is assumed.

a. e/wP nisolay Format

The Editor/word Processor CE/WP) has a single

display called "paqe" format, and Figure 6.2 provides an

illustration. The screen represents a window over the sheet A,

of paper on whic" the text is being written. what the user

sees through the window Is the format that will actually be

output. The default Word Processor CWP) settings will Match

the size of the C/WP display to the slze of the screen (l.e.

no part of the text will be hidden off either side of the

screen). However, the user is free to issue WP commands that

will result in a display larser than the screen. In this

ease tho user will have to use cursor movement commands to

bring the off-screen portions Into view,

91

la(ser entered command) R## C#e AT*eztll. Nao*)! 2....,.....3.... *....,..*..6.j

I It you're not using the standard library, or ift
will have to construct calls to other programs usi

through temporary Mass~ Here it is natural to ak

riqure 6.2 - "Pace" Display Format for Editor/Word
Processor.

(Display size is larger than screen slze.)

b. £/WP Editinq

All text files make use of the Word Processor

(WP), and it Is always on-line. At entry the WP Is set to

certain default output values for page length, line size,

line soacinq, left marcin, riqht marain, and tab size. The

user can accept these default settings or can Issue commands

to the Z/VP to chanae them. ?he E/WP continuously scans the

text stream, recoqnizes the commands, and Immediately

changes the output format.

Idltlng Is accomollshed by positioning the

C'rsor at any Do it on the screen and typing In an entry.

The entry to Inserted between the present contents of the

location. Deletion and modification are accomplished in a

simtlar en-sereen manner. Only commands that make use of

largoe objects, like blocks or other files* need resort to a

emmen-llne format. As the /WP tormatter Is always on-

92

| ' ', -'- ."

line, the user does not have to worry about Starting new

lines, Indenting, line spacing, new page, and other similar

format considerations. The I/WP automatically does It for

te user, but the user can still take manual control If

reOu lied.

To assist the user in certain editing situations

the E/wp will Provide a certain number of buffers for the

user to treat as temporary storsaq areas, kctually they are

temporary text files created by the C/WP and are destroyed

when te session is ended,

The £/WP actually overates on a copy ot the

oriLinal file, so any chanoes made during a session only

become permanent when the user Issues a "save* commend, If

tne user quits without savino, then it is as if the session

never occurred.

CS C/WP Functions

CI) Formatting Commands

A series of specialized Word Processing

commands must Do Included in the E/WP application to allow

the user to modify the format of the text. These commands

most Do structured in such a way so that they are readily

diStin4uished In the text stream and will not be mistaken

to? te~t.

93

- .. j... -

do £/WP Commands

Cl) (ind

Used to locate character or string sized

objects specified by the user, The located object is

displayed by scrolling the window to its location, and the

user Is notified if another match exists. This operation

will use a command-line format.

(2) Insert

Used to place any valid object at a point

referenced by the cursor. The present contents are not

overwritten, merely pushed aside to make room for the new

object. This operation will use an on-screen format. It is

possible to insert larce oblects. Such as buffers or other

text files, into the file being edited, hut this will

reauire the use of a command-line format.

03) *v__e

Used to change the location of line or

block size objects specified by the user. The object is

deleted from its oresent location and then inserted In the

new Location. This operation will require the use of a

command-line format*

C4) il3.e
Used to remove any object (character, line#

block) specified by the user. The object is normally not

saved. but It the user vDecifIes it can be saved in a

butfer. This operation will require the use of both on-

screenf and comand-line formats*

94

CS) Copy

Used to duplicate an object and then Insert

the duplicate at a specified cursor location or into a

buffer. This operation will reouire the use of a command-

line format.

C) Add

Used to create a blank line(s) on the

display, above or below the cursor position. This operation

will reauire the use of an on-screen format.

C7) Output

Used to send the file to some designated

output device. The output format of the file will exactly

match the format seen on the disolay durinq editIna.

2. IASS Database manaaement System

The main Intention of the Database Manacement System

(BS) is to emphasize simplicity. It does not make sense

to follow the lead of many currently available OSBS oackaqes

that add larqe amounts of complexity to qain minor and

seldom used capabilities.

a. DBMS Display Format

There will be two formats in which database

tables will be displayed. The first, and default format is

called "table". The table will be displayed in a tabular,

row and column, format for the user to edit. Fiqure 6.3

illustrates the 'table' display format.

95

- - -. -.--.

^A-A126 434 INTEORArED APPLICAIIONSFTWARE SYSI|E(U| NAVAL

POSTGRADUATE SCHOOL MNIEREV CA J C WATERS DEC 82

A-..11 11 0 F/0 9/2 NL

l~soon IEmmlis

I monEoonhsoEEI lmoEEEon

In1.0 L2IW
L3

MICROCOPY RESOLUTION TEST CH4ART
NATIONAL. IMAU OF 8?&NANNMO-196S-A

(user entered command) R## Cot 40atabase name)To# R44## (Table name)

*gSOO@O00006000000960006OOOOOOOO 0000000O

lla me co I N Will bAge "Dept anag

tetbelin tt e to th sies

8 I I I I

FIr~ure 6.3 * Table" DLsolav Format for oDSNSoYable.

Tha seond format wll bea 'paqoe, and it

displays the lrecordsl in a velrtical folrmatC wth no polrtion of ,

the tabole lying of~raeen to the sideso.

(user entered command) R30 Cot (Database Name)
(Prompt) TOO Ross# (Table name)

Name a I

Sewp I _ 8AgeS.=

Manager On 1

Comments 2000noin-na m6a mi~u-m-m --"I

Fimure 6.4 - *Paq, 0is9lay rmtat tr DBMS-table.

96

Y7..
NOR,

N qe 1

Instead. each field has at least one line on which to

display Its contents# end can have more than one line If

needed. The user will scroll in a vertical direction to

view the entrles in the table. Fiqure 6.4 Illustrates the

4p9aea format.

b. DBMS Editing

The DBMS makes use of the UIR described In

section (A), above. However there are some constraints. The

user Is not free to write anyvhero on the screen, but is

limited to writinq within field Positions. Field oositions

are the bounded locations at column and row intersections

for the "table" diSolav, and the locations between the I

delimiters " for the "Dee dIsolay. Entries cannot be

made to Pass throuah field boundaries# and the user will be

prompted if It IS attempted. To cross such boundary

requires the use ot a cursor motion command.

The UIT commands vill be used to edit the

displayed table. Cursor motion keys will be used to

posItion the cursor In a valid field position. Text will be

inserted, or deleted, Inside the field position. The user

will be allowed to scroll across the screen in all four

directions. u to the limit of the size o£ the table.

Records are added to the table by editInQ a

"blank$ tole. slant tuples are found automatically at the

end of the table display, or created by usine the *add*

97

- - - -------------------.---------- 1v

command to insert them above, or below, the present cursor

position*

The lASS provldes a deqree of protection to the

user In that none of the editing changes Crocord Insertions#

modifications, or deletlons) are made until the user Isses a

"save" command, At that time the oriqinal table is removed

and the copy on which the edltlnq was done takes Its alaes

If the user ouits without savino, then none of the edltina

chanqes are made.

c. DBMS Functions

Cl) Roelational Operators

The followlnq relational operations

described In Chapter 4, SectLon CA) are available to the

user In the DBMS. The operators are: MODIFICATION, DELETION,

PROJECTION, SELECTION, UNION$ SET DIFFERENCE, CARTESIAN

PRODUCT, INTERSECTION, OUOTIENT, JOIN, and NATURAL JOIN.

The INSERTION operation Is not Included since it Is already

performed by the UIM, and the MODIFICATION and DCLETION

ocerends are for mass operations where using the UIM

modificetion and deletion capabilities would be too

diticult. All these operations would require the use of a

cosmand-line format, The unary operations (MOOFrICATIONo

DELETION, P20JCTION, and SELECTION) must be used with a

DPS table already in reertance, The other binary operations

will have to specify the DMI tables Involved as part of

their *emond-11ne formate

9.

h .,.,'- u+:+ ++ " ": :+ +'+ +

C2) Arithmetic

In support ot conditional statements and

query processing the DBMS will have to Include a basic

arithmetie capability. The following operations are needed8

Addition , Subtraction* multiplieation, Division, Equals,

Greater-Then, Less-Than, Greater-Thin-Or-Equal-To, and

Less-Than-Or-Equal-To. These are not intended as stand

alone oparations, but are necessary to the successful

oerformance of other operations,

(3) Agaregate

In support of conditional statements and

query processing the DBMS will have to have a basic

agqreqate function set. The following functions need to be

included: Total, Count, Max, Min, and Averaqeo These are

not Intended as stand alone operations, but are necessary to

te successful performance of other operations.

C4) Query Processing

In support of user detlned questions across

multiple DBMS tables, there Must be a capability similar to

the "Find* command, only not limited to a sinale table. The

result of a query would be a new table containinq the

desired information, but no change would have been made to

the tables that provided the intormation. A command-line

format would be required for this operation.

'9

8. DBMS Commands

Ct) Find

Vsed to bringQ a tuple, from the single

table In reference, that Meets a specified condition onto

the screen by scrolling, Additionally, the user Is notified

It another tuple meets the same condition, This operation

will reautre the use of a command-line format.

(2) Tnsert

New tuples are added to a table by editing

"blank* tuples, Blank tuoles are automatically found at the

end of the table, or are created by Using the Oaddw command

to Insert them abovo, or below, the present cursor costion.

This operation Is performed In an on-screen format.

0) Delete

Sy using the UTM editor features a single

tuple can be deleted, In an on-screen format, Howeverr for

multile tupLe deletions a command-line, format would be

required.
4 d

AS an aid to the user, the add command will

place a 'blanks tuole either above or below the tuple

referenced by the cursor* This operation ts performed In an

on-screen foreat. If no entries are made in the blank

tuole. it is igored by the DBMS eVOLIeatle,

100

-~ --- --- --- ~~--~ --- ow

ri ___________- --

(S) Output

Used to send the contents of a table* or

tables, to some designated output device, The output format

always defaults to the "table" display. Tt more

sophistlated output formats are deslred then a Form

Generator table can be specified to control the output*

3. lASS Spread-Sheet

The soread-sheet application is a fairly well

Idefined and conceptually simple program. Its functions are

well defined and it Is not exoeeted to react to unexpected

demands.

a. Spread-Sheet Display For-mat

Soreed-sheet hes a single display format and It

Is called *table", Fiqre 6,S Illustrates the "table"

display. Only the value of each entry Dosition is

displayedo not Its functional content, The spread-sheet

'table' display does not have a direct corresgOndtnce to the

spread-sheet data table described In Chapter 3, Section CC)

since there Is no need for the user to be concerned with how

the epplication proarem must use it.

b, Spread-Sheet tditino

The spread-sheet makes use of the U!M described

In Sectien CA)# abo. However* this application makes use

of two cursors which are related to each other, The

*Rveition" curser is the lower one, and It moves across the

eolmns, asd rews o the *table* disPlay. Its function is to

lot

W tX
- -

I I

Indicate which entry Position Is currently beinq referenced

by the application.

(user entered command) NO$ Coo (soread-sheet name)
(prompt) ROO COO

P ***gOgOeOO geOOOOIgeOqOOOOOOgeUO*GOOOIOOOOO0

3 A 8 1 C I D h F 8 G I H

: 2: 2 : : : :

I

2 22 1

I I I I I •,...........

Floure 6.5 " 'Table" Disolav Format for Snread-Sheet.

The UTM cursor motion commands control the "Position" eursor

and allow It to roam over the entire spread sheet. The

'command" cursor Is always In the command line area of the

screen, and Io used to write Into the entry oostion marked

bY the *position" cursor, It is on the command line that

the functional contents of the referenced entry position are

displayed.

c. Soread-Sheet Functions

Ci) lrithmetie

Since the Sprad-Sheet Is a numerical

eeelinq tool It will need a substantial arithmetic

capability, te gellonq operations are needed? Addition#

102

'4 7 r'!w;' 7
I. M . ,,.

subtraction, Multiplication. DIvisionO Exponentiation,

Absolute Value# Truncation, Roundinq, Loqarithms, and

Trioonometic Functions. These operations must be capable

of stand alone operations Similar to those In a calculator*

and be capable of Inclusion in other operations and

conditions,

C2) Agareqgae

Since the Spread-Sheet is a numerical

modelinq tool it will need a substantial aqqreaate modeling

capability. The tollowinq operations are needed: Total.

Count, Maximum, MNnimumo Average, and Net-Present-Value,

These operations will not have a stand alone capability

sine* they are intended *or inclusion in other operations.

d. Screed-Sheet Commends

(1) Find

Used to find those entry Positions, In the

referenced spread-sheet, that meet some specified condition, j
The cursor will be placed on the first such entry oosition

and a prompt generated to show if there Is another. This

operation will require the so of a command-llne format.

(2) lnlert

Used to place the contents ft another

spread-sheet alonslide the current spread-sheet at the

indicated edge. This o*eroton will requLre the use of a

comnd-inefoeat,

- 103

L[7716M

C3) hove

Used to chanqe the current position of an

entire row or column on the spread-sheet. This operation

will require the use of a Command-line format,

(4) Delete

rn reference to a specific entry position,

it sets the value to null. Tor rows or columns It totally

removes them and moves te surroundinq rows and columns to

fill the qao. This operation will require the use of a

command-line format,

(s) Copy

Used to duplicate a row, column, or

specific entry position at another referenced location. This

oPeration will reouire the use of a command-line format.

(6) Add

Used to Place a blank row or column In a

location referenced by the present cursor oosition. This

operation will reoulre the use of a command-line formats

(M Output

Used to send the contents of the spread-

sheet to some Indicated output device, The user can indicate

whether to send the spread-sheet display, which only

contains the entry eositIon values, or the contents of the

actual spread-sheet table, which contains both the value and

the function, to the output device. Suboarts of the whole

spread-oheet May be indicated for output.

104

4. IASS Form Generator

The torm Generator will be an important part of the

LASS since It Is reasonable to expect other appllcetions,

the D3WS for example, to make use of it to suoport their

operations. It also has two modes of operation. *Desiqn"

time is when the new form is prepared by the user and all of

Its parts, called 'blocks', are oositioned and Identified as

to their function. "Use" time Is when the oreviously

desiqned form is called on to output the specified

Information In the prescribed format.

a. Form Visolay Format

There is one available display format for the

Form Generator, called 'aace", and it is shown in Fiqure

6.6. This diselays the form in the actual format for use-

time. The Promets for each block are shown as well as their

associated entry Positions. The 'function' and 'i/o' values

of each block aopear on the command line when the block is

referenced by the cursor,

b, form Editino

In Opage" format the user beqins with a blank

41

make entries, Form editinq Is a much more formal procedure

than in any of the other applications, Entries must consist

of a set number of parts to be accepted by the systems

First, a prompt of zero or more characters, which will

appear on the display,

! II

105

(user entered command) R## Coo (Form name)
(prompt) see ptt 'I

Name I I Age IM. Sexlil I
Address s I Height 1.-I

:I nininI Color hiril..i

I " "atur Date '" I

Fours 6.6 - POaPe format for Form Generatr,

Second, the number of spaces resrVed on the form for the

entry, which will also appear on the display. Third, I

symbol Indicatinq how this entry will be used by the form

cenerator (input, output, call to text file, etc,), rourth,

te qutery statement uoon which the output Is based, the

table and field name where the input Is to stored, or the 4,

name of t1e text tile to be output.

gxtenslv, use is made of the command line while

jillinq in each block. Only the first two parts of a block

etry are Shown on the actual form. The other two parts are

displayed In the command line area when the block Is

referenced,

As in previous applications the actual chanoes

*ade durliq editinq are not effective until the user issues

a Psave command,

.06

~~M1 "I",..-
MaWO

a. Form Functions

(1) Arithmetic

since the Form Generator can make use of

DBM8 queries and condition statements in acquirinq the

Information to complete a block, it is necessary to provide

basic arithmetic support. The followinq operations should be

included: Addition, Subtraction, MultiplicatLion, and

Dtv~sior. These are not intended as stand alone operations,

but for inclusion in other oceretions.

C2) Aqqreqate

As the Form Generator can make use of DBM3

queries and condition statements In acquiring the

irformatLon to complete a block, It Is necessary to orovide

some aqqrecate function suoort. The followinq functions

should he Included$ Total, Count, maximum, Minimum, and

Average. These are not Intended as stand alone operations,

out for Inclusion In other operations.

(3) Usage TndLcators

Since the form and its blocks must be

capable of supporting a wide range of uses, each form is

tailor made bY the user. The purpose of each block must be

indicated by the 0i/o field in a manner that shows how the

*function" block will be treated at "use time, For

examplel The function field of an inPut-blaock miqht tell

where the Item Is to be stored, For an output-block It may

specify the database table and the query operation on it,

107

i ,-,1

necessary to get the item, ror a text-block it may specify

the text file that will be inserted in the form at that

location.

d. rorm Commands

C) Find

Used to find a block object that meets a

specified condition bY movinq the cursor to its start. The

user is notified if there are any more blocks that meet the

condition, This operation requires the use of a command-

line format.

(2) Insert

Hew blocks are inserted by editinq the

blank area of a line in the proper manner as described in

Subsection (b) above, Thi is done in a" on-screen tormat.

Other forms may be inserted into the oresent for' at a

comaoletely blank line, but requires the use of a command-

line format.

(3) Move

Used to move a display line(s), and the

i blocks on it, to a new position on the form. This operation

reauires the use of a commend-line forst.

Used In reference to blocks* it eliminates

the block and leaves the space on the line blank* In

reference to lines, it eliminates all blocks on the line.

removes the blank line# and all lower lines move up. This

operation is performed in an on-screen formats

109

CS) COPY

Used to duplicate a alne, or linesv on the

torm but in a different location. This operation Is

performed In a commend-line formate.

(6) Add

Adds a blank line. above or below the line

reterenced by the cursor. This overatiom is verformed in an

on-screen format.

(7) Output

Used to send the contents of the form table

to an indicated output device. The user can send the

displayed version, as shown in Fiqure 6.6, or can oat to

output the entire form table In tabular format so as tn see

all the information associated with each block.

S. LA88 Electronic Mall

The Electronic Pail packaoe suoports the user In

sending messages to other users, for reading at a later

time. Upon entry to the ZASS the user will be promoted if I

there Is mail In the mailbox. By entering the Mail packaqe

the user will be creeted by a one line d1solay syneosis of

each messae, which cannot be edited. The standard mail

display format will be entered end the user will be free to

reed, edit, and/or delete current messaes as well as

ceeese new ones. ech messee has a unique TO number and

the user can refer to messages by the 1D, originator.

109

t o o ' . ,. ' ' m

7tI

sublect# or tIme-stamp. Outgoing message@ ar actually sent

when the user leaves the Mail application# by removing all

messages In the user mailbox that are not addressed to the

user and routing them to their proper destination.

a. mail Display Format

There Is one display format available for Meil

and it Is called *paqe" format, Fiqure 6.7 is an

illustration at Opeae" format. Each qessaoe is displayed on

the screen with Its fields organized In a vertical

direction. Each field has an associated entry oosition that

is desionated by delimiters.

(prompt) #*-Messages

From z i~: ID: S#

SubI -.- ,-- : Times......:

I I

Figure 6.7 - paeq" format for Electronic Mail.

b. Mail Editing

The Mall Package makes use of the standard UZM

described In Section (A)# above. Te user may perform the

standard editing functions on actual messages or on message

rio

, .., ,,. ,i. ...I .a - '- . " " ... "'11,0

I I

"blenks** In 404eW style display the user moves between

messages by using the scrollQ command. On tach message the

user may perform edltlnq operations in any of the entry

positions, Movement between entry positions Is possible only

by uslno cursor motion keys*

Outgoing messages are created by editing one of

the message "blanks" at the end of the table, or by using

the "add" command to Insert a 'blank' message after the

current one and then editInq this *blank", Additionally,

editinq the contents of the '?oP field In a current message,

so that it no longer corresponds to the present user# turns

the message Into an outgoing one,

All editinq chanoes are not actually imolemented

until the user issues a 'save3 command. Outgolng messaqes

are sent when the user Issues a *cult* command to leave the

mail package, At that time the system finds all messages

that are not addressed to the current tar, updates the

timeestame on them, and then sends thee to the aperoprlate

user. Since users often have collective names, such as

'oversight committee', that include more then one user,

there is a special character tacked on to the standard

destination address to Indicate that the message is to the

other users In that collective addresse

ill

___________________-__

co Mall Functions

CI) uati-RHit Name Deslgnator

A special earactear that is placed in front

of a name that corresponds to more than one user name, The

multl-hat name actually reetrs to a database table that

contains the names of the users who cOnstitut. the multi-hat

names At use time, the system will strip the multi-hat name

from the message, make the Proper number of copies of the

messaqe, Insert the orocer user names, and send te

mssageso

d. Mail Commands

Used to moVe the display to the messaqe

that meets a certain condition (e.g. From a Ooss", Time <

02 Nov*, Subj *Schedules'). Additionally, the user Is

notified If there are more messages that meet the condition.

(2) Delete

Deletes the message being referred to by

the cursor, To delete multiple messages it can be used In a

command line with a condition statement,

0I) copy

Given a message object It will duplicate

the object and insert it into the mailbox.

C4) Ug

Places a blank message aboveo or below# the

iessaqS being displayed.

112

- - I I I I I I

Zn concludini Chapter G it is important to emphasize

that the U29 is a very Implementation dependent part of the

ZAS8* What this chapter attempted to demonstrate was that

the command categories defined In Chapter 2 could be

implemented by a common, yet simplified# user Interface by

usinq a small command vocabulary COupled with a common

display and editinq format. This is not the only way to

present the user interface, only a suqqestton,

113

I

VII. CONCLUSION

The preceding six chapter have attempted to lay the

groundwork for the Possible design and Implementation of

what has been Called an Integrated Application Software

System CIASS), This thesis Is the first small sto toward

the study of such a system, and the majority of the work

remains to be done.

This thesis approached the topic from a broad

Perspective and did not seek to get down to specific

implementation Issues. Instead Chapter 2 reviewed the

aparent characteristics of five application proqrams, and

the appendices provided more detail on each. Chapter 3 took

t.4e characteristics of the ocICal file type associated with

each application and formed them into a common data object.

Chapter 4 took the common data object and explained a set of

operations on it, Chapter 5 described how each of the

included applications might Interface to the common data

object by usinq the operations of Chapter 4. Lastly, Chapter

6 attempted to illustrate how the user would interact with

the apolleet/eas In the XA8S thrOUgn a common Interfaeo

One point must be emphasised and It Is that an lASS is

not a relational Database enee ont System (CD1). There

are enough DOSS applieations already proven and available on

the market* See Appendices cc) and cr) for two examples.

114

T. "-

What the lAS does is try to use the DBMS approach to

invisibly support the user's effort to utilize the various

and unlue applicationse The ZS5 Conceptual level is A

common bond between all included apolleationS and while It

is the heart of the system. it should be kept hidden from

the user, except In specialized applications like the 0BMS.

If the user Is always given direct access to the

conceptual level and its operations, then the IASS in

nothinq more than a DBMS. In fact, such a caeabilLty Is

already present in the DBASE I system, Ap~endix (C),

although it would be oreatly improved by incorporating some

of the better presentation ideas from the SEOUITUR system.

Appendix (r),

It must 6e emphasiZed that this thesis Is a limited, and

very sublective, view of the lASS. From the study of this

hyPothoticel lAS it seems clear that such a system could be

Imolemaented, However, no soecifie estimation can be made on

the effectiveness or efficiency of such a system, It would

be reasonable to expect the efficieney to be less then that

of the Indivilual application packaes, but there is no way

of determining how much less. These are very imeortant

considerations and will have to be studied before the true

usefulness of an TAS can be estimatOde

much effort was placed on the conceptual level of the

ZASS, and yet It seem certain that the ser interface wil

be the Portion of the TAS that will determine its success

its

r~; <**

or failure as an actual system, it is important to define

the ultimate coals of an XASS in realistic terms so that an

measurable oblective exists, After some study there appear

to be two Important coals In the lASS design,

The first is to reduce the cost of owning the separate

application proorams by combining them into one ZASS. Since

it has been shown that the five given applications have much

in common that can be factored out and placed in a common

conceptual level, it would apoear reasonable to expect the

same from any future eoplications accePted for inclusion.

This common conceptual level reduces the amount of

duplication necessary to "own" the individual aopllcations.

Economic savinas would hopefally be realized from the

smaller amount of code needed, Its more uniform structure,

and te sharina of caoabilities between aColcations. The

design of the conceptual level and the individual

apliceation packages will have the major effect on achlevina L
this qoal..

The second coal Is that the user must perceive an

Improvement in using the ZASS over using the seerate

applications. The IAS& must be more "user friendly" than

the disjoint apollcatIon programs it rsolaces. Simplicity

and capability must be emphaSized over system

sophistication. ach Capability that will be incorporated

In en applicatie must be measured as to its complexity and

usefulness. It is not lustifiable to Increase system

i1,

- 4 -

I~ ~~ ~~~ . .-' ' -- . . . u _

complexity lust to add a fancy but little used feature. The

de4ign of the user inte~tface module and the individual

eplieation packages will have the major effect on achievinq

this goal.

It would appear to be too early to attemot the

impleeentatlon of such a system. Instead, more investioation

needs to be done and the obleectives more tiqhtly defined.

I
t

ii

117

." ,7717,

.____, ___..... _ -- ,.,___

..-.-

APPCNDZX AS WORD STAR

WORD STAR is a word processing Program developed by

Nlcro-Pro to combine the capabilities of a screen editor and

an on-screen text formatter. The result Is a very powerful

text editor which displays the referenced tile as it will

appear on the printed paqe.

WORD STAR is orimarily menu-drlven. The commands which

are presently valid are displayed In a menu, and are

executed by Keystroke combinations. On-Line Information Is

available to the user concerning many other aspects of WORD

STAR. The menu driven feature eases user initiation to WORD

STAR and is part of the Help facility. The level ot help is

selectable to match the users level of experience, and

determines the extent to which the menus are diselayed on

1k the CRT.

WORD STAR Is composed of a set of seven hierarchically

oreanized menus or environments, as shown in Table A.i. The

user enters WORD STAR In the No-rile environment. At this

0olnt there Is no file In reference, the object ranularity

Is the file, and the menu options include commands tot

change the logqed disk drive, Set the automatic directory

display feature Con/off), set the help level, print a file.

rename a file, copy a file, delete a file, run a program,

oven a document tile, and open a non-document file.

iig

I. - -l-ll I~*

Table Aoi WORD STAR Men Hierarchy,

2 Sin N404I

3 a. Help
b. OneScretn Format
ce Print Control
de Quiet Edit
*FIle/Bloek

WORD STAR recognizes two types of fles, "documentR and

"non-documiantf, A document file Con either be a text file

processed by a word oreossor or a program run by a

comouter. A non-document file Is a special purvose tile

which IS used by another software product# and will not be

discussed furthor.

"te on-sertion editor and formatter are Invoked by

seleting the menu option to open a document file. This

COUses WORD STAR to enter the main Menu environment with a

specific file in referenict, tf the file pre~viously existed

It Is made current. otherwist a new file Is created and made

current., On entering the Main Menuv environment# a status

line end a, rule are init-lilsed. ?he status line contains

inforeatet eut the, systes - the naoe af the files the
pae within the file# the eolumrn and rev number the cursor

vi,,

Is at* and the insertion mode (on/off). The rule Indicates

the right and left margin position as well as the tab

positions. The Main Menu represents the basic file editing

environment where the user will remain until It is decided

to quit the current file and return to the No File Menu or

the operating system. In any case, WORD STAR does not

permit lateral movement between the Sub-menus of the Main

MenU,

A useful feature WORD STAR employs Is "word wrap". With

word wrap, the user does not have to insert carriage returns

at the end at each line. As the text overruns the end of

the line, WORD STAR automatically starts the next line, In

this way, the user merely inputs an entire block of text as

a continuous ASCII charactor strinq, and leaves the

formattina to the system. In the Main Menu, the user can

edit the file In cranularities of character, word, and l1ne.

Insertion Is a "toqated" operation (on/off), whore the user

is either in insert mode or overwrite mode. Any keystroke

entered is either Inserted In the text at the cursor

oosition, shifting characters to the right to accommodate

It. or overrltes the character at the cursor position. To

facilitate on-screen edlttnq, the Main menu contains

commands to control cursor movement and to scroll the

soree,. It is possible to insert tabs or end-of-paraqraph

markers. There Is a *Find and Replace" command which can be

repeated any numb er o times. Deletions can be done on a

120

r

sinole character, a words or an entire line. The Main Menu

also contains options to select one of the five Submenus.

The Quick Editing environment supports edIting on hicher

levels of abstraction of text objects then the Main Menu.

There are additional cursor movement commands to give a

wider range of control and granularity. As In the Main Menu

environment, the user can scroll the display, but now it is

continuous at nine user selectable rates until stooped by

command. Insertions are accomplished in the same way as In

the Main Menu environment, but deletions are oossible on a

wider ranqe of oblects. There is a feature to allow a

command to be repeated at one of nine user selectable rates.

until stooped bY command.

The Block environment provides the user a set of

operations on a block of text. WORD STAR considers an

entire file to be a special case of a block of text. Files

can be saved by several menu ootlonst save and resume the

referenced file, save and quit to the operating system, save

and exit the referenced file, and copy to another file.

riles may also be renamed, deleted, printed, or cuit without

savina changes, To suport these file operations, the Rlock 4

Menu contains options to Change the loqqed disk, and to turn

the automatic directory listina on or otf. In this

capacity, the Stock environment Is used as a successor to

tea Main qr Quick Editing environments after the cursor Is

positioned. Stocks In a file must be marked by the user.

121

-II I - 4

AS a delimIted aggregation of texte a block can be moved

within the Sae file. Copying blocks of text can either be

within the referenced file or between the referenced file

and an external file, block copyinq between files ate bi-

directional. Copytnq a block to an external file entails

overwritinq an existina file or creatinq a new file.

CooVInq a block from an external file entails movinq the

entire external tile to the point in the text indicated by

the cursor. Any marked block can also be deleted. As a

Precautionary measure, WORD STAR allows the user to hide

block markers, and only blocks which are visibly marked can

be deleted. In addition to a text block being organized

into a continuous, unstructured string of text, WORD STAR

supoorts a columnar oraanization.

The previously described menus contain ooerations to

create, edit, position the cursor, or outPut a text file.

The format of the file, either as it is visually displayed

or Printed out, is defined by a set of formattinq oarameters

associated with the file or by commands embedded in the

file. The eormattina oaraveters associated with a file are

initially set to default values and the set of embedded

commands is Initially empty,

Formattinq in WORD STAR is primarily done on-screen with

the options contained in the On-Screen Menu. The on-screen

formattina commands are those whose effects can be visually

disolayed, and they are listed in Table A.2.

122

-MUM

Table A.2 WORD STAR On-Screen rornettlng Commandl.

1, set left maroln

2. set right margin
3. Release marains
4. Set and clear tabs
S. Indent a paragraph
6. Create a special rule
7. Center text
8. Set line soacina

The On-Screen Menu also contains options in the form of

COn/Off) togales to control: word wraes rule display,

variable tabbing, hyphenation help, right margin

lustificatlon. soft hyshen, Print embedded control

characters, and page break display. if an on-screen

formattina ooeratlon needs to be applied to the previous

contents of the fle, the applicable portion of the file

must be reformatted. Furthermore, these formattino

parameters are only temporarily eplied when the file Is

referenced. Any Subsequent reference to a file reaulres

that the on-screen formatting parameters be reset.

WORD STAR combines into one menu, the Print Menu, all

optonls which create special printing effects not normally

displeyable on a vides screen, There are options too bold

face, double strike, underline, strike out, subscript, and

superscript. Since the effects Of these options cannot be

123

displayed on the video screen, a special character is used

to mark the affected area. Additional special printing

effects are selectable throuah this menu on a one time

basis overprint a character, indicate a non-breek space,

and overprint a line. The Print Menu also contains options

which control the printer durinq output, The user may embed

commands in the text file to cause the printer to change

pitch, or cause a pause to allow the user to change the

print element or ribbons

Printing can also be directed through the use of

embedded dot commands. These commands are placed In the

text tile and appear as regular text on the display, but are

not output to a printer and force WOPO STAR to change a

Printina parameter at print time, Dot commands alter the

default earameters WOPD STAR uses to format the printed

pages Table A.3 provides a listing of these commands,

Dot-commands may be placed anywhere In the text, but

since they are static and tend to destroy the relationship

i between What Is dlsol&Vtd and what is printed$ they are

usually placed at the beginning of the text file. As with

the options of the Print Menu, dot-command actions must be

supported by the specific orinter In use.

The last menu to be described Is the Help Menu. Help Is

onoline in that it can be invoked at any time throuah the

Main Menu, and Is 4dynamIcO In that the level of help can be

adjusted, The level will determine how much information Is

124

• '.. ; " ,. ,. , '..

4~ - -7

displayed when an option Is selected. The Help Menu options

display information an paragraph reforming, flags In the

right-hand margin, dot and print commands, status line.

ruler line, how to set margins and tabs, and how to move

blocks of text.

Table A,3 - WORD STAR Dot Commands,

to set line height
2. Set page length
3. Set too margin
4. Set bottom margin

S. Generate "eaders
6. Generate tootsrs
7. Set tooter marain
8. Reset eaqe number
q, Offset Paqe from left Side of printer
10, Position eace number
11. Set character width
12. roree a Page break
13. Prevent a oaqe break

I

WORD STAR is an excellLent and very popular word

processtna program. The screen-oriented and on-line

formattine features are different from other systems In that

they are extremely easy to use. Once exoerience is gained

with MORD STAR It Is difficult to use line-orlented editors

or off-lne formatting systems. The on-line help facility '

makes WORD STAR easy to learn and User friendly. One aspect

of WORO STAR that could be considered a disadvantage Is the

129

- • -. .4.?

.arqe command set. Howevs, beinq menu-driveno the commends

not normally Used do not have to be memorized since they are

always 1lsted In the menu,

126

I

APPENDIX 91 VI

*Via is a text editor used by the UNIX operating system

and was created by the University of Calitornia at Berkeley

and Bell Laboratories.

VT (visual) Is a display oriented interactive text

editor with a command vocabulary size ot about ninety _one.

TPe user sees the CRT screen as a window Into the text file

and all editinq operations are Immediately visible. Line

numbers are not displayed and have no real use In v1,

although it Is possible to find out the number for a line.

For the sake of protection the user does not actually edit

the file, but a copy of it. At the completion of a session

the user will indicate whether to keep the edited copy or

the oriqlnal,

There are forty seven movement commands for control of

the cursor, which is the editor's point of reference, and

the screen display, Bcope of movement Is possible over

file, screen, paraqraph, section, sentence, line, word, and

character sized units, Up to twenty six locations In the

file can be marked for later return, or sPecific locations

found that match a desired character strina. Table Gel

lists the cursor movement commands available in the VI

system. Note that there is duplication, In that more then

one cmmand does the same thinq

127

_ L

, ___ - _

r

Table 1.1 - VI Cursor Movement Commands

1. Backward window
2. Forward window
3. Scroll down•
4. Scroll up a
9, Backspace one character *
6. backspace a single character
7. Backup a word
. lackuD a word during insert

9. Packuo to beoinninq of word
1o. Retreat to orevious line *
it. Retreat to beqinninq of sentence
12. Retreat to beqinning of Previous paragraph
13, Retreat to orevious section boundary
14. Linefeed advance to next line
15. Advance to first non-white space on next line *
16, Advance to next line, first white sce
17e Advance to next line, same column *

1. Advance to next character *
19. Advance to beqlnninq of word
20. Advance to end of next word *1
21. Advance to section boundary
22. Advance to the next tyoed character
23. Advance to beqinning of next paraoraph
24. Move to previous line *

25. Move to end of current line *
26. Move to balancLna oarenthesis or brace
27. Moves cursor to last line on screen *

28. Noves cursor to middle of screen *
29. move forward to beqinnino of word
30. move forward to end of word
31. Move to first non-white space on current line
32. move to line number *-
33. search for word *
34e Search forward for string *8
35. Search backward for string •
36 Search tor next match *8
37e Repeat last single character search
36e Find a sinqle character, backwards •
39. Find a 8nele character, forward ,
40e Reve'se direetion of.previous find

so 0w Useful - see page 133, paragraph (4)

120

Table 5,1 - (Cant.)

41. Find first instance of next character
42. Repeat the last search command *
43. Rmes the cursor
44. Mark the present Position of the cursor S

4S. Return to marked position *
46. Redraw the screen
47. Returns to Previous context

S* Useful - see paqe 133, paraqraph (4)

The operations of Insertion# modification and deletion

are supported by thirty commands that permit the user a

varied level of object control. Items that are inserted,

modified or deloted are Immediately updated on the screen to

give the user a current view of the file stacus. TNe user

also has the ability to undo the previous command If its

effects were undesired. most insertion and modification

commands are structured so that they continue to operate i

until the user issues a command to terminate theme Normally

durina insertion the user has central of format in that new

lines are started by entering a carriage return. However

there is an option that ll let vI determine when to start

a new Line, based on line length. and lot the user just

enter text as a continuous stream. Table 5.2 lists the

thirty edit commands.

In order to us* VY the user Issues the command evie

followed by the name of the file to be edited. it this is a

129

- . 4 - - i7,

r

new file, then the name will not be found in the directory

and VI will create an empty file, After entry, the user will

issue cursor motion commands to maneuver throuqh the file,

and issue edit commands to change the contents of the file.

There are no other modes or displays available In VI.

Table 92 - VI Edit Command Summary

1, Insert a number of soaces
2. Insert nonorlntable characters
3. Insert "shiftwidth* blank spaces
4. Insert at the beqlnnino of line
5. Insert at end of line
Go Insert before the cursor **
7. Insert after the cursor *e
. Insert new line below current line
e. Insert new line above current line
10. Insert text below current line *S
11. Insert text above current line *
12. Delete last character
13. Delete rest of the text on current line *
14. Delete character before cursor
15. Delete the following object
16. Delete single character under cursor ,,
17. Repeat last command ej
18. Join together lines *
19. Reelece single character under cursor
20. Roolace characters at cursor 8*

21. Change the entire line
22o Chance single character
23o Chenge the following object
24, Change rest of the text on current line
25. Undo last change to current buffer so
26, Pestore current line to previous condition
27o Tank following object into buffer $ i
28. Yank a copy of current line Into buffer
29. Repeat lest text Insertion30. Named buffer spoclflcation follows s

8, so Useful - see page 133, paragraph (4)

13o

In addition to the two command categories already given

there ore additional commends of a mlscellaneous nature.

Table 8.3 lists these additional commands,

Table 8,3 - Miscellaneous VI Commands.

1@ Print file status messaae
2. Clear and redraw the screen
3. Redraw the current loqical" screen
A Suspend or restart output
5. Cancel Partially formed command
6, Return to position I" last edited file
7o Reformat lines In buffer
8. Indicate file and option manioulation
9. Quit Vl, enter line-oriented editor

Some very basic tormating commands for line length and

Indenting are directly avelable. A macro creation

capability is present to allow the user to create

abbreviations for command strings. Table 8.4 lists these

formattinq commands. V1 makes no claim to supportino a

formatting packoqe, since the file will be output In the

same format the user entered it. For special formatted

output a VZ generated tile must be processed by an off-line

word processor, like ONROFF -MIE described In Appendix D).

VZ provides a high degree of support to the user for

restructuring a tile, or files. There are nine butfers

available for storinq deleted text, and twenty six buffers

131

to use as temporary holdinq spaces while reordering and

editing. The text can be taken from other tiles and/or

buffers, gor use in the file currently beinq edited. If

needed, previously deleted text from the current file can be

recovered, and also other files.

Table 8,4 - VI Formattinq Commands,

1. Reformatting command
2. Shift lines left one "shiftwidth"
3. Pelndent lines
4. Shift lines riaht one "shlftwidtho
3,. Prints current tile contents

OVIO is a qood screen oriented editor and has a wide

range of capabilities, however it has some drawbacks.

(1) It has a poorly designed user interface since the

command vocabulary ts very lare and the individual command

strinqs are difficult to remember. There does not seem to

have been much thought given to the design of the command

vocabulary.

C2) It takes a fairly long time to learn the VI system

and gain functional use. An on-line tutorial program is

used to help beeinners, since It Is hard to become familiar

with it on their own,

132

I ____________________

r '

(3) Vi does not Inspire user confidence in that It Is

too easy to accidentally enter some unknovn command string,

and there is little correlation between what the user wants

to do and the command(s) that mUst be issuted

(4) From personal use, about thirty three commands were

considered to be aenerally useful (marked by * or *6), and

only ten of these accounted for the greater majority of all

operations (marted by **)a The remaining V1 commands were

qenerally treated as "window dressinqw by all bot the most

sophisticated users.

(5) There Is no help facility# of any kind, provided by

the VI system. At the very least, an on-line 11stinq of

commands should be Provided.

13

".QV -

APPENDIX C: EDIT

EDIT is 4 text editor supported by the UNIX operating

systems EDIT is a simplified version o another UNIX

editor and contains a minimal set of operators, It Is line

oriented which means that the main oblect of EDIT Is a line

of text of some finite length,

EDIT merely supports text file creation and modification

operations. The user inputs text into a file by lines,

indiceatina the end of a line by a carriaae return. A

disolaY of the tile will show an ordered list of lines as

they #list In the file. Orderinq of lines is completely

determined by the system and althOUqh tlIe user can use line

numhers as a reference, the line number is not directly

accessible to the user to chanqe or set. Any display of

text by EDIT Is done by line. Substrinqs can be referenced

within a line, or lines. A formatted output display by EDIT

can only be ae4ieved t the user directly inputs the desired

format line by line, No preossinq of the contents of a

line is done by EVI?.

When invoked# EDIT sets aside a temporary cooy of the

Ireferenced file in a workini buffer. It the file does not

already exist In the directory, then it is a new file and Is

created, The base set of commands available to EDIT are

listed in Table C.1.

134

Table Col - EDIT Command Summary.

1, Edit a file
2. Specify a file
3. Append line(s)
4. Insert line(s)
S. Insert line(s) into an external file
6. insert line(s) from an external file
7. Delete line(s)
8. Copy line(s)
9, move line(s)
to, Primt lIne(s)

11, Show line number
12. List line(s)
13. Substitute a string
14. Search for string
15. Undo last command
16. Mae effect of command qlobal
17. Move cursor

- forward
- backward

19, Ouit

Searchinq for a line has the effect of makinq the found

line the current line. Any subsequent editinq operations

are done in relation to the current line. Lines can be

found and disolayed by line numbers, and ranqes of lines can

be specified. Lines can also be found and disolayed forward

or backward, relative to the current line. A line can be

found by any substrino of its contents, but the entire

substrlnq must be contained in one line. Secause of this

deficiency a substrinq may not be locatable merely because

it exists in the text file, When searchinq EDIT will move

135

I _ _ _ _ _

forward or backward and will wrap around the buffer# so as

to return to the starting line if the target object is not

found.

New lines can be appended before the current liner or

inserted after it. The user issues a command to specify that

there are no more lines to add. Upon compIttln the current

line is the last line added. Additions can also be made hy

moving or copying lines within the text file. movinq can be

viewed as a Combination of a deletion and an insertion. Ry

specifyina a range of lines to be chanoed, they are deleted

and the system enters Insert mode for the user to add the

new lines, Additionally, Insertions are possible from other

text files.

Modifying a line Is don* by substituting a new strinq

for en already existing tarqet string on the line. If

desired, the substitution can have Qlobal effect in that it

will modify all occurrences of the tarqet strinq on all

lines.

Deletion is usually accomplished by indicatinQ the line,

or lines, to be deleted. A search command can be used with

the deletion operation when the specific line numbers are

not know.

COT? protects the user from makinq inadvertent changes

t to a text file. The effects of the last executed command

that affected the buter can be reversed. Additionally, the

effects of the editing session do not become permanent

t36

unless the user Issues a command to make them permanent. At

that oaint the edited copy# which is In the buffer, replaces

the oriqinal file in the directory. Leaving EDIT without

indicatino to make the changes oermanent is like the editing

session never occurred.

In addition to writing a whole buffer out to the

directory, subparts can be written to another text file.

This is done by specifyinq the ranqe of lines and the file

to be written to.

The EDIT text editor is very basic which is both an

advantage and a disadvantage. It has a minimal command set

and therefore is easy to learn. The biggest oroblem is that

it is line-oriented. As such, modifications are done a line

at a time, where each line is a separate entity. It does not

treat the file as a whole, but as a disjoint collection of

lines. It imooses the idea of line numbers, which do not

exist in the text file, in order to use the editor. There

are fewer hiqh level editine operations available, as

compared to current screen-oriented editors, and they are

limited to operating on lines and not the text file as a

whole. While capable of producino satisfactory results, due

to its line at a time limits, the operation becomes tedious

if the file Is larqe, and/or there are a lot of small

changes which must be done. Given the advanced features of

todays line-oriented editors# EDIT Is a very archaic and

frustratinq way to create and modify a text file.

137

APPENDIX DI NROFF aME

myROFl emE' Is a text processing facility for files that

are created on the UNIX operatina system, It was created by

the University of California at Berkeley, and Sell

Laboratories. *NROUFY is a orogram that accepts an Input

file oredared by the 'iser and outouts a formatted oaoer te)

the user's deslan, *-ME" is a macro package that enhances

the capabilities of the *NROFF" program by addina additional

formatting abilities and commands. The input file consists

of the actual text entered by the user, through some editor

system, and a series of embedded NROFr -ME commands.

There Is a large vocabulary of "renuests", vhLch are

really dot-commands consisting ot a period followed by a two

letter string. The basic NROFF package suPoorts seventeen

categories of commands, and ?as a total of eiqhty seven

commands. The -ME package adds three categories and a total V

of sixty commands for a grand total of one hundred and forty

seven commands. Table Dot lists the NROTT and -ME command

categortes, and the number of commands In each.

NWO?1 -ME Goes thirteen predefined general variables and

twenty three predefined read-only variables to support Its

processing needs. The user Is provided with a macro

facility to defie new commands In terms of the bastc set of

commands and operations on the variable$. This allows the

130

F -iii

user to abbreviate a fairly long Command stream Into a

single command.

Table Doi N ROFF and -nME Commands*

- --- ---- --- COMMAND &

COMMAND CATEGORY. NRoFF -me

i. Font & Character Size Control 7 9
2. Page Control 7 0
3. Test Filling, Adjusting & Centering 6 0
4. Displays 0 22
9, Vertical Spacing 0
Go Line Length & Indenting 3 0
7s Paraoraphing 0 4
Be macros, Strings, Diversions, a Traps 13 0l
9. Number Registers 3 0
10o Tabs, Leaders, & Fields 4 0
its Inoutoutout Conventions 9 0
12, Hyphenation 4 0

13. Titles 3 13
14. Headings 0 6

16. Conditional Input a 0
17. environment Switching 1 0
18o Standard Input Insertions 2 0
19. InoutOutput File Switching 3 0

TOTAL 07 60

I NROFFr eMZ is a Good word Processing system and It can
Produce some complex formatting actions. Howevers It does

suffer from some, drawbacks.

(t) Since the fille is first created by the text editor

and then run by NEOfF, the user has a significant delay In

determining If the desired format was achieved,

C2) In addition to depending on the text editor, NROrr

must depend on other programs to preprocess the text file

before NROrr can handle It for sDecialized reauests. Two

examples of preprocessors are packages to handle tables and

complex eaustion symboloqye While enhancing MROrr -Me's

capebilities, they add more categories and commands, and

Increase the amount of time necessary for the user to see

t1e actual results of commands.

(3) The user manual for the NROFF package Is not

oresented In sufficient detail to completely understand the

effect, or use, of all commands. It appears that tqe user

is supposed to have a basic understandinq at the system

before readinq the manuals!

(4) The command vocabulary is fairly laroe and they are

not easy to remember. Based on Personal use, only about

twenty percent Of the vocabulary is qenerally useful and

therefore remembered. Table D.2 presents a simolified

listing of the most used commands,

14

140

... ... I I I I I I I I I - . ..

Table D2 - Basic Commands NRom -PE

I$ page length
2. Line spacing
3. Line length
4. Page headers
5. Indent

cermanent
teoorery

6. %eqin next 0aqe
7, Need lines
0, Insert * blank lines
9. Center the next 0 Lines
1O, Break
11, Define a macro
12. Fill/No-till
13o HyPherate/No-hyphenate
14. Underline
15s Section/Chapter headinqs
16. Quotations
17, Footnotes
IA. Keep an index
19. Start paraqravh

- basic
- left adjusted
- body Indented
- numbered20. Start display

- list
- block
- floating block
- delayed text

21. Table handler $
- definition
start

-body

end
22. Equatton definition
23. Rultiple column format
24. Default paper formats

*thesis
2. Contrel constructs

o read special variables *

change special register
c conditional formatting

S part Of Table Preprocessor

141

--- ma

APPENDIX ES DBASE 11

DSAE 11 is a relational database system Created by

Ashton-Tate at Tos AngOISS, California for microcomputer

systems, rer this review, the CP/M version of OBASE It was

used, where the DBASE It proqram Is an executable 'cOmmend

ftl* resldlnq in the systems

The DRASE 11 system utilizes several different file

types: database, report form, command, index, memory, and

text. Each file tyoe has a specific purpose that Is

identifiable by its tvp, name. "Report form" files store the

Information, specified by the user# for describino the

format (headings. fields, totals, subtotals, contents, etc.)

in which a *database" file is to be output, "Command" tiles

contain a seaunce of DBASE IT statements, commands, and

control structures necessary to create a user defined view,

*Index' files are a list of pointers to a soeclflc

database file. 'Nemory ftiles contain the values of

memory variables and constants saved previously by the user.

* Text* files are collections of ASCII characters for Input

Into a *database* file or Created by output from a

*database' file. OBASl IT cannot directly use *text" flies.

Nost of the flies are stored In what Is known as Standard

Date Format (SD?), and they can be used directly by any

other proeram that uses SDr ftiles Additionally, any text

142

....__ _ _ L

_______ _______ - - - . -V

Vlies In $D Can be used by the DBASE 11 system, The file

is the largest date object supported by DBASE It which

creates, deletes, or modifies the current file(s). A

database file Is brouaht into reference by user

speefication. and a maximum of two database files can be

,open* at one times

DBASE It can be used interactively or can be proqrammed

to create a view of the database to supoort recurring

applications. Reqardless of method, DBASE I orovides the

user with the same basic high-level data definition (DDL)

and data manipulation COML) language. An English like

command lanquage with a very regular syntax is a user

friendly feature of DBASE UI, The. commands are very

powerful in that their operands and results are typically

database iles, The command structure Is usually presented

in the followinq form:

COMMAND SCOPE] [CONDITZON]

The scoPe modifier designates the number of records to

be selected In response to the soecItIc command. The

condition modifier specifies a conditLonal statement that

the reeord"s field values must satisfy in order for the

recerd to be included in the final result. Table g.1

provdels a listine of the basic DBASE It commands, with

duPliate aCmande havinQ been factored out,

143

t - . i4 -

II

Table gel DBASE I Basle Commands.

t. Display an expression on the screen
2. Format screen or printer output
3. Input a character strlin
4. Input a string to a memory variable
5. Walt for user inout
6. List the records in a database
7. Oisolay data from a database
Be Osolay the structure of a database
9. Rename a file
1. Erase a file
it. Generate a report
12, Execute a *command" file
13. Return from a "command" file
14. Display the contents of the memory variables
15. Store a value In a memory variable
16. Save memory variables to a file
17. Restore memory variables from a file
13. Select a specific database for use
19, Set soeclflc DBASE rZ oarameters
20. Abort a command

21. Create a new database
22. Edit a database
23. Modify a database's structure, or the

contents of fields in selected records
24. Update a database from another database
25. Add date from a text fMle to a database
26. Copy data from a database to a text file
27. Insert record(s) into a database
28. Delete record(s) from a database
29. Unmart records marked for deletion
30. Locate a record based on key value,

or condition
319 Coto a specified record
32, Nove forward or backward In a database
33, Index a database
34, Sort a database based on a field
39. Perform JOIN operation on twe databases

36. Count the number of regords
37o Sum a field or Subfield In a database

144

S-' A B""'

Default orderinq for records in a database file is the

sequence in which the records are entered, Orderinq can be

altered by insertina records into specific parts of the

database, and by sortinq or indeXInq the database. in the

default order, the "database* file does not contain a

recoqnized key.

By sortinq or indexing a "database" file, keys are

defined and the search time required to locate a record is

reduced. multiple Indevinq be done for the same database,

but based on different keys. Sorting produces a new

"database* filet which is a coov of the original database,

only It is sorted. An 'indexedw file is a virtual file of

ointers to the orielmal 'database' file. Whereas lookup

sPeed can be enhanced by tndexinq a database, there is

overhead Incurred in maintenance of the 'index* file.

Changes made to the original database file are not reflected

In the new sorted *database' or "Index* file. The orialal

database must be sorted or indewed after each chanae In

order to remain current.

The data definition language allows the user to define

the oreonization of the date In a new database file by

soecifying the name of the database, and qvina information

on each of its fields Cname, type, width, decimal places),

Theo structure of a now database file can also be copied from

that of another database file. Additionally, new structures

can be created as the result of using the JOIN operator

145

.., -

provided by the DBASE ZZ system. At any timee the structure

and/or contents of a file can be displayed or output. The

structure of a database file can also be modified at a later

time, but presents some Problems In that all records

currently in the database file are destroyed.

Besides usino DBASE I interactively, it can be

proarammed in Its own lanouaqe throuch the use of OcommandO

files. The DML statements are embedded in the file and

Iterative execution of DML statements are controllel by a

set of DRA3e 11 control structures (Zf-Then, If-Then-Else,

Goto, and Do-While), 'Command" files tend to make extensive

use of memory variables and input/output functions which are

also extensively suoorted by DBASE 11, To create a user

view the desloner/proirammer will edit a "command" file(s)

to contain the correct OBASE IT statements, commands, and

centrol structures to manipulate the oroper "database"

files* The capabilities and limitations of any view is

dependent on the deision of the *command" file(s),

The reason for the great oopularity of DOASE II is that

it is a very easy database manaoement system to learn and

useo Its 9nqlish-like command lenquaqe Is natural and user

friendly. Althouqh the command set is rather extensive, the

commend names accurately describe their action and use a

re"uar syntax so they are easy to remember, The

interactive nature and full screen display orientation makes

user interaction simple and direct. With its set of

146

_w.

II

predefined functions, Input/output commands, "command*

file$, and programming constructs It is easy to create views

for almost any apollcatLon, DBASE 11 Is a Powerful

relational database system yet It IS Obvious that the

designers gave much thought to keepinq it simple and did not

introduce comolexIty for Its own sake. However, there are a

couple of problems with DASE IT which are worth mentioning,

and they are all probably due to the justified emphasis on

simplicity.

(1) At any one time, a maximum of two databases can be

In reference. This limitation requires that databases be

explicitly brought Into and out of use. It would helo It

there was another method, besides usinq a "command* file,

for performing operations on multiple tables.

C2) In modifying the structure of a database the

contents are deleted. This reQuires that the database be

explicitly saved to an external database and then be

recopied back after structure modification. It Is an

inconvenience, to say the least.

(3) The only relational operation directly provided by

the system Is the JOIN comand. It would greatly enhance the

capability of the system to provide more of the operators*

C4) The display structure Is a little bit too rigid,

and the user dos not have much direct control, sort of

writing a coeonds file, to effect the output format.

147

APPENDIX FS SEQUITUR

SEQUITUR Is a rolational database system designed by the

Pacific Software Panufacturinq Company of Berkeley,

California.

SEQUITUR sees a database as a collection of named

3tables, each of which contains some kind of data related to

the subject of the database. Each database has a set of

system tables. The *Column* table lists the name, type,

size, and display format of all columns authorized for use

In the database's tables. The "Table" table lists the names

of the columns that are included In each of the database's

tables. Together the "Column" and "Table" tables act as

oart of a date dictionary system for the datavase.

SEQUITUR has a fairly laros command vocabulary of over

sixty seven commands. There are twenty five basic commands,

forty two screen editor commands, and more formed by

combinations of the previous commands. A multilevel "Help"

facility is Used to support the user.

SEQUITUR offers four kinds of help, There are status

lines at the tor of the screen. An "edit card* display can

be called by the user In order to see a comprehensive list

of cursor oblect and motion keys# and escape operations,

The 'help' command summons an on-line manual, that Is preset

by the user to VroVide no, medium, or maximum help. 6astly,

148

there are situational help prompts that occur durlnq the

eommand process.

Table 7, - SEQUITUR Basle Commands.

1. CHOOSE (database)
2. CREATE (database)
3. V¢O to (table)
4. EDTT (table)
5. S"OW (table)
6. PRINT (table)
7. REPORT qenerator
9. rOROS qenerator
9, SELECT from (table) *
10. MANUAL select
11, JOIN (tables)
12. SORT (tables) *

13, UNION *
14. INTERSECTION *

15. DIFFERENCE
16. UHIOUE rows *
17. DUPLICATE rows *
1A, CoPY
19. APPEND
20, REOVE rows
21. RENAME column

22. COMPACT base
23. DUMP to (fle)
24. LOAD from (file)
25. HELP from manual
26. EXIT

a a Member of SEQUZTUR's
"Set" COmmands.

The twenty five basic Commands cover the major

operational capabilities o the SEQUITUR system. The

commends are sresented to the user In the form of a menu,

149

and ence a choice Is made SEQUITUR enters the display mode

necessary to support that choices Table ro. lists the basic

commands, plus the command for exiting from SEQUITUR.

The SEQUITUR display modes are organized as Otables", or

paaess , The table mode is similar to the aporoach taken by

the fOuery-by-Example" system COBE), and oresents the data

in columns and rows with vertical lines separatinq the

columns and Indicators for new rows. Alternatively, the

page mode presents the data one row at a time, with the

Column headinas listed vertically, The user has the ability

to flip back and forth between the two display modes at

will.

Table F.2 - SEQUITUR Cursor Object & Motion Commands.

1, Move cursor up one line
2, Move cursor down one line
3. Move cursor left one objectt
4. Move cursor to next object

S. Move cursor to beainning of object
6. Move cursor to orevious word
7. Move cursor to end ot current object
$a Move cursor to next word
9o Object a word
10g Object a line
11. Object a sentence
12. Object a paragraph
13. Object a view
14. Object a paoe or screen
15, Object a column
16o Object a row
17,,Object a one character

1SO

_ - . -

Once in a desired diSPlay node the user must oake use of

the editor commands to make chanqes to the table. All editor

commands are sinqle keys combined with the <Control),

(<scape). or <Tab) keys. Table 7.2 provides a list of the

cursor object and notion commands avallSble. Most

ooerations require two commands since the object must be

soecifled first, and then the actual ooeration.

Table P.3 - SEQUITUR Screen Editor Commands.

t. Delete left portion of object
2. Delete entire object
3. Delete riqht portion of object

I 4, Flips "insert" toqole
5, Shows rows marked for deletion
6, Flip "paoe-table" display style
7. 4oto 0-th oblect
8 Coto last object
9. Restores more recent version of row
10. Display earlier version of row
11o rxecutes a command
12, Search forward for column entry
13, Search backwards for column entry
14, Edit card display

The screen editor commands are used to make actual

changes (additions, modifications* or deletlons) to the

displayed table on the screen. Table E.3 lists these

commands which ore used In conjunction with the cursor

object and movement commands listed previously.

151

i.

Additionally there are a number of miscellaneous

commands that are provided to aid the user. These are listed

in Table F4,

Table F.4 - Additional SEQUITUR Commands

I. Get Edit Help
2. Scroll Forward
3. Scroll Baewards
4, Tnterruot Prosent Operation
5, Lock/Unlock Cursor Object

There are an abundance at table types In SEOUITUR,

"Virtual* tables consist of pointers to data In a "base"

table(s), and are formed by conducting relational q.peratlons

(e.o, JOIN) on the base table(s), Virtual tables are

Permanent additions to the database. All operations

conducted on the virtual table effect the base table, but

not all operations on the base table will reflected In the

virtual table.

'1ice" tables consist of the data from a Ohome' table*

and are formed by restrletlnq or rearranono the columns In

the home table, Actually, slice tables are just alternate

ways of viewing the same home table. All operations

conducted on the sliCe table effect the home table, and all

ooerations on the home table effect the slice table.

1s2

.. .. --" ' -

'Template' tables are used to store control Information

on the operation(s) (SELECT, SORT, UNION* DUPLICATE, UNIQUEO

INTERaSCTION, and DIFFERENCE) desired to be Performed on a

set of 'base" tables. The user specifies once the sequence

of operattons to be performed, and each time that result Is

desired the appropriate template table Is called to create

the desired virtual table.

SEQUITUR provides several methods of outputting data to

the user:

C) There Is the "print" command which Prompts the user

to specify headine, page length, margins, Page number, date,

column/row divider symbol, etc. for either a "table" or

"ae0e style output. The entire table Is then output, one

record at a time, in the snecified format.

(2) There Is the "form generator'. The user creates a

form letter or document by making an entry in the *forms*

table in either 'page" or "table* style, and answerinq

several system prompts as to page size, width, marains. ?he

form oenerator Is Intended for letter type goneration since

it only allows one text field In the form. All other entries

are pulled frs a appropriate table and the 'form' reseated

for each rew in that table.

CS) There is the "report generator'. The user creates a

report table that Is associated with a known data table. The

report table specifies which date table columns are to be

used, how they are positioned, What name they have on the

13)

D, 4 - " .

form, allotted width, and alignment. Again, the user must

, specify formatting items like page length, line length,

margins, delimitersp and other related items. The individual

columns In the report table can be marked for sortinqp

grouping, end/or arithmetic processina. If arithmetic

processinq is opted for, then another table, the "function'

table is created to record what is to be done to each column

- total, minimum, maximum, averaqe, or count,

Based on a very short familiarization exoerience with

StQUITUR there Is no doubt that It is a powerful and

complete relational OBMS. However, It Is not as user

fLiendly as its advertisements would lead you to believe.

Same of the problems encountered waere

)(1 Too many commands to remember. This increased

learning time and added to the confusion. Too many of the

commands were just window dressinq in that their effect

could have be done using other commands. (Lke the 'Object

no, extra cursor movement and deletion commands.) While

usina keys as commands leads to faster command Input, it

makes thlns more difficult when there are so many commands

the symbol an the key has little or no relation to its

effect,

(2) The structure of the user interface was unwieldy, It

was easy to get lost and difficult to recover to a known

location. Operations that worked under one condition did

is4

not work In another, or produced completely different and

unexpected results. (e.g. In some Instances the Pexecute'

command will return you to the main menu, in others it was

ignored or treated as a mistake.)

(3) There were too many tynes of tables9 ways of using

tables# edItinQ tables, and creating relations between

tables. The user is being swamDed with a level of detail

that is better left to the system. It stems that SCOUIYUR

was created with sinolicity and user suvoort beinq lesser

considerations to system sophistication.

4

ILII

-11- ,'V.

APPENDIX Gs VZSICALC

VZ5CAbC Is an electronic spreadsheet program created by

Software Arts, Inca of Cambridge, Massachusetts and marketed

by Personal Software Inc. of Sunnyvale, CA. Its purpose Is

to allow the user to easily model a wide rance of numerical

problems In a standard tabular format by replacinq the

user's oencll, calculator, and scratchoad,

The screen Is divided Into a grid at columns and rows

that form addressable (column, row) entry positions. The

columns, which run across the top of the grid. are lettered

startina with *A* and the rows, which run down the sides are

ntabered starting with *tw. Each entry position is an

Indeoendent entity, and can Contain a character string, a

numeric value, or a function that must be calculated, Entry

positions that contain functions are recalculated by

VTS!CALC each time certain conditions are met. The functions

will specify values in terms of constants, operators# and

the values of other entry positions.

The screen Is used as a OwindewO Into the spreadsheet

and Is modifiable by the user. The user Is given numerous

commands, see Table G.l, with which to alter the disolay

format of the screen.

1 56

714 7

Table G.1 - VZSICALC Display Commands,

1. Clear spread Shoat

2. Set Global Display Format To$
- Inteqer
- Dollars & Cents
- Left/Right Justified
- Graph

3o Set Entry Display Format Tot
- Inteoer
- Dollars a Cents
- Lteft/%ight Justified
- Graph

4, Reset Entry To Global Display Format
So Set Column Width Within A Window
6. Set Order Of Recalculation;

- Column Wise
- Row Wise

7, Set Recalculationl
- Automatic
- Manual

le Nove An Entire Row Or Column
9, window Controlt

- Split Screen Horizontal
- Split Screen Vertical
- Slnqle window

10. window Synchronlzationi
S Synchronized

- Unsynchronlzed

The window can be 4splitQ Into two halves so as to look

into nonadloining areas of the spread-sheet simultaneously,

The two windows can be 4synchronlized so they move toagetherp

or .unsynefronised so movement to independent, Display

format may be globally set for the screen as a whole, or

Individual entry positions can be assiqned their own format,

Column width is variable from 3 to 37, but columns In the

157

1 ' *Jm vs.,_ :

same window must have the same width. The value of each

entry position Is calculated by "column orderO (Ale A2, *..

An, ip 82, an. Cl, *tce) unless the user chanqes the

recalculation order to "row orderO (Alp alp ost ni, A2# 92p

.. , n2, C2, etco). By default VZSCA1C starts In

automatic recalculation mode where the value of all entry

positions are recalculated each time an entry IS changed. As

this can siqnificantly slow down the model when laree qrids

and/or comolcated numerical expresslons are used, the user

can enter umanual* recalculation mode where a command must

be issued to cause recalculation to occur.

V!5!CALC provides a command-line oriented editor that

enters, modlftes, or deletes data in a referenced entry

position(s). A cursor Is provided on the orid to Lndlcmte

t%, current entry oosition referenced by VISICALC. There

are screen commands to allow the user to scroll across the

qrld or to move to an exact Crow, column) entry position.

If needed, the numeric processing capability of VTSICALC can

be used le a calculator to support the user's

comoutatlenal needs. A powerful capability of VISICALC is

the replicate emmand. This allows the user to define an

entry once, and then have It entered In a range of

successive column or row entry positions. Addltlonally, the

user can specify If the original entry Is to be repllcated

exactly, or should any references to other entry positions

t1S|

I IIi

be Updated at maeh new position to take into account

relative Position On the Vroadghoet.

Table 6,2 - VZSKCALC Cursor Movement & Entry Commands.

11. Move orsor Right Or Up
12. Move Cursor Left Or Down
13. Chanqe Cursor DitrectionD

- Up/Down
- Oiaht/Left

14. Move Cursor To The Other Window
15, Move Cursor To A Specific Entry Position

15. AbOrt Last Commend17. Set An Entry Position To Blank

18o Delete An Entire Pow Or Column
19,. Inset A New Row Or Column
20. Replicate An Entry
21. Set Title Areast

- HorilZontal Title
- Vertical Title
- go Title

22s Repeat A Label EntA
23, Make An Immediate Numerical Calculation
24. Enter A Label In An Entry Position
2S. Enter A Valu* In An Entry Position
26, Save A Copy O The Spread-Sheeot

SIne VZSZCALC is a numerical modeling tool It has a

series of arithmetic and aggreqate functions that It

supports. Table 6.3 provides a liatInq. VYSTCALC has been

"siqn to store numbers in decimal format, not binary. and

maintains them with up to eleven sianiftient dicits or

deimal pslces.

i isi

- -- ----- ...

Table 0.3 * VZS!CALC Arithmetic & Aqgregate Functions

a, Addition
b. Subtraction
a, Multiplication
d. Division
eo tpanentlatlon
to Calculate The Sum Of A Range Of Values
9, Calculate The minimum In A Ranqe Of Values
h, Calculate The 4axImum In A Ranse Of Values
i. Count The Number Of ntries In A List
1. Calculate The Averaqe Of A Ranqe Of Values
k. Calculate The Net-Present-Value Of I

Ranqe Of Values
1, Perform A Lookup Operation
me PI (3.1415926536)
no Calculate The Absolute Value
a. Calculate The Inteqer Portion Of A Value
o, Square Root
q, Loqarithms, Base 2
r, Logarithms, Base 10
s, ?lconometric runctlons (Sin. Cos# Tan, Asin,

ACOS, Atan)

VISICALC Makes use ot dynamic memory allocation so the

actual dImensions of the spread-sheet depend on the amount

of memory available and the complexity of the entries made

by the user. The user does not have to worry about memory

allocatien since VISTCA16C takes responsibility for its use

and efficiency. As entries shrink, or are deleted. VISICALC

relims the extra me*ry apace, The user Is shown how much

@"nll remains and a earning uroapt occurs when meory spae*

is nearly exhamuted.

16@
-. ISO

L nNM1djo lz D

for a permanent copy of the contents of the spread sheet

the user may send the output to a printer. A subpart of the

total 8Pre*d-sheet may be sent by designating the lower

right corner to be printed.

VISICALC Is a powerful and fairly simple modeling tool

whose advantages seem to easily outweih the disadvantages.

The command vocabulary Is low (26 commands, .19 functlons)

and the greater majority are actually useful and not just

window dressing. The user manual Is well written and easily

understood, but Is fairly lone. VISICAbC supoorts a known

human weakness (small/fast short term memory, large/slow

lone term memory, and slow calculation soeed) by remembering

te details of a commonlv reoccurrinq user problem (the

situation to be modeled), limitinq the user to orovidinq a

smaller and more select set of initiAl inputs, and

oerforminq the computations in a faster, more reliable, and

repeatable manners However it does have some oroblems:

(1) Command strings and their effect must be memorized

since there is little relation to the string and the effect.

Ienas provided by the system are very poor, and require you

to already know the meaning of the commend string.

(2) A basic understanding of VISZCAUC and a hiqh degree

of operational casebility can be obtained, In a fairly short

time, by reading only the first third of the user manual.

Nevevir, to gain maximum use of the system requires a

161

'NMI
jt,

significeant amount of time and effort to read the entire

user manuel and experiment with the operations. Some nice to

know features that have, a major effet an model validity

C eog. recalculation order) are discussed at the end of the

* user manual and might be easly misse

II

1

APPENDIX Ht ZIP

The relational data base management system ODSASE U'Q,

described in Appendix CD), contains a set of. commands which,

when embedded In a *command* file# define the output format

used to qenerate the display on the screen, or outout to the

Drinter, In addition to oeneratina the 4 1splay form, the

commands also direct the DOASE II system to either determine

the values of the entries from a record in the referenced

database, or from memory variables. If the Input device is

the screen/keyboard, DRASE TI may retrieve a user entered

value from the screen and store it in a field of a database

record, or In a memory variable. These form definition

,4 commands can also be put into a new tyoe af file, the

*format" file, by ZIP,. In this case the formet, contained

in the "format" file, is used as an disolay overlay to

prompt the user to change data values in an existina record

in a 'database' file.

ZIP Is a CP/N program used to qenerate, or modify, a

DGASE 11 *command* or *format" file, It is a powerful tool

in the sense that the user is not required to know the

details of the DASEI 1! form qeneration caoability

C(commend fles, and display commands). ZIP Presents the

user with a blank screen and an on-screen editor, which
A-

supoorts several levels of cursor movement and formatting

163

7c12 IIII

I E I I w I I I

commands, to help in the form design. Table H.1 lists the

ZIP editor commands.

Table Hot - ZIP Editor Commands.

t. Screen commands
- top
- bottom
- iext
- orevious
- first
- last

2. Piddle of line
3. Insert a space
4. Add a line
5. felete

- character
- line

6, Draw/Erase horizontal line
7. Draw/Erase vertical line
8, grase/Save work file
9, Insert DSASE I command expression
10. Chance variable

- vertical marker
- horizontal marker
- tab spacing
Smargin
- page length

11, Ouit

The cursor can be moved to any position on the blank screen

where the user will enter the information required by the

ZIP proorame. information is conveniently limited to literal

strinqs, memory variables, record field values, end fetchinq

a value from the screen and storing It into a record field

or memory veriablq. Interspersed betwenft these ZIP

164

-MW 7

formatting commends may be DBASE 11 executable commands It

the file type Is Ocommand'. There are special purpose

commands to drew, or undraw, vertical and horizontal lines

on the form.

?%e ZIP program may be viewed as a translator between

the screen design made by the user and the operations of

DSAES ZT. The screen contents assoclated with each screen

position are translated Into a sequence of DBASC 1!

commands, Statements, and control structures which are

organized as either a *command* or "format* file. ZIP also

t places any embedded execution commands Into the file and
4

automeatically sets, or resets, the aoproriatee system

taoaolesm as needed.

ZIP Is a useful support tool for DBASE 11 in that it

relieves the user from having to program a "command* file In

order to create a desired display format. However, It must

be pointed out that ZIP Is a very basic formatter, Is line

oriented, and is Incapable of the more cenolex types o

displays.

1G

.

APPENDIX 11 MAIL

"MAILV Is an electronic mail facility produced by the

University of California at Berkeley and bell aboratorles

for the UNIX operetina Systems Tt allows users to send

messages to other users, or qroups of users, on the system,

?"@ basic Unit Of the MAIL system IS the message, wh~ch

Is simply a special type of text file, ?he messaoe Is

preformatted and contains fields for origiaetor,

destination# subject, copy too and body. Messages are

contained either In the users "private" mailbox or In the

0system0 mailbox. A "dead-letter" file is also maintained

for each user to eontain messaqes which cannot be delivered

to a valid destlnetlone The Private mailbox and dead-letter

file are maintained as text files in the UNIX directory and

therefore can be used by other programs running under UNIX.

Upon loqqinq Into the UNIX system, a prompt appears at

the terminal indicatina that there is mail for the user.

Nessaqes addressed to a user are Initially contained In the

system mailbox, and can be read from the system mailbox by

the NAIL facility. The mess4aes already In the private

mailbox and/or Gead-letter file are text files and thus not

directly accessible to the MAIL feellity.

The user may elect to reed the mil by Invoking the MAIL

rellity. A one Line sunmy of all messages In the system
ie*

I

mailbox is presented to the user, and each message Is given

an integer identification number starting at one. At this

point the user has a number of different options available

as summarized in Table 1.1.

Table 1.1 M MAIL Command Summary

1o Alias a name +
2. Unalias a name(s)
3. Coto previous message *
4, Got* next message * +
go Display summary of commands +
G. Display out all currently defined aliases
7. Display a message
go 01splay out headers of message list .
90 Display message list
10. Display size of each message
Il. nisplay top few lines of each message
12. xecute the folloving (?NIX sfell command
13o ChenCe directory
14. Delete mussaoe(s) .
IS. Delete current message, print next message
iS. Undelete messages marked for deletion
17. Reply to a received message *
18. Edit a list of messages in turn
19. Send message to desionated users +
20. 9nd-of-mossage +
21. Exit, don't change system mailbox *
22. Quit, save undeleted or unsaved messages In the

user's mailbox, save unreferenced in the
system mailbox*

23. Park message(s) to be saved in system mailbox U
24. Save a messee list by appending to a text file *
25. List current ranoe of message headers
2e Welp +
27. Set options *
28& Unsot options

* MAX1 facility has more than one command to
perform this action.

Useful - see page t, paragraph (2).

167

NIn4

- - -7;7

The user may select a message and read it, After

reviewing the message the user may forget the message, save

It in the system mailbox, delete it, or Prepare a response.

When the user cults the MAIL facility all messages which

have not been deleted, saved, or reviewed are placed back

Into the system mailbox. The remaining messages, those

reviewed but no special action indicated, are placed in the

private mailbox. If the user desirtes, the MAIL facility can

be exited and the system mailbox left unchanged.

Additionally the user can create "alas" names that

correspond to multiple users, ask for message summaries,

append messages to files, or invoke an editor,

The 4AIL utility does not contain its own editor, but

dopends on the editorCs) vaLilable to the UNIX system and on

the user to set an option specifying which one is desired.

When the user Indicates that a message is to be created, the

editor is invoked, the user enters the text, and when

finished issues an end-of-message command to return control

to the NAIL facility. While in the editor, the user can

issue *escape" commands that directly effect the messaqe

processing. A listing of these escape commends is provided

in Table .2. Contents of ether flies may be inserted into

the nessate# names of recipients added or chanqed, the

healer field edited, or an alternate editor invoked.

iam

- i. 7W7T7T-- .,7# - , -

• -, I .. -

Table 1.2 o MAIL escape commands

to txecute UNIX shell command
2o Add names to reclplents of copy
3. Read Odeadletter* file Into message
4. Invoke text editor
So Abort the message being sent
6. Insert a named file into the message +
7. Create a subject field
8. Write the message Into a named file
9. Pipe the mestage throuqh a Process as a filter
10. Insert a strlnq lnto t"e message

+ Useful - see page 170, oarearaph (23.

While in the NAIL faclitty, UNIX shell commands may be

Lssuedo The MAIL facility Is temporarily Interrupted, the

Command Is executed, and then tre N41L facility is resumed

without adverse effect.

?able I.3 - MAIL optlons.

1. (AppendsPre"ended) eesaes to private mailbox
2. Cleso) Subject line prompt
3. (Tes/No) Prompt for carbon copy recipients of message
4o CYeslgO) Modify delete command
go (Tes/Ne) Ignore terminal Interrupt slnals
Go (Yesl/o) Include sander In group message recipients
7o (Yes/Ne) Sevinq interrupted messaqes
s. etine default editor name
9e efine escape caeracter
too oeine le to record eutgeing mais
11. Define number ef lines In the etop' of a message

, - ', , , . = . • ,, , ., * . .

Additionally# the MAIL facility has a series of options

the user can change to tailor its operation. Table 1.3

provides a listing of those options,

The MAIL facility is a good support program and Is quite

capable of accomplishing its coals. Hovever, it has more

than its fair share of problems.

CI) There is a very limited user manual, and exoerience

must be gained from other users or by trial and error.

C2) There are too many commands, and too many of those

duplicate each other, The number of commonly useful

commands is low Cmarked with a *), with the rest being

window-dressinq.

(3) The facility is not user friendly. The user must be

aware of location in the facility and what is exoected next,

because there are no special prompts and the helo command

only provides a command summary.

(4) If the message recipient is on line when the message

arrives, whatever operation Is In progress is rudely

Interrupted by the disolay of the message, This can be very

disconcerting to the recipient,

(S) The user cant determine which message is going

where Csystom mailbox, private mailbox, dead-lettor file),

prior to leaving the NAIL faeility.

170

...... .

L ... p] -S i ii III i .

BIBLIOGRAPHY

SileifLn, 0. G rre.klin, B., VISICALC User Manual, Personal
Softwrie, ?fIn. 1979

GhoSh. Sep Data SOe Organilation for Data Manaqemento
Academic Press 1977

Horouitz, Z. G Sahni, 5., rundamentals at Data Structures,
Computer Science Press, Inc. 1976

Kent W., Data amd Reality. North Holland Publishing Coo

1979

Nlman. A.. Introduction to word stat, Sybex Inc. 1962

UlIlman$ i. Principles of Database Systems. Computer Science
Press 1960

DBASE 1I User Manuel, Ashton Tate 1901

S30UITUR User Manual. Pacific Software Manutacturina Company

UNIX Proqramerls ganualt Seventh Edition, Volume 2A Bell
Telephone Laboratories, Inc 1979

171

i
i

fl I *~ i'.,' I I-I I I-I ! I I

-- ---

*

INIZIAL DISTRZSUTION LIST

No, Copies

1. Defense Technical Information Center 2
Cameron Station
%1eazndriat Virginia 22314

2. Library, COde 0142 2
Naval Postgraduate School
"onterey, California 93940

3. Professor Imsan 2. Sadalp Code 52ZD I
Oepartment of Comouter Science
Naval Postgraduate School
Ponterey. California 93q40

49 LT John Chrlstooher Waters USN 1
225 West 79th Street
Nov York, New York 10024

1!

172

7 LL

F ATE

LME-

