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1. INTRODUCTION

This communication is the final report for ONR Research Contract

N00014-81-C-0165, which extended over the period January 1981 through November 1982.

The general subject matter is development of high performance optical memories based upon

photochemical hole burning.

..... ..... ... ....I .. .. . .. -_ . .. . .
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11. RESEARCH ACCOMPLISHED

The initial phase of our engineering study of optical memories based upon

photochemical hole burning (PHB) has yielded several significant accomplishments. The

utility of FM spectroscopy for rapid and sensitive detection of photochemical holes was

conclusively demonstrated, aggregate color centers in alkali halide crystals were identified as

suitable PHB recording materials for exploratory work on memory applications, technically

reasonable PHB memory systems configurations were devised for DASD-type applications,

PHB materials sensitive to GaAIAs laser wavelengths were discovered, satisfactory GaAIAs

laser tuning was achieved, and reading and writing of holes using GaAIAs diode lasers was

explicitly demonstrated.

A. Detection of Photochemical Holes Using FM Spectroscopy

The basic principles of the FM spectroscopy technique were explained in detail in the

original proposal. Reading of the data stored in the PHB memory is accomplished by

probing the recording medium with frequency modulated (FM) laser radiation produced by

passing the output of a single frequency laser oscillating at optical frequency Wc through an

external phase modulator driven at RF frequency wm. The transmitted light is incident on a

fast photodetector connected to phase-sensitive electronics. A heterodyne amplified beat

signal at o m is detected whenever the FM spectrum of the transmitted light is perturbed by

the presence or absence of photochemical holes coincident with one of the FM sidebands.

Rapid detection of photochemical holes has been demonstrated using 200 MHz wide,

20% deep holes burned into the 6070A zero phonon line of the N, color center in NaF

(Section III, Publications, No. 1). Since the unbleached absorption of the peak of the zero

phonon line was 10% of the laser light, the sidebands experienced a maximum differential

absorption of about 1%. An actively stabilized ring dye laser provided tunable single
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frequency radiation at toc with a (jitter) width of 1-2 MHz. The laser beam was frequency

modulated with a LiTaO 3 phase modulator driven at rm70 MHz. The beam emerging

from the sample was detected with a P-I-N photodiode. The photodiode electrical output

was amplified by a low noise amplifier, and the beat signal at ta homodyne detected by a

double-balanced mixer.

The laser frequency oc was scanned over the photochemical hole with w.n held

constant and the strength of the best signal was monitored. Since Wm was less than the hole

width, the experimental lineshape observed was the derivative of the hole absorption profile.

(This differentiation process serves to suppress the slowly varying background of the broad

inhomogeneous line.) The experimental signal was easily detected in real time with 1 MHz

bandwidth electronics, indicating that the hole could have been detected in 1 jssec. The

1 usec detection capability was also explicitly demonstrated by chopping the laser beam into

a string of widely separated Asec duration pulses and monitoring the FM beat signal

produced during each pulse. When the laser frequency oc was tuned far off of the hole, a

null signal was observed and when coc was tuned to the point of maximum slope of the hole

absorption profile, easily dete,..Aole signals were obtained from each pulse.

The detection speed achieved in these experiments was limited to I pusec due to the

relatively narrow bandwidth of the storage scope used to record the FM signals. If faster

detection electronics had been utilized, a less than 100 nsec detection time could have been

achieved for wrn=70 MHz.

A major advantage of FM spectroscopy is that single mode lasers are essentially shot

noise limited at RF and microwave frequencies. The ultimate achievable detection speeds are

more than sufficient for memory applications. In fact, we have performed a rigorous signal
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to noise analysis (Section 111, Publications, No. 3) which shows that for W, I GHz, a 1%

differential absorption should be detectable in less than 1 nsec under shot noise limited

conditions.

B. PHB in Aggregate Color Centers Contained In Alkali Halide Hosts

The zero phonon lines of several types of aggregate color centers in alkali halide host

crystals have previously been shown to demonstrate photochemical hole burning behavior.

The alkali halide host materials are attractive for memory applications, since they are

optically isotropic, are transparent to a wide range of wavelengths, polish reasonably well,

can be obtained in large size samples with high purity and good optical quality, are stable at

room temperature, and can withstand repeated thermal cycling to the 2K operating

temperature.

We have surveyed the published literature on the spectroscopy of aggregate color

centers in alkali halides and have identified several general trends (Section III, Publications,

No. 2). In particular, we have found that the wavelengths X of the zero phonoa lines obey

Mollwo-Ivey relations of the type

X-K an

where K is a constant for each type of aggregate center, a is the lattice constant of the host,

and n- 1-2.

In principle, each type of aggregate color center can be found in each of the 20 alkali

halide host crystals, which have a values, ranging from 2.0 to 3.9A. Thus, if the assumption

is made that the hole burning properties depend primarily on the type of aggregate color

center and not on the particular host, it is possible to choose different materials for matching

to the wavelength range of various sources with desired properties, e.g., HeNe or GaAIAs.
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In order to achieve the 1011 bits/cm2 areal storage density possible in PHB memories,

it is necessary to focus the laser beam to diffraction limited spot sizes on the order of 1 Am.

The depth of focus associated with such small spot sizes is only on the order of a few Amn

and thus it is necessary to be able to produce the optically active species in thin films

consistent with this depth of focus.

We have succeeded in producing such thin films of aggregate color centers by

irradiation of bulk alkali halide crystal samples with 25 keV electrons or 100 to 200 keV

ions (Section III, Publications. No. 2). The incident particles penetrate only a few Atm,

creating a high concentration of defect centers near the surface. Aggregation of the color

centers occurs readily at room temperature. In many cases, the density of the aggregate

centers in the thin film samples is sufficient for their zero phonon lines to be detected

directly by absorption. The burning of 100 MHz wide photochemical holes was

demonstrated in both electron and ion irradiated samples.

C. PHB Memory Systems Configurations

In addition to offering a potential gain of 103 in storage density, the phenomenon of

photochemical hole burning allows optical frequency to be utilized as an additional dimension

for the organization of the memory. This extra dimension makes possible direct (and

random) access to the information contained in very large data bases.

We have evolved technically reasonable systems configurations for the types of

applications normally performed by "direct access storage devices" (DASD). (In today's

technology, DASD functions are typically performed by inductive magnetic recording on

disks.) For very large centralized data bases, these configurations have favorable
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price/performance compared to projected conventional technologies (Section III,

Publications, No. 4, No. 5 and No. 6).

The basic concept is to utilize a centralized laser which is repetitively scanned in

frequency space over the entire inhomogeneous line every 30 tsec. Writing of the

information contained in one spatial storage location is accomplished by modulating the

effective photochemical hole burning rate by a time varying external gating voltage while the

laser frequency is scanned. This gating could be achieved, for instance, by driving a fast

light gate placed in front of the recording medium or by using an external field to control the

quantum yield of the hole burning process itself. For reading, the laser is FM modulated at

Wm less than or equal to the hole width and the intensity of the FM spectroscopy beat signal

monitored as a function of time. Under these conditions, the hole lineshapes are effectively

differentiated and the slowly varying inhomogeneous lineshape is suppressed. Pulse shaping

electronics are employed to reproduce the original data pulse shapes.

The laser beam is time shared between approximately 100 identical "arms". Each arm

consists of a 103 x 103 spot XY galvonometer driven mirror pair, a holographic optical

element which acts both as a focusing lens and a 64 x beam multiplexer, and an array of

64 1 cm squares of recording medium. The 100 arms are contained in a cubic meter LHe

cryostat.

Each 1 cm square of recording medium contains 106 spatial storage locations and hence

103 x 106 or 109 bits of information. Each arm thus contains 6.4x 1010 bits, and the entire

system contains 6.4 x.1012 bits. The data is organized into 6.4x 104 bit pages, each defined

to consist of 103 time domain bits flowing in the 64 parallel data channels. The time to react

or write a page is thus 30 Ixsec.
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Since galvonometer driven mirrors have settle times on the order of 3 msec, only I %

of the time for each arm is spent reading or writing data. The remaining 99% of the time is

effectively dead time, while the mirrors are moving to the next position. This make possible

time sharing of the centralized components among the 100 arms to insure that data is being

read or written into one of the arms at all times. Thus the average data rate is on the order

of 2x 109 bits/sec. Data erasing is most easily accomplished on an arm by arm arm basis

using flood illumination from a UV lamp.

D. Survey of PHB Recording Materials

One of our major materials research goals was to discover PHB recording materials

sensitive to radiation in the GaAIAs laser range (X between 750 nm and 900 nm). An

actively stabilized infrared dye laser facility was set up to provide a means of rapidly testing

materials with zero phonon line in this region. Using the Mollwo-lvey relations mentioned in

Part B above as a guide, the 837.3 nm line of the N1 center in NaCI and the 833.0 nm line

in R' center in LiF were investigated.

Only the R' in LiF turned out to exhibit PHB behavior (Section III, Publications,

No. 7). Fortunately, this materials system is particularly convenient due to its stability at

room temperature, due to the hardness and good optical quality of the host, and due to the

fact that the 833 nm wavelength is at the center of the band covered by standard

commercially available GaAIAs diode lasers.

Holes corresponding to relative absorption changes of as much as 10% could be burned

with exposures of several J/cm2 of infrared radiation. The most striking feature of the hole

spectrum is the occurrence of the side hole to lower frequency from the burning laser and

one very weak side hole to higher frequency in addition to the expected deep central hole
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produced at the burning laser frequency. The central hole and side hole have linewidths on

the order of 300 MHz (0.0006 nm) and the splittings between the various holes are all

roughly 1 GHz. The linewidth of the inhomogeneous zero phonon line was typically 0.4 nm.

Another major topic of research was on investigation of the effects of externally

applied electric fields on PHB dynamics and lineshapes (Section 1ll. Publications. No. 8 and

No. 9). No significant effect on PHB dynamics or burning speed was observed for electric

fields up to 5 kV/cm. However, dramatic lineshape effects due to Stark splitting were

observed. These effects were utilized to study the nature of the 607 nm color center in NaF.

The previous assignment of this line to an N1 center with C2h symmetry was found to be

inconsistent with the Stark spectroscopy results and the orientation of the permanent dipole

was determined with a high level of accuracy.

E. Tunable GaAIAs Laser Sources

The wavelength tuning characteristics of several types of commercially available single

transverse and longitudinal mode GaAIAs diode lasers were studied in detail. The laser beam

was collimated by a microscope objective, passed through a 1.5 GHz or 30 GHz free

spectral range etalon, and the transmitted intensity monitored as the laser temperature on

injection current was varied.

We found that under the proper conditions, over 60 GHz of continuous, single mode

tuning could be achieved simply by ramping the injection current. The bandwidth of the

laser was about 200 MHz due to residual drive current fluctuations.

Since the achievable data rates are limited by the laser tuning speed, the rapid tuning

capabilities of the GaAIAs lasers were extensively studied. Over 50 GHz of tuning was

achieved in 25 Asec using a triangle waveform modulation of the injection current. This

-/., s . . ll .. . . . . . . . . . . . . . . . . . . . .. .
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corresponds to a tuning rate of 2 GHz/Musec. Assuming an idealized hole width of 50 MHz.

the laser can be scanned through a hole in 25 nsec. This satisfies the 30 Mbit per second

data rate requirement set forth in Part C above.

F. Reading and Writing of Photochemical Holes Using GaAIAs Diode Lasers

We have explicitly demonstrated both burning (writing) and detection (reading) of

photochemical holes using current tuned GaAlAs diode lasers (Section 111. Publications.

No. 10). The holes were burned in the 0.4 nm wide inhomogeneously broadened 833.0 nm

zero phonon line of the R' aggregate color center contained in Mg++ doped LiF.

Holes corresponding to relative absorption changes of as much as 5O% could be burned

with exposures of several J/cm2 . Typical observed hole widths were 500 MHz (0.001 nm).

Coarse wavelength tuning was provided by adjusting the temperature and fine

wavelength tuning was provided by varying the injection current using specially built

electronics. For writing holes, the injection current was stabilized to +0.02 mA, resulting in

a measured laser jitter bandwidth of 200 MHz. For reading holes, the injection current was

periodically linearly ramped in a sawtooth manner and at the same time rapidly modulated

with a low amplitude, sinusoidal waveform. The ramping caused the laser frequency to

repetitively scan over the spectral region containing the hole, while the sinusoidal modulation

caused a rapid dithering of the laser frequency for derivative spectroscopy. (In the limit that

the dithering frequency becomes greater than the laser bandwidth, the power spectrum of the

modulated beam becomes similar to the FM spectrum obtained using a single frequency laser

with external phase modulator.)

Fast detection of the holes was accomplished by scanning the laser over 17 GHz at a

30 kHz rate, corresponding to a tuning rate of I GHz/Asec. The sinusoidal modulation
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frequency was 179 MHz. Relatively shallow, 500 MHz wide holes were detected in less

than 500 nsec.
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