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ABSTRACT A study of the matrix displacement method for modeling the vibrations of
structures is presented in this report. The model can analyze both the free and
forced vibrations of a structure. Static loading on a structure is treated as a

special case of the forced vibration analysis.
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1 Introduction

A study of the matrix displacement method for modeling the vibrations of structures is presented in this
report. The model can analyze both the free and forced vibrations of a structure. Static loading on a structure
is treated as a special case of the forced vibration analysis.

A brief review of the Finite Element Method and its present use is first given. This is followed by a
discussion of the methodology of the matrix displacement approach and a description of the 'speciﬁc model
used. Examples of the use of the model to analyze the frequencics and mode shapes of the free and forced
response of a beam structure and the static deflections of a beam structure are shown and compared wifh the
closed form solutions. Finally, ways of extexiding the model to a more complicated structure, a turbine blade,

are discussed. Conclusions are then drawn. ~ S v

2 The Finite Element Method -- Fuhdaméntal Concepts and Applications

There are many methods available today which perform the analysis of structures. For example, in one

method the structure is described by differential equations. The differential equations are then solved by
analytical or numerical methods. Another method of analysis is the finite element method (FEM).

In this method, the structure is idealized into an assembly of discrete structural elements, each having' an
assumed form of displacement or stress distribution. The complete solution is then obtained by asécmbling
these individual, approximate, displacement or stress distributions in a way satisfying the force equilibrium
equations, the constitutive relationships of the material, the displacement compatibility between and within
the elements and the boundary conditions of the structure.

Mcthods based on discrete element idealization have been used extensively in structural analysis.The early
pioneering works of Turner, et al., in 1956 [1], and Argyris in 1960 [2] led to the application of this method to
static and dynamic analysis of aircraft structures. Other ficlds of structural engincering, such as nuclear

reactor design and ship construction have since employed this method.

Nor is the idca of discretc clements limited in usc to structural analysis only. The fundamental concept of
the finite element method is that any continuous quantity, such as displacements, temperature, or pressure,
can be approximated by a finitc number of clements. Thus, this approach can be used to solve problems in
hcat flow, fluid dynamics, clectro-magnectics, fracture mechanics and scepage flow to name just a few other

arcas of usage.




The representation of a continuous structure by structural elements of finite size results in large systems of

algebraic equatiqns'. A convenicnt way of : handling these scts of equations is by the use of matrix algebra,
which also has the advantage of being ideally suited for computations on high-speed digital computei's. For
this reason, expressions such as "matrix methods of structural analysis” are sometimes uscd to describe the
method. More common thougti is the term "finite element method”, which emphasizes the discretisation of
the structure.

The finite element method actually encompasses three classes of matrix methods of structural analysis. The
first is the displacement (or stiffnéss method), where the displacements of the nodes are considered the
unknowns. The correct set of displacements results from satisfying the equations of force equilibrium. The
second method is the force (or flexibility) method. Here the nodal forces are the urknowns and are found by
satisfying the conditions of compatible of deformations of the members. The third class of matrix méthod is
the mixed method, which is a combired force-displacement method.

One last comment on the finite element method in general is necessary. An error is introduced into the
solution of the original problem as soon as the continuous structure is replaced by discrete clements. This
€rror remains, even when the discrete elemeni analysis is performed exactly. In general this error is reduced
by increasing the number of discrete elements, thereby decreasing the element size and thus giving a better
idealization of the continuous siructure. Zienkiewicz, Brotton and Morton [3] suggest that the uset may
determine the limits of his error by: “(a) comparison of finite element calculations with exact solutions for
cases similar to his specific problem; (b) a "convergence study’ in which two or more solutions are obtained
using progessively finer subdivisions and the results plotted to establish their trend or (c) using experience of
previous calculations as a guide to the treatment of the specific problem.” Further information on matrix

structural analysis and the finite element method may be found in many sources. [4-11]

3 Explanation of the Model

The following discussion is divided into three sections. Firstly the equations of motion will be stated.
Sccondly, the matrix displacement method for solving such equations will be described. Finally some specific

aspects of the particular model being uscd will be discussed.

3.1 Equations of Motion

The motion of a vibrating system, consisting of mass and stiffness, of n degrees of freedom can be
represented by n differential equations of motion. Thesc cquations of motion may be obtained by Newton's

sccond law of motion, by Lagrange's cquation or by the Influence Coefficicnts method. Since the equations
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of motion, in general, are not independent of each other, a simultancous solution of these equations is -

required to calculate the frequencies of the sy;stem.

The matrix equation for the free vibration case is:

K- ’M][X] = [0]
where
K] represents the stiffness matrix of the structure,
M] represents the inertial (mass) matrix of the structure,
® represents the set of eigenvalues of the equations
corresponding to the set of natural frequencies,
X] represents the set of eigenfunctions of the equations

corresponding to the set of displacements
For the free vibration case the set of forces is just zgro.
The matrix [K-sz] is called the impedance matrix.
The matrix equation for the fo}ced vibration case is:
K-w? MI[X] = [P]

where Pl represents the set of forces on the structure, and
wg is the driving or forcing frequency.

The other terms are as previously defined.

@

@

Inspection of equations (1) and (2) reveals that ncither contain damping terms. This is because structures

of immediate concern have very low damping (~1 x 10 critical damping).

An excellent treatment on the dynamics of structures is Clough and Penzien [14].
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3.2 The Matrix Displacement Method

An outline of the application of the matrix displacement method in finite elcment analysis for the solution

of dynamic problems follows. A similar outline is given by Zicnkie(vicz, ct al. [3] for static analysis.
1. Input
a. Idealization of the problem
The continuous structure is divided into a number of elements. These elements are
connected at common nodal points or nodes. It is at these nodes that the value of the
continuous quantity (displacement) is to be determined.

b. Preparation of the data for the structure

The geometry of the structure is defined by assignirig coordinates to the nodal points. The
physical properties of the elements (dimensions, material parameters) are inputted.

c. Preparation of the load data
The loads to be applied to each element or node are defined.
d. Preparation of the boundary conditions or constraints
The prescribed constraints. on the degrees of freedom and boundary conditions are stated. -

2. Processing

a. Element Formulation

The stiffness and inertial matrices for each element are determined by the approximate
relationships and the corresponding loads are calculated.

b. Assembly of the structure

The summation of the elemental matrices to form structural stiffness, inertial and load
matrices is performed.

¢. Reduction of equations

The boundary conditions and constraints in terms of certain specified displacements are
introduccd, thereby reducing the number of equations to be solved.

d. Solution of simultaneous equations
The solution of the cigen problem of cquation (1) or (2) results in the natural frequencies of

the structurc (ecigenvalucs) and the modal shapes or displacements of the nodes
(cigenfunctions).

R |




e. CaIcuIatian of stresses

If required, the elemental stresses could be calculated from the nodal dlsplacements and
elemental stiffness.

3. Output

The results of the solution to the eigenvalue problem and the stress calculation are presented in an easily -
interpreted form.

3.3 Specific Aspects of Model . )

This section is concerned with specific aspects of the model. The element and its formation "M be
discussed first. Information concerning the computer code and its subroutines will then be given.

1. Element Formulation

The element chosen for the model is the beam element which is given by Przemicmiecki [7]. This etement
was chosen so as to allow direct companson of results with known solutions (see section 4). The beam
clement is a two node element. The model allows the nodes to have either three degrees of freedom (x and Y,
translational and rotation about z, i.e. motion confined to a plane) or six degrees of freedom (x.y,z
translational, rotation about x,y,z, i.e. the general case).

Fig. 1 shows the beam elexixent. The following forces act on the beam:

o axial forces s, and s,

o shearing forces 52 Sy Sgr and Sy

¢ bending moments S5 Sg» S1pp and $12

e and twisting moments (torqucs) s, and S0

The location and positive directions of these forces are also given in Fig. 1. The corresponding

displacements U, U, .. U12 will be taken to be positive in the positive direction of these forces.

Each clement has its own set of physical parameters. For the beam clement these parameters are: Young's
modules, cross-sectional arca, moment of inertia about the y and z axis, Poisson’s ratio, mass density, and
length (along x axis). All of thesc parameters are inputted directly except for the length which s computed

from the inputted coordinates of the nodes. *
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Figure 1: The beam element and its forces, after Przemicniecki {7},

The model performs calculations for either the free or forced vibration case. To perform such calculations
requires the calculation of the structural stiffness and inertial matrices, along with information of the loading
and boundary conditions of the structure. The effect of constraining a degree of freedom is to strike out the

correspending rows and columns of the stiffness, interial and load matrices.

The s:iffness matrix for a beam clement is shown in Fig. 2. The shear deformation parameters <by and @,
can be taken as zero. This matrix may be obtained in various ways, two of which are the influence coefficients

method and the variational method, which are outlined in Appendices I and I1.

The incrtial matrix for the beam element is shown in Fig.3. This matrix is obtained by the same methods as

the stiffr. 2ss matrix, as described in Appendices I and I1L
Liepexs [13] gives a third way of calculating the stiffness and inertial matrices.

The sz-uctural matrix for both stiffness and inertia is obtained by supcrposition of the individual elemental

matrices. Actual superposition occurs only when degrees of freedom are common to more than one clement.
2. Corputer Coding

The coxmputer code itself contains ten subroutines, called by the main program, entitled VIBRAT. A bricef

explanat:on of the subroutines will now be given.

-,
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INPUT - This subroutine asks the user /or the necessary information which is nceded to assemble the
structure. Information such as: free or forced case, number of clements, coordinates of
nodes, physical parameters, structural loading, and constrained degrees of freedom are
inputted in this section.’

CONECT - This subroutine establishes the geometry of the model. It determines the distances between
adjacent nodes of the structure. -

KMAT - This subroutine calculatcs the elemental stiffness matrix for each element and then assembles the
structural stiffness matrix from them.

MMAT - This is similar to KMAT only here the mass or inertial matrices are calculated.

EIGEN - This subroutine is called for the free vibration case. The purpose of it is to calculate the eigenvalues
(natural frequencies) and eigenvectors (mode shapes) of equation (1). This subroutine calls
two other subroutines; EIGZF, an IMSL routine which actudlly does the solving, and
CLAMPR, which determines which degrees of frecedom are constrained.

SOLVE - This subroutine is called for the forced vibration case. This routine solves equation (2) for the
displacement. This subroutine also calls two other subroutines: LEQT1F, an IMSL routine
which does the solving, and CLAMPR, which determines the proper degrees of freedom to
be constrained. ‘ ’

REMARK - is a subroutine whose purpose is to explain the use of the main program VIBRAT and its
subroutines. Information on the nomenclature and file structure used can be found in

REMARK. The user of the modecl is recommended to refer to REMARK if he has any
questions on the computer code used in this model. :

The code for all of these routines may be found in Appendix IIL

4 The Model: Examples and Accuracy

This section presents various examples of use of the hodel. The examples chosen represent five types of

possible problems. They are:

1. free vibration of a fixed-free uniform beam

2. free vibration of a ﬁxcd-ﬁxc& uniform beam
3. forced vibration of a fixed-free uniferm beam
4. static dcﬂccti(;n ofa ﬁxed-’fr;:c uniform beam

5. static deflection of a fixed-free non-uniform beam.

The accuracy of cach example is discussed.
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Figure 2: Stiffness Matrix of Beam Element of Figure 1 [After Przmieniecki).

The first four examples use the geometrié and material values listed in Table 1.

Parameter

Total Becam Length (L)

Young's Modulus (E)
Cross-Scctional Area  (A)

Moment of Incrtia about Z-Axis (I z)
Moment of Incrtia about Y-Axis (ly)
Poisson’s Ratio (»)

8
Symmetric
4 + ®)EI,
K +0)
AE
° 7T
—6El, 121,
Mi+9,) M+ 0)
12E1,
0 0 0 AT
0 0 0 0 %’
6E], (4 + O)EI,
° 0 mre * TEe
(2 — O)EI, _—6El, 0 0 0 (4 + ®)EI
0+, M+ o) K +9,) |
[The sheer deformation parameters & and ® can be considered
to be zero.]
Value Units
25.0 inches
278 x 105 _ pounds force/inches?
20 inches
0.2 inches*
0.7 inches*
035 0 e
0.283 pounds mass/| inches’

Mass Density  (p)

Table 1: Uniform Beam Properties |
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Figure 3: Consistent Mass Matrix for a Beam Element
(After Przemieniccki [TD, .

4.1 Example 1: Free Vibration of a Fixed-Free Uniform Beam

AN

Figure 4: Example 1: Fixed-Free Uniform Beam,

Table 2 summarizes the results for this problem, using one, two, and five clements. It is clear that




increasing the number of clements increases the accuracy of the results, and this supports the statements of

Zienkiewicz given earlier.

. O

The natural frequencies calculated by the model are compared with the closed form solution obtained

from the - ‘partial differential equation of the continuous system. For the fixed-free case the closed form
solutions are:

[ Axial 0= E wheren =1,3,5,... 3)

2L [

Bending(i) w= asz\l—EIi-— where 1 + cos aL cosh al. =0

pAlA
i=YorZ - . @
Torsional w = m’\/ G wheren=1,3,5,...G= E &)
2L P 2(1+»)

Thus from Table 2, one can see that by using just five elements. the model gives ten transverse modes, two
axial modes, and two rotational modes, the frequencies of which are all within 5% of the exact solutions.
Again, clearly greater accuracy of results and more (higher) modes may be accomplished by increasing the

number of elements.

Diagrams of the mode sﬁapes for the first five bending modes (in Y) and the first four axial modes (along
X) are given in Figs. 5 and 6. The model shapes agree wi}h the closed form predictions in every case.

4.2 Example 2: Free Vibration of a Fixed-Fixed Uniform Beam

In this example the beam is held fixed on both ends. Sce Figure 7 . Table 3 shows the calculated and exact

" values for the axial mode nateral frequencics. The accuracy is similar to that of example 1.

4.3 Example 3: Forced Vibration of a Fixed-Free Uniform Beam

In this example (Figurc 8), thc beam is subjected to a harmonically varving load P(t) of amplitude P and

circular frequency, w, Figure 9 is a plot of the magnitude in the transverse direction of the free end node. As
expected, as W, approaches a natural frequency (those found in example 1), a resonance condition occurs

resulting in ‘'very large magnitudes of dcﬂcépion. The expression for the amplitude of response A is given by
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Figure 5. First five bending mode shapes of Example 1 .




Axial Calculated Natural Exact Natural

Mode Frequency (rad/sec) Frequency (rad/sec)
1 24,874 24,470
2 52,186 48,940
3 83,933 73,410
4 117,570 97,880

Table 3: Calculated and Exact Natural Frequencies in Axial Mode.
Caiculated value used five element model, for Example 2.

A= PO = Pﬁ—
Ka-85 K
where Po/K represents the static deflection, -
B equals the ratio of the forcing frequency to natural frequency,

D dynamic magnification factor equal to 1/(1-[32)

" Error

1.7
6.6

14.3

20.1

®)

Analysis of the calculated z;mplitude in terms of the dynamic magnification factor agrees with equation (6)

in those frequency regions dominated by just one natural frequency.

4.4 Example 4: Static Deflection of a Fixed-Free Uniform Beam

By letting the driving frequency, w,, be zero in the forced vibration option, the model is able to solve static
deflection problems. Figure 11 shows the deflection of the bcam under the static loading of cxample 4. The

modecl’s calculations, using just five clements are within 2% of the exact beam theory results. The deflection

and slope at the cnd of the beam are given by the expressions:

A = PL3/3El
O = PLY/2E]
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Figure 7: Example2: Fixed-Fixed Uniform Beam ,
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a

Figure 8: Example 3: Fixed-Free Uniform Beam With Dynamic Load ,

Values calculated using these expressions are compared with the model results in Table 4.

.

4.5 Example 5: Static Defiection of a Fixed-Free Non-Uniform Beam

Until now, all the examples have dealt with uniform beams. Example 5 is an example taken from Laursen
[11]. Laursen solves the problem in three differential ways: by the moment-area method, by the conjugate
bcam method, and by Newmark’s method. The solution for displacement and slope at the free end is given
as:

A = -0.457 inches

O = -0.0041 radians
The modecl gives identical results.
A sketch of the deflection is shown in Figure 13.

The purpose of the previous five cxamples s to illustrate the use and application of the model to a variety
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Figure 11:  Static Deflection of a Uniform Beam, Example 4.

of cases. Other cascs of a more complicated nature could have been solved as casily, however these examples
give the user somc insight into the accuracy of the solution obtained. They also indicate that very accurate
results arc obtained by the model with relatively few clements, In general, for a more complicated structure
more clements will be required to obtain an accurate model. Techniques for handling more complex

structures are discussed in the next scction,




A (inches) ® (radians)
Exact " _9.37 x 1072 -5.62 x 107>
Calculated -9.50 x 10‘4 -5.69 x 10'5
% 1.4 1.2

Table 4: Calculated and Exact Values of Deflections for Example 4 ,
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Figure 12: Example 5: Static Deflection of a Fixed-Free
Non-Uniform Beam ,

[After Laursen].
5 The Extension of the Model to Model A Turbine Blade

An example of a morc complicated structure which might be of vibrational intercst to an engineer is a
turbine blade. The cquations of motion for a beam in bending vibration is a fourth-order differential
cquation. whose solution is easily found. The solution for a non-uniform and asymmetrical bcam is much

more complicated. A tapered, pre-twisted turbine blade with airfoil cross-section might be modeled as such a

beam.

The differential cquations for combined flapwise bending, chordwise bending and torsion of a twisted
non-uniform bladc are derived by Houbolt "and Brooks [16]. The solutions of these cquations for the

continuous system have not been found. Thus the analysis of such structurcs are limited to special cases
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Figure 13: Static Deflection of a Non-Uniform Beam, Example 5,




which solutions are obtainable, or to approximate solutions. Various techniques of an anaiytical and iterative
nawre such as the Myklestad method. quicr method, Stodala methtid, Rayleigh-Ritz method, transmission
matrix method, and the Runge-Kutta method have been studied [14). A few typical examples are giveﬁ in the
references [15,17-20].

The application of the model presented in this report to the turbine blade would be a very useful tool to the _

engineer and his study of the blade’s free and forced vibrations.

The model allows each element to have its own sct of geometric and physical parameters. Thus neither the
non-uniformity or tapering of the blade would lead to any modeling problems. However the airfoil shape of
the blade would not have the same torsional stiffness as a beam. Thus the first adaptation to the model
needed would be to correctly compute the torsional stiffness for an airfoil shape and input this into the model

rather than using that which the model computes.

There is another problem which arises from the twisting and geometry of the turbine blade. The natural
frequencies of such a blade are coupled frequencies with the mode shapes consisting in general of transverse
motion coupled with torsion. The coupling is dependent upon the degree of' pre-twist and the ratio of depth
taper to width taper. For a given blade, coupling becomes stronger with increasing pre-twist and with
increasing width to depth taper ratio.

The simulation of this coupling in the modet could be accomplished by either introducing it through the
element itself or through the geometry of the structure. The first way implies changing the element from a
beam element to a new element. This 'new element could be derived from a variational method (see
Appendix II) applied to the differential equations for the blade equations derived by Houbolt and Brooks
[16). The ideal of coupling through the geometry of the structure implies the use of additional beam
elements. Part of these elements would be used to form the center of stiffness for the blade which would now
be a curve rather than the straight line used thus far. Other clements could extend at right angles from this
curve. These elements would act primarily as lumped masses and form the curve representing the center of
mass of the blade.

Modecling a turbine blade with this model would require some additional work to impicment the ideas
presenced in this section. However the matrix displacement method uscd is a very powerful onc and the use
of the modc! and extensions of it are applicable to a wide range of problems in vibrational analysis of
structurcs. Building a library of clements would greatly extend the uscfulness of the cxisting -model, and

additionally, the introduction of element rotation would lcad to further improvement,




................

6 Conclusion

This report primarily concerns itself with three topics:
1. the explanation of the matrix displacement method for use in vibrational analysis of structures,
2. specific examples showing the variety and accuracy of the method, and
3. possible extensions of the model to allow for application to an even wider variety of problems.
The model presented here currently allows for only one type of element, the beaxﬁ element. It has been
shown that by using just a few beam elements very accurate results of frequencies and modal shape are

obtained for beam-like structures. Creating a library of element types would allow the user -even greater

flexibility. The accuracy of the model using these new elements should be comparable to that presented here.




22
Acknowledgements ( ;

The author is grateful to Prof. Alex J. Holzer, who acted as advisor throughout this study. Special thanks
also goes to Prof. William L. Whittaker of the Department of Civil Enginceririg at Carnegie-Mellon
University, for the help, guidance and encouragement given.

References

1.) M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and Deflection Analysis of Complex
Structures”, Journal of the Acronautical Sciences, Volume 23, Number 9, September 1956, pp. 805-823.

2.) J.H. Argyris, "Energy Theorems and Structural Analysis”, Butterworth Scientific Publications, London,
1960. '

3.) O.C. Zienkiewicz, D. M. Brotton, L. Morgan, "A finite element primer for structural engineering”, The
Structural Engineer, Volume 54, Number 10, October 1976, pp. 387 - 397.

4.) 1. S. Przemieniecki, "Matrix Structural Analysis of Substructures:”, American Institute of Aeronautics and
Astronautics Journal, Volume 1, 1963, pp. 138-147.

5.) 1. B. Spooner, “Finite element analysis: development toward engineering practicality”, The Chartered
Mecchanical Engineer, Volume 23, Number 5, May 1976, pp. 96-99,101.

6.) T.H. H. Plan, "Variational and Finite Flement Mecthods in Structural Analysis”, RCA, Review, Volume
39, Number 4, December 1978, pp. 648-664.

7.) 1. S. Przemicniecki, "Theory of Matrix Structural Analysis”, McGraw-Hill Book Company, 1968.
8.) R.H. Gallagher, “Finite Element Analysis Fundamentals”, Prentice-Hall, Inc. 1975.
9.) L.J. Segerlind, "Applicd Finite Element Analysis", John Wiley & Sons, Inc., 1976.

10.) R.N. White, P. Gergely, R. G. Sexsmith, “Structural Enginecring, Combined Edition”, John Wiley &
Sons, Inc., 1976. |

11.) H.I Laursen, "Structural Analysis”, McGraw-Hill Book Company, 1969.

12.) 1. S. Archer, "Consistent Mass Matrix for Distributed Mass Systems”, Journal of the Structural Division,
Procccdings of the American Socicty of Civil Engincers, Volume 89, Number ST4, August 1963, pp.
161-178.

13.) A.A. Licpins, "Rod and Béam Finitc Element Matrices and Their Accuracy”, American Institute of
Acronautics and Astronautics Journal, Volume 16, Number 5, May 1978, pp. 531-534.

14.) R. W. Clough, J. Penzien, "Dynamics of Structurcs”, McGraw-Hill Book Company, 1975.

15.) W. Carncgic, J. Th.omas. "The Couplcd Bending-Bending Vibration of Pre-Twisted Tapered Blading”,




Journal of Engineering for Industry, Transactions of ASME, Volume 94, Serics B, Fcbmary 1972, pp.
255-266. ' ' : '

16.) J. C. Houbolt, G. W. Brooks, "Differential equations of motion for combined flapwise bénding.
chordwise bending, and torsion of twisted non-uniformed rotor blades”, NASA Report 1346. 1958.

17.) V.R. Murthy,” Dynamic Characteristics of Rotor Blades”, Journal of Souhd and Vibratior‘l, Volume 49,
Number 4, 1976, pp. 483-500. .

; 18.) W. Carnegie, B. Dawson, J. Thomas, "Vibration Characteristics of Cantilever Blading”, Proceedings of
: the Institution of Mechanical Engineering, Yolume 180, Part 31, 1965-1966, pp. 71-89.

, . 19.) E. Dokumaci, J. Thomas, W. Cameéie, "Matrix Displacement Analysis of Coupled Bending-Bending
~ Vibrations of Pre-twisted Blading”, Journal of Mechanical Engineering Science, Volume 9, Number 4,
t! 1967, pp. 247-254. )

1 -~ 20.) J. Montoya, "Coupled Bending and Torsional Vibrations in a Twisted, Rotating Blade”, The Brown
: Boveri Review, Volume 53, Number 3, 1966, pp. 216-230.




.T'ﬁ .

Late fh b a4

Y

I. Appendix | Influence Coefficient Method

One method of obtaining the stiffncss matrix is the influence coefficient method. This method is widely
used in structural analysis with static loadings [10,11}. There arc both stiffness and flexibility influence

cocfficicnts : only the stiffness influence cocfTicients will be considered here.

The stiffness coefficients for an clement are found by alternatively constraining all degrees of freedom but
one and displacing this one by a unit amount. The resulting forces on the other degrees of frcedom are the
stiffness cocfficients. That is Kyj is the force or couple corresponding to degree of freedom ¢ due to the unit
displacement of degree of freedom j. In Fig. 14 a prismatic element of length 1, area A, moment of inertia

about the Z axis I, and modulus of elasticity E, with three degrees of freedom per node is shown. I
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Figure 14: Element Stiffness Influence Coefficients (After White, et al {10]),

By performing the stiffness influence method procedure on this clement, the stiffness matrix is obtained:
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Figure 15: Stiffness matrix of prismatic clements of Figure 14,

-

Comparison of Fig. 2 and 15 shows that the matrix of Figure 15 is contained within the matrix of Figure 2.

In Fig. 15, each node has three degrees of freedom, in Fig. 2 there are six degrees of freedom per node.

The inertial (or mass) matrix may be calculated similarly. The mass influence coefficients would represént '

the mass inertia force acting at a degree of freedom due to a unit acceleration of another degree of freedom.




...................
................................................

26

Il. Appendix |l Variational Method

Another method of computing elemental stiffness matrices is the variational or encrgy mcthod commonly

used in finite clement programs. The outline presented here largely follows that of Gallagher 8).

The principle of minimum potential encrgy furnishes a variational basis for the formulation of the element

stiffness matrix. The potential energy (= p) of a structure is given by the strain energy (U) plus the potential of

8 the external work V (V = 'Wm)'

boundary conditians, those that satisfy the equilibrium conditions make the potential encrgy assume a

“The theorem of potential energy is: of all displacements, satisfying the

stationary (extreme) value. Thus
7, = U+V o )]
8np=BU+8V=0 @®
And for stable equilibrium, L is a minimum.
8%, = 8°U + V>0 - ' ©)

The change in strain energy density due to the change in strain caused by a virtual displacement (§¢) is given

oo
3

du =

8 (dU) = o 8¢ . . ) (10)
P Where ¢ is the equilibrium stress state prior to the application of the virtual displacement. The stress--strain
law is ' '
o = [Ele - [Ele ™ , (an
Fe ’
P. * where [E) is called the material stiffness matrix, a matrix of elastic constants. For simplicity, let there: be no
initial strain. Substitution of (11) into (10) yiclds )
¢ 85U = e [Elde ' (12)
tA ' Integration between zero and the strain €, corresponding to a, gives
'
-
‘ .
L
3

¢{Fle | : - ’ (13)

vy
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and integration over the volume of the clement results in

=1 / ¢[E]e d(vol) . a4
2 vol
The variation of U is
6U = / ¢[E] 8¢ d(vol) ‘ , . 15)
vol

The potential of the applied loads is

L’ V=-‘5;__1F‘A‘-/ T Uds | a6

3 where Fi represents point forces, and T are traction forces on the surface. The variation of V is

8V ="ZFSA, . / T+ suds an -

Using the minimum potential energy thecorem (equation 8) results in

/ e[E]5¢ d(vol) + "ZF 8A - / " Te 8Uds = 0 . (18)

vol S¢

In the finite clement matrix, the displacements, [A], are written as a polynomial matrix times a vector of
parameters in the assumed displaccment field.

(4] = P ] | | | | 9
[P] evaluated at the node gives a matrix B}, consisting of constants. Thus
(A, 04es] = Bl[al (20)
Inverting to find [a] in (20) and substituﬁon into (19) leads to
[A] = [P1[B"] [Anodes]
= [N] Anodes @D

where N is the shape function. The shapc function N‘ has the quality that it is cqual to 1 when cvaluated at

the geometric coordinates of the point at which 4, is defined and is cqual to zcro at all other degrees-of-
frecedom A‘, METS
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- The matrix [D] is called the dof-to-strain transformation. Then
o :
! [e] = [D] [Anodes) ) : - (22)
For example if,
e = a— then
ox
[D]= N7 ] _ (23)

Substitution of these ideas into (18) leads to

| / [DI' [EIDIA, 4. dVol(§Anodes'y- Z[N J'Fy(8Anodes')

vol '
- / [N]YT]ds(8Anodes') =0 ' ' (24)
s
dividing (24) by §Anodes' results in
[K] Anodes - Fext = 0 | | - (25)
where
(K] =£ol [DI*(E] [D]dvol (26)
Fext = _/s‘ [N1®{T]as + 2INg 1tF, (27)

Thus the stiffness matrix can be found by equation (26).

As an cxample take the axial element show in Figure 16, with dofAl and A2 only. The procedure to

calculate the stiffness of this element follows. Let
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The result is also contained in the stiffness matrices shown in Figures 2 and 15.

The incrtial (or mass) matrix can also be calculated by usc of this method. The variational approach leads
to .

(M] =f [N]{p] [N]QVol (28)
vol : '
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where [p Jis the material mass density matrix. Since the shape functions used here are the same as those -
used for the stiffness calculation the result is called the consistent mass matrix. A consistent mass matrix is

more accurate than a lumped mass approach [12].
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B igace.

IIl. Appendix Ill Computer Code of Model

R

Available from Author.







