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ABSTRACT

This report describes the technical progress achieved in
research sponsored by the Air Force Office of Scientific
Research during the period between March 1981 and February 1982.
Three areas of research were pursued; two of these consist of
(1) analysis of laminar and turbulent duct flows, and

(2) study of laminar and turbulent separated flows. Both of

these studies were aimed at acquiring a better understanding

of isclated physical phenomena significant to turbomachinery
applications via the use of appropriate model problems. The

third area of research pursued consisted of (3) the analysis of
numerical methods with the goal of improving the efficiency

and accuracy of the various methods developed and implemented.

In the first area of research, fine-grid asymptotic solutions

were obtained for laminar flow through curved ducts of simple
cross sections; also marching solutions have been obtained for
turbulent flow in the entrance region of curved ducts of simple
cross sections. The subject of streamwise separation is examined
using the laminar flow through a constricted asymmetric channel
and the laminar and turbulent flows past a thick blunt plate

as the model problems. 1In the third category, high-Re very
fine-grid solutions have been provided for the shear-driven cavity
problem using a multi-grid strongly implicit method. Finally, the

block Gaussian elimination method is implemented to solve the

unsteady Navier-Stokes eguations to provide true transient

? internal viscous flow solutions.
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SECTION 1
OBJECTIVES

The objective of the present study was to develop analyses
and improved understanding of viscous internal flows in a class
of complex three-dimensional configurations related to turbo-
machinery, using appropriate model problems.

1. Laminar and turbulent three-dimensional internal viscous
flows were to be studied using the model problem of curved
ducts with simple cross sections. The asymptotic form of
this laminar flow was to be studied to investigate the
occurrence of Dean's instability by varying the Dean
number, K, and the aspect ratio of the duct cross section.
An additional goal of studying this flow configuration was
to provide a set of accurate asymptotic flow solutions,
so that the marching solutions calculated earlier using
the parabolized Navier-Stokes equations could be independently
verified.

2. Separated flows were to be studied with two different
objectives. For laminar flow, the model problem of a doubly
infinite channel with an asymmetric constriction was to
be'studied to obtain solutions for high-Reynolds number flows.
On the other hand, a turbulent separated-flow analysis was
to be initiated to further understand the low-Reynolds

number turbulence modelling techniques required at the

boundaries in the second-order closure formulation of the

time-averaged Navier-Stokes equations.




The efficiency and accuracy of semi-implicit and implicit
methods were to be investigated using model problems. 1In
the first category, the strongly implicit (SI) scheme was
to be studied using the model problem of flow in a shear-
driven cavity in order to improve its convergence rate.
Also, the multi-grid technigque was to be employed to
further improve the convergence rate of semi-implicit
solution techniques. In the latter category, a fully
implicit scheme was to be developed for enabling direct
solution of the Poisson equation in generalized ortho-
gonal curvilinear coordinates.

The research performed in each of these areas is described

briefly in the next section; the main results and conclusions

obtained are also summarized.




vorticity and the cross-flow stream function. One of the ob-

SECTION 2

DESCRIPTION OF SIGNIFICANT ACCOMPLISHMENTS

All three areas of research proposed were initiated and the
specific achievements made in these studies during this reporting

period are briefly described in the following subsections.

2.1 Laminar and Turbulent Duct Flows

Asymptotic flows inside curved ducts of rectangular as
well as polar cross section were analyzed using the Navier-

Stokes eguations in terms of the axial velocity, the axial

jectives of this study was to investigate, for the polar duct,
the possibility of Dean's instability which, for curved
rectangular ducts, is characterized by the occurrence of an
additional pair of secondary~flow vortices. The significance
of this phenomenon is that this second pair of streamwise
vortices creates additional pressure losses. To achieve this
goal, the asymptotic form of the flow equations was used to
calculate some benchmark solutions which serve as the only
available quantitative check on the accuracy of the developing-
flow numerical solutions for this class of flow problems. From
the investigators' earlier work on this problem, it was felt
that, for highly curved configurations, the strong coupling
between the primary and the secondary flow should have to be
honored by the numerical solution technique employed. 1In fact,

Ghia et al. (1980) had observed, using an alternating-direction




implicit (ADI) method, that the simultaneous solution of the

three differential equations governing the primary and the
secondary flows in these highly curved configurations was
essential for computational efficiency. Also, the initial
conditions employed were observed to have a significant influence
on the stability of the numerical scheme, particularly for
cases with high Dean number K.

The strongly implicit (SI) scheme was developed to facili-
tate efficient high-Dean-number solutions of the coupled flow
equations. Numerical experiments were conducted with all three

governing eguations being solved simultaneously as well as

with the axial velocity equation being solved seguentially with
a coupled solution of the vorticity and stream function equations.
From the limited experiments conducted, it was observed that

the coupling of all three equations was not crucial for the §I
scheme; this was contrary to the findings for the ADI method.
Further, a combined multi-grid - strongly implicit (MG-SI) scheme
was also developed; brief remarks about this method will be

made later in this section. Using this new method, fine-grid
results were obtained by K. Ghia, U. Ghia and Shin (1981).
Figures 1-3 show some of their typical results. The details of
these results are given in a technical paper which was presented
at the ASME Winter Annual Meeting, November 1981, in Washington,
D.C. Additional details of the MG~SI method were also prepared

and added to this study and the revised manuscript prepared has

been submitted for journal publication.




A technical paper based on the analysis developed and the
results obtained for turbulent flow inside curved ducts of
regular cross section was completed by Goyal, K. Ghia and
U. Ghia (1982) and has been submitted for journal publication.
The wall-function approach and the low-Reynolds number

modelling approach are carefully evaluated therein.

2.2 Laminar and Turbulent Separated Flow

Laminar incompressible flow with streamwise separation
was studied further with the help of the model problem of a
doubly infinite channel with an asymmetric constriction. The
use of a semi-implicit method, such as the alternating-direction
implicit (ADI) method, leads to poor convergence for this flow,
particularly as the grid size is refined. To circumvent this
difficulty, the ADI method for the vorticity-transport equation
was coupled with the block-Gaussian elimination (BGE) method !
for the stream-fuanction equation, to obtain accurate and 7
efficient solutions for the channel flow problem. Since the
analysis used the derived variables, namely, the vorticity w, and E
the stream function ¢, it also provided an independent check !
for the results of U. Ghia et al. (1979b) which had been
obtained using primitive variables. The present results for
separated flow agreed well with those of U. Ghia et al. (1979b)
for Re=100. However, for a mildly separated flow configuration
with Re= 1000, the present results show a very different
internal structure. The results of the present true transient

analysis, obtained using the ADI-BGE method, appeared to be
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converging to steady-state values. These results for Re= 1000
are shown in Fig. 4. The streamline contours in Fig. 4a show
four discrete eddy structures, all rotating in the clockwise
sense, & transient characteristic of uns .¢cady flows. This
stable series of vortices formed on the lee side of the channel
constriction shows a gualitative resemblance with an unstable
series of like-rotating vortex structures in the separating
boundary layer on the tail end of a blunt body shown by Prandtl
and Tietjens (1934). The corresponding vorticity contours for
the Re = 1000 flow configuration are shown in Fig. 4b. A careful
reexamination of the results in the transformed plane revealed

that the grid used is not adeguate between the reattachment

point and downstream infinity. Preliminary results have been
obtained using a modified grid where the discrete eddies combine
to a single eddy, a characteristic of steady flow in the
constricted asymmetric channel.

A turbulent separated-flow analvsis was developed for
flow past a class of two-dimensional and axisymmetric blunt
bodies as shown in Fig. 5a. The time-averaged Navier-Stokes
equations for these flows were derived in surface-oriented

conformal coordinates (§,n) in terms of similarity-type vorti-

city and stream-function variables. Turbulence closure was
achieved by means of a two-equation (k,e) turbulence model which

enables determination of the isotrovic eddy viscosity v The

g
coupled vorticity and stream-function equations were solved
simultaneously using an incremental formulation of the factored

ADI scheme. Numerical solutions were obtained for a thin flat




plate and compared with available experimental and analytical
data. Also, results were obtained for flow over a parabola

and compared with the flat-plate results. Finally, solutions
were obtained for flow past a two-dimensional semi-infinite

body with a shoulder, at Red = 24,000. Typical mean-flow
velocity profiles for the blunt plate were compared with the
experimental data of Ota and Itasaka (1976) and are shown in
Fig. 5b. All of the computed results have the same general
trend as the experimental data of Ota and Narita (1978);
possible causes for the differences within the separated~flow
region were carefully examined. Some of these results were
presented briefly by Abdelhalim, U. Ghia and K. Ghia (1982) at
an AIAA Mini-Symposium at the Air Force Institute of Technology,
Ohio. A full-length paper based on these results has been
prepared by Abdelhalim, U. Ghia and K. Ghia (1982) for presentation

at an ASME meeting.

2.3 Numerical Methods

A number of isolated effects were studied using model
problems so as to maintain the accuracy and efficiency of the
algorithms developed. This approach not only facilitates
the assessment of various algorithms, but also provides bench-
mark solutions for some of the model problems used. With an
eventual goal of solving flow through complex turbomachinery

passages, every effort is made, during each grant period,; to




improve the numerical methods already used and to develop new
methods which can further enhance the convergence rate. The
solution convergence rate is strongly dependent on many
problem parameters, such as the Reynolds number, the mesh size
and the total number of computational points. This led to
carefully examining the recently emerging multi-grid (MG)
technique as a useful means for enhancing the convergence

rate of iterative numerical methods for solving discretized
equations at a number of computational grid points so large

as to be considered impractical previously.

The vorticity-stream function formulation of the two-
dimensional incompressible Navier-Stokes eguations was used to
study the effectiveness of the coupled strongly-implicit
multi-grid (CSI-MG) method in the determination of high-Re
{ fine-mesh flow solutions. The driven flow in a sguare cavity
was used as the model problem. Solutions were obtained for
configurations with Reynolds number as high as 10,000 and meshes
consisting of as many as (257 x 257) points. Figure 6a shows
the streamline contours for the cavity~flow configuration with
Re = 10,000. A magnified view of the various secondary vortices ;
is also-included. The values of ¥ along the contours shown are !
listed in Table 1. For this case of Re = 10,000, the present
results are in excellent agreement with those reported by
Keller (1981), and are computationally very efficient. Figure 6b
shows the corresponding vorticity contours with the wvalues of w

along these contours listed in Table 1. This figure shows




that, in addition to the boundary layers at the walls, free-
shear layers with high vorticity gradients appear in the
interior of the cavity in a very complex manner. It was because
of this complex flow structure that uniform mesh refinement

was used in the present study. Earlier, some of these results
were presented in a paper by U. Ghia, K. Ghia and Shin (1981)

at a Multi-Grid Symposium held at NASA-Ames Research Center.

The original manuscript was revised to include additional results
for the convergence history of the MG-SI solution procedure.

In the revised form, the paper has been accepted for publication
in Journal of Computational Physics.

Towards the same goal of efficient numerical methods, the
two-dimensional unsteady Navier-Stokes eguations, in terms of
vorticity and stream function, and generalized orthogonal
coordinates, were used to analyze a fullyv implicit scheme
developed for the general Poisson eguation in this study. The
vorticity-transport equation was solved using an ADI method,
whereas the Dirichlet Poisson problem for the stream function was
solved using a direct block Gaussian elimination (BGE) method.
The BGE method was compared with the semi-direct (SD) method of
Martin (1978) for the general Poisson problem for accuracy and
efficiency and was found to yield a direct one-step solution,
irregardless of the degree of grid clustering, with considerably
improved efficiency as compared to the SD method. Osswald and
K. Ghia (1981) presented detailed results of this study at a

Multi~Grid Symposium held at NASA-Ames Research Center. The

i e et el e e o
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manuscript is being revised to include accurate fine-grid
results for the Re = 1000 flow configuration. The revised paper

will be submitted shortly for journal publication.
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SECTION 6

TECHNICAL APPLICATIONS

0f the various areas of research pursued, two appear to
be most useful to the technical community. The multi-grid
solution procedure formulated for the Navier-Stokes eguations
for determining fine-grid results for high-Re flows is a
unique capability developed in the present research. This is
particularly useful because, although the multi-grid procedure
is generally recognized as beneficial for accelerating
convergence, its adaptation to the solution of high~Re viscous
flows has bheen extremely limited thus far. Secondly, the
unsteady - flow solution procedure using time marching and block-
Gaussian elimination yields useful information about transient
separated internal flows. Both of these developments provide
highly accurate benchmark solutions for the problems to which
these have been applied so far. Both of these programs are
developed in modular form, and several of the modules are
prepared for general-purpose use and can be easily implemented
in other applications. Some other researchers have already

requested for some of these modules.
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TABLE 1. VALUES FOR STREAMLINE AND VORTICITY
CONTOURS IN FIGURES AND

Stream Function Vorticity
g:!;z:l:r Value of ¢ gz:;::r Value of v gx:’:r Value of w

a -1.0x107%0 0 1.0x10°8 c .0 i
b ~1.0x1077 1 1.0x10"7 21 s 0. |
c -1.0x107° 2 l.0x107° %2 £ 1.0
e -1.0x107% 3 1.0x107° +3 .
e -0.0100 4 5.0x10™° +4 £ 3.
£ ~0.0300 5 1.0x104 5 4.0 |
S ~0.0500 5 2.5x107% 6 5. |
h -0.0700 7 5.0x10°4 |
i -0.0900 8 1.0x1073
3 -0.1000 9 1.5x10°>
X -0.1100 10 3.0x107°
1 -0.1150

| = -0.1175
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Fi1G, 6a. STREAMLINE PATTERN FOR PRIMARY, SECONDARY AND
ADDITIONAL CORNER VORTICES,

REe10000, UNIPOAM GRID ( 257287 )

FIG, 6b. VORTICITY CONTOURS FOR FLOW IN DRIVEN CAVITY.

27







