
AD-A127 6 400 A NUMBERLESS TENSED LANGUAGE FOR ACTION ORIENTED TASKS /
U) CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST

D ABOURNE 13OCT 82CMU-RI-R82 12

UNCLASFE A SG 9/2

fl~fl~lfl~fllflflf

1111 O 1 2 2

L. 140 111.

1.25 1.4 1.6
I111 --

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

Carnegie- Mellton University

A NUMBERLESS, TENSED LANGUAGE
o) FOR

ACTION ORIENTED TASKS

David Alan Bourne

The Robotics Institute
Carnegie-Mellon Universit

13 October 1982Q1i lb

LiJ

THW
ROBOTICS

CUN-H812 INSTITUTE

-SECURITY CLAS-rI(.1 Oq V A 0 r .Is AE "4hn D'.. F,,r.1

REPORT DOCUMENTATION PAGE BFREAD C0s'r1 T? o! FORI3,FPORE CC'.!PLETINO FOPM
I, REPORT NU M4ER i3, GOVI ACCESSION NO. 3. REC)IiENT*S CATA .. '3G NUMBER

CMU-RI-TR-82- 12 A)~) L
4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

A NUMBERLESS TENSED LANGUAGE Interim
FOR

ACTION ORIENTED TASKS 0. PERFORMING OR . REPORT NUMBER

7. AUTMOR(s) S. CONTRACT OR GRANT NUMBER(a)

David Alan Bourne

.2. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELE-ENT.PROJECT. TASK

Carnegie-Mellon University AREA WORK UNIT NUMBERS

The Robotics Institute
Pittsburgh, PA. 15213

It. CONTROLLING OFFICE NAME AND ADDRESS IZ. REPORT DATE

Office of Naval Research 13 October 1982

Arlington, VA 22217 13. NUMEROF PAGES
19

M MONITORING AGENCY NAME & AODRESS(il dillferent frogn Controlling Office) IS. SECURITY CLASS. (ol thin report)

UNCLASSIFIED

1S. OECL ASSI FICATION/DOWNGRADING
SCHEDULE

1S. OISTRIBUTION STATEMENT (ol'this Report)

This do.:imnprt hn- " 'Yl v-
for publiz r'.,-sc " . .

distrib utiolnI i n ijn I.1

17. DISTRISUTION STATEMENT (of the abstrec entered In Block 20. II different from Report)

Approved for public release; distribution unlimited

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an reverse side if nocesery md Idenlify by black number)

20. ABST RACT (Continue an reveree elde It neceeeary and Identify by block n moer)

DD ,jAf, 1473 COITION O,, NOV .IS OBSOLETE UNCLASSIFIED
SR A 002-014-6601 1

SE9CURITY CL.ASSIFIC';ATION OF TNIS PAGE (*%o~nq Veto SalsNNal

A Numberless, Tensed Language
for

Action Oriented Tasks

David Alan Bourne
Robotics Institute ..

Carnegie Mellon University 00
Pittsburgh, PA 15213

13 October 1982

Abstract

.ction orietned languages are number intensive. Graphic's languages are centered around where to draw
..rn.L;:in rather than what to draw. The "where" involves a tedious numeric description of vertices.

Robo ics languages are also dominated by a "where" description, but now the -where" specifics a robot
ioUrm. The result is an array of numbers that obscures the meaning of the program to its reader.

ThIs paper shows how a number of linguistic devices can be used to eradicate the plethora of numbers from
,tin oriented de:criptions. Functions or verbs can be tensed (e.g., past tense) to modify their meaning
without dupiicating the root function. The result is an English-like description of a control structure.
.\rgutments or nouns can be modified in name, like the use of a GENSYM function in Lisp which generates a
i'nique vari.abl.' name from a character string, and in number (e.g, singular vs. plural). The result is an
1:;nlish-like description of bound and quantified variables. The remaining quantitative description of action
tasks can he relegated to a database whose management system is specialized for number management.

The resulting language is a formal variant of a natural language with a Lisp-like syntax (i.e., lists with
finictioo in the first position). The programs approach the readability of a natural language without the cost
of ambiguity that is inherent in natural descriptions. Finally, the programs can be easily pretty printed in
Eng!:h so that they can be read by non-programmers.

Copyright @ 1982 David Alan Bourne

This research was sponsored by the Robotics Institute, Carnegie-Mellon University, and, in part, by the
Westinghouse Corporation.

Table of Contents
1. Introduction 1

1.1. Ncw AppEltons Breed Ncw Languages 2
1.2. Language Review 2

2. Syntax: Combining Atomic Termns3

3. Words: Thl-e A tomic Terms 6
3.1. Functions/Verbs 7
3.2. Conncctives and Logical Completeness 8
3.3. Arguments/Nouns 8
3.4. Adjectives and Adverbs 10
3.5. Rounding Out The Language with An Adverb 11
33.6. Thc Language Tightrope 11

4. Where the Numbers Belong 11
5. The Runtime System and The Separation of Power 13
6. Pretty Printing 15
7. Some Notcs On Implementation 16
S. Summary 16
9. Future Interests 17
10. Acknowledgment 17

A.-nssicri For

Jaut f T. GCtorL

istribution/
Ava11l~bilty lodes

3The language description is informnal here. however, the formnal details arc a% aiable elsewhere fBourne 92b]. 6

List of Figures
Figure 1-1: ML 1Joint Level Control [Ardayfao 82. page 621 2
Figure 1-2: RAIL program fdr cleaning torch [Franklin 82. page 4041 3
Figure 1-3: AUTOL'ASS program for support bracket assembly [Lieberman 77. page 3291 4
Fi gure 1-4: Initial Assembly [Dcscription flozano-Percz 79. page 255) 5
Figure 1-5: A partial rulc set to reach high objects [Forgy 79. pp. 11-121 5
Figure 4-1: Two relational tabics that dcscribe dctails offthe furnace. 12
Figur 4-2: The resulting table after database operations. 12
Figure 5-1: Thrcc layers of control intcrnal to the supervisor: top to bottom 13

1. Introduction
Educated people and computing machinery both communicate with languages and yet there remains a gap

between people and machines. The natural languages used by people seem not to be suited for

communicating with machines and the existing computer languages seem not to be suited for communicating

x ith people. The verbosity and ambiguity in English sentenccs can obscure the simple and yet precise ideas

that arc required for man machine communication. On the other hand. computer languages tend toward

obscurity. Each language comcs with a set of programming tricks that are forcign to a non-programmer. This
project is an attempt to formalize a set of language tricks that are familiar to any English speaker while

avoiding the weaknesses inherent to natural language. A byproduct of choosing English tricks is the ability to
easily paraphrase programs into English text.

Programming is inherently difficult for many reasons. People are not used to specifying a solution in every

detail. In personal communication this is usually not necessary since the listener often has the information to
fill in the gaps. If he is missing information, it can be systematically obtained from a sequence questions and

answers. Similarly, programming would be greatly simplified if the machine was already an expert in the area

of discourse. That is, the system would already have all of the details of how to execute its basic functions.
The remaining task left to the programmer is to describe what operations need to be performed to accomplish
his goals.

Most present day computer languages are designed for sequential data manipulations and are not amenable
to coordinating simultaneous operations. Action tasks can involve manipulating several objects
simultaneously to the satisfaction of a programmer's goal: these tasks are characteristic in manufacturing.

Raw parts are formed and assembled into final products by machine manipulations that proceed in parallel.

For example, one application is the control and coordination of nine machine tools, two of which are
industrial robots. Each of these machine tools is operated by its own controller and they are linked together

into a star configuration with a supervisor at the center. A program implicitly describes what machine
functions can be performed and when they can be applied.

Control functions must be decoupled to such a degree that they can be scheduled for execution in parallel

with other operations. Unfortunately, the machine tools cannot be relied upon to operate in harmony, so
asynchronous activities have to be accepted a. -'.c standard mode of operation. The description of these tasks

could easily become mired in details, specifying such things as communication line numbers, line speeds,
protocol types, hexadecimal addresses and every other imaginable and obscure computerism.

Numbers are abundant in most programs and yet they have little or no meaning when they are taken out of

context. In fact, programs would be much easier to understand if there were no explicit numbers present in

the text. Unfortunately, they are a necessary evil. Numbers describe exactly where something is or exactly

how much something should be done: these details must be present at some level. Therefore, for the sake of

the programmer and the completeness of the task description, the numbers remain, but they are condemned
to a separate system which knows how to manage this database of godless creatures. The numbers are boxed
up into relational tables and can be indirectly referenced from within a program.

To satisfy these constraints, the resulting language and operating system isolate the description of the task

from the description of the equipment. lie task description is numberless and uses word constructions which

are already familiar to non-programmcrs. illic statements in a program arc decoupled into independent rules

that can be scheduled for execution over a distributed architecture.

2

1.1. New Applications Breed New Languages
Each new area of computation brings with it a waoc of new programming languages and robotics is no

different. AL [Mujtaba 79.32], VAL [Uhimatc 801, RAIl' Popplestone 781, AMI. [Grossman 82a.82b] and
RAIL [Automatix 811 are but a few. For die most part, each language is a spin-off of another well known
computer languagc: ALGOL. BASIC, APT, P1./i and PASCAL respectively. The robotic's languages are
new by virtue of including special task oriented features. These features facilitate solutions to robotic
problems and remain couched in a stylistic framework that is already familiar to an experienced programmer.
Some features include built-in subroutines (e.g., homogeneous transformations, 'Draw,' anti 'Grasp') that are
specialized for a particular problem area (see Paul's work in robotics [Paul 77,81] and the proposal for a
graphic's standard [SIGGRAPH79]). Other features include new data structures for organizing information
like the aggregates (i.e. nested sets of arbitrary types) found in AML. These languages are designed for an
already expert programmer to quickly assimilate.

The effect a new language provides is an organizational view that simplifies a class of task descriptions. Of
course, this class of descriptions determines how interesting any particular language is to a consumer. Like
oder products. the language designer often wants to generalize his system of notation until it can be sold to a
large market. This amounts to extending the language's applicability to many different kinds of
computational problems: thus there are often premature claims to universality. As long as there are new
kinds of problems, there will be new ways to express their solutions.

1.2. Language Review
Every good language reflects a familiar structure. Low-level languages reflect low-level structure. For

example, assembly language is a representation of hardware that performs computational instructions.
Similarly. low-level robot programs represent the functions that the machine can perform at its lowest level
such as joint movements. The ML program segment in Figure 1-1 is an example of a typical operator,
operand program. In this case, an operator is the name for a device function and the operands are used as its
input.

100 Sensor 7 100 500
110 Sensor 14 -200 300
12) Move 0 2000 0 0 -4000 650
130 Motor 34000
140 Dmotor 2-100

Figure 1-1: ML Joint Level Control [Ardayflo 82, page 621

A programmer who is familiar with a robot and its devices can precisely control them with a language like
ML. Another example of a low-level language is APT which is also an operator operand language for
controlling machine tools. It has become deeply entrenched in industry partly because it allows for the direct
control of the low-level machinery. Apparently, this control is emotionally difficult to relinquish in the face
of a computer program. With the advent of new technologies in Robotics, new opportunities are becoming
available for younger generations. They are not yet committed to antiquated systems because they have not
yet committed their egos to their machines. This is the time to introduce high-level languages into
manufacturing.

3

A high-level language directly represents the algorithm at its level. Thercfore, programs that manipulate
algebraic expressions have statements which perfi)rm algebraic operations. A robot's work is done with its
end etfcctor and so sensibly a high-lcvcl languagc allows a programmer to direct its control. The RAIL
program in Figure 1-2 is an examplc of how a PASCAL-like programming language can describe the cleaning
of a welding torch. By embedding the robot primitives in a familiar computer language, programmers will
find it comfortable to program these new machines.

Programming robots in a high-level language is essentially programming by side effect. For example, the
statement 'Brush =On' in Figure 1-2 is a variable assignment that also turns on a brush as its side effect.

Function Clean- Torch
Begin

Brush out the torch nozzle, then spray it.

Approach 2.0 From Cleaner - Brush
Brush = On

love Cleaner- Brush
Depart 2.0
Brush =Off

Move Cleaner- Spray
Spray =Ou
Wait 2 Sec
Spray=Off
Depart 2.0

End

Figure 1-2: RAIL program for cleaning torch [Franklin 82, page 4041

This language and others like it (e.g., VAL. AML, AL) are very effective if the people using them are
familiar with the language in which they are embedded and want to control the process at this operational
level.

AUTOPASS is a very high-level language for describing assembly operations [Lieberman 771. The English-
like description in Figure 1-3 is an AUTOPASS program that describes the assembly of a support bracket.
From a distance this project looks like it addresses many of the questions involved in this paper. However on
closer inspection the AU'OPASS system offers many features not discussed in this paper (e.g., geometrical
modeling. grasp calculations and path planning) and vice versa. This paper addresses the following issues
which are restrictions in AUTOPASS.

1. The English-like sentences in AUTOPASS are made up of a fixed set of verbs and qualifiers (in
bold) which operate on their subjects (in italics). Unfortunately, different applications require
different action words to effectively describe a task.

2. The AUTOPASS statements are translated into motion commands one at a time. As the

L 'A

4

statements arc being compiled. thcy arc used to update the state of a gcometrical database which
illuminates some semantic errors. Unfortunately, variations in the environment arc not detected
and used to updatc the state of the database.

3. Parallel computations which are prevalent in action oriented tasks with multiple machines are
difficult to describe. This problem is enhanced by the way the statements are compiled one at a
time.

4. The level of English-like description is still very low. The descriptions degrade into quantitative
measurements and the structure of the statements is limited to declarations.

5. AUTOPASS programs are embedded in a pseudo Pill/ language so that the PL/1 control
structures can be fully utilized. The same philosophy of English-like description is not employed
for both control and statement definition.

1. Operate nutfeedcr With car-rel-tab-nut At fixture.nest
2. Place bracket Infixture Such That bracket.bottom

Contacts car-ret-tab-nut.top
And bracket.hole Is Aligned With fixture nest

3. Place interlock On bracket Such That
interlock.hole Is \ligned With bracket.hole
And interlock.hole Contacts bracket.top

4. Drive In car-ret-int/k-s/ud Into car-ret-tab-nut
At interlock.hole
Such That Torque Is Eq 1.20 ln-Lbs Using air-driver
Attaching bracket And interlock

5. Name bracket interlock car-retOintlk-stud car-ret- tab-nut
Assembly supporz-brucket

Figure 1-3: AUTOPASS program for support bracket assembly [Lieberman 77, page 3291

Despite the many drawbacks of AUTOPASS it is probably still the most impressive system for describing
an assembly of parts.

There are several other research systems which use complex models of the system to plan actions. LAMA a
system at MIT is LISP based and has many of the features found in AUTOPASS. In particular, manipulator
programs are generated automatically from assembly plans. The task description which assembles a piston
sub-assembly uses English-like words that are also LISP function names. The initial assembly plan in Figure
1-4 must be translated by hand to a more explicit assembly plan of the same form. A strategy is then chosen
to make the final translation to a manipulator program while considering the geometrical constraints of the
working world.

The next program segment (Figure 1-5) is an example of production system rules that are written in OPS2

(Insert Objl: |Piston-Pinj
Obj2 [Piston Pin-H lole]

Such-That: (Partly (Fits-In Obji Obj2))
(Insert ObjI: |Piston-Pin]

Obj2: [Rod Small-End-Holel)
(Push-Into Ohjl: iPiston-Pin]

Ohj2: (And [Piston Pin-Holel
JPiston- Rod Small- Endi))

Figure 1-4: Initial Assembly Description [Lozano-Perez 79, page 2551

[Forgy 791. A production system is an interpreter and a set of rules each with left and right hand sides. The
left side of every rule is evaluated as TRUE or FALSE and every rule that is satisfied is gathered together into
a confict set. One rule is finally chosen for execution by heuristically resolving the conflict.

A few explanations arc required before these rules can be understood. The lcft hind sides are essentially
patterns which are being matched to a database. The symbol '=' marks a variable which becomes bound to
an object during the matching process. If'= Object' is bound to 'Banana' when thc first rule is satisfied then
the '= Object' in '(High = Object)' is also bound to 'Banana.' Finally, the '=' that stands alone in the last rule
can be bound to anything.

((Want (Monkey Holds = Object)) -- (Want (Ladder Near = Place)))
(H1igh =Object) (= Object Near =Place)

((Want (Monkey Holds =Object)) - (Want (Monkey On Ladder)))
(High =Object) (=Object Near = Place)
(Ladder Near =Place)

((Want (Monkey Holds =Object)) - (Want (EmptyHanded Monkey)))
(High =Object) (= Object Near =Place)
(Ladder Near = Place) (Monkey On Ladder)

((Want (Monkey Holds =Object)) - (<Write> "The Monkey Grabs The" =Object)
(High =Object) (=Object Near = Place) (Monkey Holds =Object) (<Delete>
(Ladder Near = Place) (Monkey On Ladder) (Want (Monkey Holds =Object))))
(Not (Holds Monkey =))

Figure 1-5: A partial rule set to reach high objects [Forgy 79, pp. 11-121

A production system can be used to schedule computations on a star network simply by passing along the
satisfied rules to the correct processors. Unfortunately, there are few dangerous pitfalls. For example, if two
rules are executed which move two robots then the robots may collide. This problem results from a hidden
dependence in the rules which must be either eliminated or one of the rules must be discarded during conflict
resolution [Bourne 321.

One of the main reasons ror developing a very high-level language is to make tie system accessible to those
who have never programmed. On appearance alone, both OPS and LAMA would scare off the uninitiated.

6

The language in this paper is a %cry high-level language that is specialized for action oriented tasks. These
tasks arc executed on a star computer network with machine tools (e.g., robot arms, vision systems, machining
centers ...) at the points of the star. The people programming are familiar with their equipment but not with
any particular programming methodology. Therefore. this language uses many features of English rather than
features % hich are typical to computer programming languages.

2. Syntax: Combining Atomic Terms'
The syntax is very similar to LISP and several production systems [Waterman 781. Complex terms are

composed of functions followed by their arguments where each of the arguments in turn can be another
complex term.

(Function Arguments) (1)

Rules are constructed from these terms by pairing boolean functions with command functions.

(Boolean Arguments) -- (Command Arguments) (2)

The resulting rule's right hand side is executed whenever the left hand side is TRUE. A program is a set of
rules which can be executed asynchronously. However, to limit the size of the rule set, the right hand side can
also be another set of rules (i.e., predicate - action pairs).

(Boolean Arguments) -- {Rule-Set}. (3)

Nested ,niles reduce the amount of computation required to find the set of satisfied ones, since the embedded
,iles are essentially invisible. Once an outer rule is satisfied, the inner rules become accessible and their left
hand sides must then and only then be continually checked. In addition, rule nesung is a programming
device which can be used to logically structure the rule set, thus making the program easier to understand.

{Name Rule-Set) (4)

Finally. a program is any named rule set. This resolves many problems in formatting large programs that are
deeply nested because any named rule set can be invoked on the right hand side of any rule, thus making the
program easier to read.

3. Words: The Atomic Terms
The readability of a program is directly related to the atomic terms or words in a language and the order in

which they occur. The more closely aligned these words are with already familiar words the less there is to
learn, thus making it easier to assimilate. The more concise the notation the less that has to be read, thus

IThc language dakcnplion is informal here. however. te formal details are available elsewhcre [Bourne 82b).

7

making it easier to absorb in a glance. The fewer ambiguities in expression the less context has to be analyzed,
thus making it easier to understand. lliese arc the design goals and the reasons for choosing English words.

3.1. Functions/Verbs
English has a very rich underlying structure. For example, functions arc deeply embedded in sentences

and usually manifest themselves as either modifiers (e.g.. adjectives and adverbs) or verbs. A unary function
is hidden in a simple sentence usually in the form of an adjective.

The first robot on the assembly line is broken. (5)

(Broken First-Robot) (6)

Whereas, there are many occurrences of more complicated functions with many arguments.

The red-robot presented to the blue-robot a turbine-blade. (7)

(Presented Red-robot Blue-robot Turbine-blade) (8)

Functional representations of English have been studied extensively by logicians [Quinc59] and linguists
[Montaguc74]. However, the structure of English is no! the point of this paper other than to appreciate what
would be commonly familiar to non-programmers. Rather, words and a few linguistic devices are borrowed
from English and are used unambiguously to describe the action oriented tasks.

Typical tasks have at least three components. For example, suppose you are hungry and undertake the
process of satisfying your hunger. You must first of all purchase the ingredients that are needed to prepare
the meal and locate yourself in an appropriate place, such as a kitchen. These are at least some of the task's

pre-conditions, because the conditions must be TRUE before the process can- begin. In addition, you must
have cooked and eaten the meal in order to have resolved the hunger. The meal having been cooked and
eaten are some of the task's post-conditions, because those conditions are TRUE after the task is complete.
And finally, the whole process should be enjoyable. This is one of the task's while-conditions, because you
continue to eat only as long as you are enjoying the meal. Restated, there is a test to see whether the meal is
possible and if it is possible. the meal is consumed as long as it remains enjoyable. These condition classes are

pervasive throughout task oriented computations ard therefore need to be represemnea in a concise and
elegant way.

The conditions are paramount to functions and the condition class can be conveniently indicated by special
function markers. Again, English-like devices can be easily employed as function markers.

The past tense of a verb indicates that some action has already taken place and is used to mark the function
as a boolean (i.e.. it returns TRUE or FALSE). In other words,a function in the past tense is a natural way to
express a pre-condition.

(Grasped Turbine-blade) (9)

8

he present tense of a verb naturally reads as an imperative and is used to command the system to make the
%erb's past tense TRUE. The result is a convenient way of representing commands Ahich double as post-
conditions.

(Grasp Turhine-blade) (10)

The active tense of a verb describes an action which is in process and is also used to mark a boolean function.
Active tense descriptions accurately describe the while-conditions of a task.

(Grasping Turbine-blade) (I)

The active tense is distinguished from the past tense by the duration of its truth value. Once something has
been "grasped" it continues to have been "grasped" within the context that is defined by the nesting of. rules.
On the other hand. a robot is only "grasping" something during the actual operation. This distinction is
valuable for describing a program's control stncture and can be used much as the IF and \VIIIIi statements
are used in a typical structured programming language.

Regular verbs are decomposed into their appropriate parts, root and ending, by a very simple procedure
[Winograd 71] which is augmented with a dictionary to manage the common irregular verbs. In 19711 this was
considered an application of Artificial Intelligence because Winograd was develoning these routines within
the context of natural language understanding. However, here the routines are just used to provide
supplemental information to the lexical analysis phase of compiling within die scope of a formal
programming language.

3.2. Connectives and Logical Completeness
A programming language should encompass more than simple concatenations of function calls. Boolean

connectives (i.e., 'And'. 'Or' and 'Not') are essential for representing complex conditions, such as: 'A robot
should move to the furnace, only if it is ready and there are not any obstructions.* Furthermore, notions of
variables and quantifiers are necessary to provide the complete mechanism of reference. As an example, there
must be a mechanism for referencing the subject in a previous clause. This logical completeness is available in
the first order predicate calculus though many lay-people find it overly technocratic. In addition, there is no
widely accepted means of representing anything other than declarative sentences in the first order predicate
calculus which dismisses imperative and interrogative sentences.

3.3. Arguments/Nouns
A previous section discussed linguistic devices for modifying functions, so that the resulting clauses are easy

to read. This section shows how a function's arguments can be modified in number, so that the expressive
power of quantification is captured without the loss of readability. The examples illustrate how an English
sentence is translated to the predicate calculus and then how that sentence is translated to our new language.
The purpose of these translations is to unambiguously relate the meanings of these sentences to an already
familiar language.

9

The first example shows an English sentence (12) with a hidden universal quantifier (13). lhe intended
nicning of this sentence is that 'all of the billets have been movcd to the furnace,' and this interprcetaion is
triggered by the use of the plural noun 'billets.' The first order predicate calculus expresses a plural noun
soineN hat diffcrcntly. Rather. than modifying the arguments thcmselves the predicate calculus represents a
plural noun (e.g.. 'billets' in (12)) as a quantifier, variable and predicate (13). This clarifies many issues
including the scope of the quantifier, which in turn simplifies problems concerning reference (e.g., "What
object(s) arc referred to by the word 'it' in (18)?"). The conditional in (13) is used in place of a conjunction so
that the resulting sentence is true even if there were no billets to be moved. The sentence undergoes its final
translation to 14 and uses the plural noun form to explicitly signal the quantifier's presence. (14).

'Ilie billets have been moved to the furnace. (12)

Vx (Billet (x) - Moved (x,Furnace)) (13)

(Moved Billets Furnace) (14)

The second example shows an English sbntence (15) with a hidden existential quantifier (16). The singular
form of 'billet' is a general term that in this sentence indicates that at least one billet has been moved to the
furnace. It doesn't matter which billet has been moved or if many of them have been moved. Again in (17)
the quantifier has been redisguised as a singular noun. So far, the notation in (14) and (17) is relatively simple
compared to rhe predicate calculus without any apparent loss of representational power.

A billet has been moved to the furnace. (15)

3x (Billet (x) A Moved (x,Furnace)) (16)

(Moved Billet Furnace) (17)

The beauty of the predicate calculus is only apparent in the third example (18) where the reference of a
pronoun must be resolved to understand the sentence. This example is easily understood by a person because
only the billets are likely to moved in the context of this sentence. Unfortunately, knowledge of this sort is
not always so useful.2 The predicate calculus cleanly resolves this problem with the quantifier since it binds
the variable 'x' and the scope of the quantifier is unambiguously determined by the parentheses (19). That is,
there is an 'x' that is referred to by 'it.' and that satne 'x' is a billet, has been found and has been moved to the
furnace. It is tempting at this point to throw up your hands and say that the predicate calculus solves all of the
problems and that no improvements can be made. However, the fact remains that sentences in the predicate
calculus are difficult for the layman to understand for the very reasons that make it unambiguous: the
additional unfamiliar symbols and their structure are confounding to the uninitiated. Again we can use a
familiar linguistic trick and provide names for the subjects. What was a general term 'billet' in (17) now
becomes a singular term 'Billctl' (20) which denotes a specific object. 'Billed' refers to the same billet within
the same, or lower levels of parenthetical structure: this is the scope of its binding. Numbers are used as
suffixes because they are easy to generate and easy to compare. The hope is that this naming convention

2T e sentence "-he businessman bought a company with his friend becmuse he was rich.' is quite ambiguous. Who was rich?

10

docsn'c cakc on a tcchnical appearance subjecting it to the samc disapproval encountercd by the predicate

calculus. Howcvcr, there are other alternatives. For example, uniquc descriptions can rcplacc the names (21)

% hich makcs the functional analysis morc complicated and increascs the level of parenthesis. Both of these

deviccs are included for the sake of completeness.

A billet has been found in the rack and it has been moved to the furnace (18)

3x (Billet (x) A Found (x,Rack) A Moved (x.FYtmace)) (19)

(And (Found Billett Rack) (Moved Billetl Furnace)) (20)

(And (Found (Closest Billet) Rack) (Moved (Closest Billet) Furnace)) (21)

Plural nouns are filling in for universal quantifiers and their linguistic machinery. And now, numerals have
been added to singular terms to mark that variables with the same numeral refer to the same object.

Unfortunately, the thought of using these two ideas together is somewhat repugnant. There is nothing natural
about saying either 'Billetsl' or 'Billctls.' In fact this leads us to realize that the plurals do not indicate a

general notion of universal quantification because thcrc is no notion of a variable. The analysis in (12-14) is

still correct but it fails when it is extended to a compound clause, because the variables are not really
represented at all. The sentence (22) is not represented equivalently by (23) and (24). Equation (23) correctly

asserts that the same billet has been moved to the furnace and has been heated. While equation (24) asserts

that all of the billets have been moved and heated without regard to their individual identity. The named
nouns operate as an existential quantifier and its variables. Steps must be taken to assure that these
mechanisms can be used to fill in for the uriversal form.

The billets have been moved to the furnace and they were heated. (22)

Vx (Billets (x) - Moved (x.Furnace) A Heated (x)) (23)

(And (Moved Billets Furnace) (Heated Billets)) (24)

3.4. Adjectives and Adverbs
Adjectives and adverbs can also be used as functions, however, in practice they are used sparingly. An

adjective takes as its argument a single noun and it returns as a result a single noun. Similarly an adverb takes
as its argument a single verb and it returns a single verb. The effect of executing either an adjective or an

adverb is to modify the target function's definition in the database. This finction's modification is only active
within the scope of the rule which initiated it. Before the action clause (25) can be executed, the adverb

'Quickly' and the adjective 'Hot' must be evaluated and the updated function names returned (26). The

details of what happens in the database are reserved for the next section.

((Quickly Move) (Ilot Billet) Swage) (25)

(Move-quickly Billet-hot Swage) (26)

11

3.5. Rounding Out The Language with An Adverb
One lIst problem remains: completing the power of the language with respect to the first order predicate

calculus. It is well known that universal and existential quantifiers can be freely inter-translated. For example-
(27) and (28) are equivalent sentences. It has already been determined that the universal quantificr is only

partially represented and so it becomes necessary to fully utilize the power of the existential mechanisms. The
'Not.' introduced earlier, only operates outside of the quantifier's scope. Therefore. another form of 'Not'
must be introduced to modify a function's meaning within tie quantifier's scope. A 'Not' used as an adverb
fills this obligation and completes the translation between (29) and (30). and completes the language with
respect to the first order predicate calculus.

Vx (Billet(x) -- Moved(x,Furnace)) (27)

-3x (Billet(x) A "'Moved(xFum'ace)) (28)

(Moved Billets Furnace) (29)

(Not ((Not Moved) Billetl Furnace)) (30)

3.6. The Language Tightrope
The appeal for using linguistic tricks in a formal language is very seductive and even begins to take on airs

of being trivial and obvious. It is neither. The problem of completing the language illustrates how the
objective is a tightrope of peril. One slip to the left and the language slips into mountains of ambiguity that is
inherent to natural language, and one slip to the right and the language loses its expre.ive power. However,
die advantages of crossing the tightrope seem to outweigh the perils.

4. Where the Numbers Belong
Numbers have names just like people have names. These names are called num rals when they look like

'3.' But there is nothing special about these particular names other than their conventional use and their one
to one correspondence with their distant cousins, the numbers. Other names for the numbers might be
Furnace-temperature, Age and Four-bytes. These names don't have to be used ini context but it would be

confusing if Four-bytes refcrre d to the number '3.' In addition to referring to numbers, these names can refer
to arbitrary sets of values, numeric or otherwise. For example, a set of values to represent the furnace
temperature is shown in Figure 4-1. Fortunately, we can talk about 'Furnace Temperature' without speaking

directly of '(2200,2300,2258,3,177506).'

The values that are needed to describe the low level details of action oriented tasks arc stored in relational
tables. These tables are accessed and manipulated with a relational algebra and the result of these
manipulations is always another table. The rows and columns of the tables all have symbolic names that

correspond with the words in a rule set When a rule is executed it triggers a set of relational operations that
make the appropriate changes in the database. 1'he relational operators make up a majority of the database
management system. Suppose the following clause was executed.

(Adjust Furnace Temperature Idle)

12

Furnace Min Max Current Line # Add ress

Temperature 2200 2300 2258 3 177506

Temperature Min Max

Steel 2200 2300
Titanium 2350 2400
Idle 1000 1100

Figure 4-: Two relational tables that describe details of the furnace.

This clause would update the minimum and maximum furnace temperature by selecting the 'Idle' row in
the :ablc 'Temperature' and overwriting the appropriate slots in the table 'Furnace': they are determined by
the row ('Temperature') and column ('Mn' and 'Max') names. The result of these operations is shown in
Figure 4-2.

Furnace Mi Max Current Line# Address

Temperature 1000 1100 2258 3 177506

Figure 4-2: The resulting table after database operations.

Database updates trigger consistency checks that verify the correctness of related information. Simply, the
minimum and maximum furnace temperatures are directly related with the current temperature by a
procedure's definition. If the current temperature remains within the bounds then nothing happens, but if it
lies outside of the bounds a message is constructed which is sent to the furnace driver. The furnace driver in
turn packages the message in the appropriate protocol and sends it off to the furnace controller. The fumace
controller receives the request and adjusts the level of electiric current to the heating elements which directly
changes the furnace temperature. Currently, the data relations are built into the system but research is
actively underway to generate them automatically [Bourne 801.

Names appear in the text of a program: they talk about numbers and other objects held in a database. This
separation of descriptive machinery is a powerful linguistic device which is used both by people in natural
contexts (i.e.. 'Do what I mean and not what I say.') and logicians in formal contexts (i.e., logic vs. model
theory). Traditionally computer languages mix syntactic and semantic mechanisms and this lack of separation
fosters confusion (e.g., error dctection in compiling theory).

13

5. The Runtime System and The Separation of Power
Ihc runtime system is stratified into three layers and is shown in Figure 5-1. The top layer interprets the

rules and is responsible for pl, nnhg what actions should be undertaken to accomplish the system's goals. The
core of the system is a dynamic database that reflects the state of the task and its constituent machinery. The
integrity of the database is maintained by its management system. In effect. the database management system
is directly responsible for inaintaining a consistent and up to date model of the task. Often. the state of the
task degrades independently from any actions within the scope of control. For example, consider the task of
taking a shower and maintaining the temperature of the water. Without touching the hot and cold water
knobs, the temperature can change drastically due to the thoughtless behavior of an occupant in the adjacent
bathroom. The maintenance of the water temperature is the direct responsibility of the database management
system which prepares a request to turn down the hot water. Finally, the bottom layer is responsible for
communicating with the external task functions. That is, it sends the commands to the water valve controller
in the appropriate format.

Language
interpreter Rules

Database
Management

Device T Device
Driver 0 Driver

t Internal Functions

External Functions

S Device Device.

Controller . . . Controller

Device . . . Device

Figure 5-1: Three layers of control internal to the supervisor: top to bottom

The following two rules show how this could be accomplished. Rule-i can be executed repeatedly after the

14

showcr paraphernalia is in place. If the water is not the right temperature then the database management
sxstem builds a request that is passed along to the hot water valvc driver. The driver packages the message
into the appropriate protocol and sends it out to the controller with direct access to the valvc actuator. Once
the water is warm. RuIe-2 can be executed. Again, the advantage of a non-procedural languagc is illustrated
by the fact that Rule-1 may be executed whenever the temperature of the water is unsatisfactory.

(And (Moved Soap ToShower) {(Adjust Water Warm)} Rule-1

(Moved Shampoo ToShower))

(Adjusted Water Warm) - {(Get InShoiser)} Rule-2

A simple graphic's example shows how a model of an airplane can be animated under the control of a
joystick. Of course, the datapoints that define the airplane are kept in the database. This example also shows
how an adverb can be used to define the new plane position 'Relatively' to its current position.

(Moved Joystick) - {(Erase Plane) Rule-3
((Rclatihcly Nlove).Plane Joystick)
(Draw Planc)}

Rule-4 and Rule-5 demonstrates how a clamp can be loaded when its precise position is not known in
advance. The move to roClamp' is initiated in Rule-4. Now the active tense of'Move' is true in Rule-5 and
so the rules internal to it are accessible. When a strain gauge mounted on the robot wrist has encountered a
significant load, the internal rule becomes true and its consequent stops the robot from moving further. At
this point the entire context of Rule-5 is left and Rule-6 is ripe for execution.

(Gripped Billetl) - (Move Robot ToClamp) Rule-4

(Moving Robot ToClamp) -- {(Strained Gauge) - (Stop Robot)} Rule-5

(Moved Robot ToClamp) - (Release Billet) Rule-6

Rule sets can be invoked by using one of the few built-in keywords. 'Perform' is a function which activates
a rule set such as 'Preventive Maintenance' in Rule-7. Other forms of the verb are also legal. 'Performed' and
'Performing' and are useful for controlling recursive rule sets and for testing whether a rule set is active.

(Not (Performing Manufacturing)) - (Perform Preventive Maintenance) Rule-7

{Preventive Maintenance

(Fouled Robot Filter) -. (Schedule Maintenance Robot Filter) Rule-8

(Drifted Robot Positions) - (Calibrate Robot Servos)) Rule-9

i5

6. Pretty Printing
Aftcr a set of rules has becn written, it is straightforward to pretly prinm the programs as English text. By

removing the parenthescs and adding the appropriatc syntactic. sugar to the clauses, very readable text can be
generated. It can then be firther improved by applying a few simple syntactic transformations which
compress redundant text into single compound clauses. For example the two shower rules (Rule-1 and
Rule-2) can be pretty printed as the following pair of sentences. 'When' is used to flag the consequent part of
die rules. Helper verbs have been added to the verbs and prepositions and articles have been added to the
nouns. Programs are not written in this form because it would illusi%'elv appear as if any English sentence
could be interpreted correctly: they are not natural sentences but rather sentences in a very simple formal
grammar.

When the soap and the shampoo have been moved to the shower

adjust the water to be warm.

NNhen the water has been adjusted to be warm

get in the shower.

Pretty printing simple rules is a matter of printing isolated sentences. This becomes much more difficult
when there are active terms, nested rules and named objects. All of these constructions require intersentential
relationships. For example. a nested rule like Rule-5 could easily become prohibitively complex. Therefore,
the phrase 'consider the following case(s)' stands for the right hand side of the rule and the nested rules can be
translated in the standard way.

'While the robot is moving to the clamp

consider the following case.

When the gauge has been strained

stop the robot.

Named rule sets are convenient logical segments that can be used to break up text into sections. For
example, the rules Rule-8 and Rule-9 make up a program that can be paraphrased as a text segment with its
own title.

16

When the cell is not performing manufacturing tasks

it is time to perform preventive maintenance checks.

PREAENTIVE MAINTENANCE -

Preventive maintenance checks are defined as the following conditional operations.

When the robot's filter has fouled

schedule maintenance for changing it.

When the robot positions have drifted

calibrate the robot servos.

Natural language undcrstanding (e.g.. English understanding) may not progress to the point where it is
practical to communicate with machines for many years. However, there is no reason why our programs can't
be read in English today. The whole programming industry has developed into a write only society. When
was the last time you took home a program just to read? it may turn out that a new generation of
programmers that read may be more thoughtful about what programs they write.

7. Some Notes On Implementation
There are two pressing goals in this implementation: readability and exccution speed. Task oriented

descriptions are specialized for human consumption and are translated into a form that is appropriate for fast
execution speeds.

Task descriptions are developed on a VAX 11/780 and compiled into machine readable symbolic
expressions which are then downloaded to a DEC PDP 11/23. The compiler and runtime system are written
in OMSI PASCAL and many low level Lisp-like primitives make up their basic programming tools. The
result are PASCAL programs that read more like LISP than PASCAL.

The Database is also developed on a VAX and it is also compiled into a machine readable memory
structure. The English words which are defined by the database are input to the rule's compiler so that they
can be replaced by machine pointers before they arc passed along to the 11/23.

Finally, the task descriptions are being used to control a complex manufacturing cell in a Westinghouse
factory [Wright 82]. The cell manufactures turbine blade pre-forms from cylindrical bar stock using nine
machine tools, a supervisory computer and ten machine controllers.

8. Summary
An application program has two basic parts. A set of relational tables that describe the physical system and

a set of rules that update its state. This separation of power simplifies both the management of information
that is needed to model a physical system and the description of its task. The numhers and other details that
can make a program so difficult to read are not present in the final task description. Ibis simplification

17

togecther with a language that utilizcs familiar linguistic devices results in a program which is readable to the
uninitiated.

It is usually time consuming to gathcr together this database of facts but its structure is very simple and
automated tools have been nuilt to further aid in the database's construction. Once the database has been
built, writing the necessary rules is fairly easy. Many of the details can be left out of the description and the
description that is necessary parallels the information that would have to be given to an human apprentice.
'Under these conditiong, perform those actions.' Finally, a novice programmer can look at an existing set of
rules and understand the primitive words since they are based on English. ie can then mimic the syntactic
forms and write new rules to extend the functionality of his application program. Not only can a novice
programmer update the rule set, but now his boss can read his pretty printed work without having to learn
an. thing about programming. This unlocks the door to the intelligence of a whole group of bright people
who ha~e never been trained as programmers and yet can make valuable contributions to the logic of
programs. For the first time programs are readable.

9. Future Interests
This project has a wealth of future paths which are being actively pursued. The programs in this language

are extremely easy to construct because of its simple syntax. However, a valid criticism is that the available
functions and arguments must be known to the programmer at the time of writing. Therefore, this burden
should be removed from the programmer by giving him access to the database while his program is being
written. For example, the programmer should be able to make the following request during a session with the
editor.

Show me all of the functions and arguments related to robots.

This request would result in a list of robot functions (e.g., Move, Grip and Emergency Stop) and their

parameters.

The day to day operation of a manufacturing cell is a problem not usually considered as part of
CAD/CAM. However, many of the techniques employed in production should be found useful in product
development (CAD) and process development (CAM). An expert system should be able to generate a family
of designs that satisfy a set of user design constraints. The resulting shapes and knowledge of machining
technologies should produce a series of part programs capable of producing the final product. This process
can be viewed as a series of language translations: product constraints to part geometries to machine tool
operations to the final production of parts. Concise languages that help describe each phase of development
will make the final translation from design constraints to production a tractable problem. 'his research and
others like it are just the beginning.

10. Acknowledgment
I would like to thank my student Paul Fussell for helping me sound out many of these ideas and Peter

Angeline for prgramming support. In addition. I would like to thank Paul Wright and the members of
Westinghouse Turbine Components Plant for providing the moral and monetary support neeaed to complete
a project of this magnitude.

18

References

[Ardayfio 821 Ardayfio. D. 1). and Pottinger, H. J.
On The Computer Control of Robotic Manipulators.
In G. D. Gupta (cditor), Computer In Engineering 1982, pages 59-64. ASME, August, 1982.

[Automatix 81] Automatix.
R A IL Reference Manual.
Automatix Inc., Burlington MA 01803, (617)-273-4340, 1981.

[Bourne 801 Bourne, D.A.
On Automatically Generating Programs for Real Time Computer Vision.
Proceedings of the 5th International Conference onPattern Recognition 1:759-764,

December, 1980.

[Bourne 82a] Bourne, D.A. and Fussell, P.S.
Designing Languages for Programming Manufacturing Cells.
In Proceedings of Electro/82. IEEE, Boston. MA, May, 1982.

(Bourne 82b] Bourne, D. A. and Mashburn, H.
Cell Programming: A User's Guide.
Technical Report. Robotic's Institute, Carnegie Mellon University, 1982.

[Forgy 791 Forgy, C. L
On The Efficient Implementation of Production Systems.
PhD thesis. Carnegie-Mellon University, February, 1979.

[Franklin 82] Franklin, J. W. and Vanderbrug, G. J.
Programming Vision and Robotics Systems with RAIL.
In Robots VI, pages 392-406. Robotics International of SME, March, 1982.

[Grossman 82a] Grossman, D. D.
Robotics Software At IBM.
In G. D. Gupta (editor), Computer In Engineering 1982, pages 73-75. ASME, August, 1982.

(Grossman 82b] Grossman, D. D.
Decade of Automation Research at IBM.
In Robots VI, pages 535-543. Robotics International of SME, March, 1982.

[Lieberman 77] Lieberman, L. I. and Wesley. M. A.
AUTOPASS: An Automatic Programming System for Computer Controlled Mechanical

Assembly.
IBM Journal of Research and Development 21(4):321-333, July, 1977.

(Lozano-Perez 791
Lozano-Perez, T.
A Language for Automatic Mechanical Assembly.
In Patrick H. Winston. Richard. H. Brown (editor), Artificial Intelligence An MIT

Perspective, pages 245-271. le MIT Press, Cambridge, MA, 1979.

19

[NtOnra-gue 741 Montague, R.
Foral Phiilosophy: The Selected Papers of Richard Montague.
Yale University Press. Ncw Haven, 1974.

[Mvujtaba 791 Mujtaba, S. and Goldman, R.
AL User's .Ilanual.
Technical Rcport Memo AIM-323, Stanford University. January, 1979.

[Mujcaba 82] Mujtaba, M. S.. Goldman, R. and Binford, T.
The AL Robot Programming Language.
In G. D. Gupta (editor). Computer In Engineering 1982, pages 77-86. ASME, August. 1982.

[Paul 77] Paul. R. P.
"WAVE: A Model-Based Language for Manipulator Control,".
The Industrial Robot 4(l): 10-17, March, 1977.

[Paul 81] Paul, R..P.
Robot Mlanipulators: Waihemnatic_- Programming and Control
The MIT Press. Cambridge MA, 1981.

[Popplestone 781 Popplestone, R.J.. Ambler, A.P. and Bellos, I.
RAPT: A Language for Describing Assemblies.
The Industrial Robot 13:i3 14137, September, 1978.

[Quine 591 Quine, W. V. 0.
Mfethods of/Logic
Holt. Rinehart and Winston. New York, 1959.

[SIGGRAPH 791 SIGGRAPH Standard's Committee.
A Quarterly Report of SIGGRAPH-ACM.
SIGGRAPH 13(3):759-764, August, 1979.

[Unimate 801 Unimnate.
User's Guide to VAL: A Robot Programming and Control System.
Unimation Robotics, Danbury, Cl' 06810 (203)-744-1800, 1980.

[Waterman 781 Waterman. D.A. and Hayes-Roth, F.
An Overview of Pattern -Directcd Inference Systems.
In Waterman, D.A. and Hayes-Roth. F. (editor). Pattern- Directed Inference Systems, pages

3-22. Academic Press. New York, 1978.

[Winograd 71] Winograd, T.
An A.!. Ipproach to English Mforphemic Analysis.
Memo 241. Artificial Intelligence Laboratory, M.I.T., February, 1971.

[Wright 821 Wright, P.K., Bourne. D.A., Colycr, J.P., Schatz, G.C. and Isasi, J.A.E.
A Flexible Manufacturing Cell for Swaging.
In Manufacturing Cells and Their Subs 'ystems. 14th CIRP International Seminar on

Manufacturing Systems. Trondhecim, Norway. June, 1982.

