
AD-A126 363 RAPIDBUS ARCHITECTURE
AND REALIZATION(U)

/

CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST
JWILLIS ET AL. NOV 82 CMU-RI-TR-82-13

UNLSIID NFES9283FG92 N

E~~hhhENDE~E

I~1.0 3
2.0

$.8

1,ggg- 1-

Ct~twxegie-Mellon University

RAPIDbus

Architecture and Realization

John C. Willis
Q Dr. Arthur C. Sanderson

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

C-2 THEE,a; ROBOT ICS
CMU-RI-TR-82-1 3 INSTITUTE

SECURITY CLASS 1' ')4 -. Is O z)., 2. w

REPORT DOCUmENTATION PAGE REAL) ;sT.UCT: -PEOPF C' "''.ATTN', f-" '
1. RCPO UIT NU - 1 32. GOV I ACCESS0- NO. J. I ENTs CATA. 2.,,. -.MaI' t: -TR-82- 13

4. TITLE (and S.1bille) S. TYPE OF REPORT & PERIOD COiEREO

RAP I lDbus Interim
Archi fecture and Ral izat iol

6. PERFOR14ING ORG. REPORT NUMBER

7. AUT.OR(s) I. CONTRACT OR GRANT NUMaFR(s)

Jolhn C. Wi Illis NSF ECS-7923893
Dr. Arthur C. Sandorson

9. PERFORMING ORGoANIZATION NAME AND ADDRESS 10. PROZRAM ELEMENT, TPRCJEZ:. TAI<

Carnegie-Mellon University AREA 8 WORK UNIT NUM ERS

The Robotics Institute
Pittsburgh, PA. 15213

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTRpATEw~oemb er 1982

Office of Naval Research
Arlidgton, VA 22217 13. NUMBER OF PAGES

82
14. MONITORING AGE-NCY NAME & AGDRESS(II dIfferont from ConiroIlinj Olhc.) 15. SFCURITY CLASS. (.1 this repo- 2i

UNCLASSIFIED

13a. OECLASSIFICATIONS DOWNGRADtIh,

SCHEDULE

16. ")ISTRI8UTION STATEMENT (ol this Report)

17. DISTRIBUTION STATEMENT (o the abtract entered in Block 20, It dlfferent from Report)

Approved for public release; distribution unlimited

10. SUPPLEMENTARY NOTES

I9. KEY WOROS (Continue an re re ..t a. it nec.esar and Identitf by block n.)

20. ABSTRACT (Continue on reverse side It necesery nd id.nllty by block nr.:.-ber)

DD , 1473 toITioN CF I NOV 65 IS OBSOLETE UNCLASSIFIED
S/N 0102-014-8601 I

I9CURITY CLA3SIFICATION Of TmIS PAGE (*ho Del.)

RAPIDbus

Architecture and Realization

Abstract

RAPIDbus: Architecture and Realization describes a synchronous multiprocessor designcd io -upport sensory
processing, image understanding, and control applications. Up to eight board level masters interact with up
to eight sla~es along a time-multiplexed implementation of a crossbar switch. Two implernentations are
considered, one based on an Advanced Shottky logic with a bus bandwidth of.16 Mh, and a Vcrsabus host
interface. The second implementation. based on an ECL/T'TL gate array, perrm1s an estimated t&4 Mhz of bus
bandwidth and a Versabus/\Multibus host interface. Segmented inemor, management, a nulucat capability
between one master and multiple destinations, and a standardized host interface aid in making RAPIDbus an
appropriate architecture for robotic applications.

John C. Willis
Dr. krthur C. Sanderson
The Robotics Institute

Carnegie-Mellon University
Pittsburgh. Pennsylvania 15213

November 1982

/ r c ,

This research was support by the National Science Foundation under grant number ECS-7923893.

RAPIDbus: Architecture and Realization i

Table of Contents

1. Overview of RAPIDbus Specification 2

1.1 What is RAPIDbus? 2
1.2 System Elements 6

2. Summary of Versabus Specifications 8

2.1 Why the Versabus? 8
2.2 Versabus Protocol Summary 9

2.2.1 Data Transfer 9
2.2.2. Bus Arbitration 10
2.2.3 Interrupt Handling 11

2.3 Versabus System Modifications 12

3. RAPiObus Data Transfer Protocols 13

3.1 The Window Structure 13
3.2 Functional Modules 14
3.3 Reading and Writing on the Bus 18

3.3.1 Read Operations 18
3.3.2 Write 19

3.4 Multicast Capability 20
3.5 Definition of Signal Lines for Data Transfer 23

3.5.! Time-multiplexcd Signal Lines 23
3.5.2 Non-Multiplexed Bus Signals 25

4. The Address System 28

4.1 Address Translation 28
4.1.1 Partitioning of Memory 28
4.1.2 Functional Description 30
4.1.3 Internal Register Manipulation 30
4.1.4 System Performance Considerations 35

4.2 Interface Control Register 36
4.2.1 Interface Control Register Upper Byte 37
4.2.2 Interface Control Register Lower Byte 39

4.3 RAPIDbus Physical Memory Map 41

5. The Priority Interrupt System 53

5.1 Interrupt System Objectives 53
5.2 Functional Modules 53
5.3 Interni~t Service Protocol 54

6. Ibus Arbitration and Control 57

6.1 Use of the Ibus and Virtual Buses 57
6.2 Master Ibus Access 58
6.3 Memory Access 62
6.4 Multicast Access 63
6.5 Interrupt Vector 64
6.6 Ibus Operation Summary 66

7. System Support 67

RAPIDbus: Architecture and Realization ii

7.1 System Timing 67
7.1.1 The Master Clock 67
7.1.2'The Window Address System 69
7.1.3 The Host Clocks 70

7.2 Control Lines 71
7.2,1 ACCLK 71
7.2.2 Reset 71
7.2.3 Test Configuration Lines 72
7.2.4 ACFAIL 72

7.3 I/0 Interface 72
7.3.11I/0 Bus 73
7.3.2 Serial Access 74

8. Where Next? 77

1. Connector CP1 Signals 78

11. Connector CP2 Signals 80

RAP! Dbus: Architecture and Realiiation iii

List of Figures

Figure 1-1: The interconnection scheme for a multiprocessor system can have a heavy effect on 2
system efficiency.

Figure 1-2: Common bus architectures trade off simple hardware for increased bus contention in a 3
multiprocessor system.

Figure 1-3: Multiport Memory requires a unique link between each processor and one or more 3
system memory arrays.

Figure 1-4: Crossbar switching permits multiple connections between processor and memory to be 4
made randomly and simultaneously, but requires complex hardware.

Figure 1-5: A time multiplexed common bus structure allows multiple simultaneous random paths 4
with a switching circuit that grows in :,witch bandwidth and not N4 switch complexity as
does a crossbar switch.

Figure 1-6: A Rapidbus system is composed of many independent elements. 7
Figure 3-1: The virtual bus system is implemented using bus windows to link several masters and 14

several slaves simultaneously
Figure 3-!: Each RAPIDbus interface card is composed of multiple modules, centered around the 15

[bus.
Figure 3-3: Several multicast address generators are needed to create the full address range 21

required for a memory access. A single module is shown here. This illustration is
adapted from Advanced Micro Devices aaca sheet on the AMD 294015

Figure 4-1: The MC6845] memory nanagement unit supports address translation and memory 29
protection.

Figure 4-2: The address space tables links the incoming function code and memory map bit from 31
the control register with the cycle address space number

Figure 4-3: The 32 descriptor arrays each define a translation process. The system registers select 32
the descriptor array that is to be used during this data transfer cycle16.

Figure 4-4: Each processor sees the memory management unit registers assigned to that unit in the. 33
16same address locations .

Figure 4-5: Continuation of the memory management unit address map16 34
Figure 4-6: The descriptor pointer se!ects the descriptor array that is used in a load descriptor 35

operation, read segment status, and the write segment status operation 16

Figure 4-7: The Global Status Reiister summarizes the faults that have occurred and the interrupt 36
levels - .aje enabled 6

Figure 4-8: The Local Status Register indicates the status of write* when a fault occurs, the 37
consistency of the descriptors, and an indication of the. highest priority interrupt
pending

1 6

Figure 4-9: The segment status register is selected through the Descriptor Pointer register indirectly 38
16

Figure 4-10: The interrupt descriptor pointer indicates which descriptor array was in use when an 38
16interrupt was generated

Figure 4-11: The Result Descriptor Pointer identifies the descriptor involved in a write violation, 39
load descriptor failure, or direct translation success

Figure 4-12: Interface control register low byte 40
Figure 4-13: Interface control register high byte 41
Figure 4-14: Lower RAM supervisor space 42
Figure 4-15: User RAM and upper supervisor space 43
Figure 4-16: Upper RAM supervisor space, ROM. and Timers 44
Figure 4-17: Versamodule registers, and master interface control page 45

RAPII)bus: Architecture and Realization iv

Figure 4-18: Master interface control page 46
Figure 4-19: Master interface con.rol page [MM U] 47
Figure 4-20: Slave #1 and Sltve #2 interface control pages 48
Figure 4-21: Slave #3 and Slave #4 interface control page 49
Figure 4-22: Slave #5 and Slave #6 interface control page 50
Figure 4-23: Slave #7 and Slave #8 interface control page 51
Figure 4-24: 1/0 and RAPIDbus address space 52
Figure 6-1: A data transfer becgins with a master access. 59
Figure 6-2: Control page references are used to modify the RAPIDbus interface configuration or 61

that of the memory management unit assigned to the processor's virtual bus.
Figure 6-3: The memory reference access to the host allows host processors to examine and modify 62

memory locations on the host
Figure 6-4: T'he multicast reference to this host allows multiple locations to be written into 64

simultaneously
Figure 6-5: The interrupt handler cycle allows the interrupting Versabus host to tell the interrupt 65

handler which service routine to choose to service the interrupt.
Figure 7-1: All synchronous system timing is derived from a single time base 67
Figure 7-2: An eight processor system requires either a high bandwidth backplane or a low 69

frequency processor clock
Figure 7-3: A four processor system can reasonably be implemented in Ad".anced Schottky 'L to 70

support eight MHz processor clocks
Figure 7-4: The front panel processor simplifies interactions with multiple processors. 75

RAPllDbus: Architecture and Realization

The concept of a Rotary Access. Parallel Implementing, Digital bus (RAPIDbus) was first proposed as an
ECI. machine by Zoccoli and Sanderson [1]. Bracho [2] suggested the creation of a I11 machine making use
of a time-multiplexed Versabus convention. The adaptation of the Versabus convention as the host interface
makes a'ailable a wide variety of commercial processors, memory systems, and peripheral processors.

This specification defines an architecture and realization of a RAPIDbus system based on a series of virtual
Versabuses. Motorola has described the Versabus architecture [3] in a rigorously defined specification. Thus
it is the primary intent of this document to describe the RAPIDbus as an interconnect system for a series of
host ports obeying the Versabus convention. Beyond assuming the Versabus conNention at the host ports.
characteristics of the Versabus hosts such as the presence ofa processor and memory mapped to the host port
must be known in the configuration of the interface card. Thus tremendous flexibility is made available in the
actual processors and resources that RAPIDbus supports.

Pro ,pcctive users of the RAPIDbus prototype system at Carnegie-Mellon will find sections of this
document to be relevant in evaluating the suitability and formulating use of the machine for their
applications. Those interested in exploring the different interconnection schemes a~ailable for multiple
pairings of processors and system resources may find the time-multiplexed switching used here to be relexant
to the realization of other architectures.

T,;o companion reports are in preparation. The first describes an implementadon of the RAPIDbus
architecture in \dvanced Shottk ' logic, supporting four 8 MHz processors. The Shottky report includes
circuit diagrams and a detailed discussion of one possible implementation schema. A performance analysis of
tha Advanced Shotrky implementation and its impact on d higher performance ECL logic version of the
RAPIDbus architecture is briefly proposed in the second report. Initial review suggests the ECL version.
based nn T'L/ECL gate arrays, would be capable of supporting eight processors running at clock speeds
approiching 16 MHz. ibis second version may also allow interfacing Multibus cards at the host interface
level along with Versabus hosts.

Credit for this project is due to a great many people who have contributed heavily. Dr. Arthur Sanderson
and Mario Zoccoli first proposed a time-multiplexed backplane. Rafael Bracho suggested the use of a
Versabus interface to the host and the use of Advanced Shottky as an implementation technology. Dario
Giuse heavily supported the graphics and computer aided design system (Drawing Package) [4]. Construction
support for the advanced Shottky implementation is being provided by the Computer Science Engineering
Laboratory at Carnegie- Mellon University. and Dave Coleman. This research was made possible in part by a
grant from the National Science Foundation number ECS-7923893.

RAPIDbus: Architecture and Realization

1. Overview of RAPIDbus Specification

1.1 What is RAPIDbus?

RAPIDbus is a multiprocessor architecture aimed at effectively supporting signal processing, task
integration. displax, and control algorithms in a real time research environment. Such applications are
characterized by a high bandwidth of interprocessor communications. As the size of a system increases, the
bandwidth a\ailable to connect processors and memory can become a s5stem bottleneck, reducing .he rate at
which additional system resources increase system throughput. For a multiprocessor system with several

processors and a Nariety of system resources, thc interconnection scheme can be an important parameter in

determining the efficiency with which multiple processors communicate.

IMemory A

Memory B Multiple Path
interconnect System Needed

Memory C

SMemory D "

Processo- Processor Pocessor Prcessor

1 1 2 Er 3 4

Figure l-1: The interconnection scheme for a multiprocessor system
can have a heavy effect on system efficiency.

Many current minicomputer systems make use of a common bus architecture such as the Multibus, Qbus.
and Versabus protocols. Most common bus multiprocessor architectures resolve bus contention by assigning

the bus to one processor-memory pair for the duration of the memory access cycle. Other processors needing
the bus are required to wait until the existing request is serviced before obtaining bus mastership. Bus
intensive applications can be subjected to a heavy performance penalty due to bus contention.

Both crossbar switching and multiport memory configurations reduce contention, but at an increase in the

complexity level and a decrease in the expandability. Crossbar switching dedicates a switch for each signal
line and each combination of processor and memory. Systems such as C.mmp have shown that up to sixteen
processors and sixteen memory arrays can be connected reliably in this way, but the hardware cost and
complexity is non-trivial, increasing by the fourth power as new processors are added 151, 161.

Multiporting provides several ports to one array of memory, depending on logic internal to the multiport
memory to arbitrate between requests. making their service seem simultaneous. A unique link between each

R..AP!bUs: Architecturc and Realization 3

SMemory A

MemorSMemory C

SMemory D]--

Processor Processor Processor Processor

1 2 3 4

Bus Bus Bus Bus Bus Bus Bus Bus
Request grant Request grant Request graet Requent grant

Bus Arbiter

Figure 1-2: Common bus architectures trade off simple hardware
for increased bus contcntion in a multiprocessor system.

Inter-Processor Communications Bus

Processor Processor Processor Processor
Local Local Local Local
Memory Memory Memory Memory

Port I Port 2 Port 3 Port 4

Multiport Memory

Figure 1-3: Multiport Memory requires a unique link between
each processor and one or more system memory arrays.

processor-memory pairing is required, leading to considerable interconnect complexity, and a lack of easy
expandability. The DEC MA-780, connecting up to four V AX 780's together is one example of a successfully
executed multiport memory system [7).

RAPIDbus attempts to remove common bus contention by time-multiplexing the common bus, achieving

II I I I II I.... ,r l' I l: -- r " 2r '
ll

--x

R.\PIiDhus: Architecture and RcIization 4

Memory A

Memo ry 8

Memo ry C 7 1 j../,. .

Meor D

Processor Processor Processor Processor

1 2 3 4

Figure 1-4: Crossbar switching permits multiple connections between
proccssor and memory to be made randomly and simultaneously, but

requires complex hardware.

we flexbili' for mult:ple paths of the crossbar switch at a potential reduction in the hardwa. .,exity. A
Sof high spced driners and latches attached to each RAPIDbus interface port provide a set or virtual buses,

one for each processor. A time-multiplexed bus structure implements an increasing number of concurrent
paths not by increasing the size of the switching mechanism, but by increasing the speed at which the latches
and drivers multiplex. permitting more time slots per processor clock cycle.

Memory A }Virtual Bus connections
as required.

(example shown)

Memory C

Memo ry D [

Procssor Processor Processor Processor

E 2 3 4

Figure 1-5: A time multiplexed common bus structure allows
multiple simultaneous random paths with a switching

circuit that grows in switch bandwidth and not
N 4 switch complexity as does a crossbar switch.

R.\PII~bus:. .rchitec-tare and Realization 5

Ihe R.\PIlbus architecture assigns a time-periodic s% rn1d0% on the bus iu each process or. designated bs a
window address. [-s ery time its windoA LcycS around, each master intrfac card ha-, [he opportunit% to
drie the ph\ssical I.\PlD11us backplane. Comparators mnd latches on each of the sLtsesscain the address and
control lines. waitino to latch in a reference to their rcsourccs. \ lien a slave interilac e ccrfll/C5 at reference.
it is presented to the sIlie host. often a meimorr card. On subsequent occurrences of die master's wkindow. theI sis es response is dlris en onto the RAP! Dbus by the slas e interf'ace caird and Latched in 11v the master
interface card initiating the request. termrnatnne .% ah the successful transmission of' a su]Lle data ssord or a
transfier ibort.

As defined in this specitication, RAPII~bus; pros ide,. a set kof % irtual buses for \ersabUS con% cntron host
cards. memrnar manacment. mulucast :,tpabilian., and interrupt handling. The interface sersecs to s~nchrornze
and rtme-mnultiplex the vs \nchiron,,US \ers.IbUS protocol. A\ \ ariety of software config-urations are possible.
simulainc ii ftirent IrktCroction schemies for reseajrchi esaluation. \lemor- managemrent is pros ided by
the R.\PII~hus inter:h.ce as an option tor %\rsibus pcocessor cards; \%irhout memoix management. A
multicast, CarabIillt\ ll~ one processor at a time to send data ords into Mu~ltiple SStem memory locations
through pres iousk precpared mulucaist address registers (,n each receiving card. Interrupt handling capability
allow s any piCessor' 10 be inter-rupted and an interrupt sctor to be requested explaining the reason for the
interrupt on thle interrupt handler's sirtuai bus.

Some Versabus hosts: A ith orocessors 1iare _nte samne catrd ind Vorsabu\, port ss idi memors that is mapped
onto 01, s\qtem bus. Arbitration mui~i occur ~o iit a CiS en host r.-ecnihis either a "processor or a

'memor-, for a single data transfer :vcbe_. i~vus when d-ie inemnor on a pro:cssor card is being accessed, the
process or does not havec iccess ito 31_S hi'ua bs and must aJit unti the memory access is completed. T1his
conflict is a result of the shiarin2 of a \crsatbus port hv bouh systiem merno , and a prccss;or. In certain
applications separate processors and svstem mnemrory cards rnas increase ,,,stern thiroug-hput.

Cornmerciall\ implem-ented examples oi"the bus windowx structure include the 11-F 1240 diclital swVitch for
telephone s~iaching IS]. 191 and the lDigital Equipment Corporition bus %4indo's adapter for the PDP-11 1101.
The [IT' digital switch is intended to link between uip to 100.000 lines using a hierarchica' Liructure. Sixty
lines are controlled by a dedicated microprocessor kwhich supports -inging. superN ision, and digital encoding
for each line. Each microprocessor communicates through a terminal interface across one or more switching
planes to complete the required path between lines. 'he switching planes are each implemented using a bus
\oindo\, circuit similar to that emnpltr~d by RAP!L~bus. The digital ssv itch supports lovser b.andwidth links
than that Intended for RAPIDhus. bomseser a larger number of bus masters are accommodated as a result.
The DEC LNIBUS sindow adapter. the DAVE-. was mnarkected by DEC in the early 70's asan option for the
l'lP-11 to link tsso processors. It allowed a windlow of up to 3'2k \&ords to be mapped fromn the address space
of one processor to that of another processor. It appeared as a master on the target L*NI BUS and a slas e on
the originatig UNIBL S. A series of DAI -F adapters allowed comnmunication among several processors
(101. T he UN!BIJS window adapter differs from RAPIDbus primarily in that the RAPIDbus interface goes
between host and bus, the DAI1-F linked among pairs of buses.

As a research project it is hoped that RAPIDhus will expand our understanding of processor-memory
interconnection dsynamics. As a research tool RAPIDbus offers an interesting support medium for high
bandwidth interprocessor communication applications in rohotics and signal processing applications.

R.\Pll)hus: Architecture and Real/ation

1.2 System Elements

The RAPIDhts architecture allows considerable flexibilitv the modules that are chosen to form a s.stcm.
,uch as that illustrated in figure 1-6. A minimal system has least two processors. tAa) memory, sections.
interface cards to support the processors and memory, a master clock controller card. and a backplane. A
s, stem ma' ha~e up to eight processors, depending on the implementation, an equal number of penpherals.
and RAll1)hus interface cards for all processors and peripherals. The ad~anta'cs of the RAPIDbus 'irtual
buses are ncreasinzl. evident in terms of reduced common bus contention up to the implementation limit on
the number of processors.

Versabus processor/memory hosts contain a processor capable of executing an instructian stream and a
memory space Ahich is accessible from the Versabus port. These cards can act as both masters. originating
memory ret'erences, and as slaves, acting as the target of memory references b ether processors. T-he use of
the Versabus convention for the parallel port between the processor and the rest of the sstem rostricts the
card to ac. as either a master or a slave to the rest of the RAPIDbus while a single data transfer ,peration is in
progress. Proce2.-,or/mmory cards may support a local parallel 1/O bus.

Versabus processor-only hosts incorporate a master capability. They must take data in ind cutput data
using processor read and write operations. Like the processor/ memory cards, the procossor-onl cards may
support a local I/O bus.

A memory or 1/O host can only function as a slave, completing data transfer operatio7-s that were initiated
by a system master. This class of host may include memory cards, displa. cards. or controllers for off-line
storage.

The interface cards are created in a mother-daughter board configuration. acting as adapters between the
asynchronous, low speed Versabus port. where the master/slave host is connected. and the tme-multiplexed.
high speed RAPIDbus backplane at the RAPIDbus port. Each processor/memory. processor only, or
memory only host requires an interface card.

The master clock controller card generates the window addresses, host clocks, and master latch clock. It
also acts as the interface wth the front panel for utility lines such as the reset and system test lines. Unlike the
processor/memory, processo: only, and memory only cards, which can have multiple occurrences in a system,
the master clock controller only occurs once per system. It is plugged directly into the RAPIDbus backplane
in a specially prepared SIOL

The interface cards and the master clock controller card plug directly into a backplane. supplying the
physical RAPIDbus signal interconnect paths, power, and optionally I/O connections to the outside world.
The enclosure is high enough to enclose the host/interface card pairs, supplies implementation dependent
cooling, and a proper electo-magnetic environment.

A front panel processor takes the variety of serial lines coming from the processor/memory and processor
only cards and channels them into a single terminal connection, and a single connection to communicate with
an external computer or computer network. This front end processor supplies a user interface, providing
serial line multiplexing and an operator/machine interface.

RAI Dbus: Architecture ,and Rcaliation 7

Slave Host #4

FSlave Host #3 (Memory)

Master Host #3

F Master Host #2 [

, Slave Host #1 (Memory)

VFre ahu s systcm i s

~RS 232

RAPI~bus

Rsm o c s t t fs Convention

Terfae ah Front Panel
thyPsprocessor d

External
Host

z
Computer

Figure 1-6: A Rapidbus system is composed of many independent elements.

Considerable flexibility is thus provided to support a variety of high speed signal processing tasks. The
system hosts can be selected to fit the required application requirements with minimal configuration changes
of the accompanying interface. -1he front panel processor provides a filtration of user messages from each of
the system processors, and serves to route messages from the operator to the appropriate processorls).

R.\Plflbs: ,\rchitecrure and Realization

2. Summary of Versabus Specifications

2.1 Why the Versabus?

The RAPIDbus architecture is intended to explore the capabi!ir, of a time-mulkiplexed common bus to
support complex multiproc:essor applications. Fhe adAptauon of an e,,hlibhed comention to connect
processors and memory ailo s concentration of effort to tall on the time-MIultilexed bus design. Choosing a
processor and memory bus ,onention wnich supports mult'processor fntcraction Aithout the RAPIDbus
interface simplifies the task of evaluating the improvement in ':stenm throughput due to the time-multiplexing
and other support functions pro-, ided by the R \PlDbus architecture. Potential applications such as machine
vision require the manipulation of several data objects of half a megabyte or more, leading to a need for at
least se'eral megabytes of irtual address space. llhe anticipated multiprocessor sstem should support high
speed data transfers between modules that may ,v,; in their time to complete a transfer, leading to a need for
an asynchronous system. Reliability requirements in a large system point to a need for at least board level
fault localization. Ihese considerations led Bracho o propose the use of Motorola's Versabus as the host
interface protocal for a RAPIDbus architecture [2!. Motorola has developed Versabus Aith many of the
system constraints that are required to support the RAPIDbus architeczture.

The \'ersabus is a common bus architecture wqhich suports multiple processors through a system of bus
arbitration where one oroccssur is granted the use o," the bus at a time (3]. The protocol is asynchronous.
accommodating a varietv of bus responses. , large data path (up to 32 bits) and address space (up to 32 bits)
accommodate considerable capability. Malfunction control helps to localize system faiiures to the board level.
Relativel.v large cards provide considerable complexity on each host. Versabus offers a direct memory access
capability which became the basis for the RAPlDbt, s multicasting. An additional bonus in the research
environment is the clear differentiation betwecn user and supervisor that accompanies each data transfer.
Such differentiation allows some protection of tie systcm from errant application code.

The choice of the Versabus host convention is not without drawbacks. The ability to dual port memory to
both the Versabus port and an on-board piocessor led to the possibility of a deadlock in which two processor
cards were each trying to access the memor, on ,he other's card simultaneously. Since each processor then
occupies it's own virtual bus. the two processors can present their memory requests on their respective buses
simultaneously, but be prevented from completing the link through the other processor's Versabus port to the
target memory by the second processor's pending request. Thus simultaneous requests for each other's local
memory could result in both processors taking a timeout and trapping to a costd bus error routine.

Several solutions exist for this deadlock situation. One could provide separate Versabus ports for processor
and processor memory while maintaining a local interconnect. Alternatel. the processor hosts could be
modified so as to remove their data transfer requests from the Versabus port while the on-board memory was
accessed by another master, later completing the aborted transfer. The architects of C.mmp have explored a
similar problem. resolving their deadlock situation by going from a circuit switching interconnect- where at
one time a path exists from processor to slave, to a packet switching s. stem where the data request is stored in
intermediate buffers and does not own the whole virtual link at the same time [51. Since such host
requirements would not be required on a common bus architecture, requiring these features on our host
would remove virtually all established common bus from considcration.

RAPII)bus: Architecture and Realiiation 9

Two solutions are proposed to circumvent the problem Aithin the Versabus comention. Routing all
communication between processors through an intermediate memori card removes the possibilit. of
deadlock, although it does increase the data transfer time by tie difference between a local and a RAPIDbus
access. To decrease the possibility of trapping to a bus error routine as a result of a timeout, an additional line
had to be imposed on the \ ersabus conxention which allowed the Versabus port to request that the processor
retr the instruction. When this line is asserted low in addition to bus error, the processor terminates the
existing data transfer request and then generates a new data transfer. When the processor on the host card is a
68000 architecture, connection to the HALT pin accomplishes this function. Ius the interface can be set to
timeout betfre the host does, causing the instruction to be retried after a dela.y unique to each interface. l'he
interface should optionally limit the number of retries that occur before trapping to a bus error routine.
Unfortunately a read-modify -write cannot be retried, and with the 68000 architecture a retry request for a
r-m-w instruction leads to a bus error trap. Thus the RAPIDbus architecture can be implemented within the
Versabus framework if all semaphore locations used by a read-modit-\ rite msuructior are mapped onto
memory only hosts.

A less serious problem with the Versabus is its current relatie lack of popularity. In contrast to
architectures such as S100. Qbus. and Multibus. only a handful of manutacturers are committed to building
Versabus cards. This situation is expected to impro.e. partially as a result of a ormalization of Versabus by
an IEEE committee. Cards are also commercially a\aiiable [111 t use Iultibus :"rds .n a Versahus system.

Use of the Versabus as a host processor interface thus appcars to be an appropriatc ,hoice, resulting in
limitations that can be dealt with, and allowing concentration of de,in effort on die bus 'itelf and not on the
hosts that will utiliie the virtual bus structure. Other experiment.al mUl.piocessor architecture ha-,e gone the
route of heailv modifier processor and memory cards. expending considerable design e'lirt on the s.stem
resources 16]. \ersabus architecture objecuies assure that mn:m. of the prowisions required oy a true
multiprocessor will be supported on a Versabus host A ithout custom design effort.

2.2 Versabus Protocol Summary

The Versabus specification was first proposed b \otorola in 1981 and was implemented on several board
level products shortly afterward [3], [12]. [131. This section is intended to familiarize the reader with the most
salient features of the \"ersabus specification. For a critical statement of the Versabus architecture the reader
is referred to Motorola document \I68KVBS and the report of the lFFF subcommittee. Numerous options
are provided by the Versabus specification. It is the intent of the RAPll)bus specificauin to proide proper
virtual bus paths to support these options \hen axaiiable at the host level Aithout irmiung or compulsory
specification.

2.2.1 Data Transfer

The Versabus architecture is based on data transfer operations occurring between a master that initiates a
data transfer and a slave that supports the data transfer. Although a Versabus may have several boards
capable of becoming the bus master, only one card can support a bus data transfer operation at a time. A
master card at the base of the system daisy chains is configured as system master, supplying arbitration of bus
mastership between competing masters and generating system resources such as the system clock.

RAPII bus: Architccuire and Realization 10

Once a master has gained ownership of the Versabus, making use of the bus arbiLration scheme, and after
the data acknowledge and bus error signals from the previous cycle hae been deasserted. the as nchronous
data transfer operation begins. The master places the address and address modifiers on the address lines, and
in the case of a write, places the data to be written on the data lines. Then the control lines. address, and data
strobes appropriate to the transfer operation are asserted.

A slave recognizes the address and selects the appropriate device. 'he status of the write line is not
examined until after atleast one of the data strobes has been asserted. The address is examined (,lone with
the address modifiers) for parity errors if address parity checking is implemented in the partcular system. A
read cau.es the addresseJ location's contents to be placed on the data bus, and the data acknowledge line is
asserted. A write operation causes the contents of the data bus, as supplied by the bus master, to be written
into the address previously selected. The completion of this storage is signaled by the assertion of data
acknowAledge. If an address parity or a data parity error is detected. then the board %hich detected th(error
pulls thc bus error line and traps to a handler routine. A correct transter %ill cause the master to respond to
the slave's data acknowiedge by removing the address strobe, signaling the completion of the data transfer
operation. The slave remoxes data acknowledge and the other lines that it was driving. The master may
either return the control of the bus to the bus arbiter, releasing the lines that it was driving, or proceed With a
data transfer as it chooses (and is directed by the arbiter).

If no memor, location responds to the address placed on the bus then the master can be configured to
timeot and generate a bus errer. Different length data transfers can be accomplished. Ihtes can be
ranstci rea 'b,. using the lower data strobe (LDS*) or the upper data strobe (UDS*). Words can be transferred
by using both of the data strobes. In a system that supports the full 32 bit data path, the longword signal line
can be driven to indicate that a longword cycle or four bytes are being transferred.

2.2.2 Bus Arbitration

In order to support several potential bus masters on a single common bus, an arbitration system must take
requests from one of more masters desiring to use the bus and designate a unique master for each data
transfer cycle via the bus grant lines. The arbitration function is invested in the system controller in the
Versabus system. This system controller is always located at the lowest slot number occupied in the Versabus
system, at the head of the daisy chains.

The arbiter on the system controller monitors the five prioritized open collector request lines (BR4 through
BRO where BR4 is the highest priority). It can convey bus grant authorizations along five bus grant daisy
chains that begin at backplane slot #I and chain through to the end of the backplane (BG41N through
BGO1N, and l3G4OUT through BGOOUT). A master who has received authorization to use the bus must
drive the bus busy line to indicate that the bus is in use. The bus clear line is used by the arbiter to inform the
current bus master that a higher priority request is pending and that the master should release the bus as soon
as possible. [he bus release line is the highest priority request for use of the bus, driven by the emergency
requester in the result of a power failure. The bus release line takes precedence over even priority 4 requests
in order to execute an orderly shutdown in the event of a power failure.

If the bus is not in use when a request for use of the bus appears at the arbiter, then the arbiter sends a bus
grant down the bus grnt daisy chain at the level requested. The grant is not passed along to the next card in

RAPlDbus: Architecture and Realization 11

the sequence until the receiving card has verified that it does not have a bus request pending at this level.
When the first of what may be several cards that have requested the bus at this level is reached, the receiving
card terminates the dais. chain and drives bus busy to indicate that the Versabus is in use. Depending on the
requester options that are in fbrce on the current master, the master may release the bus at the end of a single
data transfer, at the end of a block move, or wait until the bus clear or bus release line indicates that the
master should release the bus.

If multiple priority le\el requests are received at the same time at the arbiter, the bus grant signal is sent
down the daisy chain of the highest priority requester. If a request is received at a higher priority after the
grant has been issued, then the bus clear signa! is generated by the arbiter. L.ower priorit. signals are ignored
until the current bus master releases the bus and no higher level interrupts are pending.

2.2.3 Interrupt Handling

The priority interrupt system in the Vers:ibus convemtion is composed of cards that can generate Versabus
interrupts at one of seven levels and processor cards tht service these interrunts. Bus interrupts are generally

distinct from interrupts that are generated on-board a host card and serv iced by the processor or oder handler
on the same card. Versabus interrupt are a way ot getting the attention of processors and requesting that they
respond in a umei, fashion to the needs of the interrupter.

The seven priont- lesels of interrupts can be divided among one or more interrupt handlers such that each
handlers ser ices a continuous range of interrupt levels. In a seven processor system each processor might
service a distinct interrupt level. In a sysem ;% it as few as two processors, one processor may handle all of
the interrupts (all though this may not be the most efficient assignment of interrupt handlers). The
pnontization of interrupt levels only occurs when more than one interrupt is generated to a handler
simultaneously: then the highest level interrupt is serviced first.

With as few as one interrupt level assigned to an interrupt handler, little information can be conveyed
about the action needed from the interrupt handler. Thus the interrupter must provide an interrupt vector,
on the interrupt handler's request, indicating the action that the interrupt handler should take in the service
routine.

In response to an interrupt, the interrupt handler must request Versabus mastership from the arbiter as
previously described. When mastership is granted the handler places the level of the interrupt being
generated on the lowest three address lines, leaving the others high. The handler drives the address modifier
lines with a code that indicates that an interrupt handler cycle is in progress. These are followed by the
assertion of interrupt acknowledge out (ACKOUT) by the interrupt handler along the interrupt acknowledge
daisy chain. Each interface card in turn passes the acknowledge along to the next interface unless it has
generated an interrupt at the level that is being handled.

When an interface card that has generated the level interrupt being handled receives the interrupt

acknowledge then it refrains from passing the acknowledge along to the next interface card. Receipt of the
interrupt acknowledge at the level at which the interrupter generated the interrupt causes the interrupter to
place an interrupt vector on the lower 8 data lines of the bus and drive data acknowledge low. The vector is
left on the the data lines until address strobe is revoked by the handler, terminating the interrupt handler

RAPIDbus: Architecture and Realization 12

cycle. The returned vector points into an entry on the interrupt vector handler table in the lowest 256
locations in the interrupt handler's memory space. The location in the interrupt ector table directs the
handler to a routine which will service the interrupter appropriately.

2.3 Versabus System Modifications

Use of the Versabus architecture in a RAPIDbus system forces fike modifications, two to the hosts, and
three to the backplane.

In order to minimize the time required for a data transfer operation the phase of the clock used by the host
can be optimized such that with high probability the data transfer request and required control signals will
arrive at the driver section just before the master's window is to be sent. "Dis requires that the host be capable
of or modified to run on the system clock, where the system clock runs at the processor clcck speed instead of
the 16 MHz clock specified in the Versabus specification and is shifted in phase as ind!icated by the interface
window address.

A retry line was added to the Versabus port at P2: 100. When this line is asserted low pnor to and
remaining after the assertion of bus error, then the current data transfer is aborted (address strobe goes high),
and the transfer is retried. The retry line must be asserted for at least a processor clock ccle after bus error
has been remo'.ed. In the 6800 architecture this function is -.ccomplished b. tying :he reint line on the
Versabus fingers of the host card to the open collector halt line on the processor. Other processors will
generally require other procedures to implement retry.

The Versabus backplane. when adapted for use by RAPIDbus must be modified so that the ACKOUT of
the highest number card ("lowest priority" in the Versabus system) is tied to the ACKIN of the lowest
number card, creating a circular interrupt acknowledge daisy chain.

Cabling must be added to the standard Versabus backplane to accomodate a star fanout of the clock lines
from the iaster clock controller card to each of the interface cards. Connections must also be made to the
RS232 serial port connections on the outside of the machine.

R.\PI)bus: \rchitccturc and Realizaton 13

3. RAPIDbus Data Transfer Protocols

3.1 The Window Structure

A primary goal of the RAPIDbus architecture is to take adxantage of the differential between the
banduidth required by a processor to run a data transfer operation across the s. stem bus to another Versabus
resource, and the total bandwidth capabl- ot propagating down the sbsten backplane. B.x time-rmultiplexing
the backplane each Versabus port capable of initiating a data transfer (master) is assigned a virtual bus. Each
master appears to have an unoccupied link from the RAIDbus port on its interface card to the RAPIDbus
port on all other system resource cards. Versabus master hosts which share the host card with memory
mapped into the system address space may have to arbitrate use of their Versabus port and local Ibus with
other :n,-sters accessing the master's memory. The outgoing master may also have to contend with other
s.stem masters for use of the Versabus port and lbus belonging to system resources.

Tihe \:rtual buses connecting the RAPIDbus port on each interface card are implemented using bus
windows: Lme slots on the RAPIDbus allocated to a particular RAPIDbus interface card which supports a
mascr Vrsabus host. Each interface which supports a master is sequentially given a window% during which
the master interface may send a data transfer request to one or more slaves, and/or receive a response from an
a!read activa..ed slave. At least two windows are required to complete a data transfer, and often many more.
it t'z J, resp,'rnshilit,, of the RAPIDbus port to interface between the tirne-mui.iplexed RAPIDbus windows
,ha: a;c ocrunent to the task that the given interface is engaged in and the time-static lbus that is seen by the
',ersabus port.

The number of master Versabus hosts that can be allocated virtual buses, with the accompanying assigned
,kindo k is dependent on the bandwidth wNhich each master demands and the minimum %indow duration that
the impterrcntation can support. In order to increase the number of virtual buses that are ,vaiiable to the
s.x.tem. he "irtual link can be updated on every other host clock cycle with minimal performance degradaton
in processors such as the 68000, as is done in this architecture.

As a result of the overhead inherent in supporting multiple processors, for many of the applications that
RAPIbus is targeted, higher system throughput can be achieved by choosing a microprocessor with the
maximal processor throughput, accommodating fewer processors into the system as a result. An alternate
approc;ch supporting more numerous, slower processors on a bus with an increased access time is ZMOB.
ZMOB, at the Universty Maryland, supports 256 Z80 processors on a conveyor-belt like bus, trading slower
access for brute size [141.

The discussion of the window address system within the support systems section proposes that
implementations which are most appropriate for the 68000 architecture will allow either four or eight
processors. Assuming the same processor clock speed in both cases, the eight processor version assumes that
the RAPIDbus interfaces and the backplane will deliver twice the usable bandwidth of the four processor
version. 'The timing of the processor clacks with respect to the virtual bus windows is illustrated in figure
3-1 where the shaded area indicates the time at which the master and slave RAPIDbus ports onto the Ibus are
physically linked.

A .variety of signal lines are required to implement data transfer operations, some of which are time-

RAPlI)bus: Architecture and Reilization 14

Latch Clock

WidwAddress
ontheRAPI bus 1 2 4 5 6 72 3 4 5 6 7 0 1

Processor #0

Processor #.I

Processor #3 -U

Processor #4

Processor #5

Processor #6

Processor #7

Shading indicates that the processor Time

drives the RAPIDbus.

Figure 3-1: The 'irtual bus system is implemented using bus
windows to link several masters and several

sla\es simultaneously

multiplexed and sent on bus windows. Data and acidress lines are examples of lines sent on bus windows,
having different values on each of the virtual buses. Other lines are time-static and are identical for all virtual
buses. The interrupt lines are an example of time-static lines, interrupting a processor handling a given level
independent of the virtual bus that the interrupt handler is assigned to.

3.2 Functional Modules

Each RAPIDbus interface card is composed of a series of functional blocks. This compartmentalization of
function is intended to improve the readability of a design, simplify debugging, and identify functions that
lend themselves to packaging integration. hllie interface is composed of a window handler, drivers, latches, an
address translation unit. a multicast address generator. a parity check section. a chip select section, a timing
generator. an interrupt control section. and an interface controller. The Ihus links the Versabus port on the
top of each interface card with the RAPIDbus port at the bottom. It comprises the address translation section.

R.\PI)bus: Architecture and Realization 15

the drivers, and the latches. llie Versabus port. the RAPIDbus port. the multicast address generators, the
parity section. and the chip select section drive or monitor the Ibus. The modules that compose the
R.\PlDbus interface card are illustrated in figure 3-2.

VERSABUS PORT

All I u

Control Sections

Unit ---

Memory Mul ticast
I Management Buffer Address

L Unit L Generator

L--!---

Interrupt

Select

L -1

RAPIDBUS PORT

Figure 3-2: Each RAPIDbus interface card is composed of multiple
modules, centered around the Ibus.

R \PI)bus: Architecture and Realization 16

The heart of the time multiplexing of the bus is the isindoi handler. The window handler pertorms three
functions. First it scans fbr either the interface home window address or the window address of a master for

which this interface is serving as a slave, as determined by the owner of the lbus. Through the control register
the interface can be configured so as to recognize only one window address for slave accesses. The proper
phase of the interface host clock is selected by the window handler and supplied to the host so as to maximize
the probability that the host will make a bus request which will reach the driNers just before the master
window on the RAPl[Dbus appears. Each interface port off the RAPIDbus backplane is given a unique
interface window identification. This unique identification provides the window address of the interface
when acting as a master, creates a unique timeout interval for each interface to reduce deadlock, and for the
case of an interface serving only a slaxe host, it uniquely maps the interface control page of the slave interface
into the RAPIDbus physical address space.

The driver section is used to gate the physical address lines, strobes, parity, write, bus error, retry, data
ackno,,wledge, and address modifier lines onto the RAPIDbus during a window as directed by the control
seQuencer. When the control sequencer does not indicate that this interface is to drive a gixen backplane line
in the curren, window, the lines are to be deasserted. Line drive is to commence as soon as the appropriate
%% indow is recognized and last until the next window is recognized.

'i lie latch section holds data at two levels. The first latches all time-multiplexed RAPIDbus lines at the end
of c'r, RAPIDbus c,':lc. During the following RAPIDbus cycle, these latched lines are examined for a slave
reieren,-e to tlis interface card. If the Ibus is not being requested or in use. and a slaxc reference to this
:.terf'ac, is detected, then the contents of the first level latch are held by the second level latch. I'he latch also
holds the bus window if the lbus is already allocated to the virtual bus currently sending the bus window at
he iirst level latch. Under the direction of the control section, lines can be selectively gated onto the lbus

according the current lbus master.

Data transfer exchanges must always be initiated by a master. and each master interface may optionally
hae a address translation unit positioned between the host processor and the RAPIDbus drivers. The
function if the address translation unit is to map A8 - A23 to ph'. sical addresses PA8 - PA23. In any interface
that incomorates a address translation process unit. the translation must be capable of being circumvented by
clearing bit three in the control register so as to map the Versabus address directly to the RAPIDbus drivers.
The address and data strobes must be delayed until the physical address is valid and rescinded when the
physical address is no longer valid. The lower seven address lines. Al - A7 are supplied directly to the driver
section without translation. Bit 7ero of the control register switches between primary and secondary memory
maps in interfaces that support memory management. Clearing bit zero accesses the primary memory map,
setting bit zero directs the following references for translation by the secondary memory map in the memory
management unit.

The multicast address generator is required for all interface cards that must function as a slave during a
multicast data transfer cycle. The master desiring to multicast must set the multicast request bit in his control
register, asking the processor host's interface to try for ownership of the multicast capability. Bit twelve of the
interface control register is asserted low by the interface to indicate that the multicast capability has been
secured by this interface. Prior to multicast transfers the multicast address generator registers of all interfaces
that are to be multicasted into must be loaded with the base address and the number of words that are to be
multicasted. For interface cards which support master and slave functional hosts, the master occupying the
Versabus port must be asked to initialize his muitlcast address generator since the MAG registers for a master

R.\PI Dbus: Architecture and Realiz.ation 17

interface only appeai in that master host's memory map. For slave-only interface hosts, such as a memory
card, the MAG registers are mapped into the RAPIDbus physical address space. Following write instructons
to the multicast reference address will be multicast to each multicast actiated slave card until a slave's word
count is exhausted or the master stops writing to the multicast address. Fach activated slave depends on its
mulucast address generator to supply the memory address and maintain the count or words still to be
transferred. The MAG address counter is not incremented and the word count not decremented if BRETRY
is asserted bx any interface being multicast into before the broadcast data acknowledge has gone high.

The parity section generates and checks parity during master and slave data transfer operations. When the
interface is acting as a master, the interface parity section generates the physical address parity. If the
interface is a master doing a write, then the interface generates the appropriate data parity, if the data transfer
is a read, then the incoming data parity is check against that transmitted with the data. If the master is
multicasting,. then the data parity is generated and ,ent along with the data. If the interface is acting as a slake
handhng a memory request or internpt \ector :cquest, then the paritN of the address lines is compared with
that generated at the slaxe board. If the sia'e request is a rea)d then the paritN of the data being read is
generated and sent along with the data. For a slave being wrtten into. the parity of the incoming data is
checked %%ith that generated by the slave interface. During a memory reference or interrupt handler
transaction a mismatch In address or data parity causes the slave to send retry back to the master. For a
multicast slase reference the parity of the data is generated by the slave and compared \kith that generated
and sent done, with the data e,: the ,nulicasting master. If the multicast data panty and the slave generated
parity don t match. hen broadcast retr. s; asserted. rernning the mnulucast cycle.

The chip select section serxes to direct references b, the interface host to the interface control page or
RAPI)bus resournc.i. After address translaton is completed. the pn.sical address is compared to the control
page address. If the master reference is not to the control page. then the reference is directed to the
RAPII)bus drivers. [fthe reference is decoded for the interface control page. then further decoding identifies
the reference as a MULieaSL multicast control, interface control register, Or memory management unit
reference. selecting the appropriate de ice or in the case of the mulucast. the interface RAPIDbus multicast
server.

The timing generation section controls the timing of the interface state sequencing. This section generates
the multicast and regular address strobes when the respective address lines are ready for the RAPIDbus
drivers, and generates decode enables and DTACK for the interface mapped resources.

The interrupt control section supports interrupt generation and interrupt handler vector requesting. This
section presents to the Versabus port on the interfacc only those interrupts that the interface host is strapped
to uniquely handle. At one of these levels the interface MMU, if present. is strapped to interrupt. The
interface host is able to generate any one of the seven levels of RAP[Dbus interrupts. Fhe interrupt level

being ge arated by the host is binary encoded so that the latch section can recognize the level of interrupt
being generated by this interface and latch in the interrupt handler request for a vector which will in turn
identify the reason for the interrupt to the interrupt handler. The interrupt controller also recognizes when

the interface host is acting as an interrupt handler, blocking the interrupt handler request from driving the
RAPIDbus until the interface that would like to act as an interrupt handler is driving the interrupt block line.
After the interrupt block line is being driven by this interface, the acknowledge out for the interrupt daisy
chain is delayed by a clock cycle and then supplied to the interrupt acknowledge daisy chain. If the interrupt
acknowledge input is received by an interface and an interrupt handler bus sequence has not been received at

RAPIl)bus: Architecture and Realization 18

the level generated b% this interface, then the interrupt acknowledge output is drimen low. If the interrupt
acknowledge input is received along the daisy chain and the interrupt handler request has been rccci ed, then
de interface host has it Versabus ACKiN driven low. The interrupt control section is also responsible for
monitoring the RAPIDbus reset line and driving the interface and host reset lines low if the RAPIDbus reset
line is asserted.

[he control section knits together the other function blocks and controls the logical state of the interface.
l'he owner'ship of the Ibus is decided by the control section. The interf,,ce host bus error, retr,, data
acknowledge, and halt is generated by this section. The RAPIDbIs timeout tim,er and retm limit counter are
supplied by the control section. The control section contains the control register which allows dynamic
configuration of the interfacc parameters such as the masking address, the address trans!"tion path. and the
auxillar memor, map. Control signals which gate the drivers onto the RAP1Dbus. RAPI)bus signals from
the first to second latch levels, and the output enables that gate the second level laich onto tne Ibus are
controlled here.

3.3 Reading and Writing on the Bus

Read and write operations are the primary transfer operations for inputting ow outputting data for further
processing. storage, or display. Both opcrations are similar in their use of the R.\PlDbus virtual hs structure,
differine primarilh in the directional configuration of the data lines linking maszer and slaje. and in the
handling of the data transfer request by the slave memory system.

3.3.1 Read Operations

Read operations are initiated by an instruction fetch or memory reference within an instruction that is
executed by a \ersabus host processor. The read operation invoies the RAPIDbus if the address received bN
the Versabus controller on the Versabus host card is interpreted by the conuoller as being within the
RAPIDbus.address space, or the master's interface control page, or the control page of a RAPIDbus slave. If
the Versabus controller on the host card has not already obtained mastership of the RAPIDbus interface card
lbus. then the Versabus controller generates a bus request level one to the interftce card. Some Versabus
processor cards support a block move option in which bit five of the Versamodule control register is set to
initiate a block transfer, holding onto mastership of the interface Ibus until bit five is cleared.

After the Versabus port has gained mastership of the Ibus. and the DTACK. bus error, and retry signals
haxe gone high on the lbus from previous data transfer operations, then the Versabus port drives the address.
address modifier. address strobe, write. longword, and data strobe lines. As soon as the address strobe is
asserted jow the address translation chapter of the RAPIDbus interface card begins translation of the upper
address lines A8 through A23. If bit three of the interface control register is cleared, then the Versabus port
virtual address is mapped directly into the RAPIDbus physical address. If bit three of the interface control
register is set then the address is translated by the memorY management unit. For information on the
translation function performed by the memory management unit. see the section on address translation.
When the address translation process is completed, the physical address strobe is asserted. The physical data

strobes are also enabled for assertion by the Versabus port.

R.\lPl0ui .\rchitectur and Realiiation 19

Fhe ph\ical address is then mapped b, the select unit either onto the inierlace control page to access
control paige registers, or to the RAPII)bus ,ircual bus assigned to this proce-sor. If the retcrence is mapped
to the processor's interface control page then the lo\ker bits of address are deodcd to select the interface
control page device. If at least one of the data strobes ha\e not been asserted b,, this time. the intertace waits
until one is asserted. When the first data strobe is asserted b the \ ersahus p, rt. the % rite line should still be
high. indicating a read operation. The selected control page de% ice then dccodes the remining address bits to
sclect the reuiired internal register. When the control page des ice has .KcceNcd thec reqnne niernal recister
the contents are gated onto t.he)bus data lines as selected b. the dala ,tmbes and the lom:%Aord control line.
[he data acknov, leUQe signal is returned to the processor 0% the intertlce control secuon,. lhe processor
responds b\ latching in the requested data and removing the address strobe. [Ihe interface then removes the
data ac!,, i edce and releases the data lines. If an interface register had been selected that could not be read
then a bus error returns to the processor is place of the data acknowled e termnitinc tAle transfer cycle. If
he transtei was part of a block mox e then the ILbus \,ould remain .t!'c.,,ed to the \ersabus port (unless
reyue'eJ' h% a higher pciorit. de\ ice, see the chapter on the [bus). Ii'the [bus were requested h% the read
instruction dectl the, it would be released by the Versabus port.

\ iTmewhat more complicated chain of events arises when the select unit maps the .Jdress to the
R.\PllIbus address space. The physical address is sent to the driier section. which eates the data transfer
request ,ntc the master'.,s virtu:l bus (implemented sia bus Aindows. see the chapter on the btis. ['e slase

x,,., han"le, the ad ires, pla''ed on the virtual bus by the uriier section mas be occupied 'A hen the request
tirst t p'ears. orcgn2 the read equiest to sit on the virtual bus throuh ,eiieal AiLndok c xces. A\,, soon as the
a' ,2 nt'rtace lecomes asai,2abic a link is forged between the \ersabus port ,of the master and the \ ersabus

port ser. inc, as a slav e for the duration of a single data transfer operation. If neither of t2he data strobes have
becn asserted the slave must continue to listen to the virtual bus w indo\s until at least one is asserted. If this
is a read operation then the write line will still be high. The memory location referenced bx the address is
.en ,atcd onto thc data lines of the sla\ e and sent to the sla\ es interface dris er section. The master's sirtual

.as "-11 \4 is .,cd to return Le data along with the data acknowledge line asserted b% the sla\e. [he master
interlace i mcnitoring the data lines on its virtual bus and catches the ind&, returning the data. signified by
the assertion of data acknowledge. The processor responds by remos ing the address strobe, causing the slave
to drive data acknowledge high and release itself from the master's virtual bus, If a parity error is generated
by a mismatch in the address or data lines a rerv is generated by the master or slave. terminating the data
transfer c cle. The slase can also assert bus error if an error is present in the request w hich cannot be resolved
b rerunning the data transfer cycle. Non- answering memory is handled by timing-out and retrying the
master s reauest.

3.3.2 Write

Write operations are executed in a manor similar to read operations. They are initiated by a memory
reference within an instruction that is executed by a Versabus host processor. Mapping of the address and
requesting of the Versabus port is analogous to that of a read operation.

On gaining mastership of the Ibus. and noting that DTACK. bus error. and retry have been revoked from
the previous Ibus data transfer the Versabus drives the address. address modifier, address strobe, write,
longw\ord. data strobe. and now the data lines. Address translation is accomplishcd as before %ith the
exception that a w, te to a write protected section of memory will result in a bus error to the host processor.

R.\P)bus: .\rchit cture ,i;d Rcih.ation 20

he select unit map,, the ph',cal .iddress either to the interface control page or to the R 1.\Pllhus address
space, and then \,aits for eithcr 1, z2ic datU strobes to he asserted. Before either ot the data strobes are asserted
the write line should hae _.,one low. indicating that a w*rite operation was in pro ress. If the address
references the interface control page then the required device is selected, follo,ed h the addressed register
internal to the dekice. An attempt :o write into a non-existent or write protected register Aill re,ult in a bus
error. Assuming the reference is cairectl mipped into an interface control page register then the data lines
are gated into the selected register and the int.rface generates a DTACK back to the Versabus port.
terminating the data transfer operation as before.

If the write operation is mapped to the interf'ce control page multicasting address then a RAPID'ous data
transfer to multiple RAPlDbus memory map iocations is initiated, supported bk the multicasting address
generators on all mulicasc enabled interface cards. For further details on the mulicast mode of data transfer.
see the follow ing section on muldcasting.

If the select ,unit maps the address into the R.\PlE, bus system address space. either to system memor
locations j. r the interface control page ora system slake. then the data transfer request is placed on the virtual
bus allocated to this master \ia the bus d-i'.crs on the masters inter;ace and the latch section on the intended
slake. he write operation is executed on the \irtLal bus similar tc the read. except that write is low, causing
the master to dnxe the data lines on he virtual bus. The slave returns the data acknowlede as soon as the
storage operation is completed. Parit. erors n the d;.ta or address will result in a retry request as before.
During a write operation the l:axe dris es DTACK. rer'.. and bus cr-or on the irtua bus.

3.4 Multicast Capability

Multucasting is a special kind of a write data transfer in which there are multiple destination addresses with
each address on a distinct Versabus host. Uinlike a standard write operation in \hich the address is supplied
h the processor doing the writing, the rnwlticast depends on addresses that are generated on the interface
cards that support each of thc host memory locations. These multicast address generators must be setup by
the processor desiring to multicast individually prior to the mulucast. Since each interface ony has a single
multicast address generator, and there is a single mulucast data acknowledge line that is shared by all virtual
buses, the multicast capabilit. must be allocated to one multicasting processor at a time even though the data
transfer is presented on the multicasting processor's virtual bus. The high setup o'erhead of a multicast
operation suggests that the multicast capability should only be used to transfer large blocks of memory to
multiple contiguous memory locations on other cards.

A processor desinng to multicast begins by requesting the system-wide multicast capability. This is
accomplished h\ setting bit 2 of the processor's interface control register. The interface then samples the
multicast block line at the beginning of each master home window. If the multicast block line indicates that
the capability is not in use at the beginning of the master's window, then the interface asserts the line and
becomes the new system multicast master. Bit 12 of the processor's interface control register is set by the
interface to indicae when the multicast capability is assigned to the requesting interface. The processor may
then begin to setup the multicast base address and word counter on the interface of each of the target
interface cards.

The procedure for initializing the base address and word count on each of the destination interface cards is

R.\PI Dbus: A\rchitectureQ ard Realization 21

complicated by the con figu ration of the prospcctix' Sla e Card. Inlitilization of the mulucasting control
recisters mTust be done hy a processor operating in the superNisor mode. If a de~tunation rnemnr segment
shares the host card w~h a processor then the destination interface card's multicast register.) arc only mapped
into the priiate address space of the processor thiac shares the card Aith the destination memory. Th'e
processor sharing the hos;t card with the destination memorx must be i nterrupted hyr the proce.ssor desiring to
multicast into the card and requested to initiali.'e the multicast address register,, as required. Thle situation is
Much simpler in the case of a destination memory card tha1t is Al~-n which is to sa dih destLination card
does not ha'e a processor on board. TIhese cards map ichir interlacc control pagv ointo the RA\PIf~us
physical address space, and thius the processor desiring to multicast onto the sliaN card can iitalize the
registers directly.

Address Word Count

LRegister Register

Multiplexer Multiplexer

c W reate t fulladdress ragereuretfraoemr
access AW sig module isson Cee oTiutrationte

isaaTd sfm dandMoDees daa ahe ta
Cmlthe MDO90N15

Each ~ ~ Fiue3-:Seea multicast address generator.shte apdot ivt are spaced oteR buades

space is composed of several identical components each as pictured in figure 3-3. In a system that supports a

R.\Pllhus: Architecture and Realization 22

24 bit address range, three such blocks are used. driving Al through A23 (longword. upper data strobe, and
lowver data strobe are supplied directly by the mulucasting processor during data transfer operations). A 32
bit address range requires four address generating blocks. Both address registers and word count registers can
he implemented with either a 24 or 32 bit range. [he most significant b.te of both registers is thus optional
depending on the option implemented. Writing to the top byte of either address or word count registers
should not produce an error in any implementation that does not support the extended capability. A read of
the top b.tEe in an implementation that does not support the extended range will produce zeros in the top
b.te. B1y writing to the addrcss charged with reinitialization, the last contents which were loaded into a section
can be resupphied to the address counter and word counter respectively. As long as the word counter is not
,ero a inulticast controller "ill continue to be "multicast actiNated". If the ph'. sical address region for which
the intcrface host responds is exceeded before the word count expires, then the multicast data acknowledge
will not he returned by the ia'.c host that exceeded its range, cauS2n a Eiricout b% the mulucasting processor.
leading in turn to a rem, and eventually a bus error. Any error experienced b.y a single mulucast address
generator mist cause all multicast address generators in operation not to increment to the next location or a
decremented Aord count.

W hen t11e ,r, ulticasting processor has seen to it that all required muiticast address registers and word
counter, are setup. it is free to multicast until the highest value word count counter is zeroed or until the
TrIulucas:mi master decides to stop multicasting, whichever is sooner. The processor initiates each data
MUlticast L.c by wriung to FT01A and/or F700111 depending on the length of the data to be transferred.

111C proC'ssr's Versabus port can be requested on a transfer b', transfer basis if incoming data is expected

,o system memory on the multiLasting processor's card dunng the transfer. A more efficient method of
impi-menting a multicast operation is to make a block transfer request through the host control register,
allocatinig he mulucasting processor's Versabus port to the processor until the port is released. When the
malticastiag prOcesCor has control over the Versabus port and the interface Ibus. the request proceeds
sinila-iv a) a standard write operation. The memory management unit can be used to translate a processor
supphed address into the RAPIDbus multicast address as desired. While in the select section of the
multicasting processor's interface the multicast address is trapped. The data, data strobe. parity, and address
modifier lines are driven onto the processor's virtual bus as before, but the address lines remain high on the
'irtual bus. The address strobe is supplemented by a multicast address strobe invoking address generators on
each muiticast activated card.

Each slave card is constantly monitoring the multicast address strobe line. Interfaces that are not multicast
enabled drive the multicast data acknowledge line high. Those that are multicast enabled, without an Ibus
owner. and without a pending request for the Ibus latch the virtual bus of the multicasting processor and
initiate a request for the Ibus. As soon as the lbus is requested and allocated to the mulucast data transfer the
data. address modifier, parity, and strobe lines are gated onto the lbus. Unlike a normal write operation the
address is supplied to the multicast address register on each destination interface. The DTACK. bus error,
and retry lines are not driven by each slave back to the processor but rather make use of special open collector
multicast control lines. If multicast retry or multicast bus error is asserted during the transfer, then all
destination interfaces involved in the mulucast freeze their address counters and word counters in preparation
for a retry of t',2 instruction or a bus error handler routine. The multicast activated interfaces drive the
multicast data acknowledge line high as soon as the interface host has completed the data transfer. When all
of the destination interfaces have driven the multicast data acknowledge high because they were not multicast
enabled or because they have finished the transfer, then the multicasting processor terminates the data

RAPII)hus: .\rchiteclu':c .inJ Realiiation 23

transfer. The multicast address strobe is revoked, causing each of the mulicast activatcd interfaces to rescind
the multicast data acknoledge. terminating the dat transfer. I tie mulicasting processor presents the
muticast address to the processor's interface to initiate another transfer until the highest \alue word count is
exhausted or the multicasting processor decides to end the multicast process. [he rMulticast capabilitV is then
released by clearing bit 2 of the interface control register.

he multicast capability, is a rapid merthod of transferring large data suctures 1o multiple contiguous
address locations on different host cards simultaneuMsl.. Since the abilit\ to alter mulucast registers requires
a processor operating in the supervisor mode, it is e'xpected that a utilliy routine will be envoked to mulucast.
making many of the initializauon details transparent to the applications program.

3.5 Definition of Signal Lines for Data Transfer

The signal lines used by the RAPIDbus protocol ar, based on time multiplexed and extended Versabus
signal lines. RAPIDbus signal lines can he broken up into two major groups, those that are ime-sliced so that
each processor is the sole owner of them at a given instant in time. and those lines which c.;n be drien and/or
monitored by multiple interfaces simultaneously. Most of the RAPIDbus lines, paralleling the Versabus
convention, are carried active low.

3.5.1 Time-multiplexed Signal Lines

ACIiIN* (P1: 95) is the imot to this interface card from the next lower valued location on the RAPIDbus
backplane interrupt acknowledge daisy chain. This line indicates that the previous card nas passed the
interrupt acknowledge daisy chain on. alowing this interface the option of responding to the interrupt
handler if the interface has generated an interrupt at the same level that is being ser\iced by the interrupt
handler.

ACKOUT* (PI: 96) is the output of this interface card going to the next higher valued socket location on
the RAPIDbus backplane. This line is driven low if there is no interrupt handler request pending at the
RAPIDbus port and ACKIN* to this interface from the RAPIDbus is driven low. The line is driven high
when INT.RTN* is asserted on the bus Unlike the Versabus convention. ACKOUT* of the highest
numbered location in the system connects with ACKIN* of the lowest numbered location to create a circular
interrupt acknowledge daisy chain.

The address modifier lines* (PI: 59. 60. 63, 83-86, 94) provide additional information about the addressing.
The processor function code is inverted and carried in the least three significant bits of the seven address
modifier lines. This function code creates address spaces for supervisor program. supernisor data, user
program, and user data. The address modifier lines* are driven during windows in parallel with the address
lines, except during a mulicast reference, when the address modifier but not address lines are transmitted
along the virtual bus from master to the slaves. An interface may optionally make latching of a memory
request conditional on a particular function code. For further information on address modifier codes, see the
Versabus specification table 2.1.

The AP\RITYO* line (PI: 33) is always sent along with the address lines on the bus, It provides even
panty for address bits A01*-A23*, WORD*, and AMO*-AM7*.

R.API)hus: Architecture and Realization 24

fhe APARrTi l* line (P2: 88) is only dinen when the extended address lines option is supported,
providing even parity for A24*- A31*. When the extended addressing option is supported, then the
APARITYI 5 is always sent along with the address lines on the virtual bus.

The .As* line (P1: 30) is used to indicate that a valid address is present in the window for which it is driven.
It is acceptable for a valid address to be driven without As* being driven. but it is not acceptable for As* to be

driven without a alid address, including address modifiers, and address parity hiLs as supported.

The low address lines AO1-.A23* (PI: 36-58) indicate a specific memory reference which is only to be
decoded by one location in the RAPIDbus physical address space unless the extended addressing option is
supported in which case the extended address bits increase the memor\ map sie. l'hc address lines are
driscn onto the RAPIDbus only when the interface master owns the Ibus. is not mulucasting. and then only
during the interface's home window.

The extended address lines .24*.-A31* (P2: 89-96) are supported as an option to further restrict the
addressing. They are driven, assuming the option is supported, when the lower address lines are driven.

The bus error signal, BERR* (PI: 81) indicates that the slave has detected an error during the data
transmission cycle which requires the cycle to be aborted without retrying the data transfer cycle.

The DP.\RIT'O*- DPARITY3* lines, (P1: 21. 22. P2: 103. 104). represent the even rarity fcr the data lines
D00*-D07*, D08*-D15*, D16*- D23". D24*-D31* respectively, and are sent along with each set of data lines
during a transfer. The data parity lines arc valid any time the corresponding daa lines.are valid.
DPARITY2* and DPARITY3* are only driven if the extende data bus option is supported.

The data transfer acknowledge, DTACK* (PI: 29) is always generated by the slxe in a transfer cycle.
During a read cycle the falling edge indicates that the slave is sending xalid data duzing the master's window
which made the request. During a write cycle DTACK* is transmitted back to the master to indicate that the
slave has accepted the data on the bus from the master. DTACK* is rescinded by the slave after AS* goes
high.

The lower data lines, DOO*-DI5* (PI: 5-20), provide a path for data going between master and slave. The
master drives the data lines during its home window if the appropriate data strobe has been asserted and
write* is low, or during a multicast cycle when the master owns the multicast capatility. An interface acting
as a slave drives the data lines during the corresponding master's window if write* is high and the appropriate
data strobes have been asserted, or in response to an interrupt handler servicing the leve! interrupt generated
by the interface host and properly acknowledged along the daisy chain.

The upper data lines, D15*-D31* (P2: 105-120). are optionally supported to create a 32 bit configuration.
These lines are valid only when the appropriate UDS*/LDS* is asserted and IONGWORD* is asserted,
otherwise the window timing of these lines is identical to the lower data lines.

The lower data strobe, LDS* (P1: 25). indicates during byte and word transfers that a data transfer will
occur on DOO*-D07*. and that DPARITYO* will be valid.

RAPII)bus: \rchitecturc and Reali/ation 25

The LONG\W'ORI)* signal line (PI: 35) indicates that a bus cycle is either byte/word (high) or a 32 bit
LONGWORD (low). I.ONGWORD is supported only if the 32 bit data path option is implemented.

The multicast address strobe. M.AS* (PI: 64) is driven to indicate a multicast cycle. The MAS* is dien
only when the interface master owns the Ibus. has prepared the proper multicast address generators. and is

driving multcast.block* line.

The RETRY* line (P1: 66) is asserted by the sla'e during the corresponding master's window to indicate
that the bus cycle must be aborted, with high probabilit of succeeding if executed again.

The \\RITE* line (P: 34) is asserted b.y the master on the master's home window to indicate that the

transfer is a read (high) or a write (low). It is not used to control the driers until at least one data strobe has

been asserted.

The upper data strobe, UDS* (P1: 2h). indicates during byte and word transfers that a data transfer will
occuir on DO8*-D15*, and that DPARITYI* will be valid.

3.5.2 Non-Multiplexed Bus Signals

(Note that ECL implemenudons will require -5 volts and -2.5 %olts bias. This voltage is to he supplied to
,he inter ce card through cibles leading directly to the appropriate power buses from the inierface card.
Optionally lines from the RAPIDbus backplane can be assigned to these voltages as long as the allocated lines
on the 1,APIIlbus are inusea by any potential \ersabus host. This is to prevent damage in the unlikely exent

that a ',ersabus card is plugged into a RAPIDbus backplane.)

.he CFAIL line (PI: 78) is used to indicate that the AC power supply input voltage has fallen below
specifivd \oltage levels, resultng in an imminent failure of the logic power levels.

The %CCLK line (P1: 69) is optionally supported by the master clock controller card to provide a time base
synchronized to the power line zero .Qltage crossing points.

The window address lines, AI)DRI, AI))R2, and .\DI)R3 (PI: 19. 23. 29) designate the master address that
owns the RAPIDbus in order to broadcast a bus window to the first level latch on all interface cards ADDR3
is dte most significant bit of the window address, ADDR1 the least. On four master implementations.
ADI)R.J is grounded.

The Host Clocks (P2: 79. 81. 85, 87) supply four different equally spaced phases of the host clock (for the 8
processor system) and two different phases (for the four processor system).

The INT.BLOCK* (PI: 73) is used to assign the use of the interrupt daisy chain to a particular interrupt
handler. When a master has control over the Ibus. wants to put an interrupt handler request out on the
RAPIDbus. and detects the beginning of the master's window, then the INT.IOCK* line is sampled. If it is
high then then the interface desinng to send an interrupt handler cycle driyes INT.BI.OCK* low and
activates the interface drivers for the remainder of the window, and on all following home windows until the

cycle is completed. On the nsing edge of address strobe coming from the interrupt handler master the

RAPII)hus: Architecture and Realiiation 26

INT.BLOCK signal is released. If the INT.BLOCK is sampled and found to be low, at the beginning of the

bus cycle then the home window is ignored and the IN .13LOCK line is sampled on the next home window.

The interrupt request lines. IRQI*-IRQ7* (P1: 87-93), are open collector lines generated by the

intemipter. Level seven is the highest priority. Each master is strapped to act as handler for one or more

interrupt levels. The prioritization is only invoked if two or more lesels are monitored by the same master and

two or more of those lines are pulled at the same time.

The interrupt return line, INT.RTN*, (PI: 70) is asserted low to indicate that a vector has already been
returned to the interrupt handler who owns the interrupt capability on this interrupt ha;ndler cycle. The

interrupt return line is driven by the interface that is returning an interrupt %ector. This line is used to release
all interface cards that have caught the intemipt handler bus window as a local reference, but are still waiting
for the interrupt acknowledge down the daisy' chain. When two interfaces have gen':rated the :-amie interrupt
level at the same time, this line allows the second interface down the daisy chain to continue processing while

the first interface supplies a vector to the interrupt handler.

The MasterCLK line. (PI: 33) supplies the high speed clock used to control the latches and the interface
state machine. The master clock line is driven by the master clock controller card. ongma!in ith he master
oscillator. which also drives the window address counter and the lower speed host clocks.

The MLTDTACK line (PI: 77) is an open collector line which is drivcn high in response to MAS* being

asserted on any window if the interface is not multicast enabled or if the interface hias crnpleted a multicast
write.

The NILTBERR* line (PI: 76) is an open collector line which is driven low by either the master or one of

the slaves in response to a multicast data transfer operation that must be aborted. MI '3FRR* must be

asserted before BDTACK goes high. %I1TBERR is used to abort a cycle that will not succeed if reied.

The .MLT.block* line (PI: 75) is driven low to indicate that a RAPIDbus interface is using the system

multicast capability. An interface, with an lbus dedicated to the interface master which would like to
multicast, checks the MI.T.block line at the beginning of its home window. If the Ml-fTblck line is high at
this time. then the interface desiring to mulucast is to drive the MLT.block line lo,. If the %I.T.block line is
low when it is sampled, the interface waits with drixing the bus until the next home window, when the line is
sampled again. The line is to be released when the multicast request bit is cleared in the master interface's

control register.

The MLrRETRY* line (P1: 82) is an open collector lin which is drien lov in response -o a data panty
error detected bv a slase that is beiniz, mulucast into. It is the multicast equi\,lient of RETRY*. If
MLTRETRY* is generated before the ki l'l \CK is removed, then the address generators on all multicast
slaves are not to be incremented.

The two serial reception lines RXD1 and RXl)2. (P2, 0,1 are reception line-, tor a terminal or an
external host computer. lhes tfillo\, assnchronous RS-232 ,omcntion at the baud rate agreed upon by the

RAPIDbus host and the terminal or external host computer.

R,\PI)bus: ArchitoCture and Realization 27

The two serial transmission lines TXm)! and TXD2. (P2: 63, 57) are transmission lines that comp ement
RXI)1 and RND2. They form the input to the serial ports of the RAPI)bus host computer.

Both the serial reception ports and the serial transmission ports depend on a clean analog ground for clear,
reliable, and high speed serial transmission. GNI)l and GNI)2, (P2: 65. 59) provide this ground. It is not to
be connected b% the RAPIDbus interface, backplane. or to any other grounds. When the connection between
the two elements of the RS232 connection are broken, the serial transmission grounds are to be connected to
the " ire that is inputting to the remaining connected system. 'his avoids noise in the serial transmission
system trom affcting either RS232 UART.

The system reset line, SYSRESET* (PI: 74) is an open collector line which can be pulled by any module in
the system proN ided the minimum reset interval duraton is met. When this line is driven low, all masters,
slaves, and interfaces are to go into a reset state.

The tes' configuration lines, TESTO* & TESTI* (PI: 65, PI: 79) specify the mode that is to be entered
when the SYSRESET* line is released.

The standby + 5 olt power, +5 STDBY (PI: 133, 134) supplies + 5 Vdc to devices requiring continuous
power zo pre, ent the loss of data.

Tlhe r,gular -5 NcIt power, +5 V (PI: 1, 2, 97. 99, 101, 103, 105, 129-132. P2: 7-10) supplies the Y-L level
logic voltage tc-, the interface and processor. Addition power lines may be connected directly to interface or
host.

The +12 volt power (PI: 125, 126, 127, 128, P2: 11, 12) is supplied primarily to support CMOS and serial
comnmunications lines.

The + 15 volt power (P2: 69. 70) is used primarily by analog circuits and is optionally supported.

The -12 volt power (PI: 121, 122, P2: 15, 16) is supplied primarily to support CMOS and serial
communications lines.

The -15 solt power (P2: 67. 68) is used primarily by analog circuits and is optionally supported.

RAPIDbus: Architecturc and Realization 28

4. The Address System

4.1 Address Translation

The function of the address translation unit on the RAPIDbus interface card is to map the logical addresses
coming from the Versabus host processor into a phsical address for use in accessing the host's interface
control page or the RAPIDbus address space, When a logical address is presented to the address translation
section by the Versabus port, one ot" two routes can be taken to generate the physical address. A direct
mapping of the logical address to the physical address occurs if bit 3 in the interface control register is cleared.
This direct route circumvents the more complex address translation route. decreasing the time required for
the data transfer operation. Setting bit 3 in the interface control register routes the address through a memory
management unit. Such memory management units can take much of the burden of memory allocation from
the applications programmer.

Traditionally memory management units have required non-trivial logic complexity in their
implementauon. Recently Motorola has made availahle a single chip memory management unit allowing
memor, protection and iclocation capability for a 16 megabyte address space. The Motorola 68451
incorporates greater runctionality than would be fea:ible to incorporate on each virtual bus if the memory
management unit %ere implemented in discrete iogi. !'hs tho RAPII)bus machine level architecture adapts
that cfthe \lC,8451. (tkurc 4-1 illustratcs the inte-na! -;tructurc of he \!C68451)The MC6S451 is described
in detail in .Mtorola publication -\DI-872 j116], and in the %,1C68000 edition of 16-Bit Microprocessors [17].
It is me int.nt of this secion to sumrnarize the salient feature of the MC6451 while referring the
progrnmmer to register details in the Motorola data. and physical address information in the memory map
s ction of this report.

4.1.1 Partitioning of Memory

Several components are used by the memory management unit to establish the full identity of the logical
address that is being supplied to the address translation section. The least three significant bits of the address
modifier lines are invertcd to provide the function code generated by the processor when the data trar.ffei was
initiated. This function code identifies the kind of data transfer operation in progress.

The 68000 architecture defines user and supervisor classifications. Within the user and supervisor
classifications, references are further subdivided into program and data. A separate function code is used to
designate an interrupt handler cycle which is always routed around the memory management unit by external
logic. These five classes of data transfer operation are further divided into those that are executed in the
pnmary and those that arc executed in the secondary memory map. depending on the state of bit 0 in the
interface control register. Thus the when the host processor is a 68000. ten function codes out of sixteen are
assigned to different kinds of data transfer operations within one of two memory map contexts.

The address lines A8 through A23 define a specific location within the logical memory map. The lower
address lines are mapped directly to the physical RAPIDbus, creating a minimum page size of 256 bytes that
can be relocated anywhere in the physical memory map assigned to RAPIDbus that is not otherwise restricted
by the memory management unit or target resource. Through the use of masking bits larger page sizes can be

RAN l)bus: ArchitCcture and Realization 29

to0 ical Memory Map
Ad ress FromosInterface
A3-A23 Contr Register)

'From host
rocessor)

CyclIe
Address Write
Space Protect
Number Bit

SADDRFSS

SPACE
TABLE

AddIress Address

X Space
L0Number Wr i te

Address

S Logizal Logical Lo gic a 1

Lo cl Compare Compare Compare
NAk r ,7 sd LS~
adcs Addes

P;hrysial lAddress /

FortDrvaetion

i1 of 32

SDescriptors

adsess tatnhn
and Compbre

Ad ress This drawing adapted from Motorola documentation

on the MC68451 Memory Management Unilt

To the RARIDbus
Port , Driver Section

Figure 4-is sfe MC68451 memory management unit supposl
address translation and memory protection.

implemented up to a full 16 megabyte page. The page size is always constrained to be of size 2 here k is an
integer between 8 and 24.

'Me memory management unit partitions continuous segments in the logical address space. This address

space is shifted by the memory management unit as a block into locations in the physical address space based

on the function code. the logical address. and the preinitdalizauion of the segment descriptor registers.

Segments may be resincted to being user, supervisor. program-only. data-only, or program and data. They
may also he wnte-protected through the descriptor array. A segment w hich is accessed v ith an unacceptable

function code will result in a bus error being taken by the associated processor, terminating the cycle before
the data transfer was delivered to the virtual bus.

R.\PI)bus: Architecture and Realization 30

A given application task executing on the processor may define one or more segments vNithin the logical
address space as required. Multiple tasks may share the same segment in logical memory. Tlhus for a general
processor there are 16 logical address spaces, each of 16 megab tes. A number of different tasks can exist
within a single one of these 16 logical address spaces. A unique address space number must be assigned to
each task within a single address space so as to differentiate it from all other tasks in that address space
desienated by the function code.

4.1.2 Functional Description

Dunng an address translation the incoming function code and memory map line from the interface control
register select one of sixteen. eighc bit registers in he address space table. (see figure 4-2 for the address space
table assignments for a 68000 architecture.)The value of this register has been preloaded to indicate the
unique identifing number of the task now ,xoc!.-ing ;n that function code and memory map address space.
This unique identifier is referred to as tie c.cle address space number in the Motorola literature. For a
correct translatin of the address this cycle address space number must match up with the address space
number field in one of the 32 descriptor register arTays.

These descriptor arrays consist of nine bvtes of information that defines the translation process that is to be
accomplished on tie address lines A8 throug A23..'I Ihese nine bytes must be loaded before use except for
descriptor array number one ahich cause, a (,;!C to one matching of logical to physical addresses as a default.
tFigure 4-3 depicts the descriptor organization) Vv ith!n :ach o the 32 descriptor arrays there i a 16 bit logical
base address, a logical address mask. a physical base aaaress. and eight bit locations for the address space
number, segment status register. and the address space mask.

Once the cycle address space number has been associatively compared with the address space number in
each of the 32 descriotor arrass the descriptor array for this data transfer cycle should be selected uniquely.
The address space mask allows creating don't care bits in the descriptor address space number entry so that
one descriptor will match with more than one address space number. The selected descriptor logical base
address can be masked by the logical address mask to create segment sizes larger than 256 bytes. When the
mask has been invoked to define the segment size the remaining higher order bits of the logical address which
are not used to map within the segment are replaced by the corresponding physical address bits. Within the
segment the logical address bits are mapped through to the physical address. conceptuall similarly to the
mapping that went on with the lowest eight bits of address information.

The physical address thus formed is held by a latch for the remainder of the data t-ansfer cycle. As soon as
the address is valid in this latch, the physical address strobe is asserted.

4.1.3 Internal Register Manipulation

Before the memory management unit can be used for effective management. a variety of internal registers
which are mapped into the supervisor data space of the processor's interface control page must be initialized.
The memory management unit resources that are available from the interface control page address space are
summarized in figure 4-4 and figure 4-5

The first sixteen bytes of the memory management unit address space are used to define the unique address

RAPIl)bus: Architec'ure and Realization 31

Address Space Table Organization

8 Bits

0 0 0 0 AST 0

0 0 0 1 AST 1 User Data 1

0 0 1 0 AST 2 User Program I

Primary 0 0 1 1 AST 3
Memory

Map 0 1 0 0 AST 4

0 1 0 1 AST 5 Supervisor Data 1

0 1 1 0 AST 6 Supervisor Program 1

0 1 1 1 AST 7 Interpupt Acknowledge 1

I 0 0 0 AST 8

1 0 0 1 AST 9 User Data 2

1 0 1 0 AST 10 User Program 2

Secondary 1 0 1 1 AST 11
Memory
Map I I 0 0 AST 12

1 1 0 1 AST 13 Supervisor Data 2

1 1 1 0 AST 14 Supervisor Program 2

1 1 1 1 AST 15 Innterupt Acknowledge 2

Figure 4-2: The address space tables links the incoming
function code and memory map hit from the control register

with the cycle address space number [16).

space number assigned to a particular applications task. This value is associatively compared with each of the

values in the 32 descriptor arrays to select the descriptor that is to be used for address translation.

The memory management accumulators are mapped into the next nine bytes of of the memory

management unit address space. The accumulators are used to set each of the 32 descriptor arrays, perform

requested translation of addresses for the use of the supervisor maintenance routines, and to hold information

as the result of a memory management unit fault condition.

R. A lI)bus: XrchtecUre and Realiztion 32

Descriptors (32)

Logical Base Address

Logical Address mask

Physical Base Address

Address Space Segment Status
!umber Register System Registers

Ad ress Space
Mask 8 B its

8 Bits 8 Bits

ASTO

ASTI

AST15

Figure 4-3: The 32 descriptor arrays each define a translation
process. The system registers select the descriptor

array that is to bz used during this data transfer cycle
[16].

If the accumulators are to be usec, for the setting of a de-cTriptor array, then the descriptor pointer is used to
identify the array. The five least significar., bits are used to designate the descriptor in load descriptor and
transfer descriptor operations. The reset value of this pointer is 00 hex. During a direct translation operation
for a supervisor maintenance routine, the descriptor pointer is read to determine the segment in which a
match was made. See the Motorola lite.ature or figure 4-6 for further details.

The interrupt vecor value is the vector that is returned to the processor during an memory management
unit interrupt sequence to designate the routine that handles memory management unit interrupts.

R.\1P1Dhus: Architecture and Realization 33

Memory Management Register Map

HEXADECIMAL

ADDRESS REGISTER OR OPERATION

F70040 AST Q

F70042 AST 1 (User Data)

F70044 AST 2 (User Program)

F70046 AST 3

F70048 AST 4

F7004A AST 5- (SupervisoruPta)

F7004C AST J __i _pervisor Proaram,

F7004E AST 7 iInterrL pu Acknwledge)

-F70050 A ST P (#2 Map)

F70052 AT 9 (IUer DaO-) (#2 Map)

F70054 A,< 10 -'User Pr-gram) (#2 Map)

F70056 A2T__i 2? lap_
F70058 A5T 12 (#2 Map)

F7005A (AS13 (upervisor Data) (#2 Map)

F7005C AST 14 o-upervisar Prngram) (#2 Map)

F7005E AST 15 (Interrupt Acknowledge) (#2 Map)

F70060 ACQ (LBA/Translation ADDR (MSB))

F70061 AC1 (LAB/Translation ADDR (LSB))

F70062 AC2 (LAM (MSB))

F70063 AC3 (LAM (LSB))

F70064 AC4 (PBA/Translated ADDR (MSB))

F70065 AC5 (PBA/Translated ADDR (LSB))

F70066 6 .- (.Address Soace Number)

F70067 AC7 (Status Register)

F70068 AC8 (Address Soace Mark)

Figure 4-4: Fach processor sees the memory management unit

registers assigned to that unit in the same address locations

1161.

-The local and global status registers are each used for interrupt control and fault diagnostics. Both registers
are used hb supervisor maintenance routines. A full description of de hehavior of both registers can be found
in the Motorola lI-11it Microprocessor Manual. Tlc registers are summarized in itures 4-7 and 4-8.

R.\Pll)bus: Architecture and Rc.iiatn 34

Memory Management Register Map

HEXADECIMAL
ADDRESS REGISTER OR OPERATION

F70069 DP Descriptor Pointer

F70O6B IVR Interrupt Vector Register

F7006D GSR Global Status

F7006F LSR Local Status

F70071 SSR Segment Status and Transfer
Descriptor Operation

F70079 IDP Interrupt Descriptor Pointer

F7007B ROP Result Descriptor Pointer

F7007D Direct Translation Operation

F7007F Load Descriptor Operation

{Otherwise} Null Operation

Figure 4-5: Continuation of he memory managemert unit address map
[161.

Fach of the 32 descriptor arrays has a sem-nent status register. These registers can eithcr be loaded by
writing into accumulator 7 and then loading the accumulator into the descriptor array o r by v r,.ting into
F70071. which writes the byte value offered into the segment status register poinized to bx the descriptor
pointer. The assignments of bits in the SSR and in the segmen. status registers in eaclh of ,,c descriptor arrays
is described in the Motorola 16-Bit Manual. and summarized in figure 4-9.

The interrupt descriptor pointer is use by the supervisor interrupt handler routines to indicate which of the
32 descriptors caused an interrupt. If multiple memory management unit intempts arc pending then the
highest priority descriptor index is returned which has its interrupt pending bit set, starting with descriptor
array 0. See the Motorola literature or figure 4-10.

The result descriptor pointer is used to identify descriptors that are involved in a write violation, a load
descriptor failure, or the descriptor that was selected for a direct translation operation. !f several descriptor
arrays meet this criterion then the highest priority descriptor index is returned, starting with descriptor array
0. See the Motorola literature or figure 4-11.

The direct translation operation is invoked by reading F7007D, translating an address for the supervisor.
The address to be translated is loaded into ACO-ACI, and the address space number is loaded into AC6. The
direct translation operation can then be invoked, if the translation can be made the physical address will then
be loaded into AC4-AC5. and 00 hex is returned to the processor on the data bus. An undefined address
resulting from a direct translation operation will return FF hex to the processor.

RA\Pll)buS: Nrchiiecturc and Realiztion 35

5 4 3 2 1 0

D~I 4 D3 02 D1 DO

Descr: tor array
selected for read, load or
write segment status.
(Reset to 00 Hex)

Reserved

Reserved

Reserved

Figure 4-6: The descriptor pointer selects the descriptor
array that is used in a load descriptor operation.

read segment status, and the write segment status
operation [161

The load descriptor operation is invoked by reading F7007F. Prior to running the load descriptor
oper:tior. the appropriate accumulator locations must be loaded with th2 logical base address, the logical
address mask, the address space number, and the address space mask. The operation can now be run. If 00
hex is read from the data bus, then the load was successful. If FF hex was returned then the load was
unsuccessful. T'he descriptor that is to be loaded is determined by the descriptor pointer.

All other addresses with the memory management section of the control page. as depicted in figure 4-4, are
null operations. All processors that support the memory management unit option map the MMU registers
into idendcal addresses as listed in figure 4-4 and 4-5.

4.1.4 System Performance Considerations

Support of the optional memory management unit on one or more of the virtual buses can simplify
RAPIDbus multiprogramming The penalty for this support is paid both in the maintenance overhead needed
to keep the memory management unit registers properly configured and in the increased data transfer access
time for each operation. Routing a data transfer request through the memory management unit instead of the
direct path adds at least 30 nanoseconds to a roughly 500 nanosecond Versabus transfer operation based on an
8 MHz memory management unit.

In order to reduce the burden that is placed on the applications programmer, it is intended that supervisor

R.\ PI)hUs: .\rchitcture ind Realization 36

7 6 5 4 3 2 1 0

F I D I I I I EI
Interrupt request line is enabled.

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

MMU detects a fault
while the F flag is set.

MMU detects a fault.

Figure 4-7: The Global Status Register summarizes the faults
that ha;c ,.,,curred and the inierrupt levels that

are enabled [16i

routines be called, supported by stack parameters tc maintain tie memory management unit control registers.
Use of a full operating syste-i would increase the transparenc, and flexibility of the memory management
unit but at an often heavy decrease in the s.tem throughput. The choice to support memory management
through supervisor routines or an operating system relies heavily on the nature of the applications
environment anticipa ed. This section documents the use of the interface control register and the location of
RAPIDbus'resources .n the 16 megabyte physical address space of each Versabus host processor when using a
direct mapping between virtual and physical addresses. For further information on the use of registers on the
interface host, see the interface host manual.

4.2 Interface Control Register

The Interface control register is used to monitor and alter the configuration of the RAPIDbus interface
card. Interface cards which support a processor host hae a corresponding control register which only appears
in the address space of the processor who owns the control register. Interfaces which support a non-processor
host have their control registers mapped into the RAPIDbus address space accessible to all processors. The
interface c-)ntrol register is a full word. The upper byte is read only, reas the lower byte is read/write
enabled.

RAPli)bus: Architecture and RcaliYation 37

7 5 5 4 2 2 1 0

L7 L6L5 L4 W IGAT GAL LI

Set if atleast one descriptor has
a pending interrupt.

Set if ACO, ACM. AC2, AC3, AC6
and AC8 are globally consistent.

Set if ACO, AM, and AC6
are globally consistent.
R/W* status when fault occurs.

~Denote status of MMU

after last event.

Figure 4-8: The Local Status Register indicates the status of
write* %hen a fault occurs. the consistency of the descriptors,

and an indication of the highest priority interrupt pending
[161

4.2.1 Interface Control Register Upper Byte

(See figure 4-12)

(CR 15) Bit 15 of the interface control register is currently unassigned.

RAPIDbus generated the bus error (CR14) When this line is asserted high it indicates that a virtual bus
linked to this interface card has experienced a bus error since the error trace capability in this control register
was last cleared. (See control register bit 1)

MMU Fault generated the bus error (CR13) This line is only asserted high for an interface card with a
master host and an interface memory management unit. When asserted it indicates that the memory
management unit could not complete the address translation as a result of a write violation or an undefined
segment access since the error trace capability of this control register was last cleared.

Multicast capahility assigned(CRl2) This line is only asserted high by an interface card which supports a
processor host. It indicates that the host is cleared to Multicast as a result of having asked for the Multicast
capability by setting bit 2 of the interface control register.

Interface address bit 4(CRI I) This is the most significant address bit of the interface address. If address bit

RAPIDbus: Architecture and Relization 38

7 6 5 4 3 2 1 0

1U I I I j j IP M IWPI EI

Set to enable this descriptor

in the matching process.

Write protect segments
accessed through this descriptor.

Set if segment modified
since it was defined.

Interrupt pending.

Interrupt when descriptor
is accessed.

Reserved

Reserved

Set if descriptor accessed
since defined.

Figure 4-9: The segment status register is selected
through the Descriptor Pointer register indirectly [16].

7 6 5 4 3 2 1 0

jj~j3 2 i10

Descriptor causing an
interrupt as selected by
the priority encoder.

Reserved

Reserved

No interrupt pending

Figure 4-10: The interrupt descriptor pointer indicates
which descriptor array was in use when an

interrupt was generated [161.

4 is low it indicates that the associated Versabus host has a processor and is capable of iniuating data transfer

R\ PII)bus: Architcture and Realitation 39

7 6 5 4 3 2 1 0

L NVRL I I. .R41IR31IR2 RI RO

L_ Encode the descriptor
array selected by the
priority encoder.

Reserved

Reserved

Set if no valid descriptor found.

Figure 4-11: The RIcsult Dcs,:nptor P,)mter identifies the
descnpror involved in a rite violatbon. load

descriptor :'ailure, or direct translation success
[161.

operations. If bit 4 is high it indicates that the interface host is a slave only card. Only cards with bit four low
have an associated virtual bus and a pria.e iiitcrfoce control page.

Interface address bits 1-3 (CRI0, CR9. CR8)The lower three interface address lines differentiate between
eight diffcrent potential processor cards and eight potential slave-only cards. Each interface must be assigned
a unique combination of interface address lines one through four, and thus a unique window address. For
four processor implementations, CR8 is always zero.

4.2.2 Interface Control Register Lower Byte

(See figure 4-13)

NOTE: On reset all lines in the interface control register lower byte arc cleared to their default state.

Mask out references from all but the mask interface address (CR7) When this line is asserted high it limits
references to the RAPIDbus mapped memory on this interface card to the the processor whose window
address corresponds to the masked address (control register bits four, five, and six).

Mask address 1-3 (CR6, CR5, CR4) The mask address is the window address of the processor card which is
able to make reference to the RAPIDbus mapped memory on this interface card if the interface mask
capability is invoked. The mask capability is invoked by setting bit seven of the control register high.

RAPIDbus: ,\rchitecture and Realization 40

Memory map route enable ((R3) lis bit is onl. meaningful if the interface card has a processor host. The
memory map route enable selects the procedure for mapping from the processor %irtual address to the
RAPIDbus phsical address. When this bit is low the processor %irtual address is mapped directly on the The
RAPIDbus physical address lines. When this bit is set high the mapping operation is accomplished by the
memor management unt, mapping according to the the initialization routines that set up the memory
manacement unit registers.

Reserve multicast capalility (CR2) When this line is asserted high the interface card begins to ask for use of
the multicast capability. 'When the capability is assigned to this interface card, bit 12 of the interface control
register will be drixen high. Then the nterface which is assigned the multicast capability can begin to
iniualize the required multicast registers on each of the target interface cards holding mcmor? that is to be
reached by the multicast. When the mulucast operation Is completed the mulLcasting processor should clear
the reserxe mulncast capabilit. bit in its interface control register.

Clear bus error record* (CR1) This line is asserted low to clear interface centrol reg:ster bhts 13. 14, and 15
and thus the record of what caused a bus error. The bus error handler routine should clear and -,hen set this
bit after reading the interface status to determine the cause of 'he bus error.

Auxiliary memory map enable (CR0) This line is only used by an irterface card 'Aith a processor and an
interface memory management unit. It is asserted low to read the primary memu,r,. :nap in die memory
management Unit and asserted high to reach the secondary memory map.

but mask interface address

Mask address 1

Mask address 2

Mask address 3

Memory map route enable

Reserve multicast capability

Clear bus error record*

Auxiliary memory map enable

Figure 4-12: Interface control register low byte

RA PIDbus: .\rchicecturc and Realization 41

11 91 7F 61 51 41 3o 21 1jo0

L- Interface address bit 1

Interface address bit 2

Interface address bit 3

Interface address bit 4

Multicast Capability Assigned*

MMU Fault generated the bus error

RAPIDbus generated the bus error

Reserved

Figure 4-13: Interface control register high byte

4.3 FRAPlDbus Physical Memory Map

;li' fllowing memor, map is based in part on the use of the Motorola V\M02 is the host processor. Use of
oher .-oots ma- change the location of resources local to the processor. Use of the memory management unit
may cause some or all of the physical addresses to appear in different locations to the processor. Generally

thc RAM begins at the low end of the address space with the first and last 2K bytes dedicated to the
supervisor. Up to 256K of EPROM may be supported, extending up into the RAPIDbus address space at
F10000. Dual ported memory which has a port to both an on boaid processor and the RAPIDbus memory

space may b : configured to map the memory anywhere in the RAP] Dhus physical address space beginning
on 256K block boundaries.

RAPIDbus: Architecture and Realization 42

000100 Unassigned & reserved 000101

000080 Trap instruction vectors 000081

00007C Love 7 interrupt autovector 00007D

000078 level 6 nte rupt autovector 000079

000074 Level 5 interrupt autovectcr 000075

000070 Leel 4 interrupt autovector 000071

00006C 1eve 3 inerrupt autovector 000060

000068 Level 2 int.rrupt autovector 000069

x 00 6 Lee I n T ,r -,jt ucvec -r 0 0 6
000064 000065

= 000060 S rj nru.000061

Urassinnj & reserved[*niitilit- nlerrupt oectiir
00003C ,j_....__al___._____r__t__e___ 00003D

11n.Ssigned & reserved

00002C - ine mm emulator 00002D

000028 -ine 1010 emulator 000029

000024 Irace 000025

000020 Privilege violation 000021

00001C T
rap V instruction 000010

000018 CHK instruction 000019

000014 Zero divide 000015

000010 Illegal instruction 000011

Address error 000000

000008 Bus error 000009

000004 Reset. initial progrim counter 000005

000000 Reset initial supervior s-ao poin,.' 000001

Figure 4-14: Lower RAM supervisor space

R,\PI1)hus: Archiwocturc .wa Rcjli/awin 43

01FFEE Brel.'AC fail vec:r # QIFFEF

Grtoup I IRQ5 vector#0IFFEC 01FFED

O1FFEA Group I IRQ5 vector # OIFFEB
Group I IRQ4 vector #01FFE8 _________________OIFFE9

OIFFE6 Group I IRQ3 vector # 01FFE7
Group I JRQ2 vector #

01FFEG 01FFE3

01FFE4 brt]]Q vector N 01FFE5
Group I IRQ6 vector #O1FFE2 01FFE3

01FFEO Unassigned & reserved 1FE

Abort vector #01FFDE OIFFDF

Group 2 IRQ6 vector #
O1FFDC 01FFDD

Group 2 IFQ vector #
O1FFDA O1FFOB

O1FFD8 S;roup 2 IRQ4 vector 0 OlFF0g

OIFFD6 Gro-op 2 IPQ3 vector # 0IFFD7

OIFFD4 Group 2 TRQ2 vector # OIFFD5

01FFD2 Group 2 IRQI vector # 0IFFD3
01FFDO 01FFDI

01F800 Supervisor space 01F801
01F7FE 01F7FF

User RAM

000800 000801
•0007FE 0007FF

Work area & Supervisor Stack

000400 0004010003FE 0003FF

User interrupt vectors

000100 000101

Figure 4-15: User RAM and upper supervisor space

RAPIDhus: Architecture and Realization 44

PTM
Read: Read LSB
Buffer regster
Write: Write

F70006 1irn, #1 latcset F70007
PTM
Read; Timer
#1 counter
Write: Write

F70004 MSB buffer register F70005

PTM
Read: Status reg.
Write: Write
Control reg #2

F70002 F70003~PTM
Read; NOP
Write: (CR2O=l)
Write control reg #1
(CR O)

F70000 Write control req #3 F70001
F6FFFE F6FFFF

Rapidbus Address space

F1O000 Fi0001
FOFFFE FOFFFF

QROM

FO0000 F00001

EFFFFE EFFFFF

Rapidbus Address space

200000 200001

O1FFFE Versabus IRQ7 vector # 01FFFF

01FFFC Versabus IRQ6 vector # O1FFFD

Versabus IRQ5 vector #
OIFFFA OIFFFB

O 1FFF8 Versabus IRQ4 vector # 01FFF5

3i 01FFF2 Versabus IRQ3 vector # O1FFF7

I

oVersabus IRQ2 vector #OIFFF4 0IFFF5

Versabus IRQI vector #
OI0FFF2 OIFFF3

01FFFO Host Control register image
F 16:0 pp01FFFi

Figure 4-16: Upper RAM supervisor space. ROM, and Timers

RAPIilbus: Architecture and Realization 45

F7002A - Upper Multicast Word Counter F7002B

F70028 Lower Multicast Word Counter F70029

F70026 Upper Multicast Address Register F70027

F70024 Lower Multicast Address Register F70025

F70022 Upper Multicas, Control Register F70023

FLower Multicast Control RegisterS F70020 F70021

- Illegal address

F7001F F7001F

F7001C nhterldce control register F70010

4aster Mu'tz:ast audressF700IA ___-____________ F7001B

F70018 Host status register F70019
FRIAi PORTS
Read: Port #2
--ta-us Register

w it,: Write port* d2 ,;mnand register
F70016 I F70017

SFRIAL PORTS
Fead: Read
Por, #1 status reg.
Write: Port #1I calmand register

F70014 F70015

C SERIAL PORTS
-j Tead: Port

#2 Rx data
Write: Write

F70012 Port #2 Tx data F70013

SFRIAL PORTS
Read: Port
#1 Rn data
Write; Write

F70000 Fort #1 Tx data F70011

PTM
Read: LSB
Buffer register
Write: Write

F70OOE Timer #2 latches F7OOOF

PTM
Read: Timer #3
counter
Write MSB

F7000C Ruffer egister F70000
~PTM

Read: LSB
3 uffer register

Write: Write
F70iA Tmer #2 latches F70008

PTM
Read: Timer
#2 counter
Write: Write MSB

F70008 buffer register F70009

Figure 4-17: Versamodule registers, and master interface control page

RAPIl)bus: .\rchitcctarc and RCalizaton 46

F70050 MMU: AST8 (AMMF 1) 170051

F7004E MMU: AST7 (Interrupt Acknowledge) F7004F

F7004C MMU: AST6 (Supervisor Program) F7004D

MMU: AST5 (Supervisor data)
F7004A F7004B

FMMU: AST4 (AMMF 0)F70048 F70049

F70046 MMU: AST3 (AMMF 0) F70047

F70044 MMU: AST2 (User proogam) F70045

F70042 MMU: ASTI (User oata) F70043

F70040 MMU; ASTO (AMMF = 0) F70041

F7003E F7003F

F7003C F7003D

Reserved Master
Control Page Addressing

F7003A F7003B

F70038 F70039

0

o F70036 F70037

Reserved Master

FControl Page AddressingF70034 F70035

F70032 F70033

F70030 F70031

F7002E Reinitialize Upper Multicast Counters F7002F

Reinitialize Lower Multicast Counters
F7002C 4_18:_Master_______controlpa F7002

Figure 4-18: Master interface control page

R,\PlDbus: Vrchitecture ind Realiiation 47

F7041A F7041B
RAPlDbus Adress Space

F70080 F70081
La escrip~o

F7007E oeraion F7007F
Direct translation

F7007C o"ra',on-- F7007D
MMU: RDP iResul

F7007A ,lescr iot:on F , ter F7007B
MMLI IDP (Inter-up,

F70078 ,escript:un wc'i: r F70079

F70076 F70077

[70074 NULL OPERATION F70075

F70072 F70073
Setment Status and

F70070 in F70071
MMLU LSR (Local

F7006E Status Reais*) F7006F
RMO: GSR Globjl

F7006C Status renS ,er) F7006D
MMU IVR Interrupt

F7006A Vec:cr register F70068
MMU: AC8 (Address MMU: DP (Description

F70068 space marker) Pointer) F7006g
MMU: AC5 (Address MMU: FC0

F70066 space number) FStatus regser) [70067

F70064 MMU: AC4 (PBA/Translated ADnR) AC5 F70065

F70062 MMU: AC2 (LAM) AC3 F70063
F7 6 MMU: ACO (LBA/Trans)ate ADDR) AC FP 70060 ____ ______F_____ 70061

F7005E MMU: AST15 (AMMF [700Fl F7005E _MI FST AMP[005F
MMU: ASTI4 (AMMF 1)

F7005C F7005D

MMI: AST13 (AMMF IF

F70058 A F70059

I MMU: ASTI1 (AMMF F70057

F 70056 T05

F70054 MMU. AST10 (AMMF I [70055L~j F70052MMU: ASTI0 (AMMF -1) F05

MML: ASt g (AMMF)F70052 ________________F70053

Figure 4-19: Master interface control page [MMU]

R\LPII)h~u',: \rchltetx-c and Realitation 4S

F7051A F7051B
Peserved Cjntrol Space

F70460 F704B1

Pein li a ze IJ) er Mu : is, ,,unlters

F704AE F704AF

F704AC F704AD

7 4Upper Muic as: *or, CounterF704AA - - - - - F704AB

F704A8 - toor Mul:icjs: Word Co ,er F704A9

F704A6 - - - -"- - - F704A7

F704A4 - e MAic~s ,dJ'-c egister F704A5

Upper Muiticst Controi Regiszer
F704A2 F704A3

lower
4

ulcoS: Control crgister

F704A0 F704A1

F7049E l:egdl address F7049F

F7049C Interfdce reedsor F7049D

F7049A F7049B
Reserved control Space

F70430 F70431

Reini-' ali7.e Utper Multicast Counters

F7042E - - - - - - F7042F

Reinitielioe Lower Multicast Counters

F7042C F7042D

F7042A - Upper Multi-ast word Counter FT042B

Lower ulicast word Counter
F70428 F70429

F7042 Upper Multicast Address Register F70427

F70424 - uwer Multicast Address Register F70425
>Upper Muiticast control Register

F70422 - - - - - - - F70423

F70420 tower ulticast Control Register F70421

F7041E illegal address F7041F

F7041C Interface control register F7041D

Figure 4-20: Slave # 1 and Slave #'- interface control pages

R Pl~ A :,\chl['-MLure and Rcalvatin .49

F7061A F7051B
Reserved Control Space

F705B2 _________________ F705B3

F70560 ReIt: aI e Ucuer mult cas* Counters F70581

Reinitialize t-wer Multlcast Ccun ersF705AE F705AF

F705AC Upper Multicast dord Counter F705AD

F705AA L wer Mulicas* Word Aun:er F705AB

F705A8 Upper Hult.7caS' AOdress R5g s:rr F705A9

F705A6 Lower Muli)cas: Address P gis:e1 F705A7
F705A U F705A7
F705A Upper Mulicast Control Register F705A5

,€Lwer ulII st C n rol Register

F705A2 F705A3

F705A0 Illegal address F705AI

F7059E Intertace control register F7059F

F7059C F70590
Resersed Control Space

F70530 F70531

F7052E Reinitialize Upper Multicas: Counters F7052F

Reinitialize Lower 4ulticast Counters

F7052C F7052D

F7052A Upper Multicast Word Counter F7052B
m F70528 Lower Multicast Word Counter F7052g

F70526 Upper Multicast Address Register F70527

F70524 Lower Multicast Address Register F70525

F70522 Upper Multicast Control Register F70523

Lower Multicast Control RegisterF70520 ________________ F70521

F7051E tllegal address F7051F

F7051C Interface control register F7051D

Figure 4-21: Slave #3 and Slave #4 interface control page

R.\PIbus: \rchitccturc ind Rcjiiation 50

F7071A F70718

F706B2 F706B3

F706B0 Re isuidalize Upper Mutcast C u tr

F706AE Rein it 1al ize lower Mul*,icast Counters F706AF

F706AC Upper Multicast Word Counter F0A

F706AA Lower Multicast Word Counter F706AB

F706A8 Upper Multicast Address, Register F0A

F706A6 lower Multicast Address Register F0A

F706A4 pe utcs CnrlRgse F706A5

F7UppLoer Multicast Control Register

F706A0 4gl drs F706A5

F7 069E Interface control register F7069F

F7069C F7069D
Reserved Control Space

F70630 _________________ F70631

F7062E Reinitialize Upper Multicast Counters F7062F

Reinitialize Lower Multicast Counters
F7062C ________________ F7062D

F7062A Upper Multicast Word Counter F7062B

F70628 Lower Multicast Word Counter F02

F70626 Upper Multicast Address Register F02

F70624 Lower Multicast Aodress Register F 70625

F70622 Upper Multicast Control Register F70623

F70620 Lower Multicas. 'ontrol Register F02

F7061E illegal address F7061F

Li F7061C Interface control register F7061D

Figure 4-22: Slave # 5 and Slave # 6 interface control page

RAPDbus: Architecture and Realization 51

F7081A F7071B
Reserved Control Space

F707B2 F707B3

F707B0 Renit,li e Uper Mulicast Counters

- ------- F708B1

F707AE Reini-ialize Iowr Multicast Ocunte's F707AF

F707AC Upper Mult1Cas: Word Counter F707AD

F707AA Lower Mult,os*. 4ord Counter F707AB

F707A8 OpLer Mult.cast Addet.n q iggster F707A9

F707A6 Lower 4ult ias: Address Pegiser F707A7

F707A4 Uppur MultCicst Control Register F707A5

• 7ALower Mtultlcatt Control RegisterF707A2 F707A3

F707A0 i address F707A1

F7079E Inet"anter ca,e cro ret F7079F
F7079C F7079D

Reserved LonTrol Space

F70730 F70731

F7072E _Renitialne Upper multicast Counters F7072F

ReiritlalizE lower Multicast Counters

F7072C F7072D

F7072A Upper Multisast Word Counter F7072B

F70728 Lower Multicast Word Counter F70729

F70726 Upper Multicast Address Register F70727

F70724 Lower Multicast Address Register F70725

-. F70722 Upper M,,lticast Control Register F70723

F70720 F70723

F7071E illegal address F7071F

F7071C Interface control register F7071D

Figure 4-23: Slave #7 and Slave #8 interface control page

RAPIDbus: Architecture ind Realization 52

FFFFFE FFFFFF

Rapidbus Short I/0

Address Space

FFO000 FF0001

FEFFFE FEFFFF

Rapidbus Address Space

F82000 F82001

F81FFE F81FFF

Versabus I/0
_Channel

F80000 F80001

F7FFFE F7FFFF

Rapidbus Address Space

F707C0 I F707CI

Figure 4-24: I/O and RAPIDbus address space

R,\l'II Thus: ,\i.hitccLi re and Reali/ation 53

5. The Priority Interrupt System

5.1 Intsrrupt System Objectives

IL. I t L I t 6t.inctlOIIs to divert a selcLtd [)o .0,:, I r)lI I d t rolm Il I I SC o IP po rail I Xect lo ll

a1. 1 scr i:c routine that will respond in a timely manor to an event external to the proc.ssor's current

environment. Of palticular interest to this document are those interrupts which are generated by one
\ crsabus host and serviced by a processor on another \ersabus host card. Processor hosts whose interface
card supports a 7nemory management unit must respond to NML interrupts as a special case of interrupts

transmitted across the %irtual bus. Interrupts that are ser iced by resources on the same cajd as the interrupt
%%as gienerated .n are not specified b% eider the Versabus specification 131 or by this document.

I'he \ersabus protocol makes use of a dais% chain that assigns a pnorit to the interrupter that wIll be
,.er%iced baCd on phx. ,ical position in the card cage. As a resuh of the sequential del,,.s inrent in most
implementations of a daisy chain tnicture. it is not practical to tinie-multiplex this line alone m oh the other
common bus lines. Thus all 'irtual buses in the system must use a common interrupt acknoMledge line.
i inuidcra uion is qackl givcn it) assilii me the utlsed hus arbit ratu ui daisy chilns is .j (; Wo eIcl

irtual bus. I his i oute has not bcen adapted by this spetic: iatii n for two reasons. It is d-e inient of this
aiCI1XCt.ctutC 1. tSaCCII'f the R.APlII)bus backplane so that tf a \ersabus card is JCL'Ide1.0,)];L.-'Cd into .1
R.\PI)bis backplane no damage would occur to ony eement of the system. Use of th",,' erar,t lines for
interrupt acknowiedge transmiss:Ln might lead to a improperly placed VersabLIs card asu&';uwng bus
mastership -n response to RAPIDbus card's interrupt acknowledge. causing damage to drisers on one or more
cards. :\ less significant reason is the increased hardware complexity required to support sot en physically
separate interrupt acknowledge lines is probab not worth the increased pertbrmance that Aould result.
Thus it is an objective of' the interrupt handler section of each RAPII)bus in:erface card %hich supports a
processor to assure that it will be the only master using the interrupt acknowledge daisy chain duri:,g a given
interrupt handler cycle, prior to placing an interrupt handler request on its virtual bus.

5.2 Functional Modules

A minimal intemipt system requires an interrupter and an interrupt handler. The proper logic must be
present along the virtual path chosen by the interrupt handler so that the interrupter responds corcctl. with
an interrupt vector indicating the response that is requested to the interrupt.

The assignment of interrupt handlers to interrupt levels is done at hardware configuration time ind in
software. At the Versabus port it is possitle for one handler to service all seven interrupt levels. In a system
with seven processors it is possible, and most reasonable, to assign each processor to service one interrupt
level. The only restriction on the assignment of interrupt levels to interrupt handlers is that a single handler
must service a contiguous set of interrupt levels, such as levels 3. 4. and 5. It is permissible but probably not
advantageous to have interrupt levels with no handler.

It is the responsibility of the interrupter to identify the intemupt level being handled by the processor that
the interrupter desires to interrupt. It is the programmer's responsibility to see that this information is
available to interrupter software. Some interrupters may be auxiliary resources that are given an assignment

RAPII)bus: Architecture and , calization 54

by a processor and then set to interrupt the assigning processor when the task is completed. In such a case the
assigning proccssor would prepare a memory location in the interrupting resource that Ould choose the
interrupt level. In other cases a processor desiring to multicast into memory on the Versabus host of another
processor would ask for the second processor's multicast address registers to be prepared by interrupting the
second processor.

The interrupt handier considers the intermptus pending which are not masked by the processor or the
processor card at the end of each instruction cycle. The handler asks for a vector indicating the service routine
that is to be performed in an operation similar in many ways to a read operation, as described below. Once
the vector has been read the processor acts to remove the cause of the interrupt and satisfy the demands of the
interrupter.

The RAPIDbus interfaces work to restrict the RAPIDbus system to a single interrupt vector fetch operation
on the system at one time. This is to prevent confusion in the assignment of the interrupt acknowledge daisy
chain and the interrupt return vector line. The RAPII)bus interface assigned to the interrupt handler and all
of the interfaces that physically lie on the interrupt acknowledge daisy chain between handler and interrupter
work to assure that a single interrupter will respond to the interrupt handler at a time. This response causes a
single virtual bus link to be created between interrupt handler and an interrupter active at the same level as
the interrupt handler which is used to obtain the interrupt vector.

5.3 Interrupt Service Pratocol

The interrupt service protocol must be initiated by an interrupter. Two cases of an interrupter are handled
separately. If the memory management unit on me RAPfDbus interface of a host processor interrupts the
'versabus port. then the handler request need only propagate down the [bus with the interrupting MIMU and
not onto the RAPIDbus. If the interrupt is generated by the RAPIDbus host and channeled down to the
Versabus port then the interrupt is placed on the RAPIDbus where it is seen by all of the processor hosts in
the system regardless of the virtual bus which they operate on.

The memory management unit will generate an interrupt as a result of an access through a descriptor array
in which the interrupt bit is set, and the interrupt enable bit in the global status register is set. The RAPIDbus
interface must channel this interrupt to the level interrupt that the Versabus host processor is servicing. As
soon as the host processor recognizes this interrupt it will request the Ibus. When lbus mastership is granted
to the processor, and the Ibus has been cleared of bus error and the data acknowledge signals from the
previous cycle then the processor will place the interrupt handler request on the lbus in response to the
memory management unit's request- The lower three address bits will be the value of interrupt which the
memory management unit generated, the address modifier bits will be the interrupt handler code, and write
will be high. Only the lower data strobe is asserted. The RAPIDbus interface must respond by recognizing
that a memory management unit request is pending at this level and prevent the interrupt handler request
from reaching the virtual bus assigned to this processor. The memory management unit responds by placing
the contents of the interrupt \ector register in the MMU on the lower byte of the lbus data lines. This value is
read by the processor. multiplied by four. and used to locate the appropriate service routine from the
interrupt handler vector array at the base of local RAM. The !bus is then released and the chosen handler
routine is iniuatcd. The routine mttst clear the interrupt in the memory management unit prior to enabling
bus interrupts again.

RAPII)bus: Architecture and Realization 5

Interrupts by a Versabus host that are channeled to the Versabus port are slightl more complicated to
handle in that the virtual bus link must be completed between interrupter and the interrupt handler. The
interrupter begins by generating an interrupt on one of the se~en interrupt lines at the Versabus port.
Assuming that the interrupter does not activate an interrupt line that it is assigned to service, the request is
placed on the bus.

The interrupt handler that is assigned to service the interrupt level activated notes that the interrupt line
has been asserted when the current instruction is completed and the interrupt handler's interrupts are
enabled. The handler responds by requesting the Versabus port and lbus. When mastership has been
granted and the bus error and data acknomledge signals from the previous user of the Ibus ha e been cleared,
the handler drives the Ibus. The interrupt acknowledge address modifier code is supplied, causing address
translation to be suspended. The lower three bits of the address lines indicate the le.el interrupt that is being
serviced. The RAPIDbus interface card supporting the interrupt handler sampies the INT.BOCK line on
the RAPIDbus backplane at the beginning of each home window. If ;he line is asserted when it ;s sampled
then the RAPIDbus interface does not dri'e the home window with the interrupt handler rCuesL but waits
to sample at the next home window. As soon as INT.BIOCK is sampled and found to be high the driver
section gates the intenupt handler request onto the virtual bus assigned to the interrupt handler
(implemented during the interrupt handler's hone w indow). Simultaneously the interrpt handler interface
asserts INT.BLOCK lew for the durauon of the interrupt handier data transfer c,.cle. One latch clock cycle
later the ACKOUT* line of the interrupt handler interface is driven low.

On each cycle of the interrupt handler's virtuai bus windew each interface is examining thPe address
modifier lines for the interrupt handler code and the address lines for the interrupt level chat may have been
generated by the interface host. Ifa match is ibund. the 'nterrupter's Ibus is not in usc and no requests are
pending then the interrupt handler request is latched at the second level of the interrupt interface's latch,
along with the interrupt hand!er's window addre, s..\ request is made for the Ibus of the interrupter. If the
Ibus of the intempter is in use then the interrupt handler continues to present he interrupt handler request
on its irtual bus until it umes-out or the interrupter Ibus becomes available.

he interrupt acknoMedge signal propagates down the acknowledge daisy chain from the interrupt
handler. This acknowledge continues around the interrupt acknowledge daisy chain in a loop until it reaches
an interface that has decoded the interrupt handler request at the level at which an interrupt was generated,
and has requested its [bus. The interrupt acknowledge daisy chain stops here and is routed to the ACKIN* at
the Versabus port as soon as the Ibus is assigned. Once the interface without a pending interrupt request has
passed the acknowledge on, it must wait for another falling edge of the interrupt acknowledge chain before
considering itself acknowledged. Each interface drives ACKOUT on the RAPIDbus backplane high when
INT.RTN goes high.

The acknowledged interrupter interface presents an interrupt acknowledge vector request to the Versabus
interface supporting the interrupter. The interrupter responds by providing an interrupt vector directing the
interrupt handler to the routine that will satisfy the interrupter's need on the lower byte of the data lines.
Data acknowledge is sent back along the virtual bus link to the interrupt handler. The handler reads the
vector and removes its interrupt vector request, releasing the interrupter Ibus and closing the virtual bus link.

The interrupt then vectors to a routine that will remove the cause of the interrupt and provide the required

R APIDbus: Architecture and Realization 56

service routine. It is possible that before the interrupt handler gets on the bus to ask for a Nector. a second
interrupter will generate an interrupt at the same level that is in the process of being serced. Thus two
interfaces will latch in the interrupt handler's request but not complete presentation of the interrupt handler
request to the Versabus port. Provision must be made to remove an interrupt handler requests from the lbus
if the interrupt acknowledge is not received promptly. As soon as an interrupter has been acknowledged it
terminates the acknowledge sequence and drives INT.RTN low to indicate that an interrupt vector is being
returned. This signal causes all other interfaces that have trapped a handler routine to release the request
from their Ibus requester and go about their business until the handler again prcsents a vectur request. The
INT.RTN signal is released by the interrupter at the conclusion of the interrupt handler data transfer,

Thus the priority interrupt system allows any Versabus interrupt card to interrupt any processor which is
set up as an intempt handler. By responding with a vector detailing the cause of the interrupt, the interrupt
handler can select the appropriate service routine.

R.\ PI Dbus: Architecture and Realization 5'

6. Ibus Arbitration and Control

6.1 Use of the Ibus and Virtual Buses

The Ibus serves as the major data path connecting the Versabus port on the top of each RAPIDbus
interface card with the RAPIDbus port on the bottom of the interface card. The Versabus port sees the Ibus
as the time-static backplane that it is expecting to communicate ilong. shared by a second potential bus
master. the RAPIDbus port. It is the responsibility of the interface control unit to act as the system controller
for the lbus according to the Versabus specification, including arbitration of lbus mastership. In order to
suppt.t multiple bus masters on the RAPIDbus simultaneously, running on virtual buses, the RAPIDbus
signal lines are time-multiplexed. It is the RAPIDbus port of each intertice card which drives, samples, and
latches the time-multiplexed backplanes lines in such a way that the R.\PIDbus port looks time-static to the
Ibus. Fhe 'versabus port always sees the RAPIDbus port to the lbus as the local end of the virtual bus that it
believes connects the Versabus port with the rest of the system.

Depending on the resources resident on the interface host card, both the Versabus and RAPIDbus ports
ma, iake on different attributes. Each virtual bus in the stlstem is adlocated uniquel to a single Versabus host
processor. If the Versabus port of a given interface card does not have a processor host, then there is no
virtual bus allocated to that interface. and the Versabus port is not enabled to make a request for mastership
of the !bus. Versabus hosts that include a processor may request the Ibus at priotit. level one.

When the processor-equipped Versabus port gains [bus masterzhip. the RAPIDhus port of both the master
and the target slave interface card use the virtual bus assigned to the master processor to attempt to complete
the requested data transfer. If the Ibus of the slave interface card is not in use. then the \ irtual bus assigned to
the master processor will request the Ibus of the slave processor. As soon as this slaxe Ibus is allocated to the
data transfer from the master processor. a virtual l'-k %iil extend for the life of a single data transfer operation
from the Versabus port of the master processor through to the Versabus port of the slave processor. If the
Ibus of the slave processor is already in use then the master processor continues to present the data transfer
request on its virtual bus until the master interface times out or the slave [bus becomes available.

The virtual link between originator and slave is terminated in one of several ways, each of which is signaled
by the revocation of the address strobe along the virtual link. The read or write protocol may be successfully
completed along the virtual link by the master and slave Versabus port hosts. Then the returning DTACK
will cause the master processor to revoke the address strobe, closing the link. Address or data parity may not
match, causing the master Versabus port to receive a signal (implemented via the retry and bus error lines).
which causes the revocation of the address strobe. The slave Versabus host can assert the bus error or retry
lines to terminate the data transfer at its own -discretion. If the cycle is terminated using the retry line, then
the master interface card may limit the number of cycles that are based on the the master host before the retry
is converted to a bus error (which traps to a service routine as opposed to retrying the instruction).

The master RAPIDbus interface card also must provide for virtual links that are never completed, either
because a memory location does not answer, an interrupter does not come back with a vector, or a potential
multicast slave does not release multicast data acknowledge. A sanity timer is started when the address strobe
is asserted. The timing period is set to a unique delay as a function of the window address of the interface
card. When the delay expires a signal is sent to the host processor from its interface if the number of

RAPIDbus: Architecture and Realization 5S

acceptable retries before a bus error has not been reached. Retry or bus error will then cause the address
strobe to be revoked.

The RAPIDbus port can act as one of three kinds of Ibus masters depending on the resources on the
interface host card. If \ .,abus addressable memory is prcsent on the host card. or on the interface control
page then the RAPIDbus port can look like a processor making a memory request (sla~e reference) to the
Ibus. The RAPIDbus port can also make use of the multicast address generators to muIticast into the
Versabus port memory map. causing the RAPIDbus port to look like a multica-,ting processor. If the Versabus
port is capable of inteITupting the RAPIDbus, then the RAPII)bus port can look like an interrupt handler
requesting an interrupt vector (identifying the nature of the interrupt) from the host interrupter. In each of
the these cases. it is not the RAPIDbus port that is actually the originator of the transaction, but rather the
RAPIDbus port presents a time-static image of the signals that are traveling on a irtual bus connection.

Thus the RAPIDbus port to a given Ibus can act as a slave, \orking across a virtual bus with a second
RAPIDbus port on another interface card which looks like a master, impiementing ,hat looks like a time-
static Versabus link across time-multiplexed lines. The state behavior of the controller which implements the
required ibus and RAPIDbus port behavior is shown in state diagrams 6-1 through 6-5

6.2 Master Ibus Access

The Versabus host processor can gain access to the off-hoard RAPIDbus address space ,ia the Ibus for
either a single access or a block move. Executing a read, write, or read-modify-write to a physical address
which is mapped into the RAPIDbus address space initiates a request to the Ibut, for a single data transfer
cycle. Many Versabus host processors also provide a block mo~e option under which bit 5 of the
Versamodule status register is set to one, requesting use of the]bus and the virtuj bus assigned to the
processor for one or more data transfer cycles. Under the block move option me processor \Oill be interrupted
when the Ibus and virtual bus are available, possibly at the completion of a memory access by another
processor into the memory address space of the processor that has requested a block mo~e. This interrupt
which signals the availability of the Ibus can be masked by clearing bit 8 of the Versamudule control register.
After block move mastership has been granted. read, write, or read-modify-write instructions can De executed
at an increased rate, needing only to gain access to the lbus of the slave host to comple:e the virtual link
between master and slave.

Regardless of how the Versabus host has initiated the request for the Ibus, the request is Lransmitted from
the master host down to its RAPIDbus interface card by pulling Br #1 low. If the lbus is not in use and no
requests from the RAPIDbus port are pending, then Bg #1 is issued to the Versabus port by the interface
controller. The interface host processor use of the Ibus is shown in figure 6-1.

After being granted the bus, the host will begin to drive the Ibus lines appropriate to the intended data
transfer operation as soon as the data acknowledge and bus error signals are remox ed from the preceding data
transfer operation. Address and address modifier lines are alwa% s asserted. as soon as the address strobe is
asserted the address translation section of the interface goes to work. If bit 3 of the interface control register is
high, and the function code does not indicate an interrupt handler cycle, then the address and data strobes are
delayed while the virtual address produced by the Versabus port is translated into the RAPIDbus physical
address. If bit 3 of the interface control register is low, or an interrupt handler cycle is in progress, then the

R.\PIDbus: A~rchitecture and Rcedi,,iron 59

RESETh>1T
f gr

lbus_'erA~e Toi figure 4

________________________ Unalloca:eo 10equeS* ofiur

address mappin

To figure 5

matnsi ohe he llbu

QrivcInt A.k An. s 0. D

s~b l5 arides wmaepspiwnhg

Vesau vrta adrs i adres dietyiP teRP~u hysical address-h hsca drs
vaidryissgnfi y h a evirual tadpyscdrddesssroe

R.\Pll)hus: Architecture and Realization 60

When the physical address strobe has been asserted, then the physical address is compared to the interface
control page address. (F7001A - FS007F). If the the translated address does not reter to the control page. and
the cscle is not an interrupt handler then the physical address strobe and address lines are fed to the
RAPIDbus drivers. If the RAPIDbus is selected, then on the next home windo, the address, address
modifier. address strobe, parity, write, long word, and data strobes arc gated onto the R.\PlDbus, and for
each succeeding %A indOw until the address strobe and IIBSY from the host processor are reN oked.]'he data
lines ire bidirectional depending on the state of the write line. Since it is conceisable that on the first w indow
transmitted to a sla'e. the request could hase a high write line, indicating a read. and on the second the wnte
line could be low, indiciting a write, no RAPIDbus driver or Ibus gate dri'es data lines unul at least one of
the data strobes has been asserted, indicating that the state of the %Nrite line is stable. lIt at least one of the data
strobes has been asserted and write is high the interface doing the reading gates the data lincs. I)TACK' , and
bus error lines from the second level latch onto the Ibus. If at least one of hle data strobes has been asserted
b the \ ersabus host and write is low. indicating a write operation is in proeiress. then the intertace doing the
%kritunz will drive the data lines on the R.\PlDbus on esery home windo% until the data -r:sfcr is completed
or times out. hle data acknowledge, retry, and bus error are gated onto the lbus from Lhe second lesel
RAPIDbus latch. l'he contents of the second level latch must not be gated onte the lbus until after the first
window has returned from the data transfer slase, once the lines hase been tri-statc'd trom the previous data
transfer. An interrupt handler reference is an untranslated reference \%hich does not reach the RAPIDbus
until the master interface has assured that it is the only interfacc which ,ili he eOX&cutirt an interupt handler
cycle on any of the virtual buses. Once the exclusivity of the interrupt handler is assured t.e interrupt handler
requCst proceeds much like a memory reference to the RAPIDbus address space. if the pi-.sicai .ddress maps
onto the interface control page then further address decodine is done. Figure 6-2 :;usL'utes the handling of a
control page reference.

It is possible that before an interrupt handler responds to an interrupt request. that interrupt lesel will be
asserted b% more than one interface. An interrupt acknowledge dais chain is then used to make certain that
only one intemipter at a time supplies an interrupt vector to the interrupt handler. Since this dais- chain line
is shared by each of the virtual buses, only one processor can act as an interrupt handier at a time. For further
details of the interrupt protocol, see the chapter on priority interrupts.

References to the control page are sorted into multicast requests. illegal addresses. and references to
registers in the multicast address generator, the memory management unit. and the interface control register.
If the reference is to the multicast request location, then the RAPIDbus drvers are selected as above for a
RAPIDbus address space access with the address strobe replaced with a multicast address strobe. In the case
of a multicast. the address lines are not driven during the home window. Like the interrupt handler request,
the mulucast operation is delayed from reaching the RAPIDbus until the master interface has made certain
that it is the only virtual bus making a multicast request. This restriction is because the mulucast data
acknowledge, multicast bus error, and multicast retry lines are not time-multiplexed. but are shared by all of
the virtual buses. When the master interface is the master of the multicast lines, then the data transfer is
driven onto the RAPIDbus during the home window and is executed similar to a standard memory reference
to the RAPIDbus address space. For further details of the multicast protocol. see the multicast protocol
section in the chapter on data transfer operations. An illegal address reference will cause a bus error.
terminating the data transfer cycle. A legal reference to one of the interface registers will cause the interface
to send a DTACK back to the interface host processor. terminating the data transfer cycle.

The Ibus under master ownership is protected from deadlock by a non-answering memory location by the

RAlPl)bus: Architec:re and Rcaliation 61

Fr om ,in

I in te r c ogueodt he interface page device

maaeetuiasi nd te poessr itulbs

cynchr6us delaydel se.Plres

brdmmrrsucsDv it .or 16re ion f t
r' iu~,-d I y lev c inpu~s I

avp eros der.y

suyrcchrcu delayexPire

Con' rol Page Reference

aS dsrla t h a s rt. ang da t h

syncrnr 3ous delay

Syn~hroo-u delay
popesres

Generate DTACK 'a V¢ersa~us por-

AS. DTACK.

BFRR High

1 Clock cycle delay I

Re-urn io

< inallo cated tus

Figure 6-2: Control page references are used to modify the
R..PIDbus interface configuration or that of the memory
management unit assigned to the processor's virtual bus.

tirreout provision on the interface card. Based on the dip header setting, the bus will request a retry' at 2. 4, 8,
16, 32. or 64 microseconds plus a small delay that is based on the interfice address. This small skew factor is
intended to prevent reoccurring lockout when two processor cards simultaneously access each oher's on-
board memory resources. Ifra DTACK is not received within 2, 4, 8, or 16 retry cycles, then the retry becomes
a bus error.

A\ Versabus host processor which has obtained block move ownership of the lbus is asked to release the
Ibus ifra request is made by another virtual bus for access to the]bus of the interface doing a block move. The
block moving processor is presented with the bus clear signal at the Versabus port. asking for the lbus to be
release. Assigning the lowest priority on the Ibus to the Verabus port favors completing a data transfer
request that is in progress, thus minimizing die possibility of" a timeout or a total lockout from a busy
processor.

R \ Pt DbUS: \rchitectu re and Reali/ation 62

6.3 Memory Access

Mlastership of the lhus belonging to a sld~e \cr-sabus port h% the master R.\PIDbus interface is required to
complete a witUal link bctmeen two Versabus ports. This mastership is allocated b the sla,,e lbus controller
for one data transfer at atime. Unle MCMor,, reference access is depicted in figure 6-3.

.~e J3Z~ ~rt~.'S a~et secon leve thldaatch.e

locations ondWieslo then

inefaecadantch srince hotcr.ftesiniat address lie actesaeIu sNot ino use, h

?i materintrfa e dess is taked ou by th laeitefcecnrc egse. Ad no Wiutequsts ae

R.\PIlDbus: Architecture and Reali,-auon 63

in progress, then the output of the first level latch is held by the second level latches. At the same time the
second lexel latches, the windok address of the master processor is held by the Aindo\ ,ecion. and a request
is made !or mastership of the sla~e lbus b% the slave interface RAPIDbus port as a memory reference master
b asserung [bus Br #2.

When the lbus of the sla~e interface is granted to the RAPIDhus port to complete a data transfer, the
appropriate lines are gated onto the slave Ibus. Tihe address, address modifier. As, Write, and data strobe
lines are aiways asserted. If the Write line is asserted low and either of the data strobes are asserted, then the
data lines are driven onto the sla~e Ibus. presenting a write request to either the slave Versabus host or the
interface control page if the slave is a slave-only interface which cannot moditf its own interface control page.
On subsequent occurrences of the master processor's window, or %irtual bus, the DTACK. BFRR. and retr,
lines from the slaxe Ibus are gated onto the master virtual bus. If the data strobes hase been asserted and
\Write is high, indicating a read. then the data lines are also driven during the master processor',s %,,ndow. The
data transfer c.cle is completed when the As is remosed by the master procesor. releas:r;g Wle irtual link
between \ersabus ports, freeing the slave Ibus. The master processor must always send at least one window
with address strobe high in order to terminate the link.

Since the virtual bus link between Versabus ports remains open as long as the master processor continues tc
assert address strobe. read-modifv-write cycles can be handled without niterrupunn. Not asserting
RAPIDbus data line drivers or [bus gates until at least one data strobe is asserted rem,-,, es the possibility of
both master and slase processors driving the data lines at the samne time. Problems occur \ ith the 680,0
architecture if two processor/slave Versabus hosts each try and access the other's memor vith read-modify-
write instructions. Ifa deadlock situation results in which neither request can gain mastership o%er the other's
Ibus. then at least one will time out, resulting in an attempted retry' of a read-modify-write insauction. Since
the 6S000 will not retry a read-modify-write, a bus error will result, trapping to a time consuming bus error.

6.4 Multicast Access

A multicast access request is similar to a memory reference access except that the address is not . i~ed b
the multicasting master, but rather multicast address generators on each of potentiall. several (slave)
interfaces. A multicast data transfer cycle also makes use of a special multicast address strobe, and common
open collector muldcast data acknowledge lines, multicast retry , and multicast bus error. The multicast data
transfer operation is summarized in figure 6-4

During the window following that of the multicasting master on the RAPIDbus. the iulticast strobe line
held by the first level latch is examined. Each interface that is multicast activated (has a non-zero word
count). whose Ibus is not in use, with no requests for the Ibus pending. isn't masking out the multicasting
address, and which receives the multicast address strobe asserted- makes a multicast reference request for the
lbus. The multicast request causes the window address of the multicaster to be latched in the service window
latch in the window section, and causes the output of the first level RAPIDbus latches to be held at the second
level. If the interface is mulucast activated but the potential slave interface Ibus is allocated to another master
or the interface is masking the multicaster address then the multicaster continues to leave the data transfer on
the virtual bus until it either times out or all of the multicast activated interface cards respond to the write by
pulling multicast data acknowledge high. The slave interfaces in a multicast data transfer continue to update
the Ibus on each multicaster window until the multicast address strobe is revoked.

IM. .. .M '_, , ,.

R.\PIlDbus: A\rchitccture and Realization 64

From an

Ibu s > {~ ~ ~ t A m c I S f l Ds' , l e daa . n o

unal I ocated

Thus ,,~ he he f rs, lev l t a i t o

he second e vel l tch.

! :NO Window match

M t A , ID O j) S. data.

ulicast Reference t)RD. BA,,. , Wri:e onto the Ibus

AS. .ta : ms i h serv c ed## a l r e ss on No w nd w match

multip lo b A - wrone tnro the m a us

a~ ~~~~~~~SDAK bu eror the none of th Iucs adrs geeatr shul iceent hei cntr tokepte M

J AS. DTACK,

operation~~~~~~~~~~ inlC tpi oeta n lv sivle ntelicas rite . Rdreoluseroaeqet

Return to
ln. th unal rce'r bus e

Figure 6-4: The multcast reference to this host allows
multiple locaons to be wiitten into simultaneously

If at least one of the slaves i a mulicast operation detects a reason to retrak the write operation or generate
a bus eWor, then none of the multicast address generators should increment their counters to keep the DMA
operation i lock step if more than one slave is involved in the multicast write Reu') or bus error requests

must be retuned to the multicasting processor using the open collector multicast rem or mulcast bus error
lines. Since ie normal retry and bus error lines from the slave Versabus port are not returned to the

mulcaster, the multicaster would know nothing about any, error they indicate. The multicast or multicast bus

error must be asserted before the last multicast activated interface data acknowledges the multicast cycle.

When the multicast data acknowledge line goes hip , then the multicasting Versabus port s ed a DTACK

acknowledge and i turn drives the address strobe high, closing the virtual bus connection.

6.5 Interrupt Vector

If a Versabus host generates a Versabus port interrupt then the interrupt propagates down to non-time-
multiplexed RAPIDbus interrupt lines that generate an interrupt on the Versabus processor that is strapped to
service the level interrupt generated. Before the interrupted processor can begin the task of servicing the

RAPli)bus: Architecture and Realization 65

interrupt, it must obtain a vector from the interrupting processor indicating the reason for the interrupt. This
interrupt handler cycle resembles a master-slave memory reference in many ways. The interrupt handler
cycle is illustrated in figure 6-5.

From an

unallocated ta.ch the first level data into
T bus e o n e second level latch. Send

FT interrupt acknowledge to the
Versabus port .

Interrupt Vector
I

Request Reference Gate A. Am, As, IDS. LIDS,

T e a g Oai BAS. write i nto the Ibus

If on e of tr data strobes is
adshred an d wrte is int t hen

t he rstlevelof allofthe syem slaves, .e i l ina is e d ow t e no1ts
mult d trute cnlg en dais ch i inddcateO he ip lo ten

y the ine an RAPDus. itfea s a ep nde rhequst
Orve)A~ k er erot ae A. Ant As, LDS. U{],(rh :efr tlv ldat it

ne Ru idu ak ln . I n RD. 1BA5, & Write onto the]bus seod eel ath

3.,R wr * s high the drive asvre an w s lw t hen

, una l atated u ont h A I,),, aed taot h b

G ~igr A.5 Th, As.r p handse cyce alcw thefis le ldaa nt
L~atiD. AS & r~e ntter ptg 1b. abu hos totl he sendt e velatch

servic ade s i ntru t

the~ ~ ~~~~~~~~~~~" 'iscee falo hesse lvs hnthe fitrrut aknoeleg ~ na assntdtnteo-he

A S , I IC K , h e U l m " ,ITRR Hig AS -- TI, CK,

R,.\lDbus: Architecture and Realization 66

an interrupt handler function code), servicing the level interrupt generated by the interface Versabus port.
and the interrupt acknowledge signal is received along the daisy chain, then an interrupt %ector request is
made to the interrupter [bus. Ifan interf'ice did not generate an interrupt at the lesel being handled, then the
interrupt acknowledge signal is passed on down the daisy chain.

This request causes the interrupt handier address to be latched into the service address latch of the window
section. the second level latch holds the output of the first level RAPIDbus latch, and the interrupt handler
request is gated onto the Ibus of the interrupting processor. At the same the interrupt acknowledge signal is
fed to the Versabus port ACKIN. On subsequent occurrences of the interrupt handler , indow, the address,
address modifiers, address strobes, Write, and data strobes are latched at the second le,.el latch of the
interrupting processor. On the same interrupt handler window the data, data acknowledge, retry, and bus
error lines are driven, returning the interrupt vector to the interrupt handler. The virtual bus connection is
closed, freeing the interrupter Ibus when the interrupt handler revokes the address strobe.

6.6 Ibus Operation Summary

Thus three major kinds of virtual bus links can be made between two different Versabus ports Mithin the
R.\PIDbus system. A memory reference request causes a read or write inio memory mapped into the
physical RAPlDbus address space. The multicasong reference allows a write ime nmultirle physical
RAPIDbus locations on different RAPIDbus host card.,,. The interrupt handler w;c'or request ,pecifies the
routine that will satisfy the interrupter Each kind of link has its own protocol lines ,at request the slave Ibus
and get tie attention of the interface and/or Versabus port resources. Each inter',ice c;;rd functioing as a
system slate terminates its virtual bus link with the master when the address strobe is withdrawr,, completing
a sing!e data transfer operation. The master in contrast can request use of its lus for a block transfer.
maintaining mastership of the !bus until it is requested by another system master ii-,ng to gain access to
resources on the Versabos card of the processor engaged in a block transfer. The Ibus and virtual bus
assigned to each processor are key channels to support multiple processors invol,'ed in s.mulaneous data
transfer operations.

RAPIDbus: Architecture and Reaization 67

7. System Support

7.1 System Timing

The bus window mechanism that is used to implement the virtual bus structure is, b nature, synchronous.
Seeral timing sources based on a single oscillator radiate from the system's master clock control card. The
master clock is the buffered output of the oscillator. This master clock is used to drie a counter on the master
clock controller card. The lines out of this counter represent the window address lines that are driven on the
backolane, designating the window address of the processor interface that owns the current bus window. The
master ciock is also divided down to generate the lower speed clocks that are supplied to the Versabus hosts.
Several different phases of host clocks are generated in order to optimize the initiation of a data request by the
host process:Jr for a particular window address. (See figure 7-1.)

Divider Host

Clocks

Masteer

Master Buffer Mastoer

Oscillator Clock

CWindow
Addresses

Figure 7-1: All synchronous system timing is derived
from a single time base

7.1.1 The Master Clock

The master clock line on the RAPIDbus backplane is the buffered output of an oscillator on the master
clock controller card. The rising edge of the master clock line on the RAPIDbus is timed to coincide with the
edge transition of the window address, requiring a high slew rate buffer with a delay equal to the delay in the
counter between the clock edge and the changes in the counter output.

The master clock line is used by all of the system interface cards to time the latching of the bus window into

RAPI1)bus: Architecture and Realization bS

the first level latch. lis line should be seen by all interface cards to go high at the same time in order to
maximize the bus window data transmission rate that can be accommodated. The length of the minimal bus
window that can be reliably run is increased by the maximum possible skew master clock skew as seen by any

two RAPIDbus interface cards. Thus the master clock dner must be chosen for high slew rate, and the
backplane line that supports it should be ideally arranged in a star radiating from the master clock controller
card.

The maximum clock rate that an implementation will support is limited by the maximal frequency at which
bus windows can be run on the RAPIDbus. The minimum acceptable duration of a bus window is a function
of the delay in the implementation required to drive the bus, propagate down the backplane, stabilize the bus,
and reliably latch the data driven onto all interface cards at the first level. The time required to activate the
drivers and latch the data includes an often considerable delay while the drivers are coming up to full current
capability (turn-on) and the hold time during ",xhich the data must be stable after it has been "latched". The
propagation time down the backplane and the required stabilization time are likely to be large factors in the
choice of a a minimum window width.

Two implementations are consideied in companion reports. one in emitter-coupled logic (ECL). and the
other in Advanced Schottky, a "TL subfamily. The impcmentation technology has a strong effect on the
minimal propagation delay. The technology must either allow the bus to be critically dampened so that there
is no ringing on the bus after the first edge tanisition which would be detected as a logical Lransition, or the
bus must be allowed to settle until the ringing is no ionger significant, and then latched. Wi, ECL it is
practical to drive and receive from the bus vwhout diverging from the characteristic impeda.nce of the line
significantly. resulting in a negligible reflection coefficient. '171L drivers have a lower current capability and a
higher output impedance, resulting in ringtng that must be dampened by the bus termination so that the bus
can be latched after an acceptable delay.

Once the minimal bus window length has bcen chosen there is a question as to how the resalting
bandwidth is to be allocated. Will more processors be accommodated at d slower host clock speed? Will
fewer processors be allowed to run at a higher host clock frequency? How often will t,, virtual bus link be
updated; once per host clock cycle, every other cycle, or every fourth host clock cycle? Most high speed
processors exhibit minimal performance degradion when the virtual bus link is updated on every other
clock cycle, permitting the same bus bandwidth to support twice the number of processors. If bus windows
can be reliably handled at 16 MHz (best case for TL). then four 8 MHz processors can be supported. The
ECL implementation may possibly handled windows at up to 64 MHz, allowing eight advanced 68000
architecture processors to run up to 16 MHz. Such high frequency bus windows in either technology pose a
significant challenge in the implementation.

Thus the chosen clock frequency is highly implementation dependent and is best determined after a careful
analysis of the implementation bus dynamics. The master clock synchronizes the RAPIDbus interface cards
and is used to derive the host clocks appropriate to the interface address.

RAPIl)bus: Architecture and Realization 69

7.1.2 The Window Address System

The window address system is used to designate the interface which will send a bus %indow down the

physical RAP!Dbus backplane at a particular moment in time. The number of unique addresses is equal to

the maximum number of processor hosts that an implementation can support.

Latch Clock J1'JJJJJJJJJJJ ElFlj

Wtndo ADres 1 0 1 2 3 0 2 3 0 1 0 1 0 1
iin the RABl~bus

Processur #0

Processor #1

Processor #2

Process or #3

Shading indicates that the processor Time

drives the FRAPIDbus.

Figure 7-2: An eight processor system requires either
a high bandwidth backplane or a low frequency

processor clock

The anticipated T71'L impementatioi, will support four virtual buses corresponding to cycles of four bus
windows before the first virtual bus link is updated again. An additional four slave-only cards are supported

with interface addresses (where the most significant bit of the window address is one), but not assigned virtual

buses. The ECL version is anticipated to support eight virtual buses and thus eight bus windows before the

first virtual bus is again updated. In this larger version the fourth window address bit is one on another eight

slave-only interface cards which are not assigned virtual buses. The timing of these systems are shown in

figures 7-3 and 7-2 respectively.

The value of the window address lines is incremented such that the updated window address value reaches

the RAPlDbus at the same time that the rising edge of the clock is reaches the RAPIDbus. In order to

minimize skew in the master clock and window address lines, all must be delivered along equal length runs

from the master clock card to all interface cards.

RAPIDbus: Architecture and Realization 70

Latch Clock

Windo: Addresss
on th RAPIDbus 1 2 3 4 6 7 0 1 2 3 4 5 6 7 0 1

Processor #0

Processor #3

Processor #2

Procesvsor #3

Shasing indicates that the processor

drives the RAPZ~bus.

Figure 7-3: A four processor system can reasonably be
implemented in Advanced Schottky TTL to support

eight MHz processor clocks

Window address lines form the basis for the RAPIDbus realization of a virtual bus structure. The dual
latching level structure effectively separates a complex electro-magnetic transmission problem from the
logical analysis of the bus window which determines the hus window's applicability to a particular interface.

7.1.3 The Host Clocks

The host clocks are the clocks used by each of the interface hosts to regulate their operation. Generally
these clocks operate at a lower frequency than the master clock and the window address lines. Since the host
clock lines are not concerned with the synchronization of spatially distributed elements as the master clock
and window address lines are, transmission along a distributed bus is generally a proper realization technique.

The multiple host clocks differ only in phase and not in frequency. The four processor system supports two

RAPIDbus: Architecture and Realization 71

distinct phases. the eight processor system supports four phases. An example of the host processor clocks and
their relation to the other system timing signals is shown in figures 7-2 and figure (timing.l). As a result of the
implementation dependent delays in the interface and the variety of host timings. the correspondence
between window address and clock phase that leads to optimal performance must be determined for a
particular implementation. The pairing shown in tigures 3-1 and 7-2 are only intended to be suggestive.

Thus the master clock controller card, situated in the physical center of the RAPIDbus backplane provides
synchronization of the entire system coming from a single clock source. The window addresses and the host
clocks are derived from this master clock in a manner prescribed by the implcmentation and the host
processor in use.

7.2 Control Lines

The designers of Versabus recognized the need for a variety of utility lines to provide start-up, test
configuration and synchronization to the AC power line. These lines are adapted by the RAPIDbus
specification as lines global to all virtual buses. The ACCLK indicates zero crossings in the AC power.
ACFAIL indicates that the AC power supply voltage has fallen below a preset value and is used to execute an
orderly shut down of the system. System reset is used return the entire RAPIDbus system to an initialized
configuration, either on power up or when directed to do so by the front panel hard reset switch. The two
system test lines. TestO* and Testi* are used to indicate the kind of testing that each Versabus port will
execute on reset.

7.2.1 ACCLK

The AC clock is a nominally 60 hz square wave derived from the AC power line. The state of the clock line
is based on the sign of the AC power line, changing clock state within 95 microseconds of the zero crossing of
the AC power line. The AC clock is generated by the power supply module, and electrically isolated from the
power line,, feeding the RAPIDbus backplane either directly or through the master clock controller card. The
RAPIDbus interface card transmits the AC clock to the Versabus port unaltered for optional use by the
Versabus host. This'clock provides a convenient time base for implementation of a time-of-day function or
detection of power line frequency zero-point crossings.

7.2.2 Reset

The reset line is an open collector utility line on the RAPIDbus backplane with system-wide meaning. It is
an indication that the system should return to an initialized hardware and software state.

Reset can be asserted in a multitude of ways. The user can initiate a reset via a front panel reset switch, or
optionally via push buttons on any of the Versabus hosts that generate a global (as opposed to local) reset.
The power supply can initiate a reset during the power-down sequence as a result of asserting AC failure. At
least two milliseconds after AC failure has been asserted and fifty microseconds before the DC power falls out
of specification, the reset line is to be asserted by the power failure monitor. This prevents random behavior
as a result of uneven power-down sequencing. On power-up the reset line is to be asserted for at least 200
milliseconds after the DC power levels are in specification.

RAPIL bus: Architecture and Realiiation 72

7.2.3 Test Configuration Lines

The test configuration lines indicate the routine that is to be executed at the conclusion of the reset and
initialization sequence following the assertion of reset. TestO and Tcstl are driven by the master clock card
indicating ,the test configuration. Four modes are available including an immediate monitor entrance mode
(11). a debug mode (10), a long test followed by a return to the monitor (01), and a less than 2 second test
followed by a vector to the monitor (00). As per the Versabus specification. the master clock control card
must not allow either of the test configuration lines to change state while reset is being asserted.

7.2.4 ACFAIL

The AC failure line is asserted by the power supply system to indicate that the DC power is about to be
removed. It must be asserted at least 4 milliseconds before the DC power falls out of pecification. The line is
routed either directly to the backplane or through the master clock controller card. I'he RAPiDbUS interface
then routes the AC failure line to the Versabus port without alteration. The master clock card is responsible
for asserting the reset line at least 2 milliseconds after AC failure has been asserted by the power supply
system and at least 50 microseconds before the DC power falls out of specification.

7.3 I/0 Interface

RAPIDbus is intended to be a research tool, supporting application packages that are by nature constantly
in flux. and I/O intensive. Thus the interface between the RAPlDbus system and the real world is a critical
facet of the system. External interface occurs along four basic paths.

Very high speed input and output, such as bit mapped video. is intended to be handled using special 1/0
cards suchi as a frame grabber or video display card. Such cards may take the form of processor/memory
hosts or solely a memory mapped host, depending on the host's ability to initiate data transfers. Because of
the special nature of such cards, this specification does not attempt to define such special cards except that the
port to the RAPIDbus interface card must subscribe to the Versabus specification.

Lower speed parallel I/O can be accommodated by 1/0 buses local to a processor or processor/memory
card, gated from the local processor bus. This specification details a port structure implemented by Motorola
on their VM02 processor/memory cards. This bus provides 4K bytes of memory mapped 1/0 address space,
four interrupt lines, and a free running 4 MHz clock. Physical mounting of the 1/O controller is either
piggy-back to the processor card or via ribbon cable from the host card to an external control package.

Serial communication with a local network or a terminal is specified to take place over one of two serial
ports on each processor/memory or processor-only host. Port number one is configured to interact with a
terminal. Port number two is configured to port to a local area network as a slave or to a modem. Both ports
are memory mapped and support a variety of baud rates.

The lowest level of system I/O is used to confirm operation of each processor on reset. On reset a test of
the core of each processor is performed. including testing of any on board RAM. When the test is initiated a
red light on the processor card is to be activated. This light is cleared only if the test of each processor core is
successfully executed. Additional indicator lights may be used on the processor card to facilitate system

R .\Pl)bus: Architecture and Realization 73

diagnostics. The protocol for executing such testing is implementation dependent, and can he found in the
implementation manual for the host under consideration.

7.3.1 I/0 Bus

RAPIDbus is targeted for applications which depend on quick, flexible, and reliable communication Aith
tie environment external to RAPII)bus. By using an 1/O bus dedicated to each processor. simple 1/O can be
accomplished without the considerable complexity and expense of creating a slaxe 1/0 card with its own
RAPIDbus port. Howe\er restriction to the memory map of only one processor requires a predesignated
processor to handle all 1/O interactions with a particular device. Failure of this processor removes the I/O
device from the RAPIDbus system. The choice between using a processor 1/O bus and a slaxe interface card
is a decision that must take into account the complexity of the controller, the ability to assign I/O interaction
to a single processor, and the available packaging of OEM controllers.

Two implementations of the local I/O bus architecture are recommended for use on the Versabus
processors used by the RAPIDbus system. The Motorola 1/0 bus is currently supported by the Motorola
Versamoduie computers. It is compact, easily riding piggyback on the processor card or connected by up to
twelve feet of ribbon cable to the I/O controller. The ST) bus has a similar, although slightly larger form
actoi, and a different edge connection scheme. Over sexenty companies currently make a range of OEM

noards for the standard bus in contrast to the single source supply of the Motorola bus. Due to the strong
reliance on a'.ailable OEM monoboard processor cards, the choice of an I/O bus implementation is largely
determined by the available cards and not the relative merits of the bus.

Follo,%ing is a description of the Motorola and STD bus architectures. Implementation details are
contained in the Advance Schottky implementation manual for the Motorola 1/O bus. which is used in the
current implementation. For further details on the Motorola 1/O bus. see Motorola document ES0073 (18].
For a umescription of the STD bus, see Digital Design. April 1982 119].

The Motorola 1/O bus

The Motorola I/O bus is characterized by a 12 bit address bus. an 8 bit bi-directional data bus.
asynchronous protocol, 4 interrupt lines, an I/O system reset, and a 4 MHz free running clock. The interface
host always acts as a master during data transfer operations with the I/O controller, initiating exchanges. The
!/G bus is mapped into the address space of each processor bet\kecn FS0001 and F81FFF at odd addresses.
The even addresses between F80000 and F81FFE are illegal.

A strobe and a data acknowledge line are used in the hardw.are protocol. To execute a write onto the 1/O
controller the interface host places the address and data on the bus. drives the write line low, and then drives
the strobe line low. The 1/O controller responds by recognizing its address. storing the data. and driving the
transfer acknowledge line low. The processor detects the transfer acknowledge line going low, drives the
strobe line high, and continues with the next instruction. The I/O controller detects the revocation of the
strobe line and responds by revoking the acknowledge line.

A read cycle is only slightly more complicated. The interface host places the I/0 address on the 1/O bus,
drives the write line high. and then the strobe line low. The I/0 controller recognizes its address, places the

RAPIDbus: Architecture and Realization 74

requested data on the 1/0 bus, and drives the acknowledge line low. The interface host receives the
acknowledge, latches in the data, and drives the strobe line high. The 1/O controller detects the revocation of
the strobe line, stops driing the data bus. and removes the acknowledge line.

The Motorola bus is designed so that if a drop cable is used from the monoboard computer. several I/O
cards can be chained off the 1/O bus. Motorola I/O cards are expected to provide A/D and D/A converters.
as well as a disk controller. The simplicity of the interface leads to the reacdy design of custom controllers.

The STD Bus

The STD or so called standard bus is a widely supported bus architecture for controller cards with an
increase in flexibility o, cr the Motorola bus. The STI) bus is svnchronous, with a 56 pin edge connector. It
provides six unidirectional data lines, eight bidirectional data lines, sixteen address lines, and 22 control lines.
Four power lines provide digital and analog voltages. It is widely assumed that a subset of the 56 lines will be
selected for implementation with a parucular microprocessor family The STD bus currently supports
peripherals for a large number of microprocessor architectures including the 8030, the 8085. the ZSO, the
!502, the 6800, and the 68000. IEEE has authorized a group (P961) to draft an STI) bus standard. The very
strong support for this simple. sturdy controller ous should merit strong consideration for use in low speed
1/O communication.

7.3.2 Serial Access

Multiprocessors have had a reputation among many potential users as being hard to program, difficult to
debug, and nearly impossible to work with in an actual applization environment %khere the multiprocessor
should haoe been the tool and not the subject. Clearly a good user interface can improie the convenience of
the man-machine interaction. Implementing this user interface within the RAPlDbus s.stm would drain
resources from the applicauons package. Thus it is an objectve of the RAPIDbus system to condition the
user interface through the use of a front panel processor, One possible connection arrangement is shown in
figure 7-4.

Communication Letween RAPIDbus and the front panel processor occurs through two serial lines. The
first line is configured with the RAPIDbus processor acting as "computer" and the frol anel processor
acting as "terminal". The second line puts the RAPIDbus processor on the "terminal" end running the
"computer" end through a multiplexer controlled by the front panel processor, connecting finall. ,Aith a local
area network or external host.

Serial line one coming from each of the RAPIDbus processors must be monitored in preparation for
receiving a message from each of the processors. These messages must be queued by the front panel
processor, identified as to the originating processor, and then presented to the system terminal. Similarly the
user must be able to send commands to a particular processor or subset of processors. It is the responsibility
of the front panel processor to filter the communications so that they are of maximal communicative value to
Jhe user. The front panel processor should be capable of being configured so as to handle some kinds of
requests from RAPIDbus processors internally.

The second serial line comes from each of the RAPIDbus processors. configured as terminals, and must be

R.\PI)hus: Architecture ,ind Realization 75

/ To host

Processor

(RS 232)

RAPIDbus
Processors
Port # 2 Channel
(RS 232) Select

Manual
Channel
Select

Front
pneprssr liies Panel

Processor
Manual Channel

9 Select Channel

__ -- '--"Select

rap esRAPIDbus
ProcessorsMu t p e rPort # 1 - utpee

(RS 232) _

Figure 7-4: The front panel processor simplifies interactions with
multiple processors.

multiplexed so that one can be connected to a local area network at a time. This multiplexer is under the
control of the front panel processor. If a processor is to be downloaded. either the RAPIIbus processor to be

downloaded to or the system terminal must make a request for connection between processor and local area
network throuejh the multiplexer. When the use of the serial line is complete. the RAPII)bus processor must
send a message to the front panel processor indicating that the line is available for reallocation.

RAPIDhus: .\rchjrecture and Realiuaton 76

Eh'lecapabiIit v of am\ s stem element to failI requires the existence of good diagnostic fcaturcs at all levels Of
both hjrd %are and s.oft~k are to mnaximize the system uptimc. P~rocessor cards are specified to be able to
execute functional tests 'In pov er-Lup or reset to \erify that the core of each ',\Stem is functioning correctly.
Similarl\ the front panel processor must be designed for Self tCeing to verif\ operation outside of the
RAPII~bus s~stem. ''he mnuliplexer must then be capable of connectig a terminal and/or host to each
RAPIDIihS processor under user control to execute direct diagnostic control oxer an independent
process. r/'R \ 111Thus ini~rfce ~;se.It is onlx bx bcing able to break the siennas inans independently
\efiable pieces as possible that acetbemean- time-to-repai r \wi! b: experienced.

RAPIDbus: \rchitecture and Realization 77

8. Where Next?

RAPIDbus is intended as an experiment in multiprocessor interconnect structures. Its secondary function
is as a research tool. supporting research in signal processing and sstem control. The preceding document.
RAPIDbus." .Irchilcure and Realiation describes the framework for an experiment. "'Vo following
documents are intended to dc.,,cribe the implementation of tie experiment, and to discuss the results in the
form of both theoretical and run-time perfonnance edluation. lhe first of the implementation documents
describes the .\dxanced Schottky implementauon which is being both constructed and run. The second
implementation document describes a higher performance emitted coupled logic implementation which is
analyzed in terms of theoretical performance. These documents provide the results of the experiment.
Perhaps it is onlk in these discussions that one has a right to find true conclusions...

R \PII)bus:, \rchILC~ture and Realization 78

1. Connecior CP1 Signals

ODD CONNECTOR PINS EVEN CONNECTOR PINS

+5V 1 +5V 2
GND 3 GND 4
DOO* 5 DO1* 6
D02* 7 D03* 8

D*9 IY05* 10
D06* 11 D07* 12
D08* 13 D09* 14
D1O* 15 Dill 16
D12* 17 D13* 18
D14* 19 D15* 20
DPARLTYO* 21 DPARITY1* 22
GND 23 OiND 24
UDS* 25 LDS* 26
GND 27 OND 28
DFACK* 29 AS* 30
GND 31 GND 32
.\RARITYO* 33 WRITE* 34
LWORD* 35 AO1* 36
i\02* 37 A03* 38-
A04* 39 A05* 40
A/06* 41 A07* 42
A08* 43 A09* 44
A10* 45 All* 46
A12* 47 A13* 48
A14* 49 A15* 50
A16* 51 A17* 52
A18* 53 A19* 54
A20* 55 A21* 56
A22* 57 A,23* 58
AM4* 59 AM47 60
OND 61 GND 62
AM3* 63 MAS* 64
TESTO* 65 RETRY* 66
GND, 67 GND 68
ACCLK 69 INT.RTN 70
GND 71 OND 72
INT. BLOCK5 73 RESET* 74
MLT.BLOCK* 75 MLTBERR* 76
MLTDTACK 77 ACFAIL 78
TESTI1 79 NC 80
BERR* 81 MLTRETRY* 82
AMO* 83 AM1* 84

RAPI)bus: Architccture and Realization 79

AM2* 85 AM6* 86

IRQI* 87 IRQ2* 88

IRQ3* 89 IRQ4* 90

IRQ5* 91 IRQ6* 92

IRQ7* 93 AM5* 94

ACKIN* 95 ACKOUT* 96

+5 97 NC 98

+5 99 NC 100

+5 101 NC 102

+5 103 NC 104

+5 105 NC 106

NC 107 NC 108

NC 109 NC 110

NC 111 NC 112

NC 113 NC 114

NC 115 NC 116

NC 117 NC 118

GND 119 GND 120

-12V 121 -12V 122

GND 123 GND 124

+ 12V 125 + 12V 126

+ 12V 127 + 12V 128

+5V 129 +5V 130

+5V 131 +5V 132

+ 5V STBY 133 + 5V STBY 134

GND 135 GND 136

GND 137 GND 138

GND 139 GND 140

RAPIDbus: ArchitectUrc and Realiiation 80

II. Connector CP2 Signals

ODD CONNECFOR PINS EVEN CONNECTOR PINS

GND 1 GND 2
GND 3 GND 4
GND 5 GND 6
+5V 7 +5V 8
+5V 9 +5V 10
+ 12V 11 + 12V 12
NC 13 NC 14
-12V 15 -12V 16
GND 17 GND 18
ADDR1 19 GND 20
GND 21 GND 22
ADDR2 23 GND 24
GND 25 GND 26
GND 27 GND 28
ADDR3 29 GND 30
GND 31 GND 32
MASTERCLK 33 GND 34
GND 35 GND 36
NC 37 NC 38
NC 39 NC 40
NC 41 NC 42
NC 43 NC 44
GND 45 NC 46
NC 47 GND 48
NC 49 GND 50
NC 51 GND 52
NC 53 GND 54
RXD2 55 GND 56
TXD2 57 GND 58
GND2 59 GND 60
RXD1 61 GND 62
TXD1 63 GND 64
GND1 65 GND 66
-15 67 -15 68
+15 69 +15 70
GND 71 NC 72
NC 73 NC 74
NC 75 NC 76
NC 77 NC 78
Host CK 1 79 NC 80
Host CK 2 81 NC 82
GND 83 NC 84

RAPIDbus: Architecture and Realization

Host CK 3 85 NC 86
Host Ck 4 87 APARITYl* 88
A24" 89 A25* 90
A26" 91 A27* 92
A28* 93 A29* 94
A20* 95 A31* 96
GND 97 GND 98
NC 99 NC 100
GND 101 GND 102
DPARITY2* 103 DPARITY3* 104
D16* 105 D17* 106
D18* 1.7 D19* 108
D20* 109 D21* 110
D22* 111 D23* 112
D24* 113 D25* 114
D26* 115 D27* 116
D28* 117 D29* 118
D30* 119 D32" 120

References

1. Loccoli. Mario P. and Sanderson. Arthur C.. "Rapid bus MNultiprocessor S~.stem.- Conrpuicr Design.
November 1981. pp. 189-200.

2. rao.Rfe nSndro.rhuC. Dsgn of RIPI: An Image Processor for Robotics." Tech.

report CM\Li-RI-TRI-82-3. Carnegie-Mellon Robotics lnsdiute, 1982.

3. Motorola Inc., 1'ersabus Specification M~anual. fourth ed.. Phoenix, Arizona. 1981.

.1. Dario Giuse Carnegie-Mellon Computer Science Department, DP - Commnand Set, Pittsburgh. Pa..
1982.

5. Swan. Richard J.. The Sitiching Structure and Addressing 'frchiwecture of an Extensible
A Iui'::p'rocessor.- Cay', PhD dissertation, Carnegie-Mellon, 1978.

6. Wulf. 'William A. and Harbison. Samnual A.. "Reflections in a Pool of Processors," Tech.
report CMCI-CS-78-103, Carnegie-Mellon Computer Science Department. February 1978.

7. DEC. VA.Y Hardware Handbook Digital Equipment Corporation. Maynard. Mass., 1980.

S. Langeribach-Belz. M.. 1-F17 1230 Exchange: Small Local Version," EiectrL'al Coinmunicazon. Vol. 54,
No. 3. September 1979, pp. 193-204.

9. Richard%. P.C.. 'iT!' 1240 Exchange: Cost Effective Design." Electrical Communication. *ol. 54. No.
3. September 1979. pp. 205-214.

1,&. DEC. PDP-11 Peripherals Handbook Digital Equipment Corporation, Maynard, Mass., 1973-74.

11. Halversa Engineering. Synergist Product Specification Manual, 13597 Paseo Tierra, Saratoga. Ca.,
1982.

12. Motorola,.1f68KVMfOI Series Versaitodule Mfonoboard M~icrocomnputer User's Guide first ed.,
Phoenix, Arizona. 1981.

13. Motorola, Jf68KVM102 Series VersaModule 1fonoboard IMicrocomputer User's Guide, ;t ed.,
Phoenix, Arizona, 1982.

14. Rigger. Chuck. "ZMOB: Doing it in Parallel," Computer Architecture for Patterii Anal '1sis and Image
Database Management. K. S. Fu, ed.. IEEE, Piscataway. New Jersey. November 1981. pp. 119-124.

15. AVND, Bipolar Microprocessor Logic and Interface Data Book Ad~anced Micro DeN ices, Sunnyvale,

California, 1981.

16. Motorola, 41 emory Alanagement Urnit (MU) Advance Information. Phoenix. Arizona. 198 1.

17. Motorola. 16-Bit Al icrocprocessor User's Mlanual, Prentice-Hall. Englewood Cliffs. N.J. 07632. 1982.

18. Motorola. l0bus Specification ;rES0073. first ed.. Phoenix. Arizona, 1981.

19. Snigier. Paul. "The STD Bus," Digital Design. April 1982. pp. 62-69.

