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PRESENTED AT TIE 2ivD SYuMPOSI1:, ON NWIERICAL AND PHYSICAL IETHODS FOR
AEMODYNANIC FLOWS, Long Beach State University, Long Beach, CA, January

, 17, through January 20, 1983.

GLOBAL SOLUTION PROCEDURES FOR INCOMPRESSIBLE LAMINAR FLOW
KraH STRONG PRESSURE INTERACTION AND SEPARATIONAWIRTR S3 1 T 2 PESR5ITRCIO N EPRTO

"AFOSRTR' 3 0 125 S.G. Rubin and D.R. Reddy
Department of Aerospace Engineering and Applied Mechanics

University of Cincinnati
Cincinnati, Ohio

Abstract The objective of the present development in
the solution of the PUS system by direct application

Global or relaxation formulations for the re- of the momentum and (first-order) continuity equa-
duced form of the Navier-Stokes equations, frequent- tions. The formulation does not require the
ly referred to as parabolized Navier-Stokes (PNS), second-order differential form of the poisson
are presented. Difference procedures and relaxation pressure solver. A global line relaxation procedure
solutions for the (u,v,p) system are presented. is developed for (u,v,p) or a composite [6, 71
The continuity equation is satisfied exactly at (U,O,G) system. For non-separated flows only p
each grid point and a oisson pressure equation is or 0 are stored during the relaxation process. For
not required explicitly. The development of a so- separated flows, (u,v) or (U) is required only in
cond composite (,J,4,G) velocity relaxation procedure regions of reversed flows. This significantly
for the primitive variable equations is also dis- reduces computer storage requirements.
cussed. For the (u,v,p) system, several model
problems, e.g., finite flat plate, trough, boattail
and airfoil, are considered. Strong pressure inter- 2. Governing Equations

*action is evident in each case and axial flow se-
paration occurs for several of the problem. The We consider here the reduced set of PNS equa-
questions of accuracy, stability, convergence rate, tions (1, 2) written in two-dimensional or axi-
and implied difference forms of the pressure and symmetric body fitted conformal coordinates. The
vorticity equations are addressed. equations in general orthogonal coordinates are

given in (3]. As discussed for oartesian coordinates
1. Introduction in (2, 31, for incompressible flow a consistent PUS

approximation allows for the neglect of all axial
Conventional methods for the numerical solu- () diffusion term as well as all diffusion effects

tion of the primitive variable form of the incom- in the normal () momentum equation. Normal
pressible (elliptic) Navier-Stokes or ("semi- diffusion can be included in the n-momentum equation:
elliptic") parabolized Navier-Stokes (PNS) equa- however, for consistency these terms have generally
tions are such that the velocity components, u,v, been neglected. Numerical tests with and without
are determined from the mentum equations, and the these term have confirmed the validity of this
pressure p is obtained from the differential approximation for several of the problem consi-

poisson equation derived from the momentum equa- dered herein.
tions. The equation of continuity is not evaluated
explicitly but is satisfied indirectly through the (i) (u,v,p):
poisson equation and pressure boundary conditions.
Since this procedure differs markedly from most continuity
inviscid, boundary layer and triple deck formula-
tions, an alternate development that more closely (hh3 u) + (hh3 v) a 0 (Ia)
f follows these asymptotic theories is considered

here for the evaluation of viscous interacting
* flows at large Reynolds numbers. c-momsntum

In the present paper, the authors continue the (hu2 + h2 u)+vhh, 2hh
line of thought first presented for the PNS system 3  (h uv)nt+uvh 3h, v h 3h
in references [1-31. The analysis is developed in
greater detail here and in [4, 51. The questions - - hh 3 p + V.T/Re (lb)
of global stability of the relaxation procedure,
the resulting difference forms of the pressure and 2

* vorticity equations, accuracy and rate of con- where V.T - [h3 (hu) n/h I (1c)
vergence, are examined more critically. Compari-
sons are given with triple deck and interacting
boundary layer solutions for trailing edge and n-momentum
trough configurations; solutions are also obtained
for boattail and airfoil geometries. The effects (h2 + 2 hh
of strong pressure interaction and/or flow hh 3P, - (hh3uv)C (hh 3v n-uvh t+uh d)
separation are evident in each of these problems.

The majority of the solutions are for laminar flowi The cartesian coordinates (x,y),
conditions; however, several results have been T carea coorobandwt h eei-mt w ae dyn - (x,y) are related to the (x,y) physical coor-

g obtained with the Cebeci-Salth layer eddy dinates through the transformation a- f(z) or
z-F(a) where a - +in and z - x+iy. The metric h
is defined by

This research was supported by ihe Air Force Office of Scientific Research under Grant No -900047.
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the full Navier-Stokes equations in (6, 71. Analysis
2 2 1/2 2 2 1/2 of the PNS equations with the composite system is

h =f' (z) -N( + Y) (x 2 + Y) in progress and results with this formulation shall
be presented in a future paper.

The metric h3 - y E where e = 0 for two-dimensions
and e- 1 for axisymmetry. The metric h and all 3. Difference Equations
derivatives are evaluated with second-order differ-
ence formulas. In the axial and normal momentum In the previous analyses 11-31, it was shown
equations (lb, 1c), the metric h and derivatives that if the system (1) was forward marched in the
of h are assumed to be at most of order one. For boundary layer sense, i.e., backward differences

. geometries with larger curvature the complete are applied for all & derivatives in non-separated
. expression for V-T may be required in (lb) and the regions, the elliptic pressure interaction would

viscous effects in (id) may become important. The not be properly represented and therefore the
full Navier-Stokes equations or a more appropriate exponentially growing Lighthill departure solutions
non-conformal coordinate mapping may then be would appear for step sizes 4& < (W)mi n . For
required, see (6, 7]. cartesian coordinates, from [2, 31, we find that

2
(ii) (U,%,G} : (A)min - , where y is the location of the

In the composite velocity development described outer boundary y = yM. Only for y < I are
in [6, 71, an "inviscid" pseudo-potential $, accurate solutions possible with forward marching.

viscous" velocity U and "inviscid" Bernoulli If global relaxation or multiple sweep marching
pressure G, replace (u~vp), i.e., is used, i.e., all & derivatives of velocities are

u - U(3( +4 )/h - Uubackward differenced in non-separated regions, but
a Usome form of forward differencing is applied for

p& in (la), the elliptic pressure interaction is
v - /h recovered and the departure free limit AC & (A)min

2 2 is removed. Solutions can then be obtained for
p/o + (U +0V)/2. - 0, see 2, 31; the numerical procedure is

consistent and any desired degree of accuracy can
be specified. Finally, in order to circumvent the

The equations become pressure singularity at separation, the pE term
must also allow for a local as well as a spatial

continuity interaction. For example, central differencing
fails in this regard and, as discussed in [2, 31,

(h3UC) + (h3on)n + (h3U)C - 0 (2a) is unstable globally. Forward differencing of p
satisfies all constraints and moreover is consis-
tent with the eigenvalue analysis of Vigneron

&-momentun et al. [91 which shows that for incompressible flow
[hh3UeV(U)), 2h3 (M - 0), there should not be any forward marched

ut + ( [h h 3  _ + 3 component of the p. tem; i.e., w - 0 in his
analysis. Forward differencing and global relaxa-

2 tion was first applied successfully in (1-31 for
e h e e (U-1)/h several model incompressible flow problems. The

extension to compressible flows is discussed for a
conical geometry in (21 and for flows with axial

= - G./h + V-T/R (2b) flow separation and strong pressure interaction
a •in (101. More detailed discussion and results

are given in (3, 41.
n-momentum

The difference scheme used in (1-31 was devel-
- (U-1) (u 2/2) - u 2h /h (2c) oped from the following discrete grid:

This multiplicative composite velocity development J+l U'v'P

is patterned after matched asymptotic viscous- Ay

inviscid flow theory. For inviscid irrotational ju.v,p ju'!pl i. u'V'p
flows, U !_ 1; (2a) then reduces to the potential
equation and (2b,c) lead to the Bernoulli equation,
G - 0. For boundary layer problems, ue , u J-1 u,v,p
(or :, ] and G are specified with boundary layer

edge conditions and (2a,b) combine to determine U: i-1 i i+l
(U,v). Interacting boundary layer theory combines
elements of both limits, so that (2ab) form a
coupled system for (U,O), with G prescribed. The v: i-1 i i+I
equations (1) or (2) contain all the terms appearing
in each layer of the triple deck structure (3].

p. i-1 i i4l
The present investigation concentrates on the

(u.v,p) formulation described by equations (1).
Composite solutions have already been discussed for Figure 1: Difference Grid I.

2
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The continuity, x and y momentu equations are -A 10
r. centered at @ S and (, respectively and the UP

difference equations given for a uniform mesh in 4y
cartesian coordinates are as follows. up I~ .

continuity, 
centered at 

( i. j-):

"u:' i,-u i-l, + 'i'j-l" ui-ifi-1 + il V jlJ1v

2Ax Ay

=0 (3a) U: i-i

x-momntum, centered at (i.j): V: i+l
u _u n-l

" ui,1 ji-l,j) u__,__ _"u, J-)Pi+1- Pi
• i~j A x ij 24y A x pt i 1

1- (i. ",j+l" 2u i11 (3b) Figure 2: Difference Grid I

The appropriate difference equations, also shown in
y-momentum, centered at (i,J-4): non-conservative form, are now centered at somewhat

different (, (9), ( locations.

PA PiJ -l continuity, centered at @ is the same as (3a):
ay

u uu +u -u v -v
.u v. -V ill i-l(i ivi-v i-l'i-l 4. 2,x i-l

2 2A ,

v ij v ( =0 (4a)+y Ui J U ' i'j- {ui ' j 'ui l '

x-momentum, centered at
The equations are shown here in non-conservative
&,CT Ar this simplifies the subsequent discussion uiiui u i.ilui
of the linear system. In fact, for most calcuLa- 2
tions conservative equations were considered.
All quantities are evaluated at the th iteration uij+l uiJ.;+ui-i+i-ui 1 1 i

n-1 Vlevel except Pi, which is evaluated at the Lei 44y

previous iteration. For separated flows the con- pn-in-i n-i ~i 1,J "i,i
vective terms are upwinded and ui+-, vinl  terms + ix

are also required at level n-l. The difference
equations (3) are first-order accurate, i.e., u -2u u +u -2 u +u
O(AX, yY

2
). I ( iJ+1 i,j i,J-1 i-le +l i-lJ i-,j-l

* An alternate and more accurate derivation of (4b)
the equations and interpretation of "forward"
differencing for p& is given below for cartesian y-momentt, centered at
coordinates. This system was considered initially
for inviscid flows (41 and resembles a slightly ___ _ -1-
different development proposed by Israeli (8]. Ay
Consider the staggered difference grid asshwn u (i-l J +ui-, J-l) H(vi, j'vi-l j+vi j-l"vi-ltfJ-l)shown: lj

4
i.jl

2 26x

+ 1 (vi +Vl,+vi _ + Vil. )

4 x ' i  v i '  + 
vie1' v i - ' -

l

yv (4)

S 2Ay

* 3



In this formulation full second-order accuracy is vv term in vw y; however, with the definition (5b)
achieved. The primary modification of the system th ee 2 2
(3) is the averaging of the y-derivative terms th e on this accreiy is Oeaie in )t~n te mmentm euatins.m mon pessue ~ so that second-order accuracy is retained in thein the momentum equations. The unknown pressure pi difference approximation of the vorticity transport-is al so shi ft ed one po in t to th e left o f thateq a i n s e 4 . S m l r e u ts c n b
given by the formulation (3). This interpretation obtain, see schSmi reultsa be
is more accurate and is consistent with the bgobrt.ned with the scheme proposed by Israeli in
character of the interactive solutions as will be
seen for the trailing edge problem to be discussed.'...in a following section. If (5b) and th~e continuity equation (3a) are
incombined to eliminate either u or v terms, for

A third system of equations, which also prn- w - 0 we recover a nine-point second-order accurate

vides second-order accuracy has been proposed by difference formula for either V 2 u- 0 or 2 v- 0.
Israeli '8]. The staggered u.v grid is then of In fact, inviscid irrotational flows can be solved
the form: numerically with (Sb) and (3a), in lieu of the

potential equation 72#- 0. This is a result of
backward differencing of ux in the continuity

j+l U.p equation and, as seen in (Sb), forward differencing
of v. in the definition of vorticity. One boundary

I v W Vcondition is satisfied for u (left bounuary) and

' u one for v (right boundary). This is a direct
result of the differencing procedure applied for

(2 the u,v,p primitive variable system; i.e., backward
differences for velocities (in non-separated

j-i u,p regions) and "forward" pressure differences as
___interpreted in Figure 1 (first-order accuracy) or

Figure 2 or 3 (second-order accuracy). Further

u: i-I i details of this analysis are given in [41.

(ii) Difference equation for pressure:

V: i i+l
In a similar manner, the effective poisson

difference equation for the pressure can be obtained

P:i i+l by (xzmom),j - (xm-m) i-lj + (Y-mou),J+l" (Y-mom)i,

- 0. This equation is of the form (see (41 for

Figure 3: Difference Grid III. derivation)

The equations are only slightly modified from those - i i 2 i,
of (4); however, the y boundary condition for
v must be treated rnmewhat differently. n-l - f (u 'v

) (6a)

(i) Definition of vorticity and vorticity
transport equation: 2where o - (Ax/Ay)2

If the nonlinear coefficients u ag.' are
assumed constant and the pressure is eliminated
from (4a,4b), the following difference equation In order to recover the more conventional lne

* is obtained, in the inviscid limit, for the vorti- relaxation form of the difference equation,
city transport (41: Israeli [5] has shown that if a source term Si,

is introduced in the x-momentum equation (3b or 4b),
u(W --1i' j)+ , V( +j+l- _ + j+l-i.,j_l) we obtain

x 4Ay op -2 ~ , 4 n-i
2  2  (ai, J+l -2 (+I1 )p, j + OP i,j-l + Pi+l0 J + pi-l,jS.O(Ax2 , y2 (5a)

where (uv) (6b)

Vi+li •vi i, +l, 1-l'Vi w-h ui,S Uip -l n-i
i ,j 2Ax Ay where Si'j - - lj

(5b) This is equivalent co introducing an iterative

This corresponds to defining w at the location W "time" derivative into the relaxation process.
Israeli [5) has also introduced an overrelaxation

shown in Figure 2 and centering (5a) at location Q parameter c as a mechanism to improve convergence
Both expressions (Sa) and (Sb) are second-order rate. Our experience has not led to a marked
accurate. The difference equation obtained by improvement in convergence for the nonlinear
replacing wi, terms in (5a) with the formula (5b) system (4) with overrelaxation. Therefore, all

is exactly that resulting from the elimination solutions depicted herein are for the first-order
of the pressure in (4a) and (4b) except for the system (Sa) or the second-order system '5b) withr t 1. Multi-grid procedures have been applied

4
I
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for convergence acceleration when fine meshes are coarser grids, e.g., AM 2 convergence is
required, see (41. YM 20

quite rapid. For finer grids, SOR or multigrid
It should be reiterated here that although a acceleration has been considered (4, 51.

poisson-like relaxation scheme can be inferred,
boundary conditions are prescribed for p only at The outer pressure boundary condition must be
the outer (y) boundary and downstream (x) boundary; prescribed at a location beyond the extent of the
also, the pointwise continuity equation is satisfied interaction zone of influence, e.g., triple deck.
exactly. As noted in the introduction, this is in The pressure boundary condition can be fixed during
sharp contrast with conventional solution procedures each sweep of the global procedure. This value will
that use the poisson form of the pressure equation remain unchanged if the oiter boundary is suffi-
with full Neumann boundary conditions and only ciently far from, and unaffected by, the viscous
indirectly satisfy the pointwise continuity interaction; alternatively, the pressure boundary
equation, condition can be updated prior to each sweep in

order to account for viscous displacement effects.
In conformal body fitted or streamline coordinates,

4. Consistency and Convergence this should be unnecessary. Unlike interactive
boundary layer theory, where the outer pressure

In order to complete the analysis of the boundary value requires a local interactive treat-
relaxation technique discussed herein, two questions ment in order to circumvent the separation point
are posed. Does the prescribed differencing singularity, a fixed outer pressure condition is
procedure capture the elliptic pressure interaction acceptable with the PUS formulation. The normal
in each sweep of the iteration cycle, and what are momentum equation reflects the outer inviscid or
the convergence properties of the global relaxation interactive behavior and the separation sinqularity
process. The first question has been addressed is automatically suppressed.
in (1-3] and as discussed in section 3, the depar-
ture effect is circumvented and the elliptic inter- To suarize, if Px is treated explicitly or
action is captured with the forward pressure central differenced, the global procedure is
differencinq of (3b) or (4b). As shown in (4], the unstable; if p x is backward differenced, departure
introduction of the source terms Si provides solutions appear for 4x - 0. With

iforwardO differencing all iterative procedures areincreased nroperial Ian and nchnste stable and the global marching problem is well-
stability properties in each marching step. posed.

The second question is considered in detail in
reference (4]. The primary conclusions are pre-
sented here. Although the forward pressure dif- 5. Boundary Conditions
ferencing eliminates the inconsistency' found with For the finite-difference grids of Figures 1
single sweep procedures, so that A4 can be madearbitrarily smll, the departure limit Ax •2yJ or 2 the appropriate boundary conditions are

r sspecified as follows in the transformed body fitted
appears indirectly as a factor affecting convergence coordinate system:
of the global relaxation procedure.

At a surface y - 0 (J - 0), the velocities
It can be shown from a linear global stability u - v - 0; at a symmetry line y - 0 (j - 0), the

analysis that central diffrencing of px is unstable velocities satisfy u - v - 0.
(2-41, but with forward differencing of PIX as in y
(3b), the iteration technique is unconditionally At the outer boundary y - yM (Q - M), where y
stable. The maximum eigenvalue is given [3, 4] as lies outside of the extent of the interaction

zone, e.g., triple deck, p - p., u - u and a

4-lc 2  x 2 boundary condition on v is not required.- C- ) N2

1 7 x At the inflow boundary x - 0 (i - 1),

o u - u(0,y), and vx(O,y) - 0. For inviscid• or
regions, where u - u., vx - 0 is a zero vorticity

- 1-c ( (-x) condition and for viscous regions v x - 0 is
y " M equivalent to a boundary layer approximation.

The velocity v should not be specified at the

where ci s a constant of order one, y M is the outer inflow. This leads to inviscid vorticity produc-

7y boundary, x1 is the outer x boundary, and N is tion and has a destabilizing effect on the globalx iteration procedure. The flow pressure is not
the number of x grid points; i.e., N- x /x. prescribed and with the formulation of Figure 2irdx YM M
Therefore for -1 or Ax 1 and is unknown and a result of the calculationeN protedure.

the convergence rate will deteriorate. For
(Ax) - 1 and N fixed, convergence is very slow Finally, the only boundary condition required

(X4 x at the outflow is the pressure or equivalent
as y- - C- Although the departure limit pressure gradient. This of course reflects the
Lx 7 elliptic pressure interaction.

2y I is no longer a stability limitation, the

condition - << 1 is a convergence limit. ForYMI714



9" £ " 6. Solutions

Five model problems have served as test cases
for the global PNS formulation described herein.
For each geometry there is a region of strong pres-
sure interaction and in several cases axial flow
separation occurs. The test problem include a smlet

(1) the trailing edge of a flat plate, (2) the
Carter-Wornom (121 trough, (3) a boattail configu- Mo 2. (It

ration, (4) a NACA 0012 airfoil at zero incidence
(laminar), and (5) the VMCA 0012 airfoil at zero

[. incidence (turbulent).

(i Trailing Edge -- -

Solutions for the trailing edge geometry are

given in figures (4a.4b). The agreement with the
interacting boundary layer results of (111 are a Ns
quite good. The finest grid includes (lilx 121)

" mesh points for (x,y), respectively. The coarsest C.

grid was (41x 121) and full convergence required
only several global iterations. If the calculation
was run on the finest grid alone, convergence was
still not achieved after several hundred iterations.
With a multirid technique (41, full convergence a
to O(20- 4 ) for the maximum erzor in successive
iterations was achieved in approximately ten to
fifteen global iterations. The outer boundary y.
was chosen to lie outside the triple deck extent. _
If yM violated this condition, the calculation ___0 _0_.___0:_0_____10"_ '1:__"_ "l__ 0"_1_70

diverged. The calculation was relatively insensi- 00 7a a.0 j 1 3' .50 t-70

tive to Y. when this condition was satisfied.

The solutions for pressure and skin friction, Figure 4a. Trailing Edge Pressure Distributions

both defined with triple deck normalization (11] PNS Solver.
5

* are shown for Re - 10 . It is significant that
the skin friction tvelocity profile) is relatively
insensitive to the grid a appears to be quite
acceptable even on some of the coarser mashes.
On the other hand, the pressure is extremely grid
sensitive and requires the finest mesh in order
to accurately represent the triple deck interaction.
With the difference grid of Figure 1, the minimum
pressure occurs one grid point downstream of the 0a
trailing edge. With the grid of Figure 2 this ME - 141
pressure value is correctly obtained at the trail-
ing edge. VN e. "An

• • • Ia .S. MI1

(ii) Trough

The solutions for the trough geometry

[Yb(X) £ sech 4(x-2.5)), (0 <x < - ) are shown in a r e

Figures (Sa, 5b). Values of c - -0.015 (3, 41 and

e - -0.03 were considered. Only the latter results .
are presented here. Solutions were obtained for

5
Reynolds numbers up to Re - 3.6 x 10 . Again, the
agreement with the interacting boundary layer
solutions is quite good. The insensitivity of Cf
and the sensitivity of p to the grid is also
evident for this example. AS the Reynolds number 6"
was increased, mre smoothing was required on the
coarser grids in order to achieve convergence to
the prescribed tolerance. The outer undisturbed
pressure boundary condition was held fixed at ,so 01 0'. 1.10 1.30 1'.50 1'.70

* y throughout the computation. There were no X

difficulties at separation or reattachment points.
As with the trailing edge problem, full convergence Figure 4b. Trailing Edge Skin Friction Solutions
with the multi-rid iteration procedure was PNS Solver.
achieved in ten to fifteen global iterations. For
the finest grid (241x 121) mesh points were
evaluated.



(iii) Doattail

Laminar flow solutions for the boattail geo-
metry of Figure 6 are shown in Figures (7a, 7b, 7c).
The grid is generated with the Schwarz-Christoffel
mapping routine of Davis (13]. These results are
in good agreement with full Navier-Stokes solutions
obtained with the composite (u,OG) equations as
reported in (3, 7]. For Re = 6000, based on
maximum radius, with a juncture angle of 12 degrees
a sizable separation bubble is obtained. All
velocities are stored in the recirculation region.
The relaxation process is slower than for the
trailing edge or trough geometries; however, con-
vegec to 40 for the maximum error in pressure

"l is obtained in approximately 35 iterations. As
the Reynolds number or corner angle is Lncreased,
the rate of convergence decreases and the multi-

a grid procedure also deteriorates. Further analysis

of this behavior is required. Some improvement has
- 4been observed with the source correction of (5b).

Solutions have also been obtained for turbu-
C. C;lent flow conditions. The Cebeci-Smith two layer

viscosity model has been applied to close the

a no Mm 141 system. Although this may not be an accurate
* approximation in the recirculation region, it
a e. • M MI a.&. does serve to give a qualitative picture of the

[U] flow. A Reynolds number of Re - 5 x 105 based on
maximum body radius has been specified. The

* effective turbulent Reynolds number is of course
* .00 i S0 a'oo " 0 " '.00 0 ,. much lower and the separation region is considerably

X smaller than that obtained for the laminar flow
at Re = 6000. These results are discussed in
greater detail and figures are presented in (4].

. Figure 5a. Trough Skin-Friction Solutions (v) Airfoils: laminar and turbulent
PNS Solver: e=-0.03.

The flow over MCA 0012 and 12% thick Joukowski
airfoils has been evaluated with global PNS
relaxation. Analytic or conformal mapping (131
is used to generate the reci'isite metric functions
for the system (1), Figure 8. Solutions have
been obtained for fully laminar conditions for
Re - 2000 to 7500. Recirculation is evident for
the Joukowski airfoils for Re > 2000. For the

2. MACA 0012 configuration, separation is not evident
for Re < 5000. Typical laminar solutions are
shown in Figures (9a, 9b). The laminar stagnation
point results are also in close agreement with the
familiar Navier-Stokes (boundary layer) values (41.

Triple deck analyses have recently been pre-
sented for separation on cusped and sharp trailing
edge airfoils (14, 15]. Estimates of incipient

separation as a function of Re are in qualitative
agreement with the present numerical solutions,
and the flow behavior near the wedge-like trailing
edge is also reasonable, see Figure 10. Further

--.- mm (4 comparisons are given in (4].

Finally, for Re - 5 x 10 , transition to
0 0 6o B.Z. ( turbulent flow conditions is assumed at x/c -0.32.

The two layer eddy viscosity model should be
representative of the turbulent flow behavior as

2separation does not occur even for this very large
*value of Re [16]. Comparisons with experimental

1.aO0 C.so 200 i.so 3.00 3'. .C '.00 results and earlier calculations [16) are quite
X reasonable, see reference [4].

Fig. 5b. Trough Pressure Solutions P14S Solver:
c -0.03.
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7. Sumary 10. Khosla, P.K. and Lai, H. (1983), "Global PNS
Solutions for Subsonic Strong Interaction

A global or relaxation procedure for the PNS Flows," submitted for 6th AIAA CFD Conference,
system of equations has been developed. First and Danvers, Mass.
second-order accurate formulations have been
presented. In the latter case, a staggered grid 11. Davis, R.T. and Werle, M. (1981), "Progress on
is considered and the unknown pressure is evaluated Interacting Boundary Layer Calculations at
one grid point upstream of the velocity. In the High Reynolds Numbers," 1st Symposium on
former case, a forward pressure difference is Numerical and Physical Aspects of Aerodynamic
implied. The effective difference forms of the Flows, Long Beach, CA, Springer-Verlag.
vorticity transport and poisson pressure equations
have been derived and results of global stability 12. Carter, J. and Wornom, S. (1975), "Solutions
and convergence analyses have been reported. for Incompressible Separated Boundary LayersIncluding Viscous-Inviscid Interaction,"

Solutions have been obtained for laminar and NASA SP-347.
turbulent flows where strong pressure interaction
and/or axial flow separation occurs. The full 13. Davis, R.T. (1980), "Numerical Methods for
elliptic pressure interaction is accurately Coordinate Generation Based on a Schwarz-
evaluated and with the local pressure interaction Christoffel Mapping Technique," VKI Lecture
there is no separation singularity. Procedures Notes, Brussels, Belgium, Hemisphere Press.
for increasing convergence rates have been
examined, e.g., multi-grid; however, further 14. Smith, F.T. and Merkin, J.H. (1982), "Triple-
analysis is still necessary, see [4]. Deck Solutions for Subsonic Flow Past Humps,

Steps, Concave or Convex Corners and Wedged
Significantly, the differential form of the Trailing Edges," Computers and Fluids, 10,

poisson pressure equation is not required expli- pp. 7-25.
citly and the local continuity equation is
satisfied exactly at all points. 15. Cheng, H.K. and Smith, F.T. (1982), "The

Influence of Airfoil Thickness and Reynolds
Number on Separation," ZAMP, 33, pp. 151-180.
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