
RD-Ri26 358 SOFTWARE DEVELOPMENT PROJECTS:
ESTIMATION OF COST AND 1/2

EFFORT (R MANAGER'S DIGEST)(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY.CR C J PIERCE ET AL. DEC 82

uNCLASSIFIED F/G 9/2 NLEllllllhllliE
EllllllllllllE
IIIIIIIIIIIhI
IIIIIIIIIIIhI
illllllllllIIE
llllllllIIIIl
lllhhlllllllI

INW-

L6
1110 1.01__0

1 .2111114 111 .
Y. ,

MICROCOPY RESOLUTiON TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

/"

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Ccpy civQilkble to DTIC doe$ Dot
2eznp1 t'fay legible zePrOductiofl

APR 6 19NTHESIS
A

SOFTWARE DEVELOPMENT PROJECTS:
ESTIMATION OF COST AND EFFORT

(A MIANAGER'S DIGEST)

by

Charles James Pierce, Jr.

and

Rebecca Louise Waqner

December 1932

~ ~ 3radford D, :merceri

ej- e -in" i -.

()0
-04

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SiCUmITV CLASSIFICATION Op T6iS PAdIL (S. DMaS rel

REPOWT DOCUMENTATION PAGE RSAO NPsTnUC¢-NsBsEFoR COMPLET!:.% FORM
N. REPORT NUMONN GOVT ACCESSiON NO. . ECIPIENT'S CATAOG HNSER

4. TITLE rmf d.huuaWe) S. TwY0 OF REPORT & pgiNoO COVCeCO
Master's Thesis

SOFTWARE DEVELOPMENT PROJECTS:
ESTIMATION OF COST AND EFFORT *. 1982,°-."a. PERFORMING OR*. *6060NT %UMOealt

(A MANAGER'S DIGEST)

7. AuTNO"ia) 6. CONTRACT 00 GNAMT NMSR(t.,p

Charles James Pierce
Rebecca Louise Wagner

•9. PgaraftWlrOU~iN'G O0INIZATION N•C AND ACCO961Si0. 0NOGmAN CLEM"NT PQOJEC, T-$a

A NIt AREA I WOE UNIT NMI rms

Naval Postgraduate School
Monterey, California 93940

1I CONTROLLIONG OPICE NAME AND ADORESS 12. REPORT DATE
• December, 1982
Naval Postgraduate School De eumbx AS
Monterey, California 93940 103

14 Now TOMING AGENCY NAME a AOO11SUWiI 1& .g (Ma Cantvelli Otte) Ii. SECURITY CLASS. (el ,toe ,.,e.)

Unclassified
- . 0 ECLASSIrICATION/OOWN GIlAOIN G

SCHEOULE

I. OISTNInUTION STATEME1NT (of 0le Repl

r Approved for public release; distribution unlimited

17 OISTIUTION STATEMENT (91 the eeract md*e IN. ea 30. It dfffemet N *@par)

:1. SUPPLEMENTARY NOTES

0

W ,(EY WOnaS f(C.tEnue an evere elde it RceeeP and ideet l, ' We be0 mm060)

Software Lifecycle
Cost Estimation
Effort Estimation
Software Cost and Effort Estimation Models

20. ASSTRACT (Csna'We* a reverse @I it OO meessay mad SoasoIof by Woo& Nmer)

This research focuses on the principles upon which models have been,
and may be, constructed for estimating cost and effort in software devel-

6 opment projects. A definition of and factors influencing software engi-

neering economics is presented. The major phases and activities of the
software lifecycle are described. Effort, time and cost estimation is
analyzed. A presentation is then given of some widely used models for

estimating cost and effort. Critical factors which must be considered

DO , 1473 corro OF, I.OVF OSOLETE
s/N 0102-014S6401 SECURITY CLASSIFICATION OF TWIG PAGE (Ehet De. aOr

SlCUISYp ttL&UG40CGVteW 0 '34s **e0t r.-* .m

20. (continued)

when constructing a model for estimating cost and effort in software devel-
oiment projects are then presented. We sumarize by citing areas that re-
quire more attention if cost and effort estimates are to be further
improved.

,-

4 3

€ "

4

2

DD For 1473
U1%2 UU1 66CU.9VV CL*SSICAI*" OP ?we$ PASPO Date 84%0000

Approved for public release; distribution unlimited.

Software Development Projects:
Estimation of Cost Ind Effort

(A Manager's Digest)

by

Charles James Pierce, Jr.
Lieutenant Un~ted States Navy

B.A., Queens College of Te City University of New York, 1971

and

Rebecca Louise Wagner
Lieutenant, Unite States Navy

B.A., Bemadji State Univrsity, 1977

Submitted inr partial fulfillment of the

requirements for the degree of

.ASTER OF SCIENCE IN INFOR.ATION SYSTEM.S

f rom the

1NAVAL POSTGRADUATE SCHOOL
December 1982

Au-hcrs:

Approved by:-._g
. Thesis Advisor

!!Zt _ Second Reader

Chairman Depa rtme of Administrative Sciences

Dean of Information ard Policy Sciences

3

I

&ABSTRACT

This research focuses on the principles upon which
models have been, and may be, constructed for estimating
cost and effort in software development projects. A deflni-
tion of and factors influencinq software enginsering

econcmics is presented. The major phases and activities of

the software lifecycle are described. Effort, time and cos--
estia-icn is analyzed. A presentation is then given of
scme widely used mcdels for estimating cos- and effort.
Critical factors which must be considered when constructing
a model for estimatinq cnst and efort in software develop-

mn - +t prcjec-s are then presented. We summarize by citing

areas that require more attention if cost and effort es:-

mate.s ar- to be further improved.

4
a

:4

- _ _ _ _

TABLE OF CONTENTS

I INTRODUCTION. 9

A. BACKGROUND 9

B. PROBLEM 9

C. GENERAL PROCEDURE 10

" D. ORGANIZATION 10

I. UNDERSTANDING SOFTWARE ENGINEERING ECONOMICS . . . 11

A. A DEINITION OF SOFTWARE ZNGINEERING ECONOiICS 11

3. INFLUENCES ON SOFTWARE ENGINEERING ECONOM4ICS . 13
- 1. Size 13

2. Complexity 15

3. Interference 18
! i 4. Cost 19

5. Qudlity 23

*6 Schedulin..g 22

7. Pas -t Experience 25
8. Tools25

9. 11anagement Policies 30

10. The Project Manager 31

III. SCFTWARE LIFECYCLE: MAJOR PHASES AND ACTIVITIES . 34

A. MAJOR PHASES 34

1. System Requirements/Feasibility ... 34

2. Software Requirements 42

3. Preliminary Design/Product Design .3. . 43

4. Detailed Design 45

5. Code and Debug 46

[6. Debugging and Testing 46

7. Operations and Maintenance 48

B. ACTIVITY DEFINITIONS 48

C. SUMMARY 51

5

IV. EFFORT, TIME AND COST ESTIMATION 52

A. TIME AND EFFORT ESTIMATING 52

1. Experience and Judgement 52

2. Programmer Productivity 52

3. Code Production Rates 54

4. Basic Manloading Pattern Over Time 54

B. COST ESTIMATING 55

1. Cost Considerations 55

2. Key Factors Influencing Softwars

Development Costs 55

3. Traditional Cost Estimating Procedures.. 63

4. Cost Estimating Relat-oships and Phase

Interrelationships 64

V. THE ART AND SCIENCE OF SOFTWARE COST ESTIHATION . 66

.. CURRENTLY AVAILABLE METHODS FOR SOFTWARE

COSTING 66

1 S. C~ i ode!Q 67

2. Dynamic Models 75
=3. Dynamic T-ansporable lodels 78

4. Overall Model Evaluation 87

B. ESTIIATING COST AND EFFORT: CRITICAL FACTORS 92

1. Discussion 92

* C. SUMMARY 94

D. THE FUTURE OF SOFTWARE DEVELOPMENT PROJECTS . 95

LIST OF REFERENCES 97

INITIAL DISTRIBUTION LIST .102

6

I

LIST OF TABLES

I. Project Tasks by Activity and Phase 50

-. II. Adjustment Variables by Decreasing Weight 71

--.2 III. Evaluation Factors - SEL 82

IV. Evaluation Factors - Walston and Felix 83

V. Environmental Factors - Boehm 34

VI. Factors Used in Various Cost Models 39

7

a'

LIST OF FIGURES

3.1 Phase One: Organizing for feasibility study . . 36

3.2 Phase Two: Search for solutions 38

3.3 Phase Three: Feasibility analysis 39

3.4 Phase Four: Chclce of solution 41

Ir

I:.

a

.G8

a"

'a

A. BACKGROUND

The history of software engineering is replete with

tales of projects that have never been completed or have

reachsd completion only after numerous cost overruns e.nd

well beyond the originally sche.duled operational date. as
-he problems with software engineering became increasi v

apparent, researchers directed their attention to fin q

ways to more accurately predict the cost, effort and

that a software development project would requ:Le.

Attention has been devoted to determining sound estimates

as early as possible in the project. nTi&-ally models we-e

developed -o provide single estimates in specific environ-

Ien-s. Iodels gradually evolved that could 6e sed at

viious stages of the !it_2cycle. ,lodels are nosw availabis
t - can ake predicticns througaout the fi-ecy.l 'nd can

be transported to different environments.

B. PROBLEM

The problem to be addressed in this study is to fin.

those influences that affect estimates of cost and effort in

' a software development environment. The characteristics

hat ar._ identified will not necessarily apply to all env--

rcnments but must be evaluated to determine whether they are

contributors to cost, effort and scheduling in a particular

situation.

I

C. GENERAL PROCEDURE

The procedure that has been used was to research litera-

ture concerning cost and effort estimations in software

development projects. Information was gathered concerning

some of the most widely used and successful est--mating

models. We gathered from this research numerous criteria

that must be considered by the estimator before implemsnting

any model that sstimates cost and effort in a sc-_tware

development project. We also no:ed influences on s_-wars
I d v=.cpmen projects that have not yet 1e n a.eauatlv
addressed 4n cost and effort estimating efforts.

D. ORGANIZATION

Chaote: II develops a definition of software engineerinq

economics and :resents -he major infiuences on scf-ware

709 e-. The sftwl: lfecvcls is -hen examined In

cha::e_ Ii_ in -refrec -o those pLase s a ia,7 tc.s
seam-a-- dSman, cn r,_s1irces, . a.p-er V exaMines _.

fac-ors important in effo r:, ime ani cost est1nation.

Chapt -r V presents a number cf popular models that have been

and curr nr-!y are in use in estniiatinq cost and effrt. Ke.

-actors affecting software cost and effort es-iaaticn are

-hen presented by the authors of this research oaper in hops

that these will be address-d in 1evelcpin a supe-ir cost
ani effo- estimatinq model.

1

I

A

A. k DEFINITION OF SOFTWARE ENGINEERING ECONOMICS

The term software enqineering has been used extensively

throughout literature to refer to 'he various s-ages of

software development and maintenance. Software now commands

the major Part of any budqet for a computer sys-em. In -he

U mi. 1950's, 857 cf a compute: project's budget was dqvoted

to hardware w-.h the remaining 150 given to Scfzware.

Today, thsse fiqurss are reversed. (Ref. 1: p. 41] The

refinements and advances in hardware combined with the ever

decreasiq costs of "--s production have turned focus on

scftwars zd "t abilit to ex;loi- the system'.s inne

DOt en tC"-a. The financial prominance of software in any

compute- system demards that whenever we spear of Softwar_

-- :n-=_-i-q, we consi1_- the ecoromic inoact of zur task.
H ence, the :-a sofwa a -fngineering ecocmics will b_ used

:- -hs research paper to refer to the development and

maintenance of scf-tware.

That we are only now beginning to clearly understand the

complexity of the software issue can be seen from the

numerous failed attempts to forecast the cost and effort of

software development projects. Disastrous software develop-6
men t projects have motivated the levelopment of numerous

cost and effort estimating models that have me- with varying

degrees cf success in accurately predicting the course of a

* software development effort. Successful models have been

used as foundations upon which even more accurate models

have beer. developed. The majcrity of models that are avail-

able to estimate cost and effort iore developed by private

• companies to be used in their own working environment.

11

These models when applied to other environments are unpre-

dictable and therefore of questionable valuP [Ref. 2: p.

1161. We will examine the most prominent of the numerous

cost estimating models and evaluate their characteristics

and applicability. We will seek to uncover the remaining

problems that currently available cost and effort estimatina

models inadequately address or completely ignore.

We begin by developing a definition of software engi-

neerirg economics through reviewing definitions of the term

software engineering as offered by a number cf pr ominen

U individuals in the computer industry. The most comprehen-

sive work on software engineering economics is a recently

published text of the same title by Barry Boehm. Boehm

defines software enginezir ing as "...the applicatio of

science and mathematics by which the capabilities of

ccmputer equipment are made useful to man via cotpute-

proqrams, procedures, and associated documentation" [Ref. 3:

p. 161. Peters and Tripp at the 3rd Internationa.

Cnference on Software Engineering define sof-warz: engi-

-nq by " r.nyinq the concepts and their relaaionships

-at surface in a study of software angineering (Ref. 4: p.
631. Remus Cf IBM's Santa Teresa Laboratory defin.es soft-
ware enqineerinq as "...the science of implementing given
functional and performance requirements in a proaram with

optimum quality, at minimum cost, while meeting committed

schedules" (Ref. 5: p. 267]. Kerola and Freeman at the 5th

In1ternato ional Conference on Software Engineering present

software engineering as "...the application of methols,

tools and techniques to actions in a reliable and predict-

able manner or (a) set of stared, technical, ecoromic azd

sccial qcals for a scftware artifact" (Ref. 6: p. 91]. Wq

especially note the reference to the social aspects c: scf:-

ware engineerinq. If the human aspects of sof fware

* engineering are not taken into account as concernin bo-th

12

the developers and the users, the software product will not

realize its full potential. We define the term software

engineerinq economics as the art and science of utilizing

analytical techniques, managerial principles and common

sense to affectively and efficiently conclude the develop-

ment and maintenance of software at minimal cost.

B. INFLUENCES ON SOFTWARE ENGINEERING ECONOMICS

1. Si2e

A number of methods have been used to estima:e -ha

size cf software development projects. Early estimates of

project size are tot likely to be very accurate as the exact

na'ure and scope of the prcject are not conclusively known.

Putnam and Fizzsimmons recommend estimating the size of a

software development project using the laws of statistics

and protabflity and including the standard deviation. or

eash es--mate. Early es-imates are based on past -xper'ence

and -he available informa-ticn the dsvelop-rs have ab:u- t';e

pro jec-.

As more and more attention is being qiv-n t.o t he

early determination of the design and specifications of a

project, estimators have an increasingly large amount of

information to use. The in creased effort being given to the

front-end development of a project will substantially

decrease the final cost and effort expended on a project

because of better project preparation. Structural decomoo-

sit I on is used to more clearly understand and closely

estimate the size cf a project by understanding ani es-i-

mating the size of each segment of the projec-. During ths

development process, iterations of size estimations continue

to improve the certainty cf the size of the projec-.

Accurately estimating size is the major obstacle ines--

mating -he cost and effort required in software leve.opmen"

pro jects.

13

The following criteria have been used extensively in

estimating the size of a software project: lines of source

code and executable instructions. A fairly recent develop-

ment in complexity estimation developed by Halstead that

will be discussed later asserts that size is a function of

the vocabulary of a program. The vocabulary of the program

is the sum of the operators and operands used. According to
h.-i author, lines of code, length (sum of the number of

times operators and operands are used) and voca.ulary are

a_! valid measures of program size. The problem with

Halstead's and other techniques of size measurina is that

they are af-er the fact tools, i.e., the developed softwa:z
must be available to use them. Although refinements

continue to be made in the area of estimating program size,

no absolute method has yet been developed that will concla-

sively estimate size early on.

As the size of a project increases, other factor$

become mcre prominent as cost drivers. Complexity, ier-

facs aro6 tae number cf people involved become the primarv

cost drivers. As the size of the project increases, -he

number of people involved in the project increases and
significant new problems are created. Brooks learned from

his experience with the IBM OS/360 project that men and

months are not interchangeable. Using man-months zo measure

the size of a project is dangerous since men and months are

V cnly in-terchangeable In an environment where a job can be

perfectly partitioned among workers and workers separatel
from each other to preclude communication. In reality,
training and communication take up a significant amount of

* time in increasingly large projec-s. [Ref. 7: pp. 13-26]
And alrhouqh time consuming, communicazion is essential for

a successful project. Esterling's research also showed that

projec - completion time can be improved upon only up -o a
* certain point by addinq personnel. Added personnel eventu-

ally serve only to delay the project. [Ref. 8: p. 168]

14

2. cQ &_tz

Software engineers use complexity to denote treat-

abi lity, mainta ina bil ity, readability and/or

comprehensibility of a program [Ref. 9: p. 317]. Complexity

plays an important part in two phases of a software life-

cycle: development and maintenance. The complexity of a

proqram will directly influence the cost and effort in

testinq and debugginq and :n correcting bugs that subse-

' 4uer.2 . surface f-om use. Vh- difficulty of mc¢i " f - in; .

proqram due -no changing requi:eme.ns will also re directly

S= =ated to 'he complexity of a program. Complexi-y measur-s
have proven ifficut ~to objectify in project evaluations.

The main problem with both size and complexity measures is

that they are done after the fact, I.e., after the code has

teen write. A complexity measurg will be judged on its
-bilty to predict proqrammer performance. Much research in

te ccmp.!xity area itplies that programmer: performance can

ze oredictel from the source code of a proqram.

The question being asked :cay is which _ac-ors of

the many researched in programs best capture program

complexity. Two other factors have shown to influence

pro qram complexity: the programmer and the programming

task. Siqnificant individual differences have been found in

proqrammer performance. "The important point here is not

-hat individual differences amonq programmers exist, but

tha- the _aablit. is so large that experimental results

may depend, more ozI ndividual differances than on exp;r:man-

tally irduced differences" [Ref. 9: p. 3171. What might be

ve.r-y difficult for o-ne programmer may be easy for another

-bhus nullifyinq the value of that predictor. Programmer

performance must be based on a combination of Drcgram

relat ed complexity measures, programmer traits and

r:oq:amrer tasks.

15

4

One of the newest approaches to measuring complexity

has beer presented by Halstead in which lines of code are

broken down into operators and operands. Three advantages

of this approach are:

1. An explaina~le methodology for calibrating a
3easurement instrument.

2. A more nearly universal measure, sinc9 *hS
a Proach is consistent across the bounaar _ 4s or
o-cqramming languages.

3. The ability to relate some of -he 4ffec-s of
p=Oq raMMIng. stile to measured qa:ns(Ref. 10: p. 373

The rules for this method seem to combine lines of ccde,

decisicn nodes and operation codes, variables and punctua-

tion. The emphasis given to each area is questionable but

a-: leas- they are all included. [Ref. 10: p. 374]

19aSt-ad aefines langth as a f .inction of Sum o

cperator usaqe and cperand usage. L-_ngth can b4 sstimatal

::om vocabulary wih riasonabl.- certainty accordiza tz

Hals-:ead. Volume is a fanction of vocabulary and length.

Lines of code, leng-h and volume are equally valid as rela-

tive measures of program size. Program size measured in

lines cf code, length cr volume is a function of vocabulary.

Halstead also presents an equation for measuring
difficulty. Difficulty is defined as the measure of ease of

r-ading and ease of writing a program. Difficulty affects

the effcrt needed to code an alaorithm, to inspect and

review it and to evaluate it later when changes need to be

made to it. Various levels of difficulty are experiencel

.4 due to the skill level of the programmer, poor Orcaram

structure or the lack cf experience with a lanquace and

possibly the complexity of the alqorithm. [Ref. 10: p. 3811

Halstead identifies six code impurities that if eliminatel
4 reduce the level of complexity of the program. They are as

follows:

16

1. Complementary Operations: unreduced expressions

2. Ambiguous Operands: the same variable means

* - different things

3. Synonymous Operands: giving the same value to more

* than one variable name

4. Common Subexpressions: subexpressicns used more than

cnce in a program. The subexpression should be given

a unique variable name

• nwa:ran- ed Assignmzen's: asirgnnt of a v: e-'= -

a subexpression even though the variable is used only

once in the program

6. Unfactored Expressions: easy to understand but at

rimes hard to follcw in codina. (Ref. 10: pp.

382-3831

Halstead's measures are attractive in that they are easy to

au-omat s.

A.o-ha: easure o. ccmplexi-:y hat has achiev- scme

measur cz universal acce Ptance is hat presented by T.

:c-at. I- McCabe's cyclomatic complexity measure, a"! the

dacisicn points in the Procedure Division of a program are

counted, those for each paragraph and section are summed,

and those for the ertire program are summed. A paragraph is

assumed to be the size of a module and assignel a ccmplexity

value of one to start. When a complex conditional statement

is encountered, each simple coniional expression s

6 assigned a value of one. Research to correlate Halstead's

and McCabes measures with programming effort have shown -he

following (especially respecting Halstead's work):

1. Feasonable correlation exists between the measures

6 and programming effort.

2. A comparable correlation exists between the measures

and the number of instructions In the programs.

3. Number of instructions seem to be as good an indi-
cator of software development effort required for

17

large proqrams (over 1000 DSI (delivered source

instructions)) as the Halstead and McCabe measures.

The measures, however, correlate better than DSI with tY

amount of terminal time required to program small programs.

[Ref. 3: p. 811
The weaknesses of the measures lie in their not

accounting for such factors as personnel experience, hard-

ware constraints, managerial factors and the use of tools

and mc tlrn programminq pra:tzicas. The user mu'st also bZcom,

accust.omed to using the measures and, as already sta+ed, -the

measures involve a knowledge of program characrirs-cs that

are not learned until th =. program is written.

3. ln,-:erference

Interference facto rs Include the total of all

dist- urbances that affect programmers' productivity.

A Mini4L a1 v oZ_- or wck includes uch a:: c-v-: e
• as buage preparation, union mec-ings, ~csa:srnrDu q- P P- a IC .., 0 n' U -;C e-:4 q ' P d status Ze.nor -.

subissicns. Social interactions are a seccnd sou-cc of
tiMe loss. Thirdly, interf_- =nce includes the -ime consumed

in regar.inq a creative thcught pattern after interruption.

Creative people are subject to environmental influences on

their ability to evolve a new program. A fourth source of

interference is the time spent coordinating wi~h other

prsqrammers while developing a program. A fifth source of

interference is the number of miscellaneous interruptions

that result from passing social intaractions, trips to the

he.ad, e:c. [Ref. 8: pp. 164-1661

interccmmunication is essential to any project. To

minimize intercommunication, as few people as possible
should be involved in a large project if completion tim is

importanrt (as inevitably it is). Brooks suggests the use of
proarammer teams to improve upon the completion time of a

project. The task is dividad up into a number of ssgmernts

18

and each team operates on its own as far as possible to

complete a segment of the project. Esterling's research

showed that programmer productivity can be increased in an

* interrupt free environment. Interference factors command a

large pcrtion of the programmer's time and must be addressed

in any estimation of cost and effort.

4. Cos-

Cos" !:aS olaved a maicr ro!= in =v-cp oftw-

en~inee-inqeconomics due to the many cost overruns on sofz-

ware enqneerinq projects. Cost overruns I-ave become the

idrivinq factor in effor-s to develop software cost and
eCfort es'imatinq techniques. Escalating personnel costs

have driven companies to new awareness of software develop-

ment prcjects. A severe shortage of software engineers

presently exists along with greater shortages in the number

of S renio sof-ware ern: whose zomme : ancq a

n c uZ..q a D)cject can often result ... an outsann

-::zduc- as on-ose:d to a nediccre croduct. Te lob narke:

for software engineers is good and the cost of ar Ia

proirammers ard analysts continues to grow in domin nce -n

the overall cost picture. Esnima-tes indica-e that the cost

per man-year of a software engineer will be 100,000 dollars

b,, the mid 1980's (this includes salary, fringe benefits and

support Costs).

Software projects will usually take at leist two to

three years to complete. One programmer will usually not

suffice to complete a project so a numDer or salarie. scft-

ware engineers must be anticipa-! ed. But as already

4 discussed, adding programmers to accelerate a software

development project will only be beneficial up to a certain

poir.t beyond which diminishing returns will be realized.

I

19

4

77

Initial development cost may be expensive for a
project but experience indicates that for every five dollars

spent on initial development, between seven ard twenty

dollars will be spent on maintenance. With this skyrock-

eting picture of costs throughout the lifecycle of a
* project, estimates for a software development project and

the subsequent plans for and implementation of a software

development project must be carefully managed. Since so

much of costs will involve Dersonel, software development

env*rcnments 'si b e increasingly looked to for th hest

ways to exploit the potential of software engi.ners.

[Ref. 11: p. 227]

Recent findings indicate that contrary to intuitive

fealinqs about the matter, the total cost of a prolect will

decrease alonq with development time when overtime is .aid

to workers. If time and a h.al is paid, thev. all Cost
d=ccrases; i double time is paid, the overall cost ran_ s

con st art. Indirect costs will have a s.Parats _n-oacz 3n

overti.r- work since they dc not vary over time. Tf -

indirect costs are high, savings can be realized by hiring
consultants and by-the-hour people. (Ref. 8: p. 170]

Thus we see that the primary driver of the cost of a

software development project is the personnel involved.

Personnel must be carefully selected for a particular soft-
ware development project. As will be discussed later, past

* experience of the proqrammer is of considerable impor-tance.

After personnel are selected for a development project, the

man agemert process implemented will determine how ful.y

their collective potential is exploited.
I

5. Q11lt

The quality desired in a given software product will

directy influence the cost and effort devoted to the

* project. Quality will generally vary acccrdiag to the

20

S

nature of the Project. Software developed for a manned

lunar fli*ght will cf necessity be of far greater quality

than that to support standard business applications.

Remus defines quality as "...the number of program

defects normalized by size over time" [Ref. 5: p. 268]. We

rind this to be a useful, working definition of quality.

Quality of a softwa.-e product can be improved by increased

a tention given to the f ro nt-end design process w Ith

-e oHasis on !odularization. Modularization or dividi"a the

p o ec Csinto small seg~ents that are m or intelIgible
ena bl rs the programmer to more easily unaers,aad the Objec-

tive of a task assigned. A bettear understood assignment

1il lead to a better product.

Programming environment has a signif-Lcant impact or

quality. The abili-ty of the programmers to work in an envi-

ronmenm conducive to and supporti ve of creative thought will

fcst'-Er a superior software product.
Ths cost of qua'lit-y sofwars will not agc iown as

iramatIcally as the cost of hardwara (Ref. 11: D. 2261.
Very cheap, unwarranted, ansupported software will1- appear on.

the market and be available to the consumer-. Inexpensive,

mass marketed, supported software is not a prac-tical possi-

bility fo:r -,he future. Four types of software products will

be available i.*n the future:

1. Quality prcducts requiring no support and known
toDe correct and to function pre-adi;ctabl1y and
reliably

2. Qgalty products that are sold t o customers
wilng to pay ths support costs

43. Custom-made products, developed 1fcr a specific
user'Is needs

4. The others. [Ref. 11: p. 227]

21

Prices for type 1 products wi-ll be high and vary according

to market demand. Type 2 products will be priced consider-

ably higher than type 1 products. Type 3 products will be

the "hiqhest priced of all software. Type 4 products wili be

mcderately priced for mass ccnsumption. Especially sophi-s-

ticated software w-ill be sold along with associated hardware

in what will be a turnkey system.

6. ScheIUling

Scheduling is -important _-n software aeveIcpmern:

projiects so as to avoid slow down in a program due to :he

lack of coordination among interdependent segments of th a

projIec t. Scheduling shows where i;n time all import ant

project_ events take pl ace-3. The schedule should -1nclude-

mi.lestonles, reviews, key meetings, audits, documentation

rel-e ases and product delivery dat-es.

qc-edu'in i-q also m :an f-DL rark-t:ivT in sl

purpcsr-s. A product must beavail able a-. the ti--me w.zi
~ra~::: oesonne ave 3om~sed it. hebo-tom .1 -e -ro:

any organization is cuso : satisfacio adhecprf.

Project manaqement di-ffers from production man-age-

ment in the nature of --he task. Production management

involves the performance of a repet itive job. Project

management is much more difficult in that the job to be

performed and the results of the e-ffor-t are not clearly
!A understccd at the outset and are unique for the most part.

TheF fo owngchrctritcs apply to all projects In

varying degrees:

1. The project itself will last for weeks, Months or

4even years. During this tiLme, many changes may occur

in the project which may affect cost tachnology ani

zEsources.

2. The project is usually complex Involving many rt-

zelat-ed activities that must be mnitorel.

22

3. Projects are expected to be completed on time wtth

any delays cosTing the developers into thousands of

dollars per day of delay. Not only is mnoney lost but

* also much ill will may be created from overdue

proiects.

4. Projects ofrten are sequential in naturs wit-h the

start of one project dependent on the completion of

arother. (Ref. 12: p. 2731
As a resu.r of4:n nature oz- projac-:s, nq

c:r.and coordinat Icn of projects is a coimolicate 1=d ask

trhat requi:res close a-ttenticn. Until re~cently, n: f : rmna I
generally applicable method was ava-,ilable to manage the

progress of projects. Two methods are now available tihat

have proven to be very useful i-n proj=ect manaqe-ment-: P ERT

(ProramEvaluation and R-eview Techiniquf) an3 CPM Ciia

Path Me tho d).

TWc diff:: encs e-xis,_ bet Wsen T a.-. CP. h

firt ivolesestimating activitv 1urat__cmns. A- ::v:

-ar. eorthnconsumes resouarces anI a crannurtof

n64mz. PERT uses t he weighted average of nhr,-e eszimatess in

ord-er t:o arive a-! an ezipected completion :m based on a

probabili-ty distribution Of COMPleIS-Orl- ~ Becaas= Cf
this, PERT i's looked upon as a probabili4sti:-c tool. CP'1 is a

detr instc ool, * ie., only one sn t ss mad 6 r

duratnon or an ac-tlvity. The secord differencr eten i

two methods is t-hat CP.1 can give an estimate of costs as

wel as completion time far a project. P E R is fu-damen-

tally a tool to olan an,. control tiLme; C P i S a zoo2. til

can be used to plan and cont-rol both time and cost o~ f-a

Pro leon .

PER~T and CPM att:7:empt to answer te olw:

questions:

Z3

1. Which activities are critical? That is, Wh1-ch
must be completed or time to keep the orojec-t on
schedule?

2. Which activities are noncriticai

3. How m'~ch flexibi1~jty does manaqeme:nt havs
execut~ng the noncritical activit_*e;s?

4. What is the earliest exptzcted completion date fcr
the project?

5. What is the biest way to* handle 4:delays that arz
detectied d ur.ng eec u-,:.o n of the projectI
(Ref. 12: pp. 274-2751

q ~~~~n addition., PERT arswers t-he s ~ ~ us~rs

1. What is the chanc-i cf comple3ting a project by a
desired date?

2.For, how long should a _project be planned so -hal-
a giver. probabili4o cp_-4o sa.and
rRef. 12: pp. 274-2 -cnpe~n:saand

CPI answerzs th-e ~olwn diinlquastions:

Compet:o o a p: cject?

2. What *s mne shozrte-st nossible te ra Oroject
t-o be cciplstei.? [Ref. 12: pp. 274-275]

PERT and CPM orovide numerous advan-tages for the

crzjlect manaqer. T h' requirements of the methods forc=e

3an aqerz to p&I..n ahead in letail_ to dat-irtune what has to be

i-eto meet projec;t cbiectives on scheduls. Def inite deci-

s'':r~s must te made regarding zxecutiJor times and completion

limes f,:r activit1es in the project. The tools of CPM and

PEBT prov-,de for Improved communicatifon among depart-meants n

the o:qrganization azd between the developer and clisnts. The,

devi-ces allow for i-dent if ying- critical a ctiii t he

pro jec-I and thus close aIt an,, -on can. be given to these

Dha s r-. Since critnoal acti-vities are4 most lik-> no be

24

potential problem areas, these difficulties can be spottel

early and adequately planned for.

Resources are more easily managed using PERT ani

CPH. Once bottlenecks and problems are identified in the

project, resources can be more easily moved around to

correct difficulties. Deviations from schedules are more

easily identified and accommodated. Since PERT and CPM

provide an overall picture of the project, the tools ca. bze

Isel easily to presnt the project to lower levels of

management. ?EaT and CPM are easily adapted to computers.

Alternate ways of _xecuting projects car, be evaluated using

PERT and CPM. PERT providas !:he probability of comel-rinq a

project on schedule while CPM allows management to evaluate

the ccsts of rushing activitieS. Many scheduling prcblems

can be avoided nhrouqh close adherence to management tools

4 like PERT and CPM.

Agai ' we observe tha.- at-_ntion to the fron-end

develcpmen-t of a prcject will ld immeasur.bly -: ins Smco-h

acc-mdlishm=nt. The ability c adhere -o a sche ,

aiit ionally contribute to a project's success as the

employee:s wIl! realize personal gratification as miiastones

are me:. Improved motivation will mean an improved product.

7. Pas- Experi ence

Past experience plays a significant- roie in software

development projects. Companies that have pas- expserience

:: zarqe jobs will tend to overestimate a job and managp th-

job as a large job. Companies with experience in small jobs

will tend to underestimate a job and manage it as a small

job. This entire concept has been neglected in each cost

and effort estimating model re';iewed by these researchers.

(Ref. 13: p. 431

25

Research has found that experience is important if

Ir the experience that a programmer has is related to the

current project. Merely programming for a number of years
will not mean that someone is a good programmer, only that

he has been programming for a number of years. He may have

been making the same mistakes and using the same procedures

durinq those years. So the developmental pattern of the

individual programmer anrd analyst must be examined in order

.o asce_-main th- -aurity o- th- _nv:2ua!. Proqe

q pr:)ductivity varies greatly on the same task, soe rsearchi

:eportinq variation of 5:1 while other research has fcu-A

variation. up to 20:1. Literature or programmers' expe-ierce

*s be addressed again in another segment of tais paper.

. Toos

Software too2.s have become increasingly a topic of

-es= a:ch in -:is 2ecade as software has become So dcmian-n a

f i -h= .evelopmenn cf comput-r systems. ' --rgo-

ncm'cs c- sc-:ware en gineering has b-en lescriife as "...:he

discipline cf analyzing and understanding the -equi-em-nts

for qualit-y software engineering tools, and of trans-atina

this understanding into innovative tool design" (Ref. 11: p.

2231.

Ergonomics deals with the mutual adjus-men- cf man

and machine. Man has done mos- of the adjusting as of this

* time and machines now must adjust to human needs. This

evo 1 ut-on has come about due to the increased costs of

hiring and supporting programmers. Man initially exert-d

all efforts to exploit computer capabilities; now, ccmputers

must evclve to exploit human potential. The easier software

develcpment tools are to use and the more affective they are
in assisting the programmer to produce his product the lore

eficient will be the entire dpvelopmen- program.

26

The tools used during the production process can be

divided into a number of grcups.

1. The design language should be general enough to

permit a description in general terms and specific

enough to be unambiguous. Analyzers assist in

finding obvious problems and automate some intercon-

nection cross references. Tools such as the Problem

Stratement Languaqe/Problem Statement Analyzer art

CC D'2ter -a.ad sTr'ctured docullen-ation and analysis

-:echniques --hat aid in developing the reguirements

and specifications for a program and in the formula-

tion of documentation as the project proceeds.

2. Eitors and on-line document handling faciliti S

allow machine use fcr writing, produci, and main-
taininq specifications and use= publications.

3. Ccde library facilities Improve testing and "n-gq%-

-... of fixes for code errors.

4. A data dic-ionary system, a scftware sys-m used t::

:cor., s-or =_ anl o-ccess information abo'r :!z_ i

--rmIS s-qnifcant data rntit Is and related data

processinq functions, provides the following bene-

fits:

a) Security and access control for data base environ-

m ents

b) S-:andarlization of data elements

S•c) Identifies redundancies in the data base

d) Automatic documentation with current informa-ion

e) Improved transportability between computing envi-
-onments

0 f) Assists auditing (Ref. 141

q) Int.eractive code facilitates program development

allowing each programmer -o use a erminal in his

work

2

[27
6

h) TessT simulators allow simulation of complicated

hardware configurations

i) Test control and test case libraries facilitate

testing procedures

1) Service data bases provide solutions to errors

found that are not yet corrected for public usage.

(Ref. 5: pp. 273-274]

Software Development Environment (SDE) is the name

u o describe the available o rcgramm.zFrs t:

develcp a software produc-t and to maintain it. SDE's can be

as simp.e as a mixture of assorted tools with li-tle direct
relation to one another, or as sophisicated as a particular

development methodology using tools or software utilities

that are highly integrated and non-repeti~ious. [Ref. 15:

p. 20] SDE is a recently developed concept.

T- aprea_- the software developme: enviroment sh uli
be adaptable, user-centered-i , suggest:ve, heloful and
supPcr ive, not impcsinq. 1he :oo s of the _nvizcno~nt
shculd be pomtabe, cethodoicay .rdependent, catalcaued
w1-h respect tc assumed use-_ scohist_.ca-:on an_ Y
should have a specific Ourocse. ?inally, the environ-
ment -.=hould support larqe- cale software production an:
prov-e a cons:stent inte-rface through the entire soft-
ware life cycle. (Ref. 15: p. 211

SDE should provide tools that are integrated and user

friendly. User friendly characteristics should inclule such

things as human interfaces other than text, such as memu
selection capability, graphics and possibly voice recoqni-

tion. Not much concern has been shown up to now as to the

cost of implementing such environments or the cost of

sustaining such environments (Ref. 15: p. 21].

Common potentia! benefits to be derived from the use

cf SDE include improved software quality, reduced cos-t of

software, improved programmer productivity, and more manage-

ment visibiliry. The prevalent feeling is that -he us

software tools and the SDE is good but as of now no experi-

mental data exists to corroborate these feelings.

28

4

The cost of SDE has not been closely studied as the

ervircn-ments have been developed to support large systems

and these systems are usually used by large organizations

that bave substantial resources. Most of the effort is

di-rected tcward supporting the development phase and not the

mairtenarce phase. Companies feel that the development cost

will be shortened and therefore support the SDE. Nom much

attent cn ~s paid to the raintenance pLhase as ma~ntsnaics Js

p. 417 ,4 aS Cur CeS , -- :n - 0,1e f,:":r h = a np I e s. (Rsf. 15:

We beclieve tham little a:t-t,---on has bsen a Jver -to
esrmarnq aite-nrce costs 'or the same reason: at-

nance i~seen as a scurce of revenue. The SDE is mads up of

a numberz of components. Trhe s o ftware developmenzt tools and

Ir SCMe cases an implicit set of operating procedures ar-e

~enralyunderstood to be part of the SDE. The SDE also

~~:cu~~eC t rganiato - o- -ha iS suppgortn i ntn

a7 e r-eoration of t h e SDE wit h corz3rariono --s

:Ce An SD, inertdwith hecor7-orati-cn as a wholi is

IIn 0cr -azr: t he proper functioning and UtilJ-zt-n O

env ironment.

An automated sof tware dsvelopment env4:c~

rzquires sophisicated software support for complex direct:o-
ries of files, a sophisicated databass management systa, al~

a standard interactive capability. These c~z~:e

require considerable hardware support.

SDE has had a stated goa-' of r-educigq tae ti-me to

de-velcp software. Studies done by Boehm Indicate thatth

development, time Ls not reduced but that the time spent i

develcpment is shifted from writin'g source code and de.=bug-

g in q -o developing the requirements and specJ.:ica::ons.

(Ref. 161 The major problem with the concept :)f a software-

development environment is getting companies to aliccate

necessary funds to its develcpment and support. IiardW a r,

29

personnel and training must be provided to implement a soft-

ware development environment and to maintain its smooth

operation in the company.

9. DA]LUqpz2Znt_ oliies

Management by Objectives (MBO) is quite compatible

with using PERT and CPM and scheduling methods. "MBO refears

to a formal, or moderately formal, set of procedures tha-

teains wth qoal setting and conzinues throuah performanc-

review" (Ref. 17: p. 144]. 1BO is a participative r:ocess

that invclves communication among managers and staff members

a- all levels. Established links of communicatioz facili-

tate the planning and control of a project. MBO assumes

that workers are motivated to perform their lobs and want to

do as good a job as possible. This view of human behavior,
called Theory Y, is opposed to Theory X, a visw that hols

7. workers tc he nct very reliable and only interested *- wor-

as a x.anZ o- surIvival. Popi w" '! avcid work whenever

pzs-Sb'e acccrding to Theory X.

Proqramaers a known to be 'highly mctivated indivi-
duals who want o create as good a product as pcssible.

They qenerally are not too interested oin other non-

scientific people and are mostly concerned abocut exploiting

-he fullest potential of the computer. A sharp program

manager will reccgnize the needs of his programmers, meet

0 those needs to allow the programmers tc produce thei best

produc-, and insure a cooperative climate exists amona

pzocrammezs and programming teams and groups. The critical
role of a program manager will be more closely addressed

later in the research.

MBO involves primarily the establishment of acals

through a joint effort of management and subor din- as.

Cbjective measures of performance are arrived at, i.e.,

lines of source code generated. Performance :ev:--ws and

30

-

A

regular periodic reviews are made. A primary purpose cf MBO

is to achieve efficient operation of an organization through

the efficient operation and coordination of its parts. It

has qreat value in performance planning and appraisal.

Managers in the organizaticn are encouraged to work with

personnel above and below them in an effort to achieve the

best product possible. When problems arise, the team works

together to solve them rather than to seek scmeone to hang.

Since p-oqraamers are creative people, progressive zanage-

Sment pclicies like L1O emphasizing the goals of

self-ac-ualization are e.ncouraqed.

Software development projects are often large_ scale

pro-ects requirinq the highest coordination. The qualities

-hat the Federal Government seeks in its program managers

are- h~r=n presented for their overal ap ica-ion tc anv

_a--qe scale?, software de velopment prolect. Of.en _imes,
qcver-nent acquisiticn Is the driver b.hind a sc-ware

develcpment project. The characteristics of the project

manager who guides a software development projec- to its

completicn will be critical for the success of the project.

managinq an acquisition program for a large scale, acvern-

ment purchase is a demanding task and requires an individual
of unique skills and personal character traits. "The accom-

plishment of this objective requires "he successful

integrat'on of people, financial and material resources...i-
one wcrd--Manaqement" [Ref. 18: p. 8]. "A program manager

4 is expected to have an in-dep-h technical understandina cf

many areas, to plan, organize, and control with the preci-

sior of a military campaigner, to integra-e ideas and write

'Like a journlist,' and to build and motivate a team of

* managers he may have never met before or work with again"

(Ref. 19: p. 6]. The responsibili'y for the success or

H 31

failure of the acquisition program lies in the hands of the

program manager. The job must be done efficiently, within

the budqet and on time. The success of the program will be

a direct reflection on how well the team has been motivated

to achieve its goal.

Even if we know the proper way to build and motivate
a project team, more impcrtantly we must find a program

manager who can successfully implement -his knowledge. AAst

imoortantly, a Program manager should be an indiviiual wi--h

a Dcz-ive attitude and keen insight into human nature.

Successful projects emerge from people who believe that the

job can be done regardless of the obstacles. if the program

manager is a positive thinker, he will foster this attitude

on his -eam.

An achieving procram manager will demand outstanding

results. Outstanding effort is admirable but if the zzoduct

not leliverqd as advertisad, -he effort is -mpty. if

noluc-icn has been taking an inordina'e amoint of !:ie on

Dh a-- C-1 certain indiviuas, personnei reassin*ens

s&;ou.Ld he considered. A p:ogram manager shculd be one whco

remains above interteam squabbles and criticism and te the

individual who puts such destructive forces no rest. Re

should be an individual who is bound by his work, keeps his

promises and thereby qenarates a feeling of confidence and

certainty within team members. (Ref. 201

An effective manager "...must have skill in communi-

cations, which spans such areas as the ability to sxpress

ideas clearly, -he ability to lead ;iscussicns and arbitratz-

differences, .e abiliy-- tc ask the kind of questions that

stimulate and encouraqe creative thinking and problem

solvirg. He must also master the skill of listeninq---so

tha- he understands what 4s said and what lies behind the_

words" rRef. 21: p. 151.

32

A recent study indicated that employees view communica-
tions with supervisors as the most satisfying and
important relatzonsh.ps in the working environment, but
least able to establish. In another study conducted at
Loycia Universit y essential attributes of a gcod
manager ware compiled. It was found most important that
managers listen well, Since attentive listening is the
*best way to stay in touch with everything that is
happe-.ng, :uch managers are well informed. Good
lis-tenng, in addition to keeping managers well
informed, proaotes good human relations. (Ref. 22: pp.

. proar -m manage: must feel secure within .imself.
He mus- he able to function with th knowledge that he will

be held personally accountable for the success or failure of
the acquisition program and will be dealt with accoriingly.

Above all else, we feel that a program manager must have a

talent for human understanding. He must have Insight into
behavicral patterns that indicate personal or professional

:roubi wi-hin the s-_aff member. Through personal at-ention

tc the nee! = of -he individual, he will genera-e a loyalty

that will o-ia-e the best act-icns from the indivivual thus

iMoovi-.q th z e -scn for future achievements ano --. ustinq

t-ne current project to a Successful completion.

Above all else, the program manager is the key to a

project's success. Sound estimates of cost and effort will

be for naught if a ccmpetant program manager is not at the

helm.

.3

L3

This chapter describes the major phases and activities

of a software development project. With any type of

project, whether it be developing a software system or

building a little red wagon, a person needs to know exactly

*wH' :: he is settna out to d before h; can even beai-

to estimate what he need s in terms of t m, - C'ney, an

ef.cr- to complete the Dro ject. Throughout th1 tit a.tur s

on software engineering economics, reference is madp to the

lifec7cle phases of software development projects.

ss 6i-a1..t____y, a project is broken lown into parts se that

what may a: first appear to be an insurmountable task may be

viewed as a composite of less complex components. An under-

s-:andin of "h o ph ases a - c tIvi ts Invo1 ,,ve .I.n

p:-_c-icr. of software is the fi-st steap toward answering

t-H= q'iestion Wh*--=- dces the .cnev go?".

A. MAJOE PHASES

1. lys Rea eme ntsFeasibilit!

Wo will devote considerable attention to this phase

of the software lifecycle. Too often we charge off -o
0 bat-le when no war exists. The corporate manager must first

de-termine that a real need exists in his company and that

tha need can best be satisfied with improved software or

initially computerizing an area of his ocerat-ions. The

perceived problems, however, may b- found to be solvable

within his existing fram.work.

During the syste :qui e ts/feasibility phase,

scftwari concepts must De lelineat-el and eva.iat=ed and a

preferred alternative chosen by manaaeme-rt.

34
0

0
-77

Once the need for a new information system is perceived
a feasibility study determines whether or not desired
objectives of a proposed information system can be
achieved within existing constraints. The study identi-
fies the cost of proposed changes (monetary and
organizational) and estlmates the benefits of the new
system. Qn this infor marion, the manager decides
whether to implement the new system or discontinue the
s-tudy. (Ref. 23: p. 233]

A feasibility study is undertaken when the need for

a new or be-ter information system is perceived by an organ-

q zatrcr. A feasib-in-y study -s a costly arnaa

before ne :ing the comuanry sacul d evaluate whethe:_
exstirng sclutions -c similar or i -ntica probems exist

and whe-ther they can be sa-isfactoiy adapted to thei_ own

copany.

When a software development projec- is contemplated,

the market's existing software should be =xamined no e

mine whether the needed wheel has already been invqn-t_. In

assesinsrg -e :_eque men-:s of a par-icuiar software develoz-

men- Frcject, -e exi Sting hardware must be-,ew = as to

can perform up c -he expecta-ions and demands of

the ccn-emplated system. If the hardware is nonexistent or

outda-ed, the feasibility study must incorporate the areas

of hardware and software.

The four phases of a feasibility study are:

1 1. Organizing for the feasibility study.

2. Search for a solution.
3. Feasibility analysis.

4. Choice of a solution. (Ref. 23: p. 233]

Phase one, organizing for a feasibili-y study, is

undertaken when one or all cf the following become apparent:

1. Cha~tqes in Qrganizationai goals, olans and infr -

ma-lor, requlreu3ents.

_ . 35

27 7-11_ _ _ _ _

Phase One: Organizing for feasibility study

I Start1

System 2

oroOlem
recognition

1 3
!Formulation
iot need for
!system cnange

4
I

Management
avpc'itS
team for study

I !Management
states oolectives.
oofcies, and
constraints

IPhase Ore

To Phase Two

I rRef. 23: p. 234]

Figure 3.1 Phase One: Organizing for feasibility study.

2. Chang-s In r ga n za tiona! structure (-. .,
appointment Cf tew top management).

3. Changes in the anvironment (e.g., legisiaticn
:equiring the company to supply nsw data to
qovernment agencies).

4. Changes in technology tha: may make new systems
leasable. (Ref. 23: p. 234]

36

a

If the need for change has been clearly identified,

then management mast undertake to clearly define -the prob-

lems and search out possible solutions. A feasibility study

team is recommended for this task. The team usually

consists of two to eight members with the following

qua lificat ions:

1 . nambers should reflect a knowledgs of the sys--em

techniques. The nature of the problem will determine

nw; e_: nh's k.-cw_=_g- be. n _-.

research, s;-a:_stcs, comDuter science, infrma-io.-

zcience or business functions.

2. iAembers should have the ability to relate to pecole

since their work will lead them to exchanges wi:h

many individuals in the company. Change and possib-_

icss of jobs always ccrcern employees and these fears

should be aileviates by the group members.

I'smozrs should -ayor.a-

r aniz L on.

*. "-mbers should beable t-o Ies- detail - d, reian

--hem to t*-he overall picture of the ozganizat-on.

5. :Members shtould have a position in management for

clout.

6. Members should have expe:ience in the orclec- unrer

consideration. (Ref. 23: p. 235]

.-erscnn-- may have to be hired o meet some needed

qua !-. fica ions.

After th eam has been identi-ied, management i

s-ae the objectives or -he study and - e related policies

anI cor.straints. The team will need -c know such things as

permissible error rate, hcw many decimal points arswers

should be carried to, response time requirements, the number

of users anticipated on the system, locai.on of the users,

ezC. Gcals are set by manageme:t and the feasibility stdv

is -c detirmine whether the coals can be met dithin

37
4

Phase Two: Search for solutions

From Phase One Phase Onet" i" -*Phase Two
stm6 Economic8Analyze information

infomain

existing
system8

j | Organizationaj

9

I Financial
IAnalyze information

relevant
data

I 10

I Technical
I 12 Information

No Yes oon j

No Feasible YesI

S o 2 13 Phase Two

To Phase Three

S f. 23: p. 237]

Fi.qure 3.2 Phase Two: Search for solutions.

t chnolocica constraints ain resource cons-taints of the

4 conoarny If goals cannot be met as or. alydfnd
eith.er --he qoals are redefined or -he project is scrubbed.

T 3ase two, the search for solutions, may take two

forms. For a situaticn where major overhuals are to be done
-n a systeSm, a fresh approach to the_ problem disregardina

38

'A

~. Phase Three- Feasibility analysis

f Phase Two

Phase Three

(Managements

Magaagaemona

Feaseasiole
42 analysisen

An 19
Nosfhesubls and

\sDocumentattonr

I omethodssof

of s aystem ,

Phfs Droured

To Phase Four

r~ef. 23:_ __p.___239__

Figure 3.3 Phase Three: Feasibility analysis.

39

the existing system is recommended. when changes to the

subsystems within the existing structures are to be under-
taken, then a thorough evaluation of all the information on

the environment is recommended so that current performance

of the system can be evaluated and changes recommended.

(Ref. 23: pp. 237-2381

The solutions uncovered in phase two are tested in

phase three, feasib-ility analysis, regarding their economic,

n _ CZ(ora n:z at -- C-_a a nd t -_c h n I-a I v_=i1i4iv cCn_-

er-ng imposed constraints. The economic feasi4bi_:v o:

jmplemzntlng a new system i sal copihdb

Pe=r-..or m na a cost-benefit analysis of the proposed urndar-

taking. The cost-benefit- analysis will d-?+erm-na whether

hebensfits of the new system will be grsater than th

costs required to implement the new system. What must be

take -no accoun-t are the costs ancompassin g the softwarq

..: I a_-r,-wa re a -3 1ci:.;
Increased attlzrzian is being given to ozgenizatnional

tha-. must be mad=-st ~ aen a ne=w In f,-rma t :)n sys-:sm

or arev.,seo --iormation syst-em Is contesmplatad. "The major

reason Manaqem-ent Informaricr. Systems (113) have had so many

6failUres and problems i~s the way systems designers view

orq aniz a tions, the.ir members, and the function of an MIS
withi-n them" (Ref. 214: p. 171. Although management infor:ma-

tion systems are cited, the authors include any computer

based information systems effort. Faulty views of the

orqan&.zat_cn result in a faulty dsign of the information

system and hence a less than optimal operating system. The

Socio-Teinical System (STS) de sign a pproach o ff ers excel-

lent advice on implementing arn information system by taking

a realistic view of the organization. The feasibility stu,,dy

group would do wall to zreccmm-?nd or i-:-corporate ideas from
this approach. Both the technical and social aspects of a

new systzem must beA considered in t-he design of the systesm.

40

STS is a, fairly recent development in the quest for
organizational systems which are both more satisfying to
thelr members and more effective in meeting. :ask
regui..ements. This approach is used for *redesigni-4-ng
ex2lstzfq work systems as well as for new site designs.
(Ref. 24: p. 17]

I Phase Four. Choice of solution

From Ph~ase Three Phase Three

~eot 26 Phase Four

I 'management

27

No satisfactory Yes

I Authorization
of solution

tudyan

Go to ox 5(Se F~gue 3.1

r~ef. 23pp.o2ec8

* Fique 3*1 Phas Pcur Choie ofsolution

29 31
Ye ot OEdo

a

in phase four, choice of a solution, the feasibilty

team recommends various alternatives to management with a
ranking cf their desirability. If no desirable solutions

exist, management may want to change their constraints in

order to find a feasible solution. Although management will
have been involved in the feasibility study as it

progresses, it must now make a final review of the alterna-

tives and settle on a choice.

2. S t~aze Re.iI=ze.ens t

Defininq software requirements means de:inina the

aspects cf an acceptable solution to a problem. In his

phase, we look at the computer and the people who need to

use it. For example, a company may consider a number of

ways cf paying its employees: cash, computerized payroll

checks, manually produced payroll checks or direct deposit

to an account. [Ref. 25: p. 199] Other additional requi--
nents muts he considerei a for e-1:o-*n off

- -_- n o-n: orccessing tme,

cs -s , =error probabJlity, chance: of fraud or -:heft.

When designinq a system, documentation should be

Jesianed first. Documentation is important in both the

iniial development of the system and in the subsequent

maintenance. ". software specification and standard should

reI.- that the documentation to be p-ovided on a orolect

be szscified. It shculd also be required that the various
J v-- - of iocumentation be consistent (a.g., sub-programs

specifications should be consistent winh the associated

proq:am specification)." [Ref. 26: p. 11] The foilcwina

documentation can be found in varying degrees in ccmu - r

software development projects in the phases indicated:

Functicnal Requirements Document Problem Definition
Data .Requirements Document Problem Definitcn

System and Sub-System Specs System Design

Program Specification System Desiqn

42
4

._ . .

Data Base Specification System Design

Test Plan System Design

User Manual Programming

Operations Manual Programming

Program Maintenance Manual Programming

Test Analysis Report Test. [Ref. 27]

During the course of a software development project,

ora I commurication and written document.ation must be

b=nce for the best results of a project. "A rure ents

analysis car aid in understanding both ths problem and th

t.-adeof fs among conflicting constraints, thereby conrri-

buting tc the best solution" (Ref. 25: p. 1991. Absclute

necessities must be distinguished from bells and whistles.

Time and space limitations, facilities plans for the future,

and individual facilities requirements must be addressed.

The mcnsy rcquired for and the money available -o implement
-..... system mu- e consi- d. The manaoement f the

pjec-t must also be consid :-ed. As already iscused, P2RT

and CPM are popular methods of mcnitoring prcreSs. "Once

all these questions have been answered, specifications of a

computer solution to the problem may begin" (Ref. 25: p.

1991. To summarize, what is needed is "a complete, vai-

dated specifica-ion of the required functions, interfaces,

and performance for the software product" (Ref. 3: p. 37].
* 3. P-eliinay Desi n/roduc- Desiqn

when we look to Ietermining the specifications of

the software, we are actually asking what do we want -.he

software to do? We want tc determine , for example, the

format of the input and 3utput. What informatior would be

desired for the production of a check and how should -his

informa-icr appear on the check. Algorithms must be consid-

ered for deductions from the basic check such as life

insurance and health insurance plans.

43

A primary concern will be the size and content of

the database. Beyond that, we will have to determine the

- layout of the database that will be most effective. If
anything but a totally new system is being incorporated,

pians must be made for conversion of the data in the old

system to the new system. Compatability must be considered

if new equipment is to be adopted to existing equipment.

The answers to these questions should be put fct-"

i C ccumen.: called funcional s secificaticrs [Ref. 25: p.

U 1991. This document shoul be painstakingly Frepared giving

to.ouqh _efinitions of the specificaticns required. The

mcre complete this is, the fewer the errors will be in the

final product. "Because it describes the scope of the solu-

rion, -':s document can be used for initial estimates of

*ime, oD:sonnel, and other resources needed for the prosct.

These specifications define only what the system is tc lo,

zu- no- how tc do it." [Ref. 25: p. 199]

IVThis theme of describing what and not how somethin

S -o be 10 ne _ is important fo- 1erivin t h. most -i n-0 e

oroqrammers working cn the project. If the how is to be

iefined by the person writing the specifications, he may bs

limiting himself to an antiquated solution to the Drobl.m.

and not availinq himself of the creativity of the program-

mrs. Herein we have once again an instance where a good

manager will guide the development of -he specifications and

not unKncwinqly limit himself by loing the preoramme_-s job.

With a basic knowledge of the system and programming, he

wil. be able to clearly evalua-e original solutions -o tne

p probl.ems and employ the best -technology availablp to ths

programmers.

44

V '. . .%- ..,. ..

Much has been written about the design phase of a

software development project.

To reiterate, A complex system is one in which there are
so many system states that it is difficult to understand
how to organize the program logic so that all states

-ll be handled correctly. Tae obvious technique to
aply when confrontiq -this tpe of situation is *aivide
an rule. ' This is an old i4ea in programming and is
known as modularization. Modularization consists of

.. proqb rraams {i,,ises) which ca.
3e copiled separately bu7 . wfich have connections wita
Ith-r moaules. (Ref. 8: p. 661

I

4hat is now cons:dered to be -he most e-fectve way of

developing a software project was set forth in a classic

article by Stevens, Constazntine and Meyers in 1974 an

subsequently refined and developed by Parnas (Ref. 29],

(Ref. 30], [Ref. 31].

t..-s lv -he zcncep Ot u- r Iznua'Z:o "

A az-icular 3esign decision ass.ee -o one .odue. r:--
jcob c: co:ng up with an .ocri-hn -o irnD --n t -ha-

decis:cn is then aiven -o one programmer or a group of

roaramm er s perhaps oraanized into programmin; -eams as

recCmmened by Brooks (Ref. 7: pp. 29-371. When the work is

modula rized, it becomes sasier for the procrammers -o under-

stand. Communication lines can be established be-ween

proqamming teams so that questions can be answered. Each

mcdule is developed as an entity in itself and how it ioes

i-s jcD neccmes the secret cf the; module. The module will

:equire certain inputs and will d=liver certain ou-puts.

e.. internal workings of that module will not be revealed to

designers of other modules. The module will then not be

tampered with.

The ccnnections between modules ar the assumPt'cns-
which the modules make about, each other (Ref. 321.
Aodules have connections in control via -heir entr an!
exi: pcints; connections in data, explicitly v-a. '.heir

45

L- - - -

arquments and values, and implicitly through data
referenced by more than ono module;. and connections in
-the services which the modules provide for one another
(Ref. 28: p. 661.

The beauty of this concept is that development time

is shcrrened and modifications can be more easily made to

one black hcx, the mcdule, when changes are required down

5. Cod s ard 1 _b no

:urinq tae code aal lebug phase, sc-ta-e 2- actu-

ally produced -hat meets the specifications and is certified

to meet the users requirements. Code "s said to be veri-

fied when it meets the specifications of the design; code is

said tc be validated when it proves zc do what the user

an-s it- to do.

Whe.n converting data to code, errors are oftentimes

male that are no- e.sily detec-ed. Wrong charac-er usag-

car. be caught withcu- muzh -ouble but correct c:.aracters

used impzoperly wil! pass andet-c-ad.

The credibility of data is often directly related to the
oriain of coding. Coding at the data source may lead to
-nadv_t.e t errors due to a misunderstanding of the
codinq structure or carelessness in apolyinq vA!-d and
relevant codes. Trained coders, select d and supervised
with care and motivatel as to the iportaance of their
job, make fewer errors. (Ref. 23: p. 1631

E

6. _ buqinq and lstis

Since computers are not forgiving in nature and

react to any errors, testing and debugging is extramely

important. After each module has been coded, testing and

debugging should be done; after each module has been tested

separately, all the modules must be tested together as i

system. System tests including acceptance testing are of

cours=, very important.

46

We can classify programming errors according to

three types:

-. .1. syntax

2. Code Logic

3. Problem Logic

Syntax errors include such problems as omitted

parentheses, incorrectly spelled (and thus unrscoqnizable)

variable names, wrong data codes and misccunted character

'naths. cznpilsrs are 'usal to fin! 4.1. =eSz -rrors.
Code logic errors are not as easy tc ±:nQ and

include cperable statements tha- produce incorrecz resui-s.

Some such bugs are cbvious-a missoelled word or misa-
A-qned title on an output report, 'for example. Other
errors are difficult to discern, such as zransferring
cor.trol incorrectly after an I? statement and byoassing
some intended instructions. Still other are
"nsi-icus-for exampLe, -rrantly substituting one vari-
able name for another in an q uation. The results may
seem ,indecipherably random. Ref. 33: p. 311]

i:om Me" 7xi-t "hen the Program Thes not

a e-quatey add ess e a se:I s problem. For examDie,

al-houah a program may be cor- =ct for payroll, a wrong

understandinq of the tax laws or the payroll deductions by

th_ programmer may render the outrut of the program useless

to the user.
_ eta--i,- I " tesing took a mar a jha h of the

•o effo2t dAo td -o _ r oten a mach as 50%. With

increased emphasis being put on the front-end development of
a prcgram, this phase is c cnsuming less of the resources of

th4 e project and is generally consuming about 34% of the

4 effort.

47

This phase concerns i.plement~ng the developed soft-

ware in production ard keeping that softwars functional. A

number cf areas are to be considered:

1. operating personnel and computing facilities must of

course be available

2. !"rrors that arise- fr-om usaqe must be corrected

3. ~cdifica tions must be made to the software? as h

uscr: :equirements change
4. C.:.anqes must be made as z--fci=ncy eu::

c harge. (Ref. 34: P. 321

B. ACTIVITY DEFINITIONS

Once -hp lI'fecycle phases have been defined cne should

I&SM 'mate for each phase the -fr-actior. of *he -:otal amcunt of

z3 zU,:cz ',a-: a :7S o: b- tIinca -ecl -oI. h-v

s c fe: c =m ed z.- eac h c ' -he =_1-a se s s houl 1d e n b -- 1a-- tr m __ r

and :escu~ces asgrei codngy R 35: pp. 625-6311

A ypicaJ. allocati4on of resources 4-, custocm software

development and test i::

1. Requi-rements Anaysi s: 8%

2. ?relimina~y Desigqn: 18%

3. Interfac e Defi-niti -on:4

4. Detailed Design: 161
5 . Code and Debug: 20%

6. Development TAesting:21

7. 'ialiia-t-on T es ti-ngq and Operational Demonstration:

Suminq,< the four phases priJor to code and debug shows

tha- we allocate 461 of our total dollar there , 201 goes t!o

coa4rnq, and the remaining 34~% goes to the two major Fhaszes

t hat fc.l.ow coding. (Ref. 35: p. 6301

In crder to enhance the reader's understanding of just

how the dollars are being spent, a description of the activ-

it-ies involved is presented. A breakdown of the tasks

performed within each activity during each phase is

presented in Table I. The completion of each major phase of

zhe software life cycle requires that variJous functi-crs or

acti-1.vit ie s b e periormed during each phase. We summarize

chese act-vities -as follows:

1. - n =mn3 n=' 7si'S: De~~nain E:c:c:~

re-v-;ew ar~d u Pd(1a te of S o-t wa r e fu-an ction10r.al, ?efz4-r-
n;-. -ce inCfae and verificati-on requir-ments

2. Product Design: Determination., specification, rve

and update of hardware/so-ftware architecture, p~ccgram

design and dat-a base design.

3. Proaramming: Detai-led designr, code, unit, test, and

int egrato 1 f iniidn com~ute: p~ogram ccmno-

:0rarnm-ng sr~.>nn, c

a cq u iton, data jase devslopment, compor,n--n evl

m anr.a q e mes nt

4. Tc-st, Plannni-nq: Soeci-fication, rev-i-ew, and updates ofP

product test and accept7ance test plans; acqu s tor.

of' associated test dri-vers, test tools and test dat-a.

5. Veri-ficati-on and Validation: P=rformran1ce of n:pn

len: requirements validati on, lesig- verificat-on anld

6valilat-ion, product test, and acceptance test; acqu:-,

s *t -on o f requirements and design veiiain and
vali-dati-on tools.

6. Pzoject, Office Functions: Project le-vel management

Afun c ti:ons; incl6udes project level D Lanz ingA and

ccntrol1, contract and subcontr-act manaaement an

customer *nterface.

7. Ccnfi qurati4on Management and Quality As sur an ce:

Ccnficurati-or management includes product

'49

TABLE I
Project Tasks by Activity and Phase

,Jr :,1 Product itegration

Requirements Analyze existing Update reqwre- Update require- Update requie-
analysis system, do- ments ments ments

termine user

neeGs. 'nle-
grate dOCu-
,men. and

quirements

PrOduct design Develop basic Develop prod- Update design ocate design
architecture; uct design;

models, pro- models. pro-
totypes, risk totypes, risk
analysis analysis

Programming Top-level per- Personnel plan- Detailed design, Integrate soft-
sonnel and ning. acquire code and unit -vare, update
tools plan- tools, utilities test. compo- components
fing nent docu-

mentation.
integration
planning

Test planning Acceptance Draft test plans, Detailed test Detailed test
test require- acquire test plans, acquire ;lans. install
ments. top- tools test tools test tools
eve test

I oans
Verification and Validate re- V & V product V & V top por. Perform product

,vaulidation quirements. design, ac tions of code. test accep-
acquire re- quire design V & V design tance test.
quirements. V & V tools changes V & V design
design V & V changes
tools

ProjeCt office Project level Protect level Protect level Project level
functions management, management, management, management,

protect MIS status mont- status mon.- status morint-
planning, tonng, con- toting, con- torng, con-

* contracts, It- tracts. liaison. tracts, liison, tracts. l(ison,
aison, etc. etc. etc. etc.

I.CM/QA CM/GA plans. CM/QA of re- CM/QA of re- CM/QA of re-
p I rocedures, quiremefts, quiremnts, quirrtfnts.
acceptance design; Prol- design; code, design; code,

* plan. identify ect standards, operate li- operate II-
I CM/QA tools acquire bra brary; monitor

4 CM/QA tools acceptance
Mnulplan

of users' erators' man- and opera- erators', and
manual usis, Outline tors' manuals maintenance

maintenance manual$
, manual

(Ref. 3: p. 501

50

identification, change control, status accounting,

operation of program support library, development and

monitoring of end item acceptance plan; quality

assurance includes development and monitoring of

project standards, and technical audits of software

products and processes.

8. Manuals: Development and update of users' manuals,

operators' manuals, and mai.ntsnance manuals.

(Ref. 3: pp. 46-50]

U C. SUMMARY

A scf-ware aevelcpment project's major phases and the

ac-ivites of each phase have been presented. We feel -hat

a manager needs a scund understanding of is aspect of

software enineering eccno mics if Ie is "o not o ny -ader-
stand but also contribute to his organization's development

effort. The foundation of krowled' _ -hat is laid hr a

ccncernnnq -he software 1ifecvcle (and as is true '-or all

:.Ceas Set :ort"h in zhls research) !i be !i- uoon a.n

re-fined as the organization interacts wi-h professionals in

the compute: industry. With a sound, working knowledge of

software engineering economics, managers wil increasingiv

find that they are assisting in the dev~icoment of an info_-

maaticn system -hat fulfills their needs -n an efficient anI

ef fect ive manner.

51

|6

IT. 11702, 219.9 AVP OST _STINA TON

Herein we look specifically at the factors affecting

effort, time and cost estimations. We feel that focusing

cur attention on this particular area of software engi-

n-ee:7q economics is essential for it is here that the

or~anizaticnls life-line is tapped. Effort, -iMe an! Cos

es-im'kes will directly affect -the stability and solvency of
a company. Inaccurate estimates according to Murphy's La

will prcve to be underestimates and accordingly drain the

company of added resources that may or may not be conven-
iently available. A project may be scuttled due to the

inability to provide additioral support.

A. TIME AND EFFORT ESTIMATING

1. _Zxp_rie.qc and Jud.eetr.

Every estima-e is Lnfuenced to some extent by the

exp-erience and judgement of its author. Some items i.-lu-

encing the estimate are so well understocd that judgemen-

seems to be replaced by the mere mechanical applica-!ion of a
rule, while others depen! heavily upon the experience of -he
est'matcr. [Ref. 36: p. 48] The person responsIl - for
ensuring the validity of an estimate should remain well

aware of the skills and qualifications of the individual who

prepared the estimate to give him/her a Dasis for deter-

m nn its accuracy.

2. pro_qa~mmer Product ivi-,!

Programmer productivity plays a major in part in

estimatics of -he amount cf time and effort that wil! be
expended on a software develcpment project. The paragraphs

52

that follow focus on some of the more important aspects of

producti vit y. As productivity increases, software develop-

ment costs decrease. In addition to worker quality and4

mct v at icn, product ivi-ty depends on the use of advanced

*technology and the proper use and training of workers to

effectively interface with the new technology. Short-tsrm

:rvstetin training and jcb modification should 1 a d t o

Sav 2ng1s i.n telorgq-run due to :nc :sa s ed p rcd u civ it y.
(Ref. 371

Teear.e certain n or-- uwan el ement s -:1-=- can 'havg
areat e::fec- on productivity. The, d-velopmzr.: ev-

-a ke y factor in thi-;.s reg ard. one muist ensuz=e t'at

adequate hardwars and so-ftware support is available t o troe

procrauimers. It is not uncommon for projects t.o become

bottlenecked because throughput capaci-ty, disk space, CPU

caD aC :ty , or the "4ke have been exceeded. The demand f or

-hes e cc m ou ro re so u rces diir ingq daS i g n, d sv elo pz.e nt, .:e_

7--l icr an! te:st is g anerally g r ea ter t han during

C Ce a tions. The delays caused by such bottlenecks resu> it

h.ghlvels of fzustration and lcwer rorcduc-!:_viy among -:he

proqramniers. [Ref. 38]

It should also be noted that poor programmer produc-

tivi-ty is as much the result of bad management decisicns anod

pl1a n ninq as it Is the result of inadequate tools, or lack of
al n: . ?3roductivity is affect ed by an craan-zation's

x ruc ture , go als, product type and experience in davelcping
soft-ware. Care should be taken to ensure that an or7gariza-

tionfs -ctw ar development process does n o t become a

hindrance to: producti-vity through ij.mpose:d inflexible manage-

ment procedures. (Ref. 39]
Accordi4.ng to Jack Stone there are cermain, changes

that could be made to the programmer's physical environment_

to Increase his/her productivity. one of his suggesti:ons]Lt

0 to give each programmer a p:ivatea office to ensure quiet

53

surroundings rather than grouping the programmers together

"like cattle in a box car". Another of his suggestions is

to ensure that the programmer has available to him/her state

" cf the art computer services (a CRT terminal wi*th on-line

interactive operating system controls, editors, compilers,

and debug facilities). (Ref. 40] As previously discussed,

improved programmer productivity is among the potential

benefits that may be derived from the use of SDE.

3. Col= Pro~luction Rates

A working stand-a . of the typical code production

rate ter programmer man-month is 1 object inszruc-:.on/ man-

hour, which is equivalent to 156 instructions/man-month, or

1870 ins-ructions/man-year for nontima-critical software.

Wi-- vaziazions in programmer productivity do exist hcwever.

[Ref. 35: p. 6311

- . a. as:c ? .noadino ?attern Ovr TimIe

Research on the man-effort loadirs of ried:um to

.- laze scale software develcpmen: projec-s has r-v -

basic manioading pattern over time. In-ially, ther= s a
r-se in man-effort followed by a peaking and then an expo-

nential tailing off. The time varying nature of a project's

work profile is to be expected since software development

Stsei f: IS a time dependent process. (Ref. 41: p.128]
!

Consider the following rationale. A software project
-an be thought of as wntailing the solution of a flxed
.umber of problems. At each point in time, 4, b9th the
number of unsolved problems available for solution and
-the level of skill available for solvina problems will
vary. Since the rate of problem resolution is influ-

* enced by both factors, it too will be a time dependent
process. Presumably, consumption of project resources
reflects the rate of problem resolution, hence the time
varyng nature of the manioading curve. [Ret. 41: p.

54

6

B. COST ESTINTING

A detailed understanding of the factors that impact

on the cost of a software development project is required in

estimating its cost. Two major problems are involved in ths

estimation of software development costs. One of these is

the level of uncertainty and risk. The other problem is the

rack cf a quantitative historical cost data base. [Ref. 42:

pp. 16-171

Three factors contribute -o thhe amount of risk and

uncertainty involved. These are that the requirements are

sub ject - to change, somezhing new may be required during -the

develcpment process, and risks are inherent in the software

development process itself. (Ref. 42: p. 17)

For a good scftware cost ast:ate one should work

from :irm requirements, unders-and the required croduct

well, and carefully manage the 1eve1pment cycle tc -nsure

-.han ctding does not bg in before the design has been

"to:ouqhly worked out, vrified, and vaiuats-d (Ref. 42: p.

171.

Without accurate measures of prior costs 4 is

.xtremely difficult t estimate the cost of a new project.

To solve this problem cost summaries should be archived and

distributed by the prcject manager of the development effort

t o the appropriate personnel for estimation purposes.

[Ref. 42: p. 171

2. Key Factols In."'ue.cing Software Development Costs

The key factors influencing the cost of a software

development project may be divided into the following four

cat eqories:

1. Requirement Factors
2. Product Factors

55

3. Process Factors
4. Resource Factors

a. Requirement Factors

(1) . u l_ Qf e fica s. Incomplete

requirements definition is a major cause of cost overruns.

The developer interprets the vague, poorly written require-

ments, prices the software package on the basis of that

e rn-er r tation, and proceeds to design -he software on that

same basiz. (Ref. 42: p. 17)
One of the keys tc accurately costina

software is to devote x"tra effort In solidifying -. e
:equiremen-s before entering the detailed design phase of a

project. Understa ding th requiremants is the basis for

analysis of many of the other costing factors, inclIu i.q

difficulty, interfaces, size, tools, use of existina soft-

ware, and data base complxi-_y. Poor estimates of software

'ze o-r '.ata hase ccmplexity ar-. of-en blan'ed for ccs- cvr-

rin3, w:.en t AeC actual rZ.ascn for errors :- these .

4s Incomp-e-e or inadequa-e specification of rEquirements a-

-the outse- of --he initial software costina. (Ref. 42: p.

171

(2). Stabil-ty 2f Reauirements. There are many

projec-s for which the well specified requirements against

which the detailed design is prepared change during the

project. It is the responsibility of the project manager to

fully understand the software requirements and to ensure

that it is understood that changes in the requirement _ base-

L-ne are lust that, changes! The projec* manager shcuil
then do=fine the cost and/or schedule impact so that the

change may be fairly evalua-ed. If the change justifie '-

estimated impact on the pro ject, a decisicn to incorporate

may -hen be made. The change should then he re__ c.z in

the requirements specification and incor-horated -a ne

56

design; its impact on the project budget and schedule

should also be stated. Once the impact of changes on the

project is known, many changes that at first appeared

attractive lose their appeal. (Ref. 42: p. 17]

h. Product Factors

Product factors are thoss factors derived from

the characterist:cs of t-he software product to be developed

and delivered, including both code and documoentation.

Foliowing is a discussion of the six product factors.
(1). Sotwae Size. A very common me-hod of

ccs-ing software -s to es-mate the number of instructioas

to b developed and multiply by a "magic number" (Io!!ars

per instruction) to get the estimated devi2.opment cost.

Al:houch this Pstimating technique is nct very precis_ when
used alcne, it can be very useful when used in coojunc-tor
wi .. the other f:actcrs.

Significant sizing corsideza.:ions inclid=

1. Care must b, take., to isclate "e deliverabe scl--

ware from the ncndeliverable test scftware,

simulations, and support software, which should be

less costly to produce.

2. As the siz-e of the software increases, other factors

such as complexity, interfaces, and the number of

people involved, begin to have a greater influence on

-he cost.

3. W'hen trying to use size as a costing parameter, carS

must be taken that the cost base being used is

derived from the same sizing parame+er. Projects or

companies may track costs by lines of code, number of

object instructions, number of executable source

statements, total instructions or lines of code

developed, or delivered instruct-ions or lines of

code.

57

!.

4. When using size/cost factors, consideration should

also be given to productivity differences between

languages.

5. when object code sizing estimates are based on

similar existing software, consideration should be

given to differences in the expansion ratio from

source to object instructions between different

HCL's, compilers for the same HOL, or different

operating systems.

6. As size increases, -he number of individuals involved

in the aevelopment effort increases and t:*e amour-, of
ime spent in inte:communicaicon and coora:naICn

becomes significant, driving the cost versus size

from linear toward some -highsr multiple. [Ref. 42:

pp. 20-211

(2). D~ fculiy. One of the more imcortan-

fac-ors affecting software development costs is the rela-ive

d'---icu!-ty cf -he sof-ware application. Software personne!

pzoductivitv (and therefore cost) will vary with the type of
sys-em being developed. Real--ime anpiica-icns are .ene_-

ally considered -to cost up to five times as much as HOL

nonreai-time applications. (Ref. 42: p. 21]
(3) . Relabilia EuiremeLs. Accordi ng to

Bruce and Pederson the reliability of a software prcgram may

be demermined by four major criteria. These are:
1. the program must provide for continuity of opra-i:n

under ncanominal circumstances;

2. the design, implementation techniques, and nota-ion
utilized must be uniform;

6 3. it must yield the required precision in calculations

and outputs; and

4. the program must be implemented in a manner that is

understandab le.

~58
4O

6 t

41

As the level of requirements for handlinq

nor.ncminal conditiors increases so does the amount of veri-

fication effort required and, along with it, thi cost.

(Ref. 42: p. 21]

(4). Extera Int_erLaeso Cost increases as

the complexity of external interfaces increases due to the

additional effort required for design, implementation, and

in-gration (Ref. 42: p.211.

an(5) . La uace ?faui:ement s. Experie nce has

s:hown tha- it takes an average programmer about the same

amount o' effort to write a line of codC in high order

:anq'iage as in an assembly larguage. Apparently the thought

process required to writ e a single statement is almost inde-

pend-ent cf the language in which the statement is written.

It will take a programmer significantly longer to write a

program in assembly language than it would to write the same

r_- rm n OL, since a tvical HOL statement expands to

5-10 assembly language statements. -arly in a project a

-ar = am mer'S :a Mia-i tv -IIh a language wil!I affCct the

ccs per statement mors than the language being used.

[Ref. 42: p. 211

(6) . Docum.--_a tio Ra Ruirements. The cost

fac-ors associated with the preparation and acceptance of

required documentation must be evaluated along with all

camer cost factors (Ref. 42: p. 211.

c. Proc-ss Factors

Managemen t structure, management contrcls,

:cols, use of available software, and data base methods are-

all software costing factors associated with the developmenz

process. A discussion of these factors follows. (Ref. 42:

p. 211

59
I

(1) . jazajeme.j StI.Kure. Management struc-

ture effects the organization's policies rsgarding the

allocation of resources for a software development project

(Ref. 42: p. 22]. Tf the structure is such that upper level

management arbitrarily imposes standards without under-

standing their purpose, use, or implications on the software

develcpment process, the standards may prove to be counter-

productive. Management should tie software development to

orqanizational and product goals and ensure that the ozocess

g _s usable at tae working level. [Ref. 39] The structur-

should be such :aat the programmers and engineers are abl-

to qet wha they need when they need in without the hassle

of having to get requests through an inflexible approva!

(2) . anaement Controls. This factor ccv -s

COS- of project support n such areas as mar.agem.-

in-c:ma-ion processing, scheduling support, and clerical
sulooor-:. The cost estimatcr must realize the need for -his

-r:oe cf su~oort and have socme understanding of -he rzelative
naqnirude of -his type of projec- cos-. [Ref. 42: p. 22]

(3) . 2eveloment Methods. This factor a-temp- s

-o quanify the impact of various development methods. The

I Jevebcpmaen methods cf interesm include such approaches as

-p-dcwn desiqn and testing, structured programming, use of

chi-e prcqrammer teams, and use of structured wa!k--h-ouqhs.

* rRef. 42: p. 221

(4). Tools. The cost astimator must consider

hcw the software will be developed, tested, and maintainel

and what tools will be needed to accomplish these tasks.

4 For some projects the development of software and hardware

tools is a major cost item. The cost estimator must de-er-

mine whether compilers a nd other tools are require ,

available, need to be converted, or need to be develcDed.

The costs associated with the tools are a function Cf tae

60

tool complexity, use, features, and maturity. Experi--nce

provides the best basis for analyzing the cost impact of

support software and tools on overall project cost.

(Ref. 42: p. 22]

(5).. L5 2 §o ffw E_. Significant reduc-

tions in the cost of projects may be achieved through the

use of existing software. Adapting the existing softwaze as

part of a system requires analysis of the software apart

: ro -4he new development. The costs for modifying the

ex inq software can in this way be determined subjec-

:iveIy. Care must be taken -o include the cost of

interfacinq the modified software to the new software and

revalidatinq the requirements. (Ref. 42: pp. 22-23]

(6). Da2a Base. The size, complexity, ana

sp'ciai -s2. access requirements for the data base a-: v:ry

impcrtant parame-ers in deriving an accurate software ev !-

opment estimate. The cost estimator must review *he data

base reauirements and subjectively analyze their imyacz on

cos-. HRef. 42: p. 231

d. Resource Factors

Software development costs for a g:ven project

may vary substanti.ally, depending on such factors as the

experierce cf the available personnel, the quality of ths

project staff, and av ai ability of develcpment comprer

-escurces rRef. 42: p. 22].

(1) . Number of a With projects that

require iarqe staffs the major contributor to the reduction

in productivity (increased cost) is the increase in the time

4 needed for communication between the people [Ref. 42: p.

231.
(2) . Ex~p! ence of Peopl. Existing data irdni-

cates that there is no direct correlation between the number

cf years of experience that a perscn has and his/her

61

productivity. However, experience with a specific type of

application does have an effect on the development effort

required. Generally speaking, a programming group will

require from 50-100% more effort to develop a variant of a

previouslV developed, familiar program. (ef. 42: p. 23]

(3) . 1Ae f e. Individual croduc-

tivYity variations are to be expected in the development of

software due to the -act that i" is aa analytical, and scxe-
'_ims creative activity that requires abstrac-t =easor.g.

.onzthe!ess, experienced estimators have found varia tions -n

productivitv to be as high as 10:1. The assessment of

productivity is extremely important because cost estimation

is qenerally reduced to deriving a Productivity pie per

un:- cf effor-l per person within a given skill category.

The use of such average productivity figures for estimating
cos- tends to even out for large projects, but may prove to

b= disastrous for small projects. (Ref. 42: p. 23]

(4) . AIvailabili of Computing Resources. Is

r -rquirm -rt f comoutes ti-ne 4ic.. ss du!-.

I " -.vecpment cycle, the Impact of insufficient cotnputing

r=sources cn schedule and cost increzases. The amount of
computer t4 _je required for a given development effort is

easily underestimated. [Ref. 42: p. 231

(5) . a u,'a_._l t = 9f Comutin Resources.

Durinq the software maintenance phase, when there may be

-* ii-tle capaci-y available fcr corrections, modifications, or

required test drivers to verify changes, there is an asymp-

-otic effrct on developmont costs as the hardware spod and
memory size constraints are approached which could prove to

* be crippling [Ref. 42: pp. 23-24]. A normal person would

nc-. ordinarily jump into a sports car and speed off down

some windinq mountain road he had never driven cn before in
the black of night. If he did, without warning, he couil

* find himself at the bcttom cf a canyon, surrounded by steeo

clif fs

62

3. T- dt:. 2 n £ _ C- -E _AI~r,. E__2cedures

Traditional cost estimating procedures begin by

fixing the size of each activity and, determining its star-
date and duration. When and if it becomes necessary to do

so, adjustments are made to account for the skill levels of

the assigned personnel, the complexity of the project, an.

the deqree cf uncertainty in the requirements. The amount

and type of manpower and resources are then converted to

icila: ccs-s. 0 -z direc- costs, such a-s docne " ntat ' --

.travel, arq also added in.
Tradi-tio-a! cost estimatina methods in.clude:

1. Too-Down Estimating: The estimate obtairned using
+his method is based on the total cost or the cost of

* large portions of completed projects. A problem vith

this method is that It carries with it the risk of

cverlooking important -echnical problems that may nc-

'-- readily apparent. [Ref. 35: p. 6181

2. Similarities and Differences Estimating: " In -his

mre-hod jobs aze broken down to a eve l of -ai

where the si milari ties to and differences from

previous prolects are most easily recognizable.

Those units that cannot be compared to pravicus

projects must be estimated by some other m eans.

-Ref. 35: p. 618]

3. Ratio Estimating:

The estimator relies on sensitivity coefficierts
or exchange ratios that are invariant (withinlimits) to the details of lesign. The software
analyst estimates the size of a module by its
number of object -nstrctons, classfi.es It by

[type, and evaluates its relative complexity. An
approp riate cos- matrix is constructed from a
cost data base in terms of ccst per instruction,
f o r that type of software, at tha relative
complexity [Revel. ref. 35: pp. 618-619]

I

t 63

I

The appeal of using this method is in its

simplicity, speed, convenience, and usefulness in a

variety of environments. A major shortcoming is in

the lack of a valid cost data base that covers a

number of estimating situations. (Ref. 35: p. 619]
4. Standards Estimating: In standards estimating,

systematically developed standards of performance are

depended upon. New tasks are calibrated from these
ct aniards. This nethcd is re!iable only f rsna-'m

edly performed operations that have b sen we,.

dccumented. The rub is that the same software devel-
cpment projects are not Derformed over and over

again. (Ref. 35: p. 619]
5. 3C-tom-Up Estimating: Government research and devel-

opment contracts are most generally estimated using

-he bo-tom-up approach. A work break down is done on

t-e projec- unt i -t i* reasonably obvious wh a- s-_-ps
and resources are refuoed tr each task. The costs

aze then estimated for each task and a ovramid is
developed to estimate the total cost for the project.

Using this t-echnique, the estimating assiqnment can
be qiven to the people actually doing the work. One

Problem with this technilue is the inavailaoili4v of
-he total cost structure at the ince-tion of the cost
-stimatinq job. (Ref. 35: p. 619]

4. Cos- Est imatinq R elationshi2s and Phase
i e! a~- nsh Ps

Software cost es-timations should i-clude the effects

cf resources consumed in one lifecycle phase on subsequenz

phases. A large contribution to the resource requirements

for any one phase derives from the ways In which -he cthe:

pases comoleted. An important factor affectina the
I utilizat:ion of resources ;s the need to conform to -a

64

4

development plan. The plan is an essential management tool
- for ensuring that the needed resources are available for the

project at the right tize and in the ccrrect amcunt.
Chanqes in the plan, whether caused by changes in require-

ments or by failure to meet commitments, may affect

cost-driving parameters. [Ref. 43: p. 70]

5

0

S

65

0


~~~~V. 29Z AaZ A11_ scECS_ OF OfM.wAll COsIt _MXIJfiJX,.

Until absolutely reliable, comprehensive methods of

est matinq cost and effort in software development projec.s

are developed, the techniques will be referred to both as an

art and a science. We appropriately use the term science as

estima-inq techniques are becoming more and more accurate

and comprehensive. mathem atical and scientific principles

are increasingIy being applied to all areas of cos- an 1

effort est-imation. Researchers are now developing mcdels

"Ha-. can be used i;n numerous environments.

A. CURRENTLY AVAILABLE METHODS FOR SOFTWARE COSTING

dany models estimating cost and effort exist on the

ma_-k -cday and generally cover the i from the design

and zpecifica--ions phase thru tha test and d ebu chse ani.,- can -) ,& _-:he zeqi:z.n of operations. Tney ca-. ordinarily be -. _s--

fied as theoretical or empirical. Theoretical models are
those based on global assump-ions such as the rare at which

people sclve problems. Empirical models use information

from former projects to evaluate current projects and derive

basic formulas from the available information in the data

base. [Ref. 3: p. 5111 We will present a number of avail-

able cost and effort estimating models according to their

class :cat-on as static, dynamic or dynamic transportable

models. we will examine some models in more deail th-an

cthers to give -.he reader added insight into the complexity

of estimatinq cost and effort. Some of the more significant

features of the models Will be poin-ed out. We will then

enumerate criteria which may be used to judge a moIel for

estima-inq cost and effort in software development projects.

66

0



,i- 1. Ii ~odl

Models that do not treat time explicitly and do not

have the capability to adapt to the actual behavior of the
system at any instant of time during the lifecycle are

termed static models.

a. Doty

The Doty model es-:imates the manpower, cost Ind

deve coment :ime for software development projects. Svsmem

size is estim:nIted by compaisons of The system ander consid-
-raticr to comparable known systems. Ths mode: is th-efoze

empir ca. Doty found that the writing o- hih crder
languages (HOL) and assembly language instructions takes the

I same amount of time. Since HOL programs are smaller than
assembly language programs, productivity is increased with

HOL procrams. Clarity and maintainabili-y are higher with

HOL. [Ref. 2: p. 108]

b. " SOFCOST"

In recognition of the need to csoalish (ood

cos- esz-mations before proceeding on a software development

project, Grumman Aerospace Corporation has developed an

empirical mcdel to provide viable, credible cost estima-'-s.
Before completing its own model, G-umman used the Price-S

model to estimate costs. Presently, both the "SOFCOST"
model and the Price-S model are used in parallel as indepen-

dent cost estimates to act as checks and balances for
estima:es of the project system analyst. "SOFCOST" allows

the analyst to estimate the effort and elapsed time to

ccmplete a software development project. I- is a parametric

model developed from statistical sof-war=e his-ory. This
emrprical model uses for its primary param-:=r func-ional

size. Tle basic estimating relationship is inf±uenced by:

67



I

1. Experience

2. Complexity

3. Environment

4. Technology

5. Hardware

6. Reliability

7. Language

8. Pequirement Defir.ntcn.

The model operates interactively with the user

t ocev-?cp a software work breakdown structure (SWBS), a

functional size matrix for the SWBS and the time and effort

ccmput-d for each item in the SWBS.

There are five levels to the SWBS, the computer program
confiquration item, the category of software, the func-
tions per category and two output levels - task and
ohase. The two output levels provide the manoower tasks
of tecnical, support, management configuration ccnzrol
and dccumentation per developmen, phase of -ef...on
niesi:n, code, testy irtsrgration and acceptance for each

~ nthz SWSS. T h null;,,=_r ~:syste m cc'mpu-tr
rescurce hours is also computed and orovided as outpu-:.

"SOFCOST" also derives an elapsed time schedul afor
each of the functions in the SWBS oroviding durat-iorZ
f- each of the phases included in 'Level Five of "he
SWBS. A cumulative schedule is computed providing fcr
overlap in each phase. (Ref. 44: p. 674]

Grumman's research included 30 different models

and a review of research ccnducted by industry and govern-
V ment. The work resulted in a requirements and design

document for an in-house model. The model not only included

prior software/cost relationships but also charcteristics
K unique to the Grumman envircnment.k

Research concluded that the primary cost driver

O is execu-table lines of source code. "SOFCOST" was thsrefors

designed to aid the user In estimating the rumber of lines

of code. The estimator can make comparisons between his

function and comparable functions found in the data bas=_

6 including function and size as its key parameters. The

68



determination of size of a project is thus a critical factor

and one that is addressed using the judgement of the

analyst.

"SOFCOST" has three objectives:

1. to construct an SWBS,

2. to determi.ne a credible size for the functions
beina esti.mated,

3. to estimate software cost and schedule for each
fanctcrna! task. [Ref. 44: p. 674]

As iS becoming increasingly common in literature

on the -cpic, Grumman feels that the interactive use= devel-

oping an estimate for cost and effort for a project should

be knowledqgzable in computer software design and the partic-

ular system's requirements. The SWBS will be established in

a n interac-ive session. After the five levels are
czDee( " r= u int. racts with he orora tUS=-= -- e$-, =r.- US _4 t prog~ram _0 .... S-wC

questions -hat affect the basic cost ccmpu-amion. Cos-s are

qivr, -n manhours or manmon-hs and elapsed . ..i.e sched

a-e displayed.

Translator 1 establishes the SWBS. Translator 2
establishes a size estimate for all functicns in the SWBS

using runc-ions of a comparable nature from the database.

Translator 3 of the program takes the output from translator

2 and computes manpower effort and schedules elapsed time.

Ir is here that the estimatcz begins to interact to deter-
mine the adjustments to the basic es-imates. Languace is

first considered. Prior studies showed little difference
between productivity of HOL. Differences occurred in the

productivities of HOL's compared to assembly language in -he

order of 2 or 3 to 1 improvement in productivizy (this is in

keepinq with Doty's findings).

69



After the Language type is established in Translator 3
and an adjustment m4de in the size of the source code
for lanquage the basic manpower versus line of code for
relaticnship 4n the model is exercised. "SOFCOST"
computes the effort for the phases of design code and
test with a parametric e uation for each phase. The

* . effort computed during toe design phase includes those
steps in the software development cycle of requirement
definition, preliminary design and aetail design. The
code phase e uation output includes coding, debugging
and module est. The test phase effort includes
subsystem, system, integration, and acceptance testing.
The equations for the design, code and test efforts were
regressed from historical data oublished from studies
conducted by SDC, GRC, I BM and TAW and from actual data
produced at Grumman. These regressions when taken with
v"aricus com'1ina:ons of the - u!b.ished source dat
Droduced correlation coefficients zn excess of 85, When
cnvered to -he log-linear form. The F value measure

statistical acceptability based on the number of
observations in the regression were on the average
greater than 200 and inlicative cf regression signifl-
cance. CRef. 44: p. 6771

Interactions are then Derf.ormed -o adjust the

basic computation effort. Thirty questions are asked the

user and he evaluates each on a scale of 0 to 10. The
iouts a us usel to derive a productv inex -acor.

Aiius-ment .actors are cCmputed for each question.

!r-diviu aidustmenzs are weighted. Table II lists the

adjustment factors in weighted order.

An ajusted manpower effort is computed after

all cf the individual adjustment questions have been

ans we red.

This adjusted effort is thin distributed among the
* Phases of definition, design, development, test, inte-

gration and acceptance in accord w-+th the results of
publi-sed history. This s a variation of the standard
40-20-40 alloca.ion. This adjusted computed effort
=-gresents the technical effort expended upon the
em edded program (appl icat ion, tactical) by the
oersonnel assigned as prc rammers, analysts, systms
enineers, etc. Translator 3 then takes this computed
eff cr and determines the supDort management, Ind
ccnfiquration/quality control e=forts as soe unction
of he technical effort. Both the documentation and
com uter resource efforts are computea separately using
a parametric e uation relationship" formulated for these
tasks. fRef. 14: p. 6781

-70



T ABLE II
IAdjustment Vaibe y Dcraig weqghtPercent of real time programming design
Percent of new a~.gor t hm design
Percent of existing code reutilized

IPercent of requirements ill-defined
IPercent of time share facilities employed
1Percent of pushing the state of the artV
INumber of inte;facing di sFlaysIINumb;-- of interfac'nq . quip excluing displays
IPercrnt of us=er experfenceIPercent o~ cocarr%-nt aardware,/software develap-en-:
IPelcent of code rnpc~ntechni-que employed
PS=ec~nt of hn ,e ant:4--pated for theprga

Seren oi, 'o Icwn d-sg em
IPerce nt of computer trn a, as.g -ag.a ec of to s-napo

I Pp-rcent of s ecur it y in design.
Percent of structursd programminrg amp2oyed
Percent oA' input/output ccntro'L proq-amm::nq design
Nmber o0: average years expeZ . ncs of ners6nne.

IPercent, cr previcus expqrience wit-h -ha computr I
I ercent pfapiarnfntoa eortance
IPercent of ch'ief programmer team teclinique em~ployed.

P c-rcen' or memory cavacity uti-lized as a design (Toa I
I Numbter or pro :ammz.n-q locationsI

I?erc;:or sOf ;:ware personnel sxperirce
INumbe: ofhsru:os in the compu.-er set

I ?ec~::of: larguace experience
P , ?r c n: CZ orevrcus eaxPaere-e Wit" simi-lar aAgO=:hMs
I ercer.: of u sr = efinsao resquirsenns alone

ILanq-*n Of the computerrnsrucr= wc=rd
Z PrcSnt Of us=r/ contractor -4:erface Complexity

I[Ref. 44: P. 677]

For scheduling, ielapsed time Is computed both., as

a ;.:unct--cn. of the comput:ed manpower effort and also a S _

function of the adjusted 1- ne-s of code. Start and and dates

are computed for each phase. Anr ontimized schedule i s

outpu- and differences between planned schidul.es andopi

mized schedules are highi ighted. Re q u Irement-7:s documc-its

usually7 dictate planned schedules and reccoanition of acce.-

erations and/or stretchouts that might happen if the

p!a rr.ed/ contract schedule were followed.

71



Thus, "SOFCOST" uses historical data and empir-

ical data from the environment to develop estimates of cost

in manhours or manmonths and scheduling for various phases

of a project. The interactive sessions with the user allow

a more clearly defined SWBS. The primary cost driver was

found to be executable lines of code. The basic computa-

tions are adjusted by an interactive session with the user

in which specific environmental fnctors are evaluated an

.cccunt d 4- or.

The key factors in this model tham are critical

to tAe estimation effort are the initial sizing of ths

nooject ani the determination of unique environmental

fac-:crs that affect costing and scheduling. In both of

ese act- vities, the judgement of the estimator as he

interacts with the computer is critical to the success of

the project.

c. Lifscc> Cost Zs-ia-ing

The boitom-up -o osi.ion a ;thodoic-y and

:op-dwr. eqression analysis is used a h he ccncp - ua.

requirements level to provide Las-: and accurate estimatss of

software ifecycle costing (LCC) employi.ng unique scftwara

structures. The scftware structural model Is further

analyzed and manipulated to give useful desian al.ernativz.s

in the form of such criteria as program control, !ogiZ

paths, and data transfer that improve the operational quali-

t'.s cf the software and prcvide minimum LCC de-sqns. This

technique seeks to obtain a uniquely realizahle decomposi-

tion strategy and finally give a machine designed

cos--*ffective software structure. Silver feels that the

current method of using an emoi-ical top-down approach an2

m' ultiple regression analysis employing extensiv_ data bases
to ss-.:mate software sizing and costing is unsatisfactory.

The uniqueness of each software package precludes this

approach.

72
4



The overall problems of pro gram, management and cost
control, as well as the se lec tio n of cost-effective
designr alternatives are addressed by using a combined
Graph Theory "bottoms-up" decomposition methodology to
provide accurate and rapid assessments of both technol.o-
witha faillty and economic risks in cnuction

Witha "ops-dow,, regression analysis em 1oyi.r. cost
esiatgrlationships(CEEsI. At d te osae

requremntsa~dconcptul lvelstructural decomposi-
subsequent cost drivers through the specification of
connectivities and paths which yield minimum LifeCyl
Costs *(C) hs is accomplished *by utilizinig the

rcpe-iesof agglomerative poqi.ythetic cluster~ng t-o
efne a topology for determining ob ective decomposi.-

Th:ibmt smei-mtbais Or mappinsthed w::i~ a vtru

_u~rs Sio ver- fo;und trh thetraditionpale Ios failcuse

1-.l -stcue C_ neMol-aa yaa reureety, numbz .,erofapia-
t~o nrqras. he quaiorthe alz too Dote a culti-

Tesubjectivea ortle ofi4 th.s~nt:: n Icone .o;.
Sitve: I u fel tha m thme top-downi approtach doe nt aiewt
necesary obacurac and certainty drootof estmaon ao b
exautivaely usveful in iestimtin cost-deffot in s;oft-

ware developmrent pRe. A mehoolg shul5]

ccuraySanleraind eati the trdevelopmnalthpocds fi

4the rovst a eforheinoved.dueulsfwr mngmn

equatio "the has trsumton is= irnherently eptatal and

butesqde-I cf einealy reate toe system unts suvel as

Tsbicectye maniet in the estrucatura 4 hr-,acutedic fo.

Sithez den pocsltsss that they candow bp~ahd e o cosved in

deeary acurarmre andaasi of slaien tsotwae

strccurc isd cannt aproriay vnhe for comparin di::erenof

suratEqies on manicost-effetive sis." (R ef '45at: p. 6671 o

.73



Attempts have been made to explain a methodology

for the characterization of the software design process in

terms of a software structural framework.

The essential conclusion reached is that software struc-
tural .deqompositions may Indeed serve as the basic
underpinning for the design activity and associated
cost/performance specifica::ons at th,- requirements
level. (Ref. 45: p. 667]

Cur icok at this methol iS concluded with :he authcr's

:=m ar ks:

The conclusions emanat ing from this studv wi! be
deferred to a more comorehensive oaper dealigiq with the
details of the methodology. The itent of this ir.vesti-
gation .s *to lay the foundation for decomposition and
recombination wlthcut resorting to excessive c
while at the same time report some interesting resuyts:"
r Ref. 45: p. 671]

d. GRC

Cos: is iure d as :_non-lineaz :c:cr cf

-h= numer of delivpred instructions. T*-'s _ nou de "aS

numerous diffrerent estimating relationships which are diff-
cult to summarize. It has a number of good featurzes,

rciuiq a thorough defini tion of the quan it i e s beina

estimated and a set of relationships for es-ima:tng such
* quantities as training and installation costs and labor-

grade distributions. Some drawbacks, however, include th-

use of 'number of outputs formats' as the basic siz- param-

eter and some evident typos or mistakes in the 0.0 values

given in the effort multiplier tables. (Ref. 3: p. 519]

System development cost is generally reduced f excess
processor capacity is available, especially for virtual

memory systems. The model considers tho xaximum processor

capacity utilized in estimating the constrained softwara
cost. (Ref. 2: p. 1051

74



e. TRW

The empirical TRW-Wolverton Model assumes that

the total effort exerted in completing a program is linearly

proportional to the number of instructions to be produced.

The fcllcwing is used in this model: cost-per-instruction

matrix, organized by software category (control, I/O, pre-

processor/post-processor, algorithm, data management, and

time-critical) and degree cf difficulty (old program- easy,

m-nadum, hard: new aroaram-easy, medium, hard). in histor-

ical computer usage matrix is kept by category of software

-o stsima-e the cost cf computer -me needed for a projrct.

The net cos-t becomes a product of cost per instruction and

the prcjecned number of instructions to be pro luced.

Wolvernor. hs noted in his analysis that past experience

does nom impact on programmer productivity significantly.

[Ref. 2: p. 104] The heart of -he estimate is a number of

curve =_ shCwinq software cost per object ins-ruction as a

f ___ctLr o4 : h. relative dearee of diffic'ty (0-100),

n-3V It Cf application, a.nd type of project [Ref. 3: p.

5121. Software is broken into parts aD4 costs estimated

i.dividually in -the best use of the model. "This model is

well-cal*brated to a class of near-real-time government

command and control projects, but is less accurate for some

other classes of projects. In addin.on, -he mode: provides

a good breakdown of project effo:- by phase and activity."

0 (Ref. 3: p. 5131

2. Dv ryamic Modals

These models use real time input and indicate where

we ars now and where we are going at a particular instant in

time.

75

S



7 _7 7

a. TRW (SCEP)

The new TRW Software Cost 2stimating Progr-am

(SCEP) was developed by Boehm and Wolverton. This model was

developed using the set of criteria presented later to eval-

uate software cost estimating molels. Comments on this

model's performance according to -the criteria set forth will

be given. later in the ov,4ral1 analysis of the models.

W lston and Fslix Ind:?.

This model aives a m et;-ho0d -om: :nn';

programmer pro ducti vit y. Progarammer P:0du c-: iv V :s

measured in the rate of r=oduct_-i o f :nes of code (LCC).
Gi-ver. an estimate of -the lin4es of code t:o be produced, -t he-

modsl! tiae the tctal man-months o:f e -for-: o euIre d.

Maa-mcn-*Is become a funct Icr of teLOC to b e 2.u csd.

rrom t-h.- data Zase cf IBM-:Federal Systems Di1vision (13M-FSD)

conisisr-n 3.; 60 poroj-ct-s [ Ref. 3: p. 406), a set of resla-
:: n s was 'developed to be ulsed fo0r c Cst Z -ma t -o n

pro ce-s s s. Th e r el1a t _o n zh I'ps a = a
1. producti1vity vs percentage of new ccde

2.productivity vs percentage of effort at primary loca-

-!-on

3. prod uctivity vs percentage RJE use

4. delivered source documentation vs deli-vered code4

05. durati-on vs delivered code

6. duration vs to-tal man-month effor:t

7. staff size vs toral effort

8. computer cost vs delivered code

*9. computer cost vs total man-months of ezffort

The main problem with the model is the di.ffi-

culty in determining how change in the rati-*ngs of

productivity of cost drivers is due to other corre~lated

factors or by double counting using fouir fact-ors to account

76



Cr.-f * C .. -

for "the use of modern programming practices (Ref. 3: p.

5171.

C. Aron odel

Aron found that large system building efforts
increase, gradually, reach a peak, and then decline to zero.

The peak time and system testing seem to coincide. He

investiqated the following ways of estimating softwarz

cCs-ns: exDerience, cons-ra int, ur.ts-o!-wcrk, and quant-ta-
-. vS. ExPrience depends on exDosurs to similar jobs in

similar environmen-:s. Usi ng constraints, the manag-2r just

aqre=s to do a job within given constrain - s. 7n th units-

cf-work approach, the job is broken down into smaller units,

ccs- 's estimated for each unit based on pas- experi-nce

wIn uni6s of the same size. When quantitative esti maion
is used, the lob is broken down .to smaller zasks, cass4-

:ed as -asy, medium or 'cka rd dependina on _..-tractions with

ct.-...:asks. Th4 man-mon :s for each nethc. is qiven by rhe

iv a rase instructions divided by the crciuc -ivi-, a d

tcn man-months is the sum of mar-months for each task.

(Ref. 2: p. 106]

d. Putnam Model

Empiical observations by Aron provided the

basis for the Putnam model. Ncrden found that research and

* deve3Lcpmenm projects reflected overlapping phases and he

indicatzd them by the Raleigh form. Norden found zha- the

work cycles of the raleigh form have the charac-teris-ic of

901 of the work being done in two-thirds of the time with

10i of the work taking one-third of the time at the :-nd.

This gives the reason for the long delays at -he end of a

project. Putnam found that software projec-s asually

conform to Rayleigh-Norden forms. "He =slateI the Systen

attributes, number of files, ,oduies, and reports -o the

77

6f



manpower, understanding exactly what the software develop-

merit process consists of over its life cycle, maintaining a

da.a base that reflects the history of actual software

development costs, and developing the most cost-effective

allocation of resources to different phases of software."

[Ref. 2: p. 106]

Putnam has developed Monte-Carlo simulation ani

_lnear o oqramming to asimate development time and manpower

fron :he trade-off law in the systems definitior phase.
"other parameters that can be estimatsd are the contract

miestcres from computed development -ime, the impact of

r.qu-rement changes during the development phase, ov.mal

future resource allocation during the development phase, and

computer usage and resource allocation during the operations

and mairt-enance phase." (Ref. 2: p. 106] The SLIM model,

thi updated version of the Putnam model, also has the abill-

-' co es.imatina computer costs and using the PERT sizin7

3. Evnamic T: ansor-abie Models

Models that use real time information and are

Dcrta'cle -:o different environments are termed herein * yrnmic-

transpcrtable models. These models can be evolved to

-e elec- specific environmental influences.

4i a. leta Model

The n eta model is an empirical model based

primarily on the work of Boshm and Walstor. & Felix. This

mcd-al permi.s the development of a rsource estimation model

6 for any particular organization. The model itself can be

used from the beginning of the design phase through accept-

ance testing and inclules programming, managemen" and

suppcrt hours. Effort is expressed as some measure of size.

Deviations from the average are explained by environmental

78



a

attributes known for edch project. A background equation is
computed, environmental factors analyzed and the model

predicts effort for the project. A size measure is chosen

from available da-ta. Estimatinq s-ize for each project is

accomplished by taking the total number of new lines written

and addinq them to 20% of any old lines used in the project.

A base-line relationship of lower standard error is derrived.

Ths sze measure is caIe d v deve1 pe d 1nes. Develco-d
modu.s is arrived at in the same manner. Effort is

m aasured ir. man-months. The Meta model is employe _ as

fci lo ws:

1. Compute the background equation

2. A ra yze the fact cr available to explain the1i--erence -etween actual effort and eff'ort as
oredicted by the background equation

3. Us.-e this mods' :o predict the effort for the new
pro ject. [Ref. 46: p. 108]

C"izc-tinq data about tlle envirnment -s don= a.s
.cl ws:

1. Choosing a set of factors
2. Grouping and compressing this data

3. Isolating the important factors
4 4. incorpora-tinq the factors bv perfozmina a

mul.pe rearessaon to predict the deviation+s of
-h- ts from te computed base-line.
R ef. p. 1111

As a rule of :h umb, 10% to 15% of the number of

4 data points should be the number of environmental factors

used to predict a given number cf points. The meta mcdel

collects !ata from a particular environment and uses that

data tc make predictions about the environment.

I

'1 79
!



Good managers can usually esti6mat4,e the cost and

effort of a software development project better than. the

pre dic&tions -,f a model brought in from another envlronmc-nt.

T he expectation is t hat this model will assi.st those.

managers in making even better predictions concerning cost

and effort. The meta model Is developed by duplicati4na the

basic steps of the model wit---h information f-:om a unique

el:V r ro-, en t.. The model --s molded into the envi'rcninent w1hi-ch

w' u Se an d not simply tuned t-o accommolate thE n:Bw

, nvironmsnt. The mode! ikself i-S based on. earl-ier works by

w alstcn &Felix and Boehm who atte:;mipted to rala-te Drclsc-

s~eto effort,. Measures used to express size in the Meta

mcdel are:

*1. Li'nes of Source Code (LOSC)

2. Executable Statements

3. Machine Instructions

U. Numbe r of lodules

A tas;e line squatilon is used in, conjunc-ticn withl-

u~~o.Boehm and Wa-ston 5 Felix 'nave sugge-:Ed slmilar7

mcdes. Environmental dif ferences explainr variations from

the averaaes arrived at by various equati-ons. E n vi-ronm-ental

differences are acccunzei for by a number of factors such

a s:

1. Skill andI experience cf the programming :eam

* 2. ruse of cood programming practice

3. Difficulty of the projsct (complexi-ty)

A two step approach is used to develIcp h

m cd e I

01. Effort exsrted on an averaqe project is expressed as

a function of size.

2. D ev iati-onr.s f ro m the average are a4ttribu*ed to envi-

rcrnmental characteristics. The backqround equa:ior.

is derived from t-he :rela _-onsh_-p be-tween ef f or -! a n

80

L . . . . . .



7 - . .

size. The measurement of size depends on _.e data

available.

The use of the model is as follows:

1. Es:imate size of new project

2. Use base-line to get standard effoT:

3. Estimate necessary factor values

4. Compute difference this projec-t s!-oa!d exhibi-
5. Apply that differ-nce -o standard effort.

[REef. 46: p. 114]

The main difficulty with the Meta model invclves

iden:ifyinq significant environmenta! factors ani ecidir.a

.4ow many -o use in the estimating process. Tables :i,

and V include envicnmental factors i 4enni ed by W!al.-.c 5

Felix, Boehm and those iIe n:ife4 =_ I a- the 5,f,_Wa_

Engiree-inq Lahora-ory a- -he ASA/Gc:da=d Srac- EZ'h-=

Cen 7er where 3 aleY nd ? aii coilz-d th _ t.

--:ate -he e-:a mod el. For any particular rZZ-

a-ribuzes selected for study depend cn what informa-_cn is

available in the data base.

Of the origi nA 1 71 a ttribu-es tha- 'a

Ssearchers thoucht to have influence on the effr- a-- -

Meta project, 21 were selected for analysis and aroupel into

* hree majc: cateqories. Predicting a variabl with a few

cata points (18) using many factors is no-. s-a-is-icaily

sound. The problem with addi:q the ocints of each at-:r..u..

that indicated its influence and us'.ng the sum for the

* influence of that category is that some individual factors

that may be very influential lose -heir iientity. Two ways
around tis are to use more data 0oints and evaluat each

attribute independently or to determine the relative affect

c of each attribute and weigh them independently. Bailey and

31

0l



TABLE III

Evaluation Factors -SELI

Program design language (development and design)
Formal design review
Tree charts
Desiqn formalisms

. Desiqn/decision notes
walk-through: design

I walk-through: code
Code radng
!cp-,_Zcwn dsg

STop-dcwn code
Structured code
Librarian

I Chief Proqammer Teams
Formal Traini.gFormal test plansUnit development folders

Formal documentation
Heavy management involvement and contrcl
Iterative enhancement
Individual decisions
T'mely.specs and no changes
Team sizeOr schedule_SC dvelopment

_14 i:usa U l S b1 code
Percent proqrammer ef:fort
Sercent management_ effort
Amount documentation

a:: sizeI
[Ref. 46: p. 1121

3Bsili did not have the requisite criteria for either solu-

* tion so they used the described method of grouping.

h. Price-S and Price-SL

The Price-S and the Price-SL are empiricaI

* models developed by RCA and can be used in c:njunc-ion to

estimate the software costs durinq a support period -'r a

given project [Ref. 47: pp. 663-6641. The Price-S model

uses a :cp down approach to determine the resources requi:ed

* in a software develcpment project. The model ieliver- cost

and schedule for size, type and difficuilty of -he subjec-

826



j-- - - - -- . .-.. - -- .7

I~ TABLE IV
Eval'aaticu Factors - Walston and Felix

I Cusomer expe-ionce*
Customer participation in de-finition
Customer interface complexity
Develcpment location$Pe rcen~t programmers in aes-gn
Pr ogrammer quati fica-tions
Programmer experilence with machines

IPr cqrammer exper-,=nce wdith language
I ~ ~ ~ ~ ' -:a1v "- h aplca-onr

% crkred t-ocethernq or. samne type of o:oblem
ICus-cme.r 6jri-qin:atea Progaram desi#n changes

A -ardwa~e under d-3velopment
IDevelopment. env~ronmen-: closed

Dvelonment e n v:zo nment open with reque:st I
Develcpmn- e n vir-o nme nt opeznI

IDevelO~msnt env~rozment RJ S
IDevelopment environment TSO
IPercen~t code structured
IPercsnt code used code rsv-ewIPercent code3 us-Ed toL2-down

Percent code _by chie:--programmer: teams
SCcmplex:-:y of: appliJcation pzocess.ig
Complexity or program floiC
Complexity of ln'teznal ccmmunicati.onI

ICcmpV--xi-y 0s ixterna l znuc:o
ICo mpl-exi -v ofr data-base structure--
2i rcrec. code nor-ma,:h aad 1/0

1Perce-nt c 0 d ma:! anrj. cona-tonal
c - n -,:n code- C-PU-and 1/0 o~~~

P ercernt code fal back aid re;-covery
1Percezt code other

I Proporticn code real -tims of interactivae
I De3s-cn ccrstra~nts : mai n stozageI

IDes. an constraints : tim ing
Jesiqn constraInts: 1/0 capabll-ty
UnclassifiedI
(Ref. '46: p. 112]

- roject. The Price-S model uses information from historical

dat-a bases to estimate the costs of a n -Tw projec-. The

Price-S model gives information about the software when it

is installed for operation. The Pri-ce-SL model uses infor-

mati:on about the erivironment to -estima-e the cos't to be

incurred during a particulaz support period. Comin~ng~
the se two models, we arr ive- at cost -est--imates up 4-o a

parti-cular point in -the deve?-opmert Phase a:.i th~ouahcit a

giJver, support period.

S8



I TABLE V!- Environmental Factors -Boehm

Required fault freedomDa-.a base sizei Pr cduct comleity.
• Adaptation ;rom existinig softwareExcu ti-on time constraint

Mair storage constraint
Virtual mach.ine volatility
CoMiputer resgonse time

Capa !---y
p A.i ca,!:-ons experience
Prarammer Capability.
Vir-ual Macnne exper:r: ce

I Programming languaqe exper:ience
dodern pro qramming practices

Us_ cf sof -.wae tools
Required development Schedule
[rRef. 46: p. 112]

T S Price-S model provides th-e foCi
dri vers:

. S uct.cns

2. Application
3. Platform

4. Development Schedule

scftware size is measured in the number cf insuructions.

Apoication refer, to the type of software being deve=lcped.

P'atfcrm refers to the Snvironment in which t'he software
-4 cpera:es. Deveopment schedule is self explanatory. A

development scheduls is computed and compared with a design

schedule and the degree tc which 6he desigr. schedule is

normal, accelerated or stretched out will affect the amount

of repa'. activity. Accelerated schedules wi*1 be mcre

costly and stretched out schedules will cost less due to the

extra time to develop better quality software.

34



i _ .. - .- .. , , _ - .. . -?i, ,. . .. i': - - "  v . .<--. ." ; . . . . . ." ." .:

I

The Price-SL identifies two primary cost

dri vers:

1. Support Schedule (SSTART to SEND)

*" 2. Growth Factor

Shorter schedules wi~ll see bugs more quickly found but a

lower total number of bugs. Shorter schedules will preclude

enhancements to the system and the anticipated growth factor

will probably be lower for short schedui-s. The number of

installations and the. a.mcunt of -v-rage usages will affec-

:i number of bugs found. The higher either of thes-, "h

more huqs. Other support economic parameters are moi___ers

of :he calculated costs ani include multipliers for slaovort

* mark-ups and support escalation.

Costs for the Price-SL are categorized as

follows:

1. ain.enance

2. 2nhancement

3. Growth

3:-twaz- cots ar- estimated for th. -.. . ive C-e-ts

4n each category:

1. Systems Engineering: technizal tasks of the ent-r_

softwarp system such as updating test plans an! test

specifications.

2. Programming: cost for implementina design and code

changes.

3. Configuraticn Control: cost of maintaining system

integrity and determination of system baseline.

4. Quality Assurance: cost of maintaining system
integrity and determination of system baseline.

* 5. Documentation: cost of all changes needed to suppocr-

Laintenance, Enhancement and Growth.

6. Program Management

Costs on a yearly basis are provided for the three major

areas or the five elements. The Price-S and the P=ice-SL

85



."
models are available from RCA and can be used to estimate

cost in varying environments.

C. COCOMO

The COnstructive COst 4Odel detailed by Boehm in

his mcs recent publication is a most powerful instrument

for estimating cost and effort in software develcpment

projects. The more detail that is provided as input to a

ccs maton mod more accurat e es aes wil

p-ocahly be. The CCCOIO model allows ths p:eparai:on of

es-imates in good derail and speciies arnd P-ocessas -hem

wi-h considerable efficiency. The following factors impact

cos-:
1. Cost Drive:: Product Attributes

a) RELY: Required software reliability

i) Does the software perform its i-zndrer. func-
-icns ove- the next utilization an'

subseque:nt utilizations?

DATA: Data base siz:?

ii) CPLX: Software product complexity

2. CcOz Driver: Computer Attributzes

a) TIE: Execution time constraint

b) STOR: Main storage constraint

c) VIRT: Vir-ual machine volatility

1) TURN: Computer turnaround time

3. Cost Driver: Personnel Attributes

a) ACAP: Analyst capability

b) PCAP: Programmer capability

c) VEXP: Virtual machine experience

d) LEXP: Language experience

4. Ccsz Driver: Project Attributes

a) MODP: Use of modcrn programming practices

h) TOOL: Use cf software tools

c) SCED: Development schedule constraint

86

I,



i. ;  . ;  . . ;  . ;  I : _ .,.,-- - - - - - - - - - - - - - - - - - - -.- ..-- .. i - . - - ' ' - : o i ,

Hierarchical decomposition is used to aid in

producing cost estimates. The lowest level is the module.

Cost drivers that are described at this level are:

complexity and adaptation from existing software; program-

mer's capability level and experience with the language and

virtual machine on which the software is to be built. The

second level is the subsystem level. A number of cos-

drivers affect this level. The cost drivers vary from

sbsystem o subsystea. but a=- usually the_ same f- a!!
modules In the particular subsystem. The toD level is

sys-em level. This level is used to apply overall ?roject

re"a+icns like nominal effort and schedule equations and to

apply the nominal project effort and schedule breakdowrs by

phase.

For each cost driver, a set of tables is used to

account for its affect on each major develcpmen- phas=.

4. Overall Mods. Evaluation

Ecehm has enumerated a number of c-:er'a upon hi.-h

scftware_ cost estimatinq models can be evaluated.

1. Definition: do we understand from the model wha
ccs-s it is estimating and what costs t

exci uding?

2. F idelity: do estimated costs compare favorably with
actual costs?

, 3. Objectivity: are cost drivers relatel to factors

that are objectively measurable and not open to mani-

pulaticn to get wha-. we wan-:?

4. Constructiveness: is i- clear from t h model whv a

4 particular estimate is arrived at and is -he softwar _

project more understandable because of the model?
5. De-tail: does the model sufficiently breakdowr te

project for estimation purposes?

87



6. Stability: do small input changes produce small

output changes?

7. Scope: is the model applicable to the type of

project needed to be estimated?

8. Ease of Use: are the inputs and options used by the

model easy to understand and specify?

9. Prosiectiveness: dpes the model only use information

that can be found before ccmolextion of the project?

T*i criterion is used cnly for cost rc o

10. Parsimony: are redundant factors and factors that Io

nct contribute to thp result of the model avoided?

[Ref. 3: p. 4761
We will examine the models presented with respect to

the apolicability of a number of the above cri-eria.

a. Definition

3Th IB1-FSD moIe, the 3aiieY-Basi.i model' a-n

the 1979 "GRC liodel provide fairly thoroIah de-initios of

-e inou-.s and outputs us-d, COCMO provides as thoroug-. as

possible definition cf the activities and quantities found
in th' model while not overly constraining either the

model's generality or a project's flexibility. [Ref. 3: p.

5211 The TRW (SCEP) model uses a standard work breakdown

structure to define costs included and excluded in
estimates.

LL b. Fidelity

COCOMO estimates come within 20! of the actual

development figures for the projects in the COCONO database

70% of the time. This means a standard deviation of th

residuals of roughly 20% of the actuals. [Ref. 3: p. 5211

An analysis of the IBM-FSD mcdel :epoorted a s-T.andard devia-

'- tion cf 1.71 [Ref. 48: p. 5211. The Bailey-Easili shcwed a

standard deviation factor cf 1.15 for a fairly uniform se:

58



~T AIBLE VI

I Factors Used in various Cost Iodels

I= - TR. I W -M M

Ma a O a & A i

of -
I

... a a :WM A uIND C4NWll ls

jRa-d, -a

Caov• w .a

-If.1 prcec. aw -  AAGda~ Rf a p 15] h

Iiipue T- WW a s a M

daa ae wah ud tc clrae ah aoe' aramees

fffCe projeets hat e a a

--goneso t odls simts

P- Toos A WWAM~~*aa

(Ref. 3: p. 511]

o- 18 prclects at NASA/Goddard (Refs, 46: p. 115.1. The

fi*del±:y_ of the COCO?1O model with respect -:o the actlial

Cos-Is of projects In the database is better than othqe:

models, estimates of -those costs. A large portion of tht?

database was used tc calibrate the model.'s parameters. No0

*future projects have_ yet beer. completed to evaluate the

goodness of the modell's estimates.

The Putnam 1978 model gives extreme overesti-

mates or. small pro jects and estimates large projects

* reasonably well. Putnam' s more recently developed SLT1

89



model appears to have overcome this problem. [Ref. 49: p.

196] The TRW (SCEP) model is still in an experimental state

*. ard needs more comparisons of SCEP estimates with actual

project results (Ref. 49: p. 1981.

c. Obj ectivity

The SLIS and the Price-S models have made some

proqress in expanding a single complexity factor into a
nunber C: constituent eleraants (Ref. 3: p. 522]. T*- c-ii-

-nail Fr.ce-S model was txtremely sensi-tive to tae subjectiv-

c'mD!exity factor (Ref. 49: p. 1981. The COCOM1O model has

tried -c make the complexity factor more objective in a

number of ways. Complexity has been made a module l.vel

instead of a subsystem or system level rating. Sources of

productivity have been separated from the complexity cost

drivers as much as possible and made into separate cost

'ai v--. Z ra-ing scale for ac. crnplaxi-y rat:% has Leen

d .v ec ed. The TRW (SCEP) modejl includes a comnDx: 7

ac,: Z. Te cCmplexity :ating : a charac-er stc o- Zach

un:- in -he software, and a complexity scale is available, to

provide a unique complexity rating for each type of unit.

d. Construct ivenes s

The COCOMO model provides a detaied listing of

the faccrs affecting the cost of a project. It s-timates

the impact of an individual factor. The mcoel provides

inczeased understanding of the software lifecvcle for t-he

proJec.. (Ref. 3: p. 5221 The TRW (SCEP) model provides a

scale to indicate the degree of impact of factors on prolect

activities.

90



*°-' * . - . . -, .. , -. - .-. -.- .- -. * .- *. -. -. : , , v -. . - . , ,, . . .

e. Detail

Models requiring more d9tail usually produce

More accorate estimates.

1. The gatherinq o f pater detail tends to increase
peopl'es understfin ng of the' job to be done; and

2. if the added detail results in the overa I. sti-
iate neing the sum of some smaller in dv:ual
estimates, the law of large numbers tends to wcrk.to decrease the va-:iance of the es mna- e.
[Rsef. 49: p. 200]

COCOO is a hi-era hy of models with th. Basic

COCOMC being used for early estimates and the Intermediate

* and Detailed COCOO's being used for more detailed and accu-

rate es-timates. The TRW-Wolverton model is an effective

micro model and provides detail in phase and activity break-

downs. The 1979 GRC model also provides detail in phase ani

activity breakdowns. [Ref. 3: p. 522]

-. Stability

The Do.y model has discontiruities at tie neigh-

borhood of 10,000 source instructions. Small differenc .in

sizinq can lead to large differences in ccst in this area.

[Ref. 501 Most cost estimating models, COCOMO included,

avoid -this problem by providing a number of rating levels
for cost driver attributes and allowing interpolat4ion

between them.

q. Scope

* The IBM-FSD model, the Meta model, the Price-SL

and the COCOMO models have all been developed to m-et a wide

varie-ty of projects and applications. Algcrithmic cost

models in general have a difficult time i general 4n _t-

*mating ccst for projects under 2000 DSI. (Ref. 3: p. 5231

91



h. Ease of Use

SLI, and Price-S are well engineered for eAse of

use and understanding. COCOMO hierarchy of models makes
them easy to use and to understand. [Ref. 3: p. 523]

The TRW (SCEP) model overestimates costs on

projects less than five person years in total effort, but it

functions well for projects over the range of 60-2000

man months.

-. Pro spectiveness

most current cost models including COCOt'1O use

parameters that can be estimated rather well at the begin-
ninqg of a project. The only exception for COCOMO is the

difficulty with sizing the project.

j . Parsimony

The Walston-Filix model uses aifferen- -ZS

-or moc-r-n proqr .nmin: practices wHe-e on= wculi be

:c: practical es-imaticn of projects. (Ref. 48] The CCCO1O

model makes efforts to only use factors -ha- have a ccnsii-

erable affect on .oftware productivity. The model can be
:ai.ored to a particular envi:onment to eliminate redundancy

in factors. [Ref. 3: p. 524]

. B. ESTIMATING COST AND EFFORT: CRITICAL FACTORS

1. D;Lgcus o

We conclude that what is .eeded in the field of

* est'mating cos-t and effort in software development projec -s

is a reliable, dynamic, transportab -1e model *.hat is ep-sy to

use. It appears intuitively obvious to us that cost, effort

and time can be saved by adoptinq an already existing cost

* and effort estimating model to a new environment_ rather than

92



generating an en-irely new model from the ground up. The

model should be able to estimate cost and effort throughout

the lifecycle of a software project. most models flow only

estimate through the completion of testing and the beginning

of operaticn giving little or no attention to the

maintenance phase. The maintenance phase of a software

lifecycle currently consumes the major portion of resources

expended upon a software development effort (Ref. 34: p.

vii

Any measure of effcrt shculd be linked to -h

successful completion of -he functions of a projec-. The

preliminary work oz a pa-rticular designr decision may be vell

understood by sof-tware levelopers. The basic steps may

acccunt for a major physical portion of the effort. The

concluding work done to implement a design decision and the

integrartiq of numerous design decisions/modules to mike the
svste m c erational often commands the greatest effort. The

mcl-a! shculd measure effort in the number of ines of sourc?

cd -(LOSC) produced bu, -hould also relate this fiure to

-he area of applicabili-.y if the lines. To reiterate, LOSC

produced at the beginning of the development of a design

decisicn may be far easier tc produce than those_ _az athe end

or the effort.

Statistical investigation should be used to estab-

ish relationships which make it possible tc predict cost

and effor- in terms of cther variables. Regression tech-

nilues are used to perform this task. Since the number of

variables affecting the acst and effort estimatsd fcr a

given project will be many, multiple regr-ssion analysis

will he necessary. In using observed data to formula:= a

mathematical equation to predict desired values from given

values (a procedure known as curve fitting), three problems

arise :

1. the kind of equation to be used must be decided

?3



- ~~....................... .... .... ...-. -. .-.-

[I 2. the best of this type must be found

3. the goodness of fit of the eqluation must be

determined.

(Ref. 51: pp. 431-4331

The equation usually chosen results from the inspec-

tion of the data in most instances, bu,.t the most objective

methcds for deciditg on what curve to fit to numerous points

should be used. Differences in project estimations will be

explained in acccriance with environmental variations. The

key to es-ima-inc ccst and effort in a software deve1cpmen:

:r-jec- is to isolate those elemants that cause prcjec-

estimates to dif2er from expeccted values. Once =these
elements are identified, they can be accounted for in the

es-imation process and extremely accurate estimates can be

- achi sved.

SC. SUMMARY

e have endeavored tc oz-sent a number of vir"," nta!

C = S inf u,-n n gs'ftware ievl 'ome:t Sc 3ect s, an. -.hd

Methcds now in use to predict cos-t and effrtfor -:oS

projects. From our study of the literature in the -rea of
scftware development and fr Im an analysis cf various models,

we have tried to assimilate those problems taat should be

addressed in the development of a lynamic, -ransvormable,

p= ... icticn model. We also endeavcred to alert the novice to

and refresh the experienced reader with rhe problems he may
expect to encounter with sofaware cost ind effort estimation

models. As It Is probably painfully apparent to the reader

at this Point, models are often complex and difficult to

understand. We recommend to the average manager that he
familiarize himself with the information presented in te

I research and then go and hire someone who is technically
L ccm petent for specific guidance. If . "s 9f any

9(4



I D-Ri26 358 SOFTWARE DEELOPMENT PROJECTS: 
ESTIMATION OF COST AND 2/2

I EFFORT (A MANAGER'S DIGEST)(U) NAVAL POSTGRADUATE

U A SCHOOL MONTEREY CA C J PIERCE ET AL. DEC 82
UNCLASSIFIED F/G 9/2 NL



1. a,. Q 6

Igo 112.

11111L2 1. 4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A
liii'-

'1



co;.,,-ation to the reader, the authors of this research

hav ,- nad as difficult a time as he or she may have had in

understanding the models presented.

The key to the success of any such model is the ability

of the estimators to identify variables in the environment

affecting the estimations and account for these variables in

the mathematical equation predicting cost and effort. The

weaknresses with current estimating procedures are sixfcld:

1. estimating size

2. determining environmental influences

3. determining complexity

4. understanding the models themselves

5. lack of attention to the experience of the developers

6. lack of attention to the management effort and -he -

project manager.

A hcpeful avenue of research that may provide more reli-

able estimat es is Silver's method of using structural

ecompos-+icn of requirements and dssign parameters. What

Missirnq Cr under emphasized in most proposals fc- es-:-

matin cos- and effort in software development projects in

private industry is consideration of the management effort

and the project manager. Unless a sound team is organized

under a strong leader, all estimations of project cost and

effort will prove to be under estimates.
7

8 D. THE FUTURE OF SOFTWARE DEVELOPHENT PROJECTS

Estimating cost and effort in software developT.-nt

projects has already been influenced by the introduction of

various tools and the concept of software development envi-

ronments. Programmer productivity is expected tc increase

as tools are refined and better integrated with one another.

what Is especially exciting in the long term future of

proaramminq, that is, programming into the early decades of

the 21st century, is the concept of automatic programminq.

95



The term 'automatic programming' has been used for many
years to refer to the process by which an executable
proqgam may be produced from nonprocedural
specifications of the task to be Performed. Over thelcnger term, i-t will be possible for programmers to
create running prcgrams by providing a sPecfiation of
program functions and outputs, without MiVong f oe
wit? a detailed program design or with the produc-ion of
code. (Ref. 52: p. 2041]

The present differences between application programmers

and system programmers are likely to increase. System

proqramrers deal with the etails of Ihe l0w level computer

whereas application programmers deal wi-h the deve onen- of

proarams to meet user specifications. With the anticipated

advent of automatic programming, the user-opeatcr wll

carry out what we now consider programming as he interacts

asing natural language wit h the computer. Th4 application

proqrammer wil increasinqly be involved with understanding

the neees of par-icular aoplicat:n areas for software,

m c a- and i.formation system aoLica-iots, th.i.

infcrma on _-=uit ements, crgaza-nal zruc-urs
thirorsnn~ makeaup. Ilw' s h seroacr

cf the comPanies in understanding thei- needs and converting

-hese needs into specific requests to be automatically

programmed by the computer into an affective application

software program.

... 't can be seen that the nature of programming and
proqrammers is certain to change, and that an increasing
share of what we now term programming will be caried out by
use :-operators, who will gave tools at their disposal tha-
permt t...em to Interact naturally with a compu.er syst-m and
specify their requests. It is only whnn' such _Cols are
provided that the exponential growth in the number of
proqrammers and the cost of softwari can be slowed and that
atten._on may be devcted to making the areatest possible
beneficial use of the computer. [Ref. 52:'p. 205]

96



LIST OF REFERENCES

1. Formanr 3.3. '*How Muc~h Does Configurement Management
cost? A~~y~ S~nad Aication

2. Mohanty, S.N., "Software Cost Estimation: Present and
**tue I#Sfw -- Fatc and =er iergce, Vol. 11,

3. Boehm, B. W., So ftware Enain~erinq Economt'cs ?ng2.e wood
Cliffs, Nlew Jre: PeE~lT:~i

4. Peters, L. J. &Tripp, L. L., "AModel of Softwr
Ergineerl*.nqof j~ _;nmernaz-onal Conference on SoEtware

5. Pemus, H.F "Pla nni-n g a nd ~I sa su: ir.q ?r o =a m
I plmenaton Er iinee in nvir onmentu
Proceedinqs, U~-20 37e, T980, S 2 3-Z 57

6. KrOla, P. Z, FZeC-Man, P., "1A Comparison of LIfCPacvcI1=
54el, :11 In-,ernational Con. r. c,; r, a=t~.

-7. Brooks, F.P. T"' mr-ical Man-Mon~th, Phl,- i

6.elig B, "Sof -ware ~laapower Ccsts: A Model,"
Da~main March, 1981, pp. 164- 170.

9. Schnei*der G.I., Sedlmeye=, R.L. 6 Kearney, .,. "oon
the Complexity of Measurinq Softwar e Complexity,"

"o erece rocedigl, P roceedi.ngs, 4-7 may,

.pp

10. Chri-:stensen, K. Fi4tsos, G.P. & Smith, C.?., "IA
Perspective on Software Scisncz" 11 SIte oura
vol. 20, no. 4, 1981, pp. 372-367. y4=-!our

11. Spier, N.J. &Gutz, S., 'The E-rnmics of Software
4Engineerlag: 16ciin &41~ Eajione, nts.

12. Turban,* E Mr edit h J ., Flindamentals ofa et c~ ,j~lPiano, Texas: S. s r. 9P Icat~ons, Inc.,18, pp. 271-311.

97



13. Roberts, E,, he D.namiq of Rese h~ an 1eop~
New York: Hr!K1T R- --. 9 -p. ==

7~7GuTIU-elle for Fiannn an dUsing a ui
Dictionary system," 20 August 1980.

15. Prentice, .6D. "An Analysis of Software Development
Environaens" ACM G;SO? T SOQZIAS E~_ERg~ING
October, 148I, pp. -27-.-

16. Bcehm, B.W., "Software and Its Impact: A Quantitativeq
Assessmen-t,"f cited by Prentice, D. in "An Analysi.s of
5 ; tware _Develomeant E r.viron m sn -.s , ACM SIGSGF

SOIW r No~~I Tj:S , Oct obe-r, 19 817p '~

17. Sltoner, A.?. 1  lana gement, !: qiewood Cliffs, Nqew
Jersey: Prntce71 cni., 1982

18. Dun~can, C.S., "ITh e Challenges Facing Program
Managrs," ~ esletter, October, 197,

19. Caron, P..F. 6 Rodsri ck B.I "The Challenge of Prcgram
Manaaement-: Buil 1inq and Motivaring a Team,"
GCve:rnMent C:ontract s Sevs 4ov ember 15, 1979, p

201. Sxith, G.A., "Some Thcuq-a or. the Azt off otiva-:icn,
Ir ' - March, 1976, p. 19.

21. Acker, D.D., "Mana ginq Creativity and Innova-:icn,"I
ij2a Managers NewsLertpr, summer, 1976, p. 15.

22. Blair, RS., Colonel, USAF, "Managers Are Ycu Really
Listening To Your Employees?" 1-
may-June, 1981, pp. 4-6.

23. Hussain, D. & Hussain, K.M., Informa------- es;.24: jgp :tHomewood, tTTHo~s: -- 11

2La. Bcstrom, R.?. &Heinen, J.S., "MIS Problems and
Failures: A Socio-Technical Perspectivq PART I: THE
CAUSES," 1 Sep-t., 19 7,pp. 17-22.

25. Zelkowi;tz, .T., "Perspectives on Software

19inein, -25. I9u qq .2urlvs, June, 1978, pp.

98



26. Schte-Idevind, N.., aotvA"Map~enance: vee

0 um !n XO-ntere 6iF .T N-a~v 759:graduazt3

27. Younq LA "Life Cycle Concepts and Document Typest
in Is? tw mN~epn~: im.-ovement 2u i~l getter,
Devi7mj RE~ UaXs and D~ ~~tn nfy
Cal..-7Yava l-Pctqridu-aTi SEM5I- T96

28. L-skov, B.H., "A Design Methodology for Psliable
Software Systems," Fall Joint Coputer Cofrne
Prccee dings, i972, pp--5- 7 7.-:'

29. Stevens, W.?.,. .17ers, G. J. Z. Cons,:ar, : ine, L.L.,
"IStructured Desiqr.,' I BMI Svs3,ms Journal, Vol. X, NTo.
3, 1974, pp. 216-Z2.4. -

30. Parnas, .D.L., "O)n the Criteria to be Used i
Decom posing Systems in--o Modules CommunicatiLors o f

teAf.December, 1972, pp.17-8 -

31. P:a s, D. L. "De sIgning Software for Ea~e o f
Extension ad Contrac-tion,"l I3B "'ansact_-ons on

32. P:?Lrnas, D.L "fInf orm.ati on Distribuio ASvCStS Of
DC-S.q 9-1 ,-3hoAolcqy," 1 4 "A Design 0hdlg o

R ale Soft*-wari Sys-neas It t,=. . Joint- CM~a-:_
-------------- ~ ?:ce~nq,197 5 ; -77

-33. 'Oadez, C, Informati4fl §stems, Chicago: Chris w!adz:,
1979, pp.:

34. Icclure, C. L. * _Miagir DvsloDment. and
,1 le nuc e, N ew Y oZR T - a n Losran ein R3no'.Z 5a

35. Wolverton, 4.W., "The Cost of Developing Large-Scaje
So, -tware," rnac-r on Cop es Vol. C-23,
No. 5, June,=.3 4-137

36. Lecht, C:.l~~n~et o f Corn~n: Pro:oam:fl
.2e~sNew Y-okr:--I~er~caK aF4ein-

*37. Prick, R.K., "Visw ing Cost as a Management Tool",
NT elj k~e a dn glcrnc sonaYen

99



. .a . . . . . . . . .

38. Barakat, D. H. "P roductivity and the Development
Environment' E of C011 Fall
1981, p. 245. Z224.1= 2-F M 9

39. Kiser B.C Stwart, "Software Management Productivity
Understanding the Software Dvlpet Poes

~ ~I ~.~i a olipgglo Fall, 1981, p. 2q44.

*40. Stcne, J.# "Productivity measures Prove
Ccunterproduc'tive," q.muterwoyjd, 1 September, 1980,
p. 29.

*41. Wiener-EhrlI4ch, -W.K Hamrick . F, Rupo1OFV.,
"A up1 icabili1t Cv o16 i~ RayleicK ;Ode! to Three

')- e-rent Tv:Das of So -+war e "Proj acts ,"1 Proceed inos of
4, a E CCR? N, Fall, 1981, pp. 128-143 -

42Z. Bruce, P. & Pedsrson, S., 1h Softwals Dleve3Icpmsent

43 hbodeau, R. E Dodacn, F. .N "The Impllcati-ons of
4 ~ Li4fe Cycle Phase Interrelations;ips for toftwars Cost
-'EziIa-ing 1 Proceed 4 n os 01 ne §econl Software

U s..T:, ' pp. -

U4.* D-'cs F "'1SOYCOST' Grumman's ScF-*wa:'- Costn id~, Na Aica Aerc§.ace r7 a ic-:r.c

-75 siv: A. Softwaze Life Cycle Lcst (1.CCI
L S-1 M t Irg Using Str-Uc-ura. Decompcsi-tZ-cn
?equiremen--s and Design Parameters," Nat-ional
Ae~ocrace a nId Iec-:orncs Conference, P r oc69 =1Egs

416. Bailey, J. W. & Ba sili, V. R., "A e:a-Mode" for
Sortware~ Develcpment Resource E xpen dita es" Fif19t hIn 12 1Z., Cnfe ce on-.-
7-roeelings, 9-TT ri19n7, pF U7 1 Th.

447. Ma ur-o, C., "RCA Pri-ce System," National Ae osac and
fp-t~":o QI CferM-2., Proceed i-T,-TI2T-7 79E7-

4.8. Walston, C.E. & Feli-,C.P., "A Method of Programmina
Measuremei' and Es-imation," citpd by Boehm B .W. in

!2Af 4jAZ hni~ *Lgmc Englewood Ciff, e
Jersey7: PrenfIce-Il, PHc72'I981.

100



49. Boehq B.W. & Wolverton R.W. "Software Cost
Mo deIinq: Some Lessons Le3arned,A The Journal 2_
50. S__ U §d. " .a, Dec., 1980, pp. IVS-2UT-

50. Boehm( B.W. & Wolverton, R.W., "So t.ware Cost
Modeling: Some Lessons Learned " clted by Boehm B.V

fa g amis Engle ood c ffs,
New Jersey, Vrentc- Ha1, nc, 'r481.

51. F reun d J.E. & Williams, ?.jog nnta- Busi',,;

V-erse. P..en.tclc l, c.. 1982, pp. 431-454.

52. Wasserman, A.I. Gutz, S., "The Future of
Prcqrammin ," cuia-tiol o the ACM, ach, 1982,
Toz. 196-2

i.I0

I

101

-|



A'.

INITIAL DISTRIBUTION LIST

No. Copies

I. Defense Technical Inf3rmation Center 2
Cameron Station
Alexandria, Virgina 22314

2. Library, Code 0142 2
Naval Postqraduate School

" lonterey, California 93943
3. Department Chairman, Code 59

Department of Adminstrative ScLences
Naval Postqraduate School
Monterey, California 93943

4. Curricular Office, Cole 37
Computer Technology
Naval Post raduate School
Monterey, alifornia 93943

5. Cagtain Bradford D. larcer, USAF 5Co e 52ZI
Department of Computer Science
Naval Postqraduate School
Monrterey, California 93940

6. Assccia'e Professor W eissinger-Biylqn 3
Code 5 4WR
Departmen: of Administrative Sciznces
Naval Postgraduate Szhool
Monterey, California 93943

7. Lieutenant Chuck Pier-e, USN 3
4383 Hydranqea Court
San Diego, Caiifornia 92154

8. 1ietenant Rebecca L. Wagner, USN1t -26A Iho Place
Aiea, Hawaii 96701

9. Vice Admiral G.R. Nagler, USN
CNO (OP-094)
Department of the Navy
ashinqton, D.C. 2035

10. Rear Admiral P.E. Sutherland USN1
Naval Data Auzomatloa Comaand
Washington Navy Yard
Washington, D.C. 203714

11. Captain A.H. Fredrickson, USN
CNO (OP-942)
Department of the Navy
Washington, D.C. 20353

12. Dr. Joel S. Lawson
Code 06T
Naval Electronics Systems Comiaid

* Department of the Navy
Washington, D.C. 23360

102

I



13. L-eutenant Commander Ronald Hodes, USN 2
Code 52HP
Department of Computer Science
Naval Post qraduate School
Honterey, California 93940

13. Hr. M lrs. Lew Zuber 1
992 Church Street
Bohemia, Long Island, New York 11716

14. Hr. & Hrs. Vharles J. Pierce 1
138 Connect cut Avenue
Massapequa, Long Island, New York 11758

15. 2rSM e ta, nch
I512 ChesterfLell Roa1-Rcckvill., Maryland 2)853

.

'I

4

i "i"103

I



I. I

.4 . 4'

I. 4.

- -~ a

* '4 1 $4

-4$ - - 4v

* .4 . *:.1> 4

4:
%44 ' .~.. t

*

44*4

* .4 4. -~ 4 .*4~ 'S 4
~I'


