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Abstract
Many methods exist for fitting ellipses and other sccond-order curves to sets of points on the plane.

( Different methods use different measures for the goodness of fit of a given curve to a set of points. The
method most frequently used, minimization based on the general quadratic form, has serious deficicncies.
Two alternative methods are proposcd: the first, based on an error measure divided by its average gradient,

uses an cigenvalue solution; the second is based on an c¢rror measure divided by individual gradients, and

requires hill climbing for its solution.

As a corollary, a new method for fitting straight lines to data points on the plane is presented.,
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Introduction

This paper uincusses the following problem: Given some set of data points on the plane, how should we fit
an ellipse to these points? In morce precise terms, et curves be represented by some equation G(x.3)=0. We
restrict G(x,y) to be a polynomial in x and y of degree not greater than 2. The curves generated by such a
function are the conic sections: cllipses, hyperbolas, and parabolus. In the special case where Glxy) is of
degree 1, the curve represented is a straight line. Now, given a set of data pairs {(x 7Yy i=1...n), what is the
function G(x.p) such that the curve described by the equation best describes or fits the data? The answer 1o

this question depends upon how we define "best.”

The primary motivation for studying this problem is to deal with systems that use light stripes to mecasure
depth information [Agin 76] [Shirai] [Popplestone). When a plane of light cuts a cylindrical surface it
generates a half ellipse in the planc of the illumination. When this ellipse is viewed in perspective it gives rise
to another partial ¢llipse in the image plane. The incomplete nature of this curve segment makes it difficult to

measure its intrinsic shape.

A similar probiem often arises in scene analysis [Kender] [Tsuji]. A circle viewed in perspective gencrates
an cllipse on the image plane. If some scene-understanding procedure can identify the points that lie on the
perimeter of the cllipse, these points may be used as the data points in a curve-fitting process to identifying
the dimensions of the cllipse. The relative lengths of the major and minor axcs and the orientation of these

axes will then be sufficient to determine the plane of the cllipse relative to the camera.

Fitting eilipses and other second-order curves to data points can be useful in interpreting physical or
statistical experiments. For example, particles in bubble-chamber photographs may follow elliptical paths,

the dimensiots of which must be inferred.

[t is casy to sec how a fitter of cllipses would be useful in an interactive graphics or a computer-aided
drawing package: i.c., the user could indicace a rough approximation to the ellipse or circle he wants, and the
system could infer the best-fitting approximation. This kind of capability is currently handled by fitting with

splincs [Smith] {Baudelaire].

It is important to distinguish among the extraction of points that may represent the boundary of an cHipse;
the segmentation of collections of points into distinct curves: and the firring of these points once they have
been extracted. This paper does not purport to describe how to determine which points do or do hot belong
0 any cllipse or cllipse segment. Curve fitting cqan be of usc in segmentation and extraction to cvaluate the
rcasonableness of a given hypothesis: however this discussion is limited to methods for determining the

cquation of the curve that best fits a given set of data points.

-




Representing Second-Order Curves

An ellipse in "standard position”, such as the onc in Figure 1, may be represented by the equation

N

\

Figure 1: An Ellipse in Standard Position

Such an ellipse has its center at the origin of coordinates and its principal axes parallel to the coordirate axes.
If parameter a is greater than parameter b, then @ represents the length of the semi-major axis and b represents

the length of the semi-minor axis. The eccentricity (e) of the ellipse is defined by the formula
e= \/ 1- -b~2- ,
&l

where e must be positive, and between zero and 1. If a=b. then equation 1 represents a circle, and e is zero.

If a<b then b represents the semi-major axis and g the semi-minor, and e is defined as

e=\/1—%.

A shift of coordinates allows us to represent an ellipse centered on a point other than the origin, say {4,X),
as in Figure 2. If welet
xX'=x~h ' : (2)
and y=y—-k
then the equation of the ellipse of Figure 2 is

x'2 y’
St+o=1, 3)
P

or,

o Y
(x h)+(y k)z

2 7 @
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Figure 2: An Ellipse off the Origin of Coordinates
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Figure 3: An Ellipsc Rotated and Moved

N

A rotation of the ellipsc, as in Figure 3, can be accounted for by the transformation

x"=x'cos @ + y’sin g
and y'=—x'sind + y'cosd.

These transformations can be substituted dircctly into the equation for an cllipse, but we prefer the implicit

form: ) ,
i... + L =1 5
bZ
where X" = (x=h)ycos 8 + (v=K)sin @
and Y'= —=(x=sind + (y—k)cus 8.




Equation § can represent any cllipse in any orientation. A total of five parameters are involved: a and 4

represent the dimensions of the cllipse, fiand & represent its center, and § represents its rotation,

The equation of a hyperbola in standard position is similar to that of an ellipse, but with a sign change:

= =1

]
d ;)2

Figure 4: A Hyperbola in Standard Position

A hyperbola is shown in Figure 4. Its eccentricity is given by
e= \/ 1+ i .
a
The center of the hyperbola can be moved and its axes rotated by transforms similar to those we used for

ellipses. We can represent cllipses and hyperbolas by the same equation or set of equations if we let

eccentricity into the equation. A"ZV central conic (cllipsc or hyperbola) can be represented as:

" "

X y
_t— =1 _ ©6)
F & 21~
where X" =(x—hycos § + (y—k)sind

re

and —(x~h)sind + (y~k)cos @

It should be noted here that an ellipse can also be represented parametricaily. For an cllipse in standard




at

orientation, points on its perimeter are given by

xX=h+ acos ¢ M
y=k+ bsin ¢,

where ¢ varies between 0 and 2o, The rotation @ of the ellipse can be taken care of by rewriting equation 7
as follows:

x="h+ ucos pcos 8 — bsin psind
y=k+ acos ¢sind + bsin pcos 8

A hyperbola may also be represented parametrically, using hyperbolic functions. Points on a hyperbola in
standard orientation with its center at (A,4) are given by

x = h%aqcosh{
y=kzxbsinh{,

The vatue of { may vary from zero to an arbitrary upper limit. The various permutations of the # signs give

rise to the four branches of the hyperbola.

A parabola is actually a conic section with eccentricity 1, but if we try to represeat it in the form of
Equation 6 a division by zero results. Itis better to represent the pambqla by the cquation
=ax
A shift of origin and a rotation give the form:

ax"? 8)
= (x~h)cos @ + (yv—k)sin @
= —(x—h)sin8 + (y—k)cos 8

]

’vl'
where  x"
and y'
Given any parameters cf size, position. and orientation, Equation 6 or Equation 8 can be rewritten in the
form
Gxy)=Al+Bxy+Cyr +Dx+Ey+ F=0 ©

It may be shown that all conics may be represented in the form of Equation 9.

Purcell [Purcell, p. 130) shows that Zquation 9 represents a hyperbola if the indicator, BE—4.4Cis

positive, a parabola if it is zero. or an cilipse if it is negative.

Furthermore, the parameters of Fquations 6 or 8 may be recovered by the following procedure: Apply a

rotation @ in which & = 45 degrees if 4 = Cand
B

4-C
if .1« C. This transforms Equation 9 into an ¢quivalent form in which /8 (the cocfficient of the xy term) is

tanlf =

cero, ftis then a straightforward matter to extract the other four parameters.

A ——




Minimization and Approximation Theory

Approximation theory is a mathematical discipline that addresses curve fitting [Riviin]. Usually, a set of n
data points are specified as pairs of the form { (X3 i=1, .., n }, where x is regarded as an independent
variable and y, represents values measured at n particular values of x. Iet the symbol v denote the set of given
data pairs. Let ¥ be the set of all functions defined on {xi, i=1, ... ,n}. Vis thus an n-dimensional lincar

space, and v€ V.

Admissible solutions to curve fitting problems are usually represented in the form y=f(x). The sct of ail
admissible solutions constitutes a subspace W of V, whose dimensionality corresponds to the number
paramecters used to characterize f7 For example, the set of all quadratic functions of one variable constitutes a
space of dimensionality three. Given some w €W we necd a measure of the differcnce between w and v,
which we denote as |w—, the norm of w—v. The norm may be defined in the Euclidean manner as the
square root of the sum of the squares of w— v, where summation is over all values of x for which both w(x)
and W x) are defined. Another norm in frequent use is the maximum of all elements of w— v, again over all

points where both functions are defined.

A central theorem of approximation theory states that there exists some w* such that
w*— v < [w—+|
for all wel¥. When we use the Euclidean norm, we say the minimizing w* is the best approximation in the
least-squares sense. If the norm is the maximum of all elements of w— v, the minimizing w* is referred to as

the best uniform approximation.

The paradigm outlined above can be generalized to several dimensions. For example, given triples of the
form { X Y 2 i=1, .., n } and a space of functions w(x,y) we may find w* that minimizes (in the appropriate
sense) the difference between n(xi. yi) and z. But however many dimensions there are, the basic assumption

remains: that wis a single valued function of one or more independent variables.

It is difficult to represent an ellipse as a single-valued function. Therefore, the "difference” between a data
point and an ¢llipse is not uniquely and unambiguously defined. Intuitively, the difference should represent
the perpendicular distance from the poiat to the curve. If an ellipse were represented in the form y= f(x),
then f would be multivalued over some range of x, and have no valuc clsewhere. Usually cllipses are
represented implicitly by equations of the form g(x.y)=0. We might choose a norm that estimates the
magnitude of g itself, (i.c., it measures the difference between g and zcro.) and scarch for a g* that minimizes
that norm. But the "classical” techniques of approximation theory are no longer applicabie, so we must

develop other technigques.




Choosing an Error Function

T sasic oo for oBipse fitting is as follows:  First, choose a method of estimating the "crror” of a
point with respect W any given sccond-order curve; second, choose a method of calcutating an aggregate error
from all the individual errors; third, systematically scarch for the cllipse that minimizes the aggregate error.
The choice of an error mcasure and an aggregating rule affects not only the solution, but also the

computational effort needed to obtain the solution.

It should be noted that any five arbitrary points on the plane are sufficient to specify a second-order curve.
As long as no three of the five points are coplanar, there exists a unique second-order curve that passes exactly
through each of the five points. An algebraic procedure exists for finding this curve [Bolles]. . More

sophisticated methods become necessary only when there are more than five data points to be fit.

{f all the data points lie on, or very close to. a mathematically perfect curve, then almost any method for
fitting ellipses will give acceptable results. In practice, problems usually arise when the a2 become noisy
and dispersed. Very eccentric cllipses are harder to fit than nearly circular oncs. Cases re only a portion
of the complete curve is represented by data points gencrally crcate problems: th .., complete the

perimeter the greater the difficulty of estimating the curve to represent it.

For the rest of this discussion, we will consider only a Euclidean nornm. In other words, we are restricting
our attention to lcast-squarcs methods. This reflects a desire to let the solution represent an “average™ of all
the data, rather than being influenced primarily by the outlying points, as would be the case if we used a

uniform norm.

Using the General Quadratic Form
One possible choice of an crror function is the general quadratic form of a sccond-order curve as given in

Equation 9. We must avoid the trivial solution 4 = B = C = D = [ = F = . so we arburarily assign
F = 1. This gives

Gx)=AXC+Bxy+Cyr+Dx+Ey+1=0. (10)
Given a daw point (xi.yl), we let the pointwise error gl be given by

§, = G'(xi,yi) =4 xiz + By + Cy.‘: +Dx+ Ey +1.
The aggregate crror is given by

Z=3¢}
1 N )
=S+ Bry +Cpl+Dx +Ep+1) (10

Obtaining the partial derivatives of Equation 11 with respect to /A, B, C, D. and I, and sctting these to zero,




we obtain the [ollowing system of equations:

A =+ B Ex3y + C szyz + D X + E Exly +
A + BECY + CIxP + DIy + F S0 +
ATV + B + C S + DSot + F Iy +
AZC + B3+ C3S0P+D IxX +F Zxy +
Ay + B30 + C Y +D Exy + I 2 +

11

xt
Zxy
Zyz
Zx
2y

o O O

Figure 5: Fit Obtained by Minimizing Equation 11

P g
++

Figure 6; Fit Obtained by Minimizing Equation 11

(12)

The solution to these equations represents the the ellipse that minimizes the error function given in Equation

Figure S shows a sct of computer-generated data points and the curve generated by this method to fit it.




‘The method appears 0 work adequately in this ¢ But Figure 6 shows another case, where the minimizing
clinse clearly misses the data points near the origin of coordinates. What we are seeing is the result of a poor
choice of error function. When we went from the ellipse representation of EqQuation 9 to that of Equation 10
by fixing Fto be 1, we allowed the representation to become degenerate: we lost the ability to represent an
cilipse that passes through the origin. An ellipse as represented by Equation 1) that passes close to the origin
must have large coefficients A, B, C, D, and E: hence the error measure = of Equation il will be large.

Thercfore, minimizing = implics kceping the curve away from the origin.

A requircment of a usefui curve fitting method is that it should be indcpendent of scaling, translation, or
rotation of the data points. That is, the choice of a coordinate system should not affect the solution curve;

except, of course, that the solution curve should be scaled, moved, or rotated along with the data points.

The Average Gradient Constraint

Ideally, the error function we choose to minimize should be related to the distance from a point to the
curve. Suppose we were to choose some primitive error measure such as the G{x.y) given in Equation 9. G is
zero along the curve, and its magnitude increases when we measure G at points farther and farther from the
curve. Fora poiqt in a small ncighborhood the curve. G is proportional to the perpendicular distance from

the point to the curve. The constant of proportionality is the reciprocal of the magnitude of Uy gradicnt of G. v

We will choose a constraint on the coefficients of Equation 9 such that the average gradient is unity. Then

the resulting error function will be directly related to the distances from points to curves.

A shift in notation will make the following mathematics casier. Define the vectors X and V to be

¢ A

B
and V = C
D
E

x
)"‘
X
y
1 F
Then we may rewrite Equation 9 as
txpy=ViX=XTv.
Using the Euclidean norm. our aggregate error Z is given by
Z=xgl=zd=svVIXXT = vTE XDy =vipy. (13)
P = =X X' is a matrix of sums of powers of v and v, whose first five rows and columns are, in lact, the

coefficients of A, £, C. D, and £ in Equation 12 and whosc last column provides the constant terms.
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‘The magnitude of the gradient of G, |V (] inay be determined from the partial derivatives of G with respect

w xand y.
?.9 = VTE =vTx
O0x dx *
9G _ yTOX _yr X
dy dy y
where
2x 0
y X
X = 0 X = 2y
, 1 d 0
0 1
0 0

(VGY = (25)2 + (a_G)z: VI XT+XXDV
dx oy ‘ o

2vEP = VIEX X T+X XDV
=vIiQv
Q=2 (XKXXT+XyXyT) is another matrix summed from powers of x and y. The mean-square gradient of G,
measured at all data points { (xp). i= Ln}isS(VG?2/ n Requiring this "average gradient magnitude”

to be unity is equivalent to specifying

VIQV =n. (14)

We wish to find the vector V that minimizes the matrix product VT PV, under the constraint that V1 Qv

= n. Itis well known [Courant] that at the constrained minimum there exists some LaGrange multiplier, A,
such that

PYV=AQY (15)

This equation would be easy to solve by normal eigenvalue methods were it not for the tact that Q is a

singular matrix, and P is ncarly singular. (It seems that the closer the data points approximate a conic section,

the closer P approaches singularity.) The appendix gives a method for solving Equation 15 that yiclds five

cigenvalues {A,, i=1...., 5} corresponding to five eigenvectors {Vi, i=1..5}

J
To determinc the aggregate error, Equation 13, we may use Equations 15 and 14 to produce the result

Z=VIpy=AvViQV=aAn




Then we know that the coctiicients of the quadratic tunction giving the minunum aggregate error unaer the

given constraint are given by the cigenvector corresponding to the smallest eigenvalue.

Solutions to the curve fitting problem are invariant with translation, rotation, and scaling of the mput dato

A proof of this is presented in Appendix B.

Figure 7: Curve Fitting with Average Gradient Constraint

Figure 7 show the same data points that were used for Figure 6 fit using the “cigenvalue” method

described above. Comparing figures 6 and 7. shows that the new method gives superior results.

Some Difficulties
The problem of curve fitting gets worse when the points to be fit represent only part of an cllipse. Noise

and digitization error accentuate the problem.

Figures 8 through 10 show increasingly difficult cases. The data points for Figure 8 are a subsct of those
used to gencrate Figures 6 and 7. There is a noticeable flattening of the solution curve, but not so much that

if we had no knowledge of how the points were generated we would say the fit was "wrong.” The misfit in

Figurc ¥ is more apparent. The same ideal cllipsc as before was uscd to generate the points, but a "lattening”
of the data points has been simulated. Figure 10 represents an extreme case.  The data points were not

generated theoretically, but are from an actual light-stripe experiment [Agin 72).

What we are sceing is a systematic tendency for the solutions w flatten, becoming clonzated cilipses

parallel 1o the general linear trend of the data points.  The tendency arises trom the fact that. all other things

J

L




Figure 8: Curve Fit to a Short Segment

Figure 9: Curve Fit to a Short, Fattened Segment

being equal, the error of a scatter of points about a curve G(x.y} = 0 depends on the sccond derivative of the
error function G. That is, a function whese gradient varies rapidly tends to “fit” better, in a normalized least-
squares sense, than a function with a constant gradient. Flattencd cllipscs and hyperbolas are characterized
by a high second derivative of their defining function. The curve fitting solution chooses these squashed

curves over the more intuitive curves we would prefer.,

The problem is not limited to fitting with the average gradient constraint. Lyle Smith [Smith] noted the

same phenomenon using the general quadratic form, i.c., minimizing Fquation 11,

L.
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Figure 10: Curve Fit to a Gently-Curving Segment

[t is tempting to try some method that would keep the general idea of constraining the average gradient, for
example by computing that average over the eatire curve instead of over all the data points. This would
amount to a constraint on the coefficients . through £ of Fquation 9 independent of the data points. A little
thought will show that this approach will not work at all. The RMS error can be made arbitrarily small by
choosing a very large and very clongated ellipse with a gradient magnitude near unity aleng most of its length,

but a vanishingly small gradient magnitude in the vicinity of the data points.
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Curve Fitting by Hill Climbing

The best measure of the goodness of {1t of a point or set of points to a given mathematical cune G(ay) = 0
is provided by measuring the perpendicular distance from cach point to the curve. A reasonable
approximation to that distance may be had by dividing the crror function G‘"i'}]) by the magnitude of the

gradient of ¢ measured at (xi,_vi). With such a definition, aggregate error Z is given by
G(X.}’) ) 2
{7 Glxp)l
vixxTv
=% (16)
V(XX +XX")V
xx yoy
where V, X, Xx. and Xy are the same as in the previous section.

The point-by-point division makes it impossible to move the summaltion sign inside the matrix product as
we did in the previous scction. Minimizing Equation 16 will require a hill-climbing approach. We must
postulate a coefTicient vector V, use it to cvaluate =, then choose another V to see whether or not it improves

the error =, etc.

Even though there are six elements in the vector V, there are really only five independent parameters
necessary to specify an ellipse. The hill climbing algorithm will manipulate these five. We are free to specify
these parameters in any way we choose. We only require that it be possible to derive V uniquely from these
parameters. For example, we could choose to optimize over a, e, 8, A, and & given in Equation 6. A
somewhat better approach is to represent the ellipse in the form

a(x=h + Bx—hy-k+y@y—k? =1 a7
and optimize over a, 8, v, A and k. This formulation avoids degencracy in @ (orientation) when the cllipse is

ncarly circular.

Hill-climbing must start with some initial guess as to the approximating ellipse. The casiest way to do this
is to choose three data points, preferably at both ends and near the middle, and calculate the circle that passes
through these three points. Hill-<limbing tends to prescrve the form of the initial guess. If the initial guess
represents an ellipse, the method will not converge to a hyperbolic solution. A roughly circular cllipse will not

be transformed to a drastically elongated one.

The minimization problem is rather ill-conditioned. Care must be cxercised to use the correct numerical
technique, or the results will be poor. We have tried several methods. It turns out that the method of steepest
descent with accelerated convergence is totally unacceptable. It may take many minutes of computer time for

the method to converge, if at ail. Evaluation of the gradient of Z does not appear to help appreciably. The

only method that gives acceptable results requires cvaluating the matrix of second partial derivatives of =,
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. then finding the cigenvectors of that matrix. The complete method is given in Appendix C.

We Ll not attempt to prove formaily that results obtained from hill climbing on the expression given by
Equation 16 arc independent of position, orientation, and scale. Insicad we shall appeal 1© an matitive
understanding of an error function and its gradient. The crror function should not be affected by changes of
coordinates, nor should its gradient. A change of scale will affect the error function and its gradient, but
should multiply them by the same constant value everywhere. Hence, a local minimum will stay a local
minimum under translation, rotation, and scaling. Dcpending on the particular hill-climbing method used,

there may be some dependence of convergence propertics on scaling and rotation.

Figure 11: Hill-Climbing Curve Fit

Figure 12: Hill-Climbing Curve Fit
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Figure 13: Hill-Climbing Curve Fit

Figurcs 11 through 13 show the data points of Figures 8 through 10 fitted by hill climbing with an initial
circular estimate. Figure 11 is approximately equivalent to Figure 8. Figure 12 shows a more noticeable
improvement with respect to Figure 9. While the result doesn’t come near the cllipse from which the data
points were generated (cf. Figure 7), the fit at the lower end of the data points is more "intuitive.” In the case

of Figure 13, the improvement is dramatic.

A
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Applying the Gradient Constraint to Straight Lines

The G wing werts woa pression from the main topic of fitting second-order curves. A new

foumulation of stright-hue fitting 1s obtained when we apply the methods developed here 1o the linear casc.

1)

A straight line is defined by the equation

Gxy)=Ax+By+C=0. (18)
We define
X A
X = y and V = B .
1 C

so that we tnay rewrite Equation 18 as
Gxyy=VIX=XTv=0.
We seek to minimize the error function

Z=2¢l=3G=VIpPV

where
s Sxy Sx
P=3XX = Ixy Iy Iy
Zx Zy n

The magnitude of the gradicent of G is constant for all x and y, and is equal to the square root of A + B,

[ 100
ve?r = vl 010 v = VI Q V.
000

If the gradient is constrained to unity, then the error function (dx,)) will be precisely equal to the

perpendicular distance from (x,y) to the line G = 0.

Just as in the second-order case, the vector V that minimizes = subject to the given constraint must be a

solution to the eigenvalue equation

PV=AQY.
Some algebra yields the pair of solutions
A 1 [ —~5 ]
V = B = - X r—Aa 119)
C \/s"+(r— >\)2 | (sZx = (r=A)Zy)/n |
1 [ = A ]
= - X ] (20)
\/(1-}\)2+5“ | ~(1=N)Zx + sZy)/n]

A i




19
where
r= 3282 - (Z.x)z/n
s = Zxy — ZxZy/ln
= 2)12 - (Zy)Z/n
A= L(r+a- (r—=1)}+4¢).

The two forms are mathematically equivalent unless s=0, in which case one form or the other will involve a
division by zero. For this reason, Fquation 19 is to be preferred whenever ris greater than ¢, and Equation 20

when the reverse is true. Once A and B have been computed using cither form, C may be easily computed as

—(AZx + BZy)/n. The mean-square crror of the fit is equal to A/n.

/

Figure 14: Straight Line Fit Minimizing Vertical Distances

Figures 14 and 15 show a startling comparison between the traditional method of fitting straight lines and
the method presented above. The data points show a wide scatter about a nearly-vertical line. The line in

Figure 14 was fit using the traditional lincar regression formulas, where a line is represcnted by the equation

y=Mx+ B
and M and B are calculated as
M= NZxy—- ZxZy
NI - (Zx)
B= = Iy - Zx ny'
NZP - (2x)

The straight line of Figure 1S was based on the line represcntation of Equation 18 and the solution of

Fquation 19.

[V



Figure 15: Straight Line Fit Minimizing Perpendicular Distances

A failure of a "tricd and true” mcthod deserves some analysis and discussion. In this case. the failure is
traceable to the assumption that x is the independent variable, that v depends on x. But when the trend of the
data is necarly vertical, it may be that x is more a function of y. A vertical line is degenerate using the
regression formulas. If it makes sense for a collection of points on the plane to approximate a vertical line,

then we should not use linear regression.

I have not seen this formulation published anywhere else. 1 would appreciate anvone who has seen this

resuit published elsewhere letting me know.

Conclusions
Three methads for fitting second-order curves to sets of data points on the plane have been presented and
analyzed. These methods arc distinguished principally by the way they measure the amount of misfit between

a given curve and a given sct of points. The three measures are:

1. the quadratic form. with the constant term sct equal to 1 (Equation 11),

2. the quadratic form (Equation 13) subject to the average gradient value being held to 1 (Equation
14),

3. the quadratic form divided by the gradient magnitude at cach point (Fquation 16).
As may be cxpected. the three measures lead to different results when minimized. The first measure has

been shown to be sensitive te translation in the plane, and to give grossly incorrect results under certain

conditions. The sccond measure has been formally shown w be insensitive 0 translation. rotation. and
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scaling, and reasons have been given why the third measure ought to be the same. The third mcasure has
been shown to give somewhat better results than the second, particularly in difficult cases with small angular

arcs and widely scattered data points.

The three measures also lead to very different computational procedures for their minimization.
Minimizing measures 1 and 2 both require summing products of x and y up to the 4th power: in this
summation they are O(#), where n is the number of data points. But for fewer than 100 data points, the major
use of computation time is in solution of the simultaneous lincar cquations (for measure 1), or the cigenvalue
solution (for measure 2). On a Digiml Equipment Corporation 2060 computer, generation of Figures such as

6 and 7 typically require about 50 milliseconds.

On the other hand, measure 3 is very expensive computationaily. Computation time is a direct function not
only of the number of data points, but also of the initial solution cstimate and the accuracy required.
Generation of Figures 11 and 12 required 24 and 42 scconds respectively. Hence hill climbing is to be

recommended only when all other methods prove inadequate.
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Appendix A: Solution of the Generalized Eigenvalue Equation
W s vo solve the generalized eigensalue equation
PV =AQYV,
given that Q is singular and P may be close  singular. The following method was derived by Richard

Undcrwood.

We know that the last row and the last column of matrix Q are zero. Q may be representied by the
partitioned matrix
Q* [ 0
Q=-—- —-
0 | 0
We may usually expect the 5x5 matrix Q* to be positive definite. We may use a Cholesky decomposition

[Forsythe and Moler] to factor Q* into a lower diagonal matrix L* and its transpose L*T, so that

Q*=1L* L*T
If we let L represent the augmented matrix
L* | 0
L=|j—— ——
0 | 1
then we have the result
I | 0
LIQLT =|~=- ——
0 | O

where [ denotes the five-by-five unit matrix and LT s the transpose of L

The original generalized cigenvalue equation, Equation 15, may be transformed into
L'pLTLTV =LtQLTLTA V.
Applying the substitution

(¢ | u
C=L'PLT = |- ——
L UM | «a
and lctting Y be the partitioned column vector
 z
Y=LTv= |-——
| W
vields the representation
c | u fA I 1 0 7
- = - -——J]=A]=-- —-= - - | (21)
Ut | « W 0 | 0 W

The hottom row of this result represents the scalar equation
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U'Z+aw=0.
This may be salved  give

w= -2 @)

a

The top five rows of Fquation 21 represent the vector equation

CZ+UW=\L
into which we may substitute our result for }, Equation 22, to yield

(c-tuuNyz=arz. 23)

a
Equation 23 may be solved by usual eigenvalue methods, such as the Q-R algorithm [lsaacson]. Given a

particular solution 7“.' the corresponding V.l is given by

V. = LT |—-=

where W is given by Equation 22,

Appendix B: Rotational, Translational, and Scaling Invariance
The rotational, translational. and scaling invariance of the method may be shown as tollows: Let there be a
coordinate system (u.v) related to (x.y) by the transformations

u=ax+by+c (24)
v=dx+ey+f.

We may define a vector U analogous to X such that

u? & 2ab b 2ac 2bc & 2

uy ad ae+be be af+cd bf+ce xy
U=|+# |=HX= | & 2de & 2 2f f{ x | i
u 0 0 ¢ a b ¢ X

v 0 0 0 d e f y

L1 o o o0 o0 0 1 1

Just as a vector V defines an error function G{x.y) = yT X, a vector V 'can define an error functionG’ = ¥ T

U. Equating the two crror functions (for all X) yiclds the relationship
v=HTV"

Now, suppose that for some collection of data points {Xi. i=1...n} V minimizes the aggregate crror given
by Fquation 13. We have shown that V satisfics Equation 15, and that the corresponding cigenvalue X is the

smaliest of all cigenvalues that satisfy the equation.

Rewriting Equation 15 and performing some algebra gives
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PV=AQV
e . .

TXXDV = A2 X+ X X DY

ZXXTHTY) = A 2(X X,"HTV + X XTH'VY)

SEHXXTHIV) = AZHX X H V+ HX X TRV

TRUTYY=AZU LTV U UV
where Ux and Uy denote the partial derivatives of U with respect to x and y, respectively. If the
transformation of Equation 24 is an orthenormal transformation, that is, if
F+¥=F+ P
and
ad + be = 0,
then it may be shown that
U UT+U U =@+ MU, uT+uLh.
Substituting this result in the above,
T(UCH V=@ + HNZEUUT+U U DY
yiclds the resu!t we scck: any solution to Equation 1S in one coordinate system is also a solution in any
orthonormally related coordinate system. Since the cigenvalues are proportional, the smallest eigenvalues in

the two coordinate systems correspond.

Appendix C: Hill Climbing Method

Hill climbing refers to a class of numerical methods that minimize a function G(U). where U may be a n-
dimensional vector. For our purposes, we may assume the existence of a subroutine MiN1 that minimizes &
along a straight linc. It accepts an initial cstimate UO and an increment AU, finds a value of & that locally
minimizes G(L'O + k AU). and updates U to the new minimizing value.  Different hill-climbing strategics
consist of different means of selecting a sequence of AU vectors. The sequence terminates when no further

improvement in G can be obtained.

A method that requires no knowledge about the function ' is to scarch sequentially along the n dimensions

of U, i.c.. to apply the sequence

1 0 0 1]
AU = 0o | o o |. 1o |
0 0 1 0

This is one form of the method of steepest descent. For some functions this methed will suffice. But if the

function « is itl-conditioned. that is it the clements of U interact to a great degree in their influence on G(U),
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or if the equipotentials of G tend to form squashed cllipsoids, tien this simple approach will converge very

slow! . Figure 16 shows a hypothetical sequence of iterations in minimizing a function of two variables.

Figure 16: Iterations in Method of Steepest Descent

Convergence can be enhanced by kecping track of the cumulative change in U as the minimization
procceds. After n minimizations along the n coordinate directions of U, an additional minimization step can
be attempted along the direction indicated by the sum of the individual k.l AU.l terms measurced in the

preceding 7z calls to MINL. This is called the method of steepest descent with accelerated convergence.

Some improvement in performance can be obtained if it is possible to evaluate the gradicnt of G. that 1s,
the n partial derivatives of G with respect to the clements of U. At each minimization step let AU point in the
direction of the gradient. Use of the gradient can give a computational advantage in reducing the aumber of

calls to MIN1, but it is doubtful whether this technique affects overall convergence properties.

The situation illustratad in Figure 16 can be completely avoided if the second partials of G are avajlable. In

the neighborhood of UO. G(U) may be approximated by the expression

@U) = G, + DT(U~Up + (U~ UpTPU- Uy (25)
where D = D (Uy) is the gradient vector, or vector of first partial derivatives, and P = P (L) is the matrix of
second partial derivatives. P is a symmectric matrix. An cigenvalue analysis of P will give » linearly
independent cigenvectors {U,, i=1,....n} and associated cigenvalues {I\i, i=1....n} such that

PU =AU,
These eigenvectors point in the directions of the principal axes of the equipotential cllipsoids of ;. Function

minimization may takc place in the eijgenvector dircctions independendy without cross-coupling or co-




variance etfects. Convergence will be guite rapid.

[f the cigenvectors are normalized to unit magmitnde. and we let U = Uy + 4 U, then Equation 25
becomes
GU) = Gy+ kDTU + A L. (26)
Taking the derivative with respect to & and setting the result cqual to zero, we find that the minimum ought to
occur when k = DT Ui /(2% )\i ). If A is ncgative, as it frequenty turns out to be, then the k above actually
points to a relative maximum. This result can be used to guide the minimization by subroutine MINI, to

suggest initial step size for the search, but experience shows that the use of MINI should not be bypassed.

For the casc at hand, ¢llipses are represented by
a(x—h? + B =R~k +yo—k? = 1,
or
axt+Bxy+y7? - Qah+Bk) x — (Bh+2yk) y + ak® + Bhk + K2 - 1 = 0.
Therefore let

a
B
and Y(U) = Y ,
—2ah—-fk
| Bk
al*+Bhk+yk -1

and let X, Xx, and Xv be defined as before. (L) is given by
1 G(U):::E&f::ﬁ
{ D
where
N=vTxxTy =(xTv%2
D=VI(X, X +X XV =(XTVZ+ XTIV

c
H
~ 3>~ WK

The first and second partial derivatives of .V and 2 with respect to the ¢lements of U are:

Fx? ‘)
Fxy J
1y |
- Fr
~FF,

VN

i
[}
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I x* x'Jy' x'zy'2 - F‘x'z -2Fx - I"V.)t‘2
3y x2y? xy? — b xy—Fy —FxXy-FFx
VN =2 x2y? xy? v -ny'z - F yi-2ry
—Fxx‘z—ZZI’x’ ~F Xy —Fy —I';xy'z Fl+2Fa FF +1B
. I vy — iy Y ARVl 3. Al o > 27 4
L Fyx [yxy Fx Iyy 2Fy ley+lﬁ Iy +2/y
[ 2Fx
ny'+ Fyx‘
vh =2 2F y .
-2Fa~-FB
L-FB-2Fy
[ 4x? 4xy 0 -4x'a—2F, ~2xB
2x'y y'2+Jc'2 Xy -2y'a~x'B-Fy -y’B-Fx—2x'7
viD =2 0 2x'y' 4y —2yB ~4yy-2F, |,
—4xa-2F_ -2ya-xB-2F,  ~2yB 4o +2p82 208 +28y
L —2x'B -yB-F-2xy -4y’7—2Fy 2af3+28y 2B +4vt
where
xX=x-h
y=y-k
F=axt+ Bxy+yyli-1
Fx= 2ax+ By
Fy: BxXx+2yy.

The first and second partials of &i can be derived from the partials of N and D by use of the formulas
d N _DN_- ND

op D D’

2 2

) iV__:ZNDDDQ—NDDDG-—NqDDj:-NmD +NDD_
dpdq D Foa

where p and ¢ stand for any of the set {a, B, v, h and &}, and subscripting denotes taking the partial
derivative. The derivative of a sum is equal to the sum of the derivatives of the terms. Hence, the partial

derivatives of X are the sums of the partial derivatives of the individual §; terms.
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