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Abstract

Many methods exist for fitting ellipses and other second-order curves to sets of points on the plane.

Different methods use different measures for the goodness of fit of a given curve to a set of points. The

method most frequently used, minimization based on the general quadratic form, has serious deficiencies.

Two alternative methods are proposed: the first, based on an error measure divided by its average gradient,

uses an eigenvalue solution; the second is based on an error measure divided by individual gradients, and

requires hill climbing for its solution.

As a corollary, a new method for fitting straight lines to data points on the plane is presented,
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Introd'iction
['his poq1 , ut,,,-us.¢es the following problem: Given some set of data points on the plane, how should we fit

an ellipse to these points? In more precise terms, let curves be represented by some equation G(x.y)=O. We

restrict G(x,) to be a polynomial in x and y of degree not greater than 2. The curves generated by such a

function are the conic sections: ellipses, hyperbolas, and parabolas. In the special case where G(.y) is of

degree 1, the curve represented is a straight line. Now, given a set of data pairs {(xryi. i= 1.....n), what is the

function G(x,y) such that the curve described by the equation best describes or fits the data? The answer to

this question depends upon how we define "best."

The primary motivation for studying this problem is to deal with systems that use light stripes to measure

depth information [Agin 76] [Shirai] [Popplestone]. When a plane of light cuts a cylindrical surface it

generates a half ellipse in the plane of the illumination. When this ellipse is viewed in perspective it gives rise

to another partial ellipse in the image plane. The incomplete nature of this curve segment makes it difficult to

measure its intrinsic shape.

A similar problem often arises in scene analysis [Kender] [Tsujil. A circle viewed in perspective generates

an ellipse on the image plane. If some scene-understanding procedure can identify the points that lie on the

perimeter of the ellipse, these points may be used as the data points in a curve-fitting process to identifying

the dimensions of the ellipse. The relative lengths of the major and minor axes and the orientation of these

axes will then be sufficient to determine the plane of the ellipse relative to the camera.

Fitting ellipses and other second-order curves to data points can be useful in interpreting physical or

statistical experiments. For example, particles in bubble-chamber photographs may follow elliptical paths,

the dimensiot,s of which must be inferred.

It is easy to see how a fitter of ellipses would be useful in an interactive graphics or a computer-aided

drawing package: i.e., the user could indicae a rough approximation to the ellipse or circle he wants, and the

system could infer the best-fitting approximation. This kind of capability is currently handled by fitting with

splints [Smith] [iBaudelairel.

It is important to distinguish among the extraction of points that may represent the boundary of an ellipse:

the segmentation of collections of points into distinct curves: and the fitting of these points once they have

been extracted. This paper does not purport to describe how to determine which points do or do not belong

to any ellipse or ellipse segment. Curve fitting can be of use in segmentation and extraction to eNaluate the

reasonableness of a given hypothesis: however this discussion is limited to methods for determining the

equation of the curve that best fits a given set of data points.
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Representing Second-Order Curves
An ellipse in "standard position", such as the one in Figure 1, may be represented by the equation

a' b'

Figure 1: An Ellipse in Standard Position

Such an ellipse has its center at the origin of coordinates and its principal axes parallel to the coordinate axes.

If parameter a is greater than parameter b, then a represents the length of the semi-major axis and b represents

the length of the semi-minor axis. The eccentricity (e) of the ellipse is defined by the formula

where e must be positive, and between zero and 1. If a= b. then equation 1 represents a circle, and e is zero.

If ab then b represents the semi-major axis and a the semi-minor, and e is defined as

e 02-

A shift of coordinates allows us to represent an ellipse centered on a point other than the origin, say (h,k),

as in Figure 2. If we let

x'= X- h (2)
and y'= y- k

then the equation of the ellipse of Figure 2 is

-+ = 1, (3)

or,

(x - h)2  (y- k)2-+ - 1 (4)
a, b'
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Figure 2: An Ellipse offthe Origin of Coordinates

Figure 3: An Fllipse Rotated and Moved

A rotation of the ellipse, as in Figure 3, can be accounted for by the transformation

x" x'cos 0 + y'sin 0
and y" = - x'sin 0 + y'cos 0.

These transformations can be substituted directly into the equation for an ellipse, but we prefer the implicit

form: X.,2 2
x .2 y .
- +-= 1 5
a b2

where x"= (x- h) cos 0 + (y- k) sin 0
and y"= -(x- /I) sin 0 + (y- k)cos 0.
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Equation 5 can represent any ellipse in any orientation. A total of ive parameters are involved: a and b

represent the dimensions of the ellipse, h and k represent its centcr, and 0 represents its rotation.

The equation of a hyperbola in standard position is similar to that of an ellipse, but with a sign change:

-- -= I

Figure 4: A Hyperbola in Standard Position

A hyperbola is shown in Figure 4. Its eccentricity is given by

a2
The center of the hyperbola can be moved and its axes rotated by transforms similar to those we used for

ellipses. We can represent ellipses and hyperbolas by the same equation or set of equations if we let

eccentricity into the equation. An central conic (ellipse or hyperbola) can be represented as:
X 2 + y =1 (6)
a' a'(I- e)

where x" = (x- h) cos 0 + (y- k) sin 8
and y" = -(x-h) sin8 + (y- k)cos 8

It should be noted here that an ellipse can also be represented parametrically. For an ellipse in standard
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orientation, points on its perimeter arc giver by

x = h + acos 4, (7)
y= k + bsin4,

where 4' varies between 0 and 27. The rotation 0 of the ellipse can be taken care of by rewriting equation 7

as follows:

x = h + acos 0cos0 - bsin 4sin0
y = k + a cos 4sin +bsin4, cos 0

A hyperbola may also be represented parametrically, using hyperbolic functions. Points on a hyperbola in

standard orientation with its center at (h,k) are given by

x = h ± acosh "
y= k ± b sinh .

'he value of may vary from zero to an arbitrary upper limiL The various permutations of the ± signs give

rise to the four branches of the hyperbola.

A parabola is actually a conic section with eccentricity 1, but if we try to represent it in the form of

Equation 6 a division by zero results. It is better to represent the parabola by the equation

y= ax2

A shift of origin and a rotation give the form:

V" = a x"2  (8)
where x" = (x- h) cos 0 + (y- k) sin 8
and y" = -(x-h)sin 0 + (-k)cos8

Given any parameters of size, position. and orientation, Equation 6 or Equation 8 can be rewritten in the

form

G((x.y) = , x2 + B xy + Cy- + D x + Ey + F = 0 (9)

It may be shown that all conics may b represented in the form of Equation 9.

Purcell [Purcell, p. 130] shows that Equation 9 represents a hyperbola if the indicator, 82 - 4 A, C is

positive, a parabola if it is zero. or an ellipse if it is negative.

Furthermore, the parameters of Equations 6 or 8 may be recovered by the following procedure: Apply a

rotation 8 in which 8 = 45 degrees if A = C and
B

tan 2 -
A - C

if I C. lThis transforms Equation 9 into an equivalent form in which fI (the coefficient o( the xy crm) is

zero. It is then a straightforward matter to extract the other four parameters.

I
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Minimization and Approximation Theory

Approximation theory is a mathematicadl discipline that addresses curve fitting [Rivlin]. Usually, a set of n

data points are specified as pairs of the form { (xi,Y), i= 1 ..., n }, where x is regarded as an independent

variable and y, represents values measured at n particular values of x. Let the symbol v denote the set of given

data pairs. Let Vbe the set of all functions defined on {xi, i=1 ...n. V is thus an n-dimensional linear

space, and E V.

Admissible solutions to curve fitting problems are usually represented in the form y=f(x). The set of all

admissible solutions constitutes a subspace W of V, whose dimensionality corresponds to the number

parameters used to characterize f For example, the set of all quadratic functions of one variable constitutes a

space of dimensionality three. Given some w E W we need a measure of the difference between w and v,

which we denote as Iw- vj, the norm of w- v. The norm may be defined in the Euclidean manner as the

square root of the sum of the squares of w- v, where summation is over all values of x for which both vt(x)

and v<x) are defined. Another norm in frequent use is the maximum of all elements of w- v, again over all

points where both functions are defined.

A central theorem of approximation theory states that there exists some w* such that

W* V1<_IW-A
for all *,E W. When we use the Euclidean norm, we say the minimizing w is the best approximation in the

least-squares sense. If the norm is the maximum of all elements of iv- v, the minimizing w is referred to as

the best uniform approximation.

The paradigm outlined above can be generalized to several dimensions. For example, given triples of the

form { x,, y,, z,, i= 1 ... , n } and a space of functions sx,y) we may find e/ that minimizes (in the appropriate

sense) the difference between ;s(xi,yi) and z.. But however many dimensions there are, the basic assumption

remains: that w is a single valued function of one or more independent variables.

It is difficult to represent an ellipse as a single-valued function. Therefore, the "difference" between a data

point and an ellipse is not uniquely and unambiguously defined. Intuitively, the difference should represent

the perpendicular distance from the point to the curve. If an ellipse were represented in the form y=f(x),

then f would be multivalued over some range of x, and have no value elsewhere. Usually ellipses are

represented implicitly by equations of the form g(x.y)=O. We might choose a norm that estimates the

magnitude of g itself, (i.e., it measures the difference between g and zero,) and search for a g* that minimizes

that norm. But the "classical" techniques of approximation theory are no longer applicable, so we must

develop other techniques.
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Choosing an Error Function

'P '11,0 I );, .), )~or ,1imye fitling is as follows: First, choose a method of estimating the "error" of a

point with rCspect to aln) gicii second-ordcr curve: second, choose a method of calculating an aggregatc error

from all the individual errors; third, systematically search for the ellipse that minimizes the aggregate error.

The choice of an error measure and an aggregating rule affects not only the solution, but also the

computational effort needed to obtain the solution.

It should be noted that any five arbitrary points on the plane are sufficient to specify a second-order curve.

As long as no three of the five points are coplanar, there exists a unique second-order curve that passes exactly

through each of the five points. An algebraic procedure exists for finding this curve [Bolles]. . More

sophisticated methods become necessary only when there are more than five data points to be fit.

If all the data points lie on, or very close to, a mathematically perfect curve, then almost any method for

fitting ellipse-s will give acceptable results. In practice, problems usually arise when thr a become noisy

and dispersed. Very eccentric ellipses are harder to fit than nearly circular ones. Cases re only a portion

of the complete curve is represented by data points generally create problems: th complete the

perimeter the greater the difficulty of estimating the curve to represent it.

For the rest of this discussion, we will consider only a Euclidean norm. In other words, we are restricting

our attention to least-squares methods. This reflects a desire to let the solution represent an "average" of all

the data, rather than being influenced primarily by the outlying points, as would be the case if we used a

uniform norm.

Using the General Quadratic Form

One possible choice of an error function is the general quadratic form of a second-order curve as given in

Equation 9. We must avoid the trivial solutior A = B = C = D = F = F = 0. so we arbttrarily assign

F = 1. This gives

G(x.y) = Ax' + Bxy'+ C)' + Dx + Ey + I = 0. (10)

Given a data point (x,y'1), we let the pointwise error , be given by

l= G(xiyi) = .4 B 2 .. + -+ -D xi + Ev + 1.

The aggregate error is given by

Obtaining the partial derivati% cs of Equation 11 with respect to A. R. C. D. and F., and setting these to iero.
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we obtain tie fblloing s.stem of equations:

A x4 + x3 +C x2Y2 + D Ex3 + E Ex 2 ' + Ex2 = 0
A Zx 3y + 1 -xy + C Zxy 3 + D Zx 2 , + F Exy2 + Ixy = 0
, + , lIVy3 + C 2) + D fx)y + E 7y3 + 2)& =0 (12)
A Zx 3 + B jx2v + C Xxy2 + D yx 2 + E Xxv + Ex = 0
A Ix) , + B Exy- + C XV, +D .Xy + E" zy + 1;y = 0

The solution to these equations represents the the ellipse that minimizes the error function given in Equation

1F1.

Figure 5: Fit Obtained by Minimizing Equation 11

Figure 6: Fit Obtained by Minimizing FEquation 11

Figure 5 shows a set of computer-generated data points and the curve generated by this method to fit it.



10

The method appears to work adcquately in this c But Figure 6 shows another case, where the minimizing

-11oise clearly misses the data points near dth origin of cooidinates. What we are seeing is the result of a poor

choice of error function. When we went from the ellipse representation of Equation 9 to that of Equation 10

by fixing F to be 1, we allowed the representation to become degenerate- we lost the ability to represent an

ellipse that passes through the origin. An ellipse as represented by Equation 10 that passes close to the origin

must have large coefficients A, B, C, D, and E; hence the error measure Z of Equation it will be large.

Therefore, minimizing _Z implies keeping the curve away from the origin.

A requirement of a useful curve fitting method is that it should be independent of scaling, translation, or

rotation of the data points. That is. the choice of a coordinate system should not affect the solution curve;

except, of course, that the solution curve should be scaled, moved, or rotated along with the data points.

The Average Gradient Constraint
Ideally, the error function we choose to minimize should be related to the distance from a point to the

curve. Suppose we were to choose some primitive error measure such as the G(x.y) given in Equation 9. ( is

zero along the curve, and its magnitude increases when we measure G at points farther and farther from the

curve. For a point in a small neighborhood the curve. G is proportional to the perpendicular distance from

the point to the curve. The constant of proportionality is the reciprocal of the magnitude of th, gradient of G. ,,

We will choose a constraint on the coefficients of Equation 9 such that the average gradient is unity. Then

the resulting error function will be directly related to the distances from points to curves.

A shift in notation will make the following mathematics easier. Define the vectors X and V to be

X B

X= and V = C

y E

Then we may rewrite Equation 9 as

= VTX = XTV.

Using the Euclidean norm, our aggregate error is given by

= 2 = G2= NVTXX[V)= \' _(X XT) N v VT (13)

p = Z X Xr is a matrix of sums of powers of x and Y, \%hosc first five rows and columns are, in fact, the

coefficients of A., fl, C. D, and 1' in Equation 12 and t% hose last column provides the constant terms.
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The magnitude of die gradient of G, 17 (1 may be determined from the partial derivatives of G with respect

to x and y.
aG vTaX VTX

ax ax
aG vTaX Tx

ay ay

where
2x 0

X= 0 X Y 2y
X [1 0 L

0 1
0 0

aG (aG)2 VT(XxXT + X X T>V
ax ay

2 (V G)2 = V T (X XXT+ XXYT) V

= VTQV

Q = X X (X xT + XyXyT) is another matrix summed from powers of x and y. The mean-square gradient of G

measured at all data points f (xiyi), i = 1 ,...,n } is 7 (V G)2 / n. Requiring this "average gradient magnitude"

to be unity is equivalent to specifying

VTQV = n. (14)

We wish to find the vector V that minimizes the matrix product VT P V, under the constraint that vT Q V
= n. It is well known [Courant] that at the constrained minimum there exists some LaGrange multiplier, X,

such that

PV = XQV (15)

This equation would be easy to solve by normal eigenvalue methods were it not for the fact that Q is a

singular matrix, and P is nearly singular. (It seems that the closer the data points approximate a conic section,

the closer P approaches singularity.) The appendix gives a method for solving Equation 15 that yields five

eigenvalues { il i= L1 ....5} corresponding to five cigenvectors {V, i= 1.5}.

To determine the aggregate error, Equation 13, we may use Equations 15 and 14 to produce the result

= VT p V = A VT Q V n.

IL -
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Then \& know that the coeflicients of the quadratic function gi ing the minimum aggregate error unuer the

given c, n,trraint ire gixen by the eigenvector corresponding to the smallest eigenvalue.

Solutions to the curve fitting problem are invariant with translation, rotation. and scaling of te input datri

A proof of this is presented in Appendix B.

(+

Figure 7: Curve Fitting with Average Gradient Constraint

Figure 7 show the same data points that were used for Figure 6 fit using the "cigenvalue" method

described above. Comparing figures 6 and 7. shows that the new method gives superior'rcsults.

Some Difficulties

The problem of curve fitting gets worse when the points to be fit represent only part of an ellipse. Noise

and digitization error accentuate the problem.

Figures 8 through 10 show increasingly difficult cases. The data points for Figure 8 are a subset of those

used to generate Figures 6 and 7. There is a noticeable flattening of the solution curve, but not so much that

if we had no knowledge of how the points were generated we would say the fit was "wrong." The misfit in

Figure 9 is more apparent. The same ideal ellipse as before was used to generate the points, but a "fattening"

of the data points has been simulated. Figure 10 represents an extreme case. Thc data points were not

generated theoretically, but are from an actual light-stripe experiment [Agin 72).

What ', e are seeing is a systematic tendency for the olutions to flatten, becoiming clon aed ellipses

parallel to the gcncral linear trend of the data points. eh tendency arises fronm the fact that. ill other things

'- .... ... ' .. ... ... .... ... ; III I 1 ...
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Figure 8: Curve Fit to a Short Segment

+

++

J++++++

Figure 9: Curve Fit to a Short, Fattened Scgmntbeing equal, the error of a scatter of points about a curve Ci(x,)) = 0 depends on the second derivative of theerror funcetion G. hat is, a function whc-se gradient varies rapidly tends to "fit" better, in a normalized least-squares sense, than a function with a constant gradient. Flattened ellipses and hyperbolas are characterizedby a high second derivative of their defining function. 'Me curve fitting solution chooses these squashed
curves over the more intuitive curves we would prefer.

The problem is not limited to fitting with the average gradient constraint. Lyle Smith [Smithl noted diesame phenomenon using the general quadratic form, i.e., minimizing Equation 11.

+44
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+++

+ +

4..

++

Figure 10: Curve Fit to a Gently-Curving Segment

It is tempting to try some method that would keep the general idea of constraining the average gradient, for

example by computing that average over the entire curve instead of o'er all the data points. This would

amount to a constraint on the coefficients A through Fof Fquaton 9 independent of tie data points. A little

thought v\'ill show that this approach will not work at all. The RIMS error can be made arbitrarily small by

choosing a very large and very elongated Alipse with a gradient magnitude near unity along most of its length,

but a vanishingly small gradient magnitude in the vicinity of the data points.

'I
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Curve Fitting by Hill Climbing

111e best measure of the goodness of fit ofa point or set of points to a given nathematicAl cur'e G(A.)) = 0

is providcd by measuring the perpendicular distance from each point to the curve. A reasonable

approximation to that distance may be had by dividing the error function G(xiy) by the magnitude of the

gradient of G measured at (xy). With such a definition, aggregate error .: is givcn by
G(x2y)

IV G(x,y)i

VT X XT V (16)

Vr ( XXX +X V
where V. X, XX, and X are the same as in the previous section.

The point-by-point division makes it impossible to move the summation sign inside the matrix product as

we did in the previous section. Minimizing Equation 16 will require a hill-climbing approach. We must

postulate a coefficient vector V. use it to evaluate ,Z, then choose another V to see whether or not it improves

the error Z, etc.

Even though there are six elements in the vector V, there are really only five independent parameters

necessary to specify an ellipse. The hill climbing algorithm will manipulate these five. We are free to specify

these parameters in any way we choose. We only require that it be possible to derive V uniquely from these

parameters. For example, we could choose to optimize over a, e, 8, h, and k given in Equation 6. A

somewhat better approach is to represent the ellipse in the form

a (x- h)2 +/ P(x- h)(y- k) + y (y- k)2 = 1 (17)

and optimize over a, P3, -y, h and k. This formulation avoids degeneracy in 6 (orientation) when the ellipse is

nearly circular.

Hill-climbing must start with some initial guess as to the approximating ellipse. The easiest way to do this

is to choose three data points, preferably at both ends and near the middle, and calculate the circle that passes

through these three points. Hill-climbing tends to preserve the form of the initial guess. If the initial guess

represents an ellipse, the method will not converge to a hyperbolic solution. A roughly circular ellipse will not

be transformed to a drastically elongated one.

The minimization problem is rather ill-conditioned. Care must be exercised to use the correct numerical

technique, or the results will be poor. We have tried several methods. It turns out that the method of steepest

descent with accelerated convergence is totally unacceptable. It may take many minutes of computer time for

the method to converge, if at atl. Evaluation of the gradient of - does not appear to help appreciably. The

only method that gives acceptable results requires evaluating the matrix of second partial derivatives of ,.
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then finding the eigcn vectors of that matrix. The complete method is givcn in Appcndix C.

Wc ,jiall not attempt to prove formally that results obtained from hill climbing on the expression gticn by

Equation 16 aic independent of position, orientation, and scale. Instead ws shall ,1ppeal to' an n, itive

understanding of an error function and its gradient. The error finction should not he affected by changes of

coordinates, nor should its gradient. A change of scale will affect the error function and its gradient, but

should multiply them by the same constant value everywhere. Hence, a local minimum will stay a local

minimum under translation, rotation, and scaling. Dcpending on the particular hill-climbing method used,

there may be some dependence of convergence properties on scaling and rotation.

Figure 11: Hill-Climbing Curve Fit

.

FiguIre 12: Hifl-Clinbing Curve Fit---- i :-'11 1 i II II . ........ " ...+
* 4.
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Figure 13: Hill-Climbing Curve Fit

Figures 11 through 13 show the data points of" Figures 8 through 10 fitted by hill climbing witha an initial

circular estimate. Figure 11 is approximately equivalent to Figure 8. Figure 12 shows a more noticeable

improvement with respect to Figure 9. While the result doesn't come near the ellipse from which the data

+r

points were generated (cf. Figure 7), the fit at the lower end of the data points is more "intuitive." In die case

of Figure 13, the improvement is dramatic.

i.i



Applying the Gradient Constraint to Straight Lines
Thc~~ ii ' ression From the mfainl topic of rating second-order curves. A new

tbiulation ofstraight-hIu hItLin-, is obtaincd whcn we apply the mcthods de%,cloped here to die linear case.

A straight line is defined by the equation

G(.x,y) = A x + By + C =0. (18)

We define

x = [ an V 8
so that we inay rewrite Equation 18 as

rF(x,y) = VT X~ = XT V = 0.

We seek to minimize the error function

I ti2 = I C2 =VT p V

where

P=XXT~ E m
Zx Xy

The magnitude of the gradient of G is constant for all x and y, and is equal to the square root of A2 + B2.

(V G)2 = I'T[ 0 10 JV = V.T Q V

If the gradient is constrained to unity, then the error function GQxj) will be precisely equal to the

perpendicular distance from (xy) to the line G =0.

Just as in the second-order case, the vector V that minimizes _T subject to the given constraint must be a

solution to the cigenvalue equation

P V = X Q V.

Some algebra yields the pair of solutions

BA __ __ r -s 19
C =S' [ Jr = V + X)2 x s~x - (r- X),)/? I 9

1 120
VlI)+s J 2)
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where
r = Zx2  (Xx) 2 /n
s = Zxv - Zx Zy/n
= Zy - (Y2) 2 /n

A -L=(r+t- (r-t)2+4s2).
2

The two forms are mathematically equivalent unless s=0, in which case one form or the other will involve a

division by zero. For this reason, Fquation 19 is to be preferred whenever r is greater than i, and Equation 20

when the reverse is true. Once A and B have been computed using either form, C may be easily computed as

-(AZx + B.y)/n. The mean-square error of the fit is equal to X/n.

4t ++

/+/

+

+t+

Figure 14: Straight Line Fit Minimizing Vertical Distances

Figures 14 and 15 show a startling comparison between the traditional method of fitting straight lines and

the method presented above. The data points show a wide scatter about a nearly-vertical line. The line in

Figure 14 was fit using the traditional linear regression formulas, where a line is represented by de equation

y = Mx + B

and Y and B are calculated as
N Zxy - Xx My

N = Yx - ( Xx

B=x Zy - 'x Zxy
N x2 -(Zx) 2

The straight line of Figure 15 was based on the line representation of Equation 18 and the solution of

Equaton 19.

Li...
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Figure 15: Straight Line Fit Minimizing Perpendicular Distances

A failure of a "tried and true" method deserves some analysis and discussion. In this case. the failure is

traceable to the assumption that x is the independent variable, that v depends on x. But when the trend of the

data is nearly vertical, it may be that x is more a function of y. A xertical line is degeneratc using the

regression formulas. If it makes sense for a collection of points on the plane to approximate a vertical line,

then we should not use linear regression.

I have not seen this formulation published anywhere else. I would appreciate anyone who has seen this

result published elsewhere letting me know.

Conclusions
Three methods for fitting second-order curves to sets of data points on the plane have been presented and

analyzed. These methods arc distinguished principally by the way they measure the amount of misfit between

a given curve and a given set of points. The three measures are:

1. the quadratic form. with the constant term set equal to I (Equation 11),

2. the quadratic form (Equation 13) subject to the average gradient value being held to I (Equation
14),

3. the quadratic form divided by the gradient magnitude at each point (Fuation 16).

As may be expected. the three measures lead to different results when minimized. The first measure has

been shown to he sensitive tc translation in the plane. and to give grossly incorrect results under certain

conditions. The second meaisure has been formally shown to be insensiti\e to translation. rotation, and
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scaling. and reasons have been giken why the third measure ought to be the same. The third measure has

been shown to give somewhat better results than the second, particularly in difficult cases with small angular

arcs and widely scattered data points.

The three measures also lead to very different compuLttional procedures for their minimization.

Minimizing measures 1 and 2 both require summing products of x and y up to the 4th power: in this

summation they are O(n), where u is the number of data points. But for fewer than 100 data points, the major

use of computation time is in solution of the simultaneous linear equations (for measure 1), or the eigenvalue

solution (for measure 2). On a Digital Equipment Corporation 2060 computer, generation of Figures such as

6 and 7 typically require about 50 milliseconds.

On the other hand, measure 3 is very expensive computationally. Computation time is a direct function not

only of the number of data points, but also of the initial solution estimate and the accuracy required.

Generation of Figures 11 and 12 required 24 and 42 seconds respectively. Hence hill climbing is to be

recommended only when all other methods prove inadequate.
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Appendix A: Solution of the Generalized Eigenvalue Equation

\V .' o solvc the generai/ed eigcn'aluc equation

PV XQV,

given that Q is singular and P may be close to singular. The following method was derived by Richard

Underwood.

We know that the last row and the last column of matrix Q are zero. Q may be represented by the

partitioned matrix

Q = 
.-I_

0 1 0

We may usually expect the 5x5 matrix Q* to be positive definite. We may use a Cholesky decomposition

[Forsythe and Moler] to factor Q* into a lower diagonal matrix L* and its transpose LT, so that

Q* = L* L*T

If we let L represent the augmented matrix

L 4-]
then we have the result

I 1 0
L-' QI',T = - -

0 1 0

where I denotes the five-by-five unit matrix and L"T is the transpose of L*'.

The original generalized eigenvalue equation. Equation 15, may be transformed into

L-U P LT LT = L-1 Q L'T LTXV.

Applying the substitution

C = UL'pT 
[, U

UT ofa

and lctting Y be the partitioned column vector

Y = ,TY V -;
yields the representation

=btmo fhc hc .21)
U T  a a 0 I V0

Ilhe bottom row of this result represents the scalar equation
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U1,Z + a ;V= 0.

'his may be solhed (o ive

W = - . (22)

The top five rows of Equation 21 represent the vector equation

C'Z + U W= XZ

into which we may substitute our result for W Equation 22, to yield

(C- IUUT)Z =XZ. (23)
a

Equation 23 may be solved by usual eigenvalue methods, such as the Q-R algorithm [Isaacsonr. Given a

particular solution Zi, the corresponding V. is given by

V. = LT-Z']

where W is given by Equation 22.

Appendix B: Rotational, Translational, and Scaling Invariance
The rotational, translational, and scaling invariance of the method may be shown as follows: Let there be a

coordinate system (uv) related to (x,),) by the transformations

u = ax + by + c (24)
v = dx + ey + f.

We may define a vector U analogous to X such that

u2 a2  2ab b2  2ac 2be c2  2

7 ad ae+be be af+cd bf+ce C xy
U = v2 HX d 2de e2  2df 2ef X Y'

u 0 0 0 a b c X
v 0 0 0 d e f y
1 0 0 0 0 0 1 1J

Just as a vector V defines an error function G(xy) = VT X, a vector V 'can define an error function G' = V Tr

U. Equating the two error functions (for all X) yields the relationship

V = HTrV.

Now, suppose that for some collection of data points {Xi, i= 1....n} V minimizes the aggregate error given

by Equation 13. We have shown that V satisfies Equation 15, and that the corresponding eigenvalue X is the

smallest of all eigenvalues that satisfy the equation.

Rewriting Equation 15 and performing some algebra gives
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P1V = XQ V

7-(X X") N- =\Z(XX XX V X YXY ) V

Z (X X[" HT V , ) = x 2:(X~ XK "ilN + X~ X T [ 1 , V

Y-(H X XFT V-) = X Z(l XXjlX' HT N + 11 X XYT,

where Uand U Ydenote the partial derivatives of U with respect to x and y,, respectively. If the

transfor mation of Equation 24 is an ortiwnionnal transformation, that is, if

and

ad + be =0,

then it may be shown that

U XU XT +U YU YT =(a' + b2 U U T + U U T).

Substituting this result in tie above,

Z (U UT) V,=(a- +b2)X (UU UUT + U UVT) V

yields the resu!t we seek: any solution to Equation 15 in one coordinate systeml is also a solution in any

orthonormnally related coordinate System. Since the eigenvalues are proportional, the smiallesi eigcnvalues in

the two coordinate systems correspond.

Appendix C: Hill Climbing Method
Hill climbing refers to a class of numerical methods that minimize a function G(U). where U may be a n-

dimensional vecta)r. For our purposes, we may assume the existence of a subroutine MINI that minimizes Gr

along a straight line. It accepts an initial estimate Uand an increment AU, finds a value of k that locally
miniize G(U + AU) an updtes12~to the new minimizing value. Different hill-climbing strategies

consist of different means of selecting a scqulcnce of AU vectors. -[he Sequence terminates whi-en no further

impro% ement in G can be obtained.

A method that requires no knowledge about the fuinction G is to search sequentially along the n dimensions

of U, i.e.. to apply the sequence

This is one Form of the metchod of steepest descent. IFor some functions this methoid will suffice. But if the

fOnction G(is Ill-conditioned, that is ifthde e.lements 01 12 intLeract to a retdeg2ree inl their in fluence onl (W(1).
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or if the equipotentials of G tend to form squashed ellipsoids, then this simple ipproach will converge very

sh".W:. Figure 16 shows a h.pohcticaI sequence of iterations in minimizing a function of two ,ariables.

Figure 16: Iterations in Method of Steepest Descent

Convergence can be enhanced by keeping t'ack of the cumulative change in U as the minimization

proceeds. After n* minimizations along the n coordinate directions of U, an additional minimization step can

be attempted along the direction indicated by the sum of the individual k. AU., terms measured in the

preceding n calls to MINI. This is called the method ofsteepest descent with accelerated convergence.

Some improvement in performance can be obtained if it is possible to evaluate the gradient of G. that is,

the n partial derivatives of G with respect to the elements of U. At each minimization step let AU point in the

direction of the gradient. Use of the gradient can give a computational advantage in reducing the number of

calls to MIsi, but it is doubtful whether this technique affects overall convergence properties.

The situation illustrated in Figure 16 can be completely avoided if the second partials of G are available. In

the neighborhood of U0, (U) may be approximated by the expression

) = Go + Dr (U - U0d + (U - U P (U - U) (25)

where D = I) (U0) is the gradient vector, or vector of first partial derivatives, and P = P (U.) is the matrix of

second partial derivatives. P is a symmetric matrix. An eigenvalue analysis of P will give n linearly

independent cigenvcctors {U,, i= 1.n} and associated eigenvalues {A,, '= 1i.. such that

P Ui = Xi Ui"

These cigenvectors point in the directions of the principal axes of the equipotential ellipsoids of C7. Function

minimization may take place in the eigenvector directions independently without cross-coupling or co-
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variance effects. Conergence will be quite rapid.

If die eigenvectors are normalized to unit magnitude. and we let U = Uo + A Ur. then Equation .

becomes

G(U) z G0 + k D T U i + XI k
2  (26)

Taking the derivative with respect to k and setting the result equal to zero. we find that tie minimum ought to
occur when k = DT Ui / ( 2 k X ). IfX is negative, as it frequently turns out to be, then the k above actually

points to a relative maximum. This result can be used to guide die minimization by subroutine MINI, to

suggest initial step size for the search, but experience shows that the use of MINI should not be bypassed.

For the case at hand, ellipses are represented by

a (x-h)2 +ft(x-h) (y-k) + y (y-k)2 = 1,
or

o ax 2 + xy + y y2 - (2ah+fk) x - (flh+ 2yk) y + ah2 + fthk + -k2 - 1 0.

Therefore let

U and V(U) =
h -2ah-flk

ah+ flhk+-yk2-1 J

and let X. X., and X. be defined as before. G(U) is given by

G(U) = '- = i = ZN

D

where

N=VT XXT V = (XTV) 2

D=VT(X XT+X X T )V=(XTV) 2 + (XTV )2 .

The first and second partial derivatives of.V and D with respect to the elements oil U are:

Fx,2
V N 2 F1y:2

-F
- Fr
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Y4 x x'3 x'2y '2  - F x" - 2x'" - V x_, "

xy 32 x x'y 3  - F. x'.'- Fy F - F .V'N = 22  X'' y," --y, _Fy" 2k~
-x '-2Fx' - F x'-' F F y'  F2+2Fa F F + PR3

F 1 "''- Fy' F '' I F +

2F x'
F.y+ F x'

7D 2 2FY
x y

4x'2  4x'/ 0 -4x'c - 2F -2x'f ]
2x'' y'2 + x, 2x'YV -2y'a-x'P-3F -y'-F -2x'-v2D 4Y 2 0xxy"42D - 2 0 2x'yj 2 - 2y/l -4y'y- 2F

-4x'a-2F -2.a-xjl--2F -2y'fl 4a 2+2 2 2 2a/f + 2,8-y

- 2x'fl -Y'p-FX-2x'y -4y'-f - 2Fy 2af3 + 21ly 2# 2 +4-r2

where
Y= x - h
y= y - k
F= a x'2 +  x'+ y' 2  .. 1
F = 2 a x'+ fly'
r= jl x,+ 2vy.

The first and second partials of 4, can be derived from the partials of N and D by use of the formulas
a N = DNn - ND o

3p D D 2

a2 N _ 2ND D, - NnDD, - NDD + N D2 + NDDDp

apaq D &
where p and q stand for any of the set {a, ,P, "y, h, and k}, and subscripting denotes taking the partial

derivative. The derivative of a sum is equal to the sum of the derivatives of the terms. Hence, the partial

derivatives of- are the sums of the partial derivatives of the individual 4i terms.
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