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ABSTRACT

An important component of any automated image analysis system is the

detection and classification of objects. In this report, we consider the

first of these problems where the specific goal is to detect anomalous

areas (e.g., man-made objects) in textured backgrounds such as trees,

grass, and fields of aerial photographs. 66r- detection algorithm relies

on a significance test which adapts itself to the changing background in

such a way that a constant false alarm rate is maintained. Furthermore,

this test has a potentially practical implementation since it can be ex-

pressed in terms of the residuals of an adaptive two-dimensional linear

predictor. The algorithm is demonstrated with both synthetic and real-

world images.
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1. INTRODUCTION

The problem of detecting small regions of an image which differ from

their surroundings is of considerable interest in areas such as optical

aerial reconnaissance, radar and infrared image analysis, and medical

diagnosis through imagery. In the application of aerial reconnaissance,

detection of such "anomalous" areas (or objects) of an image is often the

first step in image analysis systems which perform automatic classifica-

tion of man-made objects 11]. In this report, we shall address the par-

ticular problem of detecting objects in natural terrain (i.e., textured

backgrounds) such as trees, grass, and fields of aerial photographs. We

shall view an object as an area of an image with different second-order

statistical properties from the surrounding area or background. Further-

more, we assume that the object's statistics are generally unknown (it is

desired to detect broad classes of objects), but that the background sta-

tistics may be known or can be estimated.

Usually, in detection theory, the object (or signal) is added to the

background (or noise), and filtering procedures are well-established for

increasing the signal-to-noise ratio [21. In image processing, however,

the object pixels replace the background pixels. Motivated by this obser-

vation and the assumption that the object's statistics are unknown, we

decide on the presence or absence of an object through significance test-

ing [31. In applying significance testing, we shall assume the background

is characterized by a Gaussian probability density function. If a set of

pixels falls in a critical region of this density function (i.e., low re-

gions of probability), we reject the hypothesis that the pixels form part

of the background.



To avoid estimating and inverting a large covariance matrix required

in such a test, we impose structure on the background through modeling.

As a first step toward this end, our significance test is expressed in

terms of error residuals of two-dimensional (2-D) linear prediction. More

specifically, the test, under a Gaussian assumption, first requires deter-

mining the error residuals from optimally predicting (in a least squares

sense) each pixel from a linear combination of its neighboring pixels.

The error residuals are then summed over a small area, suitably normal-

ized, and finally compared to a threshold. Since a 2-D prediction filter

is associated with our significance test, we can interpret this as repre-

senting the background by a 2-D autoregressive model [4]. The parameters

of this autoregressive model are therefore assumed known or estimatable

from the background. Furthermore, when the order of the model is fixed

and small, an approximate, but a computationally practical implementation

of the test results. It is interesting to note that the linear prediction

residual has been used in a number of detection problems such as seismic

event detection 15,61 and in detecting pitch in speech waveforms [7]. In

the context of image processing, the prediction residual has been used

successfully in, for example, segmenting textured images (4].

Since the background characteristics of an image are not stationary,

i.e., are changing with position, in order to guarantee a constant false

alarm rate (CFAR) [81 over the entire image, we must vary the threshold

within our significance test as a function of the pixel position. We

shall show that through our prediction interpretation of the test, a sim-

ple adaptive thresholding procedure arises which yields CFAR detection.

The nonstationarity of an image also implies that we must adaptively esti-
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mate the autoregressive model parameters at each pixel. The particular

procedure employed is based on the 2-D covariance method of linear predic-

tion [9] which is amenable to a recursive computation. In summary then,

through adaptive estimation and thresholding, our significance test adapts

itself to the changing background statistics to guarantee CFAR detection.

In the final pages of this report, the algorithm is successfully

demonstrated through automatically detecting small-extent objects in real

and synthetic images with varying textured backgrounds. Our real images

are extracted from aerial photographs obtained from the Rome Air Force

Development Center (RADC) data base. In these examples, we explore

different approximations to the exact significance test. In particular,

first and second quadrant prediction filters, averages of such filters,

and noncausal prediction filters are investigated.

2. SIGNIFICANCE TESTING

The problem of object detection in images is viewed as one of finding

small areas in an image whose statistical properties do not match those of

the surrounding area or background. Essentially, we wish to determine

whether a set of pixels under examination represent purely background or

whether they contain partly or all object. The area of statistics that

addresses such questions is called significance testing [3]. The basic

idea is illustrated in Figure 1. A measurement is made of some random

phenomenon characterized by probability density p(x). A critical region C

of low probability (a) is chosen corresponding to unlikely events. If

measurements fall in the critical region, we reject the hypothesis that

the measurements really belong to the density p(x). The significance

3
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Fig. 1. Probability density with critical region C.
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level of the test is determined by the probability of events (a) in the

critical region. For example, if this probability a-.05, then the signif-

icance test is said to be at the 5% level.

In our case, the probability density is that of the background. If a

set of measurements falls in the critical region, then we reject the hy-

pothesis that the pixels under consideration form a part of the back-

ground; that is, we decide that they represent (at least partly) an ob-

ject. More specifically, given an image and small region S at (n,m), let

the image points in S be denoted by (see Figure 2)

.1 'xl,x2,...,x N I

We want to decide whether the points in S correspond to a background ran

dom field with probability density p(x) (i.e., S contains just background)

or whether S contains something other than the background random field

(object possibly present). We want to do this for all (n,m).

Thus, we must determine from the background probability density func-

tion (which we assume is known or estimatable) a critical region C of

small probability (a) which is the level of significance. A critical re-

gion C can be defined by

p(x)< (2a)

so that the relation between X and the level of significance a is given by

fp(x)dx = a (2b)
R

where the region R contains only the points x which satisfy p(x)<X.

Thus, in our 'Aignificance test, if (2a) is satisfied, we decide "more than

just background"; otherwise, we decide "background only". We repeat this

for every (n,m).

Note that the level of significance equals the probability of false

5
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alarm [2], i.e., the probability that we say an object is present given

that we have pure background. Ideally, we wish to make the false-alarm

probability as small as possible while making the probability of detection

as large as possible (i.e., the probability of saying a target is present

when a target is indeed present). However, since we assume no known sta-

tistics about the target, we cannot in this problem define such a proba-

bility. Consequently, we are forced to compute the probability of de-

tection empirically.

Let us now suppose that the background corresponds to a Gaussian ran-

dom process with mean m = E[x] and covariance K-E[(xm)(Xm)T]. Then

p(x) = exp [1 (xm) TK-l (x-m))] (3)
(2w)N/

2 
1 K 1 /2  2 -

We shall assume that the background is generally nonstationary, so that

the covariance matrix K has no special structure. Nevertheless, we shall

assume for the present that this matrix is known or can be estimated.

Then, taking the logarithm of p(x)<A, from (3), our significance test

beicomes:

(x-m)T K -(x-m) > f(K,X) (4a)

with

f(K,X)=9n[(2w)NKI -2tnX (4b)

where the function f(K,X) is considered a threshold, corresponding to a

certain probability of false alarm.

In the next section, we show that this test can be expressed in terms

of the residuals of an adaptive 2-D linear predictor. The reasons for

7



this alternative formulation of the test are multi-fold. Perhaps the most

important is to avoid the requirement oO estimating and inverting a large

covariance matrix. For example, if S is of extent 4x4, then K is of

extent 16x16. We shall see that the residual error interpretation, along

with imposing an autoregressive model of the background, leads to an

approximate implementation of the test, requiring far fewer correlation

coefficients. Furthermore, the true test involves a "one-shot" approach

to the problem; i.e., a covariance matrix is estimated and used in the

thresholding operation. The prediction approach, on the other hand, takes

apart the true test into a number of components. Such a decomposition

allows for both an alternative intuitive perspective of the algorithm and

also a means of "twiddling" the various components to improve the test.

We shall also see in section 4 that this decomposition leads to a choice

of X for guaranteeing CFAR detection with a nonstationary background.

3. DETECTION BASED ON LINEAR PREDICTION RESIDUALS

We now wish to show that the significance test of the previous sec-

tion can be expressed in terms of the error residuals in optimally pre-

dicting each sample of our small region S by certain linear combinations

of samples within S. This interpretation leads to a number of useful

approximations to the true test when the image background is modeled by an

autoregressive process.

3.1 The Relationship of Significance Testing with Linear Prediction

Our connection relies on the fact that since the background covari-

ance matrix K is symmetric and positive definite it can be uniquely fac-

8



tored in terms of upper and lower triangular and diagona' matrices [10].

In particular, we have

K = LDLT (5)

where L is lower triangular with one's along its diagonal, where D is a

diagonal matrix, and where T denotes transpose. Substituting (5) into

(4), we have

(x-m) TK- (x--M) - (x-m) T(LDLT)- (x-m)

= (x-m) T (L- )D I (x-m)

e TD -1e > f(K,X) (6a)

where

e= L (x-m) (6b)

It is straightforward to show that since L is lower triangular with

unit diagonal, L- 1 has the same property and thus (6b) represents a

causal transformation of the vector x-m [10]. That is, each ek is a

function of xl-mt for M<k. Furthermore, it can be shown that this

transformation corresponds to successive orders of linear prediction where

the diagonal elements of D are the prediction error variances [10]. That

is, each row of L- 1 represents the coefficients required in optimally

predicting each element of the zero-mean vector x-im from a linear combina-

tion of its previous values. Since the covariance matrix K is that of the

background, the coefficients of L- 1 correspond to optimal prediction of

the background and not object areas. This prediction concept is illus-

trated in Figure 3 for a zero-mean process. More specifically, an element

L9
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ek of e in (6b) is given by

T X1 ml1

ek - (-[l2 
((7)

where ±k is the vector of coefficients for optimally predicting

xk-mk from the previous values of x-m. The diagonal elements of D are

2
given by ak var (ek). Note that the ek's are uncorrelated, i.e.,

they form a white process when the pixels being predicted (and doing the

prediction) are background pixels [10].

Returning now to our significance test, we have from (6a),

N 2eT-le - ek

e27 D e - 2 > f(K,X)
a k (8)

2
where ok  is the prediction error variance associated with predicting a

background value xk with its mean subtracted. Thus, the significance

test involves first forming the prediction residuals ek over S (from

2
growing predictors) and normalizing ek with the corresponding prediction

2

error variance ak These normalized residuals are summed over S and

then compared to the threshold f(K,X).

3.2 Approximations Based on Image Modeling

We saw in the previous section that samples used in prediction are

"causally" related to each xk being predicted. Furthermore, we would

11



like to say that each xk is predicted from its "past" values which fall

within S. The notion of causality is thus based on a definition of past.

For any point (no ,mo), we define the past to be the set of points

{(n,m)Insno, <mo; n<no, - em _m < } (9)

which are illustrated in Figure 4. As a matter of notation, if (nl ,m1 ) is

in the past of (n2 ,m2), we denote this by (nl,m 1 ) < (n2 ,m2 ).

n 
(no 

mo )

n

Fig. 4. Definition of past.
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Let us now suppose that each pixel of the background image is known

to be linearly related to its past. Specifically, let's suppose that the

background is generated by an autoregressive model of the form:

x(n,m) I I a(n,m;j,k) x(n-j,m-k) + o(n,m)w(n,m)

(J,k) > (0,0) (10)

where w(n,m) is white Gaussian noise with unit variance and where the

model coefficients and the variance of the driving function may vary in

space (i.e., we assume the background is nonstationary). We shall refer

to such a model as a nonstationary causal autoregressive model.

Let us further suppose that the background follows a causal autore-

gressive model of finite order. For example, suppose the background

follows a third order model of the form:

x(n,m) = a(n,m;1,0) x(n-1,m) + a(n,m;0,1) x(n,m-1)

+ a(n,m;1,1) x(n-l,m-l) + o(n,m)w(n,m) (11)

Since the a(n,m;j,k)'s and the impulse response associated with this model

have a 1St-quadrant region of support, we refer to (11) as a ISt-quad-

rant model.

Consider now using in the significance test of (8) a fixed-order pre-

dictor with the same region of support as the a(n,m;j,k)'s in (11), rather

than a growing predictor. Then, except for the L-shaped boundary

elements, illustrated in Figure 5, each element of ek in (8) equals the

prediction error from the growing predictor. That is, outside of the

boundary, the remaining coefficients under the (growing) prediction mask

of Figure 4 are zero, and thus do not effect the prediction. Note that

with the fixed-order predictor, elements outside of our region S will now

be used to predict the boundary elements.

13
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Fig. 5. Representation of a first-quadrant space-varying fixed-order
predictor.
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More generally, the background random field can be well represented

by a causal autoregressive model of arbitrarily large, but finite order

111). Consequently, these exists generally a larger boundary region

(i.e., larger than that of Figure 5) where the fixed-order prediction

error deviates from that of the prediction error corresponding to the

growing predictor of the true significance test. It is important to ob-

serve that with a fixed-order predictor, the number of required correla-

tion coefficients now depends on the order of the fixed predictor and

not on the size of S, as in the true significance test. We shall return

to this issue in section 4.

Finally, an approximate significance test can be written as:

N 2 -2
1 e3,k /ak > fCK,)
k-1 (12)

2

where ek and ok are the prediction error and prediction error vari-

ance, respectively, associated with a fixed-order prediction of each ele-

ment of S. Note that although the predictor is fixed in order, it does

vary in space over S (as illustrated in Figure 5), since we have assumed

the background to be generally nonstationary.

3.3 The Question of Directionality

It is curious that although the significance test was derived with no

imposed directionality, the linear predictor which results is causal.

This apparent contradiction can be resolved by noting that the causality

of the growing predictor in (6) arises only because of our way of ordering

the samples of S.

15



For example, suppose that we order the samples in reverse order as

illustrated in Figure 6. With this ordering, the predictors become

"anti-causal". As before, we can approximate these growing predictors by

fixed-order predictors.

More generally, we can assume any ordering of the samples in S (e.g.,

diagonal, random, etc.) Oiir choice ir an approximate significance test

(using a fixed-order predictor) ultimately depends on how close the back-

ground process matches the assumed pixel relationship. Since textures in

images appear to have no directionality, some sort of noncausal prediction

mask may be most appropriate. Alternately, we may attempt to remove di-

rectionality imposed by a fixed-order causal predictor by averaging many

predictors of different directionalities as, for example, 1st, 2nd, 3rd,

and 4th-quadrant predictors.

XN

Xk

/X2 X1,

Fig. 6. "Anti-causal" prediction of xk.
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4. CONSTANT FALSE ALARM RATE DETECTION

We now consider determining X in our threshold f(K,X) for a constant

false alarm rate. That is, since the background covariance matrix K will

change as our region S sweeps over the image, we must twiddle X in accord-

ance with the changes in K so that the integral in (2) remains constant.

In this section, we derive this required functional form of X. Our result

relies on the orthogonalization of the elements of x through the matrix

decomposition (5).

Without loss of generality, we shall assume a zero-mean process.

Then from (2), (3), and (6), we have:

p(x)<X (2w)N/2 K 1/2 e[ 2 (L(l1TD3)(L-l) d (

Now, let

e - Llx (14)

so that, since CL has unit diagonals, using the method of Jacobians [12],

we have,

de - dx (15)

Thus, substituting (14) and (15) into (13), we obtain

f 1 exp [1 eTD -1e de - a

p(Le)<X (20N2K (16)

17



Furthermore, we have (since D7112 is diagonal):

f1 exp (D1/-1/2 )T (D-1/2

p(Le)< (2w)N/2 KI1/2 2 de

=f 1 exp )11/2 de

p _LD e)XC a (17)

where we have used the substitutions:

e _ D- e (18a)

d; -ID 1-1/2 de (18b)

Noting that I-D [3], we have from (18b),

f I exp e d;= a
(2w)N/2

p(LD 1/2)<X (19)

Observe that the integrand in (19) involves the orthogonal (i.e.,

white) elements e and does not depend on the statistics of x. Further-

more, considering the limits of integration in (19) we see that the bound-

ary of our (transformed) critical region is given by the equation:

p(LD/ 2 e) X

18



which, from (2) and (6), can be expressed as

[ /2 TCT / 2A11exp I (LD 4 D-L C(LD' e)

(2wr) 1/

(27)N/2KI2/2 [ (20a)

or,

1 T £n( N /2 K 1/2
-f (20b)

The transformation of x to e through D 1 /2 L- and the corresponding

boundary of integration are shown in Figure 7.

We see then from (20) and Figure 7 that to maintain a constant false

alarm rate, we must have:

In[(2r)N/2 IKI1/2 XI - constant (21a)

or

C

(2w)N/2 1Ki/2 (21b)

Substituting (21) into (6), we obtain:

T D-1
e D e > f(K,X)

- -in [(2 w)9 I KIJ -21nX

- -in 1(2wr)N IKIJ + Ln [(2w)N IKII +XnC 2

- constant (22)

19



1123442-N-01

X2 CRITICAL
REGION

TRANSFORMATION: D- /L-I[x] =

CRITICAL

AJ REGION

A A

-V/2eTe =In [(27w)N/ 2 1KI'/2 ,

CONSTANT CFAR

X = c/j KI'/2

Fig. 7, Pictorial representation of orthogonal transformation.
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Finally, then, our approximate significance test in (12) based on a fixed-

order predictor is given by

N
N 2 -2
Sek~ 10k > constant

ki1 (23)

Equation (23) lends itself to a simple intuitively pleasing interpre-

tation. Let's suppose that the background follows our assumed fixed-

order autoregressive model. Then generating ek represents an attempt to

first whiten the data. Normalization by the variance of the white resi-

dual gives equal weight to the generally nonstationary image pixels.

Finally, we perform a significance test on sets of N (equally "important")

white Gaussian samples of unit variance.

5. ADAPTIVE ESTIMATION

The significance test of the previous sections depends on knowledge

of the background statistics; i.e., we need to know or estimate the co-

efficients of the assumed space-varying autoregressive model. However, in

attempting this estimation, we encounter the uncertainty principle. That

is, to obtain a reliable estimate of a(n,m;j,k), we require stationarity

over a "sufficiently large" window size. On the other hand, we assume

statistics are generally changing everywhere in space.

To side-step this problem, we assume that the data is in fact sta-

tionary over the extent of what we shall refer to as the estimation win-

dow, we(n,m). The location of the 2-D estimation window which slides

over our data will be designated by the center index (n0 ,m0 ) as illus

21



trated in Figure 8. The model parameters associated with this window are

defined to be those at (n0 ,m0 ): a(n 0 ,m0 ;j,k).

The particular least squares estimation procedure we shall use is the

covariance method of linear prediction [9]. The prediction error associ-

ated with the estimation window at spatial coordinates (n0 ,m0 ) is the

error e(n0 ,m0 ) in predicting the value x(n0 ,m0 ) from its neighbors

weighted by a(n0 ,m0 ;j,k). Finally, the prediction error variance

a2(no,mo) is given by the average squared prediction error under the

estimation window at (n0 ,m0 ), based on the coefficients a(n0 ,m0 ;j,k).

For each pixel location (no ,m0 ), we wish to estimate the set of model

parameters a(n0 ,m0 ;k,L) which vary is space. To do this, we assume that

I -- M 12487-N
n

no  M

I

m o

M
ESTIMATION WINDOW

We (n-n o , m-mo )

Fig. 8. Representation of the estiation window.

22



x(n,m) is a 2-D random field stationary over each we(n-no ,m-mO), and

follows the model (10), but where the parameters a(n,m;j,k) and a(n,m) are

assumed constant with respect to n and m over the estimation window.

Therefore, throughout the remainder of this section, we drop the spacial

dependence and work with the model given by

x(n,m) - I I a(j,k) x (n-j,m-k) + ow(n,m)

(j ,k)>(O,0)

We shall assume that the prediction coefficients a(J ,k) fall within a

(PxQ) first-quadrant plane mask. For simplicity, we limit our derivations

to this class of prediction masks, although it is clearly applicable to

more general mask shapes, such as other quadrant masks and non-causal

masks. Our objective is to estimate from x(n,m) the model parameters

a(j,k) for j=O,...P-1 and k-O,1...Q-1, with j-k*O. Further, let's sup-

pose that we have available x(n,m) for (n,m)c [-P+nln 2 ]x[-Q+mlm 2 ] (see

Figure 9). We then define the error e(n,m) over the region I, given by

I- [n. ,n2 ]x[m , m2 , as

P-i Q-1
e(n,m) - x(n,m) - a(j,k)x(n-j,m-k) (n,m)el (25)

j=O k=O

(C ,k)*(O,O)

Our goal becomes to minimize the sum of the squared errors given by

E~0,~j-n 2  m2 2
E(no ,m0 I 2 I I e (n,m)

n~ni m-m (26)

Note that the region I over which e(n,m) is given is equivalent to the

region under we(n-nom-mo), but that in determining e(n,m), we have used

some data along the border of we(n-no ,m-mo).

23



n

(n 2 , m2 )

II

no-

I m

(-P+n1 , -Q+m 1 ) 123372

Fig. 9. Known data blocks used in 2-D least squares.

The approach we take is to tranform the 2-D problem to a I-D problem

so that a I-D least squares solution is applicable. Note, however, that

we will still have solved the 2-D least squares problem. In particular,

we wish to transform (26) into a I-D error expression. To accomplish this

transformation, we define the vectors aino,m O } and a by

24



a(0, 1) x(n 1 ,ml)a(0,2) x(n1 ,rufl)

a( O,Q) x~n1 ,m2)

a(1,0) x(nl-i-,ml)

aln0 ,m0] (PQ--i) a =(Q-1)

a(l,Q) x(nl-i-,m 2)

a(P,0) x(n2,m1 )a(P,1) x(n2,ml+1)

aCPQ)x(n
2,m2) (27)

and the matrix S by

A1

(28a)

25



where,

< PQ-I 1

[x(ni+J-O,ml-1)..x(n+J-O,mi+Q) ) ... [x(n +J-P,ml-O)..x(n +J-P,m-Q)]I

Aj, Lx(n,+j-O,ml+1-1)..xn4-j-O,m1+1+Q)] ... Ex(n1+j-P,ml+1-O)..x~n1+j-P,mJ+1-Q]

[xni+J-om 2 -1)..x(n l+j-O,m 2-Q)] ...[x(n 1+J-P,m 2-O)..x(n l+j-P,m2-Q) J
(28b)

and where we have assumed the data segment I to be of extent MxM. Note that a is

a vector consisting of the concatenation of the rows of x(n,m) over I, a[n 0 ,m0 ]

is a vector consisting of the concatenation of the rows of a(j,k) for

(J,k)r[O,P]x[O,Q] with (J,k)*(O,O), and S is a matrix which consists of the con-

catenation of rows of various subsequences of the known x(n,m) required in pre-

dicting each value of x(n,m) over I.

Therefore, we can write (26) as:

n2 m2

Ejn 0 ,mOl - I I e 2(n,m)

- (Sa[n 0 ,m0 ] - )T(s a[n 0 ],m0 - a) (29)

We then write the solution to minimizing (29) with respect to a[n 0 ,m0] as [9]:

a[n 0 ,m0] - R-ISTO (30a)

where

R - S TS (30b)
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Note that the matrix R is of extent (PQ-1)x(PQ-1) so that computation re-

quired in its inversion is dependent on the model order.

In particular, since R is generally not Toeplitz, its inversion will

require on the order of (PQ-1) 3 operations. Thus assuming P,Q<<M, the

bulk of the computation is embedded within forming R=STS which requires

on the order of M4 operations.

This estimation is then carried out at each pixel. An alternative to

this direct estimation is to accomplish the estimation recursively [13].

However, this appears to be a viable alternative only when the estimation

window size is less than the model order [141; i.e., the matrix required

to be inverted at each pixel is on the order of MxM. We are currently in-

vestigating methods to reduce this computation.

In either case, we obtain a parameter set at each pixel which repre-

sents an estimate of the model parameters of the changing background, re-

quired in our prediction procedure. Finally, it is straightforward to

show from (29) and (30) that the estimate of the prediction error variance

given by the average squared prediction error under each estimation window

can be expressed by

a2(n 0 , m0 ) = (OTO -aln 0 m0 ] T(STS)an 0 , mo))N -2  (31)

5. IMPLEMENTATION OF THE DETECTION ALGJRITHM

We are now ready to merge the results of the previous sections to

form an implementation of our target detection algorithm. From our coef-

ficient estimates (30), we compute the prediction error function e2(n,m)
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based on a fixed-order, but space-varying prediction model, Then with

o2 (nm) in (31), we can write a 2-D version of the approximate signifi-

cance test of (23), as:

S2(k,)/0 (k,l) > constant (32)

where we can think of the indices k and I as running over different re-

gions S which sweep over the images.

Equivalently, we can consider generating the statistic in (32) at

each spatial location (n,m) of an image by convolving an LxL-N - point

smoothing window, ws(n,m) (which falls over our region S) with the nor-

malized prediction error to create a new smoothed function Es(n,m):

E (nm) - q(nm)**w (nm) (33a)

where

q(n,m) - e2 (n,m)/o2(n,m) (33b)

In the estimation of the model parameters, the estimation window

we(n,m) should be small enough to preserve approximate stationary, but

large enough to obtain a reliable estimate of the required correlation co-

efficients. The estimation window must also be large enough so that

anomalies (i.e, objects) do not badly corrupt the correlation estimates.

The smoothing window should be small enough so that small-extent ob-

jects are not overwhelmed by background in the significance test. How-

ever, it may also need be large enough so boundary effects in our finite-

order model assumption do not play a significant role.
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The overall detection algorithm based on the approximate significance

test is illustrated in Figure 10. The first operation subtracts an esti-

mate of the local mean of x(nm) which is computed by averaging x(n,m)

under we(n,m). (Recall that our significance test requires a zero-mean

random field.) Under the estimation window, a local covariance matrix R

as defined in (30b) is computed. R is then used to find the coefficient

vector a[n,m and the prediction error variance 02(n,m) in (30) and

(31), respectively, which are required to compute the normalized predic-

tion error, q(n,m). Finally, q(n,m) is convolved with the smoothing win-

dow ws(n,m) and compared to a threshold.
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7. EXAMPLES

In this nection, we present a number of examples based on the detec-

tion algorithm developed in the previous sections. Throughout this sec-

tion, we have choosen the estimation window we (n,m) to be of size lOxlO

pixels which we assume is "sufficiently" larger than the size of most ob-

jects. This assumption can be justified through our empirical observation

that in most cases the coefficient change function (CCF) [14] of our

processed images is relatively flat; i.e., the objects' presence appears

to not adversely affect estimation of background statistics. We also

assume a 1Oxl0 window is large enough to obtain a good estimate of the

correlation coefficients required in estimating a[n,m] and o2 (n,m), but

also small enough to maintain approximate stationarity. Of course, how-

ever, this assumption breaks down at region boundaries.

In our first examples, we consider computer generated 1-D and 2-D

signals determined by exciting all-pole filters with white noise. We then

analyze progressively more complicated real images which we have obtained

from the Rome Air Force Development Center (RADC) data base.
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EXAMPLE 1:

Consider a sequence x(n) of the form:

x(n) - 0.95 x(n - 1) + w(n) (34)

where w(n) is zero-mean white noise. A sample function of x(n) is shown

in Figure l1.a and a 1-point "object" at n - 64 is shown in Figure l1.b.

The (single) coefficient estimate was based on a 16-point estimation

-2
window. Figure 11.c shows the squared prediction error ek . The object

is clearly detected.

Consider a second sequence depicted in Figure 12.a of the form in

(34) created with a different white-noise input. A four-point object has

been implanted at locations n - 90, 91, 92 and 93. As before the (single)

coefficient estimate was based on a 16-point estimation window. The

squared prediction error, illustrated In Figure 12.b, gives a clear indi-

cation of the object.
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Fig. 11. Detection of 1-point object in Example 1: (a) 1-D random
sequence; (b) random sequence with object; (0t squared prediction
error.
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Fig. 12. Detection of 4-point object in Example 1: (a) 1-D random

sequence with object; (b) squared prediction error.
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EXAMPLE 2:

Figure 13.a depicts a 1-D slice of an aerial photograph consisting of

a grove of trees. In Figure 13.b, we have implanted a one-point object at

n = 64. In this experiment, a six-parameter non-causal model was assumed:

3
x(n) I a(k)x(n-k) + w(n) (35)

k - -3
k 0

where w(n) is white noise. The estimation window was choosen at ten

points in duration. The squared prediction error, shown in Figure 13.c,

clearly picks out the object. For reference, Figure 13.d depicts the

squared prediction error without the one-point object. A second object

and its corresponding squared prediction error are shown in Figures 14.a

and 14.b, respectively. The estimation window is sixteen points in dura-

tion and a two-point noncausal model is assumed.
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Fig. 13. Detection of 1-point object in Example 2: (a) slice of
trees; (b) slice of trees with object; (c) squared prediction
error with object; (d) squared prediction error without object.
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Fig. 14. Detection of 4-point object in Example 2: (a) slice oftrees with object; (b) squared prediction error.
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EXAMPLE 3:

Consider a 2-D sequence generated by the particular 2-D difference

equation of the form:

x(nm) - a(0,1)x(n-O,m-l)+a(l,O)x(n-l,a-O)

+a(1,1)x(n-1,m-1)+w(n,m) (36)

The background sequence (64x64 pixels in extent) was generated with co-

efficients a(0,1)-0.1, a(1,0)--0.9 and a(l,l)-0.1. Four objects were im-

planted within the image, all of a constant level, but with a variance

about equal to that of the background. Moreover, the size and level of

the anomalies were choosen to be visually difficult to detect from the

background (see Figure 15.a). The model assumed in the estimation proce-

dure is given by the generating process (36).

-2
The 3-D perspective of the squared prediction error e (n,m) is

given in Figure 16. All four objects are clearly detected and even the

two closely spaced objects are resolved. This same function, along

with the smoothed e2 (n,m) (a 3x3 smoothing window, ws(n,m), was applied

in this example) are illustrated in Figures 15.b and 15.c after thres-

holding. In Figure 15.d is shown the prediction error variance and in

Figures 15.e and 15.f the smoothed normalized prediction error - both

appropriately thresholded.

Note that two different thresholds are applied to the smoothed nor-

malized prediction error. The first resolves three of the four objects --

the second resolves all four objects, but introduces false alarms. This

is due to the inaccuracies of the estimate of the prediction error vari-

ance which is illustrated in Figure 15.d. Ideally, since the background
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is stationary, the estimated prediction error variance should be flat.

However, as seen in Figure 15.d, the estimate actually peaks in the region

of objects - contrary to what we would hope to happen. We have encoun-

tered in this synthetic example, perhaps, what is a fundamental limitation

in measuring the background prediction error variance: the presence of

objects can (falsely) increase the background residual variance. With

apriori knowledge that the background prediction error variance is con-

stant, we were able to improve detection.
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(a) (b)

(C) (d)

(e) Mf

Fig. 15. Detection of objects in test image for Example 3.
(a) test image with four objects, (b prediction error,
(c) smoothed prediction error, (d prediction error variance,
(e) smoothed normalized prediction error (high threshold),
Mf smoothed normalized prediction error (low threshold).
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EXAMPLE 4:

Figure 17.a depicts a 64x64-pixel RADC image in which two 2x2-pixel

synthetic objects (of constant level) have been implanted. This image was

created by a 64-to-1 downsampling and smoothing of the original image.

The assumed background model is the same three-parameter model used in the

previous example in (36). Figures 17.b-17.e depict the prediction error,

prediction error variance, and smoothed normalized prediction error (a 4x4

smoother, ws(n,m), was applied), respectively. The processed part of

the image is given within the boxed area. Note that normalization of the

prediction error in this case (unlike the previous example) has helped in

bringing out the object from the more busy field background.
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Fig. 17. Detection of objects in RADC image for Example 4.
(a) image with two synthetic objects, (b) prediction error,
(c) prediction error variance, (d) smoothed normalized

prediction error (high threshold), (e) smoothed normalized

prediction error (low threshold).
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EXAMPLE 5:

Figure 18.a depicts a 64x64-pixel RADC image in which two 3x3-pixel

synthetic objects (of constant level) have been implanted. This field-

tree image was created by a 64-to-I downsampling and smoothing of the

original image. In our first attempt to detect the two synthetic objects,

the three-parameter model of (36) was assumed. Although the object in

field background was easily detected, the object in tree background was

not detected, even with normalization by the prediction error variance.

Consequently, in our second attempt at detection, we assumed a

twelve-parameter non-symmetric half-plane [11] autoregressive model. This

model is more general and thus more likely to accurately model the back-

ground [11]. Figures 18.b-18.e depict the prediction error, prediction

error variance, and smoothed normalized prediction error (a 4x4 ws(n,m)

was applied), respectively. Because of the computational intensity with a

twelve-parameter model, only the designated region was processed. Note

that normalization of the prediction error has helped significantly in

bringing out from the background the object embedded within the trees.
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(a) (b)

(C) (d)

(e)

Fig. t8. Detection of objects in kADC image for Example 5.
(a) image with two synthetic objects, (b) prediction error,
Cc) prediction error variance, Wd smoothed normalized
prediction error (high threshold), (e) smoothed normalized
prediction error (low threshold).
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EXAMPLE 6:

Consider the RADC image displayed in Figure 19.a. This image con-

sists of 128x128 pixels and was created by a 16-to-1 downsampling and

smoothing of the original image. The assumed background model is the same

three-parameter model used in example 3 in (36). Figures 19.b-19.d also

depicts the prediction error, smoothed prediction error and smoothed

normalized prediction error - suitably thresholded. As in our synthetic

example, the smoothed prediction error without normalization yields fewer

detected objects (which may or may not be considered false alarms) than

the smoothed normalized prediction error. This happens probably because

the background variance appears reasonably constant throughout the image.

The objects, however, can potentially introduce a false increase in the

local variance, as illustrated in Figure 19.e which shows the thresholded

prediction error variance.
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Fig. 19. Comparison of smoothed prediction error and smoothed
normalized prediction error for Example 6. (a) RADC image,
(b) smoothed normalized prediction error, (c) prediction error,

(d) smoothed prediction error, (e) prediction error variance.
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EXAMPLE 7:

Consider the RADC image displayed in Figure 20.a. This image con-

sists of 128x128 pixels and was created by a 16-to-I downsampling and

smoothing of the original image. As in the previous example, a three-

parameter autoregressive model is assumed. Figure 20 makes the same

comparisons among the various residuals as made in Example 6.
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(a) (b)

" 'i

(c) (d)

(e)

Fig. 20. Comparison of smoothed prediction error and smoothed
normalized prediction error of Example 7. (a) RADC image,
(b) smoothed normalized prediction error, (c) prediction error,
(d) smoothed prediction error, (e) prediction error variance.
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EXAMPLE 8:

Consider the RADC image displayed in Figure 21.a. This image con-

sists of 128x128 pixels and was created by an 64-to-I downsampling and

smoothing of the original image. In this example, we consider a first-

quadrant causal, second-quadrant causal autoregressive model, and average

of the two. This average represents an attempt to do away with direction-

ality of the approximate significance test.

Figures 21 and 22 illustrate the results with first-quadrant (three-

parameter) and second-quadrant (three-parameter) prediction masks, re-

spectively. Figure 23 summarizes our results by depicting the smoothed

normalized prediction errors and their average. Note that the individual

smoothed normalized prediction errors do well in detecting most objects,

while the average appears to deteriorate the performance.

Two additional experiments that were performed with this data are

shown in Figures 24 and 25. In Figure 24, we show a thresholded version

of the coefficient change function (CCF) 114] corresponding to the predic-

tor of Figure 21. The CCF bears little resemblance to our prediction

errors. Moreover, due to the large estimation window (i.e., lOxlO

pixels), this function is small everywhere - reflecting little sample-to-

sample change in the coefficient estimates. Finally, in Figure 25, we

depict the smoothed noncausal normalized prediction error. The noncausal

prediction mask is an eight-point nearest neighbor mask. The results on

this image and others (e.g., example 6) are encouraging, but appear to do

no better (and perhaps worse) than the causal prediction masks.
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(C) (d)

Fig. 21. Comparison of prediction error and smooth~ed normalized
prediction error with first-quadrant mask for Example 8. (a) RADC

image, (b) prediction error variance, (c) prediction error, (d) smoothed
normalized prediction error.
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(a) (b)

(C) (d)

Fig. 22. Comparison of prediction error and smoothed normalized
prediction error with second-quadrant mask for Example 8. (a) RADC
image, (b) prediction error variance, (c) prediction error,
(d) smoothed normalized prediction error.
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(a) (b)

(C) (d)

Fig. 23. Average of smoothed normalized prediction errors
for Example 8. (a) RADC image, (b) smoothed normalized
prediction error (1st quad), (c) smoothed normalized
prediction error (2nd quad), (d) average of (b) and (c).
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Fig. 24. CCF corresponding to Figure 21.

Fig. 25. Smoothed normalized noncausal prediction error for Example 8.
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EXAMPLE 9:

Consider the 64x64 pixel RADC image in Figure 26 generated by down-

sampling the original image by 16-to-i with smoothing. This image is

particularly interesting due to the presence of a radio tower in the lower

right-hand corner of the image. Note that the top of the radio tower has

been clearly detected.

It is interesting to observe that in examples 7, 8, and 9 normaliza-

tion of the prediction errors helped detection and reduced false alarms by

reducing the background variance in busy regions such as the tree and

brush areas.

6PEVIOUS PAGE69 1|SBLANK



1123389 l

(a) (b)

(C) (d)

Fig. 26. Comparison of prediction error and smoothed normalized

prediction error for Example 9. (a) RADC image, (b) prediction

error variance. (c) prediction error, (d) smoothed normalized

prediction error.
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8. COMMENTS

The examples of the previous section clearly illustrate the success

of the 2-D prediction residual in object detection. However, there remain

many unanswered questions. For example, we have not in this report imple-

mented the true significance test. The difficulties involved in estima-

ting a large covariance matrix makes this undesirable. Note also that the

true test involves a "one-shot" approach to the problem. A covariance

matrix is estimated and used in the thresholding operation. If the esti-

mate is bad -- as it may be in object regions -- we have no chance to

twiddle parameters interactively. The prediction approach, on the other

hand, has taken the true test apart into a number of components, allowing

individual twiddling of prediction parameters, normalization, etc. From

this viewpoint, it may result that the true test is not a good standard

and the approximations and their various modifications may yield better

results.

Another unresolved area involves combining various approximations

such as Ist and 2nd quadrant predictors to approach the true test. The

few preliminary experiments with such combinations have not yielded con-

sistent results. Nevertheless, there may exist some theoretical justi-

fication for combining different quadrant predictors. As we saw in sec-

tion 3.3, by simply ordering samples in our region S in different ways, we

obtain different implementations of the significance test. These imple-

me-itations involve different directionalities, e.g., 1st or 2nd-quadrant

growing prediction masks. Often the "bad" samples (i.e., samples not

yielding prediction errors of the true test) of one implementation are the

good" samples of another. Consequently, it seems reasonable that there
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exists a way to combine these different predictors to (theoretically)

approach the true significance test.

Furthermore, since the significance test can be implemented with a

(growing) predictor of any directionality, there does not exist inherent

directionality within the test. The approximations, however, impose their

own specific directionality. Recall, however, that the approximation can

be made safely only when the background has associated with it certain

directionality (e.g., Ist-quadrant or 2nd-quadrant models). Therefore,

the validity of the directionality imposed by the approximation is direct-

ly linked to the assumption that the background has some sort of direc-

tionality associated with it - perhaps, an unreasonable assumption.

In section 5, we only touched upon the estimation problem. Clearly,

we might seek better estimates of the model parameters and of background

variance which is used in normalization. An iterative technique is one

possibility. On each iteration, we might estimate background statistics

from pixels which do not include current object samples. Alternatively,

we might fill in what we think are object areas with a signal predicted

from the background. The former case raises questions about estimation

with missing data.

An interesting characteristic of this detection algorithm is that

lines and edges of regions tend to be suppressed, while anomalous areas

are enhanced. It is also at lines and region boundaries where our mod-

eling assumptions break down. A better understanding is needed of the

response of the prediction error in such areas. For example, an "optimal"

size of the region S may reduce the probability of false alarm in these

regions and increase detections in anomalous areas.
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Finally, we might consider introducing some general apriori knowledge

about the objects of interest. A procedure for introducing such knowledge

in a significance test remains to be understood. One possible approach

might involve developing a "cross" between significance and hypothesis

testing.
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