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ABSTRACT

The foundations for non-parametric probability estimation are pre-
sented for random processes in discrete time. The estimators considered
are the empirical distribution function and the amplitude histogram. It is
shown that if the process is strictly stationary and satisfies a mixing
condition, the estimators are unbiased and consistent. Expressions for the
variance and covariance of these estimators are presented and the effect of
the correlations on these quantities is discussed. This effect is demon-
strated numerically by simulations of a Gaussian process. A theorem is
established which demonstrates the monotonic relation between the variance
and the correlations for Gaussian processes. This follows from a corre-
sponding property of the bivariate Gaussian distribution.
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1. •INTRODUCTION

A common problem in many areas of science is the treatment of cor-

related data. Classical statistical methods which assume independence of

observations (and this is the great body of statistics) are generally not

applicable. This research addresses one aspect of this larger problem,

that of probability estimation with correlated data.

This problem arises in many diverse fields where models based on time

series or stochastic processes are used. In some of these areas, a non-

parametric estimate of the univariate probability is of intrinsic interest.

An area of special importance is that where the model is a stationary

Gaussian random process. This importance derives from the parametric

simplicity of Gaussian processes and from the fact that many techniques

assume or require Gaussianity for their validity. This is especially true

of many signal processing techniques. For example, Gaussianity is usually

assumed in the smoothing, prediction and signal extraction problems and is

required for the equivalence of maximum likelihood and least squares

methods of estimation. Given the current popularity of maximum entropy

methods (MEM) of spectral estimation, it is worth pointing out that such

estimates maximize the entropy only for Gaussian processes.

Thus, there is ample motivation for the characterization of proba-

bility estimation based on finite samples of random processes. Although

there has been exhaustive work in such estimation for independent variables

(see., e.g., Wegman [1972)), little has been done for random processes.

Patankar (1954) and Thrall (1965) seem to be the only authors to have

addressed this problem. The related problem of hypothesis testing for the

Gaussianity of a stochastic process has received more attention (Persson

[1974], Gasser [19751, Weiss 119781). Most of this latter work has been

motivated by the particular statistical requirements involved in the

analysis of the electroencephalogram. (See also McEwen and Anderson [19751,

Saunders 119631, Elul 119691.) Since most of these authors use test

statistics constructed from univariate distribution estimates (i.e., the

1



Kolmogorov-Smirnov or Chi-squared tests), it is surprising the foundation

for this distribution estimation has not been more thoroughly explored.

In this work, we will investigate the estimation of the univariate

distribution function based on a finite sample of a stochastic process. We

will restrict our attention to strictly stationary random processes defined

on discrete time. The estimators that will be treated are the empirical

distribution function and the amplitude histogram. We will first establish

conditions for these estimators to be unbiased and consistent. The

variance and covariance of these estimators will be presented and it is

here that the presence of correlations manifests itself most strikingly.

The effect of correlations on these variances will be investigated in more

detail for the particular case of Gaussian processes. Simulations of a

Gaussian process wil be performed to numerically demonstrate the effect of

correlations. These numerical results will then be generalized by a

theorem which shows that, for Gaussian processes, these variances are

monotonically related to the correlations.

2



2. SOME PROPERTIES OF THE ESTIMATORS

In this section, we will develop some of the statistical properties of

the estimators required by the Kolmogorov-Smirnov and Chi-squared tests.

These estimators are, respectively, the empirical distribution function and

the so-called amplitude histogram or distribution. These are closely

related. Parzen (1962a) has established these properties and pursued them

into the realm of non-parametric probability estimation for the case of

independent, identically distributed variables. Thrall (1965) has

published some of the following results for the case when correlations are

present, but also dealt primarily with independent observations.

Suppose we have n successive observations of a stationary stochastic

process X(t) defined on the integers. We can assume, by stationarity, that

the observations are for times 1,2 ..... ,n. We form the sample or empirical

distribution function, Fn (a) as follows;

n
Fn(a) ... Z I (X(i))

n a~

where I (.) is the indicator function of the set [-m ,a] defined by:

[ 1 if x <a

Ia(x) = 
0 if x>a.

It is trivial to show that stationarity implies that

E[F n(a)] - F(a)

where F(.) is the univariate distribution. It should be emphasized that

this unbiasedness holds even in the presence of correlations or

dependencies between variables.

3



Next, we wish to evaluate variances. We have:

n

Var[Fn(a)] Vart n I WO) I
1

n n a

n
" 2 " Var[la(X(i))]

n 1

n n

1j

But we also have:

Var[I (X(i))] = F(a)[l - F(a)]
a

Upon substitution, we get:

VarjF F(a)-F(a)
a n

n n

+ 2 E ECov[la(Xi))Ia(X(j))]*

n i#j

Note that this expression depends on the covariance of the random variable

Sa(X(i)), which is a binary (i.e., 0 or 1) stochastic process. If the

variibles X(1) and X(j) are independent, then the covariance vanishes and

the variance reduces to:

Var[F n(a)] = £ F(a)[I-F(a)].
n

This eAvression is easily understood because, in the case of independence,

1 (X()) is a simple Bernoulli variable with parameters p-F(a) and

q-[1-F(a)]. In the more general case, our variance is in the form of the

sum of two terms: the first is for independent variables and the second is

the correction for dependence. Because of stationarity, this can be

further simplified. Stationarity implies that for all integers h,
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CoV[I (X(t))I(X(S)) = Cov[I (X(t+h)),Ia(X(s+h))).
a a a 'a

Thus, the double sum can be transformed and we obtain the same form for the

variance as obtained by Thrall (1965):

Var[Fn(a)] = - F(a)[l-F(a)]
n n

n
+ ! (1- i)CovI1(X(O) Ia(x(i))].

n n a a

i=1

Parzen (1962b) gives the following theorem which states conditions for

F (a) to be a consistent estimator of F(a).

Theorem I (Parzen): Var[Fn(a)] converges to zero if and only if

Cov[Fn(a),Ia(X(n))] converges to zero.

This theorem supplies the conditions necessary for a stochastic

process to be ergodic for the distribution function, i.e., for the

time-averaged sample distribution function (the empirical distribution

function) to be equal to the ensemble distribution function. This

condition is similar to an a -mixing condition (see, e.g., Billingsley

[19791), which means heuristically that variables that are temporally far

apart are effectively independent.

Since we are interested in generalizing the estimation framework

developed for independent variables, the notion of a-mixing is especially

useful as a generalization of the notion of independence. We next

establish the consistency property in terms of this mixing condition.

Corollary 1.1: If the stationary stochastic process X(t) satisfies an

a -mixing condition, then Var[F (a)] converges to zero.

5



Proof: By definition of a-mixing, we have that there exists a sequence

aj such that 0 < a < 1 for all j and a. converges to zero and

- aj < P(X(O)<_a),X(j)<a) - P(X(O).a)P(X(j)a) S aj

for any real a. Thus, after a little algebra with the indices, we get:

n n

Y aj < CovLFn (a),.(Xn)) I ILE aj,
n nI 1

Now, the right and left sides are Cesaro sums of the sequence a.. If we

define Cn by

n

then it is easily shown (see, e.g., Fuller [1976]) that if a j converges

to zero, so does Cn . Thus, we have that:

CovF n(a),I (X(n))] -. 0

an6 so by Theorem 1, Var[Fn(a) ] - o.

Q.E.D.

Now let us turn to the covariance of the empirical distribution function.

Let a and b be real numbers and assume that a<b. After manipulating the

sum and using stationarity, the covariance may be written as:

6



rI

Cov(F (a),F (b)) = F(a)1-F(b)
n n n

n nZ( P(X(i)a,X()<b)-F(a)F(b)

1

+ P(X(O)<a,X(i)<b)-F(a)F(b)J

The first term is that for the case of independence and the second is the

correction for dependence. We also have the following corollary whose

proof is omitted, but is very similar to the previous proof.

Corollary 1.2: If the stationary stochastic process X(t) satisfies a -mix-

ing, then Cov(Fn(a),Fn(b)) converges to zero for anya and b.

Let us review our results. We assume that we have n successive

observations of a stationary stochastic process defined for discrete time

and this process satisfies an n-mixing condition. We have seen that the

empirical distribution function is unbiased and consistent as an estimator

of the cumul,'tive distribution function. However, the variance and

covariance depend strongly on the form of the dependence between variables.

Tho variance is a measure of the average rate of convergence (in mean

square) of the estimator F (a) to F(a). Thus, we have that the rate ofn

mean square convergence at a point depends on the form of the dependence

between variables. This perspective will be pursued in the following

section.

Let us next introduce the amplitude histogram. Define the estimator

of the amplitude histogram by:

fn (a,b) = Fn (b) - F n(a)

where it is assumed that b>a. We clearly have:

7



E[fn(a,b)] - F(b) - F(a).

The histogram estimator is usually used to construct an estimator of the

probability density by dividing it by the interval length (b-a). From the

above, we see that it is a biased estimator of the density. The difficulty

here stems from the fact that the density is the derivative of the

distribution function.

The above bias has led several authors (Parzen [1962a], Leadbetter and

Watson [19611) to use so-called kernel estimates for the density (Wegman

11972]). The problem of bias will be circumvented by considering the

: stogram as an estimator of a theoretical amplitude histogram, f(a,b),

defined by:

f(a,b) - F(b) - F(a).

The variance of this estimator is easily found from our previous

results. It is:

Var(i n(a,b) = ! [F(b)-F(a)-(F(B)-F(a))
2

n

n

+ (1 i)[P(X(O)<a,X(i)<a)-F(a) 2+P(X(O)<b,X(i)<b)
il n

-F(b) 2 -P(X(O)<a,X(i)<b)-P(X(O)<b,X(i)<a)

+ 2F(a)F(b)]]

Note that again we have a term for the independent case and another for the

correction due to dependence. The covariance of two such estimators, say

fn(a,b) and fn(c,d), may also be written down in a straightforward manner,

but we will not do so here. We immediately have the following corollary

which is a simple extension of earlier results.

8



Corollary 1.3: If the stationary stochastic process X(t) defined for

integer time satisfies o -mixing, then

Var(f n(a,b)) - 0 for any a and b.

We shall end this section with a brief discussion of error limits on

the estimator F n(a). The variance of F (a) and the covariance of F (a) and

F (b) are characterized by their dependence on the first and second ordern
distributions of X(t). As noted earlier, we may consider the indicator

function as generating a binary process. From this perspective, the

variance and covariance depend on the covariance function of the binary

process Ia(X(t)). In the case of independence, these covariances vanish

and the variance of F n (a) can be estimated in a straightforward fashion

from:

Var[F (a)] 4 n(a)[l - Fn(a)].

For the case of dependence, no such simple procedure is possible. The

analogous procedure would require estimates of the second order distribu-

tion, which is a computationally formidable task, and one which requires

very large amounts of data. However, a variance estimate can be obtained

by dealing with the generated binary process I (X(t)). The covariancea

function of I (X(t)) can be estimated using standard techniques. This

method is amenable to computational streamlining by the techniques of

calculating autocovariances by the Fast Fourier Transform (FFT) algorithm

(see, e.g., Oppenheim and Schafer [19751). The covariance function of

I (X(t)) can then be substituted into the expression for the variance ofa

F n(a) to yield the desired estimate. Such an approach, although an

improvement over direct estimation of the second order distribution, would

not be practical due to the complexity and time requirements of the compu-

tations.

. . .. .. . . . . , . . .. - = __ ' 9



3. THE VARIANCE OF THE ESTIMATORS FOR GAUSSIAN PROCESSES

In this section, some properties of the variance of the estimators

F n(a) and f n(a,b) will be explored. We are motivated to treat the simplest

case. Gaussian processes are well known for their mathematical tractabil-

ity. The primary property of Gaussian processes which is important here,

indeed, it is indispensable, is the equivalence between the notions of

independent and uncorrelated.

Let X, and X 2 be random variables that possess the bivariate normal

distribution with means 0, variances a , and correlation p . Then:

a b

P(Xl<a,X2 <b) = b I exp 2 2 (x2 +y2-2 pxy)Idxdy.
-- :j -- f 2r 12_P2 2 a 2(I-p 2)

The double integral cannot be expressed in closed form, i.e., as a

function of p It can, however, be evaluated numerically and tabulated

'see, e.g., Abramowitz & Stegun [1964]). Some of these values are listed

in Table I for the cases a=b=C, a=b=0.5, and a=O, b=0.5 These were evalu-

ated numerically using a "double" 8-point Gaussian integration method, that

is, the inner integral was evaluated at the Gaussian points (determined by

the outer integral) by an 8-point formula. These values allow us to get

som4 numerical estimates for the variance and covariance of the estimator

1 .(a) in certain circumstances and so get a qualitative understanding for

ti-e effects uf correlation.
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P P(X<o,Y<O) P(X<O,Y<0.5) P(X<0.5,Y<0.5)

-.90 0.0718 0.2031 0.3893

-.80 0.1024 0.2222 0.3981

-.70 0.1266 0.2403 0.4083

-.60 0.1476 0.2572 0.4192

-.50 0.1667 0.2731 0.4305

-.40 0.1845 0.2884 0.4405

-.30 0.2015 0.3031 0.4421

-.20 0.2180 0.3175 0.4539

-.10 0.2341 0.3317 0.4659

0.0 0.2500 0.3457 0.4781

.10 0.2659 0.3598 0.4907

.20 0.2821 0.3740 0.5036

.30 0.2985 0.3884 0.5171

.40 0.3155 0.4031 0.5312

.50 0.3333 0.4183 0.5462

.60 0.3524 0.4343 0.5624

.70 0.3734 0.4512 0.5805

.80 0.3976 0.4693 0.6015

.90 0.4282 0.4884 0.6283

Table 1: Values of bivariate Gaussian probabilities with means 0, variances

1 and correlation p

11



The only case we can readily compute is the case where the Gaussian process

satisfies the equation:

X(t) 2 [a(t) + Oa(t-1)]
1+ 02

where the sequence of variables a(t) are independent, standard normal

variables (i.e., a(t) - N(0,1)). Thus, X(t) has a simple moving average

form (Box & Jenkins [19761) such that:

EIX(t)] - 0

1 if s=t

Cov[X(s),X(t)J [ 2 if Is-ti = 1

0 if Is-tJ > I

Note that the correlation or dependence is only between adjacent values.

Note also that the defining equation is normalized so that both X(t) and

a(t) have unit variance.

I; n is reasonably large, we may write the variance of Fn(a) for this

model as:

nVar[Fn(a)) - F(a)[l-F(a)) + 21P (X0_a,Xl<_a)-F(a)2 ]

which has a right hand side which is independent of n. To compare with the

case of independence, we may calculate the ratio of this variance to the

variance for the case of independent variables:

F(a)[1-F(a)] + 2 IP(X0<a,XI<a)-F(a)
2

Ru 0

F(a)[1-F(a)]

12



Table 2 exhibits values of nVar[Fn(a)] for correlations in the range

(-.5,.5). This range is used because, as is easy to show by standard

calculus techniques, the correlation, 2 , achieves a maximum of 0.5
1+ 0

( 0 1.0) and a minimum of -0.5 ( a --l.0) for the first order moving

average model. Note that Table 2 uses the values from Table 1. Finally,

to accentuate the effect, a column is included which lists the percent

change from the independent case.

Tables I and 2 exhibit some interesting properties that are the basis

for several of the following theorems. First, Table I shows that

P(X,<_a,X 2<b) is a monotonically increasing function of the correlation for

certain values of a and b. That this property holds for any a and b will

be established in Lemma 1. Similarly, Table 2 shows that nVar[F (a)],

nVar[Fn(b)] and nCov[Fn(a),Fn(b)] also seem to be monotonically increasing

functions of the correlation. This result will also be generalized in

Theorem 2.

13



a) P nVarIFn(O)) R % change

-0.5 0.08 0.32 -68

-0.4 0.12 0.48 -52

-0.3 0.15 0.60 -40

-0.2 0.19 0.76 -24

-0.1 0.22 0.88 -12

0.0 0.25 1.00 0
0.1 0.28 1.12 12

0.2 0.31 1.24 24

0.3 0.35 1.40 40

0.4 0.37 1.48 48

0.5 0.41 1.64 64

b) P nVar[Fn(.5)] R Z change

-0.5 0.12 0.55 -45
-0.4 0.14 0.65 -35
-0.3 0.15 0.66 -33

-0.2 0.16 0.77 -23
-0.1 0.19 0.89 -11

0.0 0.21 1.00 0
0.1 0.24 1.12 12
0.2 0.26 1.24 24

0.3 0.29 1.37 37
0.4 0.32 1.50 50

0.5 0.35 1.64 64

c) p nCoV[Fn(O) F (.5)] R % change

-0.5 0.009 0.02 -94
-0.4 0.04 0.26 -74
-0.3 0.07 0.45 -55
-0.2 0.10 0.63 -36

-0.1 0.13 0.84 -16
0.0 0.15 1.00 0
0.1 0.18 1.18 18
0.2 0.21 1.36 36
0.3 0.24 1.55 55
0.4 0.27 1.75 75
0.5 0.30 1.94 94

Table 2: Values of nVar[Fn(0)1. nVar[Fn(.5)] and nCov[Fn(O),F n(.5)] for

various values of correlation for a first order moving average

Gaussian process.

14



It is worth pointing out that Table 2 is constructed from a very

simple model, one which has correlations only between nearest "neighbors."

The construction of a similar table for even a simple first order autore-

gressive (i.e., Markov) process would involve extensive calculations and

numerical integration. However, Table 2 shows the essential features that

the presence of even small correlations between only adjacent times

produces large changes in the variance of F n(a) and the covariance between

F n(a) and F n(b). Thus, a correlation of only 0.1 or -0.1 will produce a

change of about 12% in the variances of F n(0) and F n(0.5) and about a 16%

change in their covariance regardless of n.

Let us now proceed to generalize these observations.

Lemma 1.1: Let R be the bivariate Gaussian cumulative distribution func-

tion evaluated at (a,b):

Ra b expl -I (x2+y2 _2 pxy)I dx dy

m -0 2,V1- P 2 2(1- p 2)

where unit variance is assumed. Then R is a monotonically increasing func-

tion of p on the interval (-1.0,1.0). Furthermore, its derivative is

given by:

dR = 1 exp[ -1 (a2 +b2-2 p ab)].

dp 2 7r-/-P 2  2(- p 2)

Proof: Define:

p = P(c<Xl<a,d<X2 <b)

ab
f f f(xl#x 2 ) dxI dx2

c

where f(.,.) is the bivariate Gaussian density with means 0, variances 1,

and correlation p . We have by definition of the characteristic function

of f(xl,x 2 ):

15



f(xlx 2) = 1 2 exp(-it'x)exp(- 1 t'Vt) dt, dt2
(-2ir )2J- 2

- -Cc

where V is the covariance matrix of the 2-vector x(xx 2 ) and t is a

2-vector, t=(tl,t 2 ). Then after substituting, we get:

a b c

( _f f 2 ep-ir)2 p-/2't dt1Id dx, dx2c _CO _O ( 27f)2

Interchanging the order of integration yields:

Scc a b

, f f ( 2 4 exp(-itlx) exp(-l/2t'Vt) dxI dx2 dt 2
-CO -o (2 r) c d

CO 0

21 )exp(-l/2t'Vt) le-itlc -e-itl ait

)J 17t)2 e , it1

-e-it 2d - elit 2b] dtldt 2
it 2

1 e- 2t'Vt [e-i(tlc+t 2d) -e-i(tlC+t 2b)
tl1t2(2 IT )2

-e-i(t 1a+t 2d) + e-i(t Ia+t 2b)1 dtI dt2

Now,

So,

t~t-t2 t 2 +2p
t'Vt-"t2

1 t 2  2Ptlt 2

Thus, taking derivatives inside the integral gives:

W ccI

dP = I e- l 2tVt [e-i ( t lc+ t2d) - e- i(t lc +t 2b )

do (2 r ) 2

Se-i(tla+t 2d) + e-i(tla+t 2b)i dt1 dt2

16



But this integral is just the algebraic sum of four bivariate normal densi-

ties, that is:

dP - f(c,,) + f(a,b) - f(c,b) - f(a,d)
dp

Now if we take limits as c -- -co and d - -w, then P - R( P ) and so:

dR - dP = f(a,b) I exp[ - 2+b2-2pab)
dp dp 21I- p 2 2(I- P 2)

Clearly, dR is greater than 0 for any p 1 (-1,1) and for any a and b.
dp

Q.E.D.

As a result of this lema, we may write the indefinite integral:

I(a,b) - J dp dp

= I 2 exp[ -12 (a2+b2-2 p ab)] dp2 7r/1- P 20I- p

If a=b-0, we get:

f(00 =27r-r/l-P 2 dp

which, upon integrating, yields Sheppard's theorem on median dichotomy

(Kendall & Stuart, Vol. 1, [19691).

We are now prepared to prove our central result.

17
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Theorem 2: Let X(t) be a stationary Gaussian process defined for integer

time with mean 0 and variance 1. Let P be the correlation between X(t)

and X(t+i). Then, Var[F n(a)] is a monotonically increasing function of p,

for Pi' e (-1,1). Furthermore, we have that:

2a Var[F (a)] ( -) 1 2 exp[ i-
aP n n n 27r.,l-p i 1 + Pi

i

Proof: We have:

Var[Fn(a)] = -IF(a) [l-F(a)] +Z ( L)[P(X(O)<aX(i)<a) F(a) 2]
nn n

1

Let theevariance (unity) and jO be maintained constant for j p i. Then:

i) Var ( ) (X0ai<aVrIF (a)] - I- _ P
p n n ap

i i

By Lemma 1 and since i<n, we have:

Var (a)) = (_ ) 1 expi -a2

Si. n n n 2/l- P 2  I+ p
1 i

This is non-negative for any a and for pi t (-1,1).

Q.E.D.

We also have a monotonicity property for the covariance between F n(a)

and F (b):

Theorem 3: Let X(t) be a stationary Gaussian process defined for integer

time with mean 0 and variance 1. Let p i be the correlation between X(t)

and X(t+i). Then Cov[F (a),F (b)] is a monotonically increasing functionn na
of P i for Pi e (-1,1). Furthermore, we hae:

18



C°v[Fn(a),Fn(b)] e(1i 1 -1 (a2  2 P ab)p n n n) 27r/1- p 2exP2(1- p2

i i i

Proof: For ease of notation, let C - Cov[Fn(a),F n(b)]. Let a<b, clearly

without loss of generality. We have, by an earlier result:

C - F(a) I1-F(b)+ n+ (1- [P(X(i)<a,X(O)<b)-F(a)F(b)J
n

1

n n

+ 1 (1- [P(X(O)<a,X(i)<b)-F(a)F(b)]n (1 n)'(():a

1

If we maintain the variance (-I) and pj constant for j # i, we get:

0- .(i ) ,.!-Kx(il<a,X(Ol<b) + 4(1- -L P (X(OI<__a,X(i)<b)
api n n dpi n- n aP

2(1- ) (X(O)<aX(i)-)b)
n -n i -

This last step follows from stationarity ( Pi= p i) and from the symmetry

of the bivariate Gaussian density. By Lemma 1, this becomes:

aC 2(1 -1 (22
___ 2 i ) 2 exp[ 2 (a2b22 P ab) ]
aP. n n 2rI-p2 2(1- p )

i i

The monotonicity now follows from Lemma 1.

Q.E.D.

It is tempting to immediately extrapolate this monotonicity property

of Var[F (a)] to Varlf (ab)]. We have:
n n

Varlf (a,b) ]  Var[F (a)] + Var[Fn(b)] - 2Cov[F (a),F (b)]
nl n n 'n
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After substituting the results of the previous two theorems, we get:

2 2

aVar[f (a,b)] --(1- i) [exp( ) exp( -b )

aP i n n 27I- p 2 1+ P I+ P

-2exp( -1 (a 2+b2_2 P iab))]
2(1- P i)

Let G be the term in brackets. Now

a2 + b2 _ 2 p ab - a2- P a2 +b2 _ pb 2+p a2+pb 2 _2 pab

- a2(1-p) + b2(l-p) + p(b-a) 2

So, G can be written as:

2 2 2 -b2  2
G = exp(-- a ) + exp( - - 2exp( -a xp(-) )ex -p(- 2

I+P I+P 2(1+ P) 2(1+P) 2(1-p")

where the subscript i has been omitted for simplicity. Now if p >0, then:

exp(-- Pib-a) 2) < 1

2(1- 
2)

So,

2 2 2 2

> exp(-a) + exp( -b - 2exp( -a )exp(------)
1+ P 1+ P 2(1+ p) 2(1+ P)

_[exp(__
2 _) - exp( -bZ 

2

2(1+P) 2(l+p)

> 0
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Thus, we have established the following corollary:

Corollary 3.1: Let X(t) be a stationary Gaussian process defined for

integer time with mean 0 and variance 1. Let P • be the correlation

between X(t) and X(t+i). Then Var[f n(a,b)] is a monotonically increasing

function of Pi for Pi [0,11.

It is worth emphasizing the difference between this corollary and the

previous theorems. The distinction lies in the range of the correlation:

Varifn(a,b)] is monotonic only for non-negative correlctions, while

Var[F (a)] is monotonic for all correlations.
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4. DISCUSSION

We have presented a framework for probability estimation from

stochastic processes that is a generalization of that from independent,

identically distributed variables. Thus, the requirement of stationarity

is an extension of that of being identically distributed. Similarly, the

requirement of a-mixing is an extension of the notion of independence;

indeed, ci-mixing implies asymptotic independence and is thus a satisfying

generalization. We have seen that, under the conditions of stationarity

and a-mixing, the empirical distribution function is an unbiased and

consistent estimator of the univariate cumulative distribution function.

The same applies to the empirical amplitude histogram as an estimator of

the theoretical amplitude histogram.

We have shown that the presence of correlations is manifested in the

variance and covariance of the estimators. Specifically, these variances

and covariances have been expressed as a sum of two terms: the first is

simply that for independent variables, while the second is the correction

due to dependence. By s simulation, we showed numerically that even small

correlations may have a pronounced effect on the variance and covariance.

A movotonicity property of the bivariate Gaussian distribution was used to

Tharacterize the effect of correlations for Gaussian processes. It was

established that the variances and covarianceb are monotonically related to

th,, corielations for Gaussian processes.

The convergence of the estimators as the sample size increases is

assurcd by the consistency property. We may regard the estimaLor variance

aF a measure of the rate of convergence in sample size. Specifically, the

variance gives the average (over the ensemble) rate of convergence in mean

zquare. Thit, the monotonicity of the variance implies a monotonicity of

the rate o, convergence. For Gaussian processes, large positive correla-

i,,ns imply slow convergence and, consequently, poor estimates compared to

the same sized samples of independent data. There is another aspect of the
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monotonicity property which should be noted. This is that the variance and

covariance of the empirical distribution function decreases as the correla-

tions become more negative. Negative correlations are beneficial in the

sense that they result in better estimates than the independent case. This

property of negative correlations is not shared by the amplitude histogram.

i.Ithough our focus has been on probability estimation, our results

have consequences for hypothesis testing with correlated data. This is

especially true for hypothesis tests of univariate Gaussianity. Weiss

(1978) has devised an empirical correction formula for the critical values

of the Kolmogorov-Smirnov test for Gaussianity when there are correlations

present. Since this test is based on a comparison of the empirical and

Gaussian distribution functions, we would expect our results to be appli-

cable. This modified Kolmogorov-Smirnov test exhibited very poor power in

Weiss' simulations of data dominated by positive correlations, i.e., poor

compared to the power of the test for independent variables. Weiss effec-

tively could not distinguish between correlated data generated by an auto-

regression from Gaussian variables from that generated from uniform vari-

ables. Our monotonicity theorems suggest a possible explanation: the

empirical distribution function of the Gaussian process cannot be deter-

mined as accurately when there are positive correlations dominating the

data. It is this inherent inaccuracy of the measurement that may be

responsible for this poor power.
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