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1. INTRODUCTION

This report examines the feasibility of developing a device for the real-time esti-
mation of motion induced disparity in image sequences. The report describes the
nature of the disparity estimation problem and suggests criteria by which methods for
estimating disparity can be evaluated. It inciudes a theoretical analysis of one class of
estimation methods 'and shows how such an analysis can lead to improved perfor-
mance. The results obtained from a variety of estimation algorithms are demonstrated
on a imited sample of dynamic imagery. Finally, suggestions are provided for continu-

ing activities in this program.

1.1. Motion Induced Disparity

Positional changes between an image sensor and objects in the environment can
be described by using the concept of optical flow. The optical flow fleld specifies the
instantaneous velocity on the image plane for every visible point on object surfaces.
Non-zero values can occur due to object and/or sensor motion. Optical flow patterns
cl:an be used to estimate the direction of observer motion, the orientation of surfaces,
the location of occlusion boundaries, and the relative distance to objects.

Since input is normally sampled at discrete moments in time, the image of a sur-
face leature can translate significantly between frames. Borrowing from the terminol-
ogy of stereo vision, we refer to this inter-frame translation as disparity. For purposes
of interpretation, disparity values must be known over a reasonably dense sampling of
{mage points. Thus, the disparity determination process must contend with the simul-
taneous tracking of a large number of points. Tracking only the most distinctive image
features will not provide a sufficiently dense sampling of points. Consequently, the pro-
cedure which selects points to track must target imperfect feature points which may
not be easily found in the subsequent frame or for which many ambiguous matches are

possible.
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The intrinsic difficulty of disparity determination is compounded by the need for
real-time computation in many applications. Processing throughput of upwards of 2
million pixels per second may be required. Real-time immplementation will be possible

only if algorithms and processor architectures are carefully matched.

1.2. Background

While the determination of disparity in most realistic environments is extremely
difficult, a number of reasonably successful systems have been demonstrated over the
past several years. Three classes of approaches have been developed: temporal-
spatial gradient analysis, matching, and differencing techniques. Each approach has
both advantages and disadvantages with respect to eflectiveness, generality, and

efliciency.

1.2.1. Temporal-spatial Gradient Analysis'

Temporal-spatial gradient analysis uses the change in intensity at an image point
over both time and space to estimate the rate of translation of the underlying surtace.
It allows a point-by-point determination of disparity based on purely local criteria
without the need to examine long sequences (1], [2]. [3]. The process can be illus-
trated with a one-dimensional example. In figure 1.1, a surface characterized by an
intensity wedge in the image is moving to the right. By measuring the slope of the
wedge and the change in intensity at zg, it is possible to determine the amount of
translation. The technique can be extended to two-dimensional translation using
several different techniques.

Temporal-spatial gradient analysis has been shown to be effective over a fairly
broad range of imagery. It is reasonably efficient and hardware implementations for
restricted forms have already been developed. Subpixel accuracy in determining the

magnitude of disparity vectors may be possible. Problems include potential difficulties
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Figure 1.1 The intensity wedge represented by the diagonal line at ¢y moves dz
along the z axis to ¢, causing a change in intensity ol a@i.

in regions which large variations in disparity exist, errors generated by brightness var:-

ations due to causes other than motien, difficulty in accurately approximating the tem-

poral and spatial gradients, and senstivity to small measurement errors in regions of
the image where the spatial gradients are nearly constant.
1.2.2. Matching

The most direct approach to the correspondence problem is matching. A set of
structures is identifled in one image frame and then an organized search for the ﬁ
corresponding structure is performed in subsequent frames. Usually, some optimiza-
tion criteria is required in order fini the "best” match for each structure. This may

depend on properties of the structures, the relationships between structures, or both.




Matching can be done at the level of small image segments [4]. [5]. derived feature
points [8], {7]. [8]. [9]. [10]. or image regions likely to correspond to full object sur-
taces [11]. The criteria functions can range from simple cross-correlation [4], (5], to
complex and sophisticated graph-matching procedures [ 12].

The most straightforward matching techniques operate directly on intensity
values. Individual, small regions are isolated in one image frame and used as tem-
plates. These regions may be located on a regular grid, but usually some attempt is
made to choose only those regions that have a high information content, and hence a
high probability of being accurately matched. For example, regions that have sharp
autocorrelation peak can be chosen [13]. Corresponding regions are then searched for
in a second frame using some form of cross correlation [13]. {14], {15]. Such methods
are computationally expensive. While some efficiencies are possible [16], much eflort
is still required to avoid false matches and to perform the matching at a dense enough
sampling of points to be useful. Another problem with direct image matching is that
the correct match for a template taken from one image may lie in a relatively dis-
torted region in another image {because of surface relief, rotation. etc.). If this effect
is to be accounted for, more degrees of freedom are introduced inte the matching pro-
cess and the computational efficiency suffers. Furthermore, the effect is more pro-
nounced for larger templates.

As an alternative, it is possible to locate features points in an image and to match
these feature points rather than the raw imagery [9], 710}, (6], 77]. {B]. Usable feature
points range from local maximum of variability to image regions resuiting from exten-
sive segmentation operations. These symbolic matching techniques have several
advantages. The amount of data to be processed can be significantly reduced. The
number of possible matches which must be considered is often much less than that
required for correlation based approaches, allowing both computational and represen-

tational efficiencies. Finally, carefully chosen feature points may minimize the effects




of luminance and geometric changes that can cause major difficulties {or template
matching systems. The major difficulty with symbolic matching is reliably determining

structures to be matched.

1.2.3. Differencing

Differencing techmques start with a point by point determination of significant
changes in image intensity. Often, this can be efliciently done by subtracting two
image frames and thresholding the result. Clusters of points with above threshold
differences correspond to portions of moving surfaces. The interiors of homogeneous
image regions will not generate a difference, however, even if the corresponding sur-
face is moving. Thus, longer sequences must be observed or more sophisticated, non-
local analysis applied in order to determine surface boundaries. Once this is done, the
rate of translation can be estimated by matching surfaces in different {rames or by
direct analysis of a sequence of diference pictures [17], [18], 1i9]. -

Differencing is a particularly efficient technique for dealing with some imags
sequences. The differencing operation itself is easily implemented. For a fixed sensor
and an environment in which only a small portion of the scene is moving. no change will
be evident over most of the image. By concentrating only on differences, significant
data reduction is possible. Important limitations include dificuities with situations in
which most or all of an image is changing over time {such as with observer motion),
problems with ocelusion boundaries between two moving objects, and imprecision in
the disparity estimates. This in turn limits the generality of the differencing approach

and it will not be discussed further in this report.

1.2.4. Interpretation
Disparity flelds provide important information about the relative spatial position

and velocity of a sensor and visible objects and surfaces. If the sensor is following a
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know trajectory through an otherwise static environment, precise three-dimensional
shape information about that environment can be obtained. lf moving objects are
present, some shape properties can still be determined even though the actual dis-
tance from sensor to object is no longer easily computable. With minimal knowledge
about object type and motion, disparity analysis still allows target cueing and object
boundary identification.

If a sensor moves with known velocity along a known path, simple trigonometric
relationships can be used to determine distance to a surtace directly from disparity
(eg. [20]. [21]). This "motion stereo” technique has been extensively studied, though as
yet no procedures exist for rapidly computing disparity values with sufficient precision
to allow accurate depth estimation over a broad range of scene types.

Many of the most important applications of disparity analysis arise in situations in
which sensor trajectory and/or velocity is not known with precision. For exampile, if a
sensor is ot rotating. the relative orientation between the sensor’'s optical axis and
direction of travel can be found by locating the focus of expansion of the disparity field.
In the same situation, the orientation of visible surfaces relative to the sensor can be
found, even though nothing is known about sensor velocity [22]'

In even less constrained situations, it is still possible to use disparity values to
locate occlusion boundaries and thus find object boundares and depth discontinuities.
Gradual changes over space in disparity correspond to continuous surfaces while
abrupt changes correspond to depth discontinuities. Additional analysis allows deter-

mination of which side of the boundary corresponds to the occluding surface.

1.3. Need For Continued Study
In order to design and construct a disparity estimation system, three aspects of
dynamic image analysis must be studied: eflectiveness, generality, and efficiency. In

addition, efforts must be made to understand the interrelationships between these pro-
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perties.

Effectiveness is a measure of the accuracy and utility of the analysis system.
Methods are required which estimate optical flow with greater precision and at a
denser sampling ol points on the image plane than is currently possible. Limits on
accuracy of interpretation processes must be studied. Mechanisms for systematically
evaluating effectiveness should be created.

The generality of existing methods is seldom discussed explicitly. In fact, all
methods presume constraints upon scene type, scene dynamics, camera model, and
image properties. As an example, some techniques work only for a fixed sensor and
moving objects while others work only for a moving sensor in an otherwise stationary
environment. A better understanding of the need for these limiting constraints is
required.

Efficiency is obviously important if dynamic image analysis is to be used in any
real-time applications. Two forms of efliciency must-be considered: throughput (the
input data rate that can be accommodated) and latency (the time between activity in
the scene and the production of a description of that activity Efliciency is not just an
issue of clever hardware design. Algorithms must be structured in a "conceptually

efficient” manner so that they easily map onto appropriate computer architectures.




2. EVALUATION

It would be most desirable to find an estimation techm’qhe which would be able to
calculate disparity at every point in the image with arbitrary precision. Unfortunately,
the ambiguity of the problem, noise in the data, and the restrictions of time and space
make it unreasonable to expect anything approaching perfect performance. Accepting
that errors are inevitable, the next problem is to find the estimation technique which
produces the best results and to judge whether or not performance is satisfactory to
accomplish a desired goal. The definitions of the best result and satisfactory perfor-
mance will depend upon the objectives of the system. For example. some navigation
tasks require that disparity be know very accurately but only at a small number of
points. Other tasks, such as segmentation, require a dense sampling of disparity vec-
tors which need be known with relatively little accuracy. Thus, the criteria which are
used to evaluate disparity estimation techniques must depend upon the task to be
accomplished. —

The performance of a technique will be affected by the environment in which it is
used. The nature of surface reflectance, the number and size of objects in the scene,
and the characteristics of the motion can all aflect the quality of the results. Sorme
techniques are designed for constrained motions and will only work only in very special
environments. Before an estimation technique can be evaluated, the environment in
which the technique will operate must be specméd.

The problem domain will determine both the task to he accomplished and the
environment in which the task will be performed. The relationship between the prob-
lem domain and performance evaluation is diagrammed in figure 2.1. Throughout this
report we will be exarnining the performance requirements demanded of disparity esti-
mation techniques by application tasks and the performance dependencies of estima-

tion techniques. .
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Problem Domain
L Environment l Task l
properties: requirements: !
indoor /outdoor accuracy l
object motions density \
camcra motions , throughput l
distance to surfaces latency :
surface sizes location J‘
| .
Image : Evaluation
properties: _J criteria:
brightness function accuracy
optical flow ficld density
occlusion edges dispersion
number of moving objects scene dependency
complexity of motion start-up and hysteresis
gracc of degradation
computational
characteristics }
Estimation Technigue

Figure 2.1 The relationship between the problem domain and evaluation of disparity
estimation techniques.

In this section we will examine the nature of the information which is available
from optical flow and identify the features of optical flow estimates which are required
to ret-ieve this information By way of example we will introduce three specific prob-

lems for which optical flow can provide important information and describe the charac-




teristics of the estimation technique which are important to each application.

Through our study of the intrinsic information content in flow fields we will infer
the important properties of flow fleld estimates which determine the capability of
interpretation methods to retrieve information about the scene. We will arrive at a set
of characteristics which describe the important aspects of performance for estimation
techniques. Bach application which is based upon optical flow will depend upon a sub-

get of these performance features.

2.1. Goal Dependency

Optical flow can provide useful information about the structure and dynamics of a
three-dimensional scene. The optical flow field is determined by the positions and posi-
tional changes of objects in the scene relative to the camera. The extent to which this
information is recoverable depends upon the constraints which can be placed upon
environment. If an accurate camera model is available_and sufficient information
about the movement of objects and the sensor is available, depth relationships may be
found by triangulation. Likewise, if there exists an accurate description of the spatial
layout of a scene, the location and motion of the carnera can be specified.

Important information about position and motion can also be obtained in less con-
strained situations. If an observer is moving through a static world both the direction
of motion and the orientation of visible surfaces are computable without knowing the
observer's speed. Even when moving objects are present, successive views of a scene
can yield information about the location and nature of occlusion boundaries. Under
relatively general viewing conditions moving targets can be located against a stationary
background, objects which lie on a collision path with the observer can be detected,
and the time to collision can be estimated.

Interpretation of optical flow to recover motion and shape information requires

that optical flow be estimated from a sequence of discrete images. The knowledge

19
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which can be gained from optical flow fleld estimates directly depends upon the perfor-
mance characteristics of the estirnator. In the next secticn we identify a set of
features which characterize the important aspects of optical flow estimation. Specific
methods are introduced to measure the performance of estimation techniques with
respect to some of the features. For other features more qualitative judgements are
suggested. Each feature is important for some interpretation task but may not be
relevant to others. The feature set, by itself, provides a descriptive tool for character-
izing the performance of disparity analysis techniques. When coupled with a problem
specification in which the requirements of the estimator are clearly delineated, the
feature measurements can be used to evaluate the appropriateness of estimation tech-
niques.

Before introducing the feature set we will consider three applications areas for
which optical flow estimation is important. This analysis will illustrate the importance

of a variety of features and the differential requirements of different problem areas.

2.1.1. Navigation

Optical flow has proven to be useful for autonomous vehicle guidance in a variety
of contexts [23,24.25]. 1f the environment is famuliar, optical flow can be used to orient
the vehicle with respect to a map of the environment. When an accurate map of the
environment is not available, optical flow can be used to create a three-dimensional
description of the area under view. This can be used to create a map. to dynamically
determine goals (eg. possible targets), or to avoid obstacles.

The location and velocity of a moving observer can be computed from the dispar-
ity of a small number of contral paints in dynamic imagery. The position of the control
points must known very accurately in the maps coordinate system. Determination of
position and velocity with this method requires prior knowledge about the topography

of the environment at selected points and the ability to identify map control points in

N
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the image.

If the three-dimensional structure of the environment is highly varied, as in an
urban environment or in ruggec terrain, then three-dimensional descriptions of the
scene can be matched with a three-dimensional model of the environment to deter-
mine the location and velocity of the sensor. Assuming that the vehicle is traveling
through a static environment, depth relations in the scene can be computed from flow
vectors. The accuracy requirements here are much less stringent than for the control
point method presented above, however, a much more dense sampling of estimates is
required. Distinctive features in the depth map, constructed from the image sequence,
can be compared with a stored representation of the environment to place the vehicle
within a model of the environment.

Even where little is known about the makeup of the environment, optical flow can
provide important information for guidance and navigation. Consider the problem of
maneuvering a land based vehicle through an obstacle course. Ail that is known is that
the vehicle lies on a relatively flat surface on which also lie a number of stationary rigid
objects. A rover on mars might face such a situation (24j. If the vehicle can monitor
its motions by means of an inertial guidance system or if as in [24] camera motions are
independently manipulated while the rover is stationary, then the distance to surfaces
can be computed. This information can be used to move through the environment and
to construct a model of the environment.

In situations where observer motions can not be determired, optical flow can still
be used to make qualitative inferences about the structure of the environment [26,27].
The location surface boundaries, the relative positions of objects, the number of
objects, the positions of obstacles with respect to the path of the vehicle, and the time
to collision of with objects in the path of a moving camera are all potentially derivable
from optical fiow. Discontinuities in the flow fleld correspond to depth discontinuities.

Occlusion boundaries can be found by examining the discontinuities in the flow fleld.

12
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This requires that disparity be known near the occlusion boundaries i1n the image.
Expansion and contraction of the flow field is related to the approach and withdrawi of
surfaces. This information is critical to avoid collisions. To assure that no objects in
the fleld of view escape the attention of the collision avoidance system, disparity must
be calculated over the entire image.

The accuracy required of optical flow determination for use by qualitative tech-
niques is not yet well understood. Some preliminary results indicate that it may be
desirable to integrate the estimation of disparity with the interpretation of spatial rela-
tionships when qualitative information is sought [27]. In such a situation, it is more
sensible to talk about the accuracy of the estimated spatial properties than the accu-

racy of the optical flow estimates.

2.1.2. Terrain Mapping

Aerial photographs can be used to automatically map the topology of the ground
below. }t the position and orientation of the camera at the time each image was taken
are known, then the depth to each point in the irmage can be obtained by triangulation.
Elevation maps are conventionally constructed by hand, matching points between tem-
porally adjacent pairs of images from an aerial sequence. The matching process is
time consuming, expensive, and error prone. Optical flow estimation techniques offer
the potential to automate a large portion of this work.

The camera position and orientation can be derived from the disparity of ground
control points. Markers which are highly distinctive (in the image) are identified on the
ground. These markers may be a natural part of the scene, such as a radio tower, or
may be placed there specifically for the camera calibration. The coordinates of the
markers must be precisely measured on the ground. The camera position and orienta-
tion can be calculated by reversing the procedure used for elevation determination.

Knowing the locations of a small number of control points in two images and the posi-

13
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tions of the control points in some coordinate scheme allows the position and orienta-
tion of the camera to be obtained by triangulation. This process is essentially the same
as was encountered in navigation when solving for observer position and motion.

While both camera modeling and elevation estimation depend upon disparity esti-
mates, the two processes place very different requirements on the estimation tech-
niques. Disparity need be known at only a small number of points in order to solve for
the camera model and these points are usually chosen to be highly distinctive and
hence, easy to match. Because the solution methods for calculating the camera model
tend to be ill-conditioned, disparity must be know very precisely at the control points.

In contrast, detailed mapping requires that disparity be known over most of the
image. This necessitates the estimation of disparity at a dense sampling of points. In
regions where disparity can not be well estimated at each point, estimates must be well
distributed so that there are not large regions of the image for which elevation is not
known While the accuracy of the depth measurements is dependent upon the accu-
racy of the disparity measurement on which it is based, the calculations are much less

sensitive to errors than the camera modeling schemes.

2.1.3. Targe:i Cueing

Most applications of optical flow analysis depend in large part on inferring depth
relationships in the scene under view. Optical flow analysis may also be used, however,
to locate areas of potential interest in an image without any direct concern for deter-
mining actual spatial relationships. In particular, optical flow analysis is useful for cue-
ing on targets moving against a stationary background. This is possibie even if the sen
sor is moving, resulting in a continually changing image of the background.

There are two possible approaches to dynamic target cueing using optical flow
information. The optical flow fleld can be used to register subsequent frames to facili-

tate simple change detection techniques. The flow flelds may also be used directly for

14




moving object detection.

A variety of techniques have been proposed for detecting differences in two or
more image frames {(eg. [28]). Most use the same basic approach. First, the frame are
registered with one another. This is usually done by identifying a set of recognizable
tie points in each image. The tie points are used to solve for an interpolation function
that can be used to map all images into the same spatial coordinate system. Once this
registration has been performed, some type of pointwise difference function is applied
to pairs of frames in the sequence. The difference function can be as sumpie as the
subtraction of the corresponding pixels, followed by a search for differences above
some threshold. Often, preprocessing and/or more sophisticated tests for significant
differences are used.

A primary advantage of this change detection approach is its computational sim-
plicity which can be exploited to ease problems with real-time implementations. There
are several difficulties with the approach. however. Tie-points must be known with
great accuracy. This may not be possible if there are few highly distinguishable points
in view or if the background is moving rapidly relative to the sensor. At best, only a
sparse sampling of tie-points is usually available. For this reason and because of the
desire to limit computational complexity, interpolation is usually performed using a
low order polynomial function. Such interpolation technijues are likely to result in
relatively large errors in areas of the image where disparities are changing rapidly due
to changes in depth in the original scene. As a result, many false positive responses
are likely to occur in these regions.

An alternate approach is to use optical flow analysis and a moving sensor to
directly locate moving targets. If a sensor moves over a static background, the result-
ing disparity fleld will appear to expand radially from a peint known as the focus of
ezpansion (FOE). Given a flow fleld, it is relatively easy to solve for the location of this

point in image coordinates. If there are moving objects in the fleld of iew, but they
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make up only a relatively small portion of the image, then it is still possible to solve for
the FOE in a robust manner. Knowing the FOE places a directional constraint on the
disparity of all points associated with the background. Any disparity not radiating out
from the FOE must be associated with a moving object. The major difficulty is for
objects with motions that coincideatally satisfy this constraint. In most situations, the
constraint will only be satisfied mementarily. Motion of the sensor will quickly lead to
detection of the target. It is also possible to look for rapidly changing disparity values
along lines radiating from the FOE. If the change is too large to be accounted for by an

expected change in depth, then it is due to a moving object.

2.2. Evaluation Criteria

In the last section several specific problems which make use of optical flow where
introduced. Consideration of the requirements of different applications demonstrated
how interpretation algorithms depend upon the performance of estimation techniques.
The different requirements are sunmarized in table 2.1. The important characteristics

of optical flow feld estimates are surveyed in this section.

2.2.1. Accuracy
The accuracy of disparity estimates over an area of the image S can be deter-

mined from the average error in tke estimates. The expected error is simply

va’n; - Wy ”,

E(Ss) = s—zl——— (2.1)

s

where 'wu is the estimate of disparity at the point {i,j) and w; is the true value of

disparity: -
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Problem Interpretation Requirements
Task
density accuracy location
peint low high control
matching points
navigation unknown |
environment I
depth high moderate distinctive :
matching regions
collision high unknown  everywhere
avoidance
navigation known
environment occlusion moderate unknown near
boundary occlusion
detection edges
camera low high control
model points
mapping
surface high moderate everywhere
elevation
|
cuei change moderate moderate targetand
ing detection background

Table 2.1 Characteristics of optical flow field estimates required by different appli-
cation tasks.

A major difficulty in estimating the accuracy of a disparity fleld is to determine the

ground truth against which the estimates are to be compared. The acquisition of

ground truth data is discussed in detail in the next section
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Frequently. an index of the accuracy of an estimate is generated with the disparity
estimate. This index can be treated as the confidence that the estimator has in its
estimate. ]t would be desirable to consider the additional information which
confidence provides when evaluating the accuracy of a disparity field. One measure of
accuracy which reflects the confidence in the estimates is the average of the estima-
tion errors weighted by the confidence in the estimate:

gpij' : ;'ij Wy “z
E{e ) = 23
R ¥ 8 (29

where p, is the confidence in disparity estimated at the point {i.7)

It is also important to know how well a technique is able to judge its own perfor-
mance This requires that the association between the confidence estimate and the
true error in the disparity estimate be specified. Confldence can be interpreted as a
measure of the expected accuracy in the estimate. At low values of confidence the
magnitude of the error is likely to be 'arge. One estimate of the effectiveness with
which confidence predicts accuracy is the correlation between the expected error &
and confidence. To calculate an expected error for values of the continuous confidence
variable p. we dinide confldence into n subranges. p(1).p(2), ...p{n). Let &4, be the
expected error for estimates within the subrange of confidence p(i). The correlation

between the confidence and the expected error in the disparity estimate is given by
al . "| - nq .
n L Ewp i) = (L Ew| — (L)
i=Q =0 { =0

- 12
\/" "gfpmz - Lgfpm] \/"“_%P (1)%- Lgp ()

For some applications only one component of disparity is relevant. An observer

(2.4)

2

translating through a static environment can determine the distance to surfaces know-
ing only the magnitude of disparity. In the same context, the focus of expansion of the

flow fleld can be estimated from the orientation of disparity vectors. When attempting
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to distinguish a moving object against a large background, small changes in vector
orientation are much muoure significant than small changes in the magnitude of dispar-
ity. To judge the appropriateness of disparity analysis techniques for these applica-
tions. accuracy measurements should be resclved into orientation and magnitude com-

ponents.

2.2.2. Density and Dispersion
The density of the disparity field and the dispersion of the estimates across the
field are important characteristics of an estimator. The density of disparity estimates
over an area S on the image can be found by
28(i.5)
. S

R (2.5)

5
where,

poov 1 if disparity estimated at (i 5)
B{ij) = 0 if disparity not estimated at {1.5)

In this formulation p varies between 0 {no estimates are present in S) and 1 (disparity
is estimated at every point in S).

Measuring density by (2.5) assummes that at each point a disparity estimate is
elther available or not. This approach does not take into account the certainty of the
estimate. The density of the estimates can be treated as a measurement of the
amount of information which the estimation technique has extracted about an area.
Another way to capture the amount of information acquired over an area is to examine
integral of confidence over the area. If the confldence estimates are closely associated
with the likelihood that an estimate is in error then the knowledge which is contained
in a fleld of estimates ca:i be measured by

Tay
p= S (2.6)




-

where, as before. p; is the confidence in ‘w‘,

In many circumstances the dispersion of disparity estimates is as important as
the accuracy or density of estimates. If all of the knowledge which is acquired from the
image is concentrated in a few small areas then little can be inferred about the three-
dimensional structure of the image. Dispersion characterizes the way in which the
estimated disparity vectors are distributed over the image As a trivial example of the
importance of dispersion, consider the value of a system only capable of estimating
disparities in the upper right corner of the image.

For many applications, it is desirable that estimated values be distributed in an
approximately uniform fashion over the field of view. Thus property can be described
by a measurement of unconditional dispersion. The dispersion of disparity estimates is
strongly tied to the dispersion of motion information. Thus, the dispersion of estimates
is likely to be quite sensitive to the characteristics of the imagery. Textureless regions
contain nc information about motion. Consequently, it would be expected that esti-
mates, for any disparity analysis technique. would be concentrated in more textured
areas. The dispersion of the vectors will be highly dependent upon the amount of tex-
ture and dispersion of texture in the image. Statistical characterizations such as
entropy can be used to quantify the unconditional dispersion of disparity estimates.

The eflectiveness of some forms of analysis depends heavily on the conditional
dispersion of estimated values. For example. if it is important to find depth discon-
tinuities which correspond to object boundaries, then evaluation techniques must
determine the dispersion of estimated disparity values in the vicinity of all such boun-
daries in the original scene. Conditional dispersion is more difficult to quantify. Its
measurement depends on the availability of a complete task description along with a

model of the scene under view.
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2.2.3. Scene Dependency

Some problems reqﬁire that optical flow be known only at specific locations in the
image. For example, to segment the image into continuous surfaces it is necessary
that disparity estimates be obtained near occlusion boundaries. Disparity need be
known only at a some set of control points to calculate camera motion parameters. It
is important to understand how disparity estimation techniques perform in semanti-
cally important regions of the image.

Frequently, the environment in which the disparity 1s to be estimated 1s very
stereotyped. The size, shape, and reflectance characteristics of the objects which are
to be observed may be known in advance. The carnera and objects motions may be lim-
ited. The lighting conditions could be adaptive under the control of the observer In
order to take advantage of these constraints and to understand the limutations which
these constraints place upon disparity estimation it is necessary to characterize how
performance depends upon the viewing context. Among the important features of the

environment are:

1. The number and size of the objects in the scene.

2. The reflectance characteristics of the objects and the background -- most
irmportantly, the amount of texture.

3. Allowable camera motions.

4. Allowable object motions.

The list above should not be considered as comprehensive. As problem domains are
better understood new aspects of the environment are likely to prove to be as impor-

tant as those above.
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2.2.4. Start-up and Hysteresis Characteristics

The population of visible object points is continually changing in a dynamic scene.
Points appear and disappear at the border of the image as new objects enter and leave
the field of view. Surfaces occlude and disocclude the objects behind them. The
appearance and diséppearance of object points in the scene can be a source of infor-
mation About the scene. Examination of the regions of accretion and deletion which
surround moving objects can be used to determine which surface is in front of the
other. Unfortunately, the appearance and disappearance of object points can also con-
found techniques which estimate optical flow.

Abrupt changes in scene dynamics can also be a potential source of difficulty.
Rapid accelerations and decelerations, as might be observed when two moving objects
collide, and sudden changes in view can lead to significant breakdowns in disparity esti-
maticn.

The manner in which techniques respond to changes in the makeup of the image
and changes in scene dynamics are important features of disparity estimation tech-
niques. Both the magnitude of the degradation in performance and the length of time
which it takes to recover must be considered. For techniques which depend upon the
output of one stage to initialize the processing in the next time interval the start-up

characteristics should be understood.

2.2.5. Grace of Degradaﬁon

The manner in which techniques fail is an important characteristic of their perfor-
mance. If procedures are robust, small changes in the scene should not lead to a
significant deterioration in performance. However, robustness is a difficult trait to
quantify. One way to roughly gauge the grace with which a procedure fails is to slowly
introduce noise into the scene and observe the performance degradation. Here, noise

is taken as any facet of the dynamic scene which is know to degrade performance. The
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rate at which performance declines is an indication of the robustness of the procedure.

When performance deteriorates it is often helpful to be aware of the degradation.
Many disparity analysis techniques provide a measure of the quality of estimates. Such
measures of confidence can be used by higher level processes to adapt to the loss in
performance. Serious errors in interpretation can be avoided by delaying judgements
until better estimates are available or by basing interpretation upon earlier estimates.
Techniques for evaluating confidence estimation procedures were discussed 1n section
2.2.1. The importance of accurately measuring confidence is that the affect of break-

downs in performance can be minimized.

2.2.6. Computational Characteristics

Many applications of dynamic image analysis must be performed in real-time. If
real-time performance is to be obtained the amount computation and the nature of
computational processes which can be performed must be severely constrained.

A variety of architectures have been recently developed to implement image pro-
cessing algorithms. (See, for example, {29].) The degree to which algorithms can be
mapped into feasible architectures will determine their suitability for real-time appli-
cations.

Algorithms with a high degree of parailelism are well suited to real-time architec-
tures. Image processing necessitates the processing of a large amount data. In order
to efficiently process whole images, algorithms must be structured as a large number
of local independent processes. Interactions among processes should be minimal and
highly localized.

Computations which are necessarily serial are best structured as a sequence of
independent computations. If each successive operation is not contingeat upon the
results of prior or future processing then the computations can be adapted to pipeline

architectures.
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The ability to decompose an estimation technique into parallel algorithms and

pipeline processes is an important characteristic for real-time applications.

2.3. Determining Ground Truth

In order to determine the accuracy of disparity estimates the “true” optical flow
fleld must be known. The accuracy of the ground truth data limits the quality of the
evaluation -- estimates can be judged to be no more accurate than the standard
against which they are compared. As might be expected, determination of ground
truth optical flow is a very difficult problem, otherwise the approximation technigues
described in this report would not be of interest. Disparity can be estimated in a
variety of ways which are practical for special circumstances or which are prohibitively
expensive or too time consurning for general use. These techniques can, however, be
used to validate more general purpose approaches.

In real-world environments, optical flow can be computed if the geometry of the
environment and the photographic conditions are well known. The location of an object
point in the image can be predicted from the three-dimensional position of a visible
object point, the location and orientation of the camera, and the optics of the camera
system. For most environments, precise three-dimensional position is available for
only a few points in the field of view. Consequently, disparity can only be determined
for a small number of points.

For some indoor problem environrments representative scenes can be selected and
the camera and object positions can be measured. It is also possible to construct phy-
sical models of environments in which it is unreasonable to perform positional meas-
urements directly. The sirnulated environment must be realistic, containing all of the
potential difficuities which might be encountered in the problem environment. The
ground terrain belt developed at Wright-Patterson Air Force Avionics Laberatory is a

good example of a simulated environment.
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Range sensing devices such as radar or sonar can be used to acquire a depth map
of the scene, where they are available Alternatively, depth can be estimated by means
of artificial ilumination, commonly called structured light. Grid projection and lasar
light sources are are frequently used to calculate range by triangulation between the
light source and a single camera. Structured light can alsc be used to simplify dispar-
ity estimation with two cameras. [lumination of single points in the scene trivializes
the identification of correspondences in the frame pair Similarly, line or grid projec-
tion greatly simplifies the correspondence problem

Disparity can be estimated by visual inspection of a frame pair by a human
observer. Topological maps are commonly obtained from aerial imagery in this
manner [30]. Depth may be judged monocularly, by matching points between images
on their two-dimensional appearance, or binocularly, by using a stereoscopic display
The process is too time consuming for most applications but offers potential for the
collection of ground truth data.

Optical flow need not be known at every point in the image to evaluation disparity
analysis techniques. An accurate estimation of performance can be obtained with only
a small number of points by using statistical polling techniques. The population of
points must by sufficiently large to contain a representative sampling of values across
the range of important environmental and image properties. Alternatively. the sampie
of points could be selected to cover the range of important environmental and image
properties where they are known.

The accuracy of 'the ground truth estimates can be improved, relative to the esti-
mates of approximation techniques, by basing the ground truth upon an oversampled
image. The performance of disparity analysis techniques on an undersampled data set
can be compared to ground truth estimates based upon the more densely sampled

image.
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Ground truth determination is a significant unsolved problem. No current method
is completely satisfactory. Collection of a standard data base of image sequences with

accurate ground truth measurements would make an important contribution to the

vision research community.
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3. AN ANALYSIS OF THE GRADIENT-BASED APPROACH

The choice of a disparity analysis algorithm should depend upon the performance
characteristics of the estimation technique and the performance requirements of the
task to be performed. For a variety of problems, gradient-based methods offer
significant advantages over matching techniques for estimating disparity. The most
salient difference between matching and gradient-based approaches is the density of
points on the image plane at which disparity can be estimated. Matching techniques
are highly sensitive to ambiguity among the structures to be matched Disparity can
be accuralely estimated for only highly distinguishabie regions. This means that
disparity can only be determined at a sparse sampling of points across the image.
Furthermore, it is computationally impractical to estimate matches for a large
number of points. The gradient-based fxpproach allows disparity to be simply com-
puted at a more dense sampling of points than can be obtained with matching
methods.

Gradient-based techniques avoid the difficult task of finding distinguishable
regions or points of interest. The gradient approach leads tc algorithms which are
characterized by simple computations localized to small regions of the image. These
techniques can be applied over the entire image. As we shall see in the analysis that
follows, the gradient technique is also sensitive to ambiguous areas - no technique
can locally determine the motion of a homogeneous region. The loss of precision in
ambiguous areas can be quantified. This allows poor estimates to be filtered from the
flow fleld. The rmeasurement of the accuracy of disparity estimates can be obtained as
a by-product of the estimation process and requires little additional computation.

Gradient-based techniques offer the additional advantage that estimates can
potentially be made with sub-pixel accuracy without resorting to complex interpolation
functions. A third advantage to gradient-based techniques is that the computational

structure is simple and may be adapted to special purpose architectures.
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The gradient-based approach for estimating disparity has been widely studied.
(2.1.3.31,32,33,34,35,36]. A number of algorithms have been proposed with variations
and enhancements to improve performance. This section examines the causes of error
and the error propagation characteristics of one class of gradient-based algorithms.
By understanding how errors arise in disparity estimates we are able to define the
inherent limitations of the technique, obtain estimates of the accuracy of computed
values, enhance the performance of the technique, and demonstrate the informative

value of some types of errors.

3.1. The Gradient Constraint Equation

The gradient constraint equation can be derived as a Taylor series expansion of
the image brightness function. It is assumed that the observed brightness (intensity
on the image plane) of any object point is constant. Let brightness at a point p = (z.y)
on the image, observed at time ¢, be represented by /{z,y.t). Consider a point which

is displaced by the vector (6z.6y) over the interval ét:

I{z.y.t) = [{z+8z,y+6y.t +5¢) (3.1)

Following [31] we expand the image brightness function in a Taylor's series around

the point {z,y.t) to obtain

a8/ o/ al
9z Sz + 5y Sy + aT‘” +& (3.2)

where the remainder, €, consists of the higher order terms of the expansion. Assuming

Iiz+8z y+8y.t+6t) = I(z.y.t) +

that 6z and dy vary with 6t we can express £ as 0(dt). Subtracting /(z.y.t) from both

sides of (3.2) and using the constant brightness assumption formalized in (3.1) we have

SO, L O L ol
O—E—dz+ ayay+ 3% 5t + 0(6t) (3.3)

To find a expression which relates velocity on the image plane to the gradients of

brightness we divide {3.3) by 6¢ and obtain
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T 6t+ay6tfat+0“) (3.4)

Taking the limit of (3.4) as 6t »0, we arrive at the gradient constraint equation:

0

_dldr, 3ldy . ol
0= oz at *aya ot

The gradient constraint equation relates velocity on the image plane to the spatial and

(3.5)

temporal gradients of brightness. For convenience we will make the following nota-

tional substitutions:

The gradient constraint equation can now be stated more compactly as
0=Lu+Lv+l, (3.8)
In order to avoid a confusion between the three-dimensional velocity of a point in space
and the two-dimensional velocity of a point on the image plane we will borrow from the
terminology of stereo vision and call motion on the image plane disparity. Use of the
term disparity also ernphasizes that aithough the gradient-based approach is based
upon a continuous image function, the technique will always be performed on imagery

which is discretely sampled in time and space.

3.2. Gradient Based Algorithms

The gradient constraint equation does not by itself provide a means for calculating
disparity. The equation only constrains the values of u and v to lie on a line in dispar-
ity space.

The gradient constraint is usually coupled with an assumption that nearby points
move in a like manner to arrive at algorithms which solve for disparity. Groups of con-
strain equations are used to collectively constrain the disparity at a piel. Constraint
lines are combined in one of three ways. The clustering approach [1,3] operates glo-

bally. looking for groups of constraint lines with ceoinciding points of intersection in
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disparity space. Methods of local optimization [32,33,34,35,38] solve a set of constraint
lines from a small neighborhood as a system of linear equations. Global optimization
(32,37) techniques minimize an error tuncticn based upon the gradient constraint and
an assumnption of local smoothness of disparity variations over the entire image.

We will examine the local optimization technique in detail. In later sections of the

report we will discuss some implications of our analysis for other approaches.

3.3. Local Optimization

The method of local optimization estimates disparity by solving a group of gra-
dient constraint lines obtained from a small region of the image as a system of linear
equations. Two constraint lines are sufficient to arrive at a unique solution for {u.v)
More than two equations may be included in the systern to reduce the affects of errors
in the constraint lines. The solution to the over-determined system may be found by
any of a nurnber of methods which seek to find a solution which best agrees with a
population of constraint lines.

We will begin by examining errors in two equation systems. The pair of equations

which we will soive to estimate disparity at point py = {z; . y:.L;) is

(i) Lu+Lv=-h
U)  huw v = (3.7)
where the gradients /;./,, and /; in equations i and j are evaluated at nearby points p;

and py.

The gradients in the system {3.7) are estimated from discrete images and will be
inaccurate due to noise in the imaging process and sampling measurement error. Also,
the values of (u.v) at py and p; are assumed to be the same. The formulation will be
incorrect to the extent that disparity differs between the two points. We will examine
how gradient estimation error and error resulting from nonconstant disparity leads to

errors in the estimated disparity.
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3.3.1. Gradient Measurement Error

The estimates of the intensity gradient /g, ;. and /; will be corrupted by errors in
the brightness estimates and inaccuracies introduced by sampling the brightness func-
tion discretely in time and space. The error in the brightness function is random and
results from a variety of sources such as channel noise and quantization of brightness
l.evels. The brightness error is approximately additive and independent among neigh-
boring pixels. The gradient, estimated from changes in the brightness estimates, will
contain a component of random error which is distributed like the error in the bright-
ness function. The randem component of the gradient error will be additive and
independent of the magnitude of the gradient to the extent that the brightness noise is
additive.

The brightness function is sampled discretely in time and space and this will intro-
duce a systematic measurement error into the estimate of the gradient. The gradient

sampling error depends upon the second and higher derivatives of the brightness func-

tion. To demonstrate the relationship between the sampling error in 7. and the deriva-
tives of brightness we can expand the brightness function evaluated at {z+Az.y.t)
around the point {z,y.t) producing

[{z+Az y.t)=I{z.y.t) + Az + Yl Az% + hoo.t. (3.8)
where [, /[;; are the partial derivatives of brightness in the z direction evaluated at
(z.y.t). Rearranging terms we obtain an estimate for the brightness gradient in the z

direction:

I, = !E+Aiy~£-zl"[(z'?l't) = [, + % Ax?+ hat (3.9)
The error in the estimate is
£ (sampiing) > %szzz (3.10)

Likewise, the sampling error in the estimates of /, and /; are given by

£, (samptmg) N Vol BY* (3.11)
£1,(aampiing) " Yolus B2 (3.12)
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The sampling error for the spatial gradients depends upon the spatial resolution of the
camera, Ax and Ay, and the second spatial derivatives of the brightness function, /..
L. which in turn depend upon the reflectance characteristics of the surface in view.
The sampling error for the temporal gradient, E],(sampling). 1S influenced by the frame
rate, At, and the higher order derivatives of the brightness function over time.

As the gradient constraint equation relates the temporal gradient to the spatial
gradients and disparity, the higher order temporal derivatives of the brightness func-
tion are related to the higher order spatial derivatives of brightness and the charac-
teristics of the motion on the image plane. Differentiating the gradient constraint

equation with respect to z, ¥y, and { we obtain the following three equations:

Iau + [,§:—+ Lav + f,,g—;’-= I (3.13)
du v _ .
l,yu + r,a-/—+ fW‘U + /;'E-— —/‘y (3.14) i
Law + I, —g%-+ Ipv + I, %: L (3.15) |
Where the second derivatives of the brightness function exdst and are continuous, the l

left hand sides of equations {3.13) and {3.14) can be substituted for /; and L in (3.15).

el 3
Ll %1l 31 09

The first term in (3.18) depends upcn disparity while the r 'st of the left hand side

Collecting terms we see that

e Iny

ol ol

depends upon the derivatives of disparity over time and space. 'f disparity is approxd-
mately constant in a small neighborhood and approximately constant over time at each

point on the image then 1

b n, pidl

N [“ (317)
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In summary, then, the systematic errors in the gradients which make up the
coeflicients of (3.7) are given by (3.9). (3.:0). and {3.11). Under the assumption of con-

stant disparity over time and space, the systematic error in the temporal derivative is

1]
] 2z Izy U
s <55 o[22

The systematic error in estimating /; increases as the square of disparity. It is also

(3 18)

inflmenced by the derivatives of disparity and the first and serond spatial derivatives of
brightness. 1f disparity is significant (3.18) can become quite large and substantially

alter our estimate of /;

3.3.2. Nonuniformity in the Disparity Field

The estimation scheme which we have been analyzing has assumed that velocity on
the image plane is constant in some small neighborhood. This will be true only lor very
special surfaces and motions. The estimates we obtain will be in error to the extent
that disparity varies in the neighborhood which we cover in our equation set. The true

set of equations in (3.7) should éctually be

(i) Lu + L = =1
) Lu+au) + Lv+iw) = - (3.19)
The difference between the true scolution and our estimate can be treated as an error

on the right hand side by distributing the multiplication on the left hand side of {3.19)

and moving the terms which contain a change in disparity to the right hand side giving

() Luw+ Lv= -4

. - 7 _ {(3.20)

) Lu + Lv = - —(L0u+lbv) \
The error caused by the assutuption of cobstant disparity can be treated just as an

extra additive error in the estimate of J;.
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3.3.3. Error Propagation

The accuracy of the estimated values of u and v depends upon the magnitude of
the errors in the gradient constraint equations and the propagation characteristics of
the system of equations which is solved. In this section we examine the error propaga-
tion characteristics of the linear system which is solved to estimate disparity.

If the gradients are known exactly and disparity is constant then

Gw=b (3.21)

G_I, 4, s W=y

As before, the rows of G and b are taken from a point p; and its neighbor p;. The vector

where,

1A

and b=, | (3.22)

w will be in error to the degree that the gradient measurements are inaccurate and
disparity varies between points p; and p;. The previous section showed that the error
accrued when u and v are not constant is the same as that which would be obtained if
the b vector is suitably modified as ip {3.20). This error will be absorbed on the right

hand side of (3.21). Thus, the system which is actually solved is

(G+ E){w+ 6w) =b+ b (3.23)
where,
I
8[. EQ £ Ey
E= er, er| éb= e0 (5 bu +1, bv) and éw= 5 (3.24)
Distributing the multiplication of {G + E) and rearranging terms we see that
Giw+ Sw) = b+ 6b~Ew+ 6w (3.25)
Consequently,
w+ow=G"'b+b-Ew+ 5w (3.26)
Since w = G™'b, we have
Y
sw=C" b~ Ew-sw (3.27)




The vector dw is the absolute error in the disparity estimate. The absolu:i« error
depends upon the inverse of the matrix of spatial gradients, the error vectors, and the
disparity vector itself.

Let us divide 6w into two components

SW=0SWpg — W (3.28)
where,

Swyps = GT'E{w + 6w) and Owms = G16b (3.29)
This decomposition separates dw into two components which depend principally upen
errors in the left and right hand sides of {3.21). To see how large these errors might be
we take the norms of dwu, and 6wy, and find that

[[6wWns || = 1G] LEN- [{w + 6w) | (3.30)
and

[6Wems § < G716 (3.31)
It follows directly from {3.30) that

| SWing 3
[ {(w+ dw)! i G

Where, the condition number, represented by cond(G), is defined to be the value of

< (G- (B = cond(G) (3.32)

lGii |G™!¢ for any nonsingular matrix G [38]. Since Gw = b, we know that

lwl = ‘H%;'!— (3.33)
Dividing (3.31) by (3.33):
OWeps | v\ -1y 16D dbi
ﬂ"'TTi'I-s WGl IG ‘?;-*[fbh”** cond(G) ‘“”‘%— (3.34)

The relative error in both components depends upon the condition number of the
matrix of spatial gradients. In turn, the conditioniiig of the G mnatrix is determined by
the nature of the brightness function over the interval (p;.p;). We can express the spa-
tial gradients at p; as a function in terms of the spatial gradients and higher order
derivatives of the brightness function at the point p;. Expanding the brightness gra-

dient evaluated at py in a Taylor's series around the point p; we obtain
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I{zjyjt) = L(zyt) + Ig{zyt)Az + I (zy:.0)0y + hot. (3.35)
and
L(zjys.t) = [(Zoyi t) + Iy )8y + Ly (T yi t)dy + hot. (3.38)
where,

Az =z;-z; and Ay =wi-y;
Approximating the gradient at p; by the first three terms of the Taylor's series expan-

sions in (3.35) and (3.38) we arrive at an cxpressicn for the matrix of spatial deriva-
tives:
I I
G~ L+ LAz + Iy [+ LAz + [ My (3.37)

All of the terms in {3.37) are evaluated at p;. Without loss of generality, we can rotate

the spatial coordinates so that at the point p; in the new coordinate system {x.y.t).

Ip=1p=0
The simplified matrix of spatial derivatives is

Ix I;
G=|/p+Inbx I,+I40y (3.38)
The inverse of {3.38) is easily calculated as
G = ! |1+ Ity =1y ] (3.39)
IxlyyBy = o] bX lfx+ Ixbx Iy '

The magnitude of j|G™!|| depends upon the first and second derivatives of brightness
and the relative position of the two points at which the brightness function is evaluated.
The second derivatives clearly must be nonzerc or G will be singular and G™! will not
exist.

Measurement errors in the brightness gradients are multiplied by G™! to deter-
mine to absolute error in the disparity estimate. It would seem that the disparity esti-
mate would be most accurate when ||G™!! is smallest. This is true for the random com-
ponent of measurement error and the portion of error due to nonconstant disparity

However, the opposite may be true for the systematic measurement errors.
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The propagation of systematic measurement error is complicated by the tact that

both G™! and the systematic measurement errors in the gradients depend upon the

nature of the second derivatives of brightness. The systematic errors in J; 7,. and T,
increase with the magnitudes of the higher order derivatives of brightness. The magni-
tude of |G} also depends, in part, upon the magnitude of the second {and higher
order) derivatives of brightness. For a given brightness function, we are free to choose
the direction and distance of the neighboring point which contributes the second equa-
tion to the linear system. This determines the difference vector {Ar.Ay) in {3 39). Let
us fix the distance to the neighbor and assume that the orientation of the difference
vector is chosen so as to minimize the norm of (3.39). Under these circumstances.
increases in the second derivative can lead to a reduction in the magnitude of "G™! .

The systematic measurement error and the random measurement error are oppo-
sitely aflected by variations in the linearity of the brightness furiction. If the spatial
gradients are nearly constant then random measurement errors and the error due to
non-constant disparity will be greatly magnified in the solution vector If, however. the
spatial gradients rapidly vary then the solution vector may be over.y corrupted by the
systematic measurement error. Accurate estimates can be reached only when both
sources of error are relatively small.

The systematic error in the temporal gradient increases as the square of the mag-
nitude of disparity. So, if disparity is constant then the systematic error in the tem-
poral gradient is negligible and most accurate estimates will be obtained when the
brightness function is very nonlinear. In regions where disparity is large the sys-
tematic error in the temporal gradient will be very sensitive to nonlinearities in the
brightness tunction and the best estimates will be obtained when the brightness func-

tion is approximately linear over the region of translation.
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The propagation characteristics of G can be improved by increasing the distance.
d. to the neighbor which contributes the second constraint equaiion. The risk in
choosing neighbors over too great a distance is that the error due to nonconstant
disparity will become very large. Disparity will tend to vary smoothly across object

surfaces. If neighbors lie on a different surfaces their motions may differ substantially.

As the distance to the neighbor is increased it becomes more likely that the difference
in disparity between neighbors will contribute a significant error to the system.

The error in the estimate of disparity is determined by the characteristics of the
disparity field, the nature of the brightness function. and the selection of rule for con-
structing the linear system. These parameters interact in a complex way to determne
the accuracy of the local optimization scheme. More study is required to better under-
stand the this interaction before precise performance bounds can be obtained for the

technique.
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4. ALGORITHM EXTENSIONS BASED UPON ERROR ANALYSIS

The previous section identified the major determinants of error for disparity
estimated from a gradient-based method. In this section knowledge about the causes
of errors is used to explain how errors can be reduced and to introduce techniques to
judge the accuracy of estimates. The improvements in performance are based upon
parameter selection and preprocessing of the image to extract the most information
from a region while minim2ing the intrusions of error A method of iterative
refinement [35] is also described.

By examining the image sequence for the conditions which lead to errors we can
judge the accuracy with which estimates can be made before the estimate is actually
made. Examination of the disparity estimate itself can provide additional information
about the precision of the estimate. Together, a priori and a posteriori estimates of

accuracy provide a useful heuristic for evaluating the precision of disparity estimates.

4.1. Frror Reduction Techniques

Several techniques can be used to improve the accuracy of the disparity estimates
obtained with the local optimization technique. Blurring the image will reduce non-
linearities in the brightness funciton and consequently diminish the systematic error
in the gradient estimates. Blurring will also worsen the propagation characteristics of
the linear system causing random measurement errors and the errors due to noncon-
stant disparity to be magnified. Hence, blurring is desirable only in regions where the
systematic error is predominant.

As noted in the last section, the systematic error in the gradients depends upon
the nonlinearity o! the brightness function over the sampling interval. For the tein-
poral gradient, the systematic measurement error depends upon the linearity of the
brightness function over the region of motion and the variations of disparity over time

and space. Blurring will be most effective :n portions of the image which undergo a
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translation through a region of nonlinearity. The degree of blurring should be
sufficient to linearize the brightness function over the region of translation.

The damage which blurring does to the propagation characteristics of the linear
system can be counterbalanced by increasing the size of the neighborheod over which
the system is constructed. The risk incurred by enlarging the area from which the
constraint equations are drawn is that the motions of the points may differ
significantly, as could happen if points hied on two different surfaces. The selection of
the radius of blur and the neighborhood size must be made judiciously so as to avoid
increasing the error in the solution vector.

Until this point we have ignored the problem of selecting the direction in which the
neighbor is to be chosen to form the linear system. From our previous discussion of
error propagation it is clear that the choice of direction can dramatically aflect the
error in the disparity estimate. One way to circumvent the difficulty of choosing an
appropriate direction is to construct an over-determined set of equations from points
in many directions. The over-determined system can be solved by minimizing the resi-
dual over possibie values of disparity. The conditioning of the over-determined system
is abodt the same as the conditioning a system based upon the optimal pair of equa-
tions in the set. The norm which is minimized may have an important affect on the
sensitivity of the system to some kinds of errors. More study is required to determine
the influence of the minimization criteria on the accuracy of solutions. Another
approach is to perform the analysis separately in a number of directions and then seek
a consensus among solutions [39]. If the errors are random then the estimates will
tend to be distributed about the true value of disparity. Both approaches have the
advantage of extracting the important information about motion from a region without
explicitly searching for where the information is concentrated.

If disparity is known approximately then this knowledge can be used to reduce the

error in the local optimization technique. Let w be a three-dimensional vector which
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describes the velocity of an object point through the three-dimensional image function
I(zy.t). Let w be the true disparity, and éw be the difference between the true

disparity and the estimate. It follows from our definitions that

w+ow=w (4.1)
where,
r.
[u b ) [6u
w=lv| . w=lv| and bw=|dv (4.2)
1 N it

The derivative of brightness in the direction of the estimated disparity is

I =Lu+ly+ (4.3)
v

Using the gradient constraint equation and substituting for I; we see that

[ =Lu+Iv-Lu-Lu (4.4)

and consequently,

0=/l 0u+ Ldu + 1 . (4.5)

v
Equation (4.5) is a more general {orm of the gradient constraint equation which
relates the gradient in an arbitrary direction to the spatial gradients and disparity

The derivative in the direction of the motion estimate can be approximated by

I = I(z+uy+v,t+6t) = I(z.y.t) (4.8)
w
It the disparity cstimate is (0.0.1) then /_=I; and we obtain the familiar gradicnt con-
w
straint equation All of the analysis performed thus far applies to the more general

form of the gradient constraint equation.

We can use the general form of the gradient constraint equation to refine an esti-

mate w by solving for éw. This process can be performed iteratively to find succes-
sively better estimates of disparity. An improvement can be expected, on the average,

whenever successive estimates are closer to the true disparity:
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Ewie ) = | 6wl 1=1.2, (4.7)
The improvement arises from successively better estimates of the directional deriva-

tive /_. As was demonstrated carlicr in cquation £3.16) the systematic crror in the csti-
w

mate of temporal derivative grows as the square of disparity. The same relationship is

true for direction derivative /_ and the disparity difference in the general constraint
A J

equation.

Solving for the difference between an estimate of disparity and the true disparity
is computationally equivalent to registering a portion of an image pair and estimating
the change of position in the adjusted sequence For this reason the technique has
been called iterative registration 35]. The estimate of disparity may be derived from
estimates made at some previous time or from prior processing on a single frame pair.

Note that if the inequality of {4.7) does not hold then the error might be expected
to increase. If an estimate of disparity is poor then the refinement effort may lead to
an even larger error. The next section is devoted to methods to evaluate the quality of
disparity estimates. A measure of the accuracy of a disparity estimate can be used to
judge whether or not the estimate should be used for registration. Alternatively, the
degree of registration can be based upon the confidence which can be put in the
disparity estimate, the more accurate the estimate is judged to be, the more that the
trame pair should be adjusted in the direction of the estimate

The iterative registration technique can be combined with variable blurring to pro-
duce a coarse-to-fine system for estimating disparity [35]. Disparity is roughly
estimated with an image sequence which has been blurred sufliciently to linearize the
brightness function over the maximum expected displacement. The coarse estimate of
disparity is used, at each point, to register a small region of the image at a finer level

of resolution. This process is repeated at successively finer levels of resolution.
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How much advantage can be gained from iterative registration? Motion
differentials will be the same for all registrations. Thus, the error due to incompatibili-
ties among equations in the linear system is unaflected by iterative registration. Also,
the estimate of the directional gradient will contain some amount of random measure-
ment error even if successive frames are in perfect registration The propagation of

these errors depends primarily upon the magnitude of !G™!! We can not expect to
reduce the error in w below that caused by random errer in /_ and nonconstant dispar-
w

ity through iterative registration.

While preforming a coarse-to-fine registration the degree of blurring at each stage
should be appropriate to the expected error in disparity estimated at the next more
coarse level of analysis. In the absence of knowledge about the motions of individual
points the blurring must be performed uniformly across the image. While the error
will, on the average, be reduced for points which translate sigmficantly, the error will
tend to be increased for points which are stationary or move very little No benefit is
obtained by linearizing the brightness function at stationary regions and the error pro-
pagation characteristics are worsened. Some of the accuracy lost at stationary regions
during coarse processing might be recovered at finer levels but, in general, the best
estimates could be obtained at a fine level without registration. In the next section
methods are developed to estimate the accuracy of disparity estimates. This informa-
tion can be used in the coarse-to-fine system of iterative registration to judge whether
an improvement has been obtained at each level. A priori estimates of the magnitude
of disparity are also developed in the next section. The iterative registration technique
can be improved by adapting the technique to knowledge about the accuracy of esti-

mates and the magnitude of motion.
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4.2. Estimating Error

Many of the factors which lead to errors in the local optimization estimation tech-
nique can be identified and measured from the image. The error propagation charac-
teristics of the linear system Gw=>b can be estimated from the matrix of spatial gra-
dients. Random errors in the estimates ol the gradients and errors due to variations in
the disparity field are magnified by [|G™!] in the solution vector. The degree to which
relative errors are magnified is indicated by cond {G). Regions of the image for which
the propagation characteristics are poor will be very sensitive to small measurement
errors in the gradients. The disparity estimates obtained in these regions are likely to

be inaccurate.

The systematic measurement error in J; was shown to depend upon the linearity of
the brightness function over the interval of translation. One way to measure of the
nonlinearity of the brightness function, suggested by '35] and {3], is to compare the I
spatial gradients of brightness in successive frames. If ;(z.y.t) is significantly ,
different from [ (z,y.t +6t) then it can be inferred that the estimate of the temporal
gradient is likely to be in error.

The magnitude of the disparity vector is also an important determinant of the sys-

tematic measurement error in J,. The error in the estimate of the temporal gradient

grows as the square of the disparity. The size of the disparity vector can be bounded

by examining the brightness gradients. The gradient constraint equation can be writ-

ten as

= -/ (4.8)

o af

The size of the disparity vector can be bounded by 1

o]
A s i v

The relationship between the temporal and spatial gradients in (4.9) is a useful heuris-

(4.9)
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tic for judging the accuracy of ;. By performing the same manipulation on the gen-
eralized constraint equation (4.5), we also arrive at a means to evaluate the accuracy

of our disparity estimate. If, as before, /_is the derivative of brightness in the direc-
v
tion of the estimated disparity then

| , |—1_| I
= = = (4.10)

lrdu -
Al 17

||6v

>
lla ‘

Thus, we can estimate the derivative in the direction of the disparity estimate by com-

paring the brightness function at point {z,y.t) to the brightness function at time ¢ +4t

evaluated at the estimated translation z+u, y+13. This difference, without considera-
tion of the magnitudes of the spatial gradients, has been called the displaced frame
difference and is an important component in a scheme for coding television signals
(33]. If the norm of the spatial gradients is not too small, the displaced frame
difference divided by the magnitude of the spatial gradients is an good measure of the
magnitude of the error in the disparity estimate.

If an over‘determined set of equations is used to estimate disparity then measure-
ment errors in the gradients and incompatibilities among the constraint equations due
to differential motion will be reflected in the residual of the solution. The residual vec-

tor can be estimated by

Gw-b=r (4.11
where w is the estimated disparity and r is the residual. Conversely, A large residual
indicates that substantial errors exist in the system and that the estimated disparity
vector is likely to be inaccurate.

The residual vector will be especially large at occlusion edges where the change in
disparity is discontinuous. It has been proposed [34] that the residual error be used as
an indication of the presence of an occlusion edge. To be identiflable, the change in

disparity across an occlusion edge must lead to an error which is greater then that
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normally encountered from other measurement errors. A threshold on the residual
must be established which will normally be exceeded only at significant discontinuities
in the disparity field. The error accrued from a change in disparity is equivalent to a
measurement error on the right hand side of the local optimization system. Since the
equivalent error on the right hand side is magnified by the size of the spatial gradients
(3.29), the threshold tor identifying large residual errors may be adaptive to the spatial
gradients. Likewise, it was shown that the systematic measurement errors in the gra-
dients were related to the second derivatives of brightness, so the threshold on the

residual may depend upon the second derivatives, as well.

4.3. Summary

The gradient constraint is a powerful tool for the analysis of dynamic imagery.
Careful examination of one gradient-based technique has led to a number of conclu-
sions about the causes of errors, provided support for techniques to improve esti-
mates, and i‘ndicated methods by which the accuracy of estimates could be judged.
This analysis suggests that disparity estimation should be adaptive to the nature of the
brightness function and the characteristics of motion in a region of the image. Empiri-
cal-investigations support the analytical work presented here. More research is needed
to understand the magnitude of the error bounds presented here and elaborate on the

analysis.
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5. Empirical Analysis

5.1. Methods

5.1.1. Feature Point Selection

The two matching techniques which are described below attempt to find
correspondences only in regions of high information content. A variety of methods for
identifying feature or interest points have been proposed, lnciuding adaptive tem-
plates [6,7], local maxiziz of variab.lity [40,41,24,23], local extrema of the lapiacian
(42.27], maxima of gaussian curvature _43], and local edges [44] Although no con-
sensus on the best approach exists, it is clear that feature points should be efficiently
computable and should reliably locate the same points on objects from frame to frame.
It is important not only that the population of feature points represent the same object
features from frame to frame, but also that the position of the feature point on the
object should be stable. For example, most methods for locating feature points favor
corners in the brightness function~ If a corner is identified as a regior of interest 1n
one frame it is desirable that it be selected in subsequent frames as well. Further, it1s
desirable that the placement of the feature point on the corner always occur in the
same location.

The distribution criteria developed to evaluate disparity flelds (section 2.2.2) aiso
apply to the feature point selection process, because correspondences can only be
obtained at feature points. As such, algerithms which select feature points can be
judged by the density and dispersion of the feature points.

For the matching techniques demonstrated here, feature points were selected as
local extrema in the laplacian. An approximation of the laplacian is efficiently com-
puted by the subtracting two versions of an image which have been differentially

blurred [4548]. Choosing the maxima and minima of the laplacian produces a rela-
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tively dense sampling of feature pownts which are well dispersed across the image
These feature points tend to associated with distinctive structures in the image. An
additional characteristic of this technique is that the size of the structures which are
assocliated with feature points can be affected by the amount of blurring to which the
images are subjected. This aspect of the laplacian method makes it easily adapted to

coarse-tc-fine techniques.

5.1.2. Relaxation Matching

The relaxation matching algorithm is shown schematically in figure 5.: The
matching process starts with determination of all possible correspondences between
feature points in the two frames. A bound of 15 pixels was placed on the maximum pos-
sible disparity for the sequences used in our examples. A list of possible matches in
the second frame is created for each feature point in the first frame. The list of candi-
date matches is structured as a set of labels. In addition, a unique label !° is added to
the list. The {° label represents the condition that there is no correct match in the
second frame. Thus, each feature point f* in the first frame has an associated label

list of the for

L‘={l,‘,12‘., . ,lmi.L’} where, I;* = (u ), (5.1)

The matching task is to choose the correct label for every feature point, f* A
confidence value p,* is used as an estimate of the likelihood that label j 1s a correct
match for point i. Initial estimates for p,‘ are found by correlating a 5x5 window
around the point f* with a similar window around each of the potential matches in the
second frame. The initial estimate for !° is based upon the magnitude of the correla-
tion values found for other possible matches: if none of the possible matches in second

frame correlate well with 7%, then ¢’ is, initially, given a large value.
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The initial confidence estimates are refined through an iterative process that
incorporates constraints about the possiole disparities for each point. If surfaces are
large relative to the sampling distribution, disparity will vary slowly over most of the
image. Thus, nearby points will usually move in a similar way. Estimnates are refined by
comparing the list of possible matches for neighboring points and favoring consisten-
cies in motion. A sequence of progressively more precise estimates of label likelihoods

L¥(1),L*(2).. .. is generated by letting

Py (k+2) = Nfpyi(k)-(1+alg; (k) (5.2)

on iteration k+1, where,

g;*(0) = the initial estimates described above,

g;* = a function that measures the number and likelihood of labels in the
neighborhood of f* of the same or nearly the same disparity as 4%,

a = an adjustable gain parameter, and

N = anormalization function that assures the sum of likelihoods over a given

label set to be always equal Lo 1.

The g function assigns a large value to {°® if candidate matches frequently occur in
neighbors' lists at a disparity which does not exist in the label set L*. The effect of
(5.2) is to raise the the likelihood of possible matches if there are other, nearby, high-
likelihood matches with the same disparity. By iterating the estimation process, infor-
mation can propagate through the network of feature points. Some points are easily
matched on the basis of correlation alone. This affects the label likelihoods for nearby
points, and, as the estimates improve for those points, they, in turn influence their
neighbors. The process converges if and when the likelihood of one label dominates all
the others in each label set. A more detailed presentation of the relaxation method

can be found in {47].
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5.1.3. Correlation Matching

The correlation-based matching program implements a method developed by
Moravec [40,41,24]. Feature points are located in the first of two sequentially taken
images. The second image is searched to find the position which best matches the
feature point in the first image. A small window centered around a feature point in the
first image, the fealure window, is compared to similar sized windows in the second
image. The search is restricted to windows which lle within a larger search window. In
our work the feature window was 5x5 and the search window was 7x7

The analysis proceeds in a coarse-to-fine manner. The image pair is reduced by
successively halving the sampling rate. In our examples the initial 128x:28 image is

reduced three times to give four levels of resolution:

image reduction

coarsest level i6 x 18
32 x 32
84 x 64

finest level 128 x 128

Table 5.1

The search begins at the coarsest level of resolution. A search window is centered
around the location of the feature peint in the first image and the best match is deter-
mined. A pseudo-normalized measure of the cross correlation [40] is used as the cri-
teria function.

The disparity estimate obtained at the coarsest level is used to center the search
window at the next finer level of resolution. The process in repeated at each finer level
of resolution, always centering the search window on the estimate from the previous

level. The method is schematically outlined in figure 5.2.
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5.1.4. Gradjept-Based Estimation
The gradient-based approach is demonstrated with two versions of the local optim-
ization technique. Ia the next section, a variation of the global optimization technique

is introduced as means of combining matching and gradient-based techniques.

5.1.4.1. The Flow Field Data Structure

A scheme for representing the optical flow field is necessary. In our work the vec-
tor fleld is represented as dense image which is spatially registered with the gray-level
images of the scene. Each pixel in the disparity image is a three-dimensional vector

containing

u - disparity in the z direction
v - disparity in the y direction
p - confildence

The confidence value can range from 0.0 to 1.0.

5.1.4.2. Simple Local Optimization

The basic local optimization method performs a least squared minimization on an
over-determined set of gradient constraint equations to estimate disparily at each
point. The system is schematically shown in figure £.3. Each image is first blurred with
a gaussian blurring function. The standard deviation of the blurring function used to
collect the data presented here was approximately 2 pixels. The blurring serves to
reduce the noise in the image and linearize the brightness function

In the next stage of processing the gradient constraint equations are determined.
Gradients are estimated by the difference in the blurred brightness estimates /(z .y .t).
The gradient computations are graphically shown in figure 5.4. The gradients at a point

(i.7) on the image are estimated as follows,
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L(1j.t) = é—[’(“l-i-”- (i“l-j-t)+/(i+1.j.t+l)—[(i—:,j,t+1)] (5.3)
L(ij.t)= é—-[{(i,j-&-l.t) =I(ig=1t) +[(i.j+1.t+1) —[(i.j—l.t+l)] (5.4)
L(ij.t)= é—[.’(i,j.t+l)—1(i,j,t)] (5.5)

With this method, the gradients estimates are spatially registered with the image pair
and temporally sequenced at time between the tvo frames.
Constraint equations from a group of neighsoring points are gathered to produce

an over-determinedsystem of linear equations ofthe form

Gw=0Db (5.6)
where,
I I, It
I, /¢
G= , w=}leand b= (5.7)
z Iy 1t

The rows of G and b, are taken from a point {i,j}and a zroup of nearby points selected
from the neighborkocd {(i-n.j-n)...(i+n.j+n). To insure that the equations are
sufficiently distinct we selected neighbors fron a 5x5 window centered around the

point to be estimated. The distribution of constraint equations is diagrammed in figure

5.5.
-2 i 2 |
2 | N N N |
|
j N P N |
|
j+2 N N N

Figure 5.5 The linear system (5.8) is constructed from the constraint equations
evaluated at the point p and its neghbors N.
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figure 5.4 The gradients are estimated from the blurred image brightness function.

In general, the over determined system (5.6) has no exact solution. An approxi-

mate solution is found by minimizing the residual veetor r, defined as

Gw-b=r (5.8)

The disparity estimate is chosen to be the vector w which minimizes some criteria
function of r. In our work we minimize | r{ 2 by letting 1

w=G'b (5.9)

where G* is the pseudoinverse of G '34]. The pseudoinverse is calculated as

¢ = [&c) & (5.10) *
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This computation requires the inversion of the 2x2 matrix G'G. The inverse will not
exist where the local gradients do not sufficiently constrain disparity to allow for an
exact solution. In this case the confidence of the disparity estimate is set to zero and
u and v are undefined.

A confldence is assigned to each disparity estimate on the basis of:

(a) the size of the residual vector r,
(b) the change in the spatial gradients over the temporal sampling interval,
(c) the brightness difference for the image pair registered by {u.v), and

(d) the magnitude of | G!|.

The importance of each of these factors in determining the accuracy of estimates
Is discussed in section 4.2. That analysis does not, however, provide us with a formula
for estimating the total error in the disparity vector {u,v) We must find a means to
combine several factors which each indicate the presence of conditions which can be
lead to errors.

Recall how each factor outlined above relates to the error in {u,v). The residual
vector indicates the degree to which the estimated disparity vector jointly satisfies the
system of constraint equations. The units associated with the residual vector are not

easily interpreted. To obtain a measure of the expected error in pixel units we deter-
mine the average minimum distance from (%) to the gradient constrain equations
that make up the system. The minimurn distance from {1,7") to the gradient constraint

line /;u + [, v + I is easily cornputed as

_ Lurl v+l

d= 1'2+[v2 (5.11)
The confidence in the estimate, based upon the residual. is
= = 5.:2)
PiEET (5.2

where 4 is the average minimum distance between {i.v) and the const.ant equations
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that make up the linear system. If p, is small, then the disparity estimate does not
well satisty the mutual constraints from nearby points and is likely to be in error.
Measurement error in the temporal gradient depends upon the linearity of the
brightness function over the translation interval. The change in the spatial gradients
between successive frames provides an indication of the linearity of the brightness
function over the region which has translated by a point [35]. The variation in the spa-
tial gradients primarily contributes to measurement error in /;, which lies on the right

hand side of the gradient constraint equation. To obtain an estimate of the magnitude

of error in w we must divide errors on the right hand side by the magnitude of the spa-
tial gradient. Thus, we estimate the error caused by nonlinearity in the brightness
function by the ratio of the change in the spatial gradients te the magnitude of the spa-
tial gradient:
o VAT
N/ATYR

where the spatial gradients are estimated as in (5.3) and (5.4) and the changes in the

(5.13)

spatial gradients are estimated by

Al =WBIGE+1,5.8)=T(i-1j.t)=T(i+L 5 t+1)+I(i=17.t+1) (5.:4)
AL, = BUGEj+1,t)-T(3,j—18)=T(A.j+ 1t +1)+I{(1,j -1t +1) (5.15)

The inverse of the error estimate is used to estimate the confidence 1n (&.f/).

1

EA+1

Pe = (516)

The confidence value p; gives a rough estimate of the likelihood the () is in error

due to measurement error in the temporal gradient.

One way to judge the accuracy of (u.) is to compare the brightness tunction at a
point in the first frame to the brightness function at the predicted new position for the
point in the second frame. If disparity is accurately estimated, the brightness values

should be similar at these two points. The difference between the two frames 1
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registered by (ﬁ,f;) is an estimate of the directional derivative /_ defined in (4.4) We
w

calculate a third estimate of error based upon {4.10) which relates 7_to the magnitude
-

of the error in (u,v):

Lo
e = = | —2 ____| (5.17)

¥ | VEEALE

The error estimate ¢; is converted into a measure of confidence by

= 518
P3 812+ : ( )
In locations where pg3 is small, the two frames are dissimilar at the predicted place of

correspondence and the computed disparity is likely to be in error.

The propagation characteristics of the linear system Gw = b can be determined by
examining the matrix of spatial gradients. Errors on the right hand side of the linear
system are magnified by || G!|l in the computed value of disparity. A fourth measure
of confidence, based upon the likelihood that errors will be peoriy prepagated, is given
by

= —1_
TS
It p, is small, then the linear system is ill-conditioned and small measurement errors

(5.19)

will tend to produce large errors in ().

The four confidence estimates derived above are nct independent. The
confidences p, and p; both measure the accumulative error, from all sources, in the
disparity estimate. The confidences p; and p, relate to conditicns which are likely to
lead to poor estimates: p; depends upon a condition which is particularly troublescme
for gradient measurement and p, conveys the error propagation characteristics of the
linear system. Even though the four estimates are not independent we found that they
were best treated as separate sources of information and best combined multiplica-

tively. We examined a number of combination rules and found that the results were
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not highly sensitive to the particular rule for combining confidences.

The method for estimating confidence is heuristically motivated. The technique
could probably be improved by further examining ways to estimate error and rules for
combining several sources of information about errors. The important contribution of
this research is to demonstrate the feasibility estimating the accuracy of disparity

estimates and usefulness of confidence measurements.

5.1.4.3. Local Optimization with Iterative Registration

The simple method of local optimization can be extended by a method of iterative
refinement. In this method disparity estimates obtained from the simple local optimi-
zation scheme can be used to register the frame pair. Disparities are then be recom-
puted with the gradients estimated from the registered frame pair. In section 4.1 it
was shown that the measurement error in the temporal gradient could be significantly
reduced if the registration reduced the original disparity between the image frames.
Since the optical flow fleld will usually contain variations, the predicted registration will
differ across the image. To obtain a consistent linear system, a small region of the first
frame must be registered with the second frame on the basis of the predicted disparity
at the point for which disparity is to be estimated. A system of linear equations is con-
structed with gradient constraints line extracted from the registered region.

This process can be performed iteratively, using the disparity estimates at the
previous stage to register the frame pair on the next iteration. It is important to
emphasize that, at each stage, the registration can only be expected to improve per-
formance if the disparity in the newly registered frame pair is less than the disparity in
the previously registered pair. 1f, for some a point (i.7) if the first frame, the registra-
tion is worse than the registration in the last iteration, the new estimate of disparity
will, in general, be worse then the previous estimate. It is desirable to register the

image only where the disparity estimates are believed to be correct. Therefore. in our
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implementation we register in proportion to the confidence (n the disparity estimate.
The iterative registration technique is schematically shown in figure 58. The
registered gradients for the kth iteration at a point (i,7) on the image are estimated

as follows,

L@Ag.t)= é—[[(nl.j.t) =I(i-13.t)+

/(i+1+1'l,j+f/,t+7)—/(i—1+11,j+5,t+‘)] (5.20)

Lgt) = -é—[[(i.j+1,t)—1(i.j—l,t)+

I(i+uj +1+a,t+1)—1(i+&,j—1+a.t+1)] (5.21)

Lij.t)= %—[f(n&.j +f/,t+l)—[(i.j.t)] (5.22)
where (u,2) is the disparity estimate from the k —1st iteration. A flow field of zero
disparity vectors is used to initialize the first iteration.

Confidence is estimated as before except that now the changes in the spatial gra-
dients must be calculated with the registered frame pair. The new estimates for the

changes in gradients over the registered image pair are,

Al = W16 +14.6)=1(i-15 1)

-I(i+&+1,j+-3,£+1)+I(i+&—1,j+f/,t+1)] (5.23)

AL, = Wi G.j+10)=16E5~18)
~I(i+nj 4o+l t+1)FI{i+0g +5-1,t+1)] (5.24)
The iterative registration technique is employed with variable blurring to produce

a coarse-to-fine system of analysis. Images are blurred with a gaussian weighting func-
tion. In early iterations the standard deviation of the gaussian weighting function is
large. The standard deviation of the weighting function is reduced in each successive
iteration. At each level, the radius of the blurring function should be large enough to

guarantee that the brightness function is approximately linear over the maximum
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expected disparity from the registered images.

The size of the neighborhood from which the constraint equations are selected
must depend upon the amount which the images are blurred. At a coarse level of
analysis there is little detail which distinguishes nearby points. To obtain sufficiently
different constraint equations, the separation between observation points must be
increased; otherwise, the conditioning of the linear system will degenerate.

Our system contains four iterations which correspond to four levels of coarseness.
The blurring was accomplished by repeated convolution with a 3x3 kernel. The neigh-
bor size and the value of the standard deviation for the approximation to the gaussian

weighting function are given in table 5.2 for each of the four iterations.

Iteration | Blur Radius g Neighborhood Size |
—— .
1 7 2]
. 2 5 4
3 3.5 3
4 2 | 2
Table 5.2

A difficulty with the coarse-to-fine system is that the disparity estimates for sta-
tionary and slowly moving points made at coarse levels may be worse than the initie!’s
assumed zero vector. To insure that the new disparity estimate rnade at one level is
not worse than the value input into the level, we examine the error bound given by (5.7)
for both the initial and new estimates. If the error bound for the new estimate is

significantly larger than the bound for the old estimate, it is ignored.

5.1.5. Hybrid Techniques

Matching and gradient-based techniques have different strengths and weaknesses.
The performance characteristics of the two techninues are rec.procally related.
Matching techniques are capable of producing a sparse sampling of accurately deter-
mined disparity vectors. For many applications the vector density produced by match-

ing techniques is insufficient. Gradient-based techniques, on the other hand, generate
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dense fields but are susceptible to a variety of errors. Regions which undergo substan-
tial motion and contain nonlinearities in the brightness function are especially trouble-
some for gradient-based methods. Gradient techniques tend to work poorly near
occlusion boundaries, where the optical flow field is discontinuous. In contrast, match-
ing techniques usually work well at occlusion boundaries as these boundaries are often
associated with a distinctive change in surface reflectance. Some improvement can be
gained by combining the two methods to take advantage of their different strengths. In
this section we approach ways to combine matching and gradient-based techniques to
arise at a more robust, hybrid method which takes advantage of the strengths of both

matching and gradient-based approaches.

5.1.5.1. Local Averaging .

Usually, neighboring points in the image will move in a similar manner A good
prediction of a points motion can be obtained from by examining neighbors whose
motion is known. Closer neighbors are, in general, better predictors than are distant
neighbors. Thus, disparity at a point can be approximated by the average of nearby
estimates, weighted by the distance of the estimates to the point to be approximated.
This operation has two effects: the initial estimates are smoothed as they are averaged
with other nearby estimates; and the values of previously unknown points are interpo-
lated from the initial estimates. Computationally, the distance-weighted average can
be accomplished by a series of local averages.

A serious problem with simple averaging s that disparity values ca;n be inappropri-
ately combined across discontinuities in the optical flow fleld. Near abrupted changes
in disparity. the average of neighbors will usually be a poor predictor of the motions of
individual points. Not only will the averaging result in inaccurate interpolation, but the
tnitially correct values will be corrupted by smoothing with points moving in a very

different manner. The magnitude of this problem depends, in part, upon the form of
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the weighting tunction. 1f the variance of the weighting function is very small -- mean-
ing that nearby poi.nts‘ are weighted much more heavily than more distant points --
then serious miscalculations can be somewhat limited. However, the density and distri-
butior. of the initial estimates must also be considered. Even though nearby peints are
more heavily waited, if the nearest neighbor lies across a discontinuity ia disparity it

will provide a poor estimate of motion. Simple distance-weighted averaging. by itself, is
% not an effective means to generate a dense optical flow field from a sparse sarnpling of

disparity estimates in most situations.

5.1.5.2. Combining Average Motion and the Gradient Constraint

The gradient constraint provides a second source of information about motion.
The information available from the local average and the gradient constraint equation
are shown graphically in figure 5.7. To combine the gradient constraint with the esti-
mate provided by the motion of nearby point {(Z,7) we place our new estimate on the
line perpendicular to the gradient constraint equation which passes through (Z.7). We
expect that the true value of motion will lie between the average of neighbors and gra-
dient constraint equation — on the dashed line segment in figure 5.7. The exact posi-
tion in which we place the estimate should depend upon the relative confidence which
we have in the two sources of information.

Horn and Schunck have developed a method which combines the local average of
disparity and the gradient constraint equation [31,37]. Their technique minirmizes an
error norm based upon departure from smoothness in the flow field -- agreement with
the average of neighboring disparity values — and violation of the gradient constraint.
The computational method at which they arrive is equivalent to taking a weighted com-
bination of the average of neighboring disparity estimates (Z.7) and the point (up.vp)
on the gradient constraint line where the perpendicular in figure 5.7 intersects the gra-

dient constraint line. The weighting is determined by the magnitude of the spatial gra-
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Figure 57  The gradient constraint equation and the local average of disparity pro-
vide two sources of information amount motion.
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dients.

The Horn and Schunck technique can be initialized with a field of zero disparity
vectors. If the technique is to be used over a sequence of more than two irnages, the
results of the previous image pair can be used as an initial approximation of the flow
field. The method can also be seeded with estimates obtained elsewhere without violat-
ing the assumptions of the model [48].

As with simple averaging, the Horn and Schunck technique has difficulty near
discontinuities in the optical flow field. Gross miscalculations can be made where the
local average is based upon values which lie across a discontinuity in disparity. In sec-
tion 3.3.1 it was shown that the brightness gradients, on which the gradient constraint
equation is based, will be poorly estimated in regions where disparity is rapidly varying.
The brightness gradients will also be in error in regions where the brightness function
contains nonlin;arities and motion is large. The gradient measurement problem is
especially serious where surfaces have become occluded, disoccluded. or have lelt the
fleld of view between frames. Unfortunately, even though the error prone regions are
are localized and will usually comprise a small poi‘tion of the image, the errors can pro-

pagate throughout the image.

5.1.5.3. The Constrained Average

The difficulty encountered with averaging methods is that errors tend to pro-
pagate throughout the flow fleld, even though the problematic regions may be small
and localized. If poor estimates can be detected then the affects of the errors can
potentially be limited to the regions which are prone to have difficulty. We approach
the containment prpblem by introducing confidence into the estimation process. The
local average motion is computed as a the average of neighbors motions weighted by
their confidence. Since estimates contribute oniy in proportion to their confidence

"good” estimates which tend to propagate more eflectively. A new estimate of disparity

67




\

is obtained by combining the average of local disparity estimates and the gradient con-
straint line as in the Horn and Schunck technique. The constrained average approach
is schematically shown in figure 5.8. The frame pair is registered to take advantage of
intermediate disparity estimates. The registered gradient constraint equations are
computed as in the registered local optimization technique described above.

A confidence is assigried to the new estimate of disparity on the basis of

(1) the likelihood that the local average is in error,
(2) the likelihood that the gradient constraint equation is in error,
(3) the agreement between the average and the constraint equation, and

(4) abound on the error in the new disparity estimate.

The confidence in the local average is judged by the mean and variance of
confidences associated with the estimates which contribute to the average. Estimateg
contribute to the mean confidence and variance of confidence statistics in the same
proportion as they contribute to the average disparity estimate. Two confidences are
derivgd Irom the weighted average of confidences § and the inverse of the weighted
variance of confidences g,.

P =5 (6.25)
and

P2z — (5.26)
The confldence cstimate p, and p, represeat the likelihood that the average of local
that the local average of disparity estimates accurately predicts disparity.

The confidence in the correctness of the gradient constraint cquation is cvaluated
by examining the change in the spatial gradients over the sampling interval. Where A/,
and A/, arc large the gradicnt constraint cquation is likely to be in crror. This mcas-
ure was also used in the local optization method. As before, we estimate the error
causcd by nonlincarity in the brightness function by the ratio of the change in the spa-

tial gradients to the magnitude of the spatial gradient:
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5= YA tALT (5.27)
VIZ+ L,
and
ps= — (5.28)

st 1
The confidence value pg is sensitive to ohe condition which causes large errors in the
gradient constraint equation.

Inconsistencies between the local average of disparity and the gradient constraint
line are detected by examining the relationship between (Z.7) and the gradient con-
straint equation. The gradient constraint line should pass through the true value of
disparity and, where disparity varies smoothly, (Z.7) should lie near the true value of
disparity. If (&,7) is well separated from the gradient constraint line then it can be
inferred that one or the other is likely to be in error. A confldence value which indi-
cates the degree of agreement between (Z %) and the gradient constraint line is calcu-

lated as

S L

Pe= g (5.29)

where d is the minimum distance between the gradient constraint line and the local
average of disparity.

Once a new estimate of disparity has been calculated the difference between the

estimated value and the true value can be bounded by,

L
g, = = —_— (5.30)
w \% [82 + [y t
This error bound is used to obtain a confidence in the disparity estimate as
Ps= — (5.31)
t]z +1

The confldence ps was earlier introduced in the local optimization scheme.
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As in the local optimization technique, the separate confidence estimates are mui-
tiplicatively combined to arrive at a single estimate of the confidence in the disparity

estimate.




5.2. Results

The five methods described above,

(1) coarse-to-fine cross-correlation of feature points,

(2) relaxation feature point matching,

(3) simple local optimization,

(4) local optimization with coarse-to-fine iterative registration, and

(5) gradient constrained averaging initialized with matches obtained with the

cross-correlation procedure,

were programmed in the C language on a VAX-11/780. The methods were tested with
the two image pairs presented in figure 5.9.a and figure 5.9.b. In the first sequence the
camera was stationary. The scene contains a collection of toys. The two trains in the
center of the first image move toward each other in the second image. The second
sequence simulates a view from an aircralt flying over a city. The images where
obtained with a camera fixed on a tripod overlooking a model of downtown Minneapolis.
The scene consists of a receding ground plane on which lie a number of structures. The
top of the image is furthest from the observer. The carmera was moved forward and
tilted downward between the first and second frames. Ground truth data is not avail-
able for the sequences examined, so our evaluation will only be qualitative.

The results of the coarse-to-fine correlation matching are presented in figures
5.9.c and 5.9.d for the moving trains and simulated flyover, respectively. Disparity vec-
tors are displayed as a white line with a small square box at the vector's base. The
correlation program produces a match for every feature point identified by the lapla-
cian feature point selector. This means that incorrect matches will necessarily be
made for points which are visible only in the first frame. The correspondences selected
for these unmatchable points will, in general, produce low values of cross correlation.
Oniy those points for which the pseudo-normu:lized cross correlation was quite high
(p = .99) are displayed.
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(a) moving trains (b) simulated Ayover

{c) corrclation matching (d) corrclation matching

{e) relaxation labe.ing (f) relaxation labeling

Figure 5.9

Original images and disparity estimates from matching techniques
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The correlation method produces a sparse sampling of reasonably well distributed
points for both sequences. More errors are app.a_rent in the flyover sequence although
the percentage of correct disparity vectors in both fields is fairly high. Most of the
significant errors tend to be clustered in several small regions.

The disparity fields generated by the relaxation labeiing method are shown in
figure 5.9.e and figure 5.9.f for the moving trains and flyover sequences. To generate
the disparity flelds shown here, the label lists for all feature points were examined
after ten iterations of the relaxation procedure. Only labels for which the associated
confidence was high {p = .8) were accepted as matches and are displayed in figures
59eand 59 -

The performance of the relaxation technique is comparable to that of the correla-
tion method on the toy trains sequence. However, the two methods produce quite
different results for the flyover sequence. The disparity fleld obtained with the relaxa-
tion method is fairly accurate but very sparse. The flyover sequence has some particu-
larly .roublesome characteristics for the relaxation approach. The variance of the
disparity vectors is hugh so that nexghbors_!er}d little reinforcement. Also, the magrm-
tude of the disparity vectors at th\e edge of the image approaches the bound on the
region from which candidate matches are drawn.

The diflerence in the performance between the correlation and relaxation tech-
niques on the fiyover sequence emphasizes the dependency of these methods upon the
problem environment. [t is not possible to judge one technique as better than the
other on the basis of this difference alone. Before methods can be evaluated. the
requirernents of the task to be accomplished must be known and specifications
developed for the disparity analysis procedure.

Disparity flelds obtained with the simple local optimization technique are shown in
figure 5..0.a and figure 5..0.b for the moving trains and flyover scenes. Associated with

each vector is a confidence in the correctness of the value. A threshold on confidence
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(a) simple local optimization (b) simple local optimization

{c) itcrative registration (d) iterative registration

(e) constrained averaging (f) constrained averaging

Figure 5.10 Disparity estimates from gradient-based techniques.
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was established which produced a reasonably dense samplinzg of mostly correct values
Only vectors which exceeded the confidence threshold are displayed. The resulting
field was too dense to clearly display the entire field. Consequently, only 25% of the
vector field is shown in figures 5.10.a and 5.10.b

The results of the coarse-to-fine method of iterative refinement are shown in
figures 5.10.c and 5.:0.d. The disparity flelds obtained with the hybrid method which
combines the cross correlation approach with gradient constrained smoothing are
dispilayed (n figures 5..0.e and 5.:0.f. The hybrid estimates were the result of 16 itera-
tions of the constrained averaging technique described above. On each iteration the
lecal average was computed over a 5x5 window, centered on the point to be estimated,
for every point in the image. Confidence thresholds were established for both the
method of iterative registraticn and the hybrid technique which produced vector densi-
ties for the moving trains scene which were comparable to that obtained with simple
local optimization. The numeric values of the confidence thresholds are not meaning-
ful by themselves. The confidence values are obtained in a different manner in the
three different gradient techniques which a~e demonstrated here. The confidences are
not normalized and hence the values can not be compared across methods. The
disparity fields in figures 5.10.<, 5.10.d, 5.:0.e, and 5.10.f are also subsampled versions
of the actual fields — only 257 of the veclors are shown.

The disparity flelds obtained with the gradient-based techniques are all substan-
tially more dense than the flelds produced by the matching techniques. All of the
gradient-based techniques produce reasonably accurate results with the moving train
sequence. The simple local optimnization method seems to generate more errors with
the moving train scene than either of the other gradient-based techniques. The
method of iterative registration produces a field which is generally correct with a small
number of errars interspersed through most of the fleld. The best results are obtained

with the hybrid techrnuque; the few errors which are evident occur in 3 or 4 small
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regions.

The three techniques are more easily distinguished on the basis of their perfor-
mance with the flyover sequence. The simple local optimization method produces a
large number of errors even for the relatively sparse sampling of vectors displayed in
figure 5.10.a. The method of iterative registration and the hybrid technique generate
many fewer errors in flelds which are much more dense than that obtained with the
simple local optimization approach. Again, the most accurate results appear to be
obtained with the hybrid approach, although it is difficult to judge the magnitude of the
difference between the hybrid and iterative registration techniques without ground
truth data. |

Note, for the gradient-based techniques. the areas where very few vectors are
displayed. Disparity is poorly estimated in these regions and low values of confldence
are assigned to the estimates obtained there. The problematic regions are usually fit

into one or more of the following characterizations:

1. largely homogeneous regions,
2. highly textured regions which are moving, or

3. regions which contain large discontinuities in the flow field.

Disparity estimates obtained in homogeneous areas are likely to be in error because of
the poor propagation characteristics of linear systems constructed in these regions.
The temporal gradient is poorly measured in highly textured regions which undergo
significant motion. In regions which contain large discontinuities in the flow field the
temporal gradient is poorly estimated and the systems of equations from the region
are likely to contain inconsistencies.

It is interesting to compare the disparity fields produced by the hybrid technique
and the cross correlation method. Recall that the output of the cross correlation tech-
nique was used to initialize the constrained averaging. The gradient constrained

smoothing serves two purposes: {1) to fill out the sparse set of estimates obtained with
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cross correlations and (2) to increase the overall accuracy of estimates in the vector
fleld. An increase in density is clearly evident when comparing figures 5.9.c and 5.10.e
(remember that only 257% of the vector fleld is displayed in figure 5.10.e). The hybrid
method also appears to be significantly less prone to error. The improvement in accu-
racy accrues, in part, from the averaging of estimates and the additional constraint of
the gradient relationships. These factors act to produce better estirnates. Another
reason for the improvement is the power of the heuristics, developed earlier, to judge
the quality of the estimates. Not ;)nly are better estimates obtained but the confidence
value associated with the estimates allows the opportunity to select the appropriate
trade-off between accuracy and density.

The success with which confldence estimates predict the accuracy of disparity
estimates is demonstrated in figures 5.11.a, 5.11.b, 5.11.c, and 5.11.d. The disparity
field produced by the simple local optimization technique with the moving trains
sequence is displayed in with a low threshold on confidence in figure 5.11.a and a high
threshold in figure 5.11.b. As before, only 257% of the vectors which exceed the thres-
hold are displayed. Sirnilar thresholds are shown for the method of iterative registra-
tion in figures 5.11.c and 5.11.d. Only 15% of the vectors which exceed the thresholds
set for figures 5.11.c and 5.11.d are displayed. For both methods confldence provides a
reasonable index of the accuracy of disparity estimates. A sparse sampling of accurate
estimates exceeds the high confidence thresheold. When the threshold is lowered, more
dense flelds are obtained with a significantly greater number bad vectors.

Confldence is based upon a number of heuristics which identify conditions which
are likely lead to errors or indications that an estimate is in error. The usefulness of
the residual error in detecting errors made by the simple local optimization technique
is demonstrated in figure S5.11.e. This fleld was obtained with the moving trains
sequence. Only vectors which poorly satisfy the system of constraint equations on

which the estimate was based are displayed. Most of the vectors displayed are poor
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(e) simple local optimization (b) simple local optimization
(low threshold) (high threshold)

(c) itcrative registration (d) iterative registration
(low threshold) (high threshold)

(e) simple local optimization
(vectors with high residual)

Figure 5.11 Detecting errors with confidence.
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estimates of the actual disparity.

5.3. Summary

The results presented here highlight the intrinsic differences between matching
and gradient-based methods. Both matching approaches produced sparse samplings of
generally accurate vectors. The disparity flelds obtained with the gradient-based tech-
niques are much more dense than those produced by matching msthods. The increase
in density is achieved with little or no decrease in accuracy. Furthermore, by provid-
ing reliable confidence estimates, gradient-based methods provide an added flexibility
which is not available with matching techniques; the choice to trade density for accu-
racy is made explicit.

The dependency of performance upon the nature of the scene is evident from the
characteristics of the disparity flelds obtained with the two different scenes. Before
any particular technique is selected for a task, the methods must be studied within the
problem environment.

The gradient-based techniques which were implemented demonstrate the feas(bu-
ity of measuring the quality of disparity estimates. More study is required to better
understand the heuristics by which confidence is estimated. Gradient-based tech-
niques are susceptible to a variety of problems and tend to produce very poor esti-
mates in troublesome areas of the image, as is shown in figure 5.11.e. Without accurate
estimates of confidence, good estimates can not be distinguished from bad and
gradient-based techniques are of little use. With accurate confidence estimates, poor
disparity estimates can be filtered from the fleld and information can be propagated
from areas of high information content into areas of low information content.

The results show the improvement to be gained over simple local optimization by
iterative registration and coarse-to-fine analysis, particularly when motions are large

as in the flyover sequence. However, the best overall performance was obtained with
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the hybrid technique which combines correlation matching and gradient constrained
smoothing. The hybrid approach produced reasonably dense samplings of disparity

vectors for both sequences with a high level of accuracy.
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8. CONCLUSIONS

A number of conclusions can be draw from this study It is important to
emphasize, however, that this was a feasibility study and thus conclusions are only ten-
tative.

First of all, it is clear to us that disparity estimation techniques can not be
developed without careful consideration of the interpretive processes that will depend
on the estimates. Clear trade-offs exist between different aspects of performance. The
optimal mix of performance criteria will be application dependent. This application
dependence must be more precisely described before design specifications for a
disparity estimation system are developed. If generality across applications is desired,
then we strongly suspect that a variety of different algorithms will be required. (In
fact, there is evidence that the human visual system uses two quite different and
independent process to determine motion induced disparity {49].)

There are intrinsic limits to the precision with which disparity can be determined.
In a sense, all of the disparity estimation techniques that we have investigated depend
on the same sort of information in image sequences. These sequences {requently con-
tain large areas where disparity cannot be unambigucusly determined. This is particu-
larly true for large homogeneous regions or regions which contain only parailel linear
patterns. Image features such as noise also limit the accuracy of disparity estimation.
It is important to understand the nature and causes of these limits in order both to get
the best estimates possible and to design interpretation processes in a sensible
manner.

The computational requirements of real-time disparity estimation are substantial.
Processing rates in excess of 100 million operations per second may well be required.
It very high accuracy of individual estimates is required, at least some of these opera-
tions will likely involve floating point computations. The state of the art in high perfor-

mance computer architectures strongly suggests that data rates of this sort require
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highly structured, pipelinable algorithms. This is reinforced by the serial nature of the
outputs of most image sensors. Both the gradient and correlation techniques fit into
this form. Token matching systems involving any sort of cooperative computation do
pnot. We do not expect that such algorithms will be implementable in real-time unless
and until highly parallel architectures with complex interconnection networks are
available. Even the prototyping of such architectures is still some time away.

For those tasks requiring reasonably high density and dispersion of disparity esti-
mates, the gradient-based algorithms appear to be a promising choice. We have per-
formed an analysis of the limits on accuracy for such methods and have shown how
improved performance can be obtained in a number of situations. We have also shown
that the gradient techniques work best when an initial approximation is available for
disparity estimates. This suggests that a hybrid techniques be investigated in which a
sparse, initial estimate is obtained using cross-correlation and then a final, denser esti-

mate is obtained from a gradient-based method.
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7. COMPUTER ARCHITECTURES FOR DISPARITY ESTIMATION

7.1. Overview

A detailed architectural analysis of possibie implemer :ations of disparity estima-
tion techniques must wait until a more complete evaluation of potential algorithms has
been completed. It is possible, however, to make some relatively general observations
that may assist in choosing among algorithms of comparable performance.

All of our algorithm simulations have been performed on a medium capacity gen-
eral purpose computer {a VAX-11/780). Simulation performance has in general been
several orders of magnitude slower than "real-time”. Processing times vary, depending
on the algorithm, from a fraction of a minute to many minutes for a single frame pair.
For a given form of disparity analysis. processing speeds can only be improved through
faster processing elernents or the utilization of parallel computations. The VAX is capa-
ble of performing on the order of one million computational operations a second. The
se of very high speed general purpose processing elements would yield on the order of
a ten fold performance increase, though at substantial expense. Additional speed ups
must come {rom some form of parallelism. Even with substantial parallelism, however,
obtaining real time performance will be difficult. For examiple, a hundred feld increase
in processing throughput will typically require significantly more than one hundred
processors operating in parallel with algorithms carefully tailored to support the paral-

lelism.

7.2. Quantifying Performance .

The concept of real-time performance must be precisely quantified in the design
specifications for any disparity analysis system implemented in hardware. Informaily,
real-time performance implies that over an extended period of time, the device can

operate at a speed compatible with the incoming image data. That is, the throughput
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of the device must match the incoming data rate. A more precise specification
requires a complete task description. The incoming data rate must be specified with
respect to number of pixels per frame, number of frames per second, and average and
peak disparities within each frame. The quality of the input signal is also important as
Increased noise will lead to greater processing requirements.

Throughput is not the only important characterization of processing speed. Not
only must the input data rate be accommodated, but any significant change in the
input must be signaled in the output within a reasonable amount of time. Thus,
latency eflects must also be included in the specifications. Again, this becomes task
specific. Some tasks require very short response times. For others, somewhat longer
response times can be tolerated. Throughput and latency requirements often work
against one another. Throughput can be increased by using pipelining, but long pipe-
lines will increase the latency of the system.

Throughput may also be inoreased by exploiting the temporal redundancy in
image sequences. In most environments, motion is relatively constant. Knowing the
image dynarmics at one point in time provides a reliabie estimate of future changes in
the image. As a result, many dynamic properties need not be computed for each
frame pair, but instead can be computed over a much longer sequence of trames. For
example, several of the gradient based techniques require many iterations to produce
reliable results. These iterations can be performed repeatedly over the same frame
pair. However, if motions are relatively constant, each succeeding iteration can be
done over the next frame pair in the sequence. In fact, this produces an additional
benefit of averaging out the effects of uncorrelated image noise. Dependence on this
effect has important performance implications. First, the task specification must be
such that it is reasonable to assume relatively constant motion. Should motions
change significantly at some point, many frame pairs will be required for the system to

reconverge. Thus, latency will increase significantly when motions change.
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Finally, the nature of sensors used by the system may have architectural implica-
tions. In particular, almost all current sensors provide data in a raster format. A
linearized byte stream is produced corresponding to some particular scanning pattern
on the image. As a result, architectures well suited to raster processing may prove

more efficient that those using some other organization such as SIMD parallelism.

7.3. Parallelism

Parallel processing in image understanding is possible because many computa-
tional processes can be perfcrmed in a independent manner at many image locations
simultaneously. Thus, these operations (or portions of the operations) can be executed
on separate processors. The type of parallel architecture is determined by the way in
which the computational operations are partitioned out onto separate processors and
the data rate, topology, and synchronizations required for interprocessor communica-

tion.—

7.3.1, Plpe!ine Architectures

Pipelining is possible when spatially distinct and independent computational
operations consist of a linear sequence of sub-operations. With pipelining. the parallel-
ism occurs over this sequence of sub-operations, not over spatial position in the image.
Separate processors are assigned to each sub-operation. Data is passed from one pro-
cessor to the next in sequence. When one processor in the pipeline is finished with a
particular computation at a particular irmage location, it can start on the same compu-
tation at the next location without having to wait for the completion of processing ele-
ments farther down the pipeline. Ten processing elements in a pipeline can thus result
in a ten-fold increase in throughput, provided all elements perform tasks of compar-

able complexity.
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For a DIDA system, two forms of pipelining are possible. On a small scale, many of
the possible 'algorithms depend on structured computations consisting of vector opera-
tions such as dot products. Such computations are particularly well suited for pipelin-
ing. Infact, many commercial vector processors use pipeline architectures specifically
intended for dot product style computations. Furthermore, this small scale pipelining
is well suited to several of the signal processing architectures being developed for the
VHSIC program. On a larger scale, many disparity estimation algorithms consist a
sequence of complex but independent computational procedures. For example, the
gradient techniques involve blurring each image, finding gradients, solving constraint
equations, flltering out inconsistent results, and, possibly, iterating the whole process
with more reflned initial estimates of disparity. Each of these procedures could be

implemented as a step in a pipelined computational system.

7.4. Processor Arrays —_

Image understanding computations can also be partitioned by dividing up the
problem into spatially distinct components and then executing each component on a
separate processor. Because this collectt.ion of processors now has a direct geometric
correspondence to the original image, this organization is often referred to as a proces-
sor array. The primary limitation of processor array architectures comes from prob-
lems with inter-processor communications and synchronization. Typically. sratially
distinct operations are not in fact entirely independent. Processor arrays are severely
limited in the complexity of interconnections that can be implemented. If the algo-
rithm requires a substantial amount of interaction between processors, any potential
improvement in processing power can be lost to communications overhead. This is
particularly true for smaller scale parallelism in which a relatively few number of pro-

cessors is ech responsible for computations over a relatively large portion of each

image. The problem may be less severe, at least for some tasks, as the number of pro-
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cessors increases and, correspondingly, the function of each processor is simplified. In
the limiting case, it is likely to be desirable to have one processor for each pixel in the
image. Unfortunately, this is well beyond the state of the art in terms of our ability to
tabricate processors. At the present time we have only a limited understanding of how
to design image processing algorithms for such an architecture. In addition, this large
scale parallelism would require parallel access to input data, another feature not

currently realizable.

7.5. Architectural Considerations for Gradient Techniques

The gradient based techniques are well suited to parallel implementation. As they
involve substantial amounts of computation, the exploitation of this potential parallel-
ism is crucial to real-time implementation. The following paragraphs give an overview
of some of the architectural possibilities for computing gradient-based disparity esti-
mation devices. A more compte .nalysis should wait until mere precise performance
criteria are developed and appropriate techniques are selected.

The local optimization techniques consist of three major steps:

1. Compute the gradient constraint equations.
2. Calculate the solution to the linear system of iocal constraint equations.

3. Estimate the confidence for the disparity estimate.

All these operations can Be independently performed at each position in the image. As
a result, they can easily be decomposed into a pipelined crganization. Accuracy can be
improved by a variety of iterative refinement techniques in which disparity estimates
obtained at one step of the process are used to re-register local image regions and
then the estirnation process is repeated. It may also be desirable to modify the blur-
ring function during the iterative process and so implement a coarse-to-fine analysis.
To perform iterative reflnement of estimates the output of each stage of processing

must be fed back into the system. If the processing elements of the system are dupli-
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cated, this can be done in a pipelined manner. A sequence of identical processors
would be connected such that each processor performed one step in the iteration.

Gradient-based smoothing consists of four rriajor steps:

1. Compute the average of neighboring disparity estimates.
2 Calculate a confidence in the average disparity estimate.
3. Compute the gradient constraint equation.

4. Combine the average estimate and the gradient constraint equation to arrive

at a new estimate for disparity

‘This sequence is repetitively performed to smooth a sparse sampling of poeints obtained
from the cross correlator. Here again, a sequence of operations is performed and the
operations are limited to small independent neighborhoods of the image. 'thus. pipelin-
ing is straightforwardly implemented. —

Within each of the operational steps discussed above, there are highly structured
numeric computations. Gradient es:imations, solutions to over-determined linear sys-
tems of equations, residual vector computations, and local averaging can all be
described in terms of a limited set of vector and matrix operat'ons. These operations
can be implemented in high speed pipelined hardware by exploiting the highly struc-
tured pature of matrix arithmetic. Thus, major portions of the techniques can be
decomposed into pipelinable components, each of which can be impiemented with pipe-

lined arthimetic operations.
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B g TIMMENDATIONS

We recommend that the next stage of the DIDA project concentrate primarily on
the development of design specifications sufficiently precise so that continued eflorts
at system development will be focused in productive directions. Development of these
specifications requires continued activity in three related areas: Specification of goal
dependencies, criteria selection, and data base generation. Work in these areas will
lead to meaningful design specification and also aid in the study of new and improved

algorithms initiated during the current contract period.

B.1. Criteria Selection

The successful prototyping of hardware for real-time disparity analysis depends on
the existence of precise and realistic preformance criteria. These criteria must be
specified with a view towards utility, feasibility, and veriflability.

The criteria under which a particular algorithm tan be evaluated have been infor-
mally described above. These criteria need to be lormally specified in any continued
eflort. Accuracy specifies the average precision of the disparity field. Accuracy shouid
be separately specified with respect to magnitude and orientation. Jensity specifies
the number of points in the image assigned a disparity value. Scene dependency
specifies how accuracy varies as a function of different scene properties (eg. accuracy
near object edges vs. accuracy in the center of large surfaces). Start-up end hys-
teresis specify the behavior of the algorithm on the first few frames of a sequence or
when major changes occur in scene dynamics. Graceful degradation specifies the
effectiveness of an algorithm as boundary conditions are approached with respect to

noise, maximum disparity. or difficult scene types.
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8.2. Goal Dependency

Certain performance criteria that are important for particular scene types and
interpretation tasks are relatively unimportant for other types of scenes and interpre-
tation. It is extremely important that follow-up work describe a range of realistic
scengrios for which disparity analysis might prove useful. A set of problem domains
should be described informally with respect to sensor type, the nature of objects and
surfaces, and possible object and sensor dynamics (and thus properties such as resolu-
tion and maximum disparity). These descriptions should be produced with the advice
and assistance of the technical monitor at the Avionics Laboratory. The necessary
requirements for at least four interpretive tasks should be specified: map matching,

3-D model matching, obstacle avoidance, and segmentation.

8.3. Data Base

In order to_evaluate disparity estimation techniques, a standard lata base of
relevant image sequences is required, along with the "correct” interpretations of those
sequences. The data base should contain long image sequences coverig all of the
problem domains and interpretation tasks that are a part of relevant scenarios. Real
imagery will require that “truth” data be acquired through other sensors o some form
of interactive analysis. Synthetic imagery must be generated in a mannerwhich avoids
artifacts that effect the performance of analysis algorithms. It is sujgested that
AFWAL/AAA take the lead in this activity.

8.4. Demonstration of Algorithms

In order to gain experience with both the evaluation process and disparity estima-
tion algorithms with the potential for real-time implementation, we suggest that four
state-of-the-art algerithms be demonstrated with respect to the formal ewluation cri-

teria. Based on our experience during the current contract period, we recommend
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that algorithms to be demonstrated include temporal-spatial gradient analysis, token
matching. image matching (cross-correlation), and a technique combining gradient
analysis and token matching. Once the utility of the evaluation process has been
demonstrated, additional algorithms, possibly written by a variety of research groups,

should be tested. Again, this activity should be centered at AFWAL/AAA.

8.5. Algorithm Development

Work under the current contract has successfully produced an analytical examina-
tion of the intrinsic limitations of several state-of-the-art algorithms. This analysis is
being used to modify these algorithms so as to improve performance. We are particu-
larly interested in a number of hybrid approaches which can combine the strengths of
severa] different existing approaches. We hope to continue both analytical and empiri-

cal studies for algorithm development.
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