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1. INTRODUCTION

This report examines the feasibility of developing a device for the real-time esti-

mation of motion induced disparity in image sequences. The report describes the

nature of the disparity estimation problem and suggests criteria by which methods for

estimating disparity can be evaluated. It includes a theoretical analysis of one class of

estimation methods and shows how such an analysis can lead to improved pertor-

mance. The results obtained from a variety of estimation algorithms are demonstrated

on a limited sample of dynamic imagery. Finally, suggestions are provided for continu-

ing activities in this program.

1.1. Motion Induced Disparity

Positional changes between an image sensor and objects in the environment can

be described by using the concept of optical flow. The optical flow field specifies the

instantaneous velocity on the image plane for every visible point on object surfaces.

Non-zero values can occur due to object and/or sensor motion. Optical flow patterns

can be used to estimate the direction of observer motion, the orientation of surfaces,

the location of occlusion boundaries, and the relative distance to objects.

Since input is normally sampled at discrete moments in time, the image of a sur-

face feature can translate significantly between frames. Borrowing from the terminol-

ogy of stereo vision, we refer to this inter-frame translation as dispaitUy. For purposes

of interpretation, disparity values must be known over a reasonably dense sampling of

image points. Thus, the disparity determination process must contend with the simul-

taneous tracking of a large number of points. Tracking only the most distinctive image

features will not provide a sufficiently dense sampling of points. Consequently. the pro-

cedure which selects points to track must target imperfect feature points which may

not be easily found in the subsequent frame or for which many ambiguous matches are

possible.
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The intrinsic difficulty of disparity determination is compounded by the need for

real-time computation in many applications. Processing throughput of upwards of 2

million pixels per second may be required. Real-time implementation will be possible

only if algorithms and processor architectures are carefully matched.

1.Z Background

While the determination of disparity in most realistic environments is extremely

difficult, a number of reasonably successful systems have been demonstrated over the

past several years. Three classes of approaches have been developed: temporal-

spatial gradient analysis, matching, and differencing techniques. Each approach has

both advantages and disadvantages with respect to effectiveness, generality. and

efficiency.

1.a.1. Temporal-spatial Gradient Analysis

Temporal-spatial gradient analysis uses the change in intensity at an image point

over both time and space to estimate the rate of translation of the underlying surface.

It allows a point-by-point determination of disparity based on purely local criteria

without the need to examine long sequences [I], [2]. [3]. The process can be illus-

trated with a one-dimensional example. In figure 1.1, a surface characterized by an

intensity wedge in the image is moving to the right. By measuring the slope of the

wedge and the change in intensity at zo, it is possible to determine the amount of

translation. The technique can be extended to two-dimensional translation using

several different techniques.

Temporal-spatial gradient analysis has been shown to be effective over a fairly

broad range of imagery. It is reasonably efficient and hardware implementations for

restricted forms have already been developed. Subpixel accuracy in determinin the

magnitude of disparity vectors may be possible Problems include potential difficulties
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Figure 1.1 The intensity wedge represented by the diagonal ine at to moves dz
along the x axis to t 1, musing a change in intensity of di.

in regions which large variations in disparity exist, errors generated by brightness vari-

ations due to causes other than motion, difficulty in accurately approximating the tem-

poral and spatial gradients, and senstivity to small measurement errors in regions of

the image where the spatial gradients are nearly constant.

1.ZZ MaLching

The most direct approach to the correspondence problem is matching. A set of

structures is identifled in one image frame and then an organized search for the

corresponding structure is performed in subsequent frames. Usually, some optirmiza-

tion criteria is required in order ftn( the "best" match for each structure. This may

depend on properties of the structures, the relationships between structures, or both.
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Matching can be done at the level of small image segments [4], [5], derived feature

points [6], [7], [8], [9]. [10], or image regions likely to correspond.to full object sur-

faces [ii]. The criteria functions can range from simple cross-correlation [4], [5], to

complex and sophisticated graph-matching procedures [ 12].

The most straightforward matching techniques operate directly on intensity

values. Individual, small regions are isolated in one image frame and used as tem-

plates. These regions may be located on a regular grid, but usually some attempt is

made to choose only those regions that have a high information content, and hence a

high probability of being accurately matched. For example, regions that have sharp

autocorrelation peak can be chosen [13]. Corresponding regions are then searched for

in a second frame using some form of cross correlation '13], [14], [15]. Such methods

are computationally expensive. While some efficiencies are possible [16]. much effort

is still required to avoid false matches and to perform the matching at a dense enough

sampling of points to be useful. Another problem with direct image matching is that

the correct match for a template taken from one image may lie in a relatively dis-

torted region in another image (because of surface relief, rotation, etc.). If this effect

is to be accounted for, more degrees of freedom are introduced into the matching pro-

cess and the computational efficiency suffers. Furthermore, the effect is more pro-

nounced for larger templates.

As an alternative, it is possible to locate features points in an image and to match

these feature points rather than the raw imagery 19], 0], [6], 77], [8]. Usable feature

points range from local maximum of variability to image regions resulting from exten-

sive segmentation operations. These smbolic matchi g techniques have several

advantages. The amount of data to be processed can be szgniflcantly reduced. The

number of possible matches which must be considered is often much less than that

required for correlation based approaches, allowing both computational and represen-

tational efficiencies. Finally, carefully chosen feature points may minimize the effects
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of luminance and geometric changes that can cause major difficulties for template

matching systems. The major difficulty with symbolic matching is reliably determining

structures to be matched.

1.2.3. Differencing

Differencing techniques start with a point by point determination of significant

changes in image intensity. Often, this can be efficiently done by subtracting two

image frames and thresholding the result. Clusters of points with above threshold

differences correspond to portions of moving surfaces. The interiors of homogeneous

image regions will not generate a difference, however, even if the corresponding sur-

face is moving. Thus, longer sequences must be observed or more sophisticated, non-

local analysis applied in order to determine surface boundaries. Once this is done, the

rate of translation can be estimated by matching surfaces in different frames or by

direct analysis of a sequence of difference pictures F17]' -18]. i19]. -

Differencing is a particularly efficient technique for dealing with some image

sequences. The differencing operation itself is easily implemented. For a fixed sensor

and an environment in which only a small portion of the scene is moving, no change will

be evident over most of the image. By concentrating only on differences, significant

data reduction is possible. Important limitations include difficulties with situations in

which most or all of an image is changing over time (such as with observer motion),

problems with occlusion boundaries between two moving objects, and imprecision in

the disparity estimates. This in turn limits the generality of the differencing approach

and it will not be discussed further in this report.

1.24. Interpretation

Disparity fields provide important information about the relative spatial position

and velocity of a sensor and visible objects and surfaces. If the sensor is following a
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know trajectory through an otherwise static environment, precise three-dimensional

shape information about that environment can be obtained. If moving objects are

present, some shape properties can still be determined even though the actual dis-

tance from sensor to object is no longer easily computable. With minimal knowledge

about object type and motion, disparity analysis still allows target cueing and object

boundary identification.

If a sensor moves with known velocity along a known path, simple trigonometric

relationships can be used to determine distance to a surface directly from disparity

(eg. [20], [21]). This "motion stereo" technique has been extensively studied, though as

yet no procedures exist for rapidly computing disparity values with sufficient precision

to allow accurate depth estimation over a broad range of scene types.

Many of the most important applications of disparity analysis arise in situations in

which sensor trajectory and/or velocity is not known with precision. For example, if a

sensor is -not rotating, the relative orientation between the sensor's optical aids and

direction of travel can be found by locating the focus of expansion of the disparity field.

In the same situation. the orientation of visible surfaces relative to the sensor can be

found, even though nothing is known about sensor velocity [22]!

In even less constrained situations, it is still possible to use disparity values to

locate occlusion boundaries and thus find object boundaries and depth discontinuities.

Gradual changes over space in disparity correspond to continuous surfaces while

abrupt changes correspond to depth discontinuities. Additional analysis allows deter-

mination of which side of the boundary corresponds to the occluding surface.

1.3 Need For ConUnued Sudy

In order to design and construct a disparity estimation system, three aspects of

dynamic image analysis must be studied: effectiveness, generality, and efficiency. In

addition, efforts must be made to understand the interrelationships between these pro-
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perties.

Effectiveness is a measure of the accuracy and utility of the analysis system.

Methods are required which estimate optical flow with greater precision and at a

denser sampling of points on the image plane than is currently possible. Limits on

accuracy of interpretation processes must be studied. Mechanisms for systematically

evaluating effectiveness should be created.

The generRZty of existing methods is seldom discussed explicitly. In fact, all

methods presume constraints upon scene type, scene dynamics, camera model, and

image properties As an example, some techniques work orly for a fixed sensor and

moving objects while others work only for a moving sensor in an otherwise stationary

environment. A better understanding of the need for these Limiting constraints is

required.

Efficiency is obviously important if dynamic image analysis is to be used in any

real-time applications. Two forms of efficiency must-be considered: throughput (the

input data rate that can be accommodated) and latency (the time between activity in

the scene and the production of a description of that activity Efficiency is not just an

issue of clever hardware design. Algorithms must be structured in a "conceptually

efficient" manner so that they easily map onto appropriate computer architectures.

7!
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Z 9VALUATION

It would be most desirable to find an estimation technique which would be able to

calculate disparity at every point in the image with arbitrary precision. Unfortunately,

the ambiguity of the problem, noise in the data, and the restrictions of time and space

make it unreasonable to expect anything approaching perfect performance. Accepting

that errors are inevitable, the next problem is to find the estimation technique which

produces the best results and to judge whether or not performance is satisfactory to

accomplish a desired goal. The definitions of the best result and satisfactory perfor-

mance will depend upon the objectives of the system. For example, some navigation

tasks require that disparity be know very accurately but only at a small number of

points. Other tasks, such as segmentation, require a dense sampling of disparity vec-

tors which need be known with relatively little accuracy. Thus, the criteria which are

used to evaluate disparity estimation techniques must depend upon the task to be

accomplished. I
The performance of a technique will be affected by the environment in which it is

used. The nature of surface reflectance, the number and size of objects in the scene,

and the characteristics of the motion can all affect the quality of the results. Some

techniques are designed for constrained motions and will only work only in very special

environments. Before an estimation technique can be evaluated, the environment in

which the technique will operate must be specified.

The problem domain will determine both the task to l-e accomplished and the

environment in which the task will be performed. The relationship between the prob-

lem domain and performance evaluation is diagrammed in figure 2.1. Throughout this

report we will be examining the performance requirements demanded of disparity esti-

mation techniques by application tasks and the performance dependencies of estima-

tion techniques.

|| i , ,8



Problem Domain

Environment Task

properties: requirements:
indoor/outdoor accuracy
object motions density
camcra motions throughput
distance to surfaces latency
surface sizes location

hnic ! Evaluation

properties: criteria:
brightness function accuracy
optical flow ficid dcnsity

occlusion edges dispersion
number of moving objects scene dependency
complexity of motion start-up and hysteresis

gracc of dcgradation
computational

characteristics

Estimation Techiquc

Figure 2.1 The relationship between the problem domain and evaluation of disparity
estimation techniques.

In this section we will examine the nature of the information which is available

from optical flow and identify the features of optical flow estimates which are required

to ret-ieve this information. By way of example we will introduce three specific prob-

lems for which optical flow can provide important information and describe the charac-
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teristics of the estimation technique which are important to each application.

Through our study of the intrinsic information content in flow fields we will infer

the important properties of flow field estimates which determine the capability of

interpretation methods to retrieve information about the scene. We will arrive at a set

of characteristics which describe the important aspects of performance for estimation

techniques. Each application which is based upon optical flow will depend upon a sub-

set of these performance features.

2. 1. Goal Dependency

Optical flow can provide useful information about the structure and dynamics of a

three-dimensional scene. The optical flow field is determined by the positions and posi-

tional changes of objects in the scene relative to the camera. The extent to which this

information is recoverable depends upon the constraints which can be placed upon

envirornment. If an accurate camera model is available__and sufficient information

about the movement of objects and the sensor is available, depth relationships may be

found by triangulation. Likewise, if there exists an accurate description of the spatial

layout of a scene, the location and motion of the camera can be specified.

Important information about position and motion can also be obtained in less con-

strained situations. If an observer is moving through a static world both the direction

of motion and the orientation of visible surfaces are computable without knowing the

observer's speed. Even when moving objects are present, successive views of a scene

can yield information about the location and nature of occlusion boundaries. Under

relatively general viewing conditions moving targets can be located against a stationary

background, objects which lie on a collision path with the observer can be detected,

and the time to collision can be estimated.

Interpretation of optical flow to recover motion and shape information requires

that optical flow be estimated from a sequence of discrete images. The knowledge

10



which can be gained from optical flow field estimates directly depends upon the perfor-

mance characteristics of the estimator. In the next section we identify a set of

features which characterize the important aspects of optical flow estimation. Specific

methods are introduced to measure the performance of estimation techniques with

respect to some of the features. For other features more qualitative judgements are

suggested Each feature is important for some interpretation task but may not be

relevant to others. The feature set, by itself, provides a descriptive tool for character-

izing the performance of disparity analysis techniques. When coupled with a problem

specification in which the requirements of the estimator are clearly delineated, the

feature measurements can be used to evaluate the appropriateness of estimation tech-

niques.

Before introducing the feature set we will consider three applications areas for

which optical flow estimation is important. This analysis will illustrate the importance

of a variety of features and the differential requirements of different problem areas.

Z.I1. Navigation

Optical dow has proven to be useful for autonomous vehicle guidance in a variety

of contexts r23,24.25]. If the environment is familiar, optical fow can be used to orient

the vehicle with respect to a map of the environment. When an accurate map of the

environment is not available, optical flow can be used to create a three-dimensional

description of the area under view. This can be used to create a map, to dynamically

determine goals (eg. possible targets), or to avoid obstacles.

The location and velocity of a moving observer can be computed from the dispar-

ity of a small number of control points in dynamic imagery. The position of the control

points must known very accurately in the maps coordinate system. Determination of

position and velocity with this method requires prior knowledge about the topography

of the environment at selected points and the ability to identilfy map control points in

11



the image.

If the three-dimensional structure of the environment is highly varied, as in an

urban environment or in ruggee terrain, then three-dimensional descriptions of the

scene can be matched with a three-dimensional model of the environment to deter-

mine the location and velocity of the sensor. Assuming that the vehicle is traveling

through a static environment, depth relations in the scene can be computed from flow

vectors. The accuracy requirements here are much less strir4ent than for the control

point method presented above, however, a much more dense sampling of estimates is

required. Distinctive features in the depth map, constructed from the image sequence.

can be compared with a stored representation of the environment to place the vehicle

within a model of the environment.

Even where little is known about the makeup of the environment, optical flow can

provide important information for guidance and navigation. Consider the problem of

maneuvering a land based vehicle through an obstacle course. All that is known is that

the vehicle lies on a relatively flat surface on which also lie a number of stationary rigid

objects. A rover on mars might face such a situation '24]. !f the vehicle can monitor

its motions by means of an inertial guidance system or if as in [241] camera motions are

independently manipulated while the rover is stationary, then the distance to surfaces

can be computed. This information can be used to move through the environment and

to construct a model of the environment.

In situations where observer motions can not be determined, optical flow can still

be used to make qua. itative inferences about the structure of the environment [26,27.

The location surface boundaries, the relative positions of objects, the number of

objects, the positions of obstacles with respect to the path of the vehicle, and the time

to collision of with objects in the path of a moving camera are all potentially derivable

from optical flow. Discontinuities in the flow field correspond to depth discontinuities.

Occlusion boundaries can be found by examining the discontinuities in the flow field.

12



This requires that disparity be known near the occlusion boundaries in the image.

Expansion and contraction of the flow field is related to the approach and withdrawl of

surfaces. This information is critical to avoid collisions. To assure that no objects in

the field of view escape the attention of the collision avoidance system, disparity must

be calculated over the entire image.

The accuracy required of optical flow determination for use by qualitative tech-

niques is not yet well understood. Some preliminary results indicate that it may be

desirable to integrate the estimation of disparity with the interpretation of spatial rela-

tionships when qualitative information is sought (271. In such a sitation, it is more

sensible to talk about the accuracy of the estimated spatial properties than the accu-

racy of the optical flow estimates.

a 1.2. Terrain Mapping

Aerial photographs can be used to automatically map the topology of the ground

below. If the position and orientation of the camera at the time each image was taken

are known, then the depth to each point in the image can be obtained by triangulation.

Elevation maps are conventionally constructed by hand, matching points between tem-

porally adjacent pairs of images from an aerial sequence. The matching process is

time consuming, expensive, and error prone. Optical flow estimation techniques offer

the potential to automate a large portion of this work.

The camera position and orientation can be derived from the disparity of ground

control points. Markers which are highly distinctive (in the image) are identified on the

ground. These markers may be a natural part of the scene, such as a radio tower, or

may be placed there specifically for the camera calibration. The coordinates of the

markers must be precisely measured on the ground. The camera position and orienta-

tion can be calculated by reversing the procedure used for elevation determination.

Knowing the locations of a small number of control points in two images and the post-
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tions of the control points in some coordinate scheme allows the position and orienta-

tion of the camera to be obtained by triangulation. This process is essentially the same

as was encountered in navigation when solving for observer position and motion.

While both camera modeling and elevation estimation depend upon disparity esti-

mates, the two processes place very different requirements on the estimation tech-

niques. Disparity need be known at only a small number of points in order to solve for

the camera model and these points are usually chosen to be highly distinctive and

hence, easy to match. Because the solution methods for calculating the camera model

tend to be ill-conditioned, disparity must be know very precisely at the control points.

In contrast, detailed mapping requires that disparity be known over most of the

image. This necessitates the estimation of disparity at a dense sampling of points. In

regions where disparity can not be well estimated at each point, estimates must be well

distributed so that there are not large regions of the image for which elevation is not

known. While the accuracy of the depth measurements is dependent upon the accu-

racy of the disparity measurement on which it is based, the calculations are much less

sensitive to errors than the camera modeling schemes.

Z 1.3. Targe. Cueing

Most applications of optical flow analysis depend in large part on inferring depth

relationships in the scene under view. Optical flow analysis may also be used, however,

to locate areas of potential interest in an image without any direct concern for deter-

mining actual spatial relationships. In particular, optical flow analysis is useful for cue-

ing on targets moving against a stationary background. This is possible even if the sen-

sor is moving, resulting in a continually changing image of the background.

There are two possible approaches to dynamic target cueing using optical flow

information. The optical flow field can be used to register subsequent frames to facili-

tate simple change detection techniques. The flow fields may also be used directly for

14



mo,-ing object detection.

A variety of techniques have been proposed for detecting differences in two or

more image frames (eg. [28]). Most use the same basic approach. First, the frame are

registered with one another. This is usually done by identifying a set of recognizable

tie po nts in each image. The tie points are used to solve for an interpolation function

that can be used to map all images into the same spatial coordinate system. Once this

registration has been performed, some type of pointwise difference function is applied

to pairs of frames in the sequence. The difference function can be as simpie as the

subtraction of the corresponding pixels, followed by a search for differences above

some threshold. Often, preprocessing and/or more sophisticated tests for signficant

differences are used.

A primary advantage of this change detection approach is its computational sim-

plicity which can be exploited to ease problems with real-time implementations. There

are several difficulties with the approach. however, Tie-points must be known with

great accuracy. This may not be possible if there are few highly distinguishable points

in view or if the background is moving rapidly relative to the sensor. At best, only a

sparse sampling of tie-points is usually available. For this reason and because of the

desire to limit computational complexity, interpolation is usually performed using a

low order polynomial function. Such interpolation techniques are likely to result in

relatively large errors in areas of the image where disparities are changing rapidly due

to changes in depth in the original scene. As a result, many false positive responses

are likely to occur in these regions.

An alternate approach is to use optical flow analysis and a moving sensor to

directly locate moving targets. If a sensor moves over a static background, the result-

ing dfisparity field will appear to expand radially from a point known as the focus of

expansion (FOE). Given a flow field, it is relatively easy to solve for the location of this

point in image coordinates. If there are moving objects in the field of view, but they
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make up only a relatively small portion of the image, then it is still possible to solve for

the FOE in a robust manner. Knowing the FOE places a directional constraint on the

disparity of all points associated -Ath the background. Any disparity not radiating out

from the FOE must be associated with a moving object, The major difficulty is for

objects with motions that coincidentally satisfy this constraint. In most situations, the

constraint will only be satisfied monentarily. Motion of the sensor will quickly lead to

detection of the target. It is also possible to look for rapidly changing disparity values

along lines radiating from the FOE. If the change is too large to be accounted for by an

expected change in depth, then it is due to a moving object.

a. Evaluatiou Criteria

In the last section several specific problems which make use of optical flow where

introduced. Consideration of the requirements of different applications demonstrated

how interpretation algorithms depend upon the performance of estimation techniques,

The different requirements are suimmarized in table 2.1. The important characteristics

of optical flow field estimates are surveyed in this section.

2.?-1. Accuracy

The accuracy of disparity estimates over an area of the image S can be deter-

mined from the average error in the estimates. The expected error is simply

E( = s (2.1)

where wr is the estimate of disparity at the point (i,j) and wi is the true value of

disparity:

and w =
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Problem Interpretation Requirements
Task

density accuracy location

point low high control
matching points

navigation unknown _
environment Idepth -- high moderate distinctive

matching regions

collision ! high unknown everywhere
avoidance

navigation known
environment occlusion moderate unknown near

boundary occlusion
detection edges

camera low high control

model points

I surface high moderate everywhere
elevation

change moderate moderate target and*cueing detection background

Table 2.1 Characteristics of optical flow field estimates required by different appLi-
cation tasks.

A major difficulty in estinating the accuracy of a disparity field is to determine the

ground truth against which the estimates are to be compared. The acquisition of

ground truth data is discussed in detail in the next section
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Frequently. an index of the accuracy of an estimate is generated with the disparity

estimate. This index can be treated as the confidence that the estimator has in its

estimate. It would be desirable to consider the additional information which

confidence provides when evaluating the accuracy of a disparity field. One measure of

accuracy which reflects the confidence in the estimates is the average of the estima-

tion errors weighted by the confdence in the estimate:

EC~S)- $  p (2.3)

S

where p. is the confidence in disparity estimated at the point li,j)

It is also inportant to know how well a technique is able to judge its own perfor-

trance This requires that the association between the confidence estimate and the

true error in the disparity estimate be specified. Confidence can be interpreted as a

measure of the expected accuracy in the estimate. At low values of confidence the

magnltude of the error is likely to be !arge. One estimate of the eftectiveness with

which confidence predicts accuracy is the correlation between the expected error E

and confidence To calculate an expected error for values of the continuous confidence

variable p, we divide confidence into n subranges. p(1),p( 2 ).....p(n). Let be the

expected error for estimates within the subrange of confidence p(i). The correlation

between the confidence and the expected error in the disparity estimate is given by

n- - P
r = (2.4)

For some applications only one component of disparity is relevant. An observer

translating through a static environment can determine the distance to surfaces know-

ing only the magniTude of disparity. In the same context, the focus of expansion of the

flow field can be estimated from the orientation of disparity vectors. When attempting

18



to distinguish a moving object against a large background, small changes in vector

orientation are much inure significant than small changes in the magnitude of dispar-

ity. To judge the appropriateness of disparity analysis techniques for these applica-

tions, accuracy measurements should be resolved into orientation and magnitude com-

ponents.

2.2.2. Density and Dispersion

The density of the disparity field and the dispersion of the estimates across the

field are important characteristics of an estimator. The density of disparity estimates

over an area S on the image can be found by

ZB(i~j)
= S(2.5)

S

where,

I if disparity estimated at (ij)

B(') = 0 if disparity not estimated at (ij)

In this formulation p varies between 0 (no estimates are present in S) and 1 (disparity

is estimated at every point in S).

Measuring density by (2.5) assumes that at each point a disparity estimate is

either available or not. This approach does not take into account the certainty of the

estimate. The density of the estimates can be treated as a measurement of the

amount of information which the estimation technique has extracted about an area.

Another way to capture the amount of information acquired over an area is to examine

integral of confidence over the area. If the confidence estimates are closely associated

with the likelihood that an estimate is in error then the knowledge which is contained

in a field of estimates can be measured by

-= (2.6)
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where, as before, 1., is the confidence in

In many circumstances the dispersion of disparity estimates is as important as

the accuracy or density of estimates. If all of the knowledge which is acquired from the

image is concentrated in a few small areas then little can be inferred about the three-

dimensional structure of the image. Dispersion characterizes the way in which the

estimated disparity vectors are distributed over the image As a trivial example of the

importance of dispersion, consider the value of a system only capable of estimating

disparities in the upper right corner of the image.

For many applications, it is desirable that estimated values be distributed in an

approximately uniform fashion over the field of view. This property can be described

by a measurement of nconditionai dispersion. The dispersion of disparity estimates is

strongly tied to the dispersion of motion information. Thus, the dispersion of estimates

is likely to be quite sensitive to the characteristics of the imagery. Textureless regions

contain no information about motion. Consequently, it would be expected that esti-

mates, for any disparity analysis technique, would be concentrated in more textured

areas. The dispersion of the vectors will be highly dependent upon the amount of tex-

ture and dispersion of texture in the image. Statistical characterizations such as

entropy can be used to quantify the unconditional dispersion of disparity estimates.

The effectiveness of some forms of analysis depends hea-vily on the conditiona!

dispers-ion of estimated values. For example, if it is important to find depth discon-

tinuities which correspond to object boundaries, then evaluation techniques must

determine the dispersion of estimated disparity values in the vicinity of all such boun-

daries in the original scene. Conditional dispersion is more difficult to quantify. Its

measurement depends on the availability of a complete task description along with a

model of the scene under view.
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2.2.3. Scene Dependency

Some problems require that optical flow be known only at specific locations in the

image. For example, to segment the image into continuous surfaces it is necessary

that disparity estimates be obtained near occlusion boundaries. Disparity need be

known only at a some set of control points to calculate camera motion parameters. It

is important to understand how disparity estimation techniques perform in semanti-

cally important regions of the image.

Frequently, the environment in which the disparity is to be estimated is very

stereotyped. The size, shape, and reflectance characteristics of the objects which are

to be observed may be known in advance. The camera and objects motions may be Lm-

ited. The lighting conditions could be adaptive under the control of the observer In

order to take advantage of these constraints and to understand the limitations which

these constraints place upon disparity estimation it is necessary to characterize how

performance depends upon the viewing context. Among the important features of the

environment are:

1. The number and size of the objects in the scene.

2. The reflectance characteristics of the objects and the background -- most

importantly, the amount of texture.

3. Allowable camera motions.

4. Allowable object motions.

The list above should not be considered as comprehensive. As problem domains are

better understood new aspects of the environment are Likely to prove to be as impor-

tant as those above.
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2.2.4. Start-up and Hysteresis Characteristics

The population of visible object points iS continually changing in a dynamic scene.

Points appear and disappear at the border of the image as new objects enter and leave

the field of view. Surfaces occlude and disocclude the objects behind them. The

appearance and disappearance of object points in the scene can be a source of infor-

mation about the scene. Examination of the regions of accretion and deletion which

surround moving objects can be used to determine which surface is in front of the

other. Unfortunately, the appearance and disappearance of object points can also con-

found techniques which estimate optical flow.

Abrupt changes in scene dynamics can also be a potential source of difficulty.

Rapid accelerations and decelerations, as might be observed when two moving objects

collide, and sudden, changes in view can lead to significant breakdowns in disparity esti-

mation.

The manner in which techniques respond to changes in the makeup of the image

and changes in scene dynamics are important features of disparity estimation tech-

niques. Both the magnitude of the degradation in performance and the length of time

which it takes to recover must be considered. For techniques which depend upon the

output of one stage to initialize the processing in the next time interval the start-up

characteristics should be understood.

2.2.5. Grace of Degradation

The manner in which techniques fail is an important characteristic of their perf or-

mance. If procedures are robust, small changes in the scene should not lead to a

significant deterioration in performance. However, robustness is a difficult trait to

quantify. One way to roughly gauge the grace with which a procedure fails is to slowly

introduce noise into the scene and observe the performance degradation Here, noise

is taken as any facet of the dynamic scene which is know to degrade performance. The
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rate at which performance declines is an indication of the robustness of the procedure.

When performance deteriorates it is often helpful to be aware of the degradation.

Many disparity analysis techniques provide a measure of the quality of estimates. Such

measures of confidence can be used by higher level processes to adapt to the loss in

performance. Serious errors in interpretation can be avoided by delaying judgements

until better estimates are available or by basing interpretation upon earlier estimates.

Techniques for evaluating confidence estimation procedures were discussed in section

2.2.i. The importance of accurately measuring confidence is that the affect of break-

downs in performance can be minimized.

2. 2.6. Computational Characteristics

Many applications of dynamic image analysis must be performed in real-time. If

real-time performance is to be obtained the amount computation and the nature of

computational processes which can be performed must be severely constrained.

A variety of architectures have been recently developed to implement image pro-

cessing algorithms. (See, for example, £29].) The degree to which algorithms- can be

mapped into feasible architectures will determine their suitability for real-time appli-

cations.

Algorithms with a high degree of parallelism are well suited to real-time architec-

tures. Image processing necessitates the processing of a large amount data. In order

to efficiently process whole images, algorithms must be structured as a large number

of local independent processes. Interactions among processes should be minimal and

highly localized.

Computations which are necessarily serial are best structured as a sequence of

independent computations. If each successive operation is not contingent upon the

results of prior or future processing then the computations can be adapted to pipeline

architectures.
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The ability to decompose an estimation technique into parallel algorithms and

pipeline processes is an important characteristic for real-time applications

Z 3. Determining Ground Truth

In order to determine the accuracy of disparity estimates the "true" optical flow

field must be known. The accuracy of the ground truth data limits the quality of the

evaluation -- estimates can be judged to be no more accurate than the standard

against which they are compared. As might be expected, determination of ground

truth optical flow is a very difficult problem, otherwise the approximation techniques

described in this report would not be of interest. Disparity can be estimated in a

variety of ways which are practical for special circumstances or which are prohibitively

expensive or too time consuming for general use. These techniques can, however, be

used to validate more general purpose approaches.

In real-world environments, optical flow can be computed if the geometry of the

environment and the photographic conditions are well known. The location of an object

point in the image can be predicted from the three-dimensional position of a visible

object point, the location and orientation of the camera, and the optics of the camera

system. For most environments, precise three-dimensional position is available for

only a few points in the field of view. Consequently, disparity can only be determined

for a small number of points.

For some indoor problem environments representative scenes can be selected and

the camera and object positions can be measured. It is also possible to construct phy-

sical models of environments in which it is unreasonable to perform positional meas-

urements directly. The simulated environment must be realistic, containing all of the

potential difficulties which might be encountered in the problem environment. The

ground terrain belt developed at Wright-Patterson Air Force Avionics Laboratory is a

good example of a simulated environment.
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Range sensing devices such as radar or sonar can be used to acquire a depth map

of the scene, where they are available Alternatively, depth can be estimated by means

of artificial illumination, commonly called structured light. Grid projection and lasar

light sources are are frequently used to calculate range by triangulation between the

light source and a single camera. Structured light can also be used to simplify dispar-

ity estimation with two cameras. Illumination of single points in the scene trivializes

the identification of correspondences in the frame pair Sim.Aarly, line or grid projec-

tion greatly simplifies the correspondence problem

Disparity can be estimated by visual inspection of a frame pair by a human

observer. Tipological maps are commonly obtained from aerial imagery in this

manner '30]. Depth may be judged monocularly. by matching points between images

on their two-dimensional appearance, or binocularly, by using a. stereoscopic display

The process is too time consuming for most applications but offers potential for the

collection of ground truth data.

Optical flow need not be known at every point in the image to evaluation disparity

analysis techniques. An accurate estimation of performance can be obtained with only

a small number of points by using statistical polling techniques. The population of

points must by sufficiently large to contain a representative sampling of values across

the range of important environmental and image properties. Alternatively, the sample

of points could be selected to cover the range of important environmental and image

properties where they are known.

The accuracy of the ground truth estimates can be improved, relative to the esti-

mates of approximation techniques, by basing the ground truth upon an oversampled

image. The performance of disparity analysis techniques on an undersampled data set

can be compared to ground truth estimates based upon the more densely sampled

image.
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Ground truth determination is a significant unsolved problem. No current method

is completely satisfactory. Collection of a standard data base of image sequences with

accurate ground truth measurements would make an important contribution to the

vision research community.
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3. AN ANALYSIS OF THE GRADIENT-BASED APPROACH

The choice of a disparity analysis algorithm should depend upon the performance

characteristics of the estimation technique and the performance requirements of the

task to be performed. For a variety of problems, gradient-based methods offer

significant advantages over matching techniques for estimating disparity. The most

salient difference between matching and gradient-based approaches is the density of

points on the image plane at which disparity can be estimated. Matching techniques

are highly sensitive to ambiguity among the structures to be matched Disparity can

be accurately estimated for only highly distinguishable regions This means that

disparity can only be determined at a sparse sampling of points across the image.

Furthermore, it is computationally impractical to estimate matches for a large

number of points. The gradient-based approach allows disparity to be simply com-

puted at a more dense sampling of points than can be obtained with matching

methods.

Gradient-based techniques avoid the difficult task of finding distinguishable

regions or points of interest. The gradient approach leads to algorithms which are

characterized by simple computations localized to small regions of the image. These

techniques can be applied over the entire image. As we shall see in the analysis that

follows, the gradient technique is also sensitive to ambiguous areas - no technique

can locally determine the motion of a homogeneous region. The loss of precision in

ambiguous areas can be quantified. This allows poor estimates to be filtered from the

flow field. The measurement of the accuracy of disparity estimates can be obtained as

a by-product of the estimation process and requires little additional computation.

Gradient-based techniques offer the additional advantage that estimates can

potentially be made with sub-pixel accuracy without resorting to complex interpolation

functions. A third advantage to gradient-based techniques is that the computational

structure is simple and may be adapted to special purpose architectures.
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The gradient-based approach for estimating disparity has been widely studied,

[2,1,3,3!,32,33,34,35,36]. A number of algorithms have been proposed with variations

and enhancements to improve performance. This section examines the causes of error

and the error propagation characteristics of one class of gradient-based algorithms.

By understanding how errors arise in disparity estimates we are able to define the

inherent limitations of the technique, obtain estimates of the accuracy of computed

values, enhance the performance of the technique, and demonstrate the informative

value of some types of errors.

3. 1. The Gradient Constraint Equation

The gradient constraint equation can be derived as a Taylor series expansion of

the image brightness function. It is assumed that the observed brightness (intensity

on the image plane) of any object point is constant. Let brightness at a point p = (zy)

on the image, observed at time t, be represented by f(z,',t). Consider a point which

is displaced by the vector (6z,6y) over the interval 6t.

I(X,Yt) = I(X+6z,y+6y,t+dt) (3.1)

Following [31] we expand the image brightness function in a Taylor's series around

the poin (z,y,t) to obtain

I(Z+6z,y+6y,t+6t) = I(z,y,t) + L6Z + -y + 2-t + (3.2)

where the remainder, E, consists of the higher order terms of the expansion. Assuming

that 6z and dy vary with 6t we can express e as O(6t). Subtracting I(zx,,t) from both

sides of (3.2) and using the constant brightness assumption formalized in (3.1) we have

81 81 f0= 6z + -6y + 6R + 0(6t) (3.3)

To find a expression which relates velocity on the image plane to the gradients of

brightncss wc dividc (3.3) by 6t and obtain
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O=1f 6 z 8! 6y 8 e
0 f ax 11 + L_+ 1-0t) (34)0 x -t 3T . at

Taking the lirmit of (3.4) as 6t -.0, we arrive at the gradient constraint equation:

0 = aI d + aIdy_+ 21_ (3.5)
Oz & ay dt at

The gradient constraint equation relates velocity on the image plane to the spatial and

temporal gradients of brightness. For convenience we will make the following nota-

tional substitutions:

U='- v = dt
dt d

IV It % = = 3-T

The gradient constraint equation can now be stated more compactly as

0 = I.,U + IY V + It (3.6)
In order to avoid a confusion between the three-dimensional velocity of a point in space

and the two-dimensional velocity of a point on the image plane we will borrow from the

terminology of stereo vision and call motion on the image plane disparity. Use of the

term disparity also emphasizes that although the gradient-based approach is based

upon a continuous lmage function, the technique will always be performed on imagery

which is discretely sampled in time and space.

3.2. Gradient Based Algorithms

The gradient constraint equation does not by itself provide a means for calculating

disparity. The equation only constrains the values of u and v to lie on a line in dispar-

ity space.

The gradient constraint is usually coupled with an assumption that nearby points

move in a like manner to arrive at algorithms which solve for disparity. Groups of con-

strain equations are used to collectively constrain the disparity at a pucel. Constraint

lines are combined in one of three ways. The aLustering approach 1,31 operates glo-

bally, looking for groups of constraint lines with coinciding points of intersection in
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disparity space. Methods of LocaL optirization ,32,33,34,35,361 solve a set of constraint

lines from a small neighborhood as a system of linear equations. GlobzL optimizoton

(31,37] techniques minimize an error function based upon the gradient constraint and

an assumption of local smoothness of disparity variations over the entire image.

We will examine the local optimization technique in detail. In later sections of the

report we will discuss some implications of our analysis for other approaches.

3.3. Local Optimization

The method of local optinization estimates disparity by solving a group of gra-

dient constraint lines obtained from a small region of the image as a system of Linear

equations. Two constraint lines are sufficient to arrive at a unique solution for (uii)

More than two equations may be included in the system to reduce the affects of errors

in the constraint lines. The solution to the over-determined system may be found by

any of a number of methods which seek to find a solution which best agrees with a

population of constraint lines.

We will begin by examining errors in two equation systems. The pair of equations

which we will solve to estimate disparity at point p1 = (z ,jt,) is

(i 4 4 +I~v = -h
j) U + = - (3.7)

where the gradients/:,Iv , and It in equations i andj are evaluated at nearby points pi

and p).

The gradients in the system (3.7) are estimated from discrete images and will be

inaccurate due to noise in the imaging process and sampling measurement error. Also,

the values of (uv) at ph and p are assumed to be the same. The formulation will be

incorrect to the extent that disparity differs between the two points. We will examine

how gradient estimation error and error resulting from nonconstant disparity leads to

errors in the estimated disparity.
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3.3. 1. Gradient Measurement Error

The estimates of the intensity gradient I4, /,, and I will be corrupted by errors in

the brightness estimates and inaccuracies introduced by sampling the brightness func-

tion discretely in time and space. The error in the brightness function is random and

results from a variety of sources such as channel noise and quantization of brightness

levels. The brightness error is approximately additive and independent among neigh-

boring pixels. The gradient, estimated from changes in the brightness estimates, will

contain a component of random error which is distributed like the error in the bright-

ness function. The random component of the gradient error will be additive and

independent of the magnitude of the gradient to the extent that the brightness noise is

additive.

The brightness function is sampled discretely in tune and space and this will intro-

duce a systematic measurement error into the estimate of the gradient. The gradient

sampling error depends upon the second and higher derivatives of the brightness func-

tion. To demonstrate the relationship between the sampling error in ?. and the deriva-

tives of brightness we can expand the brightness function evaluated at (x+Ax-,y,t)

around the point (x,y,t) producing

I(x+Az1,t)=(z,yt) + tA~z + hl=L.x2 + h.o.t. (3.8)
where 1,, f. are the partial derivatives of brightness in the x direction evaluated at

(zyt). Rearranging terms we obtain an estimate for the brightness gradient in the z

direction:

7. - (zA jt,-xy.t) -

The error in the estimate is

tj., *,ig,) & 2 (3.0)

Likewise, the sampling error in the estimates of 1. and It are given by

s /, .. ,, ) i ll , A t  2 ( :3 1 2 )
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The sampling error for the spatial gradients depends upon the spatial resolution of the

camera, &x and Ay, and the second spatial derivatives of the brightness function, I.,

I. , which in turn depend upon the reflectance characteristics of the surface in view

The sampling error for the temporal gradient, etr~tp- ), is influenced by the frame

rate, At, and the higher order derivatives of the brightness function over time.

As the gradient constraint equation relates the temporal gradient to the spatial

gradients and disparity, the higher order temporal derivatives of the brightness func-

tion are related to the higher order spatial derivatives of brightness and the charac-

teristics of the motion on the image plane. Differentiating the gradient constraint

equation with respect to x, y, and t we obtain the following three equations:

a+ ax/U + r, _L YYV+ . -L- = -Ifty (3.114)

IU + I-, -2 + + I- -It (3.15)at at
Where the second derivatives of the brightness function eist and are continuous, the

left hand sides of equations (3.13) and (3.14) can be substituted for I, and It in (3.15).

Collecting terms we see that
..in fu r,.] 1 a,.

[U liV ~~J 11 :azj

, a + a = (3.16)

The first term in (3.16) depends upon disparity while the r st of the left hand side

depends upon the derivatives of disparity over time and space. If disparity is appruxi-

mately constant in a small neighborhood and approximately constant over time at each

point on the image then

r1  ["' (3 .17 )
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In summary, then, the systematic errors in the gradients which make up the

coefficients of (3.7) are given by (3.9), (3. '0), and (3. 1:) Under the assumption of con-

stant disparity over time and space, the systematic error in the temporal derivative is

srgampling ~3A2.~];z;jj(31)

The systematic error in estimating It increases as the square of disparity. It is also

in.Nenred by the derivativs of disparity and the first and s rnnd spatial derivatives of

brightness. If disparity is significant (3 18) can become quite large and substantially

&ter ou- estimatp of 1.

3.3.2. Nonuniformity in the Disparity Field

The estimation scheme which we have been analyzing has assumed that velocity on

the image plane is constant in some small neighborhood. This will be true only for very

special surfaces and motions. The estimates we obtain will be in error to the extent

that disparity varies in the neighborhood which we cover in onur equation set The true

set of equations in (3.7) should actually be

W£ 1.U + IV = -It(319
(j) h(u+AU) + 4,jV +AV) (319)

The difference between the true solution and our estimate can be treated as an error

on the right hand side by distributing the multiplication on the left hand side of (3. 19)

and moving the terms which contain a change in disparity to the right hand side giving

(j) 4 Is+4V =-~( 3 ~--~ (3.20)
(I) & + 1 V = -

The error caused by the assumnptioa of constant disparity can be treated just as an

extra additive error in the estimate of g.
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3.3.3. Error Propagation

The accuracy of the estimated values of u and v depends upon the magnitude of

the errors in the gradient constraint equations and the propagation characteristics of

the system or equations which is solved. In this section we examine the error propaga-

tion characteristics of the linear system which is solved to estimate disparity.

If the gradients are known exactly and disparity is constant then

Gw = b (3.21)

where,

w = v I= and b=[ (3.22)

As before, the rows of G and b are taken from a point p, and its neighbor pi. The vector

w will be in error to the degree that the gradient measurements are inaccurate and

disparity variets between points pi and p1 . The previous section showed that the error

accrued when u and v are not constant is the same as that which would be obtained if

the b vector is suitably modiied as iD (3.20). This error will be absorbed on the right

hand side of (3.21). Thus, the system which is actually solved is

(G + E) (w + 6w) = b + 6b (3.23)
where,

E = ,b= (fu+ivd) and 6w [: (3.24)

Distributing the multiplication of (G + E) and rearranging terms we see tLhat

G w + 6w) = b + 5b - EUw + 6,#) (3.25)

Consequently,

W + 6M = G-'[b + 6b- ] w + 5w) (3.26)

Since w = G-1b we have

dw = G-' b - :, - w) (3.27)
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The vector dw is the absolute error in the disparity estimate. The absolut.-, error

depends upon the inverse of the matrix of spatial gradients, the error vectors, and the

disparity vector itself.

Let us divide 6w into two components

dw = 6wA, - &w,*, (3.28)

where,

6wu. = G-E'w + 6w) and 6w ., = G-2 6b (3.29)

This decomposition separates 6w into two components which depend principally upon

errors in the left and right hand sides of (3.2:). To see how large these errors might be

we take the norms of 6w,#, and 6wih and ftnd that

ll6V 1 I, G-1 
l (El(w" + 6w) (3.30)

and

II w h I I I I 6bt (3.31)

It follows directly from (3.30) that

I! w~1. G-1  E cond(1G)
W + "6W G (3.32)

Where, the condition number, represented by cond(G), is deftned to be the value of

IIG 1G- for any nonsingular matrix G 1381. Since Gw = b, we know that

ll" Gl (3.33)

Dividing (3.31) by (3.33):
I wM I! ____J , bi'

IiW--- rlbi - condd(G) lb3.34)
l1 wli ji bil *

The relative error in both components depends upon the condition number of the

matrix of spatial gradients. In turn, the condiaomt.kg ot the G inatrix is determined by

the nature of the brightness function over the interval (Ap,). We can express the spa-

tial gradients at pj as a function in terms of the spatial gradients and higher order

derivatives of the brightness function at the point p. Expanding the brightness gra-

dient evaluated at p in a Taylor's series around the point p, we obtain
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I 3 zy.) T~zy,)+ I~~y.)x+ I(Lyty + hot. (3.35)

and

&(z7,qt ) = Iv(x,±,) +IV(z1 .Y,,t)Ay + ,(x,,y,,t)Ay + h.o.t. (3.38)

where,

Az =x1 -zj and Ay = y,-yl
Approximating the gradient at pi by the frst three terms of the Taylor's series expan-

sions mi (3.35) and (3.3.) wc arrivc at an cxprcsscn for thc rnatrix of spatial dcr'va-

tive s:

All of the terms in (3.37) are evaluated at R. Without loss of generality, we can rotate

the spatial coordinates so that at the point A. in the new coordinate system (x.yt),

1-7 = 17. 0 

The simplifled matrix of spatial derivatives is

G= IIz Ax rg Iyfy (3.38)

The inverse of (3.38) is easily calculated as

G-1 = lyI + 1I7Ay - 1 (-39

'z'7YYY - !71, Ax- 1 1 + f=AX 1.'
The magnitude of JIG- I1 depends upon the drst and second derivatives of brightness

and the relative position of the two points at which the brightness function is evaluated.

The second derivatives clearly must be nonzero or G witl be singular and G-1 will not

exist.

Measurement errors in the brightness gradients are multiplied by G-1 to deter-

mine to ausolute error in the disparity estimate. It would seem that the disparity esti-

mate would be most accurate when I G-' I1 is smallest. This is true for the random com-

ponent of measurement error and the portion of error due to nonconstant disparity

However, the opposite may be true for the systematic measurement errors.
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The propagation of systematic measurement error is complicated by the fact that

both G and the systematic measurement errors in the gradients depend upon the

nature of the second derivatives of brightness. The systematic errors in !_. 7,,, and 7 ,

increase with the magnitudes of the higher order derivatives of brightness. The magni-

tude of II GI' also depends, in part, upon the magnitude of the second (and higher

order) derivatives of brightness. For a given brightness function, we are free to choose

the direction and distance of the neighboring point which contributes the second equa-

tion to the linear system. This determines the difference vector ( .z,by) in (3 39) Let

us ftx the distance to the neighbor and assume that the orientation of the difference

vector is chosen so as to minimize the norm of (3.39). Under these circumstances,

increases in the second derivative can lead to a reduction in the magnitude of " G- ':!

The systematic measurement error and the random measurement error are oppo-

sitely affected by variations in the Linearity of the brightness function. If the spatial

gradients are nearly constant then random measurement errors and the error due to

non-constant disparity will be greatly magnifted in the solution vector If, however, the

spatial gradients rapidly vary then the solution vector may be overly corrupted by the

systematic measurement error. Accurate estimates can be reached only when both

sources of error are relatively small.

The systematic error in the temporal gradient increases as the square of the mag-

nitude of disparity. So, if disparity is constant then the systematic error in the tem-

poral gradient is negligible and most accurate estimates will be obtained when the

brightness function is very nonlinear. In regions where disparity is large the sys-

tematic error in the temporal gradient will be very sensitive to nonlinearities in the

brightness function and the best estimates will be obtained when the brightness func-

tion is approximately linear over the region of translation.
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The propagation characteristics of G can be improved by incr-asing the distance,

d. to the neighbor which contributes the second constraint equaL'on. The risk in

choosing neighbors over too great a distance is that the error due to nonconstant

disparity will become very large. Disparity will tend to vary smoothly across object

surfaces. If neighbors lie on a different surfaces their motions may differ substantially.

As the distance to the neighbor is increased it becomes more Likely that the diJference

in disparity between neighbors will contribute a significant error to the system.

The error in the estimate of disparity is determined by the characteristics of the

disparity field, the nature of the brightness function, and the selection of rule for con-

structing the linear system. These parameters interact in a complex way to determine

the accuracy of the local optimization scheme More study is required to better under-

stand the this interaction before precise performance bounds can be obtained for the

technique.
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4. ALGORITHM E ENSIONS BASED UPON ERROR ANALYSIS

The previous section identified the major determinants of error for disparity

estimated from a gradient-based method. In this section knowledge about the causes

of errors is used to explain how errors can be reduced and to introduce techniques to

judge the accuracy of estimates. The improvements in performance are based upon

parameter selection and preprocessing of the image to extract the most information

from a region while minimizing the intrusions of error A method of iterative

refinement r35] is also described.

By examining the image sequence for the conditions which lead to errors we can

judge the accuracy with which estimates :an be made before the estimate is actually

made. Examination of the disparity estimate itself can provide additional information

about the precision of the estimate. Together, a priori and a posteriri estimates of

accuracy provide a useful heuristic for evaluating the precision of disparity estimates.

4. 1. fror Reduction Techniques

Several techniques can be used to improve the accuracy of the disparity estimates

obtained with the local optimization technique. Blurring the image will reduce non-

linearities in the brightness funciton and consequently diminish the systematic error

in the gradient estimates. Blurring will also worsen the propagation characteristics of

the linear system causing random measurement errors and the errors due to noncon-

stant disparity to be magnified. Hence, blurring is desirable only in regions where the

systematic error is predominant.

As noted in the last section, the systematic error in the gradients depends upon

the nonlinearity of the brightness function over the sampling interval. For the ten-

poral gradient. the systematic measurement error depends upon the linearity of the

brightness function over the region of motion and the variations of disparity over time

and space. Blurring will be most effective in portions of the image which undergo a
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translation through a region of nonlinearity. The degree of blurring should be

sufficient to linearize the brightness function over the region of translation.

The damage which blurring does to the propagation characteristics of the linear

system can be counterbalanced by increasing the size of the neighborhood over which

the system is constructed. The risk incurred by enlarging the area from which the

constraint equations are drawn is that the motion of the points may differ

signiftcantly, as could happen if points lied on two different surfaces. The selection of

the radius of blur and the neighborhood size must be made judiciously so as to avoid

increasing the error in the solution vector.

Until this point we have ignored the problem of selecting the direction in which the

neighbor is to be chosen to form the linear system. From our previous discussion of

error propagation it is clear that the choice of direction can dramatically affect the

error in the disparity estimate. One way to circumvent the difficulty of choosing an

appropriate direction is to construct an over-determined set of equations from points

in many directions. The over-determined system can be solved by minimizing the resi-

dual over possible values of disparity. The conditioning of the over-determined system

is about the same as the conditioning a system based upon the optimal pair of equa-

tions in the set. The norm which is minimized may have an important affect on the

sensitivity of the system to some kinds of errors. More study is required to determine

the influence of the minimization criteria on the accuracy of solutions. Another

approach is to perform the analysis separately in a number of directions and then seek

a consensus among solutions [39]. If the errors are random then the estimates will

tend to be distributed about the true value of disparity. Both approaches have the

advantage of extracting the important information about motion from a region without

explicitly searching for where the information is concentrated.

If disparity is known approximately then this knowledge can be used to reduce the

error in the local optimization technique. Let ; be a three-dimensional vector which
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describes the velocity of an object point through the three-dimensional image function

1(z,y,t). Let w be the true disparity, and 6w be the difference between the true

disparity and the estimate. It follows from our definitions that

w, + 6w =w (4.)
where,

w= w= V and 6w 6V (4.2)

The derivative of brightness in the direction of the estimated disparity is

I- = + I1 ; + , (4.3)

Using the gradient constraint equation and substituting for It we see that

I. = I&u + I V - 12u - IvV (4.4)V!

and consequently,

0 = 1. 6U + I6V & + / (.5
V

Equation (4.5) is a more general form of the gradient constraint equation which

relates the gradient in an arbitrary direction to the spatial gradients and disparity

The derivative in the direction of the motion estimate can be approximated by

1. = !(X+ t,y+,t+6t) - I(zy,t) (4.6)V

If the disparity cstimatc is (0,0,1) thcn I=It and wc obtain the familiar gradicnt con-

straint equation. All of the analysis performed thus far applies to the more general

form of the gradient constraint equation.

We can use the general form of the gradient constraint equation to refine an esti-

mate w by solving for dw. This process can be performed iteratively to find succes-

sively better estimates of disparity. An improvement can be expected, on the average,

whenever successive estimates are closer to the true disparity-

41



al w , .1 11 6 w t 1=1. ... ( 4 .7 )
The improvement arises from successively better estimates of the directional deriva-

tivc I. As was dcmonstratcd carlicr in cqua tion (3.16) the systcmatic crror in thc csti-
U,

mate of temporal derivative grows as the square of disparity. The same relationship is

true for direction derivative I- and the disparity difference in the general constraint
V

equation.

Solving lor the difference between an estimate of disparity and the true disparity

is corrputationally equivalent to registering a portion of an image pair and estimating

the change of position in the adjusted sequence For this reason the technique has

been called iterative re;istrmtio rL35]. The estimate of disparity may be derived from

estimates made at some previous time or from prior processing on a single frame pair.

Note that if the inequality of (4.7) does not hold then the error might be expected

to increase. If an estimate of disparity is poor then the refinement effort may lead to

an even larger error. The next section is devoted to methods to evaluate the quality of

disparity estimates. A measure of the accuracy of a disparity estimate can be used to

judge whether or not the estimate should be used for registration. Alternatively, the

degree of registration can be based upon the confidence which can be put in the

disparity estimate, the more accurate the estimate is judged to be, the more that the

frame pair should be adjusted in the direction of the estimate

The iterative registration technique can be combined with variable blurring to pro-

duce a coarse-to-flne system for estimating disparity 35]. Disparity is roughly

estimated with an image sequence which has been blurred sufficiently to linearize the

brightness function over the maximum expected displacement. The coarse estimate of

disparity is used, at each point, to register a small region of the image at a finer level

of resolution. This process is repeated at successively finer levels of resolution.
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How much advantage can be gained from iterative registration? Motion

differentiads will be the same for all registrations. Thus, the error due to incompatibili-

ties among equations in the linear system is unaIected by iterative registration. Also,

the estimate of the directional gradient will contain some amount of random measure-

ment error even if successive frames are in perfect registration The propagation of

these errors depends primarily upon the magnitude o! !'G- ' ! We can ,iot expect to

reduce the error in w below that caused by random error in I and nonconstant dispar-
V

ity through iterative registration,

While preforming a coarse-to-fine registration the degree of blurring at each stage

should be appropriate to the expected error in disparity estimated at the next more

coarse level of analysis. In the absence of knowledge about the motions of individual

points the blurring must be performed uniformly across the image. While the error

will, on the average, be reduced for points which translate significantly. the error will

tend to be increased for points which are stationary or move very little No benefit is

obtained by linearizing the brightness ftunction at stationary regions and the error pro-

pagation characteristics are worsened. Some of the accuracy lost at stationary regions

during coarse processing might be recovered at fner levels but, in general, the best

estimates could be obtained at a fine level without registration. In the next section

methods are developed to estimate the accuracy of disparity estimates. This informa-

tion can be used in the coarse-to-ine system of iterative registration to judge whether

an improvement has been obtained at each level. A priori estimates of the magnitude

of disparity are also developed in the next section. The iterative registration technique

can be improved by adapting the technique to knowledge about the accuracy of esti-

mates and the magnitude of motion.
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4.2 Estimating Eror

Many of the factors which lead to errors in the local optimization estimation tech-

naque can be identified and measured from the image. The error propagation charac-

teristics of the Linear system Gw=b can be estimated from the matrix of spatial gra-

dients. Random errors in the estimates of the gradients and errors due to variations in

the disparity field are magnified by II II in the solution vector. The degree to which

relative errors are magnified is indicated by cond(G). Regions of the image for which

the propagation characteristics are poor will be very sensitive to small measurement

errors in the gradients. The disparity estimates obtained in these regions are likely to

be inaccurate.

The systematic measurement error in it was shown to depend upon the inearity of

the brightness function over the interval of translation. One way to measure of the

nonlinearity of the brightness function, suggested by r35] and '3], is to compare the

spatial gradients of brightness in successive frames. If J'(x,yt) is significantly

different from I(zy.t+6t) then it can be inferred that the estimate of the temporal

gradient is likely to be in error.

The magnitude of the disparity vector is also an important determinant of the sys-

tematic measurement error in ?t. The error in the estimate of the temporal gradient

grows as the square of the disparity. The size of the disparity vector can be bounded

by examining the brightness gradients. The gradient constraint equation can be writ-

ten as

The size of the disparity vector can be bounded by

.,furJ2 (4.9) -t

The relationship between the temporal and spatial gradients in (4.9) is a useful heuris-

44



tic for judging the accuracy of h. By performing the same manipulation on the gen-

eralized constraint equation (4.5), we also arrive at a means to evaluate the accuracy

of our disparity estimate. If, as before, 1 is the derivative of brightness in the direc-
U

tion of the estimated disparity then

6! , " 2 (4.1 0)

Thus, we can estimate the derivative in the direction of the disparity estimate by com-

paring the brightness function at point (z,y,t) to the brightness function at time t +6t

evaluated at the estimated translation zx+4, y+v. This difference, without considera-

tion of the magnitudes of the spatial gradients, has been called the displaced frmnae

difference and is an important component in a scheme for coding television signals

[33]. If the norm of the spatial gradients is not too small, the displaced frame

difference divided by the magnitude of the spatial gradients is an good measure of the

magnitude of the error in the disparity estimate.

If an overdetermined set of equations is used to estimate disparity then measure-

ment errors in the gradients and incompatibilities among the constraint equations due

to differential motion will be reflected in the residual of the solution. The residual vec-

tor can be estimated by

Gv-b= r (4.11)

where w is the estimated disparity and r is the residual. Conversely, A large residual

indicates that substantial errors exist in the system and that the estimated disparity

vector is likely to be inaccurate.

The residual vector will be especially large at occlusion edges where the change in

disparity is discontinuous. It has been proposed [34] that the residual error be used as

an indication of the presence of an occlusion edge. To be identi~fable, the change in

disparity across an occlusion edge must lead to an error which is greater then that

45



normally encountered from other measurement errors. A threshold on the residual

must be established which will normally be exceeded only at significant discontinuities

in the disparity field. The error accrued from a change in disparity is equivalent to a

measurement error on the right hand side of the local optimization system. Since the

equivalent error on the right hand side is magnified by the size of the spatial gradients

(3,29). the threshold for identifying large residual errors may be adaptive to the spatial

gradients. Likewise, it was shown that the systematic measurement errors in the gra-

dients were related to the second derivatives of brightness, so the threshold on the

residual may depend upon the second derivatives, as well.

4.3. Summary

The gradient constraint is a powerful too[ for the analysis of dynamic imagery

Careful examination of one gradient-based technique has led to a number of conclu-

sions about the causes of errors, provided support for techniques to improve esti-

mates, and indicated methods by which the accuracy of estimates could be judged.

This analysis suggests that disparity estimation should be adaptive to the nature of the

brightness function and the characteristics of motion in a region of the image Empiri-

cal investigations support the analytical work presented here. More research is needed

to understand the magnitude of the error bounds presented here and elaborate on the

aralysis.
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5. Empirical Analysis

5.1. Methods

5.1.1. Feature Point Selection

The two matching techniques which are described below attempt to find

correspondences only in regions of high information content. A varlety of m ethods for

identifying feature or interest points have been proposed, inciuding adaptive tem-

plates [6,7], local maxint- of varablity 740,41,24,,/3], local extrerna of the laplacian

[42,27], maxima of gaussian curvature '43], and local edges [.4] Although no con-

sensus on the best approach exists, it is clear that feature points should be efficiently

computable and should reliably locate the same points on objects from frame to frame.

It is important not only that the population of feature points represent the same object

features from frame to frame, but also that the position of the feature point on the

object should be stable. For example, most methods for locating feature points favor

corners in the brightness function-- If a corner is identified as a region of interest in

one frame it is desirable that it be selected in subsequent frames as well Further, it is

desirable that the placement of the feature point on the corner always occur in the

same location.

The distribution criteria developed to evaluate disparity fields (section 2.2.2) also

apply to the feature point selection process, because correspondences can only be

obtained at feature points. As such, algorithms which select feature points can be

judged by the density and dispersion of the feature points.

For the matching techniques demonstrated here, feature points were selected as

local extrema in the laplacian. An approximation of the laplacian is efficiently com-

puted by the subtracting two versions of an image which have been differentially

blurred .45,46]. Choosing the maxirma and minima of the laplacian produces a rela-
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tively dense sampling of feature points which are well dispersed across the image

These feature points tend to associated with distinctive structures in the image An

additional characteristic of this technique is that the size of the structures which are

associated with feature points can be affected by the amount of blurring to which the

images are subjected. This aspect of the laplacian method makes it easily adapted to

coarse-tc-flne techniques

5. 1.2. Relaxation Matching

The relaxation matching algorithm is shown schematically in figure 5. 1 The

matching process starts with determination of all possible correspondences between

feature points in the two frames. A bound of 15 pixels was placed on the maximum pos-

sible disparity for the sequences used in our examples. A list of possible matches in

the second frame is created for each feature point in the first frame. The list of candi-

date matches is structured as a set of labels. In addition, a unique label I* is added to

the list. The C" label represents the condition that there Ls no correct match in the

second frame. Thus, each feature point f in the first frame has an associated label

list of the for

L=I. ...2 i. ,*I wAere, Iii = (U'V), (5.1)

The matching task is to choose the correct label for every feature point, f . A

confidence value pj is ,used as an estimat. of the likelihood that label j is a correr't

match for point i. Initial estimates foi Pti are found by correlating a 5x5 window

around the point fp with a similar window aro.md each of the pot,,ntial matches in the

second frame. The initial estimate for V" is based upon the magnitude of the correla-

tion values found for other possible matches: if none nf th,- possible matches in se'ond

frame correlate well with f , then I * is, initially, given a large value.
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Figurc 5.1 Tokcn Matching with rclaxation labcLing
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The initial confidence estimates are refined through an iterative process that

incorporates constraints about the possiole disparities for each point. If surfaces are

large relative to the sampling distribution, disparity will vary slowly over most of the

image. Thus, nearby points will usually move in a similar way. Estimates are refined by

comparing the list of possible matches for neighboring points and favoring consisten-

cies in motion. A sequence of progressively more precise estimates of label likelihoods

L is generated by letting

p:(k+:) (k)(i+a(q",k)) (5.2)

on iteration k + 1, where,

qj (0) the initial estimates described above,

a function that measures the number and likelihood of labels in the

neighborhood of ft of the same or nearly the same disparity as 1j' ,

a an adjustable gain parameter, and

N a normalization function that assures the sum of likelihoods over a given

label set to be always equal to 1.

The q function assigns a large value to 1* if candidate matches frequently occur in

neighbors' lists at a disparity which does not exist in the label set L The effect of

(5.2) is to raise the the likelihood of possible matches if there are other, nearby, high-

likelihood matches with the same disparity. By iterating the estimation process, infor-

mation can propagate through the network of feature points. Some points are easily

matched on the basis of correlation alone. This affects the label likelihoods for nearby

points, and, as the estimates improve for those points, they, in turn influence their

rieighbors. The process converges if and when the likelihood of one label dominates all

the others In each label set. A more detailed presentation of the relaxation method

can be found in [47].
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5.1.3. Correlation Matching

The correlation-based matching program implements a method developed by

Moravec [40,41,24]. Feature points are located in the first of two sequentially taken

images. The second image is searched to find the position which best matches the

feature point in the first image. A small window centered around a feature point in the

first image, the feature vAndow, is compared to similar sized windows in the second

image The search is restricted to windows which lie within a larger search window. In

our work the feature window was 5x5 and the search window was 7x7

The analysis proceeds in a coarse-to-fine manner. The image pair is reduced by

successively halving the sampling rate. In our examples the initial 128x.28 image is

reduced three times to give four levels of resolution:

image reduction

coarsest level 16 x 16

32 x 32

64 x 64

finest level 128 x 128

Table 5.1

The search begins at the coarsest level of resolution. A search window is centered

around the location of the feature point in the first image and the best match is deter-

mined. A pseudo-normalized measure of the cross correlation 4.OJ is used as the cri-

teria function.

The disparity estimate obtained at the coarsest level is used to center the search

window at the next finer level of resolution, The process in repeated at each finer level

of resolution, always centering the search window on the estimate from the previous

level. The method is schematically outlined in figure 5.2.
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5.1.4. Gradient-Based Estimation

The gradient-based approach is demonstrated with two versions of the local optim-

ization technique. In the next section, a variation of the global optimization technique

is introduced as means of combining matching and gradient-based techniques.

5.1.4.1. The Flow Field Data Structure

A scheme for representing the optical flow field is necessary. In our work the vec-

tor field is represented as dense image which is spatially registered with the gray-level

images of the scene Each pixel in the disparity image is a three-dimensional vector

containing

u - disparity ,n the z direction

- disparity in the y direction

p - confidence

The confidence value can range from 0.0 to 1.0.

5.1.4.2. Simple Local Optimization

The basic local optimization method performs a least squared minimization on an

over-determined set of gradient constraint equations to estimate disparity at each

point. The system is schematically shown in figure 5.3. Each image is first blurred with

a gaussian blurring function. The standard deviation of the blurring function used to

collect the data presented here was approximately 2 pixels. The blurring serves to

reduce the noise in the image and linearize the brightness function.

In the next stage of processing the gradient constraint equations are determined.

Gradients are estimated by the difference in the blurred brightness estimates (z ,yt).

The gradient computations are graphically shown in figure 5.4. The gradients at a point

(i.) on the image are estimated as follows,
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&(i~ ~ i r(i+ +:.'t) -I'i-l 'i't) + I' i + : ( -,i, )6 't+ - Ii"j t +(5.3)
I, (i t)= i -tT +,.t) -I(i- _,t) + I( .+ 1.t +1) - i,i -. t +1)) (5.4)

It (ij It) = -['(i. t +1) -.r(i~i ,t) (5.5)
2

With this method, tie gradients estimates are s?atially registered with the image pair

and temporally sequenced at time between the tvo frames.

Constraint equitions from a group of neigh)oring points are gathered to produce

an over-determined system of linear equations of the form

Gw = b (5.6)

where,

G I& h

i= , w= [ nd b= (5.7)

The rows of G and b, are taken from a point (ij) and a group of nearby points selected

from the neighborkood (i-nj-n).(i+n,i-n). To insure that the equations &re

sufficiently distinct we selected neighbors fror a 5x5 window centered around the

point to be estimated. The distribution of constraint equations is diagrammed in f1gure

5.5.

IN
i2

'V IV I

__2 N [NVN'

Figure 5.5. The inear system (5.6) is constucted from the constraint equations
evaluited at the point p and its neghbors N.
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figure 5.4 The gradients are estimated from the blurred image brightness function.

In general, the over determined system (5.6) has no exact solution. An approxi-

matc solution is found by minimizing thc rcsidual vcctor r, dcfncd as

Gi,-b= r (5.8)

The disparity estimate is chosen to be the vector w which minimizes some criteria

function of r. In our work we minimize I r 2 by letting

i = G+b (5.9)

where G is the pseudoinverse of G "34]. The pseudoinverse is calculated as

G+ = (W) "(50)
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This computation requires the inversion of the 2x2 matrix GG. The inverse will not

exist where the local gradients do not sufficiently constrain disparity to allow for an

exact solution. In this case the confidence of the disparity estimate is set to zero and

u and v are undefined

A coridence is assigned to each disparity estimate on the basis of:

(a) the size of the residual vector r,

(b) the change in the spatial gradients over the temporal sampling interval,

(c) the brightness difference for the image pair registered by (u,v), and

(d) the magnitude of V G11

The importance of each of these factors in determining the accuracy of estimates

is discussed in section 4.2. That analysis does not, however, provide us with a formula

for estimating the total error in the disparity vector (u,v) We must find a means to

combine several factors which each indicate the presence of conditions which can be

lead to errors

Recall how each factor outlined above relates to the error in (uv). The residual

vector indicates the degree to which the estimated disparity vector jointly satisfies the

system of constraint equations. The units associated with the residual vector are not

easily interpreted. To obtain a measure of the expected error in pixel units we deter-

mine the average minimum distance from (i4,;) to the gradient constrain equations

that make up the system. The minimum distance from (u,') to the gradient constraint

line Iu + I1,v + i is easily computed as

= ' +II (5.11)

The confidence in the estimate, based upon the residual. is

1 (5.12)CT= 2+1

where is the average minimum distance between (u,;) and the const, ant equations
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that make up the linear system. If P, is small, then the disparity estimate does not

well satisfy the mutual constraints from nearby points and is likely to be in error.

Measurement error in the temporal gradient depends upon the linearity of the

brightness function over the translation interval. The change in the spatial gradients

between successive frames provides an indication of the linearity of the brightness

function over the region which has translated by a point E35]. The variation in the spa-

tial gradients primarily contributes to measurement error in It, which lies on the right

hand side of the gradient constraint equation. To obtain an estimate of the magnitude

of error in w we must divide errors on the right hand side by the magnitude of the spa-

tial gradient. Thus, we estimate the error caused by nonlinearity in the brightness

function by the ratio of the change in the spatial gradients to the magnitude of the spa-

tial gradient:

;a= N Wz+ 'V (5.13)

where the spatial gradients are estimated as in (5.3) and (5.4) and the changes in the

spatial gradients are estimated by

A.=) (5.14).:j~ .:.
Aly =k (5.1. +-zt,. 5)

The inverse of the error estimate is used to estimate the confidence in

P2 = (5.16)

The confidence value pz gives a rough estimate of the likelihood the (u,;) is in error

due to measurement error in the temporal gradient.

One way to judge the accuracy of ( z,;) is to compare the brightness function at a

point in the first frame to the brightness function at the predicted new position for the

point in the second frame. If disparity is accurately estimated, the brightness values

should be similar at these two points. The difference between the two frames
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registered by (sv) is an estimate of the directional derivative 1 defined in (4.4) We
V

calculate a third estimate of error based upon (4.10) which relates I to the magnitude

of the error in

I;
(5.17)

The error estimate E, is converted into a measure of conifdence by

P 2 1 (5 18)

In locations where p3 is small, the two frames are dissimilar at the predicted place of

correspondence and the computed disparity is likely to be in error.

The propagation characteristics of the linear system Gw = b can be determined by

examining the matrix of spatial gradients. Errors on the right hand side of the linear

system are magnified by JI GI in the computed value of disparity. A fourth measure

of confidence, based upon the likelihood that errors will be poorly propagated. is given

by

G1 ( 9)
If P4 is small, then the linear system is ill-conditioned and small measurement errors

will tend to produce large errors in (iv).

The four confidence estimates derived above are nct independent. The

confidences p, and p3 both measure the accumulative error, from all sources, n the

disparity estimate. The confidences p2 and p4 relate to conditions which are Likely to

lead to poor estimates: P2 depends upon a condition which is particularly troublesc me

for gradient measurement and P4 conveys the error propagation characteristics of the

linear system. Even though the four estimates are not independent we found that they

were best treated as separate sources of information and best combined multiplica-

tively. We examined a number of combination rules and found that the results were
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not highly sensitive to the particular rule for combining confidences.

The method for estimating confidence is heuristically motivated. The technique

could probably be improved by further examining ways to estimate error and rules for

combining several sources of information about errors. The important contribution of

this research is to demonstrate the feasibility estimating the accuracy of disparity

estimates and usefulness of confidence measurements.

5.1.4.3. Local Optimization with Iterative Registration

The simple method of local optimization can be extended by a method of iterative

refinement. In this method disparity estimates obtained from the simple local optini-

zation scheme can be used to register the frame pair. Disparities are then be recom-

puted with the gradients estimated from the registered frame pair. In section 4.1 it

was shown that the measurement error in the temporal gradient could be significantly

reduced if the registration reduced the original disparity between the image frames.

Sinct the optical flow field will usually contain variations, the predicted registration will

differ across the image. To obtain a consistent linear system, a small region of the first

frame must be registered with the second frame on the basis of the predicted disparity

at the point for which disparity is to be estimated. A system of linear equations is con-

structed with gradient constraints line extracted from the registered region.

This process can be performed iteratively, using the disparity estimates at the

previous stage to register the frame pair on the next iteration. It is important to

emphasize that, at each stage, the registration can only be expected to improve per-

formance if the disparity in the newly registered frame pair is less than the disparity in

the previously registered pair. If, for some a point (Qi) if the first frame, the registra-

tion is worse than the registration in the last iteration, the new estimate of disparity

will, in general, be worse then the previous estimate. It is desirable to register the

image only where the disparity estimates are believed to be correct. Therefore, in our
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implementation we register in proportion to the confidence in the disparity estimate.

The iterative registration technique is schematically shown in figure 5 6. The

registered gradients for the kth iteration at a point (i,j) on the image are estimated

as follows,

f(i+i +&.,j +v,t + ) - Ti-1 &. + t + '). (5.20)

= .(-[f , j+it) -I(,ji-+,t) +

=i 'jI-0 ;L. +1) -(i,j,t)) (5.22)

where (;L,;) is the disparity estimate from the k -1st iteration. A flow field of zero

disparity vectors is used to initialize the first iteration.

Confidence is estimated as before except that now the changes in the spatial gra-

dients must be calculated with the registered frame pair. The new estimates for the

changes in gradients over the registered image pair are,

At, = 1 [(i+14t)-(i-l~J~t)

-Ii G+14+G +i)/( +-l +~l+ 1)] (5.23)

-I(i +;,j +;+.,,t +1)+j +;Lj +;-I,t +1)1 (5.24)

The iterative registration technique is employed with variable blurring to produce

a coarse-to-fine system of analysis. Images are blurred with a gaussian weighting func-

tion. In early iterations the standard deviation of the gaussian weighting function is

large. The standard deviation of the weighting function is reduced in each successive

iteration. At each level, the radius of the blurring function should be large enough to

guarantee that the brightness function is approximately linear over the maximum
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expected disparity from the registered images.

The size of the neighborhood from which the constraint equations are selected

must depend upon the amount which the images are blurred. At a coarse level of

analysis there is little detail which distinguishes nearby points. To obtain sufficiently

different constraint equations, the separation between observation points must be

increased; otherwise, the conditioning of the linear system will degenerate.

Our system contains four iterations which correspond to four levels of coarseness.

The blurring was accomplished by repeated convolution with a 3x3 kernel. The neigh-

bor size and the value of the standard deviation for the approximation to the gaussian

weighting function are given in table 5.2 for each of the four iterations.

Iteration 1 Blur Radius ! Neighborhood Size

1 7 6
2 5 4
3 3.5 3
4 2 L 2

Table 5.2

A difficulty with the coarse-to-fine system is that the disparity estimates for sta-

tionary and slowly moving points made at coarse levels may be worse than the initie 1 .

assumed zero 7ector. To insure that the new disparity estimate made at one level is

not worse than the value input into the level, we examine the error bound given by (5.7)

for both the initial and new estimates. If the error bound for the new estimate is

significantly larger than the bound for the old estimate, it is ignored.

5.1.5. Hybrid Techniques

Matching and gradient-based techniques have different strengths and weaknesses.

The performance characteristics of the two techniques are recqpcocally related.

Matching techniques are capable of producing a sparse sampling of accurately deter-

mined disparity vectors. For many applications the vector density produced by match-

Iug techniques is insufficient. Gradient-based techniques, on the other hand, generate
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Figure 5.6 Local optimization with iterative registration.
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dense fields but are susceptible to a variety of errors Regions which undergo substan-

tial motion and contain nonlinearities in the brightness function are especially trouble-

some for gradient-based methods. Gradient techniques tend to work poorly near

occlusion boundaries, where the optical flow field is discontinuous. In contrast, match-

ing techniques usually work well at occlusion boundaries as these boundaries are often

associated with a distinctive change in surface reflectance. Some improvement can be

gained by combining the two methods to take advantage of their different strengths In

this section we approach ways to combine matching and gradient-based techniques to

arise at a more robust, hybrid method which takes advantage of the strengths of both

matching and gradient-based approaches.

5.1.5.1. Local Averaging

Usually, neighboring points in the image will move in a similar manner A good

prediction of a points motion can be obtained from by examining neighbors whose

motion is known. Closer neighbors are, in general, better predictors than are distant

neighbors. Thus, disparity at a point can be approximated by the average of nearby

estimates, weighted by the distance of the estimates to the point to be approximated.

This operation has two effects: the initial estimates are smoothed as they are averaged

with other nearby estimates; and the values of previously unknown points are interpo-

lated from the initial estimates. Computationally, the distance-weighted average can

be accomplished by a series of local averages.

A serious problem with simple averaging is that disparity values can be inappropri-

ately combined across discontinuities in the optical flow field. Near abrupted changes

in disparity, the average of neighbors will usually be a poor predictor of the motions of

individual points. Not only wil the averaging result in inaccurate interpolation, but the

initially correct values will be corrupted by smoothing with points moving in a very

diflerent manner. The magnitude of this problem depends, in part, upon the form of
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the weighting function. If the variance of the weighting function is very small -- mean-

ing that nearby points are weighted much more heavily than more distant points --

then serious miscalculations can be somewhat limited. However, the density and distri-

bution of the initial estimates must also be considered. Even though nearby points are

more heavily waited, if the nearest neighbor lies across a discontinuity ia disparity it

will provide a poor estimate of motion. Simple distance-weighted averaging, by itself, is

not an effective means to generate a dense optical flow field from a sparse sampling of

disparity estimates in most situations.

5.1.5.2. Combining Average Motion and the Gradient Constraint

The gradient constraint provides a second source of information about motion.

The information available from the local average and the gradient constraint equation

are shown graphically in figure 5.7. To combine the gradient constraint with the esti-

mate provided by the motion of nearby point (9,U) we place our new estimate on the

line perpendicular to the gradient constraint equation which passes through (1,-U). We

expect that the true value of motion will Lie between the average of neighbors and gra-

dient constraint equation - on the dashed line segment in figure 5.7 The exact posi-

tion in which we place the estimate should depend upon the relative confidence which

we have in the two sources of information.

Horn and Schunck have developed a method which combines the local average of

disparity and the gradient constraint equation [31,37]. Their technique minimizes an

error norm based upon departure from smoothness in the flow field -- agreement with

the average of neighboring disparity values - and violation of the gradient constraint.

The computational method at which they arrive is equivalent to taking a weighted com-

bination of the average of neighboring disparity estimates (i.V) and the point (u,p)

on the gradient constraint line where the perpendicular in figure 5.7 intersects the gra-

dient constraint line. The weighting is determined by the magnitude of the spatial gra-
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dients.

The Horn and Schunck technique can be initialized with a field of zero disparity

vectors. If the technique is to be used over a sequence of more than two images, the

results of the previous image pair can be used as an initial approximation of the flow

field. The method can also be seeded with estimates obtained elsewhere without violat-

ing the assumptions of the model [48].

As with simple averaging, the Horn and Schunck technique has difficulty near

discontinuities in the optical flow field. Gross miscalculations can be made where the

local average is based upon values which lie across a discontinuity in disparity. In sec-

tion 33.1 it was shown that the brightness gradients, on which the gradient constraint

equation is based, will be poorly estimated in regions where disparity is rapidly varying.

The brightness gradients will also be in error in regions where the brightness function

contains nonlinearities and motion is large. The gradient measurement problem is

especially serious where surfaces have become occluded, disoccluded, or have left the

field of view between frames. Unfortunately, even though the error prone regions are

are localized and will usually comprise a small portion of the image, the errors can pro-

pagate throughout the image.

5.1.5.3. The Constrained Average

The difficulty encountered with averaging methods is that errors tend to pro-

pagate throughout the flow field, even though the problematic regions may be small

and localized. If poor estimates can be detected then the affects of the errors can

potentially be limited to the regions which are prone to have difficulty. We approach

the containment problem by introducing confidence into the estimation process. The

local average motion is computed as a the average of neighbors motions weighted by

their confidence. Since estimates contribute oniy in proportion to their confidence

"good" estimates which tend to propagate more effectively. A new estimate of disparity
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is obtained by combining the average of local disparity estimates and the gradient con-

straint line as in the Horn and Schunck technique. The constrained average approach

is schematically shown in igure 5.8. The frame pair is registered to take advantage of

intermediate disparity estimates. The registered gradient constraint equations are

computed as in the registered local optimization technique described above.

A confidence is assigned to the new estimate of disparity on the basis of

(1) the likelihood that the local average is in error,

(2) the likelihood that the gradient constraint equation is in error,

(3) the agreement between the average and the constraint equation, and

(4) a bound on the error in the new disparity estimate.

The confidence in the local average is judged by the mean and variance of

confidences associated with the estimates which contribute to the average. Estimates,

contribute to the mean confidence and variance of confidence statistics in the same

proportion as they contribute to the average disparity estimate. Two confidences are

derived from the weighted average of confidences P and the inverse of the weighted

varance of confidences a.

P, =J5 (5.25)
and

1- (5.26)

ap
Thc confidcncc cstimatc p, and Pe represcnt thc likclihood that thc avcragc or local

that the local average of disparity estimates accurately predicts disparity.

The contfldcncc in thc corrcctncss of thc gradicnt constraint cquation is cvaluatcd

by examining the change in the spatial gradients over the sampling interval. Where 41,

and U.4 arc largc thc gradient constraint cquation is likcly to bc in crror. This mcas-

ure was also used in the local optization method. As before, we estimate the error

causcd by nonlincarity in thc brightncss function by the ratio of the changc in the spa-

tial gradients to the magnitude of the spatial gradient:
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Figure 5.8. A hybrid approach combining an weighted average ot neighboring mo-
tions and the gradient curnstraint equation.
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= (5.27)

and

Ps (5.28)

+ 1

The confidence value Ps is sensitive to one condition which causes large errors in the

gradient constraint equation.

Inconsistencies between the local average of disparity and the gradient constraint

line are detected by examining the relationship between (r,V) and the gradient con-

straint equation. The gradient constraint line should pass through the true value of

disparity and, where disparity varies smoothly, (i!,V) should lie near the true value of

disparity. If (1,,) is well separated from the gradient constraint line then it can be

inferred that one or the other is likely to be in error. A confidence value which indi-

cates the degree of agreement between (ffi) and the gradient constraint line is calcu-

lated as

P4 1 (5.29)

where d is the minmurnm distance between the gradient constraint line and the Local

average of disparity.

Once a new estimate of disparity has been calculated the difference between the

estimated value and the true value can be bounded by,

I-
,=-= (5.30)

- 2_+_1V

This error bound is used to obtain a confldence in the disparity estimate as

P5 = (5.31)

The confidence ps was earlier introduced in the local optimization scheme.
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As in the local optimization technique, the separate confldence estimates are mul-

tiplicatively combined to arrive at a single estimate of the confidence in the disparity

estimate.
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5.2. Results

The five methods described above,

(1) coarse-to-ftne cross-correlation of feature points,

(2) relaxation feature point matching,

(3) simple local optimization,

(4) local optimization with coarse-to-fine iterative registration, and

(5) gradient constrained averaging initialized with matches obtained with the

cross-correlation procedure,

were programmed in the C language on a VAX-!I/780. The methods were tested with

the two image pairs presented in figure 5.9.a and figure 5.9.b. In the first sequence the

camera was stationary. The scene contains a collection of toys. The two trains in the

center of the first image move toward each other in the second image. The second

sequence simulates a view from an aircraft flying over a city. The images where

obtained with a camera fixed on a tripod overlooking a model of downtown Minneapolis.

The scene consists of a receding ground plane on which lie a number of structures. The

top of the image is furthest from the observer. The camera was moved forward and

tilted downward between the first and second frames. Ground truth data is not avail-

able for the sequences examined, so our evaluation will only be qualitative.

The results of the coarse-to-fine correlation matching are presented in figures

5.9.c and 5.9.d for the moving trains and simulated flyover, respectively. Disparity vec-

tors are displayed as a white line with a small square box at the vector's base. The

correlation program produces a match for every feature point identified by the lapla-

cian feature point selector. This means that incorrect matches will necessarily be

made for points which are visible only in the first frame. The correspondences selected

for these unmatchable points will, in general, produce low values of cross correlation.

Only those points for which the pseudo-normdized cross correlation was quite high

(p a! .99) are displayed.
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(a) moving trains (b) simulated flyover

(c) corrclation matching (d) corrclation matching

(e) relaxation labc.ing (f) relaxation labeling

Figure 5.9 Original images and disparity estimates from matching techniques
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The correlation method produces a sparse sampling of reasonably well distributed

points for both sequences More errors are apparent in the flyover sequence although

the percentage of correct disparity vectors in both fields is fairly high. Most of the

significant errors tend to be clustered in several small regions.

The disparity fields generated by the relaxation labeling method are shown in

figure 5.9.e and figure 5,9. for the moving trains and flyover sequences. To generate

the disparity fields shown here, the label lists for all feature points were examined

after ten iterations of the relaxation procedure. Only labels for which the associated

conftdence was high p a .6) were accepted as matches and are displayed in figures

59. e and 5.9. f.

The performance of the relaxation technique is comparable to that of the correla-

tion method on the toy trains sequence. However, the two methods produce quite

different results for the flyover sequence The disparity field obtained with the relaxa-

tion method is fairly accurate but very sparse. The Cyover sequence has some particu-

larly roublesome characteristics for the relaxation approach. The variance of the

disparity vectors is b.h so that neighbors lend little reinforcement. Also, the magni-

tude of the disparity vectors at the edge of the image approaches the bound on the

region from which candidate matches are drawn.

The difference in the performance between the correlation and relaxation tech-

niques on the flyover sequence emphasizes the dependency of these methods upon the

problem environment. It is not possible to judge one technique as better than the

other on the basis of this difference alone. Before methods can be evaluated, the

requirements of the task to be accomplished must be known and specifications

developed for the disparity analysis procedure.

Disparity fields obtained with the simple local optimization technique are shown in

figure 5.10.a and figure 5. 10.b for the moving trains and flyover scenes. Associated with

each vector is a cotidence in the correctness of the value. A threshold on confidence
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(a) simple local optimization (b) simple local optimization

(c) itcrativc registration (d) iterative registration

(e) constrained averaging (f) constrained averaging

Figure 5.10 Disparity estimates from gradient-based techniques.
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was established which produced a reasonably dense sampling of mostly correct values

Only vectors which exceeded the confidence threshold are displayed. The resulting

field was too dense to clearly display the entire field. Consequenty, only 25% of the

vector field is shown in figures 5. 1O.a and 5. iob

The results of the coarse-to-fine method of iterative reinement are shown in

ftures 5. O.c and 5.1O.d. The disparity fields obtained with the hybrid method which

combines the cross correlation approach with gradient constrained smoothing are

displayed in figures 3.10.e and 5.10.f. The hybrid estu-nates were the result of "16 itera-

tions of the constrained averaging technique described above. On each iteration the

local average was computed over a 5x5 window, centered on the point to be estimated,

for every point in the image. Confidence thresholds were established for both the

method of iterative registraticn and the hybrid technique which produced vector densi-

ties for the moving trains scene which were comparable to that obtained with simple

local optimization. The numeric values of the confidence thresholds are not meaning-

ful by themselves. The confidence values are obtained in a different manner in the I
three different gradient techniques which &:-e demonstrated here. The confidences are

not normalized and hence the values can not be compared across methods. The

disparity fields in figures 5.1 , .iOd. 5. 10.e, and 5. !O.f are also subsampled versions

of the actual fields - only 25% of the vectors are shown.

The disparity fields obtained with the gradient-based techniques are all substan-

tially more dense than the fields produced by the matching techniques. All of the

gradient-based techniques produce reasonably accurate results with the moving traiin

sequence. The simple local optinization method seems to generate more errors with

the moving train scene than either of the other gradient-based techniques. The

method of iterative registration produces a field which is generally correct with a small

number of errors interspersed through most of the field. The best results are obtained

with the hybrid technique; the few errors which are e,'ident occur in 3 or 4 small
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regions.

The three techniques are more easily distinguished on the basis of their perfor-

mance with the flyover sequence. The simple local optimization method produces a

large number of errors even for the relatively sparse sampling of vectors displayed in

figure 5.10.a. The method of iterative registration and the hybrid technique generate

many fewer errors in fields which are much more dense than that obtained with the

simple local optimization approach. Again, the most accurate results appear to be

obtained with the hybrid approach, although it is difficult to judge the magnitude of the

difference between the hybrid and iterative registration techniques without ground

truth data.

Note, for the gradient-based techniques, the areas where very few vectors are

displayed. Disparity is poorly estimated in these regions and low values of confidence

are assigned to the estimates obtained there. The problematic regions are usually fit

into one or more of the following characterizations:

1. largely homogeneous regions,

2. highly textured regions which are moving, or

3. regions which contain large discontinuities in the flow field.

Disparity estimates obtained in homogeneous areas are likely to be in error because of

the poor propagation characteristics of linear systems constructed in these regions.

The temporal gradient is poorly measured in highly textured regions which undergo

significant motion. In regions which contain large discontinuities in the flow field the

temporal gradient is poorly estimated and the systems of equations from the region

are likely to contain inconsistencies.

It is interesting to compare the disparity fields produced by the hybrid technique

and the cross correlation method. Recal that the output of the cross correlation tech-

nique was used to initialize the constrained averaging, The gradient constrained

smoothing serves two purposes: (1) to fill out the sparse set of estimates obtained with
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cross correlations and (2) to increase the overall accuracy of estimates in the vector

field. An increase in density is clearly evident when comparing figures 5.9.c and 5.1O.e

(remember that only 25% of the vector field is displayed in figure 5.10.e). The hybrid

method also appears to be significantly less prone to error. The improvement in accu-

racy accrues, in part, from the averaging of estimates and the additional constraint of

the gradient relationships. These factors act to produce better estimates. Another

reason for the improvement is the power of the heuristics, developed earlier, to judge

the quality of the estimates. Not only are better estimates obtained but the confidence

value associated with the estimates allows the opportunity to select the appropriate

trade-off between accuracy and density.

The success with which confidence estimates predict the accuracy of disparity

estimates is demonstrated in figures 5.11.a, 5.11.b, 5.11.c, and 5lhd. The disparity

field produced by the simple local optimization technique with the moving trains

sequence is displayed in with a low threshold on confidence in figure 5.11.a and a high

threshold in figure 5.11.b. As before, only 25% of the vectors which exceed the thres-

hold are displayed. Similar thresholds are shown for the method of iterative registra-

tion in figures 5.11.c and 5.1l.d. Only 15% of the vectors which exceed the thresholds

set for figures S.1i.c and 5.ll.d are displayed. For both methods confidence provides a

reasonable index of the accuracy of disparity estimates. A sparse sanpling of accurate

estimates exceeds the high confidence threshold. When the threshold is lowered, more

dense fields are obtained with a signijfcantly greater number bad vectors.

Confdence is based upon a number of heuristics which identify conditions which

are likely lead to errors or indications that an estimate is in error. The usefulness of

the residual error in detecting errors made by the simple local optimization technique

is demonstrated in figure 5.11.e. This field was obtained with the moving trains

sequence. Only vectors which poorly satisfy the system of constraint equations on

which the estimate was based are displayed. Most of the vectors displayed are poor

78



(a) simple local optimization (b) simple local optimization
(low threshold) (high threshold)

(c) itcrative registration (d) iterative registration
(low threshold) (high threshold)

(e) simple local optimization
(vectors with high residual)

FIgure 5. 11 Detecting errors with confidence,
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estimates of the actual disparity.

5.. Summary

The results presented here highlight the intrinsic differences between matching

and gradient-based methods. Both matching approaches produced sparse samplings of

generally accurate vectors. The disparity fields obtained with the gradient-based tech-

niques are much more dense than those produced by matching methods. The increase

in density is achieved with little or no decrease in accuracy. Furthermore, by provid-

ing reliable confidence estimates, gradient-based methods provide an added flexibility

which is not available with matching techniques; the choice to trade density for accu-

racy is made explicit.

The dependency of performance upon the nature of the scene is evident from the

characteristics of the disparity fields obtained with the two different scenes. Before

any particular technique is selected for a task, the methods must be studied within the

problem environment.

The gradient-based techniques which were implemented demonstrate the feasibl-

ity of measuring the quality of disparity estimates. More study is required to better

understand the heuristics by which confidence is estimated. Gradient-based tech-

niques are susceptible to a variety of problems and tend to produce very poor esti-

mates in troublesome areas of the image, as is shown in figure 5.11.e, Without accurate

estimates of confidence, good estimates can not be distinguished from bad and

gradient-based techniques are of little use. With accurate confidence estimates, poor

disparity estimates can be filtered from the field and information can be propagated

from areas of high information content into areas of low information content.

The results show the improvement to be gained over simple local optimization by

iterative registration and coarse-to-fine analysis, particularly when motions are large

as in the flyover sequence. However, the best overall performance was obtained with
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the hybrid technique which combines correlation matching and gradient constrained

smoothing. The hybrid approach produced reasonably dense samplings of disparity

vectors for both sequences with a high level of accuracy.
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B. CONCLUSIONS

A number of conclusions can be draw from this study It is important to

emphasize, however, that this was a feasibility study and thus conclusions are only ten-

tative.

First of all, it is clear to us that disparity estimation techniques can not be

developed without careful consideration of the interpretive processes that will depend

on the estimates. Clear trade-offs exist between different aspects of performance. The

optimal mix of performance criteria will be application dependent. This application

dependence must be more precisely described before design specifications for a

disparity estimation system are developed. If generality across applications is desired,

then we strongly suspect that a variety of different algorithms will be required. (In

fact, there is evidence that the human visual system uses two quite different and

independent process to determine motion induced disparity [49].)

There are intrinsic limits to the precision with which disparity can be determined.

In a sense, all of the disparity estimation techniques that we have investigated depend

on the same sort of information in image sequences. These sequences frequently con-

tain large areas where disparity cannot be unambiguously determined. This is particu-

larly true for large homogeneous regions or regions which contain only parallel linear

patterns. Image features such as noise also limit the accuracy of disparity estimation.

It is important to understand the nature and causes of these limits in order both to get

the best estimates possible and to design interpretation processes in a sensible

manner.

The computational requirements of real-time disparity estimation are substantial.

Processing rates in excess of 100 million operations per second may well be required.

If very high accuracy of individual estimates is required, at least some of these opera-

tions will likely involve floating point computations. The state of the art in high perfor-

mance computer architectures strongly suggests that data rates of this sort require
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highly structured, pipelinable algorithms. This is reinforced by the serial nature of the

outputs of most image sensors. Both the gradient and correlation techniques fit into

this form. Token matching systems involving any sort of cooperative computation do

not. We do not expect that such algorithms will be implementabLe in real-time unless

and until highly parallel architectures with complex interconnection networks are

available. Even the prototyping of such architectures is still some time away.

For those tasks requiring reasonably high density and dispersion of disparity esti-

mates, the gradient-based algorithms appear to be a promising choice. We have per-

formed an analysis of the limits on accuracy for such methods and have shown how

improved performance can be obtained in a number of situations. We have also shown

that the gradient techniques work best when an initial approximation is available for

disparity estimates. This suggests that a hybrid techniques be investigated in which a

sparse, initial estimate is obtained using cross-correlation and then a final, denser esti-

mate is obtained from a gradient-based method.
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7. COMPUTER ARCHITETURES FOR DISPARITY ESTIMATION

7.1. Overview

A detailed architectural analysis of possible implemer .ations of disparity estima-

tion techniques must wait until a more complete evaluation of potential algorithms has

been completed. IL is possible, however, to make some relatively general observations

that may assist in choosing among algorithms of comparable performance.

All of our algorithm simulations have been performed on a medium capacity gen-

eral purpose computer (a VAX-11/780). Simulation performance has in general been

several orders of magnitude slower than "real-time". Processing times vary, depending

on the algorithm, from a fraction of a minute to many minutes for a single frame pair.

For a given form of disparity analysis, processing speeds can only be improved through

faster processing elements or the utilization of parallel computations. The VAX is capa-

ble of performing on the order of one million computational operations a second. The

.se of very high speed general purpose processing elements would yield on the order of

a ten fold performance increase, though at substantial expense. Additional speed ups

must come from some form of parallelism. Even with substantial parallelism, however,

obtaining real time performance will be difficult. For example, a hundred fold increase

in processing throughput will typically require significantly more than one hundred

processors operating in parallel with algorithms carefully tailored to support the paral-

lelism.

7.2. Quantifying Performance

The concept of real-time performance must be precisely quantified in the design

specifications for any disparity analysis system implemented in hardware. Informally,

real-time performance implies that over an extended period of time, the device can

operate at a speed compatible with the incoming image data. That is, the throughput
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of the device must match the incoming data rate. A more precise specification

requires a complete task description. The incoming data rate must be specified with

respect to number of pixels per frame, number of frames per second, and average and

peak disparities within each frame. The quality of the input signal is also important as

Increased noise will lead to greater processing requirements.

Throughput is not the only important characterization of processing speed. Not

only must the input data rate be accommodated, but any significant change in the

input must be signaled in the output within a reasonable amount of time. Thus,

latency effects must also be included in the specifications. Again, this becomes task

specific. Some tasks require very short response times. For others, somewhat longer

response times can be tolerated. Throughput and latency requirements often work

against one another. Throughput can be increased by using pipelining, but long pipe-

lines will increase the latency of the system.

Throughput may also be increased by exploiting the temporal redundancy in

image sequences. In most environments, motion is relatively constant. Knowing the

image dynamics at one point in time provides a reliable estimate of future changes in

the image. As a result, many dynamic properties need not be computed for each

frame pair, but instead can be computed over a much longer sequence of frames. For

example, several of the gradient based techniques require many iterations to produce

reliable results. These iterations can be performed repeatedly over the same frame

pair. However, if motions are relatively constant, each succeeding iteration can be

done over the next frame pair in the sequence. In fact, this produces an additional

benefit of averaging out the effects of uncorrelated image noise. Dependence on this

effect has important performance implications. First, the task specification must be

such that it is reasonable to assume relatively constant motion. Should motions

change significantly at some point, many frame pairs will be required for the system to

reconverge. Thus, latency will increase !igniflcantly when motions change.
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Finally, the nature of sensors used by the system may have architectural implica-

tions. In particular, almost all current sensors provide data in a raster format. A

linearized byte stream is produced corresponding to some particular scanning pattern

on the image. As a result, architectures well suited to raster processing may prove

more efficient that those using some other organization such as SIMD paralelism.

7.3. Paral.lelsm

Parallel processing in image understanding is possible because many computa-

tional processes can be performed in a independent manner at many image locations

simultaneously. Thus, these operations (or portions of the operations) can be executed

on separate processors. The type of parallel architecture is determined by the way in

which the computational operations are partitioned out onto separate processors and

the data rate, topology, and synchronizations required for interprocessor communica-

tion.-

7.3. 1. Pipeline Architectures

Pipelining is possible when spatially distinct and independent computational

operations consist of a linear sequence of sub-operations. With pipelining. the parallel-

ism occurs over this sequence of sub-operations, not over spatial position in the image.

Separate processors are assigned to each sub-operation. Data is passed from one pro-

cessor to the next in sequence. When one processor in the pipeline is finished with a

particular computation at a particular image location, it can start on the same compu-

tation at the next location without having to wait for the completion of processing ele-

ments farther down the pipeline. Ten processing elements in a pipeline can thus result

in a ten-fold increase in throughput, provided all elements perform tasks of compar-

able complexity.
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For a DIDA system, two forms of pipelining are possible. On a small scale, many of

the possible algorithms depend on structured computations consisting of vector opera-

tions such as dot products. Such computations are particularly well suited for pipelin-

ing. In fact, many commercial vector processors use pipeline architectures specifically

intended for dot product style computations. Furthermore, this small scale pipelining

is well suited to several of the signal processing architectures being developed for the

VI-ISIC program. On a larger scale, many disparity estimation algorithms consist a

sequence of complex but independent computational procedures. For example, the

gradient techniques involve blurring each image, finding gradients, solving constraint

equations, filtering out inconsistent results, and, possibly, iterating the whole process

with more refined initial estimates of disparity. Each of these procedures could be

implemented as a step in a pipelined computational system.

7.4. Processor Arrays

Image understanding computations can also be partitioned by dividing up the

problem into spatially distinct components and then executing each component on a

separate processor. Because this collection of processors now has a direct geometric

correspondence to the original image, this organization is often referred to as a proces-

sor arry . The primary limitation of processor array architectures comes from prob-

lems with inter-processor communications and synchronization. Typically, sratially

distinct operations are not in fact entirely independent. Processor arrays are severely

limited in the complexity of interconnections that can be implemented. If the algo-

rithm requires a substantial amount of interaction between processors, any potential

improvement in processing power can be lost to communications overhead. This is

particularly true for smaller scale parallelism in which a relatively few number of pro-

cessors is ehch responsible for computations over a relatively large portion of each

image. The problem may be less severe, at least for some tasks, as the number of pro-
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cessors increases and, correspondingly, the function of each processor is simplifled. In

the limiting case, it is likely to be desirable to have one processor for each pixel in the

image. Unfortunately, this is well beyond the state of the art in terms of our ability to

fabricate processors. At the present time we have only a limited understanding of how

to design image processing algorithms for such an architecture. In addition, this large

scale parallelism would require parallel access to input data, another feature not

currently realizable.

7.5. Architectural Considerations for Gradient Techniques

The gradient based techniques are well suited to parallel implementation. As they

involve substantial amounts of computation, the exploitation of this potential parallel-

ism is crucial to real-time implementation. The following paragraphs give an overview

of some of the architectural possibilities for computing gradient-based disparity esti-

mation devices, A more compte .,ialysis should wait until more precise performance

criteria are developed and appropriate techniques are selected.

The local optimization techniques consist of three major steps:

1. Compute the gradient constraint equations.

2. Calculate the solution to the linear system of local constraint equations.

3. Estimate the condence for the disparity estimate.

All these operations can be independently performed at each position in the image. As

a result, they can easily be decomposed into a pipelined organization. Accoiracy can be

Improved by a variety of iterative refinement techniques in which disparity estimates

obtained at one step of the process are used to re-register local image regions and

then the estimation process is repeated. It may also be desirable to modify the blur-

ring function during the iterative process and so implement a coarse-to-6ne analysis.

To perform iterative refinement of estimates the output of each stage of processing

must be fed back into the system. If the processing elements of the system are dupli-
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cated, this can be done in a pipelined manner. A sequence of identical processors

would be connected such that each processor performed one step in the iteration.

Gradient-based smoothing consists of four major steps:

1. Compute the average of neighboring disparity estimates.

2 Calculate a confidence in the average disparity estimate.

3. Compute the gradient constraint equation.

4. Combine the average estimate and the gradient constraint equation to arrive

at a new estimate for disparity

This sequence is repetitively performed to smooth a sparse sampling of points obtained

from the cross correlator. Here again, a sequence of operations is performed and the

operations are limited to small independent neighborhoods of the unage. 'Ihus, ppelin-

ing is straightforwardly implemented. -I

Within each of the operational steps discussed above, there are highly structured

numeric computations. Gradient estrnations, solutions to over-determined Linear sys-

tems of equations, residual vector computations, and local averaging can all be

described in terms of a limited set of vector and matrix operat-)ns. These operations

can be implemented in high speed pipelined hardware by exploiting the highly struc-

tured nature of matrix arithmetic. Thus, major portions of the techniques can be

decomposed into pipelinable components, each of which can be implemented with pipe-

lined arthimetic operations.
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8 r"'.)KMENDATIONS

We recommend that the next stage of the DIDA project concentrate primarily on

the development of design specifications sufficiently precise so that continued efforts

at system development will be focused in productive directions. Development of these

specifications requires continued activity in three related areas: Specification of goal

dependencies, criteria selection, and data base generation Work in these areas will

lead to meaningful design specification and also aid in the study of new and improved

algorithms initiated during the current contract period.

8. 1. Criteria Selection

The successful prototyping of hardware for real-time disparity analysis depends on

the existence of precise and realistic preformance criteria. These criteria must be

specified with a view towards utility, feasibility, and verifiability.

The criteria under which a particular algorithm can be evaluated have been infor-

mally described above. These criteria need to be formally specified in any continued

effort. Accuracy specifies the average precision of the disparity field. Accuracy should

be separately specified with respect to magnitude and orientation. Density specifies

the number of points in the image assigned a disparity value. Scene dependency

specifies how accuracy varies as a function of different scene properties (eg. accuracy

near object edges vs. accuracy in the center of large surfaces). Start-up and hys-

ters-sis specify the behavior of the algorithm on the first few frames of a sequence or

when major changes occur in scene dynamics. Gr"cejW'L degradaton specifies the

effectiveness of an, algorithm as boundary conditions are approached with respect to

noise, maximum disparity, or difficult scene types.
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&2. Goal Dependency

Certain performance criteria that are important for particular scene types and

interpretation tasks are relatively unimportant for other types of scenes and interpre-

tation. It is extremely important that follow-up work describe a range of realistic

scenris for which disparity analysis might prove useful. A set of prob~em domains

should be described informally with respect to sensor type. the nature ol objects and

surfaces, and possible object and sensor dynamics (and thus properties such as resolu-

tion and maximum disparity). These descriptions should be produced with the advice

and assistance of the technical monitor at the Avionics Laboratory. The necessary

requirements for at least four interpretive tasks should be specified: map matching,

3-D model matching, obstacle avoidance, and segmentation.

&3. Data Base

In order to-evauate disparity estimation techniques, a standard 4ata base of

relevant image sequences is required, along with the "correct" interpretations of those

sequences. The data base should contain long image sequences coverag all of the

problem domains and interpretation tasks that are a part of relevant scenarios. Real

imagery will require that "truth" data be acquired through other sensors ar some form

of interactive analysis. Synthetic imagery must be generated in a mannerwhich avoids

artifacts that effect the performance of analysis algorithms. It is sugested that

AFWAL/AAA take the lead in this activity.

&4. Demonstrton of Algorithms

In order to gain experience with both the evaluation process and disparity estima-

tion algorithms with the potential for real-time implementation, we suggest that four

state-of-the-art algoithms be demonstrated with respect to the formal emluation cri-

teria. Based on our experience during the current contract period, we recommend
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that algorithms to be demonstrated include temporal-spatial gradient analysis, token

matching, image matching (cross-correlation), and a technique combining gradient

analysis and token matching. Once the utility of the evaluation process has been

demonstrated, additional algorithms, possibly written by a variety of research groups,

should be tested. Again, this activity should be centered at AFWAL/AAA.

&5. Algorithm Development

Work under the current contract has successfully produced an analytical examina-

tion of the intrinsic limitations of several state-of-the-art algorithms. This analysis is

being used to modify these algorithms so as to improve performance. We are particu-

larly interested in a number of hybrid approaches which can combine the strengths of

several different existing approaches. We hope to continue both analytical and empiri-

cal studies for algorithm development.
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