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On the Difference Between Waves
and Turbulence in a Stratified Fluid

I. I NI'RODI CTION

Velocity fluctuations in the stratosphere that were presumed to be turbulence

were measured (Crooks et al ) by means of an instrumented U-2 aircraft in

project HICAT. Figure 1 shows some power spectra of such fluctuations plotted

on a log-log scale. Typical of all such uata in their report, these spectral display

a -5/3 slope. This happens to be the same slope as that predicted by Kolmogorov
2

for the case of "inertial range" turbulence. Some authors such as Lilly et al 3 have

indeed interpretcd this spectrum as being in the inertial range of turbulence.

Other authors have noted that the buoyancy length is too small to permit an

-,,crtial range interpretation (Zimmerman and Loving 4 ) and that a more likely

explanation would be that it is some sort of buoyancy subrange turbulence. In

other words, the in( rtial range assumption appears to be contradicted by the fact

that the 5/3 spectrum is almost entirely at scales larger than the buoyancy length

(in Figure 1). Following this suggestion, both Weinstock 5 and Dewanh, using

different arguments, attempted to show that it is theoretically possible to have a

buoyancy subrange with a -- /3 dependence. This is in contrast to the original

theoi i( s of the buoyancy subrange proposed by l3olgiano, i Shur, 8 and Lumley. 9, 10

(Hecei%,ed for publication 2!' October 182)

li,,ause of the Large number of references cited above, they will not be listed here.
See lteferences, page 27.
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Figure 1. Power Spectra From Project HICAT
(Crooks et al l )

11

These original theories and others are summarized best by Lin et al, who also

generalized the theory of buoyancy subrange turbulence. The original theories

predicted a much steeper slope for this subrange, that is, -3 for the Lumley-Shur

theory and -11/5 for that of Bolgiano.

While an inertial range approach toward the understanding of Figure 1

appears reasonable at first sight, it seems untenable if one accepts the experi-

mental evidence (see Barat and Aimedieu, 12 Crane, 13 Anderson, 14 and

11. Lin, J. T. , Panchev, S., and Cermak, J. (196)) A modified hypothesis on
turbulence spectra in the buoyancy subrange of stably stratified shear flow,
Radio Sci. 4:1333-1337.

12. Barat, J., and Aimedicu, P. (181) The external scale of clear air turbulence
derived from the vertical ozone profile: application to vertical transport

6 measurement, J. App1. Met. 20:275-28().

13. Crane, R. K. (1980) Hadar measurements of wind at Kwajalein, Hadio Sci.
15:383-394.

14. Anderson, A.D. (1957) Free-air turbulence, J. Meteorol. 14:477-494.

i8
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R-osenberg and Dewan t ') concerning the average thickness of turbulent layers in

the stratosphere. These cited references agree that the thickness, which presum-

ably represents an "outer length," is of the order of 100 in, which is several

ucidvrs of magnitude smaller than the largest scales of Figure 1. While one piece

of experimrentai evidence seems to indicate that 1. u-km thick layers are not

Uncommon (Crooks et al 6), it has been argued elsewhere (Dewan I ) that the

N tatter evidence was based on a dubious assumption, namely that turbulence was

reUsponsible for the fluctuations in question. Instead, these fluctuations seem

-oirc likeiy to be clue to ,.ayes. This is supported by both outer-length consider-
ations ano buoyancy-lenreth consice,-ations. In an> case, one purpose of the present

re:'tp t is to explain 1' iaure 1, with lt ai of the hl>l)othc .is that the data of
, . Ip.
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2. "RANDOM WAVES" VS "TURBULENCE"

Phillips 8,19 considered the case of a field of random internal gravity waves.

In particular, he pointed out that in this situation the transition to turbulence

would not follow the usual sequence of "instability" (for example, Kelvin-

Helmholtz or Rayleigh-Taylor) followed by a sudden "turbulent breakdown". In-

stead, the "degeneration to turbulence" would be due to the development of

stronger interactions between wave modes. As the waves increase in amplitude

and slope, the interactions between modes would increase. When such inter-

actions become sufficiently "promiscuous" (to use his apt term) one would then

have a turbulent cascade. More precisely, Phillips considered wave interactions

that involve a "resonant triad". The latter involves a three-wave interaction that

satisfies certain special conditions. In this case, he showed that the interaction

time, Ti , is of the order

Ti (k I 1 k2 a 9 Vl/2

where the k's and a's refer to wave numbers and fluid particle velocities, respec-

tiveiy. The subindices refer to two of the three particular waves in the resonant

triad (energy goes into the third wave from waves numbered 1 and 2). As the

wave amplitudes increase, so also do the particle velocities; hence, from Eq. (1)

T i decreases. This decrease of T i is a measure of the increase in the strength of

the interaction. The shorter T. becomes, the less wave-like do the waves in1

question become in the sense that they do not obey a dispersion relation. In other

words, if a mode interaction is of sufficient strength to cause Ti to become com-

parable to a wave period (inverse Brunt-Vaisala frequency), the wave does not

propagate but, instead, is a short-lived local entity better known as a "turbulent

eddy". In the case of turbulent eddies there is no longer the requirement for a

resonant triad in order to have interaction. The following are two of the crucial

distinctions between waves and turbulent eddies: (a) waves obey dispersion re-

lations; eddies or turbulent modes do not, and (b) waves last a long time and

propagate whereas the opposite holds for eddies.

Ideally, a wave has infinite duration (T. = C) and will "linearly superpose"

with other waves (that is, no non-linear interactions). In the real world such

requirements can only be approximated. In what follows we will not use so ideal-

ized a definition. Instead we shall use the term "waves" in a sense that allows

finite duration (such that the decay time is much greater than a buoyancy period).

We will also use "waves" in a sense that allows for weak non-linear interactions

such that Ti is much greater than a buoyancy period.

II
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Eliminating v in Eq. (3) by means of Eq. (4) and solving for k, we arrive at

1/2

k =(B) (5)

which is exactly the same, in effect, as Eq. (2) for kB.

This argument reveals a surprising result. The buoyancy length does not

merely divide the isotropic from the anisotropic turbulence. In addition, it also

gives the minimum wavelength for a horizontally propagating gravity wave. Many

new questions are raised by the above considerations about the nature of buoyancy

4 turbulence. For this reason, these issues will be discussed at length in Section 8.

t. EXPERIMINTAL CRITERI.% TO DISTINGUISH BETWEEN WAVES
%NI) TI RBL LENCE

Busch2 0 and Stewartf have suggested criteria that would enable one to deter-

mine experimentally whether or not a given field of fluctuations is due to turbu-

lence or to waves. The most promising of these critcria is based on the fact

mat turbulence causes mixing, whereas waves do not. In the discussion given

previously, the strength of the mode interactions was the criterion, and this

raises the question of what the physical connection between these two different

criteria might be. As will be explained, they are indeed closely related physically.

mO terms of practical applications concerning pollution transport and chemistry,

-is ,ckl as optic'al turbulence, it is the mixing property of turbulence that is the

inic of ,atcst itr(.st.
21tart sugcstcri that on(- simultaneously measure the vertical velocity

U( tuatfons 3nd potentiai ternperature fluctuations. (In place of temperature one'

uid m c3sore any other s( atar quantity such as the (on.entration or m ixinc ratio

,)I a nutraiiv i)uoyant substance provided it had a significant vrticai ariient).

"roim these measurmonts onc would then caiculate the cohelt n( t u t) ( (Fl these

• 0
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two fluctuations and this would give the degree of vertical mixing taking place.

It would, in fact, give the vertical transport of the scalar quantity due to the

turbulence. In the case of waves, this flux would be zero.
20Busch suggested a similar idea, but he introduced a useful scale depend-

ence as follows. Instead of coherence he suggested that one calculate a cross-

spectrum of the vertical velocity and temperature fluctuations. This spectrum,

the reader will recall, has a real part (the co-spectrum) and an imaginary part

(the quadrature spectrum). For an ideal wave, the vertical velocity and temper-

ature fluctuations would be (±1/2) out-of-phase or in quadrature. The cross-

spectrum would be purely imaginary and there would be no net vertical transport.

In the case of turbulence, there would be transport or mixing, and the phase of

the cross-spectrum would be (±), that is, it would be real and with no imaginary

component. The phase angle, which we shall call t, will in general depend on k,

and it is defined as

0(k) - are tan Ie ,w0,(k) (6)

where Dw, 0 (k) is the cross-spectrum between fluctuations of vertical velocity

w', and potential temperature 0'. In general, therefore, for those values of k

where j3 = 900 or 2700, the motion would be wave-like; and, where 0 = 00, or

1800, it would be turbulent-like. In between these two extreme cases the motion

would be neither pure turbulence nor pure waves.

Axford2 3 tested this approach experimentally in the stratosphere. He found

that, for the cases of well-defined trains of waves, j3 = 900 ± 100. Furthermore,

be found that the coherence spectrum [or {[Im %,01(k)J 2 + (Re w0(k) ] 2 1/2

normalized by the individual power spectra of w' and 9'] had values greater than

0. 8. This second finding is consistent with the idea that a wave-like disturbance

has an extended periodic pattern in space. It gives a second test for waves to

use in conjunction with the above "IJ test". In the cases of turbulent motion at

the scale of k, Axford found that -45 < (k) < +45 ° or 1350 < p(k) < 2250 were

valuable as criteria.

In view of these theoretical and experimental findings we arrive at one of

the conclusions of this paper; namely it would be desirable to apply such tests to

the kind of data described by (rooks et al, I, If- that is, those upon which Figure 1

is based.

:3. Axford, I). N. (197 1) Spectral analysis of an aircraft observation of gravity
waves, Quart. J. Met. Soc. !j7:313-321.
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Other suggestions will be found in Busch. 20We only mention that the

C individual power spectra of 0' and of w' when taken in combination would also be

helpful in distinguishing between turbulence and waves. In the case of turbu-

lence, they would be comparable in shape and magnitude. In the case of waves

they would differ greatly in magnitude with the 0' spectrum being much smaller

than the w' spectrum, especially at high values of k.

.REMA1RKS~ ON THlE RELA~TION IIETI'EEN STRONG MIODE-INTERACTION
%ND) "IXENG", A~ND SPEC:TRAL CONSIDERATIONS

The purpose of this section is to (a) explain the phYsical relationship be-

U tween strong interactions between modes of oscillation and the mixing property

of turbuience. In the process we shall examine the physical nature of turbu-

Lccc o~ing %%ell beyond the previous discussions; and (b) examine the ambiguous

niaturle of theZ interpretation of the power spectrum in this context. The latter

see~ms to have 5een a frequent source of confusion in the literature. We shall

oncincic- , ith sorno> rcnma ks about the use of higher-order spectra fri -,ne pur-

,i iii -:iu., ;L\i~t-asal ing strong nteractions.

l, I r;) akn -ii, What is tWe connec-tion betwveen pruiniscuous miode

t~tl ion Oill L\ ing (that is to say. ix ing in physical space) ?7'' Consider

tlt h)fi- ci ca izt f!, smaili-ampliftude % aves that exhibit perfect sup(er-

os tnil i II,- ~it i ' in ita~ cen each other. Take, for- example, the case of

)I ia .. n i r~avt anteecuei xn A single a ,ave W 001.

110t cr00l1L a x)tA n the inotion w ould uce pci iodic, anir a par'tiII of filail

A oulo .1 Ittinl to i fixed c lcation inl spac. rLa C) Aayes of coin mirl -~u

*tefie'tit11 n.1, on A' Wil!t)vilousiy have the same cfte ci, but the time beiw, ecn ic turns1
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Figure 2. Vortex-Stretching Mechanism in a Turbulent Cascade (after
Tennekes and Lumley 2 4 ). The stress field is given by the arrows.
Larger-scale deformation gives energy to the small-scale vortices by
stretching them. This causes the small-scale vortices to increase
their spin rotation due to conservation of angular momentum

the cascade. The discussion is continued in an article by Tennekes 2 5 where he

gives a convincing argument that shows that a large eddy breaks up into two

S"daughters, * each of which is about half as big as the mother". He then adds,

"The evolution of and interaction between eddies involve non-linear mixing, both

in coordinate space and in wave number space. " As was already mentioned, the

former is due to the random rates of strain caused by the cascade process. It

should now be clear why strong mode-interaction implies mixing. The defor-

mation, since it separates nearest neighbors of fluid particles, is the cause of

the mixing. The deformation, in turn, is due to mode interactions.

The above sort of cascade picture led Kolmogorov 2 to his famous -5/3 spec-

trum by means of a dimensional argument as follows. Since the power density

spectrum of the velocity fluctuations, D(k), has the dimensions of v 2/k or

1 31 1 T- 2; and since we assume, by virtue of the conservative cascade, that

D(k) depends only on F and k with dimensions [ L2 ] iT- 3 ] and L - 1 respectively,

it follows that

D(k) = a 2/3 k-/53 (7)

0

That is, one large vortex feeds two smaller ones until the large one is
exhausted. Onsagei) 6 envisioned the same factor of 2.

Recently, two new mathematical approaches have appeared that shed light
on some of the classic problems of this subject. The interested reader may con-
suilt the Appendix for a brief sketch of these.

26. Onsager, L. (1949) Statistical hydrodynamics, Nuovo Cimento (Ser. ',

Supp. 2):279)-287.

* 16
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where a is a constant of order unity. Note that in this derivation it was not nece --

C sary to assume locality of interaction in k-space. Rather, all that is used is the

assumption that e does not depend on k.

We now turn to what is perhaps the key to the confusion that leads to state-

ments like "turhalence is a field of random waves"; and "if thc spectrum has -5/3

slope, this means that it represents cascade or inertial range turbulence'. The

key issue, in my opinion, lies in the interpretation of the power spectrum.

'Uconnekes 2 )brings this out very clearly. There are, in fact, two possible inter-

pretations. In the case of waves one can imagine the Fourier components as

ruprtentiagq individual waves propagating thiouith the entire sample of fluid under

('015 idration. This is a v'ery natural way, to c'onsider Kaurier components because

this is the "ay the sable c is taught in ''ourser . Or the other hand, when one

const 1-i' s turbulrent iotion, one- is n')t looing at (' Mended "aves but, instead, at

sho't- iv'''. hi'\-,-!'a'az'd htodesf Q Wsturbinue or eddFies. One is considering

a Wace' I) ct an or ahsuimblae of these 'iitiis (Qqpi ximating an ensemble)
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frequencies will be found in Dewan. 2 9 Such spectra measure non-linear inter-

actions between "wave-modes". In the absence of such non-linear interactions

the bi-spectrum, for example, would be zero.

Unfortunately, the idea of using higher-order spectra to measure the transfer

rate of energy between modes of oceanic internal waves has problems associated

with it that render it impractical at this time (as explained by McComas 3 0 ). On

the other hand, the application of higher-order spectra to atmospheric turbulence

has yet to be explored. In the case of turbulence, there is every reason to be

optimistic about the usefulness of higher-order spectral measurements. For the

present, then, only mixing in coordinate space is available for measuring "degree

of turbulent interactions" in a fluctuation field. However, higher-order spectra

may very likely play a role in the future.

6. TWO-DIMENSIONAL TURBULENCE

The term "two-dimensional turbulence" is well known, and was first discussed

by Onsager 2 6 in terms of a "reverse cascade". More recently, Kraichnan 3 1 dis-

cussed this two-dimensional, reversed cascade (large k to small k) of energy,

and he showed that it would have a k - 5 / dependence. Leith and Kraichnan3 2

subsequently showed that in two-dimensional turbulence there is also the possi-

bility of a forward cascade of enstrophy that would have a k - 3 dependence for the

spectrum (see also Charney 2 3 ). Both Stewart 2 1 and Gage 3 4 have proposed that

some of the observations of k - /3 one-dimensional spectra in the atmosphere may

be the result of a reverse two-dimensional cascade. This leads directly to the

question of whether or not Figure I could be explained along such lines.

An experimental approach to the answer to this question would be to invent a

modification of the Busch and Stewart approach that would render it appropriate

to two-dimensional turbulence. We now attempt to do this. In the previous case,

we had three-dimensional turbulence in which was imbedded a scalar quantity, 0

(the potential temperature), which had a vertical gradient. Vertical transport due

29. l)ewan, F. N1. (1f9) Nonlinear Cross-spectral Analysis and Pattern
Recognition, AF('Il-(M-0026, AD 6870851.

30. Mc(omas, U. I. (1978) Private communication.

31. Kraichnan, 1. H. (0967) Inertial ranges in two dimensional turbulence,
Phys. of oluids 10:1417-1423.

: 32. .eith, C. E. , and Kraichnan, R. H. (10)72) Predictability of turbulent flows,

J. Atruos. Sci. 29:1041-1)058.

33. (harney, J. G. (171) (;eostrophic turbulence, J. Atmos. Sci. 28:1087-1 0!05.

34. Gage, K. S. (1!)709) Evidence for a k law inertial range in mesoscale two-
dimensional turbulenc(, J. Atmos. Sci. 3(;:19 5)-1.014.

* 18

0I



to mixing provided the criterion for the presence of turbulence. In the case of

(horizontal) two-dimensional turbulence, the analogous situation would have to

prevail, that is, there would have to be a scalar quantity 6 present that had a

horizontal gradient. Two-dimensional turbulence would then be signaled by trans-

port via the horizontal velocity fluctuations in the direction of 1O, and one would

merely substitute that velocity component for what we called w previously. The

test would be formally identical to what was given previously. Whether such a

test would be practical remains to be seen; for, in the previous situation vertical

mean motion was negligible. In contrast, there would be horizontal mean motions

that would have to be eliminated from the analysis.

Theoretically, there are two problems with a two-dimensional turbulence

explanation of Figure 1. The first is the question of how energy could be supplied

to the small-scale end of the spectrum. The second is the question of how to

explain the observation that the vertical velocity fluctuations have the same inag-

nitude and power spectrum slope as the horizontal velocity components in

(Figure 1).

There is one complication in this experimental criterion for turbulence that

was not pointed out by Busch, but that we should mention for completeness. The

cross-spectra involved ore based on one-dimensional trajectories, that is, %ke

deal with one-dimensional spectra. It is well known that such spectra are sub-

ject to spatial aliasing effects, This, in turn, could introduce an ambiguity into

the imeaning of "(k), or phase, if more than one wave gave the same k component.

In principle this could be remedied by making usc of higher dimensional spectra;

however, the notable success of Axford2 3 with this technique suggests that try

concern is prem ature.

' 11R. % \S C (A\I: EXPF.CNACi DON FOR A k- 1J/ SPECTRI M

Mc( oas and Mctonas and Bretherton3 6 have investigated internal wave

interactions and the transfer of action' in k-space. Their work is primarily

37). M(4 omas, C. 1. (1977) Equilibrium mechanisms within the oceanic internal
wave field, J. Phys. Oceanog. 7:836-845.

3N;. McCom as, (C. 1. , and Bretherton, '. P. (1977) Resonant interaction of
o,,eanic waves, J. Geophys. lies. 82:1397-1412.

Wave action is defined as wave energy divided by frequency (sec Phillips
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18 37,38
built upon the former researches of Phillips and Hasselman among others.

Briefly, their treatment assumes that the waves are essentially linear and that

the interac.:tion between modes is weak. Phillips 1 8 showed that there is a way by

which internal waves can interact in a resonant manner provided that the temporal

frequencies and wave numbers of a triad of waves obey a certain condition. Thi3

condition is

± K2 = 3

I ±u 2  3 (8)

(in the case of surface waves there must be a four-wave interaction.)

The physical mechanism (by which energy can be transferred from two inter-

acting modes into a third mode) resembles forced simple harmonic oscillation.

Two modes interact by means of the convective, non-linear term in the equations

of motion and, as a result, they generate sum and difference frequencies [see

Eq. (8)1. The third wave (number 3), is assumed to have both a spatial and tem-

poral resonance with this "beat frequency phenomenon" caused by the interaction

between waves numbered 1 and 2. Wave three is thus "driven" in a manner

analogous to a simple harmonic oscillation with a forcing term on the right-hand

side of the equation.

McComas 3 5 shows that among all the possibilities for Eq. (8) to hold, there

are three distinct limiting configurations compatible with the dispersion relations;

and these he labels "induced diffusion", "elastic scattering", and "subharmonic

instability". These allow a simplified and physical way to further understand the

transfer between wave modes. He, for the purpose of this paper, provides us

with a proof that a wave--wave energy cascade can exist. Beyond this one fact

our present work i,'eds no further details.

Parenthetically, it should be mentioned at this point that the thrust of the

work by Mctomas and Bretherton is primarily to provide a theory for the
,,C .. .,, .3.0,40

",arrett-Munk" Spectrum, which represents a universal wave spectrum to

Ube found associated with internal waves in the ocean. A desirable achievement

37. llasselnann, K. (1 '(2) On the non-linear energy transfer in a gravity wave

sp,ctrum, Part 1, J. tFluid Mech. 12:481-500.

:'M. llisselmann, K. (1;:3) On the non-linear energy transfer in a gravity wave
spectrur, Part 2 and Part 3, J. Fluid Mech. 15:273-281, 385-398.

3:. -arrett, i., and Munk, kk. (1972) Space-time scales of internal waves,
Geophys. Fluid Dyn. 2:225-2f;4.

. (;arrett, U., and Munk, %%. (1975) Space-time scales of internal waves: a
progress report, J. Geophys. lies. 80:291-207.
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would be to explain the atmospheric data such as that exemplified by Figure 1.

Far from being "universal", such data are found only on rare occasions in which

the wave intensities are so great that they were originally identified as turbulence.

Such disturbances are found on the order of 5 percent of the time. Furthermore,

the disturbance is found to be confined to altitude thicknesses of I to 2 km (as

shown by Crooks et all 116). At present it is not clear if our conclusions have

any application to the Garrett-Munk (GM) spectra; but this cannot be ruled out at

this time. On the other hand, they do appear to have relevance to Figure 1.

In Dewan, 17 an alternative existence proof of the possibility of an energy

wave cascade is given. There, the interaction between wave scales is explained

not by resonance, but by the effect of deformations caused by large waves, which

in turn can "feed" small waves. The next step, if one were to work in parallel

with the bizarre history of turbulence theory (that is, Richardson's famous poem

followed by Kolmogorov's dimensional argument) would be to create a new poem,

Big waves have little waves that feed on deformation and little waves have lesser

waves, to turbulent dissipation". Needless to say, the poem is not a prerequisite

to making a dimensional argument nor does it reflect the resonant mode inter-

action approach of this paper. Instead, it reflects an alternative approach given

in Dewan. 17

In one sense there is a very close parallel between ie wave cascade theory

given in Dewan 17 and that given in McComas. 3 The latter involves interactions

with time scales given by Eq. (1) or its simplification given by Ti  (kv) " , which

was used in Section 3. In contrast, the treatment given in Dewan 17 involves

production terms of the form U afu/az where U represents average larger-scale

velocity fluctuations, and u and w the smaller scale ones. These production

terris represent transfer from larger to smaller scales. In this case, however,

T. = (aU/az)- . However, in a wave cascade, U is oscillatory and its shear is

given by Uk thus (T.1) is physically the same quantity as that given in resonance
1 ¢)

theory. Instead of ew = v- (vk) for resonant mode interactions (where E, is the
2

transfer rate) one would have ) = v 2dv/dz which, in effect, is the same quantity.

The cascade in question must involve transfer from the large to the small scales.

This is well known because turbulence itself (at the small scale) is dissipative

and ultimately converts motion into heat. It cannot represent the original source.

The latter must be at large scales. True, turbulence can generate gravity waves;

however, it itself, must be generated by shears that arise from larger scale

fluctuations. For more discussion of this the reader should consult Dewan. 17

In any case we now make the assertion that the wave power spectrum depends

only on k and "e (which is the dissipation rate for the waves due to their inter-

actions). In ordei" to calculate the nrtual kinetic energy dissipation rate per unit

zoLuine one must multiply E,,, by p, the mass density.
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We are now in a position to write down the expression for the wave cascade

one-dimension spectrum. One need only repeat the dimensional argument of
• 9

Kolmogorov given previously to arrive at

2/3 5-/3
D w(k) = aW ew  k (9)

Here the subscript W signifies waves.
One could object that, unlike turbulence, wAves must obey a dispersion

relation that, in turn, must depend on the buoyancy frequency. In its simplest

form, this dispersion relation is

w = NB cos 0 (00)

where 0 is the angle (0 -5 1/21r) between the horizontal direction and k (Turner 41).

Thus, how can one assume that '(k) does not depend upon NB? My answer is

that we presently are assuming a cascade in steady-state and in which negligible

mixing is taking place. (We, like McComas, assume that the interactions are
weak in comparison to turbulence. ) That is to say, eW output would equal the

input so long as energy is not given up in the form of the potential energy due to

mixing in a stratified environment. This implies that buoyancy does not affect

" It is therefore reasonable to suppose that a change in NB would affect only

the amplitude of the waves in such a way that the kinetic energy for a scale, k,
would remain unaltered. In other words, our dimensional argument is physically

permitted.

The other facts that make the hypothesis of a wave cascade a useful one are
-5/3(a) the experimental values of the spectra in fact give us a k-  , dependence,

(b) as will be seen, eW can be related to observation, and (c) one can experi-

mentally test the "wave field" hypothesis via the previously described "Busch

Test" to verify that it is indeed a wave field. In other words, this approach is

testable.

Finally, we now consider the theoretical shape of a spectrum that extends

through ranges of k including both the waves and turbulence. This requires that

we obtain the answers to the following three questions: (a) "At what value of k

is the transition between w(k) and WT(k) (the turbulence spectrum)?, (b) "In
0 T

More generally, w N2 cos 2 ( + W. sin 0 where ) is the inertial frequency

(see Garrett and rlunk 3 9,
4 0)

.B

41. Turner, J.S. (1973) Buoyancy Effects in Fluids, Cambridge University
Press, 3(;7 pp,
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what way is e related to FT (turbulent dissipation)"? and, (c) "What are the

numerical values for aW and aT ?"

The first question is easily answered on the basis of the previous discussion.

The "buoyancy length" derived above gives us the boundary between horizontally

propagating waves and isotropic turbulence. While this "boundary" is a transition,

* and is hence smooth, it is given by kB where

1/2

kB Nc (11)\T/

[see Eq. (5)] where c is a constant of order unity.

The answer to the second question (regarding the relation between the wave

and turbulence dissipation rates -W, and ET respectively) is obtained from the

assumption that the cascade is conservative. Energy conservation gives

p WVw = P TVT (12)

where V W represents the volume occupied by the waves and VT that of the turbu-

lence. The reason VT and V W are not equal in a stratified medium is that turbu-

lence in the latter is known to occur in thin layers occupying a small fraction of

the total volume. Thus we arrive at

W VT
E W T (13)

T V W

Since V > VT, it follows that W< Knowing W one could calculate ET if

the volume ratio were known. It should be noted that if one were to ascertain

F F\ r by means of the spectrum (assuming at that point that aT and were

known) then one would have a measure of VT/Vk% that would in turn have some

pragmatic utility in problems concerning pollution transport and optical trans-

,ijssion through turbulence. Specifically, VT/V WI would be a measure of the

VIIIIJI( O( upit'd by turbulence relative to the overall volume of the disturbed

I'hit third question (concerning the universal constants of order unity, aT' and

:n only be answered by experiment. One already knows that aT is around2)4
1. % (Tennekcs and LIum y- ) but it depends somewhat on the velocity component

2:3



in question. (One does not yet know the value of a but, according to Bond, 42

there is a 90 percent a priori chance that it lies between 0. 1 and 10.

Figure 3 shows a schematic representation of this spectrum assuming that the

measurement is made from a probe within a turbulent layer. ' In this figure no

account has been taken of the spatial aliasing effects to be expected in the case of

one-dimensional spectra. Gifford4 3 showed an cxample where there was a -5/3

slope that continued to wavelengths three to five times larger than would appear in

a spectrum without aliasing.

1Po illusti-,tt this effect, let us consider a specific numeriic I example. Sup-

pose that kB = ) m (a typical value for HI(AT spectra su,h as in Figure 1).

In this case, B 
= 315 in. If aliasing we're to extend the --/3 slope to scaltes fivt

times larger than AB, that , ould take it out to 1,)., In. 1 igurc 1, however, has

ti slope ,f -5/3 extending to about one orde r of magnitude beyond this length.

It w)tihi 0c vcrv u.se-fi it velocit.v spectra mm! Cor ss sp .,'tr [lq. (f;)J at r(,

ineasini d in stablt fluids in order to test m*e idea than, tt a, avel ngths 'nu,-h

tar mer than ' %.in,.s :.:i1s, an 1u l( ss nii All lku"in),e,'; extits, inlt thtzl

,)0th .arl have a - sl)pt hut with f I q. (1)). Iquatitn ((!), AhI h

\t~liit'!ll I,) ' i' . I :.cc,)!:, ,.t , w : ." !, 'It : ,; \ i.' mm " l betueri.l , '.'

8;. ( I'lMl 1 XI W (of I W l U Il ) k\0 I' I l , NI )l V il ll I I NVI
XNl) \ ini Xli I| N',Ill I illilt)N

'''i : I > ' -x:, I , - ' ! ' ,, i 5 ? :
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F'-~-a 2/3 k-5/3

B8  k

Figure 3. Schematic R'epresentation of a Power Spectrum of W.rives and
Turbulence in a Steady-State, Cascade. Note that the part of the curve
that connects the 11wave' and "turbulent" parts has been given an arbi-
trary shape

Using IFq. (10) we obtain

T. (N~ BeCs fl1(14)

in place of T- N 131used previously. Sim ilarly, in phi re of 1.q. (4) we use,

F =V N B3 "Os 0 . (1)

AS result, in pin ct of GO for k we now get
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k-2 V 3 1 (18)

B N3  r
B

Jsing the fact that (v/ 0 ) is of the same order as the mean vertical shear

Cieference 24), we can write the Richardson number, R. in the form

13)
B

L (v(1 oY

'0

A typical value for R. in cases where shear induced turbulkce exists is (1/4).

[Using this it is easy to obtain

--1 = , (2. S) .(2o)
13 o

Lies, within a constant of ,d r unity, the outer length and buoyancy length are

Fhis uai'a t S S1 jut tin4 jue.stions. Usually defines the scale at

!i tih' t iuruleit u is _, ,ii( ted. Hut k-I is the ninimum scale for buoyancy

a, .. ' tu .bule'r c(. 1 then :an there be buoyancy turbulence if the energy

' ie ' to r:i;;e' I" i sa s ( ould it be th: case that buoyancy turbulence must

rC- late i dv a a'i' L. , s'ale hoirizontal shear ? This is not an unreasonable

:i ,I ity ::iii, , he S , hx .. 1, this kintd of turbulence involves horizontal
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UC turbulence of large X and the horizontally propagating waves. As we have seen,

such turbulence would involve mainly horizontal motion. Thus vertical motion
would be due to waves and horizontal motion would be due to eddies, making the

distinction merely a matter of measuring the direction of the velocity fluctuations.

9. CONCLUSIONS

Waves and turbulence are idealizations for two extremely different types of

fluctuations in a stable fluid. Waves represent the extreme of linear (super-

posable) dissipationless motion. Turbulence represents very strong mode-inter-
actions, mixing, and dissipation. Waves have non-local, long-lived propagating

patterns, and turbulence has local, short-lived, non-propagating patterns.
I have used "waves" in this paper in a manner that departs somewhat from

the ideal type in that some weak non-linear interactions are permitted. In any
* case, the cross-spectral test of Busch was discussed and it should prove useful

in distinguishing between waves and turbulence. There is reason to hope that

bi-spectra could also play a future role in making this experimental distinction.
30)More specifically, the "bi-coherence defined in McComas -ould be used to

estimate the degree of turbulent non-linear interaction.

Figure 1 presents us with a.n interesting scientific mystery. On one hand,
it is clear that the inertial turbulence interpretation is ruled out. A wave cascade
possibility has been proposed. Buoyancy turbulence or two-dimensional turbu-

lence (they seem to be related) may be involved. The answers to the questions

raised will probably necessitate the use of some of the wave turbulence criteria

Lproposed in this report.

Hopefully this work will prove useful in the practical problems of pollution

transport and optical turbulence. If it turns out that the cascade hypothesis is

related to universal wave spectra (Garrett and Munk 3 9, 41)), this approach could
leaid to better ways to predict shear structure giving rise to turbulence. If it

* (1COUld lend to a better understanding of the intense trapped gravity wave structure

of the type presum-ably observed by ('rooks et al, l, I perhaps this could lead to

ways t', predict high (' conditions.

(nC MC ianism that might a c count for thee high-intensity trapped wav-s
'ould VoiV over-1cf1c'tion, for exa mp le

I
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Appendix A

*1 New Developments in Turbulence Theory

New work in the mathematical approach to turbulence enhances our under-

standing of the chaotic nature of turbulent mixing. This appendix is intended to

bring this new information to the reader's attention. The major unresolved ques-

tion in turbulence theory is, "How do the random or chaotic motions, which sup-

posedly are the solutioni of the purely deterministic equations of fluid motion,

come into existence?" The new findings demonstrate a physical mechanism that

makes such a phenomenon possible.

It is very well known that, as the Reynolds number is increased, a critical

value can be reached where the laminar flow makes a transition to turbulent flow.

I'he transition, in some cases, is spread over a range of heynolds numbers, that

is, there is a series of transitions or bifurcations in the complexity of the motion.

As l, ,nolds number increasts, c(omplexity increases until a point is reached

heic , suddenly, tht, motion b(e(oIi es totaily chaotic.

'li 'breakthrough' co., ept that expla:ins the t'haotic behavior is known as a

strange attractor" and it was introduted by lorenz, I\ in the context of the Benard

instability. By lourier dtcoinpos ing certain variables of the partial differential

t quations for the problem he obtained an infinite set of ordinary differential equa-

tions. Fhcse he truncated to thre(' (quations, and hence his x- ork represents a

severe mutilation of the -A tuat quations. In any case, it led to the first dis(ovrv

A\ I. Iorinz, F.N. (1:% ) Ihtrr:inistj, on0periodli flo , .I..'ti. 5i. ?',:13-14I.



of strange attractors. Subsequently, Ruelle and Takens A 2 arrived at strange

attractors for turbulence theory from an entirely different direction, namely

from the qualitative theory of differential equations. They did much to explain

both chaotic motion and also the Reynolds number bifurcation-sequence described

previously. Most recently, the work of Feigenbaum A 3 provided an especially

clear way to understand both the transition to increasing degrees of complexity of

motion as well as the subsequent transition to total chaos.

In order to understand qualitatively the meaning of the "strange attractor"

concept, one can start with the simpler entity known as an attractor. The simplest

examples of an attractor occur in works on non-linear mechanics (for example,

Andronov et al or Minorsky A5). Consider, for example, the motion of an
electronic oscillator as modeled by the van der Pol equation. Such motion is con-

veniently examined in the x-v (that is, displacement and velocity) or "phase plane".

For example, if the oscillator were to start with initial conditions near x = 0 and

v = 0, the trajectory of the solution would form an outward-going spiral that

asymptotically approaches an ellipse that is known as "limit cycle". The latter
trajectory represents an equilibrium between input and output of energy over the

cycle. If the cycle were to start with large values of x and v, the trajectory

would spiral inward towards the limit cycle. The limit cycle thus appears to

attract all trajectories no matter what their initial conditions might be, and hence

the term "attractor" is used.

The adjective "strange", when employed in the present context, designates a

key aspect of the explanation of chaotic motion. It refers to the fact that such an

attractor is of fractional dimension or is a "fractal" as is described at great

length in thc' book by Mandelbrot. A6 As he explains, a fractal curve (or at least

one major type of such curve) is one of which each piece is a reduced scale

version of the whole. Such curves have the property that, as their length is

measured at ev:r higher resolutions, it increases indefinitely. The dimension,

D, is given by

g D = log N/log (l/r) (A1)

A2. tuelle, D. , and Takens, F. (197 1) On the nature of turbulence, (iommun.
Math. Phys. 20:167-192.

A3. I"eigenbaum, M.J. (19)8 Universal behavior in nonlinear systems,
Los Alamos Science Summer:4.

A 4. Andronov, A. A. , Vitt, A. A. , and Ehaiken, S. E. (196 ;) Theory of Oscillators,
Pergamnon Press, New York, 815 pp.

AS. Minorsky, N. (1947) Introduction to Non-l.inear Mechanics, E'dwards, 4"4 pp.

Ar;. Mandelbrot, 13.13. (1977) Fractals, Form, Chance, and Dimension,
Freeman and Co., 365 pp.
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where N is the number of parts in a whole piece of the curve and r is the so-called

similarity ratio. For example, consider the case of a uare which is subdivided

into N squares; the "similarity ratio" would be r = I/N l2. That is to say, each

side of the small squares would have this ratio to the length of the original square.

Here, one can obtain D = 2 from Eq. (Al. But D = 2 dimensions is the ordinary

situation for plane figures. Thus Eq. (Al) gives the usual results for non-fractal

objects. The simplest example of a fractal is the so-called "Koch curve"; however

the derivation of D = log 4/log 3 = 1. 2618 for that case (as well as the discussion

of many other examples of fractals) will not be given here. (See Mandelbrot. A 6

Thus, fractals are of fractional dimension.

It has been shown by Lorenz,A i Ruelle et al, A 2 and Feigenbaum A 3 that if a

non-linear system has an attractor in its phase space, which is also a fractal,

then the system can exhibit chaotic motion. It follows that total mixing will take

place in coordinate space because total mixing occurs (in the fractal sense) in the

phase space.

The following citations will be useful for further reference. In particular,

the works by Dold et al, A 7 ,A 8 Swinney et al, and TreveA 10 are good review

papers on the subject.

A7. Dold, A., and Eckmann, B. (1976/1977) Turbulence Seminar, Springer

Verlag, N.Y., 155 pp.

A8. Dold, A., and Eckmann, B. (1976) Turbulence and Navier Stokes Equation,
Springer Verlag, N.Y., 194 pp.

Af'. Swinney, H. L., and Gollub, J. P. (1981) Hydrod)namic Instabilities and the
Transition to Turbulence, Springer Verlag, N. Y. , 292 pp.

A10. Treve, Y. M. (1,78) Theory of chaotic motion with application to controlled
fusion research, Topics in Nonlinear Dynamics, S. Jorna, Ed.,
American Institute of Physics, pp. 147-220.
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