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On the Difference Between Waves
and Turbulence in a Stratified Fluid

1. INTRODUCTION

Velocity fluctuations in the stratosphere that were presumed to be turbulence

were measured (Crooks et all) by means of an instrumented U-2 aircraft in
project HICAT. Figure 1 shows some Lower spectra of such fluctuations plotted

8 on a log-log scale. Typical of all such uata in their report, these spectral display
a -5/3 slope. This happens to be the same slope as that predicted by Kolmogorov2

for the case of 'inertial range' iurbulence. Some authors such as Lilly et a13 have

LS

indeed interpreted this spectrum as being in the inertial range of turbulence.
Other authors have noted that the buoyancy length is too small to permit an
wwertial range interpretation (Zimmerman and Loving4) and that a more likely
explanation would be that it is some sort of buoyancy subrange turbulence. In
other words, the incrtial range assumption appears to be contradicted by the fact
that the 3/3 spectrum is almost entirely at scales larger than the buoyancy length

(in Figure 1), Following this suggestion, both Weinstock® and Dewan®, using

A200 A n i SRR o -uth e lin A SR 4

different arguments, attempted to show that it is theoretically possible to have a

buovaney subrange with a -5/3 dependence. This is in contrast to the original

vvrs

7 a
theories of the buovancy subrange proposed by Bolgiano, / Shur, 8 and Lumley. "’ 10

(Received for publication 29 October 1082)

I3ecause of the large number of references cited above, they will not be listed here.
[ Sec References, page 27.
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Figure 1. Power Spectra From Project HICAT
(Crooks et all)

These original theories and others are summarized best by Lin et al, 11 who also
generalized the theory of buoyancy subrange turbulence. The original theories
predicted a much steeper slope for this subrange, that is, -3 for the Lumley-Shur
theory and -11/5 for that of Bolgiano.

While an inertial range approach toward the understanding of Figure 1
appears reasonable at first sight, it seems untenable if one accepts the experi-

14

mental evidence (see Barat and Aimedieu, 12 Crane, 13 Anderson, and

11. Lin, J.T., Panchev, S., and Cermak, J. (1969 A modificd hypothesis on
turbulence spectra in the buoyancy subrange of stably stratified shear flow,
Radio Sci. 4:1333-1337.

12. Barat, J., and Aimedicu, P. (1981) The external scale of clear air turbulence
derived from the vertical ozone profile: application to vertical transport
measurement, J. Appl. Met. gﬂ:275-28().

13. Crane, R.K. (1980) Radar measurcments of wind at Kwajalein, Radio Sci.
15:383-394, E—

14. Anderson, A.D. (1957) Free-air turbulence, J. Meteorol. 14:477-404.
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Rosenberg and Dewan“) concerning the average thickness of turbulent layers in
the stratosphere. These cited references agree that the thickness, which presum-

"is of the order of 100 m, which is several

ably represents an "outer length, '
viders of magnitude smaller than the largest scales of Figure 1. While one piece
of experimental evidence seems to indicate that 1. U-km thick layers are not

. 1¢
uncommon (Crooks et al™

), it has been arguecd elsewhere (De\vanll) that the

iatter evidence was based on a dubious assumption, namely that turbulence was
responsible for the fluctuations in question. Instead, these fluctuations scem

more likeiy to be due to waves. This is supported by both outer-length consider-
ztions and buovancv-length considerations. In any case, one purpose of the present

report is to explain bigure 1, with the aia of the hyvpothesis that the data of

i

. J1L G . v .
Crooks et al represevt primaorily vaves and not inertal range turbulence.
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2. “"RANDOM WAVES” VS “TURBULENCE”

Phillips 18 19

In particular, he pointed out that in this situation the transition to turbulence

considered the case of a field of random internal gravity waves.

would not tfollow the usual sequence of 'instability' (for example, Kelvin-
Helmholtz or Rayleigh-Taylor) followed by a sudden ''turbulent breakdown'. In-
stead, the ''degeneration to turbulence' would be due to the development of
stronger interactions between wave modes. As the waves increase in amplitude
and slope, the interactions between modes would increase. When such inter-
actions become sufficiently "promiscuous'' (to use his apt term) one would then
have a turbulent cascade. More precisely, Phillips considered wave interactions
that involve a ''resonant triad'. The latter involves a three-wave interaction that
satisfies certain special conditions. In this case, he showed that the interaction

time, Ti’ is of the order
T. ~ (k, ok, a,)"1/2 (1)
i 191K 99

where the k's and o's refer to wave numbers and fluid particle velocities, respec-
tiveiy. The subindices refer to two of the three particular waves in the resonant
triad (energy goes into the third wave from waves numbered 1 and 2). As the
wave amplitudes increase, so also do the particle velocities; hence, from Eq. (1)
'I‘i decreases. This decrease of Ti is a measure of the increase in the strength of
the interaction. The shorter 'I‘i becomes, the less wave-like do the waves in
question become in the sense that they do not obey a dispersion relation. In other
words, if a mode interaction is of sufficient strength to cause Ti to become com~-
parable to a wave period (inverse Brunt-Vaisala frequency), the wave does not
propagate but, instead, is a short-lived local entity better known as a ''turbulent
eddy''. In the casc of turbulent eddies there is no longer the requirement for a
resonant triad in order to have interaction. The following are two of the crucial
distinctions between waves and turbulent eddies: (a) waves obey dispersion re-
lations; eddies or turbulent modes do not, and (b) waves last a long time and
propagate whereas the opposite holds for eddies.

Ideally, a wave has infinite duration (T, = <) and will "linearly superpose"
with other waves (that is, no non-linear interactions). In the real world such
requirements can only be approximated. In what follows we will not use so ideal-
ized a definition. Instead we shall use the term ''waves' in a sense that allows
finite duration (such that the decay time is much greater than a buovancy period).
We will also use "'waves' in a sense that allows for weak non-linear interactions

such that Ti is much greater than a buoyancy period,

10




Ideatly, an eddy would lusce its identity within one wave oscillation period and
within one wavclength due to its strong interactions with other modes of oscilla-

tion.,  This i presumed to be a good description of turbulence in the real world.

A0 THE BUOYANCY LENGTH

The preccan: onziderations van shed new lignt on the physical meaning of the

1’1

. o . . ¢ N
co- oo B o o senoth o that arises in Lumley's theory of the buoyancy

929
~ohrme sy . (See also the review of Phillips™ . ) This buoyancy

f I < et
\ 12

-1 i ‘ :
‘(:l‘ e t | 'j‘ i (2)

; i L

oy
' capntion rate, NH e buoyaney frequency, and C is a constant of
SR . noieg to arnley, this length separates the scales of the buoy-

Drecbulinee from the inertial subrange, the latter of course
= oaters Woe now derive o (2) from an entirely different
Cree phiver ) approach than given by Lumley.

oo, smupposc we consider the case of Fq. (1) where k, 7k, = k

. ~1 . . -
o v Yhay, we toke the case where Fi = NH , which is to say that we
oot o dertine case where the interaction time is of the order of the min-
o cadds s This is the ease chere, acecording to the previous section, the

tiorn coaves are turbualent-like in their promiscuity of interaction.

P bl (1), we have

N 3)

e e ot the wave sode in question gives up o its Kinetic energy to a mode

terasction cos e

inoone period of its oscillotion. Now, the cascade must cven-
ooase energe ot the moiecular leves qf the sonado-ocale end at the rate

i
ewing v o= the kinctis energy per unit of mass, and asswming the cascade to be

conservative, we arrive at

)

Phillips, O.ML (1067) On the Bolgilano and Lumley=-Shur Theories of the
Soroanex subronge, in Atmospheric Turbalence and Radio Wave Propagu-
tior, ALML. Yaglom, and V. I. Tatarsky, Ids., NAUKA, Moscow, 374 pp.

11
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which is exactly the same, in effect, as Eq. (2) for kg-

This argument reveals a surprising result. The buoyancy length does not
merely divide the isotropic from the anisotropic turbulence. In addition, it also
gives the minimum wavelength for a horizontally propagating gravity wave. Many
new questions are raised by the above considerations about the nature of buoyancy

turbulence. For this reason, these issues will be discussed at length in Section 8.

L EXPERIMENTAL CRITERIA TO DISTINGUISH BETWEEN WAVES
AND TURBULENCE

Busch? and Stewart” | have suggested criteria that would enable one to deter-
mine experimentally whether or not a given field of fluctuations is due to turbu-
lence or to waves. The most promising of these critcria is based on the fact
tnat turbulence causes mixing whereas waves do not. In the discussion given
previously, the strength of the mode interactions was the criterion, and this
raises the question of what the physical connection between these two different
criteria might be. As will be explained, they are indeed closely rclated physically.
in terms of practical applications concerning pollution transport and chemistry,
as well as optical turbulence, it is the mixing property of turbulence that is the
one of sreatest interest.

’itmvzu‘tgl suggested that one simultancously measure the vertical velocity
fluctuations and petential temperature fluctuations.  (In place of temperature one
could measure any other scalar quantity such as the concentration or mixing ratio
of a neutraiiv buoyant substance provided it had a significant verticat gradient).

t'rom these measurements one would then calculate the cohcrence uetween these

[e.
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two fluctuations and this would give the degree of vertical mixing taking place.
It would, in fact, give the vertical transport of the scalar quantity due to the
turbulence. In the case of waves, this flux would be zero.

Busch20 suggested a similar idea, but he introduced a useful scale depend-
ence as follows. Instead of coherence he suggested that one calculate a cross-
spectrum of the vertical velocity and temperature fluctuations. This spectrum,
the reader will recall, has a real part (the co-spectrum) and an imaginary part
(the quadrature spectrum). For an ideal wave, the vertical velocity and temper-
ature fluctuations would be (x7/2) out-of-phase or in quadrature. The cross-
spectrum would be purely imaginary and there would be no net vertical transport.
In the case of turbulence, there would be transport or mixing, and the phase of
the cross-spectrum would be (7), that is, it would be real and with no imaginary
component. The phase angle, which we shall call §, will in general depend on k,
and it is defined as

Im &, (k)
B(k) = arc tan <mWL|:|'(_kY> ’ (6)

where <I>w,0,(k) is the cross-spectrum between fluctuations of vertical velocity
w', and potential temperature 9'. In general, therefore, for those values of k
where 3 = 900 or 2700, the motion would be wave~like; and, where 3 = 00. or
180°, it would be turbulent-like. In between these two extreme cases the motion
would be neither pure turbulence nor pure waves.

Axford23 tested this approach experimentally in the stratosphere. He found
that, for the cases of well-defined trains of waves, {3 = 90° + 10°. Furthermore,
be found that the coherence spectrum [or {[Im ‘Pw.o.(k)] 2, [(Re d>w.9.(k)]2 }1/2
normalized by the individual power spectra of w' and ¢'l had values greater than
0.8. This second finding is consistent with the idea that a wave-like disturbance
has an extended periodic pattern in space. It gives a second test for waves to
usc in conjunction with the above "j3 test". In the cases of turbulent motion at
the scale of k, Axford found that -45° < Blk) < +45°, or 135° < plk) < 225% were
valuable as criteria.

In view of these theoretical and experimental findings we arrive at one of
the conclusions of this paper; namely it would be desirable to apply such tests to

1, 16

the kind of data described by Crooks et al, that is, those upon which Figure 1

is based.

23, Axford, D.N. (1971) Spectral analysis of an aircraft observation of gravity
waves, Quart. J. Met, Soc. 97:313-321.

13
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Other suggestions will be found in Busch. 20 We only mention that the
individual power spectra of ' and of w' when taken in combination would also be
helpful in distinguishing between turbulence and waves. In the case of turbu-
lence, they would be comparable in shape and magnitude. In the case of waves
they would differ greatly in magnitude with the #' spectrum being much smaller
than the w' spectrum, especially at high values of k.

3. REMARKS ON THE RELATION BETWEEN STRONG MODE-INTERACTION
AND MIXING™, AND SPECTRAL CONSIDERATIONS

The purpose of this section is to (a) explain the physical relationship be-
tween strong interactions between modes of oscillation and the mixing property
of turbulence. In the process we shall examine the physical nature of turbu-
lence, guing well bevond the previous discussions; and (b) examine the ambiguous
nature of the interpretation of the power spectrum in this context. The latter
seems to have been a frequent source of confusion in the literature. We shall
onciude ith some remarks about the use of higher-order spectra for he pur-
puse o diro tly sneasuring strong nteractions.
Wb gin by asking, What is the connection between promiscuous mode
imteraction wni nining (that is to say. mixing in physical space)?" Consider
Uirst the - asc of weealized, smail-amplitude waves that exhibit perfect super-
sosition or non~interaction between cacin other. Take, for example, the case of
Tleia ol ratcion internas vaveg,  GCan thesce cause mixing? A single wave would
not cause ixing Secause the motion would be periodic, and a particle of fluid
would prrio ally return to a fixed location in space. 'wo waves of commonsu-
rate frequenc vy sould obviously have the same cffect, but the time between returns
vouid be onger theing 17 ((g 'v.‘) top/ m?)) where the wj are the wave frequencics
Al poane: 4 are integers). o u‘thcr words, the motion would sull be periodic,
Ahat appons n the s ase where there are a very large number of woves with

IR R SRR GCRY NG SR ITT S T A SINve ve asswne  omplote suporposiiion, an

LU pavicea b romann permanently withnn aocortain neighnorioos even thouzh

SO e e T ety to g e pian eNoe b Dochdieas, as W onid heve een the case 1o
oot cooorran, More paportantly, ncarest aerchbors 8l ceonnnn ne o rest
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F( Pre question we next consider is, "How do strong mode-interactions give

o mixine for Cdiffusion' " If 5 wave mode decays in a very short time,
povtiobes w o nop be reft in their initial positions. A random superposition of
S ron-rrapagating snodes (that s, eacdies) would therefore be expected
Poocasr e oo of wanspoot, While this picture opens up the possibility

Lot candoim verticrty property of turbulencee makes the case for mixing
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Sp2=-3

Figure 2. Vortex-Stretching Mechanism in a Turbulent Cascade (after
Tennekes and Lumley24). The stress field is given by the arrows.
lLarger-scale deformation gives energy to the small-scale vortices by
stretching them. This causes the small-scale vortices to increase
their spin rotation due to conservation of angular momentum

the cascade. The discussion is continued in an article by ’I‘ennekes25 where he
gives a convincing argument that shows that a large eddy breaks up into two
"daughters, * each of which is about half as big as the mother'. He then adds,
"The evolution of and interaction between eddies involve non-linear mixing, both
in coordinate space and in wave number space.' As was already mentioned, the
former is due to the random rates of strain causecd by the cascade process. It
should now be clear why strong mode-interaction implies mixing.** The defor-
mation, since it separates nearest neighbors of fluid particles, is the cause of
the mixing. The deformation, in turn, is due to mode interactions.

The above sort of cascade picture led Kolmogorov® to his famous -5/3 spec-
trum by means of a dimensional argument as follows. Since the power density
spectrum of the velocity fluctuations, ®(k), has the dimensions of v2/k or
{ L3] [’I“Z]; and since we assume, by virtue of the conservative cascade, that
® (k) depends only on & and k with dimensions | [‘2] [T-3] and L1 respectively,
it follows that

B(k) = oe2/3 /33 )

"That is, one large vortex feeds two smaller ones until the large onc is
cxhausted. Onsager2® envisioned the same factor of 2.

":4"Rcccntly, two new mathematical approaches have appeared that shed light
on some of the classic problems of this subject. The interested reader may con-
sult the Appendix for a brief sketch of these.

26, Onsager, L. (1040) Statistical hydrodynamics, Nuovo Cimento 6(Ser. ",
Supp. 2):279-287. -
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where ¢ is a constant of order unity. Note that in this derivation it was not necec-
sary to assume locality of interaction in k-space. Rather, all that is used is the
assumption that ¢ does not depend on k.

We now turn to what is perhaps the key to the confusion that leads to state-
ments like "turhulence is a field of random waves'’; and "if the spectrum has -5/3
slope, this means that it represcents cascade or inertial range turbulence'. The
key issue, in my opinion, lies in the interpretation of the power spectrum.
'l‘mmekesz‘) brings this out very clearly. Therc are, in fact, two possible inter-
pretations.  In the case of waves one can imagine the Fourier components as
representing individual waves propagating through the entire sample of fluid under
consideration.  This is a very natural wav to consider Mourier components because
this is the way the sobicct is taught in courses. Or the other hand, when one
constdors turbulent motion, one is not looking at extended waves but, instead, at
short-itved, highlv-mcalized modes of disturbance or cddies. One is considering
o large ollection or assemblage of these entitice (approximating an ensemble)
ord the Vourter comanonent does not refer to o single entity such as a wave,
Iastead, as Tennekes puts it, "We conclude that a Fouricer coefficient should not
e contused with an eddy. FPouriler coefficients are associated with an ensemble
of eddies, and when one ana vzes the dynamics of turbulence in wave number
Space one shovlo use the piurar onav: (the codlective o) eddies at or near a cer-
Lt wave nmnner ave Wvoived. Lhe reader stiouic consult his work for his use
of wave packet and quantuin mechanical analogies, which are very illuminating.

G conrse. 1 vre s ob the preceading discussion, there 1s a compicte range of
VI LOR TPO:n wdves to, shail we suy, tarb-undulence'', and finally to turbulence;
Gl oMo spectrumn alone savs novnng aboul this aspeot of the situation. As
was alresdy explained, a4 ross-spectrum can bring out the ditference bew een
Waves it terpwence. L nethos cepends carectry upon the mixing property

Ll OO Gl f‘f.YLl'. L.

Cubi e ol 2 brope PLy U h-spuer be usced Lo design a speotral criterion
DeLacen v v o tirbienee - he enasunce of msher order spectra suggests

Ui, 11 1 o, s oo e e, bi-opec et then propertics wer
e DO s, G0 e e, by Hassoonn el Arn extendges! discus=1on of hicher-
Galoer Encctr g ene ra el e founen oy BParloanger, anoe nospeclal degenerate

Lo o the pi==pe. ey desioncd 1o acte ot connling betwoeen siun anc ditterence

270 Hosse anann, b0 Munk, W, o Ay Doncd, G (H9n3) Bispootrs of occan
waves, 1 Pivve deries ynnovsis, AL Rosenblatt bd. 00 Wilev and Sons,

. birillinger. T bo, (L) Anoantroaionon o poivapectra, Ann. Math, Statist.
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frequencies will be found in Dewan.29 Such spectra measure non-linear inter-
actions between ''wave-modes'’. In the absence of such non-linear interactions
the bi-spectrum, for example, would be zero.

Unfortunately, the idea of using higher-order spectra to measure the transfer
rate of energy between modes of oceanic internal waves has problems associated
with it that render it impractical at this time (as explained by McComassO). On
the other hand, the application of higher-order spectra to atmospheric turbulence
has yet to be explored. In the case of turbulence, there is every reason to be
optimistic about the usefulness of higher-order spectral measurements. For the
present, then, only mixing in coordinate space is available for measuring ''degree
of turbulent interactions' in a fluctuation field. However, higher-order spectra

may very likely play a role in the future.

6. TWO-DIMENSIONAL TURBULENCE

The term ''two-dimensional turbulence' is well known, and was first discussed

31

by Onsager>® in terms of a "reverse cascade”. More recently, Kraichnan®! dis-

cussed this two-dimensional, reversed cascade (large k to small k) of energy,
and he showed that it would have a k-‘:’/3 dependence. Leith and Kraichnan32
subsequently showed that in two-dimensional turbulence there is also the possi-
bility of a forward cascade of enstrophy that would have a k_3 dependence for the
spectrum (see also Charney23). Both Stewart>! and Gage34 have proposed that
some of the observations of k_5/3 one-dimensional spectra in the atmosphere may
be the result of a reverse two-dimensional cascade. This leads directly to the
question of whether or not Figure 1 could be explained along such lines.

An experimental approach to the answer to this question would be to invent a
modification of the Busch and Stewart approach that would render it appropriate
to two-dimensional turbulence. We now attempt to do this. In the previous case,
we had three-dimensional turbulence in which was imbedded a scalar quantity, ¢

(the potential temperature), which had a vertical gradient. Vertical transport due

20, Dewan, F.M. (1969) Nonlinear Cross-spectral Analysis and Pattern

Recognition, AFCRT-69-0026, AD 6870851.
30. McComas, (.. (1978) Private communication.

31. Kraichnan, R.H. (1967) Inertial ranges in two dimensional turbulence,
Phys. of Fluids 10:1417-1423.

32. l.eith, C.L., and Kraichnan, R.H. (1972) Predictability of turbulent flows,
J. Atmos. Sci. 29:1041-10568.

33. Charney, J.G. (1971) Geostrophic turbulence, J. Atmos. Sci. 28:1087~1005,

34. Gage, K.S. (1979) Evidence for a k™’ 3 law inertial range in mesoscale two-
dimensional turbulence, J. Atmos. Sci. 36:1050-1054.
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to mixing provided the criterion for the presence of turbulence. In the case of
(horizontal) two-dimensional turbulence, the analogous situation would have to
prevail, that is, there would have to be a scalar quantity 6 present that had a
horizontal gradient. Two-dimensional turbulence would then be signaled by trans-
port via the horizontal velocity fluctuations in the direction of 6, and one would
merely substitute that velocity component for what we called w previously. The
test would be formally identical to what was given previously. Whether such a
test would be practical remains to be seen; for, in the previous situation vertical
mean motion was negligible. In contrast, there would be horizontal mean motions
that would have to be eliminated from the analysis.

Theoretically, there are two problems with a two-dimensional turbulence
explanation of Figure 1. The first is the question of how energy could be supplied
to the small-scale end of the spectrum. The second is the question of how to
explain the observation that the vertical velocity fluctuations have the same mag-
nitude and power spectrum slope as the horizontai velocity components in
{(Figure 1).

There is one complication in this experimental criterion for turbulence that
was not pointed out by Busch, but that we should mention for completeness. The
cross-spectra involved are based on one-dimensional trajectories, that is, we
deal with one-dimensional spectra. It is well known that such spectra are sub-
ject to spatial aliasing effects. This, in turn, could introduce an ambiguity into
the meaning of .i(k), or phase, if more than one wave gave the same k component.
In principle this could be remedied by making use of higher dimeusional spectra;
however, the notable success of Axford23 with this technique suggests that my

conuern is premature,

= THE WAVE CASCADE EXPLANATION FOR A k2/3 SPECTRUM

. 3° . 6 . . .
McComas” ' and McComas and Bretherton3 ' have investigated internal wave

interactions and the transfer of action™ in k-space. Their work is primarily

35, MeComas, C.H, (1977) Equilibrium mechanisms within the occanic internal
wave field, J. Phys., Oceanog. 7:836-845.

34, MceComas, C.H., and Bretherton, . P, (1077) Resonant interaction of
oceanic waves, l_ Gcophls;‘lri_e,s. 82:13097-1412.

' «
"Wave action is defined as wave energy divided by frequency (sce Phillipsl'.

).
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built upon the former researches of Phi.llips1 and Hasselman among others.

Briefly, their treatment assumes that the waves are essentially linear and that

the interaction between modes is weak. Phillips18

showed that there is a way by
which internal waves can interact in a resonant manner provided that the temporal
frequencies and wave numbers of a triad of waves obey a certain condition. This

condition is

klik2=k3
uliw2=w3 . (8)

{in the case of surface waves there must be a four-wave interaction.)

The physical mechanism (by which energy can be transferred from two inter-
acting modes into a third mode) resembles forced simple harmonic oscillation.
Two modes interact by means of the convective, non-linear term in the equations
of motion and, as a result, they generate sum and difference frequencies [see
Eq. (8)]. The third wave (number 3), is assumed to have both a spatial and tem-
poral resonance with this ''beat frequency phenomenon'' caused by the interaction
between waves numbered 1 and 2. Wave three is thus ''driven' in a manner
analogous to a simple harmonic oscillation with a forcing term on the right-hand
side of the equation.

McComas35 shows that among all the possibilities for Eq. (8) to hold, there
are three distinct limiting configurations compatible with the dispersion relations;
and these he labels "induced diffusion', "elastic scattering', and "subharmonic
instability''. These allow a simplified and physical way to further understand the
transfer between wave modes. He, for the purpose of this paper, provides us
with a proof that a wave—wave energy cascade can exist. Beyond this one fact
our present work noeds no further details.

Parenthetically, it should be mentioned at this point that the thrust of the
work by McComas and Brctherton36 is primarily to provide a theory for the

39,40

"Garrett-Munk" Spectrum, which represents a universal wave spectrum to

be found associated with internal waves in the ocean. A desirable achievement

37. Hasschmann, K. (1962) On the non-lincar energy transfer in a gravity wave
spectrum, Part 1, J. Fluid Mech, 12:481-500.

38, Hasselmann, K. (1963) On the non-lincar energy transfer in a gravity wave
spectrum, Part 2 and Part 3, J. Fluid Mech. 15:273-281, 385-398.

30, Garrett, (., and Munk, W. (1972) Space-time scales of internal waves,
Geophys. Fluid Dyn., 2:225-264,

10, Garrett, C., and Munk, W. (1975) Space-time scales of internal waves: a
progress report, J. Geophys. Res. 80:201-207.
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would be to explain the atmospheric data such as that exemplified by Figure 1.
Far from being "universal', such data are found only on rare occasions in which

the wave intensities are so great that they were originally identified as turbulence.

Such disturbances are found on the order of 5 percent of the time. Furthermore,
the disturbance is found to be confined to altitude thicknesses of 1 to 2 km (as

shown by Crooks et alls 16y,

At present it is not clear if our conclusions have
any application to the Garrett-Munk (GM) spectra; but this cannot be ruled out at
this time. On the other hand, they do appear to have relevance to Figure 1.

In Dewan, 17 an alternative existence proof of the possibility of an energy
wave cascade is given. There, the interaction between wave scales is explained
not by rescnance, but by the effect of deformations caused by large waves, which
in turn can ''feed' small waves. The next step, if one were to work in parallel
with the bizarre history of turbulence theory {that is, Richardson's famous poem
followed by Kolmogorov's dimensional argument) wouid be to create a new poem,
"Big waves have little waves that feed on deformation and little waves have lesser
waves, to turbulent dissipation''. Needless to say, the poem is not a prerequisite
to making a dimensional argument nor does it reflect the resonant mode inter-
action approach of this paper. Instead, it reflects an alternative approach given
in Dewan. 17

In one sense there is a very close parallel between ne wave cascade theory
given in Dewam17 and that given in McComas. 35 The latter involves interactions
with time scales given by Eq. (1) or its simplification given by T, ~ (kv)'l, which
was used in Section 3. In contrast, the treatment given in Dewan!? involves
production terms of the form uw all/az where U represents average larger-scale
velocity fluctuations, and u and w the smaller scale ones. These production
terms represent transfer from larger to smaller scales. In this case, however,
Ti = (aﬁ/az)'l. However, in a wave cascade, U is oscillatory and its shear is
given by Uk thus (T;l) is physically the same quantity as that given in resonance

02
theory. Instead of e = v~ (vk) for resonant mode interactions {(where e, is the

2
transfer rate) one would have e = v~ ov/ 9z which, in effect, is the same quantity.

The cascade in question must involve transfer from the large to the small scales.
This is well known because turbulence itself (at the small scale) is dissipative
and ultiinately converts motion into heat. It cannot represent the original source.
The latter must be at large scales. True, turbulence can generate gravity waves;
however, it itself, must be gencrated by shears that arise from larger scale
fluctuations. [“or more discussion of this the reader should consult Dewan. 17

In any case we now make the assertion that the wave power spectrum depends
only on k and "sw” (which is the dissipation rate for the waves due to their inter-
actions). In orde: to calculate the nctual kinetic energy dissipation rate per unit

rolume one must multiply €y DYV, the mass density.
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We are now in a position to write down the expression for the wave cascade
one-dimension spectrum. One need only repeat the dimensional argument of

9
Kolmogorov™ given previously to arrive at

_ 2/3 ,.-5/3
‘Pw(k) = ogpeyw K . (9)
Here the subscript W signifies waves.

One could object that, unlike turbulence, wdves must obey a dispersion
relation that, in turn, must depend on the buoyancy frequency. In its simplest

form, this dispersion relation is

w= Ny cos g* (10)
where g is the angle (9 < 1/27) between the horizontal direction and k (Turner“).
Thus, how can one assume that ®(k) does not depend upon NB? My answer is
that we presently are assuming a cascade in steady-state and in which negligible
mixing is taking place. (We, like McComas, assume that the interactions are
weak in comparison to turbulence.) That is to say, gy Output would equal the
input so long as energy is not given up in the form of the potential energy due to
mixing in a stratified environment. This implies that buoyancy does not affect
€y - It is therefore reasonable to suppose that a change in NB would affect only
the amplitude of the waves in such a way that the kinetic energy for a scale, k,
would remain unaltered. In other words, our dimensional argument is physically
permitted.

The other facts that make the hypothesis of a wave cascade a useful one are
(a) the experimental values of the spectra in fact give us a k-5/3
(b) as will be seen, gy can be related to observation, and (c) one can experi-
mentally test the "wave field" hypothesis via the previously described 'Busch

Test" to verify that it is indeed a wave field, In other words, this approach is

, dependence,

testable.

Finally, we now consider the theoretical shape of a spectrum that extends
through ranges of k including both the waves and turbulence. This requires that
we obtain the answers to the following three questions: (a) At what value of k
is the transition between . (k) and ¢ (k) (the turbulence spectrum)?, (b) "In

«

o
- o= N2 c032 n+ uf sin A7 where i is the inertial frequency

”More generally, w B

(see Garrett and Munk3% 40),

41. Turner, J.S. (1073) Buoyancy Effects in Fluids, Cambridge University
Press, 367 pp.
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what way is ey, related to e, (turbulent dissipation)”? and, (c) "What are the
numerical values for ayy and ay, Y

The first question is easily answered on the basis of the previous discussion.
The "buoyancy length" derived above gives us the boundary between horizontally
propagating waves and isotropic turbulence. While this "boundary'' is a transition,
and is hence smooth, it is given by kg where

N3 1/2
ke, = <-—B> Cc (11)
B Ep

[see Eq. (5)] where c is a constant of order unity.

The answer to the second question (regarding the relation between the wave

and turbulence dissipation rates ey, and e respectively) is obtained from the

assumption that the cascade is conservative. Energy conservation gives

P EWVW =p ETVT (12)

where Vi, represents the volume occupied by the waves and V.p. that of the turbu-
lence. The reason VT and VW are not equal in a stratified medium is that turbu-

lence in the latter is known to occur in thin layers occupying a small fraction of
the total volume. Thus we arrive at

fw_ Vr

. (13)
£ VW

Since VW > V'I" it follows that ey < Ep- Knowing Ey» OnNe could calculate £ if
the volume ratio were known. It should be noted that if one were to ascertain
gy ’f,r by means of the spectrum (assuming at that point that amp and oy were
known) then one would have a measure of VT/VW that would in turn have some
pragmatic utility in problems concerning pollution transport and optical trans-
mission through turbulence. Specifically, VT/VW would be a measure of the
volume occupied by turbulence relative to the overall volume of the disturbed
region.

I'he third question (concerning the universal constants of order unity, @ and
oy ) vun only be answered by experiment. One already knows that e is around

2
1. % {Tennckes and Lumlcy“d‘) but it depends somewhat on the velocity component
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in question. (One does not yet know the value of 2 but, according to Bond,42
there is a 90 percent a priori chance that it lies between 0. 1 and 10.)

Figure 3 shows a schematic representation of this spectrumn assuming that the
measurement is made from a probe within a turbulent layer.™ In this figure no
account has been taken of the spatial aliasing effects to be expected in the case of
one-dimensional spectra. Gifford43 showed an ¢xample where there was a -5/3
slope that continued to wavelengths three to five times larger than would appear in
a spectrum without aliasing.

Fo illustrote this effect, let us consider a specific numerical example. Sup-
puse that k[;1 =50 m (a typical value for HICAT gpectra such as in Figure 1).

In this case, )\B =315 m. If aliasing were to extend the -5/3 slope to scales five

times larger than A ,, that would take it out 10 1,577 m. Figurce 1, however, has

I3
the slope of -5/3 extending to about one order of magnitude beyond this length,
It would be very usetal if velocity gpectra and cross spectra [hq. (9)] weore
A ASEH I q
measurcd in stable fluids in order to test the idea that, at wavelengths much

larger than ‘\l” Waves exist, and much tess than Al , tarbulence exists, and that
)

y
3

both can have a - 2 slope but with £y =t Fl.—,a-( P, (v Fquation (0), which
L Wnat §ohave crilen e Sl WS, conl 1 presoonably s ern betweer waves

and turotience, Upoco s pormnt, e hae ettt out huesnn s twirhnienee,
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Figure 3. Schematic Representation of a Power Spectrum of Waves and
Turbulence in a Steady-State Cascade. Note that the part of the curve
that connects the "wave' and "turbulent' parts has been given an arbi-
trary shape

Using Eq. (10) we obtain

1

T, = n" (14)
L, (N; cos 0)
in place of Ti = N;gl used previously. Similarly, in place of Fq. {(4) we use
. = v> N, cos 6 (15)
¢ B ‘
As u result, in place of (3) for Ky we now get
. /2
N} cos” 0
K,, = — . (16)
13 €
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Ising the fact that (v/ﬂo) is of the same order as the mean vertical shear

\Reference 24), we can write the Richardson number, F{i in the form

R
NB
R, = — . (19)
t vie )y
)

A typical value for Ri in cases where shear induced turbulerce exists is (1/4).
Using this it is easy to obtain

: = 2.5 . (20)
B 0

Fhis ralses some interesting questions. Usually £y defines the scale at
, . -1 L.
vhich the turbulence s cenerated. But ky,° is the minimum scale for buoyancy
3 minunum

snboange turbulence. How then :an there be buoyancy turbulence if the energy
”

waseoades to smniley seales 7 Could it be the case that buoyancy turbulence must
be gencrated by a larger scale horizontal shear ? This is not an unreasonable
possibiiity =ince, o we have scen, this Kind of turbulence involves horizontal
cordie = (esnecallv at large values of A). \Another possibility that comes to mind
is that a reverse cascade may be involved in buovancy turbnlence. It is well
sncan that two-dimensgional turbnlence can involve a reverse cascade, and for
caroc Vv we have <o that bucyancey turbulence becomes two dimensional.

toaving these questions [oe future rescarch, we now turn to the usc of Fq. (1)

e nowass o distinguish farbulent fror wave fluctuations., It has the unfortunate

che ok that it e quires knowledee of the value of ¥ for the i under consideration.
Tt ipae omomtorinazion aondt ac avadosie i the complete three-donensional
e by et ey cpea=surcod, While such imessurements iight

G e e o s arorntars, chey e Lsualle nppossible to optoin ) atmospherie

Uyt odboer dparon, elle s Lol sugreits that there nav be special
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turbulence of large A and the horizontally propagating waves. As we have seen,
such turbulence would involve mainly horizontal motion. Thus vertical motion
would be due to waves and horizontal motion would be due to eddies, making the
distinction merely a matter of measuring the direction of the velocity fluctuations.

9. CONCLUSIONS

Waves and turbulence are idealizations for two extremely different types of
fluctuations in a stable fluid, Waves represent the extreme of linear (super-
posable) dissipationless motion. Turbulence represents very strong mode-inter-
actions, mixing, and dissipation. Waves have non-local, long-lived propagating
patterns, and turbulence has local, short-lived, non-propagating patterns.

I have used "waves' in this paper in a2 manner that departs somewhat from
the ideal type in that some weak non-linear interactions are permitted. In any
case, the cross-spectral test of Busch was discussed and it should prove useful
in distinguishing between waves and turbulence. There is reason to hope that
bi-spectra could also play a future role in making this experimental distinction.

30 could be used to

More specifically, the "bi-coherence'' defined in McComas
estimate the degree of turbulent non-linear interaction.
Figure 1 presents us with an interesting scientific mystery. On one hand,
it is clear that the inertial turbulence interpretation is ruled out. A wave cascade
possibility has been proposed. Buoyancy turbulence or two-dimensional turbu-
lence (they seem to be related) may be involved. The answers to the questions
raised will probably necessitate the use of some of the wave turbulence criteria
proposed in this report.
Hopefully this work will prove useful in the practical problems of pollution
transport and optical turbulence. If it turns out that the cascade hypothesis is

30, 4¢
39,4 )), this approach could

related to universal wave spectra (Garrett and Munk
lead to better ways to predict shear structure giving rise to turbulence. If it
could lead to a better understanding of the intense trapped gravity wave structure

1,16

of the type presumably observed by Crooks et al, perhaps this could lead to

2 !
ways to predict high ('1“\, conditions.

One mechanism that might account for these high-intensity trapped waves
could nvolve over-reflection, for example.

26
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Appendix A

New Developments in Turbulence Theory

New work in the mathematical approach to turbulence enhances our under-
standing of the chaotic nature of turbulent mixing. This appendix is intended to
bring this new information to the reader's attention. The major unresolved ques-
tion in turbulence theory is, "How do the random or chaotic motions, which sup-
posedly are the solutions of the purely deterministic equations of fluid motion,
come into existence ?"" The new findings demonstrate a physical mechanism that
inakes such a phenomenon possible.

It is very well known that, as the Reynolds number is increased, a critical
value can he reached where the Jaminar flow makes a transition to turbulent flow.
['he transition, in some cases, 15 spread over a range of Keynolds numbers, that
1s, there is a series of transitions or bifurcations in the complexity of the motion.
As Roeyvnolds number increases, complexity increasces until a point is reached
where, suddenly, the motion becomes totaliy chaotic,

Ihe "breakthrough'' consept that explaing the chaotic behavior is known as a
”strangc attractor' and it was introduccd by Lorenz, A1 in the context of the Benard
instability. By Fourier decomposing certain variables of the partial differential
tquations for the problem he obtained an infinite set of ordinary differential equa-
tions. These he truncated to three cquations, and hence his work represents a

“cevere mutilation of the nctual cquations. In any case, it led to the first discovery

AL Lorenz, FUN. (1063) Deterministic nonperiodic flow, J. At Seis 20:1380-141.
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of strange attractors. Subsequently, Ruelle and TakensA2 arrived at strange
attractors for turbulence theory from an entirely different direction, namely
from the qualitative theory of differential equations. They did much to explain
both chaotic motion and also the Reynolds number bifurcation.sequence described
previously. Most recently, the work of FeigenbaumA3 provided an especially
clear way to understand both the transition to increasing degrees of complexity of
motion as well as the subsequent transition to total chaos.

In order to understand qualitatively the meaning of the '"'strange attractor"
concept, one can start with the simpler entity known as an attractor. The simplest
examples of an attractor occur in works on non-linear mechanics (for example,
Andronov et alA4 or MinorskyAs). Consider, for example, the motion of an
electronic oscillator as modeled by the van der Pol equation. Such motion is con-
veniently examined in the x-v (that is, displacement and velocity) or "phase plane'’.
For example, if the oscillator were to start with initial conditions near x = 0 and
v = 0, the trajectory of the solution would form an outward-going spiral that
asymptotically approaches an ellipse that is known as 'limit cycle'. The latter
trajectory represents an equilibrium between input and output of energy over the
cyclé. If the cycle were to start with large values of x and v, the trajectory
would spiral inward towards the limit cycle. The limit cycle thus appears to
attract all trajectories no matter what their initial conditions might be, and hence
the term "attractor' is used,

The adjective "strange', when employed in the present context, designates a
key aspect of the explanation of chaotic motion. It refers to the fact that such an
attractor is of fractional dimension or is a "fractal' as is described at great
length in the book by I\‘Iamdelbrot.A6 As he explains, a fractal curve (or at least
one major type of such curve) is one of which each piece is a reduced scale
version of the whole. Such curves have the property that, as their length is
measured at ever higher resolutions, it increases indefinitely. The dimension,

D, is given by

D = log N/log (1/r) (A1)

A2, Ruelle, D., and Takens, F. (1971) On the nature of turbulence, Commun.
Math. Phys. 20:167-102.

A3, Peigenbaum, N.J. (1980) Universal behavior in nonlinear systems,
L.os Alamos Science Summer:4.
A4, Andronov, A A., Vitt, A.A., and Khaiken, S. L. (1966) Theory of Oscillators,
Pergamon Press, New York, 815 pp. T
A5, Minorsky, N. (1047) Introduction to Non-linear Mechanics, Lidwards, 464 pp.

A6. Mandelbrot, B. B, (1977) Fractals, Form, Chance, and Dimension,
F'reeman and Co., 365 pp.
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where N is the number of parts in a whole piece of the curve and r is the so-called
similarity ratio. For example, consider the case of a square which is subdivided
into N squares; the "'similarity ratio" would be r = 1/N1/2. That is to say, each
side of the small squares would have this ratio to the length of the original square.
Here, one can obtain D = 2 from Eq. (A1), But D = 2 dimensions is the ordinary
situation for plane figures. Thus Eq. (A1) gives the usual results for non-fractal
objects. The siraplest example of a fractal is the so-called "Koch curve"; however
the derivation of D = log 4/log 3 = 1.2618 for that case (as well as the discussion
of many other examples of fractals) will not be given here. (See Mandelbrot.AG)
Thus, fractals are of fractional dimension.

It has been shown by Lorenz,Al Ruelle et al, A2 and Feigenbaum, A3 that if a
non-linear system has an attractor in its phase space, which is also a fractal,
then the system can exhibit chaotic motion. It follows that total mixing will take
place in coordinate space because total mixing occurs (in the fractal sense) in the
phase space.

The following citations will be useful for further reference. In particular,

the works by Dold et al,A7'A8 Swinney et al,A9 and TreveAlo are good review
papers on the subject.

A7. Dold, A., and Eckmann, B. (1976/1977) Turbulence Seminar, Springer
Verlag, N.Y., 155 pp.

A8. Dold, A., and Eckmann, B. (1976) Turbulence and Navier Stokes Equation,
Springer Verlag, N.Y., 194 pp.

Ao, Swinney, H. L., and Gollub, J. P, (1981) Hydrodynamic Instabilities and the
Transition to Turbulence, Springer Verlag, N. Y., 292 pp.

A10. Treve, Y.M, (1978) Theory of chaotic motion with application to controlled
fusion research, Topics in Nonlinear Dynamics, S. Jorna, Ed.,
American Institute of Physics, pp. 147-220.
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