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INTRODUCTION

The present report is the third and last of a series of

reports on the theoretical description of polar motion and

nutation. The two previous reports, (Moritz, 1980), henceforth

referred to as TNP I, and (Moritz, 1981), referred to as TNP II,

will serve as a basis.

In TNP I, we have considered the earth as a rigid body,

an elastic solid, and as a "Poincar& model" consisting of a

rigid mantle and a fluid homogeneous core. The report TNP II

then treated the earth as composed of an elastic mantle and

fluid core, the so-called Molodensky model.

The present report considers in detail the simplest theory

of the Molodensky model due to Sasao, Okubo and Saito (1980).

An application of Poincar&'s equations of motion on a Lie

group, following (Moritz, 1982 a),will provide a unified de-

ri vation.

Finally, on the basis of this model and on the eigenvalue

theory described in TNP I, secs. 10 and 11, we shall present

expressions for lunisolar effects on polar motion and nutation

for the various axes: the rotation axis, the figure axis, the

"mean Tisserand figure axis", the angular momentum axis, and

the axis corresponding to the Celestial Ephemeris Pole as adopt-

ed by the IAU in 1979.

Svii



P A RT A

THE SOLUTION OF SASAO, OKUBO AND SAITO (SOS)

1. The Four Basic SOS Equations

As we already briefly mentioned in TNP III pp.131-133,

Sasao et al. (1980) gave a particularly simple and elegant

formulation of Molodensky's problem in terms of four complex

equations, generalizing Poincarb's (1910) equations for a
rigid mantle and a liquid core.

The first two equations may be written:

AO i(C-A)Pu+ A C(9+ i~v) + Q(t+ i sc) =L ,(1 -1)

A= C!v+st 0. (1-2)

Here, A, A, C are the (average) principal moments of inertia

of the earth, supposed rotationally symmetric, and

41) This notation is explained in the introduction: TNP Idenotes (Moritz,

1980 ),and TNP 11 denotes (Moritz, 1981).

6j
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Ac, A c, Cc are the corresponding principal moments of iner-

tia for the core; n denotes the (average) angular velocity

of the earth's rotation; and the usual mathematical symbols

are used: i2 = -1 and the dot denoting differentiation with

respect to time. The variables entering in these equations

have the following meaning:

U = W + iW2  v Cx I+ iX 2 , L=L + iL (1 -3)
ic cc c + . (1-4)13 c213 23

They are complex combinations of components of the vectors

_ = (WIw 2 , 3 ) , x (x1 x2 x3) , (1-5)
L = (L1,L2,L3 )

where w denotes the vector of angular velocity of the rota-

tion of the earth with respect to inertial space, x the vec-

tor of angular velocity of the rotation of the core with respect

to the earth's mantle, and L denotes the lunisolar torque,

due to the attraction of sun and moon. The coordinate system

(X = x, 2 = y, x3 = z) used is mantle-fixed in the sense

that the mantle is at rest (on the average) in this system;

more precisely, it is a Tisserand frame for the mantle (cf.

Munk and Macdonald, 1960, p.10; TNP II, pp.140-1 4 3). The x3 axis

is directed to the (average) North Pole. Finally, c 13 is the

xIx 3 component of the inertia tensor of the earth, and simi-
larly for c ; c and cc are the corresponding quan-

2 3  13  23

tities for the core.

If the mantle is rigid and if the coordinate axes are

principal axes of inertia, then the inertia tensor is diagonal,

I.
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so that the quantities (1-4) are zero. Then (1- 1) and

(1- 2) reduce to Poincar's (1910) well-known equations for

a rigid mantle, as they should. What is surprising, however,

is the discovery by Sasao et al. (1980) that the generalization

to Molodensky's problem, for an elastic mantle, is so simple.

The quantities (1- 3) and (1 -4) are related by an

equation of the form

c = D11(u-W) + Di v , (1-6)

cc = D12 fu-w) + D22v , (1-7)

where the coefficients D11 , , 22 are real constants

which depend only on the elastic properties of the mantle.

They are easily expressed in terms of the Love number k and

of the well-known functions y5 (r) and Y6 (r) in standard

notation introduced by Alterman et al. (1959), or of the

equivalent functions R(r) and P(r) used in. TNP II, Part B.

Such expressions are represented by eqs. (54) to (57) of

(Sasao et al., 1980); they will be derived in the next section.

Essential is the fact that the matrix

" D D1

D 1 1 2 (1-8)

D D
1. 2 22

is symmetric; this is a consequence of a reciprocity theorem

(Sasao et al., 1980, eq. (61) ).

The complex quantity

w w1 + iw2 (1-9)
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is related to the lunisolar (tidal) potential Ve , which we

assume to have the form

Ve = ((xzcosat + yZsin Gt) , (1-10)

K being a constant coefficient. Such a form correspr to

a tesseral tidal potential, being a spherical harmon of

degree 2 and order 1 , which is responsible for I -ted

nutation and polar motion (TNP I, p.30; TNP II, p.23

" rather to the contribution of a certain frequency a the

tidal potential, which is the sum of all such contributions.

Then w1  and w2  are defined by

w= ccst , (1- 11)

which is the desired relation between w and Ve . Let it

also be mentioned that the angular momentum components are

given by

LI = KMJ2sinat

L2 -MJ 2cosat , (1- 12)

in view cf well-known relations (Melchior, 1978, sec. 2.3;

TNP I, p.30); here K is the same as in (1-10), and

C-A
J 2 -a 2

ooa

is the well-known zonal harmonic coefficient, a denoting
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the earth's semimajor axis and M its mass; C and A are

(mean) principal moments of inertia as before.

Eqs. (1- 1), (1- 2), (1- 6), and (1- 7) constitute a set

of 4 equations for the 4 complex unknowns u,v,c,c¢ , equi-
valent to 8 equations for 8 real unknowns; they are iden-

tical (apart from notation) to eqs.(37), (32), (54), (56) of

(Sasao et al., 1980); they will be called the SOS equations.

Now (1-6) and (1- 7) are simply linear algebraic equations

with constant coefficients, whereas (1- 1) and (1- 2) are

linear differential equations with constant coefficients,

which can be reduced to algebraic linear equations by seeking

solutions of the form

[atV cu=Uoe V = v e i a t (1-13)

as usual. Thus, a linear system of 4 ordinary equations for

4 complex unknown results.

This formulation of Molodensky's problem is probably

the simplest given so far. It is particularly remarkable that

it is valid for arbitrary earth models with an elastic mantle,

a liquid core, and even an elastic inner core. The detailed

structure of mantle and inner core enters only into (1 -6)

and (1- 7), since the coefficients D.. depend on the elas-

ticity functions R(r) and P(r) ; it does not enter into

(1 - 1) and (1- 2).

Equations (1- 1), (1- 6), and (1-7) are relatively

easy to get. Eq. (1-1) is a consequence of Euler's equation

as generalized to a non-rigid body by Liouville; it is equi-

valent to eq. (10-6) of TNP II. Equations (1-6) and (1- 7)

will be derived in the next section.

I
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The derivation of (1-2) is considerably more difficult.

Sasao et al. (1980) obtain it by means of the hydrodynamic

equations, which is complicated and far from transparent. Also,

the similarity between (1- 1) and (1 -2) remains unexplained.

This is the more regrettable as it is the great merit of Sasao

et al. to have found eq. (1- 2), which is simple and similar

to (1- 1); an equivalent equation by Molodensky (1961; his

eq. (39) ) is much more complicated.
For the simpler rigid-mantle model, Poincarb (1910) has

given two different methods for obtaining his equivalent to

our eq. (1- 2). One method uses the hydrodynamic equations,

corresponding to the approach by Sasao et al. (1980). Much

more interesting, however, is Poincarb's other method, which

uses a variational principle and exploits symmetries expressed

by group theory. This method is not only simpler and more

elegant, but also explains the similarity of (1- 1) and (1- 2):

both are effects of rotating groups, the first describing the

rotation of the earth with respect to inertial space, and

the second expresses the rotation of the core with respect to

the mantle.

A similar group-theoretic derivation of the SOS equa-

tions will be given in Part B of the present report.

I



7

2. Derivation of Two SOS Equations

Equation (1 -6). This equation describes the change of

the inertia tensor (elements c,3 and c23 ) by the deformation
of the earth, due to centrifugal force, expressed by the
rotation vector u ,and to lunisolar tidal force, expressed

by w according to (1- 10) and (1 -11). It is essentially

the same as eq. (63) of (Molodensky, 1961) and constitutes a

generalization of well-known expressions for the rotational
deformation of an elastic earth; cf. eq. (14) of (Jeffreys,

- 4

1970, sec. 7.04) or TNP I, eq. (4 - 1).

We derive (1- 6) here from eq.(10- 32) of TNP II:

1 2,

c 13= - T G k(Kc- Q E)cosot (2-1)j
c -1 G-1k(,c- Q £)sinat

which can be combined into one complex equation using (1- 4):

c 1 G-1k(Kic ~2 )e . (2- 2)

Here G denotes the Newtonian gravitational constant and

.4

k the potential Love number as usual; also the symbol Q

for the (average) rotational velocity of the earth is standard.

We put

M, M "2 w2 (2 -3)

so that mi and m 2 are the x and x 2 components

4 fteerh u ocnrfua ocepesdb h
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of thk unit vector of the instantaneous rotation axis (TNP I,

sec.3; TNP II, sec.1O), and

m!+im 2  cel~t (2- 4)

by eq. (1-28) of TNP II. With (1-3) this gives

u Pe , (2-5)

and from (1- 11) we get

w = P' e it (2- 6)

Thus (2- 2) may be written

c = - i G-1 k n(w-u) (2 - 7)
3

In this equation we have taken the radius of the mean terres-

trial sphere, denoted by a , to be our unit of length. If

a 1 1 , then we must replace (2- 7) by

- = 1 G'ka5n(w-u) (2-8)
3

in order to get the dimensions correct. For w u 0 this re-
duces to eq. (4-1) of TNP I, as it should.

Following (Sasao et al., 1980), we decompose the Love

number k as follows:

6

6
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k ko + W k , (2 -9)

with constant ko and k . Note that, although u, v, w

are complex numbers, the quotient v/(w-u) is real since the

common complex factor eia cancels. The constant k

represents the Love number in the absence of core rotation

(v = 0) ,and k expresses the effect of core rotation.
The decomposition (2 -9) will be justified later in this sec-

ti on.
The substitution of (2 - 9) into (2 - 8) finally yields

c =D 11(u-w) + D 12 Y (2- 10)

with

D = -a~ k

(2 - 11)

1231

This completes the derivation of (1- -6).

Equation (1 -7). This equation is the equivalent for

the core of (1- 6) or (2-10). Its derivation, however, is

considerably more laborious and may be skipped by the reader

who is not interested in this detail .

tion-

Th4usiuino 2g no(-)fnlyyed
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Denote by C0  the undeformed core

b "r

,: C,

FIGURE 2.1. The core before (Co) and after defor-

mation (C,)

and by C1  the core after deformation (Fig.2.1) . For the
present purpose it is sufficient to consider C0  a sphere

of radius b ; this is the usual spherical approximation.

The xz product of inertia is given by the well-known

0 formula (cf. Heiskanen and Moritz, 1967, p.62):

l



=i ' .. .. . ..--. -.. .. . .. - . . - . . .. . - - - . .

DC = fJ xzdM . (2-12)

C.

The integral is extended over the deformed kernel C I

Before deformation, this integral is zero for reasons

of symmetry (for the sphere as well as for an ellipsoid of

revolution if the x3  axis is the axis of symmetry):

fj. pxzdv = 0 , (2 - 13)
C

0

where p is the density before deformation, which need not

be constant but can be a function of the radius vector r

in the spherical approximation:

p = p(r) ; (2- 14)

dv denotes the volume element.

Since by definition

cc -Dc  (2- 15)13 xz

(TNP 1, p.9; TNP II, p.113), (2-12) becomes
4

-C J Q+O,1 xzdv (2- 16)
-C13

C 1
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:P denoting the change of density due to deformation. This

integral may be split up by

f( f f + fil (2 - 17)
C1  Co  C 1 Co

as follows:

-cc = Pxzdv + Plxzdv +

! ; .C C o
0 0 (2 -18)

. i ;jpxzdv + Iipozdv

Here C -C denotes the layer of thickness u (radial
1 0

component of displacement) by which C differs from C0

By Fig. 2.1 we have

"fdv = b2 j Uda , (2 -19)

!i C O-W

da denoting the element of solid angle, or the surface

element of the unit sphere a .
* The first integral in (2- 18) is zero by (2- 13) and

the last integral can be neglected because it is a second-

order- quantity, u r and P, being small of first order.
i

4°
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Thus there remains

C
C0a

here we have used (2- 19).

By the well-known Poisson equation we express the ano-

malous density p, in terms of the corresponding potential

disturbance V1

AV, -4w 1Go ; (2- 21)

cf. TNP II, eq. (6- 30) . Thus the first integral of (2- 20)

may be written

- J'P~xzdv =AV1 xzdv (2- 22)

C C
0 0

This integral can be transformed by means of Green's

second identity:

J IJUAVdv = IfJ'VUdv + j( u L - V -l- dS ;(2 - 23)
"i ( n an

v v S

cf. (Heiskanen and Moritz, 1967, p.11). Here v denotes

a volume bounded by a closed surface S , and a/an is a

symbol for the derivative along the surface normal. In the

I

0
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present case, v is the spherical core C0  the boundary
S is the sphere r - b ,the normal derivative is taken
along the radius vector r

a = a . (2 -24)
an r

and the surface element is

dS = b2dcl (2 - 25)

by Fig. 2.1; furthermore we take in (2 -23)

v =v , (2 - 26)

U = xz r rsinecosecosA. (2 - 27)

in spherical coordinates r, e, x
Thus (2 - 23) gives

ar zd ba fxZ V..... - (xz Aa( v8I jAxzd ar ar ~(-8
C
0

the first integral on the right-hand side is zero since
U = xz is a harmonic function (AU=O)

The differentiation of (2 - 27) shows that

a zr 2rsin ecose ;:os~ 2xz

Hence by (2-22) and (2-20) we may transform ~-C into

b x r Go UV do- (2 -29)

1336
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For the final transformation we must now use the for-
mulas for spherical elasticity derived in TNP II, Part B;
they may also be applied to a liquid core (homogeneous or
with a density law (2- 14))since the equations of hydro-
dynamics may formally be considered a special case of the
equations of elasticity (TNP II, p.63).

By TNP II, pp.8 2 ,85. and 94 we put

u = H(r)S(e,x) , (2- 30)

Ve + VI = R(r)S(e,x) , (2- 31)

where S(ex) is defined as the value of the lunisolar

potential Ve at the earth's surface (r = a)

S(e,X) Ve (ale,x) (2 - 32)

We write (1- 10) as

V K(xz cos ot + yz sin ot) =

(2 - 33)

- r 2sinocose(cosxcosat + sinxsinot)

or

V 3 K Lr2 1R (e ,x)cosat + S2 1(e, x)sin tI (2- 34)

using Legendre surface harmonics in the notation of

(Heiskanen and Moritz, 1967, p.29).

4i

4I
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From (2 - 34) we get immediately

aVe 2Ve 0

ar r

* so that by (2 - 31)

* a 1  ~ = F~r2rRr S(e,A) ,(2- 35)
ar r

putting R'(r) =dR/dr Thus the expression between pa-

rentheses in (2 - 29) becomes

4 v 4 ?G p u r VR(r)-2r Rr14rG S(8,X)
ar r - )41GHr

- (2- 36)

-L 2 41

*introducing the function P(r) defined in TNP II, p.88,

eq. (7- 40).

We now put

xz =-r' R21 (e,)x) (2- 37)
3

* (cf.(2 -33) and (2- 34) )and note that the integral (2- 29)

is extended over the sphere r - b . Substituting (2 - 36)

and (2- 37), with r =b ,into (2 -29) we have
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C b2  Pf)-W(D

C13 12rG' 2 1( )S( 8 )da (2- 38)

By (2 -32) we get S(e,x) by putting r = a in (2- 34).

We have

"J[R2
(e,x},2do 1 15_.

I 2 1(eX)S21(eA a

(Heiskanen and Moritz, 1967, p.2 9). Thus

J J R21 (e,x)S(e 'x)da = 2 KCOSat
5

and (2 -38 ) takes the final form

cc  a2'b2 p

c 1 a FP(b) -2bR(b)] KCOsat (2 -39)13 15G L

The quantity c C is obviously given by the same express-23

ion, with cosot replaced by sinat

4
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In the expression (2 -33), Ve denotes the potential

of all perturbing forces acting on the body. This includes

the lunisolar tidal potential and the disturbing centrifugal

potential. If we want to restrict K to the effect of the

lunisolar potential only, we must add the effect of the

centrifugal perturbation (TNP II, p.115), replacing

by i e Thus from (2-39) we have

Sc C
c 13 c23

a2b2  2 a
.= - (b)-2bR(b (K-9C)e (2- 40)
15G U

or, by (2-5) and (2-6), finally

a2b2cc 15G 1P(b)-2bR(b 2(w-u) (2- 41)

This formula expresses the elements cc13 and c23c

of the inertia tensors of the core deformed by the effect of

lunisolar (w) and centrifugal (u) perturbation.

* As a check we replace b by a ; then the core is

replaced by- the whole earth, and (2- 41) should reduce to
(2- 7). In fact, putting a = b = 1 in (2- 41) we have

c = ----- (a)-2R(a) ;(w-u) (2 -42)
1SG L- -

I

c___(
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By TNP II, eqs. (8-20) and (8-24), we have

P(a) = 2 - 3 k , R(a) = 1 + k , (2-43)

which on substitution into (2-42) gives (2 -7) as it should

be.

As a final step we perform a decomposition analogous

to (2 - 9)

P(b) = Po (b) + Y P1 (b)
w-u

(2 - 44)

R(b) = Ro(b) + v R1(b)
W-u

The possibility of this decomposition is a consequence of

the linear character of the partial differential equations

of elasticity and of the boundary conditions. In fact, by

eqs. (8- 25) of TNP II, the elastic functions P(r) and

R(r) depend linearly on the Love numbers h,k,l

which by (10- 44) of TNP II are the solution of three linear
equations of the form

ah + a2 k + a 31 =a 0

bh + b2k+b b + b4 (2 - 45)
1 20 w-u

c Ih + c2k + c 3 1 co0

ch+'k cl 4

1 '2 3
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In (10-44) of TNP II we have written the second equation

in a slightly different form, making them dependent on the

Molodensky parameter a . However, as eqs.(10- 43), ibid.,

show, the dependence is rather on ( . If we have both

tidal and centrifugal perturbation, we must replace this

factor by

2 - (2- 46)

By eq.(4-60) TNP 11, e is proportional to our v

(this also holds for an elastic mantle), so that the quotient

(2 - 46) is proportional to

v (2- 47)

W-u

(a real quantity, since the complex factor e i t  cancels!),

which proves (2- 45). Of course, the coefficient b4  is

now different, but all other coefficients are equal in

(2-45) and eq.(10 -44) of TNP II

The solution of (2 -45) now does give h,k,l as linear

functions of the ratio (2- 47), of the form (2- 9), where-
upon eqs. (8- 25) of TNP II give P(b) and R(b) in the

form (2- 44).

The substitution of (2- 44) into (2- 41) thus gives

Sc c  = D21(u-w) + D22 v (2- 43)

i

i
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where

-L__ a(b)-2bRo(b ]
D21 = 15 oP0

(2 - 49)

D: __15 a 2 b2 G -1i[P (b)-2bR (b)]

Equations (2 - 48) and (2 - 49) are equivalent to equations (56)

and (57) of (Sasao et al., 1980).

We finally mention the symmetry property

S21 = D 12 (2- 50)

Comparing the corresponding expressions given by (2- 11)

and (2- 49), the equality (2- 50) is far from evident. In

fact, this equality is a consequence of a deep theorem of

elasticity (Betti's reciprocity theorem). We shall not prove

it here, referring the reader to (Sasao et al., 1980, sec.5).

Eq. (2- 48), with the symmetry (2- 50). is indeed equi-

valent to (1- 7).

I

I

Ia
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PART B

APPLICATION OF POINCARE'S VARIATIONAL PRINCIPLE

3. The Rotation Group

The elementary properties of the rotation group will

play a basic role in Poincarb's variational principle, as
already indicated at the end of sec.1. They will therefore
be dicussed in this section, following (Moritz, 1982b).

Let a rotation in R3  (threedimensional Euclidian

space) be represented by

x' = Ax , (3- 1)

* x and x' being vectors and A denoting a 3 x 3 matrix.

Rotation matrices have the properties
1. The product of two rotation matrices A and B is again

a rotation matrix C = AB
* 2. For the unit matrix I we have

AI = IA = A .(3-2)

6

a
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3. Every rotation matrix A has an inverse A-1  which

again is a rotation matrix.

This properties characterize the mathematical structure of a

group; we therefore speak of the rotation group.

Another important property of rotation matrices A

is that the inverse is simply the transposed matrix:

A"1 = AT (3-3

so that we have

AAT = A TA = I (3-4)

Denote the elements of A by a..

A = [a ] . (3-5)- ij

Any rotation can be fully described by means of the three

variables q for which we may take the Euler angles 6,
r

e, p (TNP I, p.51). Thus the a will be functions of

q
r

a = a..(q ,q 2 ,q3 ) = a..(q ) (3-6)'ij ij 1Ij r

These functions are easily seen to be continuous and

differentiable. Thus the rotation group is a continuous group,

4 or Lie group.

An infinitesimal change of q changes the matrix A
rby

4
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dA = .- dq (3- 7)
aq r

(summation convention!).

The matrix

d =1A dA = ATdA (3-8)

will be skew-symmetric, which is an immediate consequence of

differentiating (3-4)

TT T (T TAT dA + dA A = A dA + (A dA) = 0

Thus it has the form

r 0 -dir 3  dIi 2 13 2
dr - dir3  0 -dir 1 (3 9)

-d7r d7r _j

* On introducing the matrices

(3- 10)

o 0 01 1 oF o -10 7

0 -1 2 0 0 3 E 1 0 O

1 0 _ 0 _ 0 O

Ia
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this may be written

dLI E1 d -1  + Ed-r2  + E3 d7f 3 Ei dirt (3 - 11)

The geometrical interpretation of the term Eld7ri is clear:

it represents a rotation by the infinitesimal angle dirI

around the x1  axis, and similar for the other terms.

As (3- 11) shows, infinitesimal rotations are commu-

tative (finite rotations are not: there is AB# BA in

general ).

The angular velocity component W, may be considered

a change of dir I with respect to time:

1 = dIr (3- 12)
dt

and similarly for W2 and W3 . Denoting dIT/dt by

we have from (3- 11):

E= T  (3- 13)

The matrices Ei  satisfy the basic commutation

relations

[Ell 2] = E3 ,
[E2, E3I = E1  , (3- 14)

6E3, E: = E2

Here the commutation symbol [. stands for

.-

6o
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[E., Ej] = E.Ej - EjE , (3- 15)

E.E. being the usual matrix product of E. and E.- I-J -, -J
The matrix dii is skew-symmetric and directly express-

ed in terms of three infinitesimal parameters dwr. It is

thus simpler than dA . The latter can be obtained by (3-8),

dA = Adn (3-16)

which expresses dA also in terms of the basic "infini-

tesimal group variables" dwrI  d 2, dr3
It is clear that the matrix

I + dni

represents a small rotation which is close to the unit matrix.

Thus we may interpret (3-8)by saying that the multiplication

by A-1 = AT transforms an arbitrary small rotation

dA into a matrix dii "in the neighbourhood of the unit

matrix".

For a general Lie group, the commutation relations

(3 - 14) are replaced by

[Ei  , Ej] = C ijkEk (3-17)

where the cij k  are constants, called the structure constants

of the group. For a general group the indices i, j, k run

from I to n , n being again the number of degrees

6

I
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of freedom. By (3- 15), the interchange of i and J means
a change of sign . Hence,

Cjik = "Cijk (3- 18)

For the rotation group we have in particular

C123 = c231 = c312 =1

C213 = c321 = c132 = -1 , (3- 19)

all other c ijk = 0

Invariant differential forms.By substituting (3 - 7) into

(3- 8) we find

T aAd7, = A- dq r(3 - 20)
a q rqr

In view of (3- 9) this has the form

d,. = ri dq , (3- 21)

expressing dr. as a linear combination of dq ; the

summation convention holds as usual.

If we replace A by BA , with an arbitrary con-
stant rotation matrix B , the right-hand side of (3-20)
becomes
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T A TT 3
(B A )TB dq r AA B B

aq r aq r

identical to (3- 20) since BTB = I for a rotation B

Thus a multiplication of all matrices A by the same con-

stant rotation matrix B from the left ("left translation

of A by B ") leaves the form (3- 20) or (3 -21) invariant.

Hence we speak of an invariant (more precisely, left-invariant)

differential form for the group under consideration.

The coefficients ri are functions of qr Note

particularly that, in general, the differentials dw. cannot

be integrated to give new coordinates i Mathematically

speaking, the dn. are not, in general, "perfect differentials".

One also speaks of nonholonomic coordinates, which make sense

only in the infinitesimal domain; cf.(Grafarend, 1975).

Briefly, the q r are holonomic but not group inva-

riant, whereas the dn. are group-invariant but not holonomic.

The property of being group-invariant is so important, however,

that the dt. are basic in the theory of continuous groups.

Dividing by dt and noting (3-12) we get from (3-21)

W = ri qr (3 - 22)

The inverse relation may be found by solving (3- 22) for qr

It has the form
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r - ri'i (3- 23)

or, corresponding to (3- 21),

dq B di. (3- 24)d r ri ,

It is clear that the matrix FBr] is the (transposed) in-

verse of the matrix [ ri] , so that the relations

ariBrj = 6ij , riasi = 6rs (3- 25)

hold; the Kronecker deltas 6.. and 6 rs denote the elements

of the unit matrix.

To fill these abstract formulas with a concrete meaning,

let us note that (3- 22) is simply a general form of Euler's

kinematical equations (TNP I, p.51), so that for the rotation

group the matrix [ari ] has the form

'-sinesin -cost 0]

Lri = -sinecoso sine 0 ' (3 - 26)

L coS e 0 1_

taking q, = , q2 q3  = . The explicit computa-

* tion of the matrix ri by inverting (3- 26) is left as

an exercise to the reader.
The generators of a Lie group. Let us form the differ-

ential of a function

0
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K

f : f(qr)

of the group variables. We have

df 3f- dqr (3 27)
aq

r

The substitution of (3- 24) gives

df = .f  dBrida
a qr" r

This may be written in the symbolic form

df - 'f  d,. (3- 28)

II

3f r - (3 - 29)
3'r r

Note, however, that the notation af/3,m. has only a formal

character, it is not a true partial derivative of f with

respect to r. since for nonholonomic coordinates only dr.

but not , exists.
II

41
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In Lie group theory it is customary to write X.f

instead of af/ar. , so that symbolically,

x = = B. (3- 30)
aa. ri r

by (3- 29). The differential operators Xi(i = 1, 2, 3) are

called the generators of the group.

The torque. If we consider the rotation group, and if

the function f is the potential energy U , then the

generators X. have an important physical meaning. In fact,

L. = X.U = 2k (3- 31)

is nothing else than the x. component of the torque L

Let us consider the work dW done by a small rotationrot

about the x axis. We have

dW = L d. 1 (3- 32)rot 1 1

this expression is the rotational analogue for the work done

by a small translation dx along the x axis:

dWtrans 1 dx1

K being the force component along the xi  axis. The

change of potential energy dU is equal to the work dW,

Taking into account also small rotations about the other co-

"4
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ordinates axes x2 and x , (3 - 32) gives

dU = Lldirl + L2 d7.2 + L3dr3 =Lkd rk

On the other hand, (3- 28) and (3-30) yield

dU U d ,k = XkUdTk
k

The comparison of these two expressions gives (3- 31), which

was to be shown.

Commutation relations and structure constants again.

Consider the differential of a rotation matrix A By (3- 28),

(3- 30), (3- 16), and (3-11) we have

dA = X.Ad,. = AE .dr.
-- I- I -- I I

wnence

X.A = AE (3 - 33)

This means that applying the differential operator X to

a rotation matrix A is equivalen to multiplying A

by the matrix E.

A straightforward consequence 0: this fact (please veri-

fy!) is the basic theorem that the generators X. satisfy

. the same commutation relations (3 - 17 as the matrices E.

$
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[xv i] C ik xk (3- 34)

where

I XX XX X.X (3 - 35)

This must be interpreted according to (3- 30):

{X. X ]f x iX j f - Xj x f

3ra fsa5  (3 -36)
r q S 3 r j q r S i3q S

The differentiation gives

: I X if 3 si a

r ~ r a

*since the second derivatives Da f/aq raq S cancel. In view

of (3- 25) this may be w r it t

~x. X .f = ) - si0 f
1, . 1 s k 2r i . q r j q r Ip~

The last two factors are X k f by (3- 30). Hence the comoa-
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rison with (3- 34) gives the structure constants:

C.. a s-- (3- 37)

i jk s sk riaq r rjiqr

expressed in terms of the functions ari and ari

An alternative expression is obtained by differentia-

ting the first equati a of (3- 25) written in the form

a skBsj = 6jk

obtaining

6s ;j + 8  sk 0
skaqr r

By means of this relation, (3- 37) is easily transformed into

C aj (X rk - ask~ (3 -38)Cijk = ri sj " qs aqr

As an exercise, the reader is invited to compute the

structure constants (3- 19) of the rotation group from (3- 38),

using (3- 26).

It is surprising that the result of evaluating (3- 38),

using the functions ' ri and 3ri , is a constant. In fact,

nonholonomic coordinates may be introduced by an equation of

form (3- 1), with ri being arbitrary functions of qr

*6

6
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also for general dynamical systems not related to Lie groups.

Then, of course, the cij k  computed by (3-38) will not in

general be constants.

The fact that c.jk are constants if the di. are

invariant forms for a Lie group reflects an essential symme-

try of the group: the relation (3 - 33) is the same at every

*m point of the group space.

Let it finally be mentioned that the structure constants

are all zero if the group is commutative (Abelian); then, by

(3- 38) we have

rk - sk (3- 39)
qS aqr

These are the integrability conditions for dir. which

can then be integrated to give true (holonomic) coordinates

More about Lie groups can be found, e.g., in (Smirnow,

1971) or (Choquet-Bruhat et al., 1977).

I

6
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4. Poincar 's Variational Principle

According to Hamilton's principle, well known from clas-

sical mechanics, a dynamical system moves from time t 0

to time t in such way that

* I

(T- U)dt = extremum (4- 1)

t
0

T being the kinetic energy and U the potential energy.

Here U is assumed to depend on n parameters (gener-

alized coordinates) qi (i = 1,2. ..... ,n), whereas T
depends on q. and on the generalized velocities

dq.
q.

If we introduce the Lagrangian function

E = T - U (4- 2)

which is a function of q. and qi , then the variational

principle (4- 1) leads to Lagrange's equations

d ._ E - 0 (4 - 3)
! ;q.
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All this can be found in any text on classical mechanics, such

as ( Goldstein, 1980), (Lanczos, 1970), or (Whittaker, 1961).

Now following Poincar6 (1901), we shall introduce non-

holonomic "velocities" w. by (3-22), considering £ a

function of qr and :

E = (4-4)

To make a distinction, we shall denote E as a function of

qi and ji by :

£= £(qr Wi )  = f(q ' I (4- 5)

Thus the Lagrangian equations (4- 3) must now be written

d -- 0 ;(4-6)

as we did in the preceding section, we shall use the subscripts
i, j, k, ... for the dT's and the w's and r, s,

... for the q's and I's ; both sets of subscripts
run from 1 to n , n being called the number of degrees
of freedom for the motion.

The differentiation of (4-5), using (3- 22), gives

3' k 3Erkw
k



38

so that

+ d ard rd rk (4-7)
~aqj cir~T ~awkJ awk

Now we multiply (4-6) by ari  , defined by (3-23), and

substitute (4- 7). Noting that

aric 0rk 0 6ik

by (3-25), we obtain

d (DEi + DEk - 8 - =0 .(4- 8)
aw rl - 'riaqr

Now

rk D rk s _ rk C rk 4 9
.i- - ; ls = sj q- - j

*i and

- E + k
qr 3qr 3"k qr"

E; + s E sk (4 10)
*qr wk qr

6
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by (3-22). The substitution of (4-9) and (4- 10) into (4-8)

gives

d . a )rk @ask- A .. - 0 (4- 11)
-3w- j+ ri [aq5  a'qyj "saWk 8 r i a

Finally we substitute As  from (3- 23):

qs= 8s'" 'w
S SJ J j

obtaining

d t 3W. + r s 1rk a q 7 ' i - 0 .(4- 12)
s aqr J wk riaqr

If the anholonomic velocities w. and the corresponding

anholonomic "coordinates" d-. are group variables in the

sense of the preceding section, then we may introduce the

structure constants of the group by (3- 38) and the generators

X. = /1n. by (3- 30). Then (4- 12) reduces to

d (aE 3E a E ( 3+ ci jkwa wk - -= (4- 13)

These are Poincar's (1901) equations of motion on a

Lie group. We shall also speak of Poincar6's variational prin-

ciple although it is a new formulation of the classical prin-

ciple (4- 1) rather than a new variational principle. It will
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be seen to be fundamental for all questions of earth rotation

involving a liquid core; in fact, Poincar 's mathematical in-

vestigations were motivated precisely by the liquid-core pro-

blem.

Most classical textbooks on theoretical mechanics do not

give it. An exception is (Whittaker, 1961, pp.42-43), who con-

siders general anholonomic coordinates (not necessarily on a

group, so that the c are not necessarily constants)
ijk

and whose derivation we have been following.

Nowadays, this topic, motion on a Lie group, is quite

fashionable, mainly due to the work of Arnold (1978, Appen-

dix 2); see also (Hermann, 1968, ch.16 and 33) and (Abraham

and Marsden, 1978, ch.4). All these treatments have a consi-

derable level of sophistication; most accessible is Hermann,

who on pp.171-172 gives a modern derivation of (4- 13) in terms

of external differential forms, and most difficult is Abraham.

None of these authors, not even Whittaker, however, mentions

Poincartt!

We note that if the structure constants cij k are zero,

then the integrability conditions (3 -39) are satisfied: we

nave true (holonomic) coordinates with w. = i. Then

PoincarA's equations (4- 13) reduce to the Lagrangian equa-

tions (4- 3), with r. instead of q. , as it should be.

To return to the general case, we see that Poincar 's

equations (4- 13) differ from the Lagrangian equations (4- 3)

only by the second term in (4-13), which expresses the non-

holonomity of the group variables and involves the structure

constants of the group.

Taking into account (4- 2) and the fact that U does

not depend on r and hence is independent of . , we may

rI
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write (4 - 13) in the form

d (IT - L (4- 14)
T-j iWJ c ijkwjaw k

we are from now on using the opposite sign convention for L.

-L. = U X.U (4-15)
I TT

by (3- 31). This is the form derived by Poincar6(1901) and

used by him (Poincar6, 1910) in his elegant treatment of the

liquid-core problem for a rigid mantle (his ci*k have diffe-

rent sign).
Application to Euler's equations. Let us consider the

rotation of a rigid body. Then the group under consider-

ation is the rotation group in R3  , whose structure constants

are given by (3- 19). The kinetic energy, for principal axes

of inertia, is well known to be

T= (Aw12 + BW 2 + CW3
2) , (4 - 16)

as any textbook on analytical mechanics shows. Then (4- 14)

gives immediately

A 1 + (C - B),2w 3  = L1

2 + (A-C)w3,31 = L2

C53  + (B- A)NI2 = L3

3 3
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V that is, Euler's equations for the rotation of a rigid body

(cf. TNP I, p.10).

The following sections will apply (4- 14) to more rea-

listic earth models: the Poincar model (rigid mantle and

liquid core), and the Molodensky model (elastic mantle and

liquid core), leading us to the theory of (Sasao et al.,

1980).

Lmga)
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5. Rigid Shell and Liquid Core

This model, the Poincar6 model, has been treated in

TNP I , secs.12 and 13. We shall here derive the basic equa-

tions (12-8) and (12-9) of TNP I, which were given there

without proof.

We recall some basic mathematical features of the

Poincar6 model, following sec.12 of TNP I

Let us refer the ellipsoidal shell to principal axes

xyz ; then the inner ellipsoidal surface, which encloses a

liquid-filled cavity, has the equation

12 +.2+Z (5- 1)
2 2 2! a2 b c2(-1

By the change of variables

x a y =y z =.z , (5-2)

* this surface is transformed into the unit sphere

x,2 + 2 z =1 (5- 3)

Poincar@ considers a motion of the liquid such that, by the

transformation (5- 2), it is transformed into a rotation of

the sphere (5- 31. Thus the velocity in the auxiliary x'y'z'

0
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system is

X2 z - x 3 Y

xx = 3x X 'j (5-4)

if the corresponding rotation vector is . Going back to

the actual system xyz by (5 - 2), the relative velocity wc

of the core with respect to the shell is

-
a a

l b b
we I Ix X - z  (5 - 5)

. L i

For a rigid body the velocity w with respect to inertial

space is obtained by (cf. TNP I, p.8):

w2z  " 3y

w = _ _ = , - W z (5- 6)

Since the mantle is rigid, the velocity of any particle

of the mantle with respect to inertial space is given by (5- 6):

v =wa tx (5- 7)

-- an4Ie ..
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For a particle of the liquid core, the relative velocity (5- 5)

must be added to (5-6):

v = (5- 8)

Now the kinetic energy T can be evaluated. We have

T = j{ v dM v -fjvvdM

earth earth

= Jj' v, vdM + ffv. vdM
mantle core

mant I e co re (59)

The substitution of w = v , eq.(5-7), gives

T w .. wwdM '(5 -10)
mantle = ) j - _

mantle

whereas with v = v , eq.(5 -8), we get- --co re

zT = ! I (w.w + 2w-w + w .w )dM (5- 11)
core j ) - - - -c -c -C

co re

The sum of these two equations finally gives

T w-w dM + i (2w.w + w .w )dM (5- 12)

earth core
i



46

The first term on the right-hand side of (5- 12) is the

kinetic energy of a totally rigid earth since w is given

by (5- 6). Thus, by (4-16),

2 2 2Jj w. wdM = A + + C (5- 13)

earth

where

SA =y + 2 )d
earth (5 - 14)

B, C by cyclic permutation

are the earth's principal moments of inertia as usual.

Note now that the third term in (5- 12) differs from

(5- 13) by w being replaced by w The comparison of

(5- 5) and (5- 6) shows that this difference consists in wi

being replaced by xi , and also in the factors a/b, a/c,

b/c, etc. Thus it is not difficult to see that the analogue

of (5 - 13) is

2 2 20r w. w dM A X + x + C x (5-15)
c-C C I c 2 c 3

co re

wh e re

o

-C ydM + b z 2 dM 5 16
C b2  , I-6)

core core

S
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B and C following by cyclic permutation of x, y, z
C C

and a, b, c

Similarly the second term in (5- 12) becomes

J fw.w d F,X +G 2  + Hw3X3  (5 17)

whr co re

where

F = J(fly2dM + z jJz 2dM

co re co re (5 - 18)
G, H by cyclic permutation.

The core being a homogeneous ellipsoid of axes a, b, c

the integrals are easily evaluated (actually, it suffices to

evaluate one of them; the others follow by cyclic permutation),

and we get

A c  ~M~~ ,F-M

BC 1 M(22 F=2 Mb
B 1 M 2(c +a ) , G = 2M ca (5- 19)

4r 1 Mca2+b2 H = 2 Mab

Thus the kinetic energy (5- 12) becomes finally

u . .n4nn
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1 2 2 + 2 + A 2 2 2T = 1A Bw2 + Cw Aox o ~3
Y2 3 1 + C 39

+ Fw1X1 + Gw2X 2 + Hw 3 X3  (5- 20)

I Now we are ready to apply Poincar§'s equations (4- 13).

We obviously have 6 degrees of freedom (n=6) The six

possible infinitesimal transformations are:

1. a rotation of the whole earth with respect to iner-

tial space, with angular velocity components w, , w2. 3 and

generators denoted by X1, X2 , X3 and

2. a rotation of the unit sphere (5- 3) representing the

motion of the core with respect to the mantle, with angular

velocity components x1 9 x2 , x3  and generators denoted

Y9Y Y1' 2' 3
Thus the whole group relevant for the present problem

consists of two independent rotation groups. The structure

equations (3- 14) for rotation groups, for generators X.

instead of matrices E. give

[X1, X2 ] = Y ' YI, Y2j = -Y3

rX2 X3 ] = X Y2 ' Y3] = -Y1  , (5- 21)

IX3 ' X = X Y ] -Y
39 2 3'

Note the difference in sign due to the fact that the second

rotation is with respect to the mantle whereas the first is

a rotation of the mantle with respect to inertial space. Any

rotation X. commutes with any rotation Y. since the two

rotation groups are independent of each other, whence

S
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[Xi, Y.] = 0 (i and j = 1, 2, 3). (5-22)

The six quantities w,9 w2 9 w 3 t x1 ' x2 9 x3  may be identified

with w,1' W2' ... 9 W6 , and X1 . X2, X 3  Y1 9 Y2 9 Y3  with
I X, X2 ... , X according to sec. 3. The corresponding

constants of structure clj k  are all 0, 1, or -1, by

(5- 21) and (5- 22).

Thus (4- 13), i, j, k running from 1 to 6

gi ves

d f aT 3T aT L+ d faT = LT 9TE-awJ w -3 w 2aw 3

-w 1 @7 + aT = L ;(5 23)f w la 3  3aw1

d aT aT aTWCI-t , +w3 ) 2 aw I aw 2  3

d (aT aT aT
-C- LXJ X3 - X2T 0

d T I + T - xaT 0 , (5- 24)
WEt X Xl'7X3 T

d 9;T + aT aT
-X 15  0

The right-hand side of (5- 24) is zero since the iunisolar

I
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torque L acts on the whole earth; there is no external

torque which would effect a relative motion of the core with

respect to the mantle. This relative motion is caused purely

by the rotation of the mantle which, through the elliptical

core-mantle interface, acts on the core through "inertial

coupling".

Thus we have derived eqs. (12-8) and (12-9) of TNP I,

where their solution and further implications are discussed.

This application already indicates the power and useful-
ness of Poincar('s principle for the mathematical study of the

earth's rotation.

I
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6. Elastic Mantle and Liquid Core -- Kinetic Energy

After this digression to a rigid mantle we shall now
continue the discussion of the solution of (Sasao et al.,

1980) from the point of view of Poincar@s variational prin-

ciple. Thus the mantle is again considered elastic.

The velocity vector v of any point of the mantle

with respect to inertial space may be written in the follow-

ing way:

V =V = x X + v = w + v . (6- 1)
-.. .n.e -m - -m

Here

w = A x x (6 - 2)

represents a rigid rotation of the coordinate system xi,

x2, x3  , expressed as the vector product of the angular

velocity vector W = (Wi ,W2 ,W3 ) and the position vector

x = (x,x 2 ,x 3) , referred to body-fixed axes; and vm

represents a small residual velocity describing the rate of
elastic deformation.

The meaning of the decomposition (6 -1) is easily under-

stood. If the earth is not rigid, then there is no coordinate

system at which all particles of the earth are at rest. Thus

the particles of the mantle move with respect to our system

, 9 x2  x3  with velocity vm which is considered small

since it is zero for a rigid body.
In the core we similarly have
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v = v = xX+xxx +C W Wc +Vc (6-3)

Now there is a small rotation

W w = XX (6 -4)

of the core with respect to the mantle, described by the an-

gular velocity vector = (x 1 x2 , x 3 ) , superimposed on

w ; in addition, there are very small residual motions v ,
which describe deviations of the fluid core motion from a

rotation of the core as a whole, including effects of non-

spherici ty.
The decomposition (6- 3) follows (Sasao et al., 1980,

p.167). It assumes that the hydrodynamic core motion is essen-

tially a rotation w , with small perturbations v This

assumption is valid not only for the Poincart model with a

homogeneous liquid core (Poincart, 1910, sec.I.2) but very

generally: it corresponds to a toroidal oscillation T

proportional to the distance r from the earth's center,

which holds for practically all models, even with a hetero-

geneous core; cf. TNP II, pp.135-136.

The present decomposition (6-3) is similar to (5-8),

but there are two differences. First, there is an additional

term v , and second, w in (6- 4) is an exact rotation,--c -C

whereas (5- 5) deviates from an exact rotation by terms onI
the order of the core flattening. These terms, together with
aeviations from the simple "Poincar . motion", are now incor-

porated into the residual velocity v
--

6°
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The usual expression for the kinetic energy T is

split up as follows:

T v.vdM + t.vdM T + T (6-5)7JfJ) 2j mant le co reman t I e co re

. Using (6- 1), the kinetic energy of the mantle becomes

mantle = (w-w + 2 w-v m + vm.v )dM (6- 6)
mantle

We neglect the second-order term v ov and put-m -m

Jfi J v W. dM =t m(6- 7)
mantle

Thus (6 - 6) reduces to

T 1 w.wdM + t (6-8)
mantle = )) - m

mantle

Similarly we transform T using (6-3), obtaining
core

rT £ %i-(w.w + 2w.w + w .w )dM + t '6-9)co re ;- C -c -- -c c

core

4e



54

wi th

t = (It + wc).-v dM (6- 10)

co re

Hence (6 - 5) becomes

T=..fJ!jw!tdM + .7 f(2- + w -w )dM + t + tc (6 - 11)

earth co re

For the term t m we obtain from (6 - 7) by means of

(6- 2)

t I 'I w-v dt4m Jj -- n
mantle

_ _-). dM

mantle

- (Xx )dM

mant le

WO 12NX

) .!vdM (6- 2

using a well-known vector identity and the fact that is

constant with respect to integration.

No
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fjJxxvdM =h (6- 13)
flfnmantle

is nothing else than the relative moment of inertia for the

mantle; cf. TNP I, pp.13-14; TNP II, pp.110-111. Substituting

(6- 13) into (6-12) we have

t== .mh ; (6- 14)

in a similar way we find

t = ch , (6- 15)

where h is the relative angular momentum for the core.-c

It is now of basic importance that both hm and hc

can be made zero. For the mantle, h vanishes if we take

Tisserdnd axes for the mantle as body axes x1 x2x3  ;cf.

TNP II, p.111. For the core, hc  can be made zero by an

appropriate definition of the core rotation x in (8- 3):

* if h is not zero for a certain x , replace x by

x + 6X and determine the three components of 6x by the three

conditions hc  = 0 . Then also tc  will vanish.

Thus tm and tc  can always be considered zero, so

* that (6- 11) reduces to

1 _ .d 1 rrC
T -1 KwdM + .1 I(2w.w + W Wc)dM (6- 16)2 j ' ! )I - - _ -. -c'-

earth core
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By manipulations familiar from sec.5 we obtain
L

T C W -+ccixj 
+  C (6- 17)

C.. denoting the inertia tensor for the whole earth, and

C C for the core only.ij
In view of F A. and similar relations following from

(5- 19), this reduces to (5- 20) for a rigid mantle, in spite

of a slightly different definition of I . This provides a

check for the decomposition (6- 3) which treats w as an-C
exact rotation (6- 4) and incorporates residual ellipsoidal

effects into v
-C

Following (Munk and Macdonald, 1960, p.37; TNP I,

pp.15-16) we shall split up the inertia tensor as follows:

C =C 0+ c (6-18)

where

FA 0 O-l Cl c12  c13

C = 0 A 0 (6- 19)

0 0 C_ 13 c23 c33_ -

Thus, C corresponds to the model of an undeformed earth-0
whose principal axes of inertia coincide with the coordinate

axes, which has rotational symmetry (B = A) and whose prin-

cipal moments of inertia A and C are constant in time.
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The tensor c takes into account the deviation of the ac-

tual earth from this simplified model.

We thus split up the inertia tensor C. and do the

same for Cc . Of the components of the residual inertiai

tensors we only retain c, c23, cc3 and c3 which are
13 23 13 23

related to nutation and polar motion, cf. TNP I, sec.3. Other

g terms do not influence these phenomena and can bedisregarded

without harm. Then (6- 17) takes the final form

.A(w2+W2) + 1 2 + C + C2W+ (6- 20)

T = 7 C 3  13 1 3  2 3 23

+ 1A(2w + X+ + 2w +2 x2) + I C (2w x 2) +

+c ++ ×3 ) + c c (

13+X 3 * 3xl XIX) 2 3 ( 2 X3 + w3X2 + x 2 X3)

0

6

6
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7. Elastic Mantle and Liquid Core -- Potential Energy

For an ellipsoidal earth with a solid mantle (solid

earth, Poincart model), we have a gravitational potential

energy U which depends on the orientation of the body
g

* with respect to the directions to sun and moon and hence on

the Euler angles *, e, , or the nonholonomic variables

d-1  d7r2, d 3  ; its derivatives with respect to these vari-

ables are the torque components

3U
-L. - (7- 1)

cf. sec. 3.
For an elastic mantle, we have to add a potential energy

U related to the elastic deformation, so that the total

potential energy is

U U + Ued (7-2)

The potential energy U ed arises from two causes:
* from the elastic forces which are a reaction of the earth

(including its liquid core) to the external forces, and from

a change of the gravitational energy due to the elastic de-

formation. We thus have
0

U e U e U (7- 3)

S.
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where U represents the elastic energy in the narrow sensee
and U d will be called the deformation energy. Thus the

total potential energy becomes

U = U + U + Ud (7-4)g e d

Because of the smallness of U and Ud and because

of the smallness of the earth's flattening f , the effect
of f on Ued is of second order and will be neglected.

Thus, for the purpose of computing Ued , we may use the

spherical approximation, formally replacing the earth by a

sphere.The dynamical effects of the earth's rotation on Ued
are also of the same second order (this is easily understood

because the flattening is an effect oT the earth's rotation)

and will be neglected. Thus again for the purpose of compu-

ting U , we formally consider the earth nonrotating and
without other kinetical effects (with one exception discussed

below); this is the static approximation. Both approximations

are standard, from (Jeffreys, 1949) to (Sasao et al., 1980);

only (Wahr, 1981, a, b, c , 1982) is more accurate.

The gravitational energy of a material particle of mass
m in a field of potential V is -m.V. and that of a

system of particles thus

-Em.V. (7 - 5)

The minus sign comes from the fact that the potential V in

geodesy is defined with opposite sign as compared to the

usage in physics. For a continuous mass distribution, (7- 5)
must be replaced by
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- V dM ,(76)

dM denoting the element of mass.

Thus Ud , the change of gravitational energy because

of deformation, becomes

ffjf
Ud = I JJVedM + j{iVedM (7- 7)

S 
S 0

S denoting the deformed earth surface. It is essential

in this context that the undeformed earth surface is consi-

dered a sphere So  , so that the deviation of S1  from

the sphere S represents the elastic deformation only:

the ellipticity of the earth (the "equatorial bulge" causing

the torque L ) has already been incorporatea into Ug
cf.(7- 1).

With

Ud = K(xzCOsot + yzsinot) (7 - 8)

as usual (cf.(1- 10)), eq.(7- 7) becomes

Ud -KCOS t f{xzdM - K sin t j(yzdM ( 7 - 9,

S1 S

the second intearal in (7-7) is zero because of symmetry; c .

-6
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By the usual definition of the products of inertia we have

3 - z ; -D{JxzdM (7-10)

S1

and similarly for c2 3  ; cf. the analogous expressions for

thecore, (2- 12) and (2- 15). Thus we simply have

Ud = c13 cosot + c23Ksinat (7- 11)

1 .Using (1- 11) this may be written

U = c(C3W1 + c2 3w2 )  (7-12)

It This is the deformation energy.

The elastic energy U can be readily found by thee

following consideration. According to the static approximation,

external forces are counteracted by elastic forces in such a
way that both systems of forces are in equilibrium. By the

very basic principles of elasticity, the equilibrium is reached

when the body is deformed in such a way that the potential

energy is a minimum. According to the spherical approximation,

the total potential energy reduces to U (since U = 0
for a sphere: iF the earth were a sphere, there would be no

torques L. and no precession and nutation!). Hence, for

equi l i 5ri urn,

4
U = minimum (7- 13)

ed



62

or

dU : 0 (7- 14)

By (7- 3) this means

dU = -dU (7- 15)e d

As far as the external gravitational potential is con-

cerned, Ud is given by (7- 12). To this we have to add,

however, a term

-+ C 3 x 2 ) , (7- 16)

which is to be explained as follows. In the static approxi-

mation used so far we have neqlected the earth's rotation as
expressed by complex number u ; cf.(1- 3). It is known,

however, that the core rotation, as expressed by the complex

number v , can be considerably larger than u (In fact,

the table on p.122 of TNP II shows that the ratio Iv/u!

can reach values of 200 and more). Thus even when we neglect

u , we cannot neglect v

Now the incremental centrifugal potential of the earth's

rotation is, by TNP II, p. 115,

2/
-Q ekxzcos. t + yzsinat)

- ( xz + ,2yZ1  , (7- 17)

by (2- 3) and (2-4 ). For core rotation, we 4,ust replace
-4

4
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W" by x, " Thus

core -X 2 YZ, (7- 18)

This expression is now substituted for V in (7- 6), the

integral being extended over the core. The result is

+ c 3 X) , (7 - 19)

as the comparison of (7- 8) and (7 -18) shows: there corres-

pond -Qx1  to Kcosat and -QX2 to Ksinat , and we

get c c3 and cc for the core since the integral is exten-13 23ded over the core.

Now we finally have to add (7- 19) to (7- 12) to get

the expression for Ud  for the present purpose, denoted

by Ud o

Ud = (c1 3w, + c2 3w 2 cX 1 - cc3X2

It may be asked why U , and not U , is used in the

potential energy (7- 4). The reason is that the term (7- 19)

is alredy incorporated in the kinetic energy, so that the

Lagrangian function £ = T -U does contain it, and it can

contain it only once. (The reader may find a similar reason-

ing in (Jeffreys, 1949).)

For the present purpose, the computation of the elastic

energy U from the equilibrium condition (7- 13), doese

however require the use of (7- 20), so that (7 - 15) is to be

replaced by

I
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dU = -dU d (7- 21)

By (7- 20) we have

-dUd = Q(-w dc13 - w2 dc23 + x dC 3 + x2 dc2 3  (7-22)

since the variations dUe and dU refer to variations

of the shape of the body, which is expressed by changes dc.
i k

and dcc in its inertia tensor.
1~ 1k

Now we shall use (2 -10) and (2-48) with u = 0

(static case):

, c = -D lw + D12v
(7- 23)

c =-0 w + D v
c 21 22

Denoting by E.. the elements of the matrix (D j)', we have

-w E 11c + E12cc (7- 24)
v E E21c E 22 cc

With w1= w + iw , v = x1+ i×2  this gives

-w = E c13 + E cC
1 3 12 13

(7 - 25)

X1 21 c 13+ E cc
21 13 + 22 13

and similarly for w2' cc We substitute this into

anai i a l o 2 ' 'c 3 2
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(7- 22) and take (7- 21) into account. The result is

dU = P[E11 (cl3dc13 + c2 3 dc2 3)

+ 'dc + c dcz
E12 (cr3  13 + c23 23

+ ( c c +C dcc
+ E21(c13dc1 3 + c2 3  23)

+ E C 3dcc + C dcC3) (7- 26)+22(C c13 23 23'

This expression is a complete differential if and only

if

E2 1  =El2 (7 -27)

This, however, is the case since from the symmetry of the ma-

trix D , expressed by (2- 50), there follows the symmetry

of the inverse matrix E and hence (7- 27).

Thus (7- 26) represents the complete differential of the

function

UE c2 2
e 7 11( 1 3 + c23) +

+ 2Ec +C

2E12 (c13c13 + 2 3c23)

++ c2 2 ) , (7- 28)

* which constitutes the desired elastic potential.

Now the tidal potential energy related to elastic defor-

mation is given by (7- 3) as the sum of (7- 28) and (7- 12):

I
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Ued = II 11 32 C23 ) +2E (C 1 + c2 3c2 3 ) +

+ Ec 2 + cC 2)] + j1(c + ) (7 - 29)+ 22( c13 23 13wi +C23w2)29

The great simplicity of this expression as compared to analo-

gous formulas in (Jeffreys, 1949) and (Jeffreys and Vicente,

1957 ) is another indication of the extremely fortunate choice

of c1 3  c 2 3  c13 and c 3  as variables characterizing the
elastic deformation of the earth; this is the basic discovery

of (Sasao et al., 1980)

In (Moritz, 1982 a) we have found (7- 29) by an ad-hoc
reasoning (choosing Ued so that the right result comes out);
the present derivation thus provides a physical verification.

An independent check is obtained by using a theorem con-

cerning the potential energy of deformation given on p.173 of
(Love, 1927): "The potential energy of deformation of a body,
which is in equilibrium under a given load, is equal to half
the work done by the external forces, acting through the dis-

placements from the unstressed state to the state of equilibrium."

It is not difficult to see that this implies that Ue is equal
to half of -Ud Now in fact, inserting (7-25) into (7-20)

and dividing by -2 we get (7-28).
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8. Application of Poincar~s Principle

Just as in sec.5, we have two rotation groups, with

generators X,, X2, X3  and Y,, Y2, Y3  We have used the

samesymols X11 21'X3 19 Y2% 39for the core rotation

same. ymbol x1 . . . .x3  . .. ..~ 2' . . .

as in sec.5 although the conceptual meaning is slightly differ-

ent: now the core rotates, whereas in sec.5 we had a rotation

of the auxiliary sphere (5- 3).

In addition to w. and Xi the kinetic energy (6 - 20)
also contains the variable products of inertia c 13, c 23, cc,3,

cc3  also the potential energy (7 - 29) depends on these va-

L-3

riables. These four quantities constitute four additional

variables (four additional degrees of freedom), which describe

the elastic deformation. They are ordinary (holonomic) vari-

ables q 7s q8, q9 9 q1 9 so that (4 - 3) holds for them.

(This also fits into the group theoretic scheme, with Tr
instead of q. for 7 ; i ; 10 ,the corresponding subgroup

being Abelian with zero c j
The Poincar@ equations (5-23) and (5- 24) remain finally

the same since we have two independent rotation groups as in

sec.5. In addition to these six equations we have the equations

ent: = 0 for i 7,899,10 which give

3T -u ed 3T aueed (5-3).
3C13  ac 13  ac 23  9 23

T U ae ed T U ed (8 2)
C C ~ C C

1 1 C 323 23

II
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The 10 equations (5- 23), (5- 24), (8- 1) and (8- 2)

relate and determine the 10 quantities w,1 w2 ,w 3 ,x ,x 2 ,x 3 ,c 1 3,

c ndc23 'c,3' 9 n 23

We note that the torque components Li  are the same

as in (5- 23), namely purely gravitational; in fact, by (7- 1)

and (7- 2) we have

aU
) 1 - -' '" = - .

since (7- 29) does not depend on rotation so that aUed/31i = 0.

On the other hand, the right-hand sides of (8 - 1) and (8- 2)depend

only on the energy of elastic deformation since

au a ued

13  13

as U does not contain c and similarly for the other
g

elastic variables.

Let us now substitute (6- 20) into the third equation

of (5- 24). This gives

d (C + C + c c + c c+
(C c 3 Cx 3 + c + C1 3 xI+ 23 2 + C2 3 X2 )

+ x2 (Ac 1 + A X + cc3w3 + cCl3x3  -

6 +~ )( 1 )

cA2 Acx 2 + 23 + c23 3 ) 0 (8-3)



69

Now we have

<< ; c 1 3  c23 << A, C (8 -4)

(if we take absolute values), and similarly for the core;

because of the smallness of the core rotation, also

* will be small. Thus

W I occ c (8 -5)
( 1 w 2 '  X1 ' X2 ' X3 ' c13' c2 3 ' c13 '  c23

can be regarded as small quantities of the first order; their

squares and products are then of the second order and will be

neglected.

Then, and since C is constant by definition, (8- 3)
C

reduces to

d t(Cc 3 + C0x 3 ) 0 (8-6)

If we treat the third equation of (5- 23) the same way, sub-

stituting (6- 20) and neglecting second-order quantities, we

get

d( (C, + Cc 3) = L3  = 0 , (8- 7)

since L3 = 0 because of rotational symmetry. The subtraction

of (8- 6) from (8- 7) gives, C and C being constant by' C

definition,

dw
C F-0

4
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so that w const. We may put

w3

W3 = ,(8 -8)

identifying w3 with the average rotational velocity Q of

the earth; this is possible since w and w2 are very small.

Now (8-6) yields dx3/dt = 0 , so that = const.

The simplest choice for this constant is zero, giving

-= 0 (8 - 9)
'I

This is the solution we shall take.

If we substitute (6 -20) into the first two equations

of (5 - 23), neglect second-order quantities and use (8- 8)

and (8-9), we obtain

A, I+ (C- A)P= 2 + Ac I - X2 ) + S(C 13 - c23) =L

(8- 10)

A - (C- A) jw + A(X +  Xl) + ( 2  c) =L2 c I1 ' 23 + 13 2

If we do the same with the first two equations of (5- 24),

we get

IA + Ac - + =c:0,
c I c2 13

(8- 11)

Ac 2 + Ac 2 + Ccnxi + .c23 = 0

Let us finally substitute (6- 20) and (7- 29) into

(8- 1) and (8- 2), again using " = and = 0 The

result is

I
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1 1 13 + E12c + w1

(8- 12)

w2= El C2 3 + E12c2 + w2
1223

and

X1= E 12 c13 + E2 2 c13
(8 - 13)

X2 12c 23 + E22 23

Now the complex combination of (8-10) and (8- 11) gives

A - i(C -A) u + A ( +i~zv) + Q( +iiic) = L (8- 14)

A C + A C' + iC Jv+ Q C = 0 (8-15)C C C

and the complex combination of (8 - 12) and (8- 13) becomes

u =E c + E c +wI1I 12 c

(8 - 16)

4 v E 12 c+E22 c

By means of the matrix rD 1 inverse to the matrix [E.ij
the last two equations may be written

c 01,(u-w) + D12 V (8- 17)

c = D12 (u-w) + D2 2v (8- 18)
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Our equations (8- 14), (8- 15), (8- 17), and (8- 18)

are identical to the basic SOS equations (1- 1) (1-2), (1- 6),

and (1- 7) of sec.l.

Concludini remarks.The present variational method fur-

nishes probably the most direct derivation of equations (1- 1)

and (1- 2), or (8-14) and (8-15). This is particularly true

for (1- 2) which has been derived by Sasao et al.(1980) using

both the decomposition (6- 3) and the hydrodynamic equations.

The present approach uses only (6- 3) and prov4ies a unified

deduction of (1-1N and (1-2) which also explaius the similar-

ity of these two equations that in the complicat d hydrodyna-

mical derivation comes out almost as a miracle. In fact, the

similarity of (1- 1) and (1-2) is now seen to be due to the

fact that each equation essentially reflects the action of a

rotation group.

On the other hand, equations (1-6) and (1- 7) are better

obtained directly, in the way described in sec.?. In fact, the

derivation of the elastic energy given in sec.Y already uses

(1 - 6) and (I - 7).

To summarize: of the four SOS equations, (1- 1) and

(1- 2) are obtained more easily from the variational method,

whereas (1- 6) and (1-7) are better derived directly. There-

fore, in the first presentation of the method described here

(Moritz, 1982a) we have followed a "hybrid" approach, consi-

dering (1- 6) and (1- 7) given (from a direct derivation),

and choosing the elastic deformation energy U , eq.(7-29),

simply in such a way that the variational principle not only

furnishes the new equations (1 -1) and (1- 2), but also correct-

ly reproduces the given equations (1-6) and (1- 7)

This ad-hoc choice of Ued was frankly pragmatic and

-I

4,
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motivated by reasons of mathematical simplicity. It has been

criticized for providing no physical interpretation of Ued

Therefore, we have, in the present sec.7, derived Ued by

physical considerations in such a way that the physical mean-

ing becomes evident. See, in particular, the decomposition

(7- 3) of the elastic deformation energy Ued as the sum of

an elastic energy U in a narrower sense, and a deformatione
energy Ud The latter, U d , could be determined immediate-

ly, and then U was obtained as the elastic equilibriume
response to Ud Still, eqs. (1-6) and (1- 7) served as

a basis also for the physical derivation of Ued in sec.7.

Thus there is no doubt that even the use of the present

variational principle does not supersede a direct derivation

of (1-6) and (1-7). Also, eq.(1 -1) could have been found

rather easily by other considerations, using the Euler - Liou-

ville equation (TNP II, sec.10). There remains (1- 2), for

which the present variational principle furnishes indeed a

derivation of incomparable simplicity.

But does this fact alone justify the use of the whole

mathematical machinery of Poincart's variational principle ?

The answer is the same as in many other applications of ana-

lytical mechanics: the results could also be found by element-

ary Newtonian methods, but it is the application of Lagrangian

* or Hamiltonian methods which makes us better understand the

mathematical and physical structure.

It may be helpful to again summarize the basic logical

structure of the present approach which may have been obscured

* by the computational details. We start from (1- 6) and (1- 7)

as derived in sec.2:

a
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c D,(u-w) + D12v

c = D12 (u-w) + D 22 v

Then the kinetic energy (6 -17)

T cij.WiW j + cc. + C ¢

Ii .J ijxIj

used in the form (6 -20), together with the gravitational

energy U , is substituted in Poincar 's equation (4- 14),
g

dt L()T J + cijk w T L,

or more explicitly (5- 23) and (5-24), which directly gives

(1- 1) and (1 -2), or (8- 14) and (8- 15):

A - i(C-A)iu + A (+isv) + Q(E+i c) = LC

A G + A , + iC Qv + ,jc = 0
C C C C

* The gravitational energy U g is not used directly, but

only through the well-known expressions (1- 12) for the torque

components L. As we have seen above (after eq.(8- 2) )
w: nave U ea/ 0 , so that the elastic deformation

* energy does not contribute to the torque. Hence the simple

expressions (1- 12) hold independently of the internal con-

stltution of the oody.

We also see that the left-hand sides of both equations

S
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(1- 1) and (1-2) only depend on the kinetic energy T

through Poincart's equation (4-14), no Euier - Liouville

condition and no hydrodynamics are needed!

So far everything has been rather analogous to the simple

Poincar§ model (rigid mantle and homogeneous core) as out-

lined in sec.5. To take care of elasticity, we have only to

add a term Ued to the gravitational potential energy to get

the total potential energy

U = U + Ug ed

I
Ud is chosen in such a way that Poincar§'s principle,

through (8-1) and (8-2) (which do not depend on U g

gives equations (1-6) and (1- 7); the expression (7- 29),

U 1 _E (c 2+C2 2) + +2E (C
edu T' 1 1  13  32)+2E 1 2(c 13 c13+c2 3 c23) +

+ E2 2 (cc 
2 +c 3 ) + Q(c 1 I+ 2 3w2

is determined uniquely (up to an additive constant) by this

condition.

The present variational approach may be compared to that

of Jeffreys (1949) and Jeffreys and Vincente (1957). Common

to all three approaches is the reduction of a problem of con-

tinuum mechanics (infinitely many degrees of freedom) to a

problem of analytical mechanics with only a finite number

'here, 10) of degrees of freedom. This is brought about by

restricting ourselves to second-degree harmonic perturbations

and disregarding all the infinitely many other harmonics.
The essentially greater simplicity of the present method

I

4
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is brought about by the use of anholonomic Poincars's vari-

ables related to the two rotation groups considered, and of

the corresponding anqular velocities w. and x( (Jeffreys

uses holonomic rotational variables), as well as by the for-

tunate choice of c13  c23  c 3 , and cc as elastic variables
13' C2 ' C7323

due to Sasao, Okubo and Saito.

The resulting SOS equations (1 - 1), (1 - 2),(1-6),(1 - 7)

Uare equivalent to Molodensky's equations both with respect to

accuracy (spherical approximation for the mantle) and to

applicability to rather general earth models (heterogeneous

mantle, heterogeneous core, even elastic inner core). They not

only give the simplest formulation of Molodensky's liquid-

core problem, but also clearly show its logical structure.

Their practical usefulness will be seen in the following

secti o s.

0
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P AR T C

EXPRESSIONS FOR NUTATION AND POLAR MOTION INCLUDING

LIQUID-CORE EFFECTS

9. Transformation of Eq. (1 -1)

This equation

A- i(C-A)Qu +A C( +iqv) + sP( +ipc) L (9- 1)

will be basic for the investigation of the movement of vari-

ous axes (rotation axis, angular momentum axis, figure axis,

etc.) for the Molodensky-SOS model to be performed in Part C.

Let us recall the notations: A and C denote the

moments of inertia of the whole earth, A Cand Cc those

of the core, Q2 denotes the (average) angular velocity of the

e arth , u a nd v are the complex numbers describing small

4 rotations (u of the whole earth with respect to space,

v of the core with respect to the mantle), and L is a

complex number describing the lunisolar torque; these complex

,4

4
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numbers are defined by (1-3) and (1- 5). The complex number

c combines anomalous elements of the inertia tensor, given

by (1- 4). It is related to u by (2-8)

c = - Gka5 (w-u) , (9 - 2)

where G is the gravitational constant, a can be considered

* the radius of a spherical earth, k denotes the potential

Love number depending on frequency (we keep in mind the possi-

bility of the decomposition (2-9) but shall not use it),

and w is related to the lunisolar (tidal) potential by (1- 11).

Thus The anomalous elements of the inertia tensor, described

by c , depend on u (rotational deformation) and w

(tidal deformation); cf. TNP I, p. 27.

We seek solutions that are functions of time t of form

U= u e ato
0

(9-3)
lot

V =V eia

0

with real constants u , v , taking
0 0

w = w 0 et (9 4)

this is in agreement with (1- 11):

w = . le it (9 5)

I

These particular solutions have the well-known advantage that

differentiation is simply multiplicating by i:

.I
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=du= iouelat iau (9- 6)

They depend on the frequency a ; but, our equations being

linear, we can obtain a rather general solution by adding the

contributions from different frequencies. On substituting

u (9- 2), assuming (9- 3) and considering (9- 6), the basic

equation (9- 1) becomes after dividing by i

F\c - (C-A) ]u+ Ac(o+2)v - G-IkaSQ2(w-u)(a+2) -iL
Q1 C (9-7)

It is now convenient to introduce the dimensionless

constant

k = 3G(C-A) (9- 8)
S a5 2 

called secular Love number (TNP I, p. 21), and express the

torque L in terms of the complex potential coefficient w

by

* L = -i(C-A)QW ; (9- 9)

this is an immediate consequence of (1- 11) and (1- 12) (put-

ting a = 1 , which is of no relevance). Thus (9- 7) becomes
4

*6
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[Aa - (C-A)2 + k(a+11)(C-A u + A(a+Q)v =

- - (C-A)[I - i 2-}-- w (9- 10)

We now introduce the Euler frequency defined by

= C-A (9- 11)
I

cf. TNP I, p. 10, and divide by A The result is

[a- CE + k](+) + A

S= ° EIT a W ( 9 - 1 2 )

In agreement with TNP I, p. 121, we now introduce the

tidal frequency , . byJ

a = -W ; (9- 13)

then

+ -( J - ) - - (9 - 14)

where

I

I
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AW. = w. - (9- 15)wJ J

is the corresponding nutational frequency (TNP I, p. 36). Thus

we can put

Q a + a = - , a =A ) (9-16)

omitting the subscript. Dividing by -Q we then get

E - k aEAW A
+ + A- + k U + Va I - 2 IF-Q- v

S 0

CE + k A w (9- 17)

t.s

Since the usual tidal frequencies w. are very closeWJ
to Q , the angular motions of sun and moon being so much

smaller than the earth's rotation, we have

A « x1 . (9- 18)

Similarly,

E - ° 1 ,(9 - 19)

so that the last term between parentheses in the factor of

-

I
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u in (9- 17) will be of second order and can be neglected.

Thus we finally obtain

IA
1 + 'E -u - I + w.Wv . (9- 20)

This equation expresses u in terms of the tidal poten-

tial characterized by w and of the core rotation v Let

us recall what u means. It is defined by

u = WI + iw2  (9 -21)

as the complex combination of the x and y components of

the rotation vector If we divide these components by

the length I of this vector, we get the components of the

unit vector of the (instantaneous) axis of rotation. The x

and y components of this vector, mI and m2  , can by com-

bined into a complex number

m = m1 + im2  (9- 22)

which describes the polar motion of the rotation axis R

m u (9 -23)

the notations are the same as in TNP I (cf. pp. 17 and 93)

4 and in TNP II (cf. pp. 128 and 138):

As we did in TNP II (p. 9), we may put

6
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m ECOSOt

(9 - 24)
= es inat

o r

M = e ot(9 -25)

so that is the amplitude of polar motion for the frequency

a ~ under consideration. Then

u = o t (9 - 26)

We likewise put

v s~e it(9 -27)

w oye jt(9 - 28)

The numbers , and T are dimensionless real constants.

The substitution of (9 -26), (9- 27), and (9- 28) into

6 (9 - 20) gives

aEa k Aw) CA (9 -29)1 + + A 'w + jAT
6 . S

For a rigid earth without liquid core (k=0, AC 0 this gives
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!.1

e + + A T 'E (9- 30)

This equation gives the amplitude of polar motion forced by

a tidal potential of frequency a and amplitude t In

terms of this e we may write (9-29) as

E: C + k Aw AAC W( -31
S 

1 ]- T (9-31)

where we have put

x + _
+  " 1 (9- 32)

In fact, in view of (9-18) and (9-19), the factor x

differs only very little from unity.

Special cases. For the rigid earth (k=O, ¢=0), eq.(9- 31)

reduces to (9- 30), which we can also write, using (9- 15):

E G E T _ E (9- 33)
0 o 1+AW+G E W j+ E

which is the same as the amplitude of TNP I, eq.(1i- 45), with

T = iB.J
For the elastic earth without fluid core (k!0.3 , =0),

eq.(9- 31), together with (9- 33), gives

4

I
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K-

fl + Aw E (9 34)
' S

On the other hand, we have McClure's expression (TNP I, p.36),

apart from the factor i (see next section):

C-A B

1 + k Aw .

C-A k
- 1 w a + k B. (9 - 35)

S

where

k
1-

: S (9- 36)
C k 7 E

F1 Tk s?
S

U

is the Chandler frequency. Are (9- 34) and (9- 35) equivalent?

We have by (9- 11),

C-A E _ E
,C +, C - - -- --
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so that (9 -34) and (9- 35) will be equal provided

(W+a + = IW + a (9-37)

In fact, by (9-36),

(,-+ac + k aE

S

j + k + - k
S

E rw. la

W. + a + _ , (9-38)

S

which differs from w+OE only by the last term which is

small of second order since Aj. and a E are both small, by

(9 - 18) and (9 - 19) , and which we can neglect.

For the Poincare model (rigid mantle, liquid core) we

have k=O and C# 0, so that (9- 31) reduces to

A
S - - - (9 39)

- o "-A :
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with x - 1 Since A /sI is very small for tidal pertur-

bations, this is almost the same as (9- 31).

From this it would be tempting to conclude that the

effect of elasticity on e is very small, at least for nearly-

diurnal frequencies which we have been considering in this

section (this is plainly not true for the Chandler period which

is lengthened due to elasticity from 305 days for k=O to

403 days for k!0.3 ). Thus we might think that the simple

Poincar@ model (rigid mantle) might be used to calculate

liquid-core effects on E , still getting basically the same

numerical results as for the Molodensky model with an elastic

mantle.

Such a conclusion would be wrong, however, as the com-

parison of the tables in TNP I, pp 122-123, and TNP II, p. 122,

shows. The reason is that, though the direct effect of k

on (9 - 31) is negligible, there is also an indirect effect:

elasticity affects core rotation, hence , is different for

a rigid and an elastic mantle, and elasticity enters indirectly

in (9- 31) th ough

This shows that (9- 31) shows very well the effect of

mantle elasticity and core rotation if we assume that the core

rotation parameter , s known. If only the lunisolar poten-

tial (coefficient t ) is given, then we must proceed differ-

ently, in a way to be outlined now.

Solution for u and v in terms of w in addition

to (1- 1), let us now also consider (1- 2):

*A C + A v + iC v + . = 0 (9- 40)
C C C C

We express c in terms of u and w by (2 -8)I and sub-
c

a
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Af
stitute into (9-40). With (9-26), (9-27), and (9 -28),

differentiation is replaced by multiplication by ic , accord-

ing to (9- 6). This reduces the differential equation (9- 40)

into a linear equation of the form

a2 1
u + a2 2 v = c 2 w (9-41)

This is in complete analogy to the procedure by which

we have obtained (9- 17) from (9- 1); we may also write (9- 17)

in the form

a u + a 12v = cw (9-42)

The solution of the two linear equations (9 -42) and

(9-41) for u and v (say, by means of determinants) gives

u = b Iw ,

v b b2w

Since it is not difficult to see that the coefficients a..
ij

and c. are all real, also the coefficients b. will be reai.

In terms of the real constants T, , T we have the equations

a + a 2 = T

(9- 43)
a2 1  + a 22 2

with the solution

S2 (9- 44)
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with the same coefficients as above.

Thus both E and can be expressed in terms of T

only. The computation is easy, but the resulting expressions

are not very elegant. Therefore they will not be given here.

The corresponding calculations for the Poincar model (k=0)

can be found in TNP I, pp. 120-122.

uThis reduction of a system of differential equations

to a system of linear equations (9- 43) has been made possible

by using exponentials (9-3) to (9-5). This is nothing else

than a transformation from the time domain to the frequency

domain which is known to simplify matters on such occasions.

As a matter of fact, the coefficients a.. and c. , and

hence b. in (9- 44), will depend on the frequency c=-,.

Relation to the Molodensky coefficient 2 In TNP II,

p.56, we have, for the Poincar model, found the relation

v : o ( 9 -4 5 )
0

whence, by (9- 27),

S= - _(9 -46)

orI

= - (9- 47)

beinQ the Mo'odensky parame'er used in TNP I . :n the

interestino cases we ;ave *>. , so that approximatey

, _

-II
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It can be shown that these relations also hold for an elastic
mantle. In fact, substituting (9-47) into eq.(10-41) of TNP II

it is not difficult, though somewhat laborious, to derive

(9-29). Substituting (9-26) and

• .. ~v = B e c

into the second SOS equation (9 -40) and taking a homogeneous

core, one obtains eq. (9-34) of TNP II. (Hint: show that

41rG 2 5 iat

c = -l- pe2bSye

notations as in TNP II, sec.2.)

*6

,-

Ii

I - - - - " -" - - l " - l
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10. The Kinematic Axes

In this section we shall investigate the motion of the

rotation axis, the figure axis, and the "mean Liouville figure

axis". These axes will be called kinematic axes, in contrast

to the angular momentum axis which, being dynamically defined,

behaves differently and will be considered in the next section.

Reference frame. As in the previous reports TNP I and

TNP I, we shall use two basic reference frames, the "nutation

frame" xI xOx0  which is the natural frame for describing

nutation, and the "body frame" x x2 x3  to which polar motion

refers; cf. TNP II, pp.5-6 and 140-143.

The nutation frame x. is connected to the inertial

system in a prescribed way: the xO axis has a fixed direction

in inertial space, and the system x xX2x 3  rotates with con-
0

stant angular velocity 0 around the x3 axis. Being space-

fixed, the x0  axis is a natural reference for nutation.
3

The body frame x. represents a system of Liouville

axes for the mantle (TNP II, pp.140-143) with respect to which

the mantle, in the absence of elastic deformations, would be

at rest. The x3 =z axis represents the figure axis of the

undeformed ellipsoidal earth and is the "mean Liouville fi-

gure axis" mentioned above. It is the natural origin of polar

motion and coiresponds to the point 0 in Fig. 6.1 on p.38

of TNP I.
The basic trick. These two frames are related by a small

rotation (TNP II, p. 6):

x -- (I + a)x 0  (10-1)

°4

4
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where

F e 63  -e 2
o 0 ej (10-2)

is an "infinitesimal rotation matrix". In terms of the vector

2(10 - 3)

this may also be written

x x0  X x 0 (10 -,4)

the cross denoting the vector product as usual.

Now these relations between coordinate systems are

geometrically the same as the formulas for aninfinitesimal

rotation of a rigid body. In fact, the body axes x x2x3
can be assumed to be fixed with respect to an undeformed, or

rigid, fictitious "reference earth". Thus we may use, with

some care, the simple formulas for the rotation of a rigid

body (TNP I, secs.10 and 11) even to describe nutation and

polar motion for an elastic earth with or without a liuid

core. This is the basic trick which will be used here, follow-

ing Wahr(1981c) and indications in TNP IA. pp.136-138.

Basic relations. Denote the unit vector of the rotation

em

a*
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axis R by ep , the unit vector of the instantaneous figure

axis F (which is defined as the axis of maximum inertia

for the deformed earth) by e F and the "mean Liouville

figure axis" (which is nothing else than the x3 '=z axis of the
the body frame) by e . Denote further the unit vector of

0 -the x3  axis (of the nutation frame) by e . Then polar
motion and nutation of the various axes can by characterized
by the vectors

Rz R -R -3

F e e ' F F -3 , (10-5)

pz e - e Z 0, n ez -3Pz -z -ez -, z =-z -e3,

cf. Fig. 10.1.

X3 R

2Z ~R

I 2

FIGURE 10.1. Polar motion of the rotation axis
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Since all vectors eR ,F. ez and e3  are almost

parallel to each other, the polar motion vectors p_ and nu-

tation vectors n will be small and only have a negligible

component along the x3 axis (Fig, 10.1). Thus we can put

[nt n (10 -6)

and characterize polar motion and nutation by the complex

numbers

P =PI + JP2 n = nI + in2  (10-7)

instead of the three-dimensional vectors p and n . More

details about this can be found in TNP I, sec.1i.

Fir-st we note the basic relation between nutation and

polar motion: from (10-5) there follows for any axis

P- = -an + (e3-e z ) = n - n z

or for the corresponding complex numbers,

p =n - n

(10 -8)
np,~

jjn =p + n

r may be expressed by the sernnd equation of (11- 37) of

TNP I, noting that the figure axis F for the rigid "refer-

ence earth" is the z-axis:
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n z i (10 -9)

* e being defined by the complex number

e 1 + 162 (10 - 10)

combining the first two components of the vector (10 - 3). The
first equation of (11 - 39) of TNP I gives for a frequency

6R (10 -11)

By eqs. (9 - 23) and (9 - 26) of the present report we have

p m E= e t(10 - 12)

Then it f.ilows from (10- 9) and (10- 11) that

."a t

4

n - -i R , (10 -91)

Th i en (1 ef) iesb the cmxnu mbin fte rotto xs

n = + n p (10- 14)

:" R R i a+__ +f RI i

-4

'I
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or

= aot
n = ce (10- 15)

The obvious relation

p 0 (10 - 16)
z

following from (10- 5) concludes the formulas for precession

and nutation of the rotation axis and the z-axis.
For the instantaneous figure axis F we have by TNP I,

eq. (3- 27):

::i. c

F f - (10- 17)

We express c = c1 + ic by (9-2), introducing the secular

Love number k defined by (9- 8). This gives
S

= k u-wp+ F k IT (10 - 18)
S

By (9-26) and (9-28) this becomes

k 1t
SF = W-- (C-t) e 0 i-t19)

The nutation of the axis F then follows from (10-8) and

(10- 13):

S!
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n= PF + n =[ ( ) ; ]e iot (10-20)

We finally state the relation which connects the nuta-

tion number n (for any axis) with the usual expression in

terms of the Euler angles a and 6 , the latter being the

obliquity of the ecliptic:

+ ijAsine = -ineift (10- 21)

This is eq.(11-55) of TNP I. The factor -i expresses a

rotation by -900 and has no deeper significance since it

characterizes only the choice of coordinate axes; the factor

etZt expresses the uniform rotation of the xlx~xO system

to which n refers, with respect to the inertial system to

which and e refer.

Forced polar motion. For the lunisolar torque we take

the expression (11-40) of TNP I:

(C-A)j ]B (Wt+ (10 - 22)
j

as the sum of contributions

4
TL. = (C-A) 2B.e'Itwjt+8j) (10 -23)

J J

4

a)_
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of different frequencies w, with phase j We put, as usual,

a - -=w , (10-24)

then

e iI~jt+aj) = eiot-iB = e- ijeiat (10-25)

So far we have disregarded the phase factor e'ij because,

being common also to u, v, w, it cancels in relations such

as (9- 20) or (9- 42). We may also take care of this phase

factor by allowing u, vo, and w in (9-3) and (9-4) to

by complex constants. We shall now use the subscripts j

to indicate that we deal with contributions of the frequency

J
We thus can write (9-28) as

w. = SI .e'i( jt+BJ) (10- 26)

whence (9-9) gives

L. = -i(C-A)pw.J J

-i(C-A)Q2 -i(Wjt+6 )
T.e J (10- 27)

J
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The comparison with (10- 23) shows that

.T = iB. (10- 28)

This relation is not more mysterious than a rotation by 900
" since iz is a complex number obtained by rotating z by

the angle of 900

*1T

iz = e z (10-29)

It expresses the fact that w and hence, by (9- 42), u and

v are normal to L Since, as we have seen above, the polar
motions and nutations, for a given frequency, are all propor-

tional to u and w , all quantities PR' PF' nR, n ,and n F

X2

L

F

3 
WF

PR

U

FIGURE 10.2 Forced nutation and polar motion for a fixed

frequency

a
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have the same directions as u, v, w, namely normal to L

as Fig. 10.2 schematically shows. Thus the points x3, x3,

R and F ( the end points of the respective spatial
unit vectors e3, ez , eR, and eF) lie on a straight line.

Following (9-26) and (9-27), we similarly write

u. = Q .e-i(Wjt+OJ) (10 .10)

v - e-i(Wjt+aj) (1C 1)

Then (9-29) gives

+ + A sE k.

A A.A Q (10- 32)

note that we have put k = k. since the elastic Love number
k also depends on frequency.

Now (10-12), (10-16), and (10-19) give immediately, after

summinq the contributions of the individual frequencies:

:1
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forced _ Zc.ei(Wjt+B)j J J ,

P forced 0 (10- 33)

-. I k.)e(wt.)

forced k . L(c_-t+

j s

Here, s. has the same direction as r. = iB.JJ J
Forced nutation. With

. = W.- 0 = -(+Q)

eqs. (10-13), (10-15), and (10-20), combined with (10-21),

give

(A 9+i tpsi ne)fre :- W.L. e jR AW

forced -

" (a +i APsi ne F 71( S: e j j .10- 4)

(•+ pif~'Fforced = -i I Vi(E.- r IL e

For a purely elastic earth (no liquid core) we have

(9- 34) which in view of (9- 37) may also be written

6

ai
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elastic C-A - i C-A B , (10- 35)',= T Kjc "X Tj j

using (10- 28) and the abbreviation K. according to TNP I,J= i
eq. (6-8). The substitution of (10-35) and of T iB
then immediately gives the forced (lunisolar) parts of eqs.

(6 -9), (6 -10), (8-7), and (8 -11) of TNP 1, which have been

obtained there in a considerably more complicated way.

Free motion. There are two proper frequencies, a1

corresponding to the Chandler period, and a2  responsible for

the "nearly diurnal free wobble" (NDFW); cf. TNP II, pp.123-

126. Thus p free will have the form of a linear combination
of both frequencies:

PR free m Ie lt + m 2ei 2 t (10- 36)

a phase factor of the form ei6 can be incorporated in the
complex constants m1  and m2  Then (10-16) and (10- 19)

give

f ree =0Pz=0

free k i a t 7 L( - 37

- me 1 + 17 m2 e '2 (10
t;S S

SS

bA
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k and k being the Love numbers k for the frequencies

a and a2 ; there is T = 0 for free motion.

Free nutation is given by (10-13), (10-15), and (10-20),

with (10- 21):

~f ree =-mei(al +
(Ae+iApsine) R 0 e +

R" .

" e2 2ei ( t]

+ 02+ 2 e 2

(Ae+iafsine) ree = iL m ei( +P,)t +(A~i~sno z  La+j mI

(10- 38)

+ 2+S mei(z+Q)t]

f ree Q(k( 'C(Ae+iA~sine) i m eI +
F L VS

+ {. - -a-+U mei 2  + )t

The nearly diurnal free wobble (NDFW) does not, so far,

seem to have been confirmed by observation, neither in the

Polar motion (amplitude Im2 1 ) nor in nutation. For nutations,

* formulas (10- 38) show that this amplitude would even be in-

creased by a factor on the order of

|- -
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ly~~K1T~2TI1 500,
b2.-

according to TNP II, p.16 7 !

Thus we can safely disregard m2  , and consider only

the Chandler frequency a Then these formulas for free

polar motion and nutation reduce to the free terms in the

corresponding expressions for an elastic earth,TNP I, eqs. (6-9),

(6- 10), (8- 7), and (8-11), with cI = C and k being the

value k for the Chandler frequency.

Also the expressions (10-33) and (10- 34) are formally

the same as for a purely elastic earth, liquid-core effects

entering only indirectly: weakly through the frequency-depend-

ent Love numbers k and more strongly through the e. which

depend on core rotation {. through (10-32). This is not

surprising s.nce the basic relation for these "geometric" or

"kinematic" axes depend only on the surface form of our earth.

Thus the qualitative picture of polar motion for an elas-

tic earth with a liquid core remains basically the same as

for a purely elastic earth; cf. Fig. 6.1 on p.38 of TNP I. Only

the amplitudes of forced polar motion are somewhat affected

-* by the liquid core. The orders of magnitude remain the same:

6 m for free polar motion, 60 cm for forced motion of the ro-

tation axis, and 60 m (!) for the forced motion of the instanta-

neous figure axis; cf. TNP I, pp. 39-40.
* . Finally we note that, as far as free polar motion is

concerned, the elastic earth model, even with a liquid core,

gjives a highly schematic and unrealistic picture. The actual

free polar motion is so irregular that it can only be deter-

6
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mined by actual observations. On the other hand, the forced

polar motion and nutation is represented well by the elastic

mantle-liquid core model. Thus the formulas (10- 33)and (10- 34)

describe them with sufficient accuracy.

4

4

I
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11. The Dynamic Axes

These axes comprise the angular momentum axis and the

related "Celestial Ephemeris Pole"
Angular momentum axis. It represents the direction of

the angular momentum vector H

Since the relation between angular momentum and torque,

dH
L= -, (11-1)

is independent of the internal structure of the body (cf. TNP I,

pp. 48 and 128), we have for the nutation n. the same form

n iL (11-2)II n~H = "Cs(+T-(11- 2

as for a rigid body or for the Poincar6 model; this is eq.

(13-37) of TNP I.

The free nutation of the H axis is zero since, in absence

of external forces, the vector H remains unchanged in iner-
tial space. For the forced motic , we have, summing over the

different frequences,

L.
n. i , _L (11 - 3)

J J

or by (9- 11), (10- 21), and (10- 27):

I

a-

S .
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(A + o  in A OE -i(Awit+6 (1) 4

H=

Using (10- 28) we have the alternative form

(Aw+iAvtsine) = " -' ee(Aw •t+ (11- 5)
J J

This is identical to the nutational part of eq.(7- 14) of

TNP I, but the derivation is much simpler in the present way.

It is also identical to the nutation of H as given by TNP I,

eq.(13-69) for the Poincar6 model.

Polar motion for the H axis may be obtained from (10-8):

'"= n H " n (11 - 6)

Using (10- 13) and (11 -4) and summing over different frequen-

cies we get

P =  - e W t+6 (11- 7)H j j

A thorough check is provided by computing pH from an

expression of the vector H in the body frame. The angular

momentum equation

4

6:
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H = Cw+ h (11-8)

(TNP I, p.13) holds for an arbitrary nonrigid body (even with

a liquid core), provided the relative angular momentum h is

taken into account besides the main term Cw , C being the

inertia tensor and w the rotation vector as usual.

For Tisserand axes referred to the mantle, the relative

angular momentum h is due to core rotation. Thus

h=Cx = A x (11-9)

Lo
since = 0 by (8 -9); we have disregarded the second-order

products of the anomalous tensor of inertia for the core,

cC., with as usual.
The linearization of Ci is provided by eq.(3-22) of

TNP I; by (11-8) we have to add h as given by (11-9). The

result is

H = Apm + c + A (x1 +iX2 )

By (1- 3) this is

H = A m + Qc + A v (11 - 10)
C
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He re

H = HI + iH2  (11- 11)

is the complex number combining the xI and x2  components

of the angular momentum vector H The components of the

corresponding unit vector are obtained by dividing by its

(approximate) length Cg , whence

A A

m +" + -Sv ; (11- 12)
H

we obtain indeed pH since everything is referred to the body

frame x Ix2x3  . With (9- 23) and (10- 17) this may be written

A A (11-13
PH R PR F ( - 1

After substituting pR from (10-12), pF from (10- 19) and

v from (9-20), and neglecting second-order terms we get

(11- 7), which completes the check.

This equation can also be used to compute the free polar

motion of H . Core rotation only plays a role in the tidal

frequency range, that is, for w. ; its effect is ratherJ
small for the Chandler frequency, cf.TNP I, p.133. Thus, since

the calculation of free motion is of little practical value

0 anyway, we may neglect v in (11-13), obtaining

Hfree A p free + C-A p free (11- 14

0
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*Using (10 - 36) and (10 - 37) and neglecting the hardly observ-

able NDFW (m =0) ,we get
2

~free A C-A k1 (-15= + m e 1 ,( 1 1 -1 5 )

HS

the same as for a purely elastic earth (TNP I, p.37).

The Celestial Ephemeris Pole. The corresponding axis

has been adopted at the General Assembly of the International

Astronomical Union in Montreal in 1979 to define the celestial

pole for reference purposes, according to Commission Resolu-

tion (3):

"Commissions 4, 8, 19 and 31

endorse the recommendations given in the Report of the

Working Group on Nutation, as set out below, and recom-

mend that they shall be used in the national and inter-

national ephemerides for the years 1984 onwards, and in

all other relevant astronomical work.

Recommendations of the Working Group on Nutation

Whereas the complete theory of the general nutational

motion of the Earth about its centre of mass may be de-

scribed as the sum of two components, (i) astronomical

nutation, commonly referred to as nutation, which is

motion with respect to a space-fixed coordinate system,

" and (ii) polar motion, which is motion with respect to

a body-fixed coordinate system, it is recommended that:

(a) astronomical nutation be computed for the "Celestial

Epnemeris Pole" using a non-rigid model of the Earth



. . . . . . . . . .

,° ..- * * *- . - -

i -" 111

such that there are no nearly diurnal motions of this celes-

tial pole with respect to either space-fixed or body-fixed

coordinates, which can be calculated from torques external to

the Earth and its atmosphere ,

(b) the numerical values given in Table 1 of the complete re-

port be used for computing astronomical nutation of the "Celes-

tial Eohemeris Pole".

Cf. (IAU, 1980, pp. 40-41). For the scientific background cf.

(Leick and Mueller, 1979; Moritz, 1979; Mueller, 1981) and also

TNP 1, pp. 53-59.

The Celestial Ephemeris Pole C thus corresponds to the

angular momentum axis freed from the lunisolar diurnal motion,

seen from the earth-fixed body frame, that is with respect to

polar motion. With respect to the inertial frame, it shares

with H the property that its free nutation (which has a

nearly-diurnal period) is zero. Thus in fact, C contains no

diurnal motions, neither in the body frame nor in the inertial

frame, as the above resolution requires.

Hence the free polar motion of the Celestial Ephemeris

Pole C equals the free part of p

PC = PHfree (11- 16)

-4 An analytical expression is (11-15), which is of little prac-

tical use, however, since free polar motion is too irregular

to be analytically predicted. So pC must come from obser-

Svati on.

.6 As far as the nutation is concerned we have seen above

that its nearly-diurnal part is zero. There remains the luni-

solar analytical part which can be analytically described and

predicted well. Free motion playing no part, the pole C

"I

.4•
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does not depend on polar motion. Its nutation is therefore the

same whether polar motion exists or is zero. In the latter case,

C coincides with the z-axis. Cf. TNP I, Fig. 6.1 on p.38:

if there is no polar motion, then C = H coincides with the
0

origin 0 representing the z-axis. See also TNP I, pp. 59-60.

Thus the nutation of C equals the forced (lunisolar)

nutation of the z- axis as given by (10- 34):

"- t(i= -i] .e (11- 17)

Concluding Remark. Only the forced (lunisolar) parts of

polar motion and nutation can be accurately described by the

elastic mantle-liquid core model and hence accurately predicted.

Therefore, the main practical result of the present report are

the formulas (10- 33), (10- 34), (11- 5), (11-7), (11-17).They

contain the coefficients c. and T. which are given byJ J
(10-23), (10- 28), and (10- 32).

((

6

6
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