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INTRODUCTION

The present report is the third and last of a series of
reports on the theoretical description of polar motion and
nutation. The two previous reports, (Moritz, 1980) henceforth
referred to as TNP I, and (Moritz, 1981), referred to as TNP II,
will serve as a basis.

In TNP I, we have considered the earth as a rigid body,
an elastic solid, and as a "Poincaré model" consisting of a
rigid mantle and a fluid homogeneous core. The report TNP II
then treated the earth as composed of an elastic mantle and
fluid core, the so-called Molodensky model.

The present report considers in detail the simplest theory
of the Molodensky model due to Sasao, Okubo and Saito (1980).
An application of Poincaré's equations of motion on a Lie
group, following (Moritz, 1982 a),will provide a unified de-
rivation.

Finally, on the basis of this model and on the eigenvalue
theory described in TNP I, secs. 10 and 11, we shall present
expressions for lunisolar effects on polar motion and nutation
for the various axes: the rotation axis, the figure axis, the
"mean Tisserand figure axis", the angular momentum axis, and
the axis corresponding to the Celestial Ephemeris Pole as adopt-
ed by the IAU in 1979.
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i PART A

THE SOLUTION OF SASAO, OKUBO AND SAITO (SOS)

1. The Four Basic SOS Equations

As we already briefly mentioned in TNP II', pp.131-133,
Sasao et al. (1980) gave a particularly simple and elegant
formulation of Molodensky's problem in terms of four complex
equations, generalizing Poincaré's (1910) equations for a
rigid mantle and a liquid core.

The first two equations may be written:

. A0 - i(C-A)ou+ A_(V+iav) + o(e+iac) =L , (1-1)

:’,; Acu + Acv + 1Ccs‘zv +at, =0 . (1-2)

e

- Here, A, A, C are the (average) principal moments of inertia
E__i of the earth, supposed rotationally symmetric, and

%

P .

| 1) This notation is explained in the introduction: TNP | denctes (Moritz,

1980 ), and TNP I! denotes (Moritz, 1981).
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¢ larly for c23 ) C?B and c;3 are the corresponding quan-
S
b tities for the core. ‘
- I[f the mantle is rigid and if the coordinate axes are
¢ principal axes of inertia, then the inertia tensor is diagcnal,
h 4
4
3
F o
r-
L.
)
L " S S

..............

Ac, Ac, Cc are the corresponding principal moments of iner-
tia for the core; q denotes the (average) angular velocity
of the earth's rotation; and the usual mathematical symbols
are used: iz = -1 and the dot denoting differentiation with
respect to time. The variables entering in these equations

have the following meaning:

wl+im2, VEx,t ;I':)(2 ,c L‘-‘LI +'i|.2, (1-3)
¢y *icy » ¢ = +Cry (1-4)

23 c C13 ¥ €33

They are complex combinations of components of the vectors

w = (w] ,WZ:U’B) s X = (XI’X21X3) ’ (1-5)
L= (Llgly)

where w denotes the vector of angular velocity of the rota-
tion of the earth with respect to inertial space, x the vec-
tor of angular velocity of the rotation of the core with respect
to the earth's mantle, and L denotes the lunisolar torque,

due to the attraction of sun and moon. The coordinate system

(xl =X, X, = Y, Xy = Z) used is mantle-fixed in the Ssense

that the mantle is at rest {on the average) in this system;

more precisely, it is a Tisserand frame for the mantle (cf.

Munk and Macdonald, 1960, p.10; TNP II,5p.140-143). The x3 axis
is directed to the (average) North Pole. Finally, ¢ is the

13

X, X component of the inertia tensor of the earth, and simi-
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so that the quantities (1-4) are zero. Then (1-1) and

(1-2) reduce to Poincaré's (1910) well-known equations for

a rigid mantle, as they should. What is surprising, however,

is the discovery by Sasao et al. (1980) that the generalization

to Molodensky's problem, for an elastic mantle, is so simple.
The quantities (1-3) and (1-4) are related by an

equation of the form

c=D”(u-w)+D]2v s (1-6)
C. = D12(“"w) + Dzzv R (1-7)
where the coefficients D]1 , Dlz s 022 are real constants

which depend only on the elastic properties of the mantle.

They are easily expressed in terms of the Love number k and
of the well-known functions ys(r) and y6(r) in standard
notation introduced by Alterman et al. (1959), or of the
equivalent functions R(r) and P(r) wused in TNP II, Part B.
Such expressions are represented by eqs. (54) to (57) of
{Sasao et al., 1980); they will be derived in the next section.
Essential is the fact that the matrix

D D
2=(11 12

, D D

—!
|
iz T2z

ic symmetric; this is a consequence of a reciprocity theorem
(Sasao et al., 1980, eq. (61) ).
The complex quantity

(1-9)




v Tre

is related to the lunisolar (tidal) potential V_, , which we

e
assume to have the form

V = k(xzcosot + yzsinot) , (1-10)

< being a constant coefficient. Such a form correspsr - to
a tesseral tidal potential, being a spherical harmon of
degree 2 and order 1 , which is responsible for { -ced
nutation and polar motion (TNP I, p.30; TNP II, p.23

rather to the contribution of a certain frequency o , the
tidal potential, which is the sum of all such contributions.
Then w, and w, are defined by

1 2
-1
w1 = Q «kcosoct ,
w2 = Q-IKSinct . (1-11)
which is the desired relation between w and Ve . Let it

also be mentioned that the angular momentum components are
given by

L] KMstinct .

L, = -<MJ,cosst (1-12)

in view c¢f well-known reiations (Melchior, 1978, sec. 2.3;
TNP I, p.30); here « 1is the same as in (1-10), and

5 . L-A
2 MaZ

is the well-known zonal harmonic coefficient, a denoting
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the earth's semimajor axis and M its mass; C and A are
(mean) principal moments of inertia as before.

Eqs. (1-1), (1-2), (1-6), and (1-7) constitute a set
of 4 equations for the 4 complex unknowns u,v,c,c. , equi-
valent to 8 equations for 8 real unknowns; they are iden-
tical (apart from notation) to eqs.(37), (32), (54), (56) of
(Sasao et al., 1980); they will be called the SOS equations.
Now (1-6) and (1-7) are simply linear algebraic equations
with constant coefficients, whereas (1-1) and (1-2) are
linear differential equations with constant coefficients,

which can be reduced to algebraic linear equations by seeking
solutions of the form

u=ue % | v = voeiot (1-13)
as usual, Thus, a linear system of 4 ordinary equations for
4 complex unknown results.

This formulation of Molodensky's problem is probably
the simplest given so far. It is particularly remarkable that
it is valid for arbitrary earth models with an elastic mantle,
a liquid core, and even an elastic inner core. The detailed
structure of mantle and inner core enters only into (1-6)
and (1-7), since the coefficients D.. depend on the elas-
ticity functions R(r) and P(r) ; it does not enter into
(1-1) and (1-2).

Equations (1-1), (1-6), and (1-7) are relatively
easy to get. Eq. (1-1) is a consequence of Euler's equation

as generalized to a non-rigid body by Liouville; it is equi-
valent to eq. (10-6) of TNP II. Equations (1-6) and (1-7)
will be derived in the next section.




The derivation of (1-2) is considerably more difficult.
5 Sasao et al. (1980) obtain it by means of the hydrodynamic

li equations, which is complicated and far from transparent. Also,
- the similarity between (1~1) and (1-2) remains unexplained.
This is the more regrettable as it is the great merit of Sasao
et al. to have found eq. (1~-2), which is simple and similar

to (1-1); an equivalent equation by Molodensky (1961; his

eq. (39) ) is much more complicated.

For the simpler rigid-mantle model, Poincaré (1910) has
given two different methods for obtaining his equivalent to
our eq. (1-2). One method uses the hydrcdynamic equations,
corresponding to the approach by Sasao et al. (1980). Much
more interesting, however, is Poincaré's other method, which
uses a variational principle and exploits symmetries expressed
by group theory. This method is not only simpler and more
elegant, but also explains the similarity of (1-1) and (1-2):
both are effects of rotating groups, the first describing the
rotation of the earth with respect to inertial space, and
the second expresses the rotation of the core with respect to
the mantle.

A similar group-theoretic derivation of the SOS equa-
tions will be given in Part B of the present report.




Derivation of Two SOS Equations

Equation (1-6). This equation describes the change of
the inertia tensor (elements c]3and c23) by the deformation
of the earth, due to centrifugal force, expressed by the
rotation vector u , and to lunisolar tidal force, expressed
by w according to (1-10) and (1-11). It is essentially
the same as eq. (63) of (Molodensky, 1961) and constitutes a
generalization of well-known expressions for the rotational
deformation of an elastic earth; cf. eq. (14) of (Jeffreys,
1970, sec. 7.04) or TNP I, eq. (4-1).

We derive (1-6) here from eq.(10 -32) of TNP II:

€3% - % 6 'k(x - e%)cosot \
1 e 2\ . (2-1)
C3* = 3 G 'k{x=-Q%¢)sinot ,

which can be combined into one complex equation using (1-4):
¢ = - 36 k(%) . (2-2)
Here G denotes the Newtonian gravitational constant and

k the potential Love number as usual; also the symbol &
for the (average) rotationai velocity of the earth is standard.

We put
mo=gq m =g (2-3)
1 M m] L} 2 wz )

so that m and m are the x and «x components
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of the unit vector of the instantaneous rotation axis (TNP I,
sec.3; TNP II, sec.10), and

m+im, = celot (2-4)

by eq. (1-28) of TNP II. With (1-3) this gives

u = geel9t | (2-5)
w=ga 'celdt | (2-6)

"k a(w-u) . (2-7)

In this equation we have taken the radius of the mean terres-
trial sphere, denoted by a , to be our unit of length. If
a # 1 , then we must replace (2-7) by

¢ = - 16 kala(w-u) , (2-8)
3

in order to get the dimensions cCorrect. For w = 0 this re-
duces to eq. (4-1) of TNP I, as it should.

Following (Sasao et al., 1980), we decompose the Love
number k as follows:

L
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k = ky, + —— k., , (2-9)

with constant ko and k] . Note that, although wu, v, w

are complex numbers, the quotient v/(w-u) is real since the
common complex factor e'9t cancels. The constant k
represents the Love number in the absence of core rotation

(v =0) , and k] expresses the effect of core rotation.
The decomposition (2 -9) will be justified later in this sec-
tion.

The substitution of (2-9) into (2-8) finally yields

c = Dll(u—w) + D]zv (2 -10)
with
= Ll a=1.554
D]] ;G aﬂo
(2 -11)
= 1 ~-1.5
D]Z-'EG an1
This completes the derivation of (1-6).
» Equation (1-7). This equation is the equivalent for
3 the core of (1-6) or (2-10). lts derivation, however, is
o considerably more laborious and may be skipped by the reader
:‘ . who is not interested in this detail,
X
;
]

T
b
P
|
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Denote by C° the undeformed core

FIGURE 2.1. The core before (C ) and after defor-
mation (C,)

and by C‘ the core after deformation (Fig.2.1 ) . For the
present purpose it is sufficient to consider C° a sphere
of radius b ; this is the usual spherical approximation.

The xz product of inertia is given by the well-known
formula (cf. Heiskanen and Moritz, 1967, p.62):




——y

11

o<, - jJJ xzdM . (2 - 12)

The integral is extended over the deformed kernel C]
Before deformation, this integral is zero for reasons

of symmetry (for the sphere as well as for an ellipsoid of

revolution if the X3 axis is the axis of symmetry):

Iijxzdv =0, (2 -13)
c

o

where o is the density before deformation, which need not
be constant but can be a function of the radius vector r
in the spherical approximation:

o = po(r) s (2-14)

dv denotes the volume element.
Since by definition

c - -nc -
¢ty = -Df, (2 - 15)

(TNP I, p.9; TINP II, p.113), (2 -12) becomes

( )
S {J{ (p+0,) xzdv (2 -16)
c
1

P GO G S S N Y
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°4 denoting the change of density due to deformation. This
integral may be split up by

NI (2-17)
c c c

1 0o 1 "o

as follows:

—cc

w
n
S
S———
——
ko)

x

N
Q.

<

+
———
o -

o (2-18)
H

Here C1°Co denotes the layer of thickness u (radial
component of displacement) by which C1 differs from Co

By Fig.2.1 we have

pxzdv + fprlxzdv
C -C

n“——\

¢

”dv - bzﬂurda , (2 - 19)
(e}

S———

c,~C

1 0

do denoting the element of solid angle, or the surface
@lement of the unit sphere o
K The first integral in (2 - 18) is zero by (2-13) and
the last integral can be neglected because it is a second-

order quantity, u. and 0, being small of first order.

¥

-
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Thus there remains

c f 2
¢S, -”Jp,xzdv - b”oxzurdo ; (2 - 20)
Co v
here we have used (2 -19).
By the well-known Poisson equation we express the ano -
malous density P, in terms of the corresponding potential
disturbance V1

av -4vGo, (2 - 21)

1

cf. TNP II, eq. (6-30) . Thus the first integral of (2 - 20)
may be written

- []foyxzev o E[l]av, xzav . (2 - 22)

This integral can be transformed by means of Green's
second identity:

J([quAVdv - ”J(VAUdv . J(J‘(u AV Ly A lgs (2 -23)
J an an
v v S

cf. (Heiskanen and Moritz, 1967, p.11). Here v denotes
a volume bounded by a closed surface S , and 3/3n is a
symbol for the derivative along the surface normal. In the
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present case, v 1is the spherical core C, , the boundary
S is the sphere r =b , the normal derivative is taken
along the radius vector r

N W " (2-28)

and the surface element is

ds = bdo (2 -25)
by Fig. 2.1; furthermore we take in (2 -23)

VeV, , (2 - 26)

U= xz = rlsinecosecos) (2 -27)

in spherical coordinates r, 6, A
Thus (2 - 23) gives

vV \
- 2‘{ 3 - 9\ XZ) | . -
){){JAV‘XZdV = b)lj(xz B—YTL v1 T JdG M (2 28)
Co o

the first integral on the right-hand side is zero since
U= xz 1is a harmonic function (AU=0)
The differentiation of (2 -27) shows that

/ .
435§51 = 2rsinecosgcos ) = Eéi

Hence by (2-22) and (2-28) we may transform {2-20) into

c o |' W, 2V, 2 ) )
C]3 =mJ}lXZ’\-—F~ - TTGQU'_},do . (2-29)
(4

(7%

et o o
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For the final transformation we must now use the for-
mulas for spherical elasticity derived in TNP II, Part B;
they may also be applied to a liquid core (homogeneous or
with a density law (2 - 14)) since the equations of hydro-
dynamics may formally be considered a special case of the
equations of elasticity (TNP II, p.63).

By TNP Il, pp.82,85. and 94 we put
u = H(r)S(e,r) , (2 -30)
v + v = R(r)S(e,r) , (2 -31)

where S(e,)) is defined as the value of the lunisolar
potential Ve at the earth's surface (r = a)

S(e,r) = Ve(a,e,x) . (2 -32)

We write (1-10) as

P Ve = «x(xzcosot + yzsinot) =
(2 - 33)
= zrzsinecose(cosxc050t + sinasingt)
2
1 or
1 20 .0
vV, = =«r RZI(G,A)COSot + 5,,(8,x)sinat| , (2-34)
e 3 -
|

using Legendre surface harmonics in the notation of
(Heiskanen and Moritz, 1967, p.29).

L GIA . £ Avh oy nOn S ny comame 4




From (2 - 34) we get immediately

Ve Ve 0

® — =

r r

’

Q

so that by (2 - 31)

l'_i
5 LZ’

Ez'(r)-zr"a(r)] S(8,1) , (2 - 35)

(-3
-

putting R'(r) dR/dr . Thus the expression between pa-
rentheses in (2 - 29) becomes

AV, 2V . 4eGeu, - I—R'(r)-Zr-lR(r)-lherH(r)_—iJ S(8,1) =
ar r -

. (2 - 36)
- Lr--zP(r')-Zr-]R(Y‘)] S(6,1) ,

introducing the function P(r) defined in TNP II, p.88,
eqg. (7-40).
We now put

2

XZ = r RZI(e’)‘) (2 -37)

W |

(cf.(2-33) and (2-34) ) and note that the integral (2-29)
is extended over the sphere r = b . Substituting (2 - 36)
and (2 -37), with r=0Db , into (2-29) we have

P S e 1 AAA‘I,_.A.“__z‘AJJ
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2
. . b [:P(b)-ZbR(b{] If Ry (6,1)S(6,0)do . (2 - 38)

13 1276

By (2 - 32) we get S(e,r) by putting r = a in (2 - 34).
We have

”[Ru(ed):lzdo - }?21 ,

g
(
JJ Ry;(8,1)S,,{(6,1) do = 0
g
(Heiskanen and Moritz, 1967, p.29). Thus

4r
5

aZKCDSUt

[] Ryy(enn)s(o.n)do

g

and (2 -38) takes the final form

¢ azb2

¢ =
15G

; E’(b)-ZbR(b)] ccosot - (2-39)

(VA

The quantity c§3 is obviously given by the same express-
ion, with cosat replaced by sinot




....................................................
.................

18

In the expression (2 - 33), Ve denotes the potential
of all perturbing forces acting on the body. This includes
the lunisolar tidal potential and the disturbing centrifugal
potential. If we want to restrict « to the effect of the

centrifugal perturbation

- lunisolar potential only, we must add the effect of the
- (TNP II, p.115), replacing

K

j. by c-ale . Thus from (2 - 39) we have
. . c
8 ¢ * Szt a3
b
&‘ azbz 2 iot
= = E’(b)-ZbR(b):] («-0%¢)e (2 - 40)
& 156G
- or, by (2-5) and (2-6), finally
M \
azb2

. - E:(b)-zbk(b)] a(w-u) (2 - 81)
! 156G
*l This formula expresses the elements cf3 and c§3

of the inertia tensors of the core deformed by the effect of
E lTunisolar (w) and centrifugal (u) perturbation.

b o As a check we replace b by a ; then the core is

[ replaced by. the whole earth, and (2 - 41) should reduce to

: (2-7). In fact, putting a =b =1 1in (2-41) we have

¢ c = b ;—P(a)-ZR(aﬂI 2(w-u)
156 - -

(2 -42)




By TNP II, eqs. (8-20) and (8-24), we have

P(a) = 2 -3k , R(a) = 1+ k |, (2-43)

which on substitution into (2 -42) gives (2-7) as it should
be.

As a final step we perform a decomposition analogous
to (2-9)

P(b) P,(b) + — P (b) ,

(2 - 44)

R(b) Ro(b) + - R,(b)

The possibility of this decomposition is a consequence of
the linear character of the partial differential equations
of elasticity and of the boundary conditions. In fact, by
eqs. (8-25) of TNP II, the elastic functions P(r) and

R(r) depend Tinearly on the Love numbers h,k,1
which by (10-44) of TNP II are the solution of three linear
equations of the form

]
o

a]h + azk + a31 o

! (2 - 45)

]}
o
+
o

b’h + bzk + b31 o 4

1 = ¢
Clh + czk + c3. o
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In (10 -44) of TNP II we have written the second equation
in a slightly different form, making them dependent on the

Molodensky parameter 8 . However, as eqs.(10-43), ibid.,

show, the dependence is rather on <"s . If we have both

tidal and centrifugal perturbation, we must replace this

factor by

8

K'QZE

(2 - 46)

By eq.(4-60) TNP II, =8 is proportional to our Voo,
{(this also holds for an elastic mantle), so that the quotient
(2-46) is proportional to

(2-47)

(a real quantity, since the complex factor eldt cancels!),
which proves (2 - 45). Of course, the coefficient b, s
now different, but all other coefficients are equal in
(2-45) and eq.(10 -44) of TNP II

The solution of (2 -45) now does give h,k,] as linear
functions of the ratio (2-47), of the form (2-9), where-
upon eqs. (8 -25) of TNP II give P(b) and R(b) 1in the
form (2 - 44).

The substitution of (2 -44) into (2 - 41) thus gives

c. = DZl(u-w) + Dzzv (2 - 43)

Aed
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where
- 1 .2.2.-1, . ]
DZI = - E a"’b"G Q—po(b) ZbRo(b)— ’
(2 - 49)
_ 1 .2.2.-1_ (¢ . ]
D,y = Ig a“b®e 9_31(b) 2bR1(bl

Equations (2 - 48) and (2 - 49) are equivalent to equations (56)
and (57) of (Sasao et al., 1980).
We finally mention the symmetry property

D,, = D . (2 - 50)

Comparing the corresponding expressions given by (2 -11)

and (2 - 49), the equality (2 - 50) is far from evident. In

fact, this equality is a consequence of a deep theorem of

elasticity (Betti's reciprocity theorem). We shall not prove

it here, referring the reader to (Sasao et al., 1980, sec.5).
Eq. (2 - 48), with the symmetry (2 - 50). is indeed equi-

valent to (1-7).
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PART B

APPLICATION OF POINCARE'S VARIATIONAL PRINCIPLE

3. The Rotation Group

The elementary properties of the rotation group will
play a basic role in Poincaré's variational principle, as
already indicated at the end of sec.l. They will therefore
be dicussed in this section. following (Moritz, 1982b).

Let a rotation in R3 (threedimensional Euclidian
space) be represented by

x' = Ax (3-1)

x and x' being vectors and A denoting a 3 x 3 matrix.

Rotation matrices have the properties

1. The product of two rotation matrices A and B 1is again
a rotation matrix C = AB
2. For the unit matrix I we have
AL = 1A =4A . (3-2)
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has an inverse A~ which

3. Every rotation matrix A
again is a rotation matrix.
This properties characterize the mathematical structure of a
group; we therefore speak of the rotation group.
Another important property of rotation matrices A
is that the inverse is simply the transposed matrix:

-1

A= AT, (3-3)
so that we have

ART = ATA =1 (3-4)

Denote the elements of A by i

A= oag)) (3-5)

Any rotation can be fully described by means of the three
variables q , for which we may take the Euler angles ¢,

r
8 y (TNP I, p.51). Thus the a will be functions of

i

.(quqz’q ) = a (qr) (3'6)

ij ij 3 ij
These functions are easily seen to be continuous and
differentiable. Thus the rotation group is a continuous group,

or Lie group.

An infinitesimal change of q
r

changes the matrix A

by

P ST PR - P S - P P Y




o4 T1v MR r“‘v?g o

A cupinand
a.

AARrt At et Beoy s made

Z4

9A
d = dq
— aqr r

(summation convention!).
The matrix

dn = A" dA = ATdA

(3-7)

(3-8)

will be skew-symmetric, which is an immediate consequence of

differentiating (3-4)
ATdA + dATA = ATdA + (ATdA) T = 0

Thus it has the form

r 0 "'d'.r3 dﬂz l
dn = ! d'rr3 0 -d'n] ‘ .
!__-dnz dw1 0

On introducing the matrices

0 0 0 0 0 1
| I

E,= 0 0 -1], E =10 0 O
£ = g o=
' I

lc 1 o] -1 0 0

it il i -

(3-9)
(3-10)
[o -1 o7
|

0 0 0]
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this may be written

dn = E,dwl + Epdmy + Ejdmy = E.dm, . (3-11)
The geometrical interpretation of the term E,dr, is clear:
it represents a rotation by the infinitesimal angle dr,
around the X, axis, and similar for the other terms.

As (3 -11) shows, infinitesimal rotations are commu-
tative (finite rotations are not: there is AB £ BA in
general).

The angular velocity component w;, may be considered

a change of d7, with respect to time:

. (3-12)

a|la
< 13

and similarly for wy, and wy . Denoting dl/dt by

.! a , we have from (3 -11):
[ = Eu . (3-13)
;‘ The matrices E; satisfy the basic commutation
1 relations

(Eys Ep) = B3
o (Ep. E3l = E; (3-14)
H : {53’ Eli = E

Here the commutation symbol 0] stands for

P PR Y W T S W o L. o NP - . o -
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. = . . - -E. 'Y -
E;) = E;E; - EE, (3-15)
E.Ej being the usual matrix product of E. and Ej

The matrix dn  is skew-symmetric and directly express-
ed in terms of three infinitesimal parameters dni . It s
thus simpler than dA . The latter can be obtained by (3 -8),

dA = Adn , (3-16)
which expresses dA also in terms of the basic "infini-
tesimal group variables" dnl, dnz, dn3

It is clear that the matrix

1 + dn

represents a small rotation which is close to the unit matrix.
Thus we may interpret (3-8) by saying that the multiplication

by 5’1 = AT transforms an arbitrary small rotation
dA into a matrix dn “in the neighbourhood of the unit
matrix"”,

For a general Lie group, the commutation relations
(3~-14) are replaced by

(E; » Ej) = oy o (3-17)

where the c. are constants, called the structure constants

ijk
of the group. For a general group the indices i, J, k run

from 1 to n , N being again the number of degrees
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of freedom. By (3-15), the interchange of i and j means
a change of sign . Hence,

chk=-c|jk (3 -18)
For the rotation group we have in particular
€123 = Ca37 = €392 =1 >
€13 = €39y © €32 ~ -1, (3-19)
all other ¢,., =0 .
ijk

Invariant differential forms.By substituting (3-7) into
(3-8) we find

T A
dn = AT— dq_ . (3 - 20)

- - r
3q

In view of (3-9) this has the form
dv. = o_.dq , (3-21)

expressing dwi as a linear combination of dqr 3 the
summation convention holds as usual.

If we replace A by BA , with an arbitrary con-
stant rotation matrix B , the right-hand side of (3-20)
becomes

..........
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A %A
(BA)'B—dq, = A'8'B —
aqr aqr
identical to (3-20) since §T§ =1 for a rotation B

Thus a multiplication of all matrices A by the same con-
stant rotation matrix B  from the left ("left translation

of A by B ") leaves the form (3 -20) or (3-21) invariant.
Hence we speak of an invariant (more precisely, left-invariant)
differential form for the group under consideration.

The coefficients @, are functions of q, . Note
particularly that, in general, the differentials dni cannot
be integrated to give new coordinates . . Mathematically
speaking, the dni are not, in general, "perfect differentials".
One also speaks of nonholonomic coordinates, which make sense
only in the infinitesimal domain; cf.(Grafarend, 1975).

Briefly, the q. are holonomic but not group inva-
riant, whereas *he dni are group-invariant but not holonomic.

The property of being group-invariant is so important, however,
that the dni are basic in the theory of continuous groups.
Dividing by dt and noting (3 -12) we get from (3 -21)

0. =a_.q. . (3 - 22)

The inverse relation may be found by solving (3 -22) for ér
It has the form
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q, = 8 0, (3-23)
or, corresponding to (3-21),
dq_ = g_.dn, (3-24)

r ri !

It is clear that the matrix [eri] is the (transposed) in-
verse of the matrix [°ri] , S0 that the relations

OLriBrj = Gij ’ ®rifsi T Ors (3-25)

hold; the Kronecker deltas Gij and S denote the elements
of the unit matrix.

To fill these abstract formulas with a concrete meaning,
let us note that (3 -22) is simply a general form of Euler's
kinematical equations (TNP I, p.51), so that for the rotation

.] has the form

group the matrix {ar'

r'-sinesin¢ -cos¢ O
|

la 1= -sinecos¢ sing O t ’ (3-26)
L cose 0 1
taking 9, = v, G, =8 , 93 = ¢ . The explicit computa-
tion of the matrix feri] by inverting (3 -26) is left as

an exercise to the reader.
The generators of a Lie group. Let us form the differ-

ential of a function
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f = f(q.)

of the group variables. We have

af
39

df = dq

r
r

The substitution of (3 - 24) gives

df = 2f 8
39

rid"i

r

This may be written in the symbolic form

daf = 2L g5
9T,
i
with
: af
ELA P L
q
3'rl ] r
Mote, however, that the notation af/ani

character, it is not a true partial
respect to L

but not m exists.

derivative of f
since for nonholonomic coordinates only

(3-27)
(3 - 28)
(3 -29)

has only a formal
with
dn.
{
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In Lie group theory it is customary to write Xif
instead of af/ani , S0 that symbolically,

X = 2 =35 2 (3 -30)

by (3-29). The differential operators Xi(i =1, 2, 3) are
called the generators of the group.

The torque. If we consider the rotation group, and if
the function f is the potential energy U , then the

generators Xi have an important physical meaning. In fact,
L= xu=2Y (3-31)
[} |
anm,
|
is nothing else than the X, component of the torque L
Let us consider the work dwrut done by a small rotation
about the X axis. We have
dwrot = L1dn] H (3 -32)

this expression is the rotational analogue for the work done

by a small translation dx, along the X, axis:
dwtrans N Kldxl ’
K] being the force component along the X, axis. The

change of potential energy dy is equal to the work dwrot.

Taking into account also small rotations about the other co-
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ordinates axes X, and x3 s (3-32) gives

dU = len’ + L2d1r2 + L3d1r3 = Lkd“k

On the other hand, (3 -28) and (3 ~-30) yield

du = A dr, = X Udr,
3nk

’ ."Hﬁvf f**‘ﬂ".‘" S AR AN, o . L. 4
a RREREEE

The comparison of these two expressions gives (3 -31), which
was to be shown.

i

Commutation relations and structure constants again.
Consider the differential of a rotation matrix A . By (3-28),
(3-30), (3-16), and (3 -11) we have

dA = X Adv. = AE .dn, o

- |
wnence

Xiﬂ = AE - (3 -33;)

This means that applying the differential operator X to
3 . . . . . .
>. a rotation matrix A is equivalen* to multiplying A
by the matrix Ei
A straightforward consequence of this fact (please veri-
fy!) 1s the basic theorem that the generators Xi satisfy

;‘ the same commutation relations (3 -17) as the matrices E.
-1
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[Xi’ Xj] = Cijkxk s (3 -34)
where
(X, X.1 = X, X, - X.X. ., (3 -35)
! J U J
This must be interpreted according to (3 -30):
[(X., X 1f = X, X.f - X.X.f
! J U J !
=5 2 af ) _3_[ 2f ] 3- 36
sriaqr [staqs j Brjaqr Bsiaqs ) ( )
The differentiation gives
36 . SB . \"f
. e o sj . S| 3
Xl’ XJJf— [Bri*é# SrJTq_—Jaqs
since the second derivatives azf/aqraqS cancel. In view
of (3-25) this may be written
X., X.'f = 4 fﬂ-»aes"'o 2
it sk.“ri ig_ rjaq “pkiq

The last two factors are ka , by (3-30). Hence the compa-
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rison with (3 -3%) gives the structure constants:

assi 9B
Cijk T %k Briaqr - Brjaqr J ? (3-37)
expressed in terms of the functions @, and 8.

An alternative expression is obtained by differentia-
ting the first equatica of (3 -25) written in the form

B = §

*sk®sj jk o
obtaining
9B _ . o
o .__S_J. B k = 0
skaqr SJaqr

By means of this relation, (3-37) is easily transformed into

da da
rk sk
= B . - 3 -
BFIBSJ(3QS aqr . ( 38)

Cijx

As an exercise, the reader is invited to compute the
structure constants (3 -19) of the rotation group from (3 - 38),
using (3 -26).

It is surprising that the result of evaiuating (3 - 38),
using the functions a . and 3 ., is a constant. In fact,
nonholonomic coordinates may be introduced by an equation of
form (3 -21), with 2. being arbitrary functions of Q.
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also for general dynamical systems not related to Lie groups.
Then, of course, the cijk computed by (3 ~-38) will not in
general be constants.

The fact that cijk are constants if the dni are
invariant forms for a Lie group reflects an essential symme-
try of the group: the relation (3 -33) is the same at every
point of the group space.

Let it finally be mentioned that the structure constants
are all zero if the group is commutative (Abelian); then, by

{3 -38) we have

3n
aq

aa
sk
- ) 3-39
TR (3-39)

rk

S

These are the integrability conditions for dni » which
can then be integrated to give true (holonomic) coordinates

T
More about Lie groups can be found, e.g., in (Smirnow,

1971) or (Choquet-Bruhat et al., 1977).

Ad
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4. Poincaré's Variational Principle

According to Hamilton's principle, well known from clas-
sical mechanics, a dynamical system moves from time to
to time t , in such way that

t
]
J(T- U)dt = extremum (4-1)

t
o

T being the kinetic energy and u the potential energy.

Here U is assumed to depend on n parameters (gener-
alized coordinates) q, (i = 1,2,..... sN), whereas T
depends on q; and on the generalized velocities
dg.
I
i t

£=T-U (4-2)

which is a function of q, and 9, then the variational
principle (4 - 1) leads to Lagrange's equations

d j'oi | _ df _
9% “;3—‘ T 0 (4 -3)
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A1l this can be found in any text on classical mechanics, such
as ( Goldstein, 1980), (Lanczos, 1970), or (Whittaker, 1961).
Now following Poincare (1901), we shall introduce non-

holonomic "velocities" w, by (3 -22), considering £ a
function of q, and w,
£ = €09, w,) - (4 -4)

To make a distinction, we shall denote ¢ as a function of

q. and 4. by £
£= £(9_, w.) =Emr,qg . (4-5)

Thus the Lagrangian equations (4 - 3) must now be written

d (3% 5E ]
as we did in the preceding section, we shall use the subscripts
iy J, ky, ... for the dn's and the w's and r, s,
for the q's and §'s ; both sets of subscripts

run from 1 to n , n being called the number of degrees

of freedom for the motion.
The differentiation of (4 -5), using (3 -22), gives
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so that

%T [ﬁ%‘r] ) “rk%-‘f (gi.] ¥

Now we multiply (4 -6) by B,
substitute (4 -7). Noting that

8_.a = §

ri rk itk

by (3 -25), we obtain

d
d_fog ) , 5 28 _rk _
dt [aw;J ride,

Now
da ) day, 44y day, 4
dt 3aq dt 3q s
and
5 . 3, 3E %k
sa. 3q dwy qu
_E o, 3E sk 4
dqr ')Luk &qr S

®__ Tk, (4-7)

, defined by (3 -23), and

3 - -
Bise— =0 . (4 - 8)
r
Ja
- rk ra -
staqs wj \4 9)
(4 - 10)
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by (3 -22). The substitution of (4-9) and (4 -10) into (4 -8)
gives

d (3¢ ) A AT 3
=+ - -8 . 2=— = -
{3 J Brn[aqs aqr qsawk Bru qr 0 . (4-11)
Finally we substitute qs from (3 -23):
qS = stwJ ’
obtaining
(o¢ A A I T T
t [a_ BBy 39, 39 | “jau, ~ Privg. T 0 .(4-12)

If the anholonomic velocities w; and the corresponding
anholonomic "coordinates" dni are group variables in the
sense of the preceding section, then we may introduce the
structure constants of the group by (3 - 38) and the generators

Xi = a/ani by (3-30). Then (4 -12) reduces to

d oL 3K 3E  _ -
at ( ] + cijkaSE: = i =0 . (4 13)

These are Poincaré's (1901) equations of motion on a

Lie group. We shall also speak of Poincaré's variational prin-
ciple although it is a new formulation of the classicai prin-
ciple {4-1) rather than a new variationa! principle. It will
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be seen to be fundamental for all questions of earth rotation
involving a liquid core; in fact, Poincaré's mathematical in-
vestigations were motivated precisely by the liquid-core pro-
blem.

Most classical textbooks on theoretical mechanics do not
give it. An exception is (Whittaker, 1961, pp.42-43), who con-
siders general anholonomic coordinates (not necessarily on a
group, so that the ciJ.k are not necessarily constants)
and whose derivation we have been following.

Nowadays, this topic, motion on a Lie group, is quite
fashionable, mainly due to the work of Arnold (1978, Appen-
dix 2); see also (Hermann, 1968, ch.16 and 33) and (Abraham
and Marsden, 1978, ch.4). All these treatments have a consi-
derable level of sophistication; most accessible is Hermann,
who on pp.171-172 gives a modern derivation of (4 - 13) in terms
of externa'l differential forms, and most difficult is Abraham.
None of these authors, not even Whittaker, however, mentions
Poincaré!

We note that if the structure constants cijk are zero,
then the integrability conditions (3 - 39Y) are satisfied: we
nave true (hoionomic) coordinates T with w, =R . Then

Poincaré's equations (4 - 13) reduce to the Lagrangian equa-
tions (4 -3), with m instead of q, » as it should be.

To return to the general case, we see that Poincaré's
equations (4 - 13) differ from the Lagrangian equations (4 - 3)
only by the second term in (4 -13), which expresses the non-
holonomity of the group variables and involves the Structure
constants of the group.

Taking into account (4 -2) and the fact that U does
not depend on qr and hence is independent of 2; o« We may

a . N el ¥ USRI S W™ VO WA AP S - =
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write (4-13) in the form
d aT al . -
H [KJ + IVl L s (4 -14)

we are from now on using the opposite sign convention for Li:

L= Ly | (4 -15)

by (3-31). This is the form derived by Poincar&(1901) and
used by him (Poincaré, 1910) in his elegant treatment of the
liquid-core problem for a rigid mantle (his Cijk have diffe-
rent sign).

Application to Euler's equations. Let us consider the
rotation of a rigid body. Then the group under consider-
ation is the rotation groupin R3 , whose structure constants
are given by (3-19). The kinetic energy, for principal axes
of inertia, is well known to be

1 2 2
T =g (hu,? +Bu,2 % Cu?) (4 - 16)

3

as any textbook on analytical mechanics shows. Then (4 - 14)
gives immediately

Adj] + (C-B)w2w3 = L] s
Bd)z + (A-C)w3w] = L2 s
C'l)3 + (B-A)u1w2 = L3 s
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that is, Euler's equations for the rotation of a rigid body
(cf. TNP I, p.10).

The following sections will apply (4 - 14) to more rea-
listic earth models: the Poincaré model (rigid mantle and
g liquid core), and the Molodensky model (elastic mantlie and
L 1%quid core), leading us to the theory of (Sasao et al.,

i. 1980).
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5. Rigid Shell and Liquid Core

This model, the Poincaré model, has been treated in
TNP I , secs.12 and 13. We shall here derive the basic equa-
tions (12-8) and (12-9) of TNP I, which were given there
without proof.

We recall some basic mathematical features of the
Poincaré model, following sec.12 of TNP I

Let us refer the ellipsoidal shell to principal axes
xyz ; then the inner ellipsoidal surface, which encloses a
liquid-filled cavity, has the equation

y _ -
_5+F+_2-1. (5-1)

- X v o2 Y ':E -

x' =2 y' =g o z = (5-2)
this surface is transformed into the unitsphere

x'? eyt (5 - 3)

Poincaré considers a motion of the liquid such that, by the
transformation (5-2), it is transformed into a rotation of
the sphere (5-3}. Thus the velocity in the auxiliary x'y'z'
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system is

f '
X x]Z l

X1yl = XZXIJ

p<

x

| %<

(1]

| >
w

Ty ifv X

. the actual system xyz by (5~
. of the core with respect to the shell
&
a a a —
r. 22 By
] b -DB
: Ze ‘ ax3* ~ txy?
¢ c
pX1Y T ax*

For a rigid body the velocity w

space is obtained by

if the corresponding rotation vector is
2), the relative velocity W
is

X - Going back to

(5-5)

with respect to inertial
(cf. TNP I, p.8):

(5-6)

Since the mantle is rigid, the velocity of any particle

—-sz - w3_y—‘i

W = = b - |

E‘ w w o x X ! ..)3X m‘Z !

i i

WL,Y = w,aX |

i - 2" |
4

of the mantle with respect to inertial

"
(3
1]
je
x
[

v
—mantle

- e e e e h e kM A oM e —_——

space is given by (5-6):

(5-7)




‘‘‘‘‘‘‘

|

LBl G oI e S A8 om0

45

For a particle of the liquid core, the relative velocity (5-5)
must be added to (5-6):

v =W+ wW
—core — —c¢

(5-8)

Now the kinetic energy T can be evaluated. We have

Sl v2am o L[
P[] st []]o o
earth earth
_L1((! 1 ,
=3 [JJ V. vdM + > IJJV vdM
mantle core
N mantle ¥ Tcore (5-9)
The substitution of w = Yoantle , €q.(5-7), gives
Tnantle = 2 )J) W wdM (5-10)
mantle
whereas with v =v eq.(5-8), we get
. {{ (Wew + 2Wew  + w_ow )dM . (5-11)
core 2 ) == = =c -c -c
core
The sum of these two equations finally gives
T - i am + L0002 + dM (5 - 12
- .2') /’J' !.! + 3]1 ," \ ! !C y_,; ﬁc) ! (Y )
earth core
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The first term on the right-hand side of (5-12) is the
kinetic energy of a totally rigid earth since w is given
by (5-6). Thus, by (4-16),

P
R - a2 2
)JJ W wdM Aw] + Buz

earth

+ cg (5-13)

where

_ 2.2
A = JJJ (y"+z7)dMm |

earth (5 - 14)
B, C by cyclic permutation

are the earth's principal moments of inertia as usual.
Note now that the third term in (5-12) differs from
{5-13) by w being replaced by W . The comparison of
(5-5) and (5-6) shows that this difference consists in w
being replaced by ; , and also in the factors a/b, a/c,
b/c, etc. Thus it is not difficult to see that the analogue

of (5-13) is

rri 2 2 2 ¥
)R WM = Axy * Boxy * Coxg (5-15)
core
where

2 2
A= & yZam o+ 25 22w (5-16)
< bz Y CZ A

core core
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BC and Cc following by cyclic permutation of «x, y, 2
and a, b, ¢
Similarly the second term in (5-12) becomes

] (

E j”ﬂ‘ﬁcdrhr:wlxl * Buyxy * Hugxg (5-17)
;' core

3

[ where

A

: _c (.2 b 2
e fe g [(f2an 2 [[fa2an

! core core (5-18)

G, H by cyclic permutation.

#‘ The core being a homogeneous ellipsoid of axes a, b, ¢ ,
F the integrals are easily evaluated (actually, it suffices to
evaluate one of them; the others follow by cyclic permutation),

and we get

2

! 2, 2 =
A, = EMc(b +c°) F = gMcbc s
1 2.2 _ 2
BC = EMC(C +a®) G = gMcca ’ (5-19)
¢ 21 2.2 .2
! Cc = 3Mc(a +b°) H = gMcab
Thus the kinetic energy (5-12) becomes finally
(]
|
{
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1 2 2 2
T = Z(Aw] + sz + Cuj + Acx 2

3 + ch

2
+ ch3) +

+ F(.u])(1 + sz)(z + Ho (5-20)

3X3

Now we are ready to apply Poincaré's equations (4 - 13).
We obviously have 6 degrees of freedom (n=6) . The six
possible infinitesimal transformations are:

1. a rotation of the whole earth with respect to iner-
tial space, with angular velocity components Wys Wy, wg and
generators denoted by L Xy X3 and

2. a rotation of the unit sphere (5 - 3) representing the
motion of the core with respect to the mantle, with angular
velocity components Xy Xg» X3 and generators denoted
Y YZ, Y3

Thus the whole group relevant for the present problem
consists of two independent rotation groups. The structure

] s

equations (3 - 14) for rotation groups, for generators Xi

instead of matrices E. » give
LX‘, XZJ = X3 s LY], Yzj = -Y3 ,
f = = - -
o LXZ, Xj] X1 , [YZ, Y3] Yl , (56 -21)
[ X 1 = = -
p
{ Note the difference in sign due to the fact that the second
;‘ rotation is with respect to the mantle whereas the first is
: a rotation of the mantle with respect to inertial space. Any
rotation Xi commutes with any rotation Yj since the twe
rotation groups are independent of each other, whence
- ®
|
e
L




(i and § = 1, 2, 3).

(5 - 22)

i J

The six quantities Wis Wy Was Xys Xps X3 may be identified
with Wis Wys see s We o and X], Xz, X3, Y], Y2, Y3 with
X1. XZ, cees X6 according to sec. 3. The corresponding
constants of structure cijk are all 0, 1, or -1, by
(5-21) and (5 -22).

Thus (4 -13), i, j, k running from 1 to 6 ,
gives

d (a7 ) _ 2T LY

dt taw]J 33w2 28m3 1

d (o7 ) 3T 8T _ .

at [ S A TP+ I L, (5-23)

d fa7 } _ 3T T L,

dt [a E “130, T 3 0

¢ faT ), LT AT g

dt Lax]J 33)(2 28)(3 *

d [3T 3T 3T

— — — =0 , 5-24

dt l XZ/] ¥ X13X3 X33X] ( )

d (37 ) 3T aT

CIAN PPy A FPRE L P 0 |
The right-hand side of (5-24) is zero since the iunisolar



torque L acts on the whole earth; there is no external
torque which would effect a relative motion of the core with
respect to the mantle. This relative motion is caused purely
by the rotation of the mantle which, through the elliptical
core-mantle interface, acts on the core through "inertial
coupling”.

Thus we have derived eqs. (12-8) and (12-9) of TNP I,
where their solution and further implications are discussed.

This application already indicates the power and useful-
ness of Poincaré's principle for the mathematical study of the
earth's rotation.
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6. Elastic Mantle and Liquid Core -- Kinetic Energy

After this digression to a rigid mantle we shall now
continue the discussion of the solution of (Sasao et al.,
1980) from the point of view of Poincaré's variational prin-
ciple. Thus the mantle is again considered elastic.

The velocity vector v of any point of the mantle
with respect to inertial space may be written in the follow-
ing way:

[ Y7 Voantle T@XxXX ¥V, S WAV, . (6-1)
: Here
; W= uxX (6-2)

represents a rigid rotation of the coordinate system X1
Xps X3 , expressed as the vector product of the angular
velocity vector w = (w],wz,w3) and the position vector
X = (x‘,xz,x3) , referred to body-fixed axes; and v

represents a small residual velocity describing the rate of
elastic deformation.

-

LaNN e ues o oo g om o aa o
Vs
- AN

The meaning of the decomposition (6 -1) is easily under-
stood. [f the earth is not rigid, then there is no coordinate
system at which all particles of the earth are at rest. Thus
the particles of the mantle move with respect to our system
Kys %o x3 with velocity Yo which is considered small
since it is zero for a rigic body.

LI o EE . e o Jme o 4

In the core we simiiarly have

L e S0 Sul a4
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vV = ¥ T wXX+YXXX + V=W + W_ +V 6 -
L7 Zcore TEXZTXXZ T e T I T Ze T (6-3)

Now there is a small rotation

W= xxX | (6-4)
of the core with respect to the mantle, described by the an-
gular velocity vector y = (Xl’xz'x3 ) , superimposed on

w ; in addition, there are very small residual motions Voo
which describe deviations of the fluid core motion from a
rotation of the core as a whole, including effects of non-
sphericity.

The decomposition (6 ~3) follows (Sasao et al., 1980,
p.167). It assumes that the hydrodynamic core motion is essen-
tially a rotation w , with small perturbations yo - This
assumption is valid not only for the Poincaré model with a
homogeneous liquid core (Poincaré, 1910, sec.I.2) but very
generally: it corresponds to a toroidal oscillation T:
proportional to the distance r from the earth's center,
which holds for practically all models, even with a hetero-
geneous core; cf. TNP II, pp.135-136.

The present decomposition (6 -3) is similar to (5-8),
but there are two differences. First, there is an additional
term v, and second, W, in (6 -4) is an exact rotation,
whereas (5-5) deviates from an exact rotation by terms on
the order of the core flattening. These terms, together with
geviations from the simple "Poincaré motion", are now incor-
porated into the residual velocity v
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The usual expression for the kinetic energy T is
split up as follows:

T = % JJJ ye-vdM + %JIJ yeydM = Lwntle * 1;ore - (6-35)

mantle core

Using (6 -1), the kinetic energy of the mantle becomes

S L[t _ . )
Trantle = Z HJ (WeW + 2Wey + v ey )dM . (6-6)

mantle

We neglect the second-order term vy, and put

”j wev dM =t (6-7)

m m
mantle

Thus (6 - 6) reduces to

_ 1 I -
Ewntle -7 JJJ L EdM * tm : (6-8)
[ mantle
@
]
Similarly we transform Tcore using ( 6-3), obtaining
1 1 1if
q T = i Do (wWew + 2wew 4w _ew YdM + 6 -9)
core b)) = - —=C¢ =C =c ¢
: core
[
- 4
4
3
¢
S
|
L e e e
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with
f1q

t_= ”J (W+ W)y M (6 - 10)
:' core
:‘ Hence (6 - 5) becomes
-
3 T b [[{wowam + 3 [[f(2wew + dM + t 6- 11
- =7 Ijjﬂ'ﬁ 7 .JJ( Wew W oew JdM+ t o+t . (6-11)
) earth core
s
s For the term t  we obtain from (6-7) by means of

(6-2):

o

rH o
-~
-~
-

t = |l wev dM
mo )y = -m
mantle
ey
_ = “; (wx:)ev dM
.. mantle
! = "{’ .
3 jj) a2y )dm
r mantie
-
»‘ p
! = g"JJixl dM (6 -12)
L mantle
' 4 using a well-known vector identity and the fact that ., s
a constant with respect to integration.
Now
¢
¢
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”J xxy dM = h_ (6 - 13)

mantle

is nothing else than the relative moment of inertia for the
mantle; c¢f. TNP I, pp.13-14; TNP II, pp.110-111. Substituting
(6-13) into (6 -12) we have

tm = E'Em > (6 -14)
in a similar way we find
tc= (w+x) _h_c s (6 -15)

where h is the relative angular momentum for the core.

It is now of basic importance that both h_ and h.
can be made zero. For the mantle, h_~ vanishes if we take
Tisserand axes for the mantle as body axes X1XpX3 scf.
TNP II, p.111. For the core, Qc
appropriate definition of the core rotation

can be made zero by an

in (8-3):

if h_ s not zero for a certain x , replace x Dby

x *+ 8x and determine the three components of ¢&x by the three

conditions h =20 Then also t_
Thus t =~ and t_

that (6 -11) reduces to

will vanish.
can always be considered zero, so

A A e alia A e Al s e e e e a A im . m A a A
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By manipulations familiar from sec.5 we obtain

_ c lec , -
T = ?Cijw.w. + cijwixj + fcijxixj (6-17)

Cij denoting the inertia tensor for the whole earth, and
C?j , for the core only.

In viewof F 2 A_ and similar relations foliowing from
(5-19), this reduces to (5-20) for a rigid mantle, in spite
of a slightly different definition of y . This provides a
check for the decomposition (6 - 3) which treats W, as an
exact rotation (6 -4) and incorporates residual ellipsoidal
effects into v,

Following (Munk and Macdonald, 1960, p.37; TNP I,
pp.15-16) we shall split up the inertia tensor as follows:

RN (6 - 18)
where
A 0 01 Fc” iy HB?
- , _ L, -
c = ; 0 A 0.J ’ [ f Cip C,, €23 i (6 -19)
| I )
{_0 0 C i_c]3 c23 c33‘

Thus, Eo corresponds to the model of an undeformed earth

whose principal axes of inertia coincide with the coordinate
axes, which has rotational symmetry (B=A) and whose prin-
cipa'l moments of inertia A and ¢( are constant in time.

U
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The tensor ¢ takes into account the deviation of the ac-

} tual earth from this simplified model.

p We thus split up the inertia tensor Cij and do the
same for c'i;j . Of the components of the residual inertia

i tensors we only retain Cy3s €3 c‘1:3 and c§3 which are

related to nutation and polar motion, cf. TNP I, sec.3. Other

(| terms do not influence these phenomena and can be disregarded

without harm. Then (6 - 17) takes the final form

2 1. 2
2) + 7Cw3 *Cyquyug * Coguaugt (6 -20)

—
[}

%A(w$+w

1 2 2 1 2
?AC(ZW]X] + X] + 2w2X2 + Xz) + ch(2w3X3 + X3) +

+

o c
C13<N]X3 * W3X1 + X]X3) + c23(w2X3 + W3X2 + X2X3)

d

I‘"'
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7. Elastic Mantle and Liquid Core -- Potential Energy

For an ellipsoidal earth with a solid mantle (solid
earth, Poincaré model), we have a gravitational potential
energy U which depends on the orientation of the body
v. with respect to the directions to sun and moon and hence on
the Euler angles ¢, 8, ¢ or the nonholonomic variables
dw dnz, dw3 ; its derivativeswith respect to these vari-
ables are the torque components

Ol e b U AdD 4 v‘ﬂ'r_v‘r'l T
. . f
. o e e

-

-

s
-L, =a—ﬂ-fl ; (7-1)

SN ' it 2 rwx‘ -
o
N .
. o ¢

cf.sec.3.
For an elastic mantle, we have to add a potential energy
U related to the elastic deformation, so that the total

ed
potential energy is

U= v (7-2)

The potential energy Ued arises from two causes:
from the elastic forces which are a reaction of the earth
(including its liquid core) to the external forces, and from
a change of the gravitational energy due tc the elastic de-

formation. We thus have

b

7
"
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+
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where Ue represents the elastic energy in the narrow sense
and U will be called the deformation energy. Thus the

d
I- total potential energy becomes
\
g U = Ug + Ue + Ud (7 -4)
Because of the smallness of Ue and Ud and because
of the smallness of the earth's flattening f , the effect
of f on Ued is of second order and will be neglected.
Thus, for the purpose of computing U , we may use the

ed
spherical approximation, formally replacing the earth by a

sphere.The dynamical effects of the earth's rotation on Ued
are also of the same second order (this is easily understood
because the flattening is an effect or the earth's rotation)

and will be neglected. Thus again for the purpose of compu-

ting Ued ,», we formally consider the earth nonrotating and
without other kinetical effects (with one exception discussed
below); this is the static approximation. Both approximations

are standard, from (Jeffreys, 1949) to (Sasao et al., 1980);

r—
v .

Fl only (Wahr, 1981, a, b, ¢, 1982) is more accurate.
The gravitational energy of a material particle of mass
s m in a field of potential V is -m.V. and that of a
r system of particles thus
L
.
}’ -Tm V.o (7-5)
The minus sign comes from the fact that the potential V in
{

geodesy is defined with copposite sign as compared to the
usage in physics. For a continuous mass distribution, (7 -5)
must be replaced by




PR — ,_.ﬁ..-....,-,T

e
}A
60
-“Jvam , (7-6)

}

I

3

T
dM denoting the element of mass.

E‘ Thus Ud , the change of gravitational energy because

- of deformation, becomes

3 Uy = ({VdM+{J'{VdM 7-7

e o @ fJfvem sl ven 7-7)

) 51 So
S1 denoting the deformed earth surface. It is essential

tc in this context that the undeformed earth surface is consi-

‘ dered a sphere So , S0 that the deviation of S‘ from
the sphere So represents the elastic deformation only:

E the ellipticity of the earth (the "equatorial bulige" causing
the torque Li ) has already been incorporated into Ug ;
cf.(7-1).

1 With

[

[_. U, = <(xZcosot + yzsingt) (7-3)

:

F as usual (cf.(1-10)), eq.(7-7) becomes

r. (l/ (’ ’/

U, = -«ccosat "ijdM-xsin-'t [ yzdM 3 7-9;

[ 1 1

{ the second intearal in (7-7) is zero because of symmetry; c®...-.

- @

t

e

i

L o ; i
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By the usual definition of the products of inertia we have

Ciy = oD, = -”szdM (7 - 10)
SI
and similarly for c23 ; cf. the analogous expressions for

thecore, (2 ~-12) and (2 -15). Thus we simply have

Ud = C]3KCOSOt + c23Ksinct . (7 -11)

Using (1-11) this may be written

U, = a(c, w, +

13% c23w2) (7 -12)

This is the deformation energy.

The elastic energy Ue can be readily found by the
following consideration. According to the static approximation,

external forces are counteracted by elastic forces in such a
way tnat both systems of forces are in equilibrium. By the

very basic principles of elasticity, the equilibrium is reached
when the body is deformed in such a way that the potential
enerqgy is a minimum. According to the spherical approximation,

q the total potential energy reduces to Ued {since Ug =0
for a sphere: if the earth were a sphere, there would be no
torgues Li ard no precession and nutation!). Hence, for

equilibrium,

Y = minimum - 13
Jed minimum (7-13)
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or

du_, =0 . (7 - 14)

By (7-23) this means
dUe = -dUd . (7 - 15)

As far as the external gravitational potential is con-
cerned, Ud is given by (7 -12). To this we have to add,
however, a term

Q(C]3xl + CZBXZ) s (7 16)

which is to be explained as follows. In the static approxi-
mation used so far we have neglected the earth's rotation as
expressed by complex number u ; ¢f.(1-3). It is known,
however, that the core rotation, as expressed by the complex
number v , can be considerably larger than u . (In fact,
the table on p.122 of TNP Il shows that the ratio ;v/u! 2= 8/¢
can reach values of 200 and more). Thus even when we neglect
u , we cannot neglect v

Now the incremental centrifugal potential of the earth's
rotation is, by TNP II, p. 115,

2 .
= -0 e{xzcosst + yzsingt)

]

-;(“lxz + szz) s (7-17)

by (2-3) and (2-4). For core rotation, we amust repiace

P A ey T PPN YUV S TU T Y T
RN PN AR o,
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w, by X; Thus

Yeore - -Q(x1xz + xzyz) . (7 -18)
This expression is now substituted for V in (7-6), the
integral being extended over the core. The result is

Q(C]3X] + C23X2) ) (7 19)

as the comparison of (7 -8) and (7 - 18) shows: there corres-

pond -ax, to «cosst and ~ax, to kSingt , and we
get c?3 and c§3 for the core since the integral is exten-

ded over the core.
Now we finally have to add (7 -19) to (7-12) to get

the expression for Ud for the present purpose, dencoted
by Ud :
[ C - (o} -
Ud = Q(c]3w] + c23w2 -c13x1 c23X2) . (7 -20)

It may be asked why U , and not U ' is used in the

potential energy (7 -4). Thedreason is thatdthe term (7 - 19)
is alredy incorporated in the kinetic energy, so that the
Lagrangian function ¢ = T-U does contain it, and it can
contain it only once. (The reader may find a similar reason-
ing in (Jeffreys, 1949).)

For the present purpose, the computation of the elastic
energqgy Ue from the equilibrium condition (7 -13), does
however require the use of (7 -20), so that (7 -15) is tc be

replaced by
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dUe = -dUd . (7 - 21)
By (7 -20) we have

[ - - c -
-dUd = o wldc13 wzdc2 + x]dc + xzdc 3), (7 -22)

[+
3 13 2
since the variations dU., and dUd' refer to variations
of the shape of the body, which is expressed by changes dcik
and dc?k in its inertia tensor.
Now we shall use (2-10) and (2 -48) with u =0

(static case):

¢ = -D]]w + Dlzv .
(7 - 23)
cC = —DZIw + Dzzv
Denoting by Eij the elements of the matrix (Dij)'], we have
'W=E1]C+E]2Cc N (7_24)
vV = EZIC + E22cc
s . . . . . )
With wl wI + 1w2 , Vv x1+ 1x2 this gives
Wy Ecs P RSy o
(7 - 25)
- (o4
xp = EpiCy3 * Epcyy o
and similariy for w_, v C... CS. . We substitute this into

2° 27 T23 23




(7-22) and take (7 -21) into account. The result is

qu, = QLF‘](C]BdCI3 + c,ydcy,)

[}
134€13 * Cg5d¢,4)

c C
+ E21(cl3dc13 + c23dc23)
C Cc Cc c 7
+ Eyy(cS,deS, + c23dc23)J : (7 - 26)
This expression is a complete differential if and only
if
E)y = E12 . (7 -27)

This, however, is the case since from the symmetry of the ma-
trix D , expressed by (2-50), there follows the symmetry
of the inverse matrix E and hence (7 -27).

Thus (7 - 26) represents the complete differential of the

function
Ei + 2E]2(c]3cf3 + c23c§3) +
: E,y(cSy? + c5,%) ] : (7 - 28)
*‘ which constitutes the desired elastic potential.

Now the tidal potential energy related to elastic defor-
mation is given by (7 -3) as the sum of (7 -28) and (7-12):
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2
) +ZI]2( +

_ 1 [ 2 c c
Uea = Zﬂl_En(cu * C23 €13¢13 * €23%3)

2 2
+ Ezz(c‘]:3 + c§3 {] +0(c W, + cyuWy) L (7-29)

The great simplicity of this expression as compared to analo-
gous formulas in (Jeffreys, 1949) and (Jeffreys and Vicente,
1957 ) 1is another indication of the extremely fortunate choice
of Ci3s €23 c$3,and c§3 as variables characterizing the
elastic deformation of the earth; this is the basic discovery
of (Sasao et al., 1980) .

In (Moritz, 1982 a) we have found (7 -29) by an ad-hoc
reasoning (choosing Ued so that the right result comes out);
the present derivation thus provides a physical verification.

An independent check is obtained by using a theorem con-
cerning the potential energy of deformation given on p.173 of
(Love, 1927): "The potential energy of deformation of a body,
which is in equilibrium under a given load, is equal to half
the work done by the external forces, acting through the dis-
placements from the unstressed state to the state of equilibrium."
[t is not difficult to see that this implies that Ue is equal
to half of -Ud' . Now in fact, inserting (7-25) into (7-20)
and dividing by -2 we get (7-28).

P 4,_4A4‘_L_“_L_;_L_L_L_‘L__.A_.~_J
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8. Application of Poincaré's Principle

Just as in sec.5, we have two rotation groups, with
g generators X1, xz, X3 and Yl, Yz’ Y3 . We have used the
i same symbols X1» Xgs X3 3 Y1, Y2, Y3, for the core rotation
N as in sec.5 although the conceptual meaning is slightly differ-
,,‘ ent: now the core rotates, whereas in sec.5 we had a rotation
of the auxiliary sphere (5- 3).

In addition to W, and X; o the kinetic energy (6 - 20)
also contains the variable products of inertia

cC ; also the potential enerqgy (7 - 29) depends on these va-

}
b
q 23 oy . L
{ riables. These four quantities constitute four additional
F‘ variables (four additional degrees of freedom), which describe
:f the elastic deformation. They are ordinary (holonomic) vari-
ﬁ.e ables q7, dg> q9, 9,0 > so that (4 -3) holds for them.
(This also fits into the group theoretic scheme, with ™.
instead of 9. for 7 ¢ i 5 10 , the corresponding subgroup
being Abelian with zero Cijk L)

The Poincaré equations (5-23) and (5-24) remain finally
the same since we have two independent rotation groups as in

[+
C]3, C23, C]3,

sec.5. In addition to these six equations we have the equations
ai/aqi =0 for i =7,8,9,10 , which give

al sl

. aT = ed QT = ed s (8-1)
;_ 3L‘3 3C‘3 3C23 3C23
-
1 , .
.. 37T - ')Ued 57 - dUed ) (3-2)
- .c c ’ . C ¢

3t 13 3613 §C23 dC23

. ¢

q
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The 10 equations (5-23), (5-24), (8-1) and (8- 2)
relate and determine the 10 quantities WysWy W3 sXyaXg X3Sy 3o
c23,c?3, and c§3

We note that the torque components Li are the same
as in (5-23), namely purely gravitational; in fact, by (7-1)
and (7 - 2) we have

.?_L. = ﬂg. = =L
3". 3-". [}
| '
since (7 -29) does not depend on rotation so that aUed/ani = 0.

On the other hand, the right-hand sides of (8 -1) and (8 - 2)depend
only on the energy of elastic deformation since

= aUed

3C13

53U
3C

13

as Ug does not contain ¢ , and similarly for the other

13
elastic variables.
Let us now substitute (6 -20) into the third equation

of (5-24). This gives
d c c c c
gt (Cowg * Coxg * Clguy * Crgxg+ Chquy + Co3xp) ¥
C [+
toxg(Awy + Axy + Crgug + Craxg)

C C
- "~1(Acw2 + ACXZ + CZS»A\B + C23)\3) c . (8- 3)
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Now we have
Wys wy << wg B €30 Cp3 << A, C (8 -4)
(if we take absolute values), and similarly for the core;

because of the smallness of the core rotation, also
will be small. Thus

X3

, ¢S, c¢

wlatoz’ X]’ xza X3’ C139 C23 13 23 (8‘5)

can be regarded as small quantities of the first order; their
squares and products are then of the second order and will be
neglected.

Then, and since Cc is constant by definition, (8 - 3)
reduces to

BlEy v Cp) 0 @5

If we treat the third equation of (5-23) the same way, sub-
stituting (6 - 20) and neglecting second-order quantities, we
get

d = - -
Felleg + Cx3) =Ly =0 (8-7)

since L3 =90 because of rotational symmetry. The subtraction
of (8-6) from (8-7) gives, C and Cc being constant by
definition,
dw,
(C-Clge= =0




so that wy = const. We may put

=q (8-8)

identifying Wy with the average rotational velocity ¢ of

the earth; this is possible since w, and w,

Now (8 -6) yields dx3/dt =0 » S0 that X3 = const.
The simplest choice for this constant is zero, giving
=0 . (8-9)

X3

This is the solution we shall take.

If we substitute (6 - 20) into the first two equations
of (5-23), neglect second-order quantities and use (8 - 8)
and (8 -9), we obtain

Ao, + (C-A)gu, + Ac(i] - ax,) * 9(613-9c23) =L
(8 - 10)

L,

A, = (C-A)aw, + Ac(izwzx]) + q(¢

2 tac, ;)

23

If we do the same with the first two equations of (5 -24),

we get
. . o C -
ACul ¥ Acxl i CCQXZ *oac;,y = 0
(8-11)
. - e C -
Aeug ¥ Acxg * Coaxy +acyy = 0
Let us finally substitute (6 -20) and (7 -29) into
(86 -1) and (8-2), again using wy = & and X3 = 0 . The
resuit is

are very small.
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C

oy T Byt Eppcyy v oWy o
3 (8 -12)
§ ! = c
b vy T EiCa3 t EipCay v N,
g and
U
- C
\ x1 = BiaCis By o
! (8 -13)
. _ c
ke xg = Bia€3 * BaaCyy

Now the complex combination of (8- 10) and (8 - 11) gives

AU - i(C-A)qu + AC(\°/+iszv) + q(c+igc) = L , (8 - 14)

y— .,zﬁ...

ACL': + Ac\'/ + iCc::v+ Q(':C =0 , (8 -15)

and the complex combination of (8 -12) and (8 - 13) becomes

(8 -16)

3y means of the matrix {DiJ.] inverse to the matrix [E, . ]
the last twe equations may be written

i c = D,.(u-w) + D]zv . (8-17)
E . = Dy, {u-w) + D,v (8 -18)
¢
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C
f- Our equations (8-14), (8-15), (8-17), and (8 -18)
- are identical to the basic SOS equations (1-1), (1-2), (1-6),

' and (1-7) of sec.l.

h! Concluding remarks.The present variational method fur-
nishes probably the most direct derivation of equations (1 - 1)
§ and (1-2), or (8~14) and (8 -15). This is particularly true
}‘ for (1-2) which has been derived by Sasao et al.(1980) using
4 both the decomposition (6 - 3) and the hydrodynamic equations.
The present approach uses only (6 - 3) and provides a unified
deduction of (1-1) and (1-2) which also explains the similar-
k‘ ity of these two equations that in the complicated hydrodyna-

mical derivation comes out almost as a miracle. In fact, the

similarity of (1-1) and (1-2) is now seen to be due to the

fact that each equation essentially reflects the action of a

: rotation group. ,

t! On the other hand, equations (l1-6) and (1-7) are better

obtained directly, in the way described in se¢,2. In fact, the

:_ derivation of the elastic energy given in sec.¥ already uses

(1-6) and (1-7).

*’ To summarize: of the four SOS equations, (1-1) and
(1-2) are obtained more easily from the variational method,

whereas (1-6) and (1-7) are better derived directly. There-

fore, in the first presentation of the method described here

(Moritz, 1982a) we have followed a "“hybrid" approach, consi-

dering (1-6) and (1-7) given (from a direct derivation},

f and choosing the elastic deformation energy Ued , €q.(7-29),

' simply in such a3 way that the variational principle not only

F‘ furnishes the new equations (1-1) and (1-2), but aiso correct-

ly reproduces the given equations (1 -6) and (1-7)

This ad-hoc choice of Ued was frankly pragmatic and
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motivated by reasons of mathematical simplicity. It has been
criticized for providing no physical interpretation of U
Therefore, we have, in the present sec.7, derived Ued by
physical considerations in such a way that the physical mean-
ing becomes evident. See, in particular, the decomposition
(7-3) of the elastic deformation energy Ued as the sum of

an elastic energy Ue in a narrower sense, and a deformation
energy Ud . The latter, Ud , could be determined immediate-
1y, and then Ue was obtained as the elastic equilibrium
response to U . Still, egs. (1-6) and (1-7) served as

d
a basis also for the physical derivation of U in sec.7.

Thus there is no doubt that even the useegf the present
variational principle does not supersede a direct derivation
of (1-6) and (1-7). Also, eq.(1-1) could have been found
rather easily by other considerations, using the Euler - Liou-
ville equation (TNP II, sec.10). There remains (1-2), for

which the present variational principle furnishes indeed a

ed

derivation of incomparable simplicity.

But does this fact alone justify the use of the whole
mathematical machinery of Poincaré's variational principle ?
The answer is the same as in many other applications of ana-
lytical mechanics: the results could also be found by element-
ary Newtonian methods, but it is the application of Lagrangian
or Hamiltonian methods which makes us better understand the
mathematical and physical structure.

It may be helpful to again summarize the basic logical
structure of the present apprcach which may have been obscured
by the computational details. We start from (1-6) and (1-7)
as derived in sec.2:
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¢ =D, ,(u-w) + 012V R

C. = Dlz(u-w) + Dzzv

Then the kinetic energy (6 -17)

21 l.c
T o= g0 e, vl o

c
+
j i

J
used in the form (6 - 20), together with the gravitational
energy Ug ,» 1s substituted in Poincaré's equation (4 - 14),

d [aT | oT
_— S + C.. . = L. ,
dt (3w, lewJauk i

or more explicitly (5-23) and (5=~24), which directly gives
(1-1) and (1 -2), or (8-14) and (8- 15):

AG - i(C-A)au + AC(O+1nv) + o(c+ige) = L

ACG + ACQ + iC_av « néc =0

The gravitational energy Ug is not used directly, but
only through the well-known expressions (1-12) for the torque
components L; . As we have seen above (after egq.(8-2) ),
We have aUec/mri =0 , S0 that the eiastic deformation
energy does not contribute to the torgue. Hence the simple
expressions {1-12) hoid independently of the internal con-
stitution of the body.

We also see that the left-hand sides of both eguations
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(1-1) and (1-2) only depend on the kinetic energy T
through Poincaré's equation (4 - 14), no Euier - Liouville

condition and no hydrodynamics are needed!

So far everything has been rather analogous to the simple
Poincaré model (rigid mantle and homogeneous core) as out-
lined in sec.5. To take care of elasticity, we have only to
add a term U_, to the gravitational potential energy to get
the total potential energy

Ued is chosen in such a way that Poincaré's principle,
through (8 -1) and (8-2) (which do not depend on U g 1)

gives equations (1-6) and (1-7); the expression (7 -29),

_ 1 2 2 c c
Voo™ 27 [En(cu *Cp37) F2E (e 5e gtey3Cy3) ¢
[

+ E..(c 2ic 2)

1 ,
22 | + Q(C]3W1+C23W2)

Cc
13 23
is determined uniquely (up to an additive constant) by this
condition.

The present variational approach may be compared to that
of Jeffreys (1949) and Jeffreys and Vincente ( 1357 ). Common
to ali three approaches is the reduction of a problem of con-
tinuum mechanics (infinitely many degrees of freedom) to a
problem ¢of analytical mechanics with only a finite number
"mere, 10) of degrees of freedom. This is brought about by
restricting ourselves to second-degree harmonic perturbations
and disregarding all the infinitely many other harmonics.

The essentially areater simplicity of the present method
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is brought about by the use of anholonomic Poincaré's vari-
ables related to the two rotation groups considered, and of
the corresponding anqular velocities w, and X; (Jeffreys

uses holonomic rotational variables), as well as by the for-
[

23 as elastic variables

tunate choice of Ci3» Co3» C?B’ and ¢
due to Sasao, Okubo and Saito.

The resulting SOS equations (1-1), (1-2),(1-6),(1-7)
are equivalent to Molodensky's equations both with respect to
accuracy (spherical approximation for the mantle) and to
applicability to rather general earth models (heterogeneous
mantle, heterogeneous core, even elastic inner core). They not
only give the simplest formulation of Molodensky's liquid-
core problem, but also clearly show its logical structure.

Their practical usefuiness will be seen in the following

sections.
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PART C

EXPRESSIONS FOR NUTATION AND POLAR MOTION INCLUDING

LIQUID-CORE EFFECTS

9. Transformation of Eq. (1-1)

This equation
Al - i(C-A)au+A_(v+iqv) + a(c+inc) =L (9-1)

viill be basic for the investigation of the movement of vari-
ous axes (rotation axis, angular momentum axis, figure axis,
etc.) for the Molodensky-S0S model to be performed in Part C.
Let us recall the notations: A and C denote the

moments of inertia of the whole earth, Ac and Cc those
of the core, 2 denotes the (average) angular velocity of the
earth, u and v are the complex numbers describing small
rotations ( u of the whole earth with respect to space,

v of the core with respect to the mantie), and L is a
complex number describing the lunisolar torque; these complex

. _ o . . L. . - .. PP INT Y WD VS IO ST Y T ) J_J
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numbers are defined by (1-3) and (1-5). The complex number
c combines anomalous elements of the inertia tensor, given
by (1-4). It is related to u by (2-8)

c=-36""ka%a(w-u) , (9 - 2)

where G 1is the gravitational constant, a can be considered
the radius of a spherical earth, k denotes the potential
Love number depending on frequency (we keep in mind the possi-
bility of the decomposition (2 -9) but shall not use it),
and w is related to the lunisolar (tidal) potential by (1-11).
Thus .he anomalous elements of the inertia tensor, described
by ¢ , depend on u (rotational deformation) and w
(tidal deformation); cf. TNP I, p. 27.
We seek solutions that are functions of time t of form

u = u.e s
(9-3)
vV =V -IUt s
[}
with real constants Ugs Voo taking
w=we?ot ; (9-4)
o
this is in agreement with (1-11):
wo= o lee?t (9-5)

These particular solutions have the weli-known advantage that
differentiation is simply multiplicating by s
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. d . .
u o= E% = 1au°elct = igu . (9-6)

They depend on the frequency o ; but, our equations being
linear, we can obtain a rather general solution by adding the
contributions from different frequencies. On substituting
(9-2), assuming (9 -3) and considering (9 -6), the basic
equation (9 - 1) becomes after dividing by i

[_,\c - (c-A)Q]u»« A (a+a)v - éG"kaSQZ(w-u)(on) = =il
- (9-7)

It is now convenient to introduce the dimensionless
constant

s aSPZ ’

called secular Love number (TNP I, p. 21), and express the

torque L in terms of the complex potential coefficient w
by

L=-i{C-A)ow . (9-9)

this is an immediate consequence of (1-11) and (1-12) (put-
ting a =1 , which is of no relevance). Thus (9 -7) becomes




E\o - (C-A)x + -E(o‘i'ﬂ)(C‘A)]U + AC(G+Q)V =
s

. - (C-A)[l ; T':'f;—g]“‘” . (9 - 10)

We now introduce the Euler frequency defined by

op = e, (9 - 11)
cf. TNP I, p. 10, and divide by A . The result is
A

S

g
[:a- og * %—(o+n)5%}u + I£(°+Q)V =
S
_
- o (1 - kot :]w . (9 -12)

In agreement with TNP I, p. 121, we now introduce the
tidal frequency " by

¢ = cw. 3 (9-13)
then

Q + ¢ = "((uj‘fl) = LW (9-14)

where



e e o o s e e ool an e o an o

buj = w; - @ (9 -15)

is the corresponding nutational frequency (TNP I, p. 36). Thus

we can put

Q+tao = - Aw , g = -(Q+Aw) (9-16)

omitting the subscript. Dividing by -gq we then get

( o 00w A
E Aw k E c Aw _
11+Q—+Q—+r ZJU‘FK—-E—V-
s
[e]
_E{ K Aw -
= 5 ‘1 + i } w . (9 17)
§ s
Since the usual tidal frequencies ., are very close

to o , the angular motions of sun and moon being so much
smaller than the earth's rotation, we have

be oo, (9 - 18)

Similarly,

Q

E

1
. (9 - 19)

so that the last term between parentheses in the factor of

P P S - - S - - - P R T PR Y SIUNE S S




1 unit vector of the (instantaneous) axis of rotation. The «x
! and y components of this vector, m, and m, , can by com-
bined into a compliex number

y - . 99y
mo=om, o+ im, (9 -22)

b which describes the polar motion of the rotation axis R

Fe

: P, = m = — . (9 -23)

b R Q ’ -

;.: the notations are the same as in TNP I (cf. pp. 17 and 93)

K and in TNP Il (cf. pp. 128 and 138):

{ As we did in TNP II (p. 9), we may put

o

r.

3

b

}

{

o

f
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u in (9-17) will be of second order and can be neglected.
Thus we finally obtain

>

o} [+
._E Aw} = —-E- | .IS_
1 + g + 2 [1 + X

2Ly “]w - £ bw 9 -20
2 ) : ( )

K3 Ao

This equation expresses u 1in terms of the tidal poten-
tial characterized by w and of the core rotation v . Let
us recall what u means. It is defined by

G r o t (9 - 21)
as the complex combination of the x and y components of

the rotation vector , . If we divide these components by
the length o of this vector, we get the components of the
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1 ecosot

m, = esinogt
or

m = Eeiot ,
so that ¢

a under consideration.

u = QEeict
We likewise put
v = qce'®t
W = QTeicxl:
The numbers ¢, ¢, and

The substitution
(9 -20) gives

.....................
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(9 - 24)

(9 - 25)

is the amplitude of polar motion for the frequency

Then

(9 - 26)
(9 -27)
(9 - 28)

t are dimensioniess real constants.
of (9-26), (9-27), and (9-28) into

o A
! K aw) ¢ bu. (9 - 29)
SR SN A
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- _@_E : -
o lt R (9 - 30)

This equation gives the amplitude of polar motion forced by
a tidal potential of frequency o and amplitude Tt . In
terms of this €, we may write (9 -29) as

. s | k. dw c_w -
. ;-eotucg} = due (9 - 31)
where we have put
( € Aw‘v-‘ 2
X=l1+?+—n—-j =1 . (9-32)

In fact, in view of (9 -18) and (9 -19), the factor A

g differs only very little from unity.
i Special cases. For the rigid earth (k=0, £=0), eq.(9 - 31)
) reduces to (9 -30), which we can also write, using (9 - 15):
L
3 Lo- e L % (9 - 33)
f o Q+duto. wJ.+oET
El which is the same as the amplitude of TNP I, eq.(1l1-45), with
=B, . '
For the elastic earth without fluid core (k=0.3 , ¢=0), |
‘ eq.(9 - 31), together with (9 - 33), gives )
¢ |
b'v
|
b
!
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_ | kK aw c,E -
€ = ll +FT?-J ¥ (9 34)
S j E

On the other hand, we have McClure's expression (TNP I, p.36),
apart from the factor i (see next section):

E=C-A|<B
A5
kAw.
1 + — —1L
=TC'A 2 ‘s 3 B (9 - 35)
w."'oc kO j,
1+ = £
k @
)
where
k
l-k_s
GC:T———?EOE (9-36)
I+ — =
kK 2
S

is the Chandler frequency. Are (9 -34) and (9 - 35) equivalent?
We have by (9-11),
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so that (9 -34) and (9 -35) will be equal provided

(woto )1+ K EV ey vy (9 - 37)
AL Sl R B
In fact, by (9-36),
( k gY
(uj+oc)lt1+E:?J =
_ k % ) k)
IICRE b R E K,
. k (2]
—wJ+0’E+T<-:'lQ 1]0E
N S (9 - 38)
wJ % k_s Q & !
which differs from wj+0E only by the last term which is
small of second order since Aw. and o are both small, by

j E
(9-18) and (9-19;, and which we can neglect.

For the Poincaré model (rigid mantle, liquid core) we
have k=0 and ¢# 0, so that (9-31) reduces to

A
R (9 - 39)
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with A2 =1 . Since aw/02 1is very small for tidal pertur-
bations, this is almost the same as (9 - 31).

From this it would be tempting to conclude that the
effect of elasticity on ¢ is very small, at least for nearly-
diurnal frequencies which we have been considering in this
section (this is plainly not true for the Chandler period which
is lengthened due to elasticity from 305 days for k=0 to
403 days for k=0.3 ). Thus we might think that the simple
Poincaré model (rigid mantle) might be used to calculate
liquid-core effects on ¢ , still getting basically the same
numerical results as for the Molodensky model with an elastic
mantle.

Such a conclusion would be wrong, however, as the com-
parison of the tables in TNP I, pp 122-123,and TNP II. p. 122,
shows. The reason is that, though the direct effect of k
on (9-31) is negligible, there is also an indirect effect:
elasticity affects core rotation, hence , 1is different for
a rigid and an elastic mantle, and elasticity enters indirectly
in (9-231) th ough ¢

This shows that (9 - 31) shows very well the effect of
mantle elasticity and core rotation if we assume that the core
rotation parameter  is known. If only the lunisolar poten-
tial (coefficient © ) is given, then we must proceed differ-
ently, in a way to be outlined now.

Solution for u and v in terms of w . In addition

to (1-1), let us now also consider (1-2):

AU+ AV +iC v+ 26 =20 . (9 -40)
C c C cC

We express . in terms of u and w by (2-41) and sub-
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stitute into (9-40). With (9-26), (9-27), and (9 -28),
differentiation is replaced by multiplication by 1ic , accord-
ing to (9-6). This reduces the differential equation (9 - 40)
into a linear equation of the form

W (9 -41)
This is in complete analogy to the procedure by which

we have obtained (9-17) from (9-1); we may also write (9-17)

in the form

a,,u + a,,v = Cc.w . (9 -42)

The solution of the two linear equations (9 -42) and
(9-41) for u and v (say, by means of determinants) gives

Since it is not difficult to see that the coefficients aij
and ci are all real, also the coefficients bi will be rea:l.
in terms of the real constants ¢, ¢, © we have the equations

g T A8 = oyt
(9 -43)
Ba18 T 355 T T
with the solution
.= blr ; 5 < bt o, (9 - 44)
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with the same coefficients as above.

Thus both ¢ and ¢ can be expressed in terms of =«
only. The computation is easy, but the resulting expressions
are not very elegant. Therefore they will not be given here.
The corresponding calculations for the Poincaré model (k=0)
can be found in TN? I, pp. 120-122.

This reduction of a system of differential equations
to a system of linear equations (9 -43) has been made possible
by using exponentials (9-3) to (9-5). This is nothing else
than a transformation from the time domain to the fregquency
domain which is known to simplify matters on such occasions.
As a matter of faci, the coefficients aij and c. and
hence bi in (9-44), will depend on the frequency G=-wj.

Relation to the Molodensky coefficient 3 . In TNP II,
p.56, we have, for the Poincaré model, found the relation

v, = a(s-e) (9-145)

whence, by (9 -27),

o= 2 =« {9 -46)
or
2= L+ ¢ (9 -47)
i+ being the Mo'odensky parameer used in TNP II. In the
interesting cases we “ave :>». , 50 that approximately
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It can be shown that these relations also hold for an elastic
mantle. In fact, substituting (9-47) into eq.(10-41) of TNP II
it is not difficult, though somewhat laborious, to derive

(9 -29). Substituting (9 -26) and

into the second SO0S equation (9 -40) and taking a homogeneous
core, one obtains eq. (9 -34) of TNP II. (Hint: show that

c. = %ﬁ?pezbsye'°t ,

notations as in TNP II, sec.2.)
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10. The Kinematic Axes

In this section we shall investigate the motion of the
rotation axis, the figure axis, and the "mean Liouville figure
axis". These axes will be called kinematic axes, in contrast
to the angular momentum axis which, being dynamically defined,
behaves differently and will be considered in the next section.

Reference frame. As in the previous reports TNP I and
TNP II, we shall use two basic reference frames, the "nutation
frame" x?xgxg which is the natural frame for describing
nutation, and the "body frame" X1 XgX3 to which polar motion

refers; cf. TNP II, pp.5-6 and 140-143.
[o]

The nutation frame X is connected to the inertial
system in a prescribed way: the xg axis has a fixed direction
in inertial space, and the system x?xgxg rotates with con-

stant angular velocity q around the xg axis. Being space-

fixed, the xg axis is a natural reference for nutation.

The body frame X, represents a system of Liouville
axes for the mantle (TNP II, pp.140-143) with respect to which
the mantle, in the absence of elastic deformations, would be
at rest. The Xq =z axis represents the figure axis of the
undeformed ellipsoidal earth and is the "mean Liouville fi-
gure axis
motion and corresponds to the point 0O in Fig. 6.1 on p.38
of TNP I.

The basic trick. These two frames are related by a small
rotation (TNP II, p. 6):

mentioned above. It is the natural origin of polar

x = (L+g)x° (10 - 1)

-l B S
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where
('0 65 -8,
© = l-85 O e, (10 - 2)
e2 -8, c

is an "infinitesimal rotation matrix". In terms of the vector

ma
i 94
8= Ie \ (10 - 3)
lZ
L°3
this may also be written
x=x% -5 x x° (10 - 4)

’

he cross denoting the vector product as usual.

Now these relations between coordinate systems are
geometrically the same as the formulas for aninfinitesimal
rotation of a rigid body. In fact, the body axes xlxzx3
can be assumed to be fixed with respect to an undeformed, or
rigid, fictitious "reference earth". Thus we may use, with
some care, the simple formulas for the rotation of a rigid
body (TNP I, secs.10 and 11) even to describe nutation and
polar motion for an elastic earth with or without a licuid
core. This is the basic trick which will be used here, follow-
ing Wahr(1981c) and indications in TNP II, pp.136-138.

Basic relations. Denote the unit vector of the rotation
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axis R by e, , the unit vector of the instantaneous figure
axis F (which is defined as the axis of maximum inertia

for the deformed earth) by e . , and the "mean Liouville
figure axis" (which is nothing else than the Xq =2 axis of the
the body frame) by e s Denote further the unit vector of
the xg axis (of the nutation frame) by e , . Then polar
motion and nutation of the various axes can by characterized

by the vectors

Bp =& -8, » D =8 - & >
P = & - e, » e =€ -8 » (10 -5)
B, =%, °%5;° 0, N, =& - &3

cf. Fig. 10.1.

X3 R
A3
Br
€21 |€R

3>X1

FIGURE 10.1. Polar motion of the rotation axis




Since all vectors e., e., &,, and e; are almost
parallel to each other, the polar motion vectors p and nu-
tation vectors n will be small and only have a negligible

component along the X3 axis (Fig, 10.1). Thus we can put

i "

p = lpz ’ n=n,0 o, (10 - 6)
o’] 0

and characterize polar motion and nutation by the complex

numbers

p=p]+1p2 ’ n=mn,+in (10'7)

instead of the three-dimensional vectors p and n . More
details about this can be found in TNP I, sec.lli.

First we note the basic relation between nutation and
polar motion: from (10-5) there follows for any axis

p=n+(ese)=n-n

-2

or for the corresponding complex numbers,

(10 - 8)

3
]
©
+
=]

" may be expressed by the serond equation of (11 -37) of
TNP I, noting that the figure axis F for the rigid "refer-
ence earth" is the z-axis:
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n, = -6 (10 -9)
8 being defined by the complex number
8 = 61 + 162 (10 - 10)

combining the first two components of the vector (10 - 3). The
first equation of (11 - 39) of TNP I gives for a frequency o

3 . (10 - 11)

- = ¥ _ iot -
Pp =M =g = ce (10 - 12)
Then it feilows from (10-9) and (10-11) that
= Q = .8 iot -
N, =-5%3 PR = “o¥g €° (10 - 13)

Then (10 -8) gives the nutation of the rotation axis:

Qg

Ng = Pg + N, = == Pp (10 - 14)

PR v g




n = -2 celot . (10 - 15)

The obvious relation

pz =0 (10 - 16)
following from (10 -5) concludes the formulas for precession
and nutation of the rotation axis and the z-axis.

For the instantaneous figure axis F we have by TNP I,
eq. (3-27):

- = C - -
Pe f =K (10-17)
We express ¢ = c13 + ic23 by (9-2), introducing the secular
Love number ks defined by (9-8). This gives
_ k u-w , -
Pp = g: < - (10 - 18)

By (9-26) and (9-28) this becomes

= k - iot { -
Pe * (e-t) e . (10 - 19)

S

The nutation of the axis F then follows from (10 - 8) and
(10-13):

P ]




.........
P
o, - .

= = | Kfear) - 8 _lgiot -

We finally state the relation which connects the nuta-
tion number n (for any axis) with the usual expression in
terms of the Euler angles y and 6 , the latter being the
obliquity of the ecliptic:

A3 + dpysine = -ine'8t . (10 - 21)

This is eq.(11-55) of TNP I. The factor =-i expresses a
rotation by -90° and has no deeper significance since it
characterizes only the choice of coordinate axes; the factor
e!2t  oxpresses the uniform rotation of the x?xgxg system
to which n refers, with respect to the inertial system to
which and 9 refer.

Forced polar motion. For the lunisolar torque we take

the expression (11 -40) of TNP I:

L = (C-A)a3 Bje“(“j”sj) (10 - 22)
j

as the sum of contributions

L - (C-A)QZBJ.e"(“’jHBj) (10 - 23)

i . . . s i . o ans Fa——
al PRI W, - W R P P W PP U U W S e, Py
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of different frequencies W, with phase sj . We put, as usual,

g = ~w. ., (10 - 24)

then

e ilujt*e,) . giot=iB; . g=iBjgiot (10 - 25)

So far we have disregarded the phase factor e i8] because,
being common also to v, v, w, it cancels in relations such
as (9-20) or (9-42). We may also take care of this phase
factor by allowing Ugs Voo and W in (9-3) and (9-4) to
by complex constants. We shall now use the subscripts

to indicate that we deal with contributions of the frequency

[PV

We thus can write (9 -28) as

Ww. = gr e ilwjt+s;)

; ; : (10 - 26)
whence (9 - 9) gives
L. = =i(C-A)qw,.
j T(C-A)aw,
- -i(c-A)QZTje"(wJ‘“BJ) : (10 - 27)




The comparison with (10 - 23) shows that

. = iB, . 10 - 28
T; 18J ( )
This relation is not more mysterious than a rotation by 90°
since iz is a complex number obtained by rotating z by
the angle of 90° :
i
iz = e “z . (10 - 29)

N E]

It expresses the fact that w and hence, by (9-42), u and
v are normal to L . Since, as we have seen above, the polar
motions and nutations, for a given frequency, are all propor-

tional to u and w , all quantities Pre Ppsng o nz,and n

F
X2
A
L
_—
F —
—
X3 £
3 Pe
==
R = — X
A/Z=X3 !
Pr
Y
v

FIGURE 10.2 Forced nutation and polar motion for a fixed
frequency

KPS W IPRE WD ST WA Y R P e | A




.......

100

have the same directions as wu, v, w, namely normal to L ,
as Fig. 10.2 schematically shows. Thus the points xg, X3
R and F ( the end points of the respective spatial

unit vectors @,, e , €., and e_) lie on a straight Tine.

- Following (9 -26) and (9 - 27), we similarly write
p
u, = ge e ilujersy) (10 20)
j J
v, = gg. e ilujere;) (1¢ 1)
J j
Then (9 -29) gives
e ° | + - + a ] ?r( + F:Aw )rj -
Ac Aw .

note that we have put k = kj since the elastic Love number
k also depends on frequency.

Now (10-12), (10-16), and (10-19) give immediately, after
summing the contributions of the individual frequencies:

W WY T W e
- . . o1

s
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h p forced _ Ze.e'i(“’jt+8j)
R . ] ’
x J
; pz forced = 0 s (10_ 33)

k
forced _ i _ ~i(w.t+8.)
Pe § r:(ej Tj)e J J

Here, sj has the same direction as rJ. = iBJ.
Forced nutation. With

Aw, = w,= Q@ = =(0TQ
Y (0+a)

egs. (10-13), (10-15), and (10-20), combined with (10~ 21),
give

w, .
(aovisysing) forced o .qf _L o gi(dujessy)
R . Aw. J s
J J
forced " o
(ae+iausine), = -1% K%. c e |(ijt+8j) ’ (10 - 34)
j

[k . ,
; ; forced . _47 1 j it ~i(bw,t+B.)
A3 +1Ay¢S1INg = =1 e.~t.) *+ €.|e
( v )F j[_k-ls( j J) ij j J J

For a purely elastic earth (no liquid core) we have
{9 -34) which in view of (9 -37) may also be written
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t‘:ielast:ic = E_RA i i .‘.:.i_A_ Kij , (10 - 35)

using (10 - 28) and the abbreviation <5 according to TNP I,
eq. (6-8). The substitution of (10 -35) and of T s iBj

then immediately gives the forced (lunisolar) parts of eqgs.
(6-9), (6-10), (8-7), and (8 -11) of TNP I, which have been
obtained there in a considerably more complicated way.

Free motion. There are two proper frequencies, 9,
corresponding to the Chandler period, and 9, responsible for
the "nearly diurnal free wobble" (NDFW); cf. TNP II, pp.123-
126. Thus p;ree will have the form of a linear combination
of both frequencies:

pfree - g ei®1t 4 g it (10 - 36)

R 1 2
a phase factor of the form eid can be incorporated in the
complex constants m, and m, . Then (10 -16) and (10 - 19)
give

n free 0 ,

4

k K

free _ 1 ig ic -
P - F; me' Pt 4 F: me'“2" (10 -37)




.....

k‘ and k2 being the Love numbers k for the frequencies
o, and o, 3 there is t = 0 for free motion.
Free nutation is given by (10-13), (10-15), and (10 - 20),

with (10 - 21):

o .
(Ae+iA¢sine)Rf"°e = -i[ 1 m]el(ol+9)t .

o +Q 2

o .
2 m e'(°2+9){]

~
. . free ] i(o,+0)t
+ = =
(a6 1Aws1ne)z 1Lf|+9 m e i +
(10 - 38)
1] i(d 'H})t
o, *2 me 2 ]
(a0+iaysing) free _ ..,-l— 'kl _Q _] meilo +2)e |
F [_ LN
(k \ -
2 Q |(o +Q)t!
+ - ——=| m,e 2
kK ¥ ' |
s 9, Q} 2 |

The nearly diurnal free wobble (NDFW) does not, so far,
seem to have been <confirmed by observation, neither in the
polar motion (amplitude _lm2[ ) nor in nutation. For nutations,
formulas (10 - 38) show that this amplitude would even be in-
creased by a factor on the order of

N .
- bt U PP W
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according to TNP II, p.167!

Thus we can safely disregard m, and consider only
the Chandler frequency o, - Then these formulas for free
polar motion and nutation reduce to the free terms in the
corresponding expressions for an elastic earth, TNP I, egs. (6-9),
(6 -10), (8-7), and (8 -11), with g, = 9 and k being the
value k for the Chandler frequency.

Aléo the expressions (10 - 33) and (10 - 34) are formally
the same as for a purely elastic earth, liquid-core effects
entering only indirectly: weakly through the frequency-depend-
ent Love numbers kj and more strongly through the ¢, which
depend on core rotation ;j through (10 -32). This is not
surprising s.nce the basic relation for these “geometric" or
"kinematic" axes depend only on the surface form of our earth.

Thus the qualitative picture of polar motion for an elas-
tic earth with a liquid core remains basically the same as
for a purely elastic earth; cf. Fig. 6.1 on p.38 of TNP I. Only
the amplitudes of forced polar motion are somewhat affected
by the liquid core. The orders of magnitude remain the same:

6 m for free polar motion, 60 cm for forced motion of the ro-
tation axis, and 60 m (!) for the forced motion of the instanta-
neous figure axis; cf. TNP [, pp. 39-40.

Finally we note that, as far as free polar motion is
concerned, the elastic earth model, even with a liquid core,
gives a hignly schematic and unrealistic picture. The actual
free polar motion is so irreqular that it can only be deter-
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mined by actual observations. On the other hand, the forced
polar motion and nutation is répresented well by the elastic

mantle-liquid core model. Thus the formulas (10 - 33)and (10 - 34)
describe them with sufficient accuracy.
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11. The Dynamic Axes

These axes comprise the angular momentum axis and the
related "Celestial Ephemeris Pole".

Angular momentum axis. It represents the direction of
the angular momentum vector H

Since the relation between angular momentum and torque,

dH
L =35 » (11-1)

is independent of the internal structure of the body (cf. TNP I,
pp. 48 and 128), we have for the nutation Ny the same form

- - iL -
My = Tala+R) (11 - 2)

as for a rigid body or for the Poincaré model; this is eq.
(13 - 37) of TNP I.

The free nutation of the H axis is zero since, in absence
of external forces, the vector H remains unchanged in iner-
tial space. For the forced motic: we have, summing over the
different frequences,

: L.
.1 T ] -
"W * ta - ij ’ (11-3)

or by {9-11), (10-21), and {10-27):
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C A % <i (Bw t+g.) -
(A6+1Aw51n9)H--1t-% KE; T;e joobl . (11 - &)

Using (10 - 28) we have the alternative form

¢}

m

£ g et (2ujere;) (11-5)
j

. . A

&

This is identical to the nutational part of eq.(7 - 14) of
TNP I, but the derivation is much simpler in the present way.
It is also identical to the nutation of H as given by TNP I,
eq.(13 -69) for the Poincaré model.

Polar motion for the H axis may be cbtained from (10 - 8):

Py =My =N, - (11-6)

Using (10-13) and (11 -4) and summing over different frequen-
cies we get

(A © Q )
T 2w, Tj Aw, ej

IESTALIT (11 - 7)
J J J

pH=Z_
J

A thorough check is provided by computing Py from an
expression of the vector H in the body frame. The angular
momentum equation




HeCu+h (11-8)

(TNP I, p.13) holds for an arbitrary nonrigid body (even with
a liquid core), provided the relative angular momentum h is
taken into account besides the main term Cw, C being the
inertia tensor and « the rotation vector as usual.

For Tisserand axes referred to the mantle, the relative
angular momentum h 1is due to core rotation. Thus

[_Acx1
h=Cx-= Acxz‘ (11-9)
Lo

since X3* 0 by (8-9); we have disregarded the second-order
products of the anomalous tensor of inertia for the core,
c?., with .  as usual.

The linearization of Cw is provided by eq.(3~22) of
TNP I; by (11-8) we have to add h as given by (11-9). The

result is
H = Agm + qc + Ac(xl+1x2)
By (1-3) this is

H = Agm + Qc + Acv . (11 - 10)




H = H, + iH (11 - 11)

is the complex number combining the X, and X, components
of the angular momentum vector H . The components of the
corresponding unit vector are obtained by dividing by its

(approximate) length Cq , whence
A
_ A C c . -
PpmT T taT Y (11 -12)

we obtain indeed Py since everything is referred to the body

frame xlxzx3 . With (9-23) and (10-17) this may be written
A
_ A C-A c ' -
P TPt T PtttV (11 -13)

After substituting Pa from (10 -12), Pe from (10 - 19) and
v from (9 -20), and neglecting second-order terms we get
(11-7), which completes the check.

This equation can also be used to compute the free polar
motion of H . Core rotation only plays a role in the tidal
frequency range, that is, for wj = ; its effect is rather
small for the Chandler frequency, cf.TNP I, p.133. Thus, since
the calculation of free motion is of little practical value
anyway, we may neglect v in (11-12), obtaining

free _ A free C-A _ free -
Ph TTPR YT P (11 -14)




Using (10 - 36) and (10 - 37) and neglecting the hardly observ-
able NDFW (m2 = 0) , we get

, ke
prree = l% + E_Cﬂrl_)m,elc‘t , (11 - 15)

the same as for a purely elastic earth (TNP I, p.37).

The Celestial Ephemeris Pole. The corresponding axis
has been adopted at the General Assembliy of the International
Astronomical Union in Montreal in 1979 to define the celestial
pole for reference purposes, according to Commission Resolu-
tion (3):

“Commissions 4, 8, 19 and 31

endorse the recommendations given in the Report of the

Working Group on Nutation, as set out below, and recom-

mend that they shall be used in the national and inter-

national ephemerides for the years 1984 onwards, and in
all other relevant astronomical work.

Recommendations of the Working Group on Nutation

Whereas the complete theory of the general nutational
motion of the Earth about its centre of mass may be de-
scribed as the sum of two components, (i) astronomical
nutation, commonly referred to as nutation, which is
motion with respect to a space-fixed coordinate system,
and (ii) polar motion, which is motion with respect to

a body-fixed coordinate system, it is recommended that:
(a) astronomical nutation be computed for the "Celestial
Epnemeris Pole" using a non-rigid model of the Earth




such that there are no nearly diurnal motions of this celes-
tial pole with respect to either space-fixed or body-fixed
coordinates, which can be calculated from torques external to
the Earth and its atmosphere ,

(b) the numerical values given in Table 1 of the complete re-
port be used for computing astronomical nutation of the "Celes-
tial Ephemeris Pole". "

Cf. (IAU, 1980, pp. 40-41). For the scientific background cf.
(Leick and Mueller, 1979; Moritz, 1979; Mueller, 1981) and also
TN® I, pp. 58-59.

The Celestial Ephemeris Pole C thus corresponds to the
angular momentum axis freed from the lunisolar diurnal motion,
seen from the earth-fixed body frame, that is with respect to
polar motion. With respect to the inertial frame, it shares
with H the property that its free nutation (which has a
nearly-diurnal period) is zero. Thus in fact, C contains no
diurnal motions, neither in the body frame nor in the inertial
frame, as the above resolution requires.

Hence the free polar motion of the Celestial Ephemeris
Pole C -equals the free part of p

pe = Py . (11 - 16)

An analytical expression is (11 -15), which is of little prac-
tical use, however, since free polar motion is too irregular
to be analytically predicted. So Pe must come from obser-
vation.

As far as the nutation is concerned we have seen above
that its nearly-diurnal part is zero. There remains the luni-
solar anaiytical part which can be analytically described and
predicted well. Free motion playing no part, the pole ¢
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does not depend on polar motion. Its nutation is therefore the
same whether polar motion exists or is zero. In the latter case,
C coincides with the =z-axis. Cf. TNP I, Fig. 6.1 on p.38:
if there is no polar motion, then C = H° coincides with the
origin 0 representing the z-axis. See also TNP I, pp. 59-60.
Thus the nutation of C equals the forced (lunisolar)
nutation of the z- axis as given by (10- 34):

. - Q
(Ae+1aw)c = -1 § Ao €

J

Concluding Remark. Only the forced (lunisolar) parts of
polar motion and nutation can be accurately described by the
elastic mantle-liquid core model and hence accurately predicted.
Therefore, the main practical result of the present report are
the formulas (10-33), (10-34), (11-5),(11-7), (11-17). They
contain the coefficients € and 1. which are given by
(10 - 23), (10 -28), and (10 - 32).
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