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1. INTRODUCTION

For the past two years, a major element of our protocol research at USC/Information Sciences

Institute has been an effort to apply existing automated verification systems to communication

protocols. Initially our work focused on the Affirm system [Gerh 80, Suns 81a]. More recently we

have experimented with the Formal Development Methodology (FDM, also known as Ina Jo), Gypsy,

and State Delta systems. This report presents the detailed results of our work with the latter three

systems. A shorter preliminary report on this material may be found in [Suns 82a].

The work described here represents the conclusion of our protocol verification work. A summary

of all work done in this area and a complete list of reports produced may be found in [Suns 82b].

The four automated verification systems we studied were chosen for a combination of factors

including initial estimates of quality, significance, representation of important approaches, and

availability to us. Other systems that we (perhaps unfairly) excluded from further consideration were

HDM [HDM 79] and the associated Boyer-Moore theorem prover [BoMo 79], SPV [SVG 79], Ordinary

[Gogu 81], Approver [Haje 77], Perturbation Analysis [West 82], Ogive/Ovide [Diaz 82], Cesar

[QuSi 81 ], and Sara [RaEs 80]. Overviews and comparisons of some of these systems may be found

in other comparative evaluation efforts [Suns 81c], [Diaz 82], [Crai 81].

This report is organized into sections, one on each verification system. Each section begins with

some general background on the system and then presents some comments on our experience

applying that system to protocols. Conclusions relevant to the individual system appear at the end of

each section, while overall conclusions and comparisons are in a separate final section.

Our major interest throughout this work has been on design verification rather than code or

implementation verification. Hence we have attempted to develop "abstract" specifications for the

services and entities of a given protocol layer and to prove that the combined operation of the entities

plus the lower layer service has certain properties or meets some service specification. We have

been less interested in the problem of verifying that a specific program or code correctly implements

a protocol entity.

A uniform set of example protocols were employed with each system. These were the well.known

Alternating Bit protocol (in a form including arbitrary message loss and retransmission) and the

"three-way handshake" connection-establishment protocol from the DARPA TCP [Post 81]. The

former served to test capabilities of the systems to handle "data transfer" type functions, while the

latter served to test control functions.
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Our goal was largely methodological in this work: to evaluate the ability of existing automated

verification systems to provide useful results in the domain of communication protocols. We did not

expect to discover errors, since the protocols used as examples were quite mature, although our work

with Affirm did reveal an obscure bug with the three-way handshake [Schw 81]. The bug has since

been corrected.
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2. FORMAL DEVELOPMENT METHODOLOGY (FDM)

Our main interest in FDM was its explicit support for abstract machine models. Thus we expected it

would be easy to specify our example protocols, already formulated in terms of an abstract machine

model. We also hoped to use the explicit mapping constructs in FDM to do hierarchical proofs

showing that a protocol implemented its service. Finally, we wished to experiment with the automated

tools associated with FDM, particularly the interactive theorem prover (ITP), to assess their

capabilities.

2.1 BACKGROUND

As in Affirm and Gypsy, FDM includes a specification language (Ina Jo1 ), a language processor, a

verification condition (VC) generator, and an ITP. The system is specifically intended to model

hierarchies of abstract machines, with mappings from higher to lower layers defined. The language is

an extension of predicate calculus with some built-in data types (integers, booleans, enumerated sets,

lists, records), and it allows the definition of new subtypes and combinations of these types [Loca 801.

The basic unit of specification is an event (called "transform") for which the effect on all state

variables must be defined. "No change" i3 assumed for all variables not mentioned. Properties to be

proved about the highest level specification may be conventional invariants (called "criteria") and

may also include "constraints" relating the values of state variables before and after an event. (We

have not found a need for constraints in any of our protocol examples.)

The Ina Jo language processor converts specifications (including properties to be proved) into

theorems to be proved, one for the initial conditions and one for each transform stating that the

properties are maintained. All proof is by contradiction, so these theorems are in a form such that a

contradiction must be shown between the hypotheses and all disjuncts of the conclusions (see

below). Thus the ITP is more specialized than in Affirm, with induction (over the transforms) and

proof by contradiction built in. The prover also automatically generates a number of "corollaries" to

each expression resulting from a proof step, based on a large set of built-in facts about the basic

types and operators of the language. Either the direct result or any of these corollaries may be used

in further proof steps.

FDM was developed by the System Development Corporation. It runs on an IBM 4331 VM/370

system and is based on a LISP-like proprietary compiler writing system called CWIC

Ina Jo is a registered trademark of the System Development Corporation.

e2
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2.2 SPECIFICATION

Our initial work with Ina Jo involved redoing a small example involving several restaurant patrons

ordering and paying their bills [Suns 81b). This provided some useful comparisons with Affirm and

helped us develop a method for translating between Affirm and Ina Jo specifications.

Some preliminary work had already been done in cooperation with Chris Landauer at SDC to

specify the Alternating Bit protocol and service. These specifications were indeed very easy to

produce from the corresponding Affirm specifications. The translation strategy we developed was

quite straightforward, with Affirm "selector functions" becoming Ina Jo state variables, axioms with

constructor functions becoming transforms, and theorems becoming criteria (or invariants). The

Affirm axioms for the "initial" event required special treatment and translation into initial value

assignments for the state variables in Ina Jo. The induction schema from Affirm were unnecessary,

since induction is built into the TP (see above). Lack of data type definition facilities in Ina Jo could

have been a problem, but the built-in data types proved adequate for our examples.

The resulting specification for the Alternating Bit service and protocol are shown in Figures 2-1 and

2-2. A major feature to be noticed is the terse operator syntax chosen for Ina Jo. This certainly

reduces understandability for the casual user, but it also makes for less typing and shorter listings and

is thought by some experienced users to be an advantage. In addition to the convention that state

variables not mentioned at all in a transform remain unchanged, the "No Change" operator is a useful

abbreviation for the frequent {new value of X = old value of X) construct.

Because of limitations in the methodology (discussed in Section 2.3), our main efforts with Ina Jo

were directed to the three-way handshake example. Once again, it was fairly easy to develop a

specification in Ina Jo from our Affirm work. Time limitations required some simplifications. A reliable

medium was assumed, so retransmission was eliminated. However, nondeterministic choice of either

active, passive, or no open request was allowed so that simultaneous connection attempts and resets

were possibilities. Another shortcut was to specify only one node and its properties, eliminating the

"mirror image" portion of each proof.

The resulting specification is shown in Figure 2-3. As noted above, transforms for only one node

are given (left), although state variables for both sides are defined. The "user command" events

(Active Open and Passive Open) are treated uniformly with the receipt of messages from the medium.

Each has its effects defined in a transform that takes the form (if preconditions are true, then state

changes, else nothing happens (except consumption of the input)). We could have chosen to
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Key: NC" means no change to N" means new value of
T" means type ;; means concatenation of two lists
.n means list element n .x means structure element x
:n means rest of list starting from element n
;. means concatenation of list and element
x = y 0> z means if x then y else z

specification AB service
level service

type message
type QofMessage = list of message
type States = (IDLE, BUSY)
variable Sent, Received, Buf : QofMessage
variable ServState : States

criterion
((Buf=NIL <-> ServState=IDLE)
& (Buf:2 = NIL)
& (Sent : Received ;: Buf ))

initial
Sent:NIL & Received=NIL & Buf=NIL & ServState=IDLE

transform Send(m:Message) external
effect

(ServState=IDLE =>
N"Sent = Sent;.m & N"Buf = Buf;,m & N"ServState = BUSY

0 NC"(Sent, Buf, ServState) )

transform Rcv external
effect

(ServState=BUSY =
N"Received = Received:.Buf.1 & N"Buf = Buf:2 & N"ServState IDLE

< NC"(Received, Buf, ServState) )

end service

end ABservice

Figure 2-1: Alternating Bit protocol service in Ina Jo

produce an explicit response (OK or error) in an additional "user interface" state variable as part of

each user command's effects, but this was largely extraneous to the correct functioning of the

protocol we wished to investigate.

2.3 VERIFICATION

As noted above, our first experience with FDM's ITP was a simple example (about restaurant

diners) that served to identify differences and similarities with Affirm [Suns 81b]. This experience

highlighted the fact that induction is built into the Ina Jo language processor, which produces



specification AB -Protocol
level protocol

type message
type seqnum=T"i:integer (1 >a 0)
type packet =structure of

(seq - seqnum,

type queueofmessage =list of message
type queueofpacket =list of packet

variable Sent, Rcvd: queueofmessage
variable PBuf, ABuf, Pending: queueofpacket
variable SSN, RSN: seqnum

define seqmatch(p: queueofpacket, s:seqnum): Boolean -

p -z nil & (p.1).seqzs
define extracttext(p:queueofpacket): queueofmessage -

(p = nil => nil 0> extract..text(p:2) ; (p.1).text)

criterion
Sent = Rcvd ;; extract-text(Pending)

initial
Sent=nil & Rcvd~nil & PBuf=nil & ABufnil & Pendingznil & SSN=O & RSN=O

transform Send(M:message) external effect
(Pending = nil => N"Pending =Pending ;.(SSN,M) & N"PBuf = PBuf ;. (SSN,m)

0) NC"(PBuf, Pending)

transform Rcv external effect
(PBuf -= nil 0> N"PBuf zPBuf:2 & N"ABuf =ABuf ;. PBuf.1

0> NC"(PBuf, ABuf))
& (seqmatch(PBuf,RSN) => N"RSN = RSN+1 & N"Rcvd = Rcvd ;. (PBuf.1).text

0> NC"(RSN, Rcvd))

transform Update external effect
(ABuf - nil 0> N'ABuf = ABuf:2 0> NC"(ABuf))
& (seqmatch(ABuf,SSN) 0> N"Sent = Sent ;. (Pending.1).text

& N"Pending = nil & N"SSN = SSN+1
0> NC"(Sent. Pending, SSN))

transform LosePkt external effect
(PBuf =nil 0> N"PBuf z PBuf:2 0> NC"PBuf)

transform LoseAck external effect
(ABuf =nil 2> td"ABuf = ABuf:2 0 NC"ABuf)

transform Timeout external effect
N"PBuf = (Pending z nil z> PBuf ;. Pending.1 0> PBuf)

end protocol
end AB-.Protocol

Figure 2.2: Alternating Bit protocol in Ina Jo
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specification TCP3
level mechanism

type SeqNum = T"i:Integer(i >= 0)
type Message
type PacketOp = (Syn.SynAck,Ack,Reset)
type Packet = structure of

(Seq vInteger,
Ack - SeqNum.
Op = PacketOp)

type States =(CLOSED,LISTEN,SYNSENT,SYNRECEIVED,ESTABLISHED)
type Channel =list of Packet

variable L.State:States
variable LSeqloSend,LSeqToRcv.LOldUnack:SeqNum
variable LtoR:Channel
variable RState:States
variable RSeqloSend,RSeqloRcv,ROldUnack:SeqNum
variable RtoL:Channel

criterion
LState=ESrABLISHED -) LSeqToSend=RSeqToRcv & RSeqroSend=LSeqToRcv

initial
LState=CLOSED & RState=CLOSED & RtoL=NIL & LtoR=NIL
& LSeqToSend=0 & LSeqToRcv=0 & LOldUnack=0
& RSeqloSend=Q & RSeqloRcv=0 & ROldUnack=0

define LAckTest:Boolean 2=(RtoL.1).Ack =LOldUnack+1
define LSeqlest:Boolean 2=(RtoL.1).Seq =LSeqroRcv
define MakePkt(sl:SeqNum, s2:SeqNum, o:Packet~p):Packet =2(sl.s2,o)

transform LActiveOpen External
effect (L.State = CLOSED
=> N"LState=SYNSENT &

N"LSeqloSend =LSeqToSend+2 &
N"LtoR xLtoR;.MakePkt(O,O.Syn) &
N"LOldUnack =LSeqToSend+l

0> NC"(LState,LSeqToSend,LtoRLOld~nack))

transform LPassiveOpen external
effect (LState = CLOSED
0) N"LState=LISTEN
0 NC"(LState))

transform LRcvReset external
effect (RtoL-=NIL & (RtoL.1).Op=Reset
=> N"RtoL aRtoL:2

& (LStatexSYNSENT & tAckiest
ILIState-=SYNSENT & L.State-LISTEN & LSeqTest

0> N"LState - CLOSED
0> NC'(LState))

0> NC"(RtoL,LState))

Figure 2-3: Simple three-way handshake protocol in Ina Jo



8

transform LRcvAck external
effect (RtoL--NIL & (RtoL.1).Op=Ack
0 N"RtoL = RtoL.:2

& ( LStatezSY'RECEIVED & LAckTest & LSeqTest
=> (N"LOldUnack=LOldUnack+1 & N"LState=ESTABLISHED)
0> NC"(LOldUnackLState) )

& N"LtoR=(LState=CLOSED I LState=LISTEN I LState=SYNSENT & -LAckTest
I LState=SYNRECEIVED & LSeqTest & -LAckTest

=> LtoR;.tMakePkt((RtoZ-.1).AckOReset)
0> (LState=SYNRECEIVED & -LSeqTest

0 LtoR: .MakePkt.(LSeqToSend,LSeqloRcvAck)
0> LtoR ))

0> NC"(RtoL,LOldUnack,LState,LtoR))

transform RcvSyn external
effect (RtoL-=NIL & (RtoLA).OpzSyn
0 N"RtoL = RtoL:2

& N'LSeqToSend z (LState=LISTEN 0> LSeqToSend+2 0> LSeqToSend)
& N"LOldUnack = (LStatezLISTEN => LSeqToSend+1 0 LOldUnack)
& N"LSeqToRcv = (LState=LISTEN I LState=SYtiSENT

z> (RtoL.1).Seq + 1 0> LSeqToRcv)
& N"LState = (LState=LISTEN I LState=SYNSENT

0 SYNRECEIVED
0> LState )

& N"LtoR = (LState=SYNSENT
0 LtoR;.MakePkt(LSeqToSend,(RtoL.1).Seq+1,Ack)
0> (LStatezLISTEN

0> LtoR;.MakePkt(LSeqloSend+1,(RtoL.1).Seq+1,SynAck)
0> (LState=CLOSED

0 LtoR;.MakePkt(O,(RtoL.1).Seq+l.Reset)
0> LtoR)))

0> NC"(RtoL.LSeqToSend.LOldUnack,LSeqToRcv,LState,LtoR))

transform LRcvSynAck external
effect (RtoL-=NIL & (RtoL.1).Op=SynAck
z> N"RtoL = RtoL:2

& (LStatezSYNSENT & LAckTest
0> (N"LOldUnack=LOldUnack+1 & N"LState=ESTABLISHED

& N"LSeqToRcv=(RtoL.1) .Seq+l)
0> NC"(LOldUnack, LState, LSeqloRcv))

& ((LStatecCLOSED I LState=LISTEN I LStatezSYNSENT & -LAckTest
I LState=SYNRECEIVED & LSeqlest & -LAckTest)

=> N"LtoR =LtoR;.tMakePkt((RtoL.1).Ack.O,Reset)
0> (LState-SYNRECEIVED I L.StatemESTABLISHED) & -LSeqTest

ILState=SYNSENT & LAckTest
z> N"LtoR z LtoR;.MakePkt(LSeqToSend,N"LSeqToRcv,Ack)
0> NC"(LtoR) ))

0 NC"(RtoLLOldUnack,LState,LSeqToRcv,LtoR))

end mechanism

end TCP3

Figure 2-3: Simple three-way handshake protocol in Ina Jo (continued)
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theorems to be proved from specifications, and that proof by contradiction is built into the ITP. It also

familiarized us with the automatic generation of corollaries (some useful, most not) and the inability to

introduce lemmas (without proving them) during the course of a proof. These and other points about

ITP are illustrated in the following discussion.

We particularly wanted to use Ina Jo's mapping constructs to show that a lower level specification

(the protocol) properly implements a higher level specification (the service). Ina Jo provides

constructs to define how each higher level state variable and operator is implemented in the lower

level. Unfortunately, these constructs only support a fixed mapping of events: One higher level event

may be defined to be implemented as a single or fixed sequence of lower level events. For the

Alternating Bit protocol, the Send service event is accomplished at the protocol level by a

nondeterministic series of send, message loss, resend, acknowledge, Ack loss, and Ack receive

events. Such nondeterministic sequences cannot be expressed in Ina Jo, and so we could not make

use of the mapping facilities or perform any hierarchical proofs.

We were able fairly easily to complete a proof that the top (service) level specification of the

Alternating Bit protocol met its criterion. Our main discovery here was that a number of lemmas about

lists not known to the ITP had to be supplied. The ITP has built in a large number of lemmas that are

automatically supplied as corollaries whenever applicable. The user may supply additional lemmas at

the beginning of a proof (in "library" mode) when they may be assumed true (temporarily). But if the

proof progresses to a point where a new lemma is discovered to be necessary, either the lemma must

be proved at that point before proceeding or the proof must be restarted with that lemma introduced

at the beginning so it may be assumed and applied later. This makes any but the most trivial proof a

somewhat frustrating and repetitive process.

2.3.1 Proof of the Three-Way Handshake

Our major proof efforts were directed to the three.way handshake. The main correctness property

(criterion) for this protocol (from Figure 2-3) states that sequence numbers in the two nodes are

properly synchronized when a connection is established:

LStatesESTABLISHED -) LSeqToSend=RSeqToRcv & RSeqToSendzLSeqToRcv

When we tried to prove this property, it became clear that a number of lemmas would be necessary.

Because of the difficulty just mentioned of introducing lemmas into an ongoing proof within the ITP,

we decided to produce an equivalent specification in Affirm and to develop the proof there, where

lemmas could be introduced when needed.

.k I I ' -•i
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A lengthy trial-and-error process then ensued as we attempted to discover an adequate set of

lemmas within the Affirm System. This is typical in developing a new data type. One must choose

between formulating a lemma that looks correct and using it to continue the main proof, or

immediately proving the lemma. In the first case it may turn out that the lemma was not correct or was

not strong enough to be proved on its own. In the second case, after the effort of proving the lemma,

it may turn out to be not quite what was needed in the main proof after all. This discovery process

would have been an order of magnitude more difficult if carried out with the FDM ITP.

Figure 2.4 gives an example of the successive refinements that were needed for one lemma. The

lemma states essentially that for every state t of the system with a Syn packet in the left-to-right

medium, every other packet p in the medium after the Syn packet has a higher sequence number. The

first version of the lemma, which stated this only for a Syn packet at the front of the medium, proved

too weak. The second version generalized this to a packet pl anywhere in the medium (between

queues q1 and q2, each possibly empty). This version proved too unwieldy, so version three

introduced a definition of a "splice" operation sp(q,p,r) for the relation "sequence with packet p

between two subsequences q and r". Version 4 corrected a final error by eliminating Reset type

packets from consideration (they have different sequence number generation rules).

Our proof efforts with Affirm used each of these versions in trying to prove the main theorem.

When the lemma was discovered to be unsatisfactory, we were able to define a new version, return to

the places in the main proof where the lemma was used, replace it with the new version, and redo only

those portions of the proof affected. This ability to "random access" and replace portions of a proof

tree in Affirm was very important in developing successful proofs of complex systems.

To indicate the number and type of lemmas needed to prove the main correctness property given

above, Figure 2-5 shows a hierarchy of the lemmas that were developed in the course of the proof.

The main theorem (Syncl) needed three major lemmas, each of which in turn needed some difficult

lemmas as well as numerous specialized properties about queues, sequences, and the "splice"

operation sp mentioned above. It is rather depressing that for even such a relatively lock-step

example, such a rich structure of lemmas had to be developed about the system. The only redeeming

hope is that once this structure is developed, more complex variations of the system (e.g., with

retransmission) could be handled with relatively minor modifications. Unfortunately, we have not had

time to test this hypothesis extensively.

Another aspect of the Affirm work is worth mentioning. We originally modeled the system as a state

transition system with an overall state variable as a parameter to each function [Suns 81 a]. To prove

j
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theorem SynLowSeql.
all t.p (Control(Front(LtoR(t)))-Syn and p in Remove(LtoR(t))
imp Seq(p) > Seq(Front(LtoR(t))) );

theorem SynLowSeqz.
all tqlq2,pl.p2 (LtoR(t)n((ql Add p1) Append q2) and

Control(pl)-Syn and p2 in q2
imp Seq(p2) > Seq(pl) );

interface sp(qp.r):SequenceOfElemType;

define sp(q.p.r) -a (q apr p) join r;

theorem SynLowSeq3.
all t.qrlm ( LtoR(t)-sp(qlr) and Control(l)=Syn and m in r
imp Seq(m) > Seq(l) );

theorem SynLowSeq4,
all tq.rl.m ( LtoR(t)=sp(q,1,r) and Control(l)-Syn and m in r

and Control(m)~2Reset
imp Seq(m) > Seq(1) ):

Figure 2.4: Refinement of a lemma (in Affirm)

some of the lemmas, it became apparent that historical reference would be necessary.-that is, we had

to formulate properties that explicitly referred to both current and previous states of the system. In

our previous work with Affirm we had developed a method for using event sequences as the state

parameter of the system to support such historical reference [Schw 81]. Theorem WasSyn3 is of this

sort, stating that if the current state has a Syn packet in the medium, there must have been an earlier

state when an Active Open was done to generate the Syn packet. Ina Jo directly supports statements

relating values before and after a sinale transform with the "constraint" construct. The same

approach of using an event sequence as major state variable could be used in FDM to deal with more

distant historical reference, but this seems foreign to its explicit abstract machine orientation.

The proof effort that finally succeeded had several components. At the lowest level, an explicit

event sequence specification in Affirm was used to prove lemma WasSyn3 and several other lemmas

relating the sequence numbers of Syn and Ack packets in transit to one another and to the nodes.

These lemmas were then used to prove GoodAck and GoodSynAck lemmas, which did not require

historical reference and hence could be defined in terms of the specification without event sequence

state variables. This definition directly corresponds to the Ina Jo model. For comparison, the main
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theorem (and one other simple property) were then proved in both Affirm and ITP from these lemmas.

Our final remarks on verification will be a comparison of these proofs.

2.3.2 Proof Examples

First we shall look at a simple property, which states that when a node is in states Synsent or

SynReceived, its Sequence-Number-To-Send state variable is one greater than its Oldest-Unacked

state variable (i.e., it has sent a Syn packet with sequence number X, which has yet to be

acknowledged, and the next packet will carry sequence number X + 1).

The FDM ITP transcript for this criterion is shown in Appendix I. Note that Ina Jo creates a separate

theorem for each transform, plus one for the initial conditions. User commands follow the "." prompt

at the start of a line. We have used the list command to show the initial theorems (in the contradiction

form) produced by ITP (all lines numbered X.1-Y). The form of the theorem for the initial conditions is

(initial conditions)
and not (criterion to be proved)

which is just the contradiction of (initial conditions) imry (criterion). The form for

each transform is

(criterion before transform)
and (effects of transform)
and not (criterion after transform)

Since each theorem is already in contradiction form, it must be shown false, not true.

For this simple property, all the proof commands to ITP involve selection of cases, substitutions to

perform, and simplifications that must be requested explicitly (the "prove" command allows a

component of some previous line, such as Boolean 1 (the true side of an implication), to be selected

as a subcase). No lemmas are used, and about 25 commands are needed. In addition to the

transcript, ITP produces a file of the commands used, shown (edited) at the end of Appendix I as a

summary of the proof.

Note that only those lines affected by a proof step are output as new results by ITP. Previous

results remain available by reference to their line numbers. Corollaries are also automatically

generated whenever possible (all lines with a "-" in their number). The explanation for each result

appears at the end of the line along with references to any lines from which it was derived. Each new

subcase (or theorem) requested adds one more decimal point to the line numbers until it is proved.
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Level Theorems

1 Synci

2 LSTS. GoodAck, GoodSyn

3 RSeqToRcvBig, RSeqSame, S2

4 SynLowSeq. SeqsGrow, SeqToSendBig

5 WasSyn, NextPkt, SeqToSendGrows

declare t,u: TCP5;
declare p.1: Packet;
declare q,r: QueueOfPacket;
declare e:. Event

theorem Synci,
LState( t)=ESTABLISHED
imp LSeqToSend(t)=RSeqToRcv(t) and LSeqToRcv(t)=RSeqToSend(t):

theorem GoodAck,
p in RtoL(t) and Control(p)=Ack and Ack(p)=LOldUnack(t)+1

and Seq(p)=LSeqToRcv(t) and LState(t)*SYNRECEIVED
imp Seq(p)=RSeqToSend(t) and Ack(p)=RSeqToRcv(t);

theorem GoodSynAck,
p in RtoL(t) and Control(p)=SynAck and Ack(p)-LOldUnack(t)+1

and LState(t)aSYNSENT
imp Seq(p)+1=RSeqloSend(t) and Ack(p)xRSeqToRcv(t);

theorem RSeqToRcvBig,
p in RtoL(t) and Control(p)=Ack
imp Seq(p) <= RSeqToSend(t) and Ack(p) <- RSeqloRcv(t);

theorem S2, RSeqToRcv(t) <= LSeqroSend(t);

theorem RSeqSame.
LState(t) z SYNSENT and p in RtoL(t) and Control(p) - Ack

and Ack(p) x LSeqToSend(t) and Seq(p) a Seq(Front(RtoL(t)))+1
and Control(Front(RtoL(t))) z Syn

imp Seq(p) - RSsqToSend(t);

theorem SynLowSeq,
LtoR(t) a sp(q,1,r) and Control(1) a Syn and m in r

and Control(m) -- Reset
imp Seq(m) > Seq(l);

Figure 2*5: Lemma hierarchy for three. way handshake proof (in Affirm)
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theorem SeqToSendGrows,
LSeqToSend(t apr *) >- LSeqToSend(t)):

theorem SeqsGrowl. all uq.l,r,m (LtoR(u) - sp(q. 1. r)
and Control(l) -a Reset
and m in r and (Control(m) -a Reset)

imp Seq(m) > Seq(l) );

theorem WasSyn3,
LtoR(t) a sp(q,l,r) and Control(l) a Syn
imp C(t.q.1));

define C(t,q,l)--
some uv (t-sp(u,LActiveOpen,v) and LState(u)-CLOSED and LtoR(u)-q

and LSeqToSend(u)-Seq(l)-1 and LSeqToSend(u apr LActiveOpen)-Seq(l)+1);

theorem NextPkt4.
LtoR(t apr e) = LtoR(t) or D(t,e));

define D(te) az
some m (LtoR(t apr e) = LtoR(t) apr m

and (Control(m) - Reset
or (Seq(m) <= LSeqToSend(t apr e)

and LSeqToSend(t) <= Seq(m)));

theorem SeqToSendBig.
m in LtoR(t)
imp Control(m)sReset or Seq(m) <- LSeqToSend(t);

Figure 2.5: Lemma hierarchy for three-way handshake proof (in Affirm) (continued)

The edited Affirm proof transcript for this same property is shown in Appendix II. Several automatic

simplification features have been turned on, and then an initial command to use induction is given

(line 81). (User commands are on the sequentially numbered lines after the U: prompt.) The system

then completes the proof largely on its own, generating a case for each event in the induction schema

for the type and simplifying the resulting expressions to TRUE in all but one case (where the user

must request expansion of a definition). Then a proof summary is requested, showing the sequence

of steps used in the proof, including those generated automaticaliy. In the Affirm transcript, the

complete theorem is rewritten after each proof step, not just the affected lines as in ITP. This can

produce a lengthier and less relevant transcript, although production of all corollaries in ITP seems to

even things out again. Specific expressions to operate on must be identified in Affirm by name (e.g.,

the invoke command) and perhaps by instance(s) rather than by line number.

Appendix III shows the proof of the main synchronization property in ITP. The first step is to read in

the four lemmas needed from a file in "library mode" and to defer their proofs. Then each theorem to

be proved is listed and appropriate substitutions, subcases, simplifications, and lemma instantiations

are directed. The resulting proof is over 500 lines long, and it should be emphasized that this is a

"clean" version, with all necessary lemmas already discovered and false paths eliminated.
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The equivalent proof in Affirm is shown in Appendix IV. After the property to be proved and the

necessary lemmas are read in, induction is requested. Much as in the ITP proof, this process yields a

case for each event. However, Affirm is able ., complete the first four cases automatically, yielding a

shorter transcript. (In other proofs, ITP might proceed more automatically.) Note that the lemmas

required in the two substantial cases (Ack and SynAck) are the same in both proofs, although the

order of application varies. The end of the transcript shows the proof tree in summary form.

2.4 SUMMARY

It was indeed convenient to write state transition type specifications in Ina Jo, so long as only

relatively simple data types were needed. The translation from Affirm specifications to Ina Jo or vice

versa is quite straightforward for the type of specifications used. The No Change operator and default

were useful abbreviations. Terse operator syntax reduced understandability by relatively new users

but was felt by some exper 'enced users to be advantageous.

Efforts to construct formal mappings from service level to protocol level for the Alternating Bit

protocol were unsuccessful because a nondeterministic mapping was required to represent the faulty

medium. Ina Jo supports only the fixed mapping of a higher level transform into lower level

transforms. However, this is a common weakness of most systems supporting formal mapping. In

other kinds of systems the mapping constructs (where they are applicable) have proved quite useful.

The proof process in Ina Jo is more specialized; induction and proof by contradiction are built into

the specification processor and ITP, which produce theorems to be proved false. Our experience

with Affirm shows that in some cases invariants can be usefully simplified before induction is

employed, eliminating identical steps in each induction case. In the ITP, the proof-by-contradiction

method proved a convenient way to break down proofs into components. The subcase selection

commands were also well developed. Automatic generation of corollaries was a mixed blessing.

since many were not used, but those that were used came for "free."

A serious shortcoming in Ina Jo is the requirement that all lemmas to be used in a proof be

introduced before the proof is started or proved at their point of introduction. This makes the kind of

,, nof development process that is inevitably necessary in a complex system highly frustrating and

tedious. This is all the more true since there is no effective way to "replay" the commands of a

previous proof effort other than by retyping them.
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The FDM ITP is less polished than Affirm's, with occasional abends, unhelpful error messages, and

not-so-pretty printing of results. In our experience, simplification of results is not as automatic as in

Affirm, typically requiring more explicit substitute- and simplify-type commands to complete a proof.

However, it is not clear that this would be true for other examples. The user is obliged to specify

explicit line numbers of previous results to be used in a proof step. necessitating a hardcopy output

device for effective use of the system. There is no capability to jump around the proof tree, trying

different branches for a while (proof must proceed linearly), and backup and history listing facilities

are rather crude.

I L
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3. GYPSY

Our main interest in Gypsy was its orientation toward buffer history type specifications with no

explicit internal state variables. We also hoped to exploit the modular proof capabilities of Gypsy so

that only those portions of a proof affected by changes would have to be redone.

3.1 BACKGROUND

Gypsy is a Pascal-based language with extensions supporting concurrent processing and program

verification [Good 78, GoDi 81]. The language encourages program modularity by forbidding global

variables. All interprocedural communication must take place through parameters. A procedure may

start up the parallel execution of other procedures. These processes may communicate only through

shared message queues, called buffers. A process may send a message to or receive a message

from a buffer and will block if the buffer is full or empty, respectively.

To allow verification that a program performs the task it is supposed to perform, assertions may be

attached to each procedure. An entry assertion must hold whenever the procedure is invoked; an exit

assertion must hold whenever the procedure terminates; and a blockage assertion must hold

whenever execution of the procedure is blocked waiting to send to or receive from a buffer. Gypsy

enforces modular specifications by requiring that these external assertions not refer to internal

variables of the procedure; instead, they must be expressed in terms of the procedure's parameters.

A procedure is proved to meet its external specification by the standard inductive assertion

method. Every loop must contain an assertion which holds every time it is encountered during

program execution. A verification condition (VC) generator follows every path through the program

from one assertion to another, generating VCs which, if true, ensure that the procedure meets its

specification. If the VC generator encounters a procedure call along some path, that procedure's

entry condition must be checked and its exit assertion may then be assumed. When an operation is

encountered which could cause the procedure to block, a VC is generated saying that if the operation

blocks, then the procedure's blockage assertion holds.

The VC generator can prove only trivial VCs by itself. Others are left for the human user to prove

with the assistance of the Gypsy theorem prover. The prover performs expression simplification

automatically, but most other tasks (such as substitution of equalities, case splitting, and chaining on

implications) are best done with human guidance. (There is a command which instructs the prover to

try these techniques on its own, but the command doesn't usually work effectively until the last few

steps of the proof.) The user may introduce lemmas at any point in the proof.
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Specifications for Gypsy programs involving concurrent processes usually contain assertions

about the sequences of messages that the processes send to or receive from their message buffers.

Gypsy supports the user in making and proving statements about these buffer histories. There is no

support, however, for histories of another sort--those of program states- -so in general it is impossible

to make assertions about liveness properties in Gypsy. For this reason, we considered only safety

properties in our specifications of the Alternating Bit and three-way handshake protocols.

Unlike the other systems we worked with, which require nonprocedural formulations of

specifications, Gypsy encourages the user to write specifications as programs, at least for concurrent

systems. This is because the way to specify a multiprocess system in Gypsy is to define an overall

procedure with the individual processes in a Cobegin statement and their interconnecting buffers

specified as parameters (see below). Then the VC generator automatically manages the details of

building theorems about a parallel program from the assertions describing the behavior of each

component process.

Gypsy was developed at the University of Texas and runs on a DEC TOPS-20 2 system under ELISP.

3.2 ALTERNATING BIT PROTOCOL

Our specification of the Alternating Bit protocol followed that of DiVito (Divi 811 and will be only

briefly described here. We wrote it to practice using the Gypsy system but did not prove the protocol

completely. The detailed specification appears in Appendix V. The program texts of DiVito's and our

specifications are quite similar; we-differ in the way our assertions are stated. DiVito defined

predicates which abstracted the notions of proper transmission and proper reception, whereas we

expressed these notions as conjunctions of several properties which were more concrete. Gypsy

seemed equally easy to use with either approach for a protocol as simple as this one. (For the

three-way handshake protocol, though, we found that defining predicates to represent complex

boolean expressions not only made the specification easier to read but improved the performance of

the VC generator.)

We defined a packet to contain a one-bit sequence number and a message field. The main

procedure starts the concurrent execution of the sender process, the receiver process, the sender.to-

receiver medium process for message traffic, the receiver-to-sender process for acknowledgments,

and a timer process. The transmission media are allowed to lose packets, but they may not reorder or

duplicate them.

2DEC and TOPS-20 ae trademarks of Digital Equipment Corporation.

kL -- L- ' . . . . . . . . I i 1 i , " II . . . . .
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The protocol was modeled as a nonterminating program--new messages could always appear in

the sender's input queue. For this reason, we stated the protocol service property as a blockage

condition. The property says that whenever a process is blocked, all messages taken from the

sender's input queue appear in the same order in the receiver's output queue, with the possible

exception of the last message, which might still be in transit.

Attempting to prove this property taught us our first lessons about Gypsy. We found that we could

not write some of the blockage assertions for the sender and receiver procedures without first writing

their program text, because until we knew when the processes could block, we didn't know what had

to be true at those times. We also learned that Gypsy does not support proof by induction; we discuss

this further below. Otherwise, we found Gypsy quite adequate for specifying and proving this simple

data transfer protocol.

3.3 THREE-WAY HANDSHAKE

3.3.1 The Specification

The three-way handshake, being more state-oriented than the Alternating Bit protocol, presented

us with difficult specification and proof problems. Because of our limited time, we simplified the

protocol in several ways:

. Only one "connection" between a fixed pair of users is considered--there is no
addressing.

- All packets in the system belong to the current incarnation.
* Nodes never retransmit packets.
* Each of the two nodes receives exactly one active or passive open command before any
messages are sent. Note that we still allow the case where both nodes receive active
opens.

* Sequence numbers are monotonically increasing, unbounded integers.

In this section we summarize our specification; the full specification appears in Appendix VI.

The main procedure Protocol sets up the two nodes, the two communications media (one for

packet traffic in each direction), and the buffers linking them as shown in Figure 3-1. (Ignore the exit

assertion and associated node parameters shown in Appendix VI for now.)

Each node is started with an arbitrary initial sequence number for packets to be sent and a

command to perform (an active or a passive open).
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Figure 3-1: Diagram of the Protocol procedure

The underlying medium is assumed to be defined in a lower protocol layer. We use the property

that any message delivered is one that was sent, with no guarantee that packets sent are delivered or

that they are delivered in order with no duplications. Since we are not considering liveness, we need

no other assumptions about the medium.

procedure Medium(var packetsin packetbuff<input>;
var packetsout packetbuff<output> )

begin
exit all p : packet,

p in outto(packetsoutmyid) -> p in infrom(packets_in,myid):
pending;

end; { Medium }

The Node procedure initially acts on the active or passive open with which it was called. It then

repeatedly receives and acts on packets until it enters the established state. To keep the proof

manageable (see the section on Complexity Limitation below), the details of packet processing in

each different state are given in a separate procedure.

3.3.2 Complications

Exit vs. Block

When we attempted to state the protocol service property we wanted to prove, we found that we

had to introduce some extra variables and statements into the program. We wished to show that

when the nodes are in the established state, the sequence number of the next packet each node will

send is the sequence number the other node expects to receive.

We first had to decide whether this property should be stated as an exit assertion or 'A blockage

assertion of the Protocol procedure. As a blockage assertion, it would have to hold every time one of

the medium or node processes blocked. Because the program contains many sends to buffers, there
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are many ways the processes could block, but in only a few would both nodes be in the established

state. This would cause many VCs to be generated, VCs which, while simple for us to prove, would

not be recognized as trivial by the Gypsy VC generator. We felt that since there are many ways to

block, but only one way to exit, casting the service property as an exit assertion would be more

convenient. To do this, we had to force the medium processes to terminate once the nodes reached

the established state. An extra boolean field, Vislast, was added to each packet. (The prefix V

indicates the field is there for verification purposes only.) This field is normally false; but once a node

is ready to exit, it sends an extra packet with the field true to the medium that receives its messages.

When the medium receives this packet, it too exits.

Extra Variables

When we tricJ to state the service property, which relates the sequence numbers the nodes expect

to send and receive, we encountered another problem. Because Gypsy forbids the exit assertion of

the Protocol procedure from talking about variables defined in that procedure, we found it necessary

to introduce the additional parameters VLseqno, VLackno, VRseqno, and VRackno to carry the

necessary information. Just before the nodes exit, they set these parameters.

Complexity Limitation

In the loop in the Node procedure, where it is decided what action to take based on the current

state and the incoming packet, we originally wrote one large case statement discriminating on the

state, with each arm being a case statement on the input packet. We felt that the specification was

more readable with the decision logic all in one place. With this organization, though, there were

about 25 paths through the loop. We discovered that the VC generator could not handle this many

paths, so we were forced to put the code in separate procedures (e.g., dosynsent). This meant

restating the actions to be taken in the algebraic form required for exit assertions. Since Gypsy,

unlike Ina Jo, has no abbreviated notation for "no change to these variables," the exit assertions were

in fact more complex than the original program text.

3.3.3 Verification

Our biggest problem in the verification of the protocol was that since the protocol was originally

presented as a state transition machine, we kept looking at proof techniques which modeled state

exploration methods. At first, we were stumped because there was no way outside of the Node

procedure to refer to the state variables of a node. Eventually we realized that we could derive the

values of those state variables from the buffer histories of the node's input and output. We still

thought that in our proof we would have to consider the states of both nodes together, exploring the

large space formed by the cross product of each node's states. Fortunately, we found we could

-.L . . .
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formulate two properties (described below) that enabled us to prove the correctness of the nodes'

interaction, leaving us with the now simplified task of proving a node's behavior correct independent

of other processes.

Correctness of the Nodes' Interaction

The VC generated for the Protocol procedure is (after a little simplification using a lemma about

buffer properties) two instances of the following lemma, one for each direction of packet flow:

lemma mainlemma(oseql, iseql, oseq2, iseq2 : packetseq) =
[ estab = mystateof(oseqliseql) and
estab - mystateof(oseq2.iseq2) and
seqnotosendprop(oseqli. iseql) and
seqnotorcvprop(oseq2, iseq2) and
[ all p : packet, p in iseq2 -> p ;n oseql ]

] ->
seqnotosendof(oseql,iseql) = seqnotorcvof(oseq2,iseq2);

The function mystateof(oseq,iseq) yields thc major state (e.g., estab) of a node whose input bufter

history is iseq and whose output history is oseq. The functions seqnotosendof and seqnotorcvof

similarly give the next sequence number the node would send and the next sequence number it

expects to receive. Seqnotosendprop and seqnotorcvprop are the two properties mentioned above.

Their exact specification is given at the end of Appendix VI.

The property seqnotosendprop states that if the node is in a state where it has sent a syn packet,

then all syn packets it has sent have the same sequence number and the next sequence number to

send is one greater than that number.

The property seqnotorcvprop says that if the node is in a state where a good syn has been

received, then for some syn packet which has been received, the next sequence number to expect is

one more than the number of that packet.

The proof of the main lemma appears in Appendix VII as a demonstration of the Gypsy prover.

Correctness of a Single Node

The exit property we wished to prove about the Node procedure says that the node is in the

established state and the auxiliary parameters Vseqno and Vackno are set to the next sequence

number to send and the next one to receive, respectively. These assertions must be made in terms of

the histories of the node's input and output buffers. To prove this property, we insert an inductive

assertion into the main loop of the procedure. The assertion states that the values of the internal

variables are the values that could be deduced from the buffer histories.
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procedure Node( ... ) =
begin
exit

estab mystateof(outto(outbuff,myid),infrom(inbuff.myid)) and
Vseqno = seqnotosendof(outto(outbuff,myid),infrom(inbuff,myid)) and
Vackno = seqnotorcvof(outto(outbuff,myid),infrom(inbuff,myid));

{ initialization }

( main loop }
loop
assert
mystate = mystateof(outto(outbuffmyid),infrom(inbuff,myid)) and
seqnotosend a seqnotosendof(outto(outbuff,myid),infrom(inbuff,myid)) and
oldestunack = oldestunackof(outto(outbuffmyid),infrom(inbuff,myid)) and
seqnotorcv = seqnotorcvof(outto(outbuff,myid),infrom(inbuff,myid));
if mystate estab then

leave
end;
receive pin from inbuff;
( make a state transition )

end; ( loop I

Vseqno seqnotosend;
Vackno seqnotorcv;
end; { Node )

This formulation requires us to prove approximately 100 lemmas about the state transitions (4

conjuncts each for about 25 transitik.is).

As an example, one of the lemmas is

synrcvd = mystateof(oseq,iseq) and
pin.op ack and
pin.seqno = seqnotorcvof(oseq,iseq) and
pin.ackno = 1 + oldestunackof(oseq,iseq)

-> estab a mystateof(oseq, iseq <: pin) { "(:" means concatenate )

To prove this lemma within the Gypsy system, we must define the function mystateof precisely. The

easiest way to do this seems to be to restate the transition function:
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function mystateof(oseq, iseq : packetseq) : nodestate
begin
exit (assume
... and
[ mystate(oseq,nonlast(iseq)) = synrcvd and
last(iseq).op = ack and
last(iseq).seqno = seqnotorcv(oseq,nonlast(iseq)) and
last(iseq).ackno = 1 + oldestunackof(oseq,nonlast(iseq))

-> result = estab
J and

end;

Therefore, proving the node behaves properly means proving that this functional representation is

equivalent to the program text representation of the state transition definition. We did not have time

to do this part of the proof, but we foresee no problems here other than coping with tedium.

Correctness of seqnotosendprop and seqnotorcvprop

It appeared to us that these properties would require a proof by induction on sequences of state

transitions. The Gypsy prover does not understand about induction, but the VC generator makes

implicit use of induction when generating VCs for programs with loops. We devised a scheme which

lets us use the VC generator to structure a proof by induction.

As an example, suppose we wish to prove that the size of any sequence is nonnegative:

lema size-lemma(s : packetseq) =
size(s) ge 0;

(At one time the Gypsy theorem prover did not have this fact built in.) We would reformulate this

lemma as a function whose body is a program containing a loop:

lemma size-lemma(s packetseq) =
sizeprop(s);

function sizeprop(s packetseq) boolean =
begin
exit result = [ size(s) ge 0 );
var t : packetseq :z s;
loop
assert size(s) ge size(t);
if t z null(packetseq) then
leave

end;
t :a nonlast(t);

end;
end;
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The VC generated by performing one iteration of the loop is

size(s) ge size(t) and t ne null(packetseq)
-> size(s) go size(nonlast(t))

which is the induction step needed to prove the lemma.

In the case of the properties seqnotosendprop and seqnotorcvprop, the loop in the Node

procedure itself was used for the induction, since that loop goes through all possible state transitions.

Relaxing the Simplifications

Our specification assumed that each node received exactly one open command before any packets

were received. If we removed this restriction so that open commands could arrive at any time, we

would have to introduce incarnation numbers into packets in order to tell which connection requests

they corresponded to. Statements involving sequence numbers would have to take these incarnation

numbers into account. To make assertions about a node's behavior, we would have to be able to talk

about the order in which open commands and packets arrived; Gypsy has ways of expressing the

merger of histories of more than one buffer. We expect that a proof of this protocol would still use the

properties seqnotosendprop and seqnotorcvprop, with incarnation numbers considered along with

sequence numbers. We do not believe any other major properties would need to be discovered to

complete the proof.

3.4 COMMENTS ON THE GYPSY THEOREM PROVER

Once we had some practice, we found the Gypsy theorem prover moderately easy to use. We were

able to invent lemmas in the middle of a proof, with the choice of proving them immediately or

deferring their proof until after the main theorem was proved. The prover, when instructed to

substitute equalities, usually guessed the correct direction of the substitution; when it was wrong, we

could easily tell it to substitute the other way. Techniques such as proof by contradiction and case

splitting were built in.

We did run into a number of annoying deficiencies, however. The prover did not produce a proof

tree at the end of a proof; we had to wade through transcripts to recall what steps we had taken,

weeding out the false ones by hand. Proofs had to be completed in one sitting; there was no way to

save the state of the proof, log off, and come back later to complete it. We were also continually

frustrated at the gaps in the prover's understanding of built.in types; some properties of sequences,

for example, were automatically used by the simplifier, while others had to be explicitly introduced

and proved.



26

3.5 SUMMARY

By its restrictions on interprocedural communication, Gypsy encourages its users to develop

modular specifications. At times, however, we felt that Gypsy imposed a little too much modularity.

The prohibition against global variables sometimes required the introduction of extra variables in

order to state properties to be verified. For protocols with many states, we found that the requirement

that our exit assertions be written in terms of buffer histories forced us to restate in functional form

the state transitions which had already been expressed as program text.

The implementation of Gypsy is continually being improved. We noticed that some of its limitations

vanished during the course of our research. At this writing, those remaining include the absence of a

recorded proof tree, the inability to interrupt and resume a proof, and the inconvenience of

performing inductive proofs.

The major limitation of Gypsy for protocol specification and verification is that liveness properties

cannot even be stated, much less verified.
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4. STATE DELTA

Our major interest in the State Delta system was its ability to perform symbolic execution to

accomplish proofs without user guidance. This was very attractive after our often tedious experience

with interactive provers. We were also interested in testing whether the explicit time bounds

supported in state deltas would facilitate proofs and allow the handling of progress properties as well

as safety.

Because the State Delta system was in an early prototype state of development and hence was

rather cumbersome and difficult to use, our experiments were quite limited. First we give some

background; then we discuss the results of these limited efforts.

4.1 BACKGROUND

The State Delta system developed at USC/Information Sciences Institute includes a specification

language and a symbolic execution system and simplifier for carrying out proofs [Croc 77]. The initial

system covered only a single sequential process, but recent extensions to "concurrent state deltas"

(CSDs) have been made by Overman [Over 81, OvCr 82]. The basic unit of specification is a CSD

which gives a precondition, a postcondition, a read list, a mod list, and time bounds. The meaning of

this CSD is that if the precondition ever becomes true, then at some future time within the specified

time bounds the postcondition will be true, and in the interim only the variables on the read list will be

referenced and only those on the mod list will be modified. There is also a Wait construct, which

specifies a delay until either a given condition is satisfied or some maximum time transpires, with

postconditions for either case.

Higher level specifications are themselves CSDs. Proof proceeds by determining which lower level

CSDs are enabled (have true preconditions) from the preconditions of the high-level CSD and then

symbolically executing all the low-level CSDs, keeping track of time and generating all possible

interleavings of CSDs that are simultaneously completed in different processors. Any conflict in the

use of shared variables is noted, and the proof succeeds if the symbolic execution necessarily leads

to a state satisfying the high-level CSD's postconditions (and read list, mod list, and time bounds).

Unlike the previous proof systems, which are interactive, the symbolic execution is completely

automatic and requires no user aid. In practice, however, system resources are exhausted for

specifications of any complexity, and the user must provide some appropriate intermediate CSDs to

force pruning of the proof tree (identical states reached on different branches are not recognized
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unless explicitly entered as intermediate CSDs). Induction is not directly supported and must also be

introduced explicitly if needed, for example, via a loop CSD.

The CSD system was developed at USC/Information Sciences Institute and runs on a DEC

TOPS-20 system under Interlip.

4.2 ALTERNATING BIT PROTOCOL

Overman has already done some preliminary work on a simplified version of the Alternating Bit

protocol. Figures 4.1 through 4-3 (from [Over 81]) show the state variables needed and the CSDs for

Sender and Receiver processors. The "PC" terms in pre- and postconditions refer to the "major

state" (or program counter) of each process. Note that the medium has been incorporated as CSD

SB in the Sender and SB in the Receiver (with delay range between MINDELAY and MAXDELAY) to

reduce the number of separate processes. In these CSDs, message loss is limited to MAXLOSS

consecutive times to guarantee progress (otherwise the execution tree would clearly be infinite,

including an unbounded number of message loss and retransmission events).

I--->1 Sdata I --->

1--->l Sseq

INPUT ------------ OUTPUT
--->1 Sender 1--->l SReadyflag I<-->I Receiver I--->

I<---I Rseq < - - - I

1<-->l RReadyflag 1<---I I

Figure 4-1: CSD Alternating Bit protocol block diagram

All CSDs other than SB are given time zero except the Sender's retransmission interval (SC), which

is a Wait construct with maximum time TIMEOUT. The "io" clause is a special construct introduced

to model interaction with the external environment or users.
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SA (CSD pro: (.SenderPC-A)
read: (INPUT)
mod: (SMessage SenderPC)
procs: (Sender)
10: (INPUT)
post: (#SMessagou. INPUT #SenderPCaB)
time: 0]

SB [CSD pre: (.SenderPC=B)
read: (Slost)
mod: (SenderPC)
procs: (Sender)
post: ((if .UNDEFINED=TRUE or .Slost go MAXLOSS then #SenderPC=Bt

else #SenderPCwBf))
time: (RANGE MINDELAY MAXDELAY)]

SBt [CSD pro: (.SonderPC=Bt)
road: (Sf~essage SendSeqNo)
mod: (Sdata Ssoq SReadyflag Slost SenderPC)
procs: (Sender)
post: (#Sdatam.SMessago #Sseq=.SeqidSeqNo #SReadyflag=TRUE #Slost=O

#SenderPC=C)
time: 0]

SBf [CSD pro: (.SenderPC=Bf)
read: (Slost)
mod:. (Slost SenderPC)
procs: (Sender)
post: (#Slost=.Slost+l #SenderPC=C)
time: 0]

SC [WAIT pro: (.SenderPC=C)
exp: .RReadyflagzTRUE
mod: (SenderPC)
procs: (Sender)
thenpost: (#SenderPC=Ct)
elsepost: (#SenderPC:B)
read: (RReadyflag)
time: TIMEOUT]

SCt [CSD pre: (.SenderPCzCt)
read: (Rseq SendSeqNo)
mod: (RRoadyflag SendSeqNo SenderPC)
procs: (Sender)
post: (#RReadyflag-FALSE

(if .Rseq=.SendSeqNo then #SendSeqNos-.SendSeqNo
and #SenderPC=A

else #SendSeqNo=.SendSeqNo and #SenderPCzB))
time: 0)

Figure 4.2: CSDs for the Sender



RA [WAIT pro: (.ReceiverPC-A) 
3

exp: .SRoadyflagaTRUE
mod: (ReceiverPC SReadyflag ReceivedSoqNo)
procs: (Receiver)
thenpost: (#SReadyflag-FALSE #ReceivedSeqNox.Sseq

(if .ExpectedSeqNou.Sseq then #ReceiverPC:At
else #ReceiverPCaB))

read: (SReadyf'lag Sseq ExpectedSeqNo)J

RAt [CSD pro: (.ReceiverPCuAt)
read: (Sdata ExpectedSeqNo)
mod: (OUTPUT ExpectedSeqNo ReceiverPC)
procs: (Receiver)
io: (OUTPUT)
post: (#OUTPUT-.Sdata ffExpectedSeqNou-.ExpectedSeqNo #ReceivorPC=B)
time: 0)

RB [CSD pre: (.ReceiverPCzB)
read: (Riost)
mod: (RecoiverPC)
procs: (Receiver)
post: ((if .UNDEFINED-TRUE or .Rlost go MAXLOSS then #ReceiverPC=Bt

else #ReceiverPC=Bf))
time: (RANGE t4INDELAY MAXOELAY))

RBt (CSD pro: (.ReceiverPC=Bt)
read: (ReceivodSeqNo)
mod: (Rseq RReadyflag Riost ReceiverPC)
procs: (Receiver)
post: (#Rseqz.ReceivedSeqNo #RReadyflag=TRUE #Rlost=O #ReceiverPC=A)
time: 0]

RBf [CSD pro: (.ReceiverPC-Bf)
road: (Riost)
mod: (Riost RoceiverPC)
procs: (Receiver)
post: (#Rlostm.Rlost~l #ReceiverPC-A)
time: 0]

Figure 4-3: CSDs for the Receiver

For a simple case, MAXLOSS - 1 and TIMEOUT > MAXDELAY were assumed, so that at most one

message was ever active in the system. The correctness property for this simple case states that if

the system starts with properly synchronized state variables, it will return to the same state but with

one message forwarded (indicated by the "io" part of the CSD). (A "." before a variable means its

value when the CSD starts, and a " #" means its value when it ends.)
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[CSD SPECI
pre: (.SenderPC=A .ReceiverPC=A .SReadyflag=FALSE .RReadyflag=FALSE

.SlostzO .Rlost=O .SendSeqNo=.ExpectedSeqNo)
read: (SenderPC ReceiverPC SReadyflag RReadyflag ReceivedSeqNo Sdata

ExpectedSeqNo INPUT Slost Rost SNessage Sseq Rseq SendSeqNo)
mod: (SenderPC ReceiverPC SReadyflag RReadyflag ReceivedSeqNo Sdata

ExpectedSeqNo OUTPUT Slost Rlost SMessage Sseq Rseq SendSeqNo)
procs: (Sender Receiver)
io: (INPUT OUTPUT)
post: (#SenderPCzA #ReceiverPC=A #SReadyflag=FALSE #RReadyflag=FALSE

#Slost=O #Rlost=O #SendSeqNo=#ExpectedSeqNo)
time: (RANGE 20MINDELAY 5"MAXDELAY+3*TIMEOUT)]

The proof for this case (shown in Appendix VIII) was accomplished automatically in a few minutes

of CPU time and is discussed further in [Over 81 ].

The assumptions were then relaxed, first to allow an arbitrary value of MAXLOSS. This value

required us to develop an induction CSD for the Sender and Receiver, stating that either transmission

succeed or the loss counter be decremented by one each time an attempt was made to transmit a

message or acknowledgment. The time limit on retransmission was then relaxed to allow

retransmission while another message might still be under way. This significantly increased the

asynchrony of the system ard again required development of induction CSDs as well as several other

intermediate states of the system. The correct formulation of these intermediate-level CSDs was a

difficult process, requiring much ingenuity to see what was necessary and tedious refinement to get

the formulation just right. Details are given in [Over 81].

4.3 THREE-WAY HANDSHAKE

Our main efforts in the State Delta system were with the three-way handshake protocol. An

automatic reachability analysis seemed particularly attractive here because of similar work (done

manually) by Sunshine in his Ph.D. dissertation [Suns 75].

One difficulty in specification stemmed from the requirement that exactly one state delta be active

at any time. Hence simultaneous user and network inputs were not allowed, so it was necessary to

start each side with a user command (active or passive open) and then allow only network inputs.

Our initial specification was an attempt to directly translate an abstract machine model into CSDs.

There were four processors: S and its mirror image, T, for the TCP nodes, and a medium in each

direction. Each CSD corresponded to a transition in an abstract machine model and hence was

defined to take zero time (except for the medium). There was one Wait construct, which each
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processor executed while awaiting input. The medium was assumed perfect, so no CSD was needed

for retransmission in the nodes.

The symbolic execution of this specification ran for over four hours of CPU time without

completing. Despite the lack of message loss or retransmission, there are many branches in the

execution tree resulting from different interleavings of processors in the simultaneous Active Open

case: The execution trace showed a depth of 14 interleavings before the final state was reached on

one path!

Our first improvement was to eliminate the explicit processors for the media and to put the message

transmission wait into each TCP node, as for the Alternating Bit protocol. The resulting specification

(for one side) is shown in Appendix IX. (Note that this is the output of a "pretty printer" for the CSDs,

which must actually be input as LISP S expressions.) Thus to send messages, a Wait construct

(smed) was added to the node, causing it to wait until the other node had an empty input buffer. This

limitation reduced the number of possible messages outstanding to one in each direction, which was

adequate for this example and greatly reduced the possible interleavings, so that a complete proof

tree was successfully generated in about one hour of CPU time (with a maximum depth of seven).

Note that the property to be proved is itself a CSD, stating that if both TCP nodes start in the

CLOSED state with user Open commands in their input buffers, and the media are empty, then the

system will reach the ESTABLISHED state with properly synchronized sequence numbers:

[CSD SPEC
pre: (.SState=Closed .TState=Closed

.SIn.type=ActiveOpen and .TIn.type=PassiveOpen or

.SIn.type=ActiveOpen and .TIn.type=ActiveOpen

.SSendFlag=False .TSendFlag=False .MstBuf.type=Empty

.MtsBuf. type=Empty)
procs: (S T)
post: (#SState=Established #TState=Established

#SSeqToReceive=#TSeqToSend #TSeqToReceive=#SSeqToSend)]

Even one hour of CPU time was still too much, so our next refinement was to identify an

intermediate state that appeared on many execution branches and to break the overall CSD into two

corresponding halves. This intermediate state (for the s multaneous Active Open case) has both

nodes in the SynReceived state with properly sequenced Ack messages abo.. io be sent:

(SState-SynReceived SBuf.type=Ack SSendFlag=TRUE Sin.type=Empty
SBuf.seq=SSeqToSend=SMaxval+1=TSeqToReceive SOdUnack=SMaxval
SBuf.ack=SSeqToReceive TBuf.ack=TSeqToReceive
TState-SynRecelved TBuf.type=Ack TSendFlag=TRUE TIn.type=Empty
TBuf.seq=TSeqToSend=TMaxval+1=SSeqToReceive TO1dUnack=TMaxval)
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This refinement effectively eliminated duplicate paths in the lower part of the tree so that the proof

could be completed in a total of 14 minutes (8 minutes for the first half up to this intermediate state,

whose proof is shown in Appendix X, and 6 minutes for the second half).

Our next step was to use the queue data type (which had just been added to the system) for the

media and to introduce the possibility for message loss (all sending CSDs) and retransmission (CSD

sz). The resulting specification is shown in Appendix XI. Predicates have been introduced as

abbreviations for the more complex expressions now required in the CSDs. Message loss is limited to

MAXLOSS consecutive times, as in the Alternating Bit protocol.

An initial proof attempt of this new specification with MAXLOSS equal to 1 and retransmission

timeout greater than all other CSD times ran for over 2 hours without completing even the simple

Active/Passive opening case. With MAXLOSS equal to 0 (perfect media) and retransmissions limited

to one per message sent, a proof completed in 90 minutes. Once again we identified an intermediate

state of the system and broke the proof into two halves, as follows:

(SState=SynSent SIn.type=(ENQUEUE NULLQUEUE SynAck)
SIn.seq=(ENQUEUE NULLQUEUE TMaxval) SIn.ack=(ENQUEUE NULLQUEUE SMaxval+l)
SSeqToSend=SMaxval+l=TSeqToReceive S0ldUnack=SMaxval
SPending.type=Syn SPeiding.seq=SMaxval SPending.ack=O
TState=SynReceived TSeqToSend=TMaxva1+1 TOldUnack=TMaxval
TPending.type=SynAck SPending.seq=TMaxval TPending.ack=TSeqToReceive
(TIn.type=NULLQUEUE TIn.seq=NULLQUEUE TIn.ack=NULLQUEUE)
or (TIn.type=(ENQUEUE NULLQUEUE Syn)STimeoutFlag=FALSE TTimeoutFlag=FALSE

SIn.seq=(ENQUEUE NULLQUEUE SMaxval) SIn.ack=(ENQUEUE NULLQUEUE 0))

Using this intermediate state, the proof for the simple Active/Passive case was accomplished in

seven plus seven minutes. Unfortunately, when we tried to reintroduce message loss, the proof again

became unworkable, and lack of time precluded further refinements.

4.4 DISCUSSION

The CSD system is the only one to include time bounds and hence to be able to deal with progress,

concerns simultaneously with safety. If a proof succeeds, it shows that the goal is reached in the

specifed time (if any), not merely that the goal may be reached. The time bounds may also be used

effectively to eliminate paths from the execution tree that would otherwise have to be considered

(e.g., specifying that retransmission interval is greater than transmission delay). However, the

inclusion of time bounds also complicates the symbolic execution and so is not always practical.



The basic flavor of CSD specifications is quite different from an abstract machine with atomic

events separated by long periods when nothing happens. With state deltas. the events have a definite

duration and the atomic points in time are their completion/commencement. State variables may

change values during a CSD, since only their values at its completion are specified. Since the

symbolic execution traces give the sequence of CSD completions, it is difficult to compare them with

the state reachability graphs of conventional abstract machine models.

Another limitation of CSDs is the requirement that exactly one CSD be firable at any moment within

a single processor. This causes difficulties in modeling nondeterministic behavior such as the

condition when both a user input and a message from the network are queued for processing by an

entity.

The CSD system is in an early stage of development and hence is still rather clumsy to use. There

is little documentation, and only the system's implementors are really capable of using it. The

specification language is simply LISP expressions with a particular form required, so input of

specifications is rather painful. If a small portion of the specification is changed, there is no capability

to determine which portions of previous proofs might be unaffected and thus avoid repeating them.

For simple cases, where the CSD system can complete a proof automatically, it is clearly superior

to interactive provers. This is particularly relevant for the state reachability type of properties

important in the three.way handshake. The difficulty of proving the simple (no loss or retransmission)

case with CSDs was much less than with the systems based on invariant properties. However, when

behavior becomes more complex, a great deal of human ingenuity is still required to formulate

successful intermediate.level CSDs, many having the form of invariant properties that must be proved

by induction. In this case, the kind of insight needed and the difficulty with all the proof systems

becomes similar.
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5. CONCLUSIONS

Two results of our experience with automated verification systems are clear: None of the systems

has all the features desired, and none of them is ready for routine or mpchanical application to

real-world protocols. All of the interactive systems lack ability to complete seemingly simple or similar

portions of a proof themselves, while symbolic execution in the CSD system shows promise in this

dimension. All of the systems except Gypsy are missing the capability to omit redoing portions of a

proof unaffected by small changes in the specifications or theorems. Affirm omits proof by

contradiction, while FDM insists on it. Only Affirm supports induction directly. FDM lacks the ability

to introduce lemmas on the fly, as they are needed in the course of a proof.

With the exception of the 2SD system, none of the systems is able to handle progress or liveness

properties very well. And despite much effort to provide support, hierarchical verification (e.g., of a

formal service specification rather than just a set of plausible properties) remains quite difficult for

protocols because of their nondeterministic error-recovery mechanisms. Certainly none of the

systems has integrated the kind of performance or even probabilistic concerns [Yemi 82] necessary

to go beyond functional correctness of protocols.

If we tried to rank the systems by their ease of use and maturity, Affirm would be a clear first, with

Gypsy and FDM in a second category and CSD a distant third.

It should be noted that our experience and hence conclusions were colored by our emphasis on

verification of protocol designs (i.e., specifications) rather than code. Affirm is particularly strong in

this area, while Gypsy and FDM are oriented more toward development and proof of operational code

and include features for these purposes that were not fully exercised by our experiments.

Our experience confirms the fact known to verification experts, but not widely appreciated by

others, that the major contribution of automated verification systems is NOT to reduce the amount of

human ingenuity required to accomplish a proof but rather to increase the certainty of correctness. If

the user has the ingenuity to formulate the problem in a tractable fashion and the stamina to follow

through all the tedium, the formally verified conclusion does seem to be far more reliably correct than

that of hand proofs. Thus some useful results, albeit at high cost, can be obtained from current

automated verification systems in analyzing features of real-world protocols.

A number of useful improvements identified in the course of this research have already been

incorporated into several of the systems. We feel that the field as a whole shows sufficient promise
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that more widespread and routine formal verification of protocol designs may be feasible within a few

years if research into automated verification continues to be supported. Whether the best features of

different systems can be combined into one more successful system remains a tantalizing question.
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I. FDM ITP PROOF TRANSCRIPT (EDITED) FOR SIMPLE LEMMA

Notes:

Commands follow the "." prompt and end with the "I" prompt:
List (line number range)
Simplify (line)
Substitute (into line from lines)
Instantiate (line with expression)
Prove (subcomponent of line)
Theorem (expression)
Contradiction (line numbers)

.".. as line number signifies the most recent line.

SDC'S INTERACTIVE THEOREM PROVER, RELEASE 11.351
ENTER LIBRARY MODE
.1eavel

LEAVE LIBRARY MODE

THEOREM FROM LEVEL MECHANISM FOR: INITIAL CONDITIONS
READY FOR INPUT 48.1-12

.1 0-1 *-12!
48.1-1 LState = CLOSED (48.1) 'AND SPLIT'
48.1-2 RState = CLOSED (48.1) 'AND SPLIT'
48.1-3 LSeqToSend = 0 (48.1) 'AND SPLIT'
48.1-4 LSeqToRcv a 0 (48.1) 'AND SPLIT'
48.1-5 LOldUnack = 0 (48.1) 'AND SPLIT'
48.1-6 RSeqToSend = 0 (48.1) 'AND SPLIT'
48.1-7 RSeqToRcv = 0 (48.1) 'AND SPLIT'
48.1-8 ROldUnack - 0 (48.1) 'AND SPLIT'
48.1-9 RtoL= NIL (48.1) 'AND SPLIT'
48.1-10 LtoR NIL (48.1) 'AND SPLIT'
48.1-11 LState a SYNSENT I LState = SYNRECEIVED (48.1) 'AND SPLIT'
48.1-12 LSeqToSend -z LOldUnack+1 (48.1) 'AND SPLIT'

.subst 0-11 *-1.11
48.2 CLOSED = SYNSENT I CLOSED = SYNRECEIVED (48.1-11 48.1-1)

SUBSTITUTION(48. 11L)
48.2-1 False (48.2) SIMPLIFICATION

48 NOT PRINTED 'Q.E.D.'

THEOREM FROM LEVEL MECHANISM FOR: LACTIVEOPEN
READY FOR INPUT 49.1-10

.1 *-1 "-1I

49.1-1 LState z SYNSENT I LState = SYNRECEIVED -> LSeqToSend LOldUnack+1
(49.1) 'AND SPLIT'

49.1-2 (LState z CLOSED
z> N" LState a SYNSENT & N" LSeqToSend a LSeqToSend+2



38

& N" LtoR =LtoR;.MakePkt(O, 0, Syn) & N" LOldUnack a LSeqToSend+1
0 N" IState z LState & N" LSeqToSend - LSeqToSend & N" ItoR z LtoR

& N" LOldUnack z LOldUnack) (49.1) 'AND SPLIT'
49.1-3 N" RtoL a RtoL (49.1) 'AND SPLIT'
49.1-4 N" ROldUnack a ROldUnack (49.1) 'AND SPLIT'
49.1-5 N" RSeqToRcv z RSeqToRcv (49.1) 'AND SPLIT'
49.1-6 N" RSeqToSend aRSeqToSend (49.1) 'AND SPLIT'
49.1-7 N" RState z RState (49.1) 'AND SPLIT'
49.1-8 N" LSeqToRcv x LSeqToRcv (49.1) 'AND SPLIT'
49.1-9 N" LState z SYNSENT IN" LState = SYNRECEIVED (49.1) 'AND SPLIT'
49.1-10 N" LSeqToSend - N" LOldUnack+1 (49.1) 'AND SPLIT'

.p 0-2 Bi!
49.2.1 LState -- CLOSED (9 2) ASSUME
49.2.2 AND NOT PRINTED (49.2.1 49.1-B 49.1-7 49.1-6 49.1-5 49.1-4 49.1-3

49.1-2) 'SIMPLIFIED EFFECT'
49.2.2-1 N" LState = LState (49.2.2) 'AND SPLIT'
49.2.2-2 N" LSeqToSend -LSeqToSend (49.2.2) 'AND SPLIT'
49.2.2-3 N" LtoR z LtoR (49.2.2) 'AND SPLIT'
49.2.2-4 N" LOldUnack = LOldUnack (49.2.2) 'AND SPLIT'
49.2.3 False (49.1-1 49.2.2-4 49.2.2-2 49.2.2-1 49.1-9 49.1-10)

'SIMPLIFIED NEW CRITERION'
49.2 LState z CLOSED (49.2.3) 'Q.E.D.'
49.3 AND NOT PRINTED (49.2 49.1-8 49.1-7 49.1-6 49.1-5 49.1-4 49.1-3 49.1-2)

'SIMPLIFIED EFFECT'
49.3-1 N" LState x SYNSENT (49.3) 'AND SPLIT'
49.3-2 N" LSeqToSend z LSeqToSend+2 (49.3) 'AND SPLIT'
49.3-3 N" LtoR = LtoR;.MakePkt(0. 0, Syn) (49.3) 'AND SPLIT'
49.3-4 N" LOldUnack z LSeqToSend+1 (49.3) 'AND SPLIT'

.subst .1-10 *-2.l.*-4.l!
49.4 LSeqToSend+2 - LSeqToSend+1+1 (49.1-10 49.3-2 49.3-4)

SUBSTITUTION(49.3-2L, 49.3-4L)
49.4-1 False (49.4) SIMPLIFICATION

49 NOT PRINTED 'Q.E.D.'

THEOREM FROM LEVEL MECHANISM FOR: LPASSIVEOPEN
READY FOR INPUT 50.1-14

.1 0-12 0-14!
50.1-12 N" LState z SYNSENT I N" LState =SYNRECEIVED (50.1) 'AND SPLIT'
50.1-13 N" LSeqToSend -a N" LOldUnack+1 (50.1) 'AND SPLIT'
50.1-14 LSeqroSend - LOldUnack+l (50.1-9 60.1-11 50.1-13) 'NEW SUBSTITUTION'

.p 0-2 Bi!
50.2.1 LState - CLOSED (9 2) ASSUME
50.2.2 N' LState zLState (50.2.1 50.1-11 50.1-10 50.1-9 50.1-8 50.1-7

50.1-6 50.1-5 50.1-4 50.1-3 50.1-2) 'SIMPLIFIED EFFECT'
50.2.3 LState a SYNSENT I LState z SYNRECEIVED (50.1-14 50.1-9 50.1-11

50.2.2 50.1-12 50.1,13) 'SIMPLIFIED NEW CRITERION'
.si .1-1!

50.2.4 False (50.1-14 50.2.3 50.1-1) SIMPLIFICATION
50.2 LState z CLOSED (50.2.4) 'Q.E.D.'
50.3 N" LState * LISTEN (50.2 50.1-11 50.1-10 50.1-9 50.1-8 50.1-7 50.1-6

50.1-5 50.1-4 50.1-3 50.1-2) 'SIMPLIFIED EFFECT'
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.subst .1-12 0.1!
50.4 LISTEN z SYNSENT ILISTEN=SYNRECEIVED (50.1-12 50.3)SUBSTITUTION(50.3L)
50.4-1 False (50.4) SIMPLIFICATION

50 NOT PRINTED -Q.E.D.-

THEOREM FROM LEVEL MECHANISM FOR: LRCVRESET
READY FOR INPUT 51.1-13

.1 *-11 0-13!
51.1-11 N" LState -SYNSENT I N" LState aSYNRECEIVED (51.1) 'AND SPLIT'
51.1-12 N" LSeqToSend -- N" LOldUnack+1 (51.1) 'AND SPLIT'
51.1-13 LSeqToSend - LOldUnack.1 (51.1-8 51.1-10 51.1-12) 'NEW SUBSTITUTION'

.p *-2 Bi!
51.2.1 RtoL = NIL I RtoL.1.Op -- Reset (18 1) ASSUME
51.2.2 AND NOT PRINTED (51.2.1 51.1-10 51.1-9 51.1-8 61.1-7 51.1-6 51.1-5

51.1-4 51.1-3 51.1-2) 'SIMPLIFIED EFFECT'
61.2.2-1 N" RtoL =RtoL (51.2.2) 'AND SPLIT'
51.2.2-2 N" LState =LState (51.2.2) 'AND SPLIT'
51.2.3 LState -SYNSENT I LState aSYNRECEIVED (51.1-13 51.1-8 51.1-10

51.2.2-2 51.1-11 51.1-12) 'SIMPLIFIED NEW CRITERION'
.si .1-1!
51.2.4 False (51.1-13 51.2.3 51.1-1) SIMPLIFICATION

51.2 AND NOT PRINTED (51.2.4) 'Q.E.D.'
51.2-1 RtoL -cNIL (51.2) 'AND SPLIT'
51.2-2 RtoL.1.Op xReset (51.2) 'AND SPLIT'
51.3 AND NOT PRINTED (51.2-2 51.2-1 51.1-10 51.1-9 51.1-8 51.1-7 51.1-6

51.1-5 51.1-4 51.1-3 51.1-2) 'SIMPLIFIED EFFECT'
51.3-1 N" RtoL z RtoL:2 (51.3) 'AND SPLIT'
51.3-2 (LState aSYNSENT & LAckTest I LState -~ SYNSENT & LState -mLISTEN &

LSeqTest
=> N" LState c CLOSED 0> N" LState LState) (51.3) 'AND SPLIT'

.p *-2 BI!
51.4.1 AND NOT PRINTED (9 2 36 2 38) ASSUME
51.4.1-1 LState -~SYNSENT I-LAckTest (51.4.1) 'AND SPLIT'
51.4.1-2 LState =SYNSENT ILState =LISTEN I -LSeqTest (51.4.1)'AND SPLIT'
51.4.2 N" LState LState (51.4.1-2 51.4.1-1 51.3-1 51.3)'SIMPLIFIED EFFECT'
51.4.3 LState c SYNSENT I LState c SYNRECEIVED (51.1-13 51.1-8 51.1-10

51.4.2 51.1-11 51.1-12) 'SIMPLIFIED NEW CRITERION'
.si .1-1!
51.4.4 False (51.1-13 51.4.3 51.1-1) SIMPLIFICATION

51.4 LState a SYNSENT & LAckTest ILState -c SYNSENT & LState -gLISTEN

& LSeqTest (51.4.4) 'Q.E.D.'
51.5 N" LState = CLOSED (51.4 51.3-1 51.3) 'SIMPLIFIED EFFECT'

51.6 CLOSED aSYNSENT I CLOSED aSYNRECEIVED (51.1-11 51.5)SUBSTITUTION(51.51)
51.6-1 False (51.6) SIMPLIFICATION

51 NOT PRINTED 'Q.E.D.'

THEOREM FROM LEVEL MECHANISM FOR: LRCVACK
READY FOR INPUT 52.1-11
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52.1-B N" LSeqToSend = LSeqToSend (52.1) 'AND SPLIT'
52.1-9 N" LState = SYNSENT IN" LState = SYNRECEIVED (52.1) 'AND SPLIT'
52.1-10 N" LSeqToSend -~ N" LOldL~nack+1 (52.1) 'AND SPLIT'
52.1-11 LSeqToSend -=N" LOldUnack+1 (52.1-8 52.1-10) 'NEW SUBSTITUTION'

.p 0-2 Bi!
52.2.1 RtoL =NIL IRtoL.1.Op - Ack (18 1) ASSUME
52.2.2 AND NOT PRINTED (52.2.1 52.1-8 52.1-7 52.1-6 52.1-5 52.1-4 52.1-3

52.1-2) 'SIMPLIFIED EFFECT'
52.2.2-1 N" RtaL =RtoL (52.2.2) 'AND SPLIT'
52.2.2-2 N" LOldUnack aLOldUnack (52.2.2) 'AND SPLIT'
52.2.2-3 N" LState = LState (52.2.2) 'AND SPLIT'
52.2.2-4 N" LtoR = LtoR (52.2.2) 'AND SPLIT'
52.2.3 False (52.1-1 52.2.2-2 52.1-8 52.2.2-3 52.1-9 52.1-10) 'SIMPLIFIED

NEW CRITERION'
52.2 AND NOT PRINTED (52.2.3) 'Q.E.D.-
52.2-1 RtoL - NIL (52.2) 'AND SPLIT'
52.2-2 RtoL.1.Op =Ack (52.2) 'AND SPLIT'
52.3 AND NOT PRINTED (52.2-2 52.2-1 52.1-8 52.1-7 52.1-6 52.1-5 52.1-4

52.1-3 52.1-2) 'SIMPLIFIED EFFECT'
52.3-1 N" RtoL =RtoL:2 (52.3) 'AND SPLIT'
52.3-2 (IState =SYNRECEIVED & LAckTest & LSeqlest

0> N" LOldUnack =LOldUnack+1 & N" LState = ESTABLISHED
0 N" LOldUnack LOldUnack & N" LState =LState) (52.3) 'AND SPLIT'

52.3-3 N" LtoR
LState = CLOSED I LState = LISTEN ILState a SYNSENT & -LAckTest

I LState = SYNRECEIVEO2 & LSeqTest & -LAckTest
=> LtoR;.MakePkt(RtoL.1.Ack, 0, Reset)
0 (LState = SYNRECEIVEiD & -LSeqTest

0 LtoR;.MakePkt(LSeqToSend, LSeqToRcv, Ack) 0> LtoR))
(52.3) 'AND SPLIT'

.p 0-2 B11
52.4.1 LState - SYNRECEIVED I-LAckTest I -LSeqTest (9 2 36 38) ASSUME
52.4.2 AND NOT PRINTED (52.3-3 52.4.1 52.3-1 52.3) 'SIMPLIFIED EFFECT'
52.4.2-1 N" LOldUnack = LOldUnack (52.4.2) 'AND SPLIT'
52.4.2-2 N" LState =LState (52.4.2) 'AND SPLIT'
52.4.3 False (52.1-1 52.4.2-1 52.1-8 52.4.2-2 52.1-9 52.1-10) 'SIMPLIFIED

NEW CRITERION'
52.4 AND NOT PRINTED (52.4.3) 'Q.E.D.'
52.4-1 LState =SYNRECEIVED (52.4) 'AND SPLIT'
52.4-2 LAckTest (52.4) 'AND SPLIT'
52.4-3 LSeqTest (52.4) 'AND SPLIT'
52.5 AND NOT PRINTED (52.4-3 52.4-1 52.4-2 52.3-1 52.3) 'SIMiPLIFIED EFFECT'
52.5-1 N" LOldUnack a LOldUnack+1 (52.5) 'AND SPLIT'
52.5-2 N" IState a ESTABLISHED (52.5) 'AND SPLIT'
52.5-3 N" LtoR z (LState a CLOSED ILState = LISTEN

0> LtoR;.MakePkt(RtoL.1.Ack, 0. Reset) 0> LtoR) (52.5) 'AND SPLIT'

.subst .1-9 0-2.11
52.6 ESTABLISHED a SYNSENT I ESTABLISHED -z SYNRELEIVED (52.1-9 52.5-2)

SUBSTITUTION( 52. 5-2L)
52.6-1 False (52.6) SIMPLIFICATION

52 NOT PRINTED -Q.E.D.'

THEOREM FROM LEVEL MECHANISM FOR: RCVSYN
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READY FOR INPUT 53.1-8

.1 -6 0-81
53.1-6 N" RState z RState (53.1) 'AND SPLIT'
53.1-7 N" LState z SYNSENT IN" LState =SYNRECEIVED (53.1) 'AND SPLIT'

53.1-8 N" LSeqToSend - N" LOldUnack+1 (53.1) 'AND SPLIT'

-p *-2 81!I
53.2.1 RtoL a NIL I RtoL.1.Op -a Syn (18 1) ASSUME
53.2.2 AND NOT PRINTED (53.2.1 53.1-6 53.1-5 53.1-4 53.1-3 53.1-2)

'SIMPLIFIED EFFECT'
53.2.2-1 N" RtoL = RtoL (53.2.2) 'AND SPLIT'
53.2.2-2 N" LSeqToSend =LSeqToSend (53.2.2) 'AND SPLIT'
53.2.2-3 N" LOldUnack =LOldUnack (53.2.2) 'AND SPLIT'
53.2.2-4 N" LSeqToRcv = LSeqToRcv (53.2.2) 'AND SPLIT'
53.2.2-5 N" LState aLState (53.2.2) 'AND SPLIT'
53.2.2-6 N" LtoR z LtoR (53.2.2) 'AND SPLIT'
53.2.3 False (53.1-1 53.2.2-3 53.2.2-2 53.2.2-5 53.1-7 53.1-8) 'SIMPLIFIED

NEW CRITERION'
53.2 AND NOT PRINTED (53.2.3) 'Q.E.D.-
53.2-1 RtoL - NIL (53.2) 'AND SPLIT'
53.2-2 RtoL.1.Op z Syn (53.2) 'AND SPLIT'
53.3 AND NOT PRINTED (53.2-2 53.2-1 53.1-6 53.1-5 53.1-4 63.1-3 63.1-2)

'SIMPLIFIED EFFECT'
53.3-1 N" RtoL =RtoL:2 (53.3) 'AND SPLIT'
53.3-2 N" LSeqToSend (LState =LISTEN => LSeqToSend+2 0> LSeqToSend)

(53.3) 'AND SPLIT'
53.3-3 N" LOldUnack =(LState =LISTEN 0) LSeqToSend+1 0> LOldUnack)

(53.3) 'AND SPLIT'
53.3-4 N" LSeqToRcv *(LState =LISTEN I LState z SYNSENT

=> RtoL.1.SEQ+1 0 LSeqToRcv) (53.3) 'AND SPLIT'
53.3-5 N" LState = (LState - LISTEN I LState = SYNSENT

z> SYNRECEIVED 0) LState) (63.3) 'AND SPLIT'
53.3-6 N" LtoR
m ( LState a SYNSENT 0) LtoR;.MakePkt(LSeqToSend, RtoL.I.SEQ.1, Ack)

0> (LState a LISTEN => LtoR;.MakePkt(LSeqToSend+1, RtoL.1.SEQ+1. SynAck)
0> (LState aCLOSED => LtoR;.MakePkt(O, RtaL.I.SEQ#1. Reset)

0> LtoR))) (53.3) 'AND SPLIT'

.t LState-LISTEN!
53.4.1 LState a LISTEN (9 2) ASSUME
53.4.2 AND NOT PRINTED (53.4.1 53.3-1 53.3) 'SIMPLIFIED EFFECT'
53.4.2-1 N" LSeqToSend =LSeqToSend42 (53.4.2) 'AND SPLIT'
53.4.2-2 N" LOldUnack =LSeqToSend+i (53.4.2) 'AND SPLIT'
53.4.2-3 N" LSeqToRcv z RtoL.I.SEQ41 (53.4.2) 'AND SPLIT'
53.4.2-4 N" LState - SYNRECEIVED (53.4.2) 'AND SPLIT'
53.4.2-6 N" LtoR
*(LState a SYNSENT 0> LtoR;.MakePkt(LSeqToSend, RtaL.1.SEQ.1. Ack)
0 LtoR;.MakePkt(LSoqToSend*1, RtoL.1.SEQ.I, SynAck)) (53.4.2) 'AND SPLIT'

subit .1-a8 112l
53.4.3 LSoqToSend+2 -m LSeqToSend+1+1 (53.1-8 53.4.2-1 53.4.2-2)

SUBSTITUTION( 53.4.2-IL, 53.4.2-2L)
53.4.3-I False (53.4.3) SIMPLIFICATION

53.4 IStato -a LISTEN (53.4.3-1) 'Q.E.D.'
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53.5 AND NOT PRINTED (53.4 53.3-1 53.3) 'SIMPLIFIED EFFECT'
53.5-1 N" LSeqToSend LSeqToSend (53.5) 'AND SPLIT'
53.5-2 N" LOldUnack sLOldUnack (53.5) 'AND SPLIT'
53.5-3 N" LSeqToRcv =(LState = SYNSENT => RtoL.1.SEQ+1 0) LSeqToRcv)

(53.5) 'AND SPLIT'
53.5-4 N" LState =(LState = SYNSENT => SYNRECEIVED 0> LState) (53.5)

53.5-5 N" LtoR 'AND SPLIT'

-(LState a SYNSENT 0 LtoR;.MakePkt(LSeqToSend, RtoL.I.SEQ+1. Ack)
0> (LState = CLOSED => LtoR;.MakePkt(0. RtoL.1.SEQ+l. Reset) 0> LtoR))

(53.5) 'AND SPLIT'
53.6 LSeqToSend - LOldUnack+1 (53.1-7 53.5-2 53.5-1 53.1-8) 'SIMPLIFIED

NEW CRITERION'
.t LState-=SYNSENT!
53.7.1 LState =SYNSENT (9 2) ASSUME
53.7.2 AND NOT PRINTED (53.7.1 53.5-2 53.5-1 53.5) 'SIMPLIFIED EFFECT'
53.7.2-1 N" LSeqToRcy = RtoL.1.SEQ+l (53.7.2) 'AND SPLIT'
53.7.2-2 N" LState = SYNRECEIVED (53.7.2) 'AND SPLIT'
53.7.2-3 N" LtoR z LtoR;.MakePkt(LSeqToSend, RtoL.1.SEQ+1, Ack) (53.7.2)

'AND SPLIT'
.s1 .1-1!
53.7.3 False (53.6 53.7.1 53.1-1) SIMPLIFICATION

53.7 LState - SYNSENT (53.7.3) 'Q.E.D.'
53.8 AND NOT PRINTED (53.7 53.5-2 53.5-1 53.5) 'SIMPLIFIED EFFECT'
53.8-1 N" LSeqToRcv = LSeqToRcy (53.8) 'AND SPLIT'
53.8-2 N" IState =LState (53.8) 'AND SPLIT'
53.8-3 N" LtoR =(LState cCLOSED 0) LtoR;.MakePkt(0. RtoL.1.SEQ+1. Reset)

0) LtoR) (53.8) 'AND SPLIT'
.su .1-7 *-2.1!
53.9 LState aSYNSENT I LState = SYNRECEIVED (53.1-7 53.8-2)

SUBSTITUTION( 53. 8-2L)
53.9-1 LState 2 SYNRECEIVED (53.7 53.9) SIMPLIFICATION

.si .1-1!
53.10 False (53.6 53.9-1 53.7 53.1-1) SIMPLIFICATION

53 NOT PRINTED 'Q.E.D.'

THEOREM FROM LEVEL MECHANISM FOR: LRCVSYNACK
READY FOR INPUT 54.1-11

.1 0-9 0-111
54.1-9 N" LState a SYNSENT I N" LState zSYNRECEIVED (54.1) 'AND SPLIT'
54.1-10 N" LSeqToSend -m N" LOldUnack+1 (54.1) 'AND SPLIT'
54.1-11 LSeqToSend -=N" LOldUnack+1 (54.1-8 54.1-10) 'NEW SUBSTITUTION'

.p 0-2 Bi!
54.2.1 RtoL a NIL IRtoL.1.Op -a SynAck (18 1) ASSUME
54.2.2 AND NOT PRINTED (54.2.1 54.1-8 54.1-7 54.1-6 54.1-5 54.1-4 54.1-2)

'SIMPLIFIED EFFECT'
54.2.2-1 N" RtoL a RtoL (54.2.2) 'AND SPLIT'
54.2.2-2 N" LOldUnack a LOldUnack (64.2.2) 'AND SPLIT'
54.2.2-3 N" LState a IState (54.2.2) 'AND SPLIT'
54.2.2-4 N" LSeqToRcv a LSeqToRcv (54.2.2) 'AND SPLIT'
54.2.2-5 N" LtoR a LtoR (54.2.2) 'AND SPLIT'
54.2.3 False (54.1-1 54.2.2-2 54.1-8 54.2.2-3 54.1-9 54.1-10) 'SIMPLIFIED

NEW CRITERION'
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54.2 AND NOT PRINTED (54.2.3) 'Q.E.D.'
54.2-1 RtoL -= NIL (54.2) 'AND SPLIT'
54.2-2 RtoL.1.Op = SynAck (54.2) 'AND SPLIT'
54.3 AND NOT PRINTED (54.2-2 54.2-1 54.1-8 54.1-7 54.1-6 54.1-5 54.1-4

54.1-2) 'SIMPLIFIED EFFECT'

54.3-1 N" RtoL = RtoL:2 (54.3) 'AND SPLIT'

54.3-2 (LState = SYNSENT & LAckTest z> N" LOldUnack - LOldUnack+1
& N" LState = ESTABLISHED & N" LSeqToRcv = RtoL.l.SEQ+1

> N" LOldUnack = LOldUnack & N" LState LState & N" LSeqToRcv=LSeqToRcv)
(54.3) 'AND SPLIT'

54,3-3 (LState = CLOSED I LState m LISTEN I LState - SYNSENT & -LAckTest
I LState = SYNRECEIVED & LSeqTest & -LAckTest

=> N" LtoR = LtoR,.MakePkt(RtoL.1.Ack, 0, Reset)
> (LState SYNRECEIVED I LState = ESTABLISHED) & -LSeqTest

I LState x SYNSENT & LAckTest
=> N" LtoR LtoR;.MakePkt(LSeqToSend, N" LSeqToRcv, Ack)
0 N" LtoR LtoR) (54.3) 'AND SPLIT'

.p 0-2 81!
54.4.1 LState -= SYNSENT I -LAckTest (9 2 36) ASSUME
54.4.2 AND NOT PRINTED (54.4.1 54.3-1 54.3) 'SIMPLIFIED EFFECT'
54.4.2-1 N" LOldUnack = LOldUnack (54.4.2) 'AND SPLIT'

54.4.2-2 N" LState = LState (54.4.2) 'AND SPLIT'
54.4.2-3 N" LSeqToRcv = LSeqToRcv (54.4.2) 'AND SPLIT'
54.4.2-4 (LState = CLOSED I LState = LISTEN J LState = SYNSENT & -LAckTest

I LState = SYNRECEIVED & LSeqlest & -LAckTest
=> N" LtoR = LtoR;.MakePkt(RtoL.1.Ack, 0, Reset)
<> (LState = SYNRECEIVED I LState = ESTABLISHED) & -LSeqTest

=> N" LtoR = LtoR;.MakePkt(LSeqToSend, N" LSeqToRcv, Ack)
0 N" LtoR = LtoR) (54.4.2) 'AND SPLIT'

54.4.2-5 (LState = CLOSED I LState = LISTEN I LState = SYNSENT & -LAckTest
I LState = SYNRECEIVED & LSeqTest & -LAckTest

=> N" LtoR = LtoR:.MakePkt(RtoL.1.Ack, 0, Reset)
0 (LState = SYNRECEIVED I LState = ESTABLISHED) & -LSeqTest

=> N" LtoR LtoR;.MakePkt(LSeqToSend, LSeqToRcy, Ack)
0 N" LtoR = LtoR) (54.4.2-3 54.4.2-4) 'NEW SUBSTITUTION'

54.4.3 False (54.1-1 54.4.2-1 54.1-8 54.4.2-2 54.1-9 54.1-10) 'SIMPLIFIED
NEW CRITERION'

54.4 AND NOT PRINTED (54.4.3) 'Q.E.D.'
54.4-1 LState = SYNSENT (54.4) 'AND SPLIT'
54.4-2 LAckTest (54.4) 'AND SPLIT'
54.5 AND NOT PRINTED (54.4-2 54.4-1 54.3-1 54.3) 'SIMPLIFIED EFFECT'
54.5-1 N" LOldUnack x LOldUnack+1 (54.5) 'AND SPLIT'
54.5-2 N" LState = ESTABLISHED (54.5) 'AND SPLIT'
54.5-3 N" LSeqToRcv = RtoL.I.SEQ+l (54.5) 'AND SPLIT'
54.5-4 (LState = CLOSED I LState = LISTEN

=> N" LtoR = LtoR;.MakePkt(RtoL.1.Ack, 0. Reset)
<> N" LtoR = LtoR:.MakePkt(LSeqToSend, N" LSeqToRcv, Ack)) (54.5)

'AND SPLIT'
.subst .1-9 0-2.1!
54.6 ESTABLISHED = SYNSENT I ESTABLISHED = SYNRECEIVED (54.1-9 54.5-2)

SUBSTITUTION(54.5-2L)
54.6-1 False (54.6) SIMPLIFICATION
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54 NOT PRINTED 'Q.E.D.-

Command log for proof of Lemmal
{event labels in () added manually)

LEAVE!
(initial)

SIJRST 48.1-11 48.1-1.Ll
(active open)

PROVE 49.1-2 81!
SVBST 49.1-10 49.3-2AL 49.3-4.L!

(passive open)
PROVE 50.1-2 81!

SIMPLIFY 50.1-1!

(reset)
PROVE 51.1-2 Bi!
SIMPLIFY 51.1-1!
PROVE 51.3-2 Bi!
SIMPLIFY 51.1-1!
SUBST 51.1-11 61.5.L!

(ack)
PROVE 52.1-2 81!
PROVE 52.3-2 81!
SUBST 52.1-9 52.4.2-2.L!

(syn)
PROVE 53.1-2 81!
THEOREM LState - LISTEN!
SUBST 53.1-8 53.4.2-1.L 53.4.2-2.L!
THEOREM LState - SYNSENT!
SIMPLIFY 53.1-1!
SLJBST 53.1-7 63.8-2.L!
SIMPLIFY 53.1-1!

(sy nck)
PROVE 54.1-2 Bi!
PROVE 54.3-2 81!
SUBSI 54.1-9 54.5-2.L!
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II. AFFIRM PROOF TRANSCRIPT (EDITED) FOR SIMPLE LEMMA

62 U: profile autocases=Tell;
AutoCases: Tell

64 U: profile AutoINvokeIH=Tell;
AutoInvokelH: Tell

65 U: profile autonext=Tell;
AutoNext: Tell

78 U: theorem LSTS,
LState(t)=SYNSENT or LState(t)=SYNRECEIVED imp LSeqToSend(t)=LOldUnack(t)+1;

theorem LSTS, (LState(t) = SYNSENT) or (LState(t) = SYNRECEIVED)
imp LSeqToSend(t) = LOldUnack(t) + 1;

80 U: try LSTS;
LSIS is untried.

all t
( (LState(t) = SYNSENT) or (LState(t) = SYNRECEIVED)

imp LSeqToSend(t) = LOldUnack(t) + 11

81 U: employ Induction(t);
Case Init: Prop(Init) proven.
Case LActiveOpen: all u (IH(u) imp Prop(LActiveOpen(u))) remains to be shown.
Case LPassiveOpen: all u (IH(u) imp Prop(LPassiveOpen(u))) remains to be shown.
Case LRcvReset: all u (IH(u) imp Prop(LRcvReset(u))) remains to be shown.
Case LRcvAck: all u (IH(u) imp Prop(LRcvAck(u))) remains to be shown.
Case LRcvSyn: all u (IH(u) imp Prop(LRcvSyn(u))) remains to be shown.
Case LRcvSynAck: all u (IH(u) imp Prop(LRcvSynAck(u))) remains to be shown.
(LActiveOpen:)

(will raise embedded if-expressions)
(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)

Going to leaf LPassiveOpen:.
(will raise embedded if-expressions)

By the way, this command has generated the following children which already
existed, and which already have proof attempts.
Thus, you are not currently at a leaf.

39 used in the proof of theorem LSTS
(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)
Going to leaf LRcvReset:.
(will raise embedded if-expressions)
(will invoke induction hypothesis IH)
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TRUE
(will go to the next proposition to prove)

Going to leaf LRcvAck:.
(will raise embedded if-expressions)

(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)

Going to leaf LRcvSyn:.
(will raise embedded if-expressions)

(will invoke induction hypothesis IH)

all u
(ll (LState(u) -= SYNSENT) and (LState(u) ~ SYNRECEIVED)

and RtoL(u) -= NewQueueOfPackets

and Control(Front(RtoL(u))) = Syn

and LIorSS(u)
imp (LState(u) = LISTEN) or (LSeqToSend(u) LOldUnack(u) + 1))

82 U: invoke LIorSS;

TRUE
(will go to the next proposition to prove)

Going to leaf LRcvSynAck:.

(will raise embedded if-expressions)

(will invoke induction hypothesis IH)

TRUE

LSTS proved.

No theorems are untried.

No theorems are tried.

No theorems are awaiting lemma proof.

83 U: print proof;

theorem LSTS, (LState(t) = SYNSENT) or (LState(t) SYNRECEIVED)

imp LSeqToSend(t) = LOldUnack(t) + 1;

proof tree:

81:! LSTS
employ Induction(t)

Init:
immediate

81: LActiveOpen:
33 cases

81: 39 invoke IH I all

81: (proven!)

81: LPassiveOpen: (LSTS)

34 cases

81: 39 invoke IH I all

81: (proven!)

81: LRCvReset: {LSTS)
35 cases



47

81: 41 invoke IH Iall

81: (proven!)

36 cases
81: 43 invoke IH Iall
81: (proven!)
81: LRcvSyn: {LSTS)

37 cases
81: 45 invoke IH Iall
82: 46 invoke LIorSS
82: (proven!)
82: LRcvSynAck: {LSTS}

38 cases
82: 48 invoke IH Iall
82:-> (proven!)
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Ill. FDM ITP PROOF TRANSCRIPT (EDITED) FOR MAIN THREE-
WAY HANDSHAKE PROPERTY

(See Appendix I for a list of commands.)

SDC'S INTERACTIVE THEOREM PROVER. RELEASE 11.361
ENTER LIBRARY MODE

1* reading from a file of commands (lemmas) now -- input not shown 0/
50.1 AND NOT PRINTED (9 2 2 10 12) ASSUME
50.1-1 LState =SYNSENT L 1State = SYNRECEIVED (50.1) 'AND SPLIT'
50.1-2 LSeqToSend -=LOldUnack+1 (50.1) 'AND SPLIT'

50 L-State = SYNSENT L-State =SYNRECEIVED -> LSeqToSend = LOldUnack+1 THEOREM

51.1 SOME NOT PRINTED (18 1 38 40 9 2 16 15) ASSUME
51.1-1 AND NOT PRINTED (51.1) 'EXISTENTIAL INSTANTIATION' (P')
51.1-2 P' <<: Packet (51.1-1) 'AND SPLIT'
51.1-3 P' <: RtoL (51.1-1) 'AND SPLIT'
51.1-4 P'.Op =Ack (51.1-1) 'AND SPLIT'
51.1-5 LAckTest (51.1-1) 'AND SPLIT'
51.1-6 LSeqTest (51.1-1) 'AND SPLIT'
51.1-7 L-State SYNRECEIVED (51.1-1) 'AND SPLIT'
51.1-8 P'.Ack -=RSeqToRcv IP'.SEQ -aRSeqToSend (51.1-1) 'AND SPLIT'

51 A" P:Packet(P <: RtoL- & P.Op = Ack & LAckTest & LSeqrest
& L-State = SYNRECEIVED

-> P.Ack = RSeqToRcv & P.SEQ = RSeqToSend) THEOREM

52.1 SOME NOT PRINTED (18 1 38 9 2 16 15) ASSUME
52.1-1 AND NOT PRINTED (52.1) 'EXISTENTIAL INSTANTIATION' (P'')
52.1-2 P'' <<: Packet (52.1-1) 'AND SPLIT'
52.1-3 P'' <: RtoL- (52.1-1) 'AND SPLIT'
52.1-4 P''.Op =SynAck (52.1-1) 'AND SPLIT'
52.1-5 LAckTest (52.1-1) 'AND SPLIT'
52.1-6 L-State =SYNSENT (52.1-1) 'AND SPLIT'
52.1-7 P''.Ack - RSeqToRcv I P''.SEQ+1 -a RSeqToSend (52.1-1) 'AND SPLIT'

52 A" P:Packet(P <: RtoL- & P.Op = SynAck & LAckTest & L-State SYNSENT
-> P.Ack = RSeqToRcv & P.SEQ+1 =RSeqToSend) THEOREM

53.1 AND NOT PRINTED (18) ASSUME
53.1-1 RtoL -~ NIL (53.1) 'AND SPLIT'
53.1-2 RtoL.1 (:RtoL (53.1) 'AND SPLIT'

53 RtoL- - NIL ->RtoL.1 <: Rtol- THEOREM

LEAVE LIBRARY MODE
/0 back to manual entry of commnands1

THEOREM FROM LEVEL MECHANISM FOR: INITIAL CONDITIONS
READY FOR INPUT 54.1-12
.1 0-1 0-121

RWi.D114 JPAZ BUAM-NgOT FID'&D
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54.1-1 LState = CLOSED (54.1) 'AND SPLIT'
54.1-2 RState = CLOSED (54.1) 'AND SPLIT'
54.1-3 LSeqToSend =0 (54.1) 'AND SPLIT'
54.1-4 LSeqToRcv = 0 (54.1) 'AND SPLIT'
54.1-5 LOldUnack = 0 (54.1) 'ANCJ '2IT'
54.1-6 RSeqroSend = 0 (54.1) 'ANL .YLIT' i
54.1-7 RSeqToRcv = 0 (54.1) 'AND SPLIT'
54.1-8 ROldUnack = 0 (54.1) 'AND SPLIT'
54.1-9 RtoL =NIL (54.1) 'AND SPLIT'
54.1-10 LtoR =NIL (54.1) 'AND SPLIT'
54.1-11 LState c ESTABLISHED (54.1) 'AND SPLIT'
54.1-12 LSeqToSend -~ RSer-oRcv I RSeqToSend -LSeqToRcv (54.1) 'AND SPLIT'

54.2 CLOSED = ESTAP' SHED (54.1-11 54.1-1) SUBSTITUTION(54.1-1L)
54.2-1 False (54.2) SIMPLIFICATION

54 NOT PRINTED -Q.E.D.-
SDANGER! LIBRARY THEOREMS NOT PROVED

THEOREM FROM LEVEL MECHANISM FOR: LACTIVEOPEN
READY FOR INPUT 55.1-11

55.1-1 LState =ESTABLISHED -> LSeqToSend = RSeqToRcv & RSeqToSend
=LSeqToRcv (55.1) 'AND SPLIT'

55.1-2 (LState = CLOSED
=> N" LState = SYNSENT & N" LSeqToSend = LSeqToSend42 & N" LtoR

= LtoR;.MakePkt(O, 0, Syn) & N" LOldUnack =LSeqToSend+l
0> N" LState =LState & N" LSeqToSend = LSeqToSend & N" LtoR =LtoR

& N" LOldUnack =LOldUnack) (55.1) 'AND SPLI('
55.1-3 N" RtoL RtoL (55.1) 'AND SPLIT'
55.1-4 N" ROldUnack =ROldUnack (55.1) 'AND SPLIT'
55.1-5 N" RSeqToRcv = RSeqToRcv (55.1) 'AND SPLIT'
55.1-6 N" RSeqToSend = RSeqToSend (55.1) 'AND SPLIT'
55.1-7 N" RState =RState (55.1) 'AND SPLIT'
55.1-8 N" LSeqloRcv = LSeqTaRcv (55.1) 'AND SPLIT'
55.1-9 N" LState =ESTABLISHED (55.1) 'AND SPLIT'
55.1-10 N" LSeqToSend - N" RSeqToRcv I N" RSeqToSend -N" LSeqToRcv (55.1)

'AND SPLIT'
55.1-11 N" LSeqToSend -~ RSeqToRcv I RSeqToSend - LSeqTaRcv (55.1-8 55.1-6

55.1-5 55.1-10) 'NEW SUBSTITUTION'

.p *-2 BI!
55.2.1 LState -m CLOSED (9 2) ASSUME
55.2.2 AND NOT PRINTED (55.2.1 55.1-8 55.1-7 55.1-6 55.1-5 55.1-4 55.1-3

55.1-2) 'SIMPLIFIED EFFECT'
55.2.2-1 N" Lcjtate z LState (55.2.2) 'AND SPLIT'
55.2.2-2 N" LSeqToSend = LSeqToSend (55:2.2) 'AND SPLIT'
55.2.2-3 N" LtoR z LtoR (55.2.2) 'AND SPLIT':
55.2.2-4 N" LOldUnack a LOldUnack (55.2.2) 'AND SPLIT'
55.2.3 False (55.1-1 55.1-8 55.1-6 55.1-5 55.2.2-2 55.2.2-1 55.1-9 55.1-10)

55.2 LState =CLOSED (55.2.3) 'Q.E.D., SMLFE NWCIEIN



51

55.3 AND NOT PRINTED (55.2 55.1-8 55.1-7 55.1-6 55.1-5 55.1-4 55.1-3 55.1-2)
'SIMPLIFIED EFFECT'

55.3-1 N" LState = SYNSENT (55.3) 'AND SPLIT'
55.3-2 N" LSeqToSend = LSeqToSend+2 (55.3) 'AND SPLIT'
55.3-3 N" LtoR = LtoR;.MakePkt(O, 0, Syn) (55.3) 'AND SPLIT'
55.3-4 N" LOldUnack = LSeqToSend+l (55.3) 'AND SPLIT'

.subst .1-9 *-1.1!
55.4 SYNSENT = ESTABLISHED (55.1-9 55.3-1) SUBSTITUTION(55.3-IL)
55.4-1 False (55.4) SIMPLIFICATION

55 NOT PRINTED 'Q.E.D.'
***'* DANGERI LIBRARY THEOREMS NOT PROVED *

THEOREM FROM LEVEL MECHANISM FOR: LPASSIVEOPEN
READY FOR INPUT 56.1-14

.p *-2 BI!
56.2.1 LState -= CLOSED (9 2) ASSUME

56.2.2 N" LState = LState (56.2.1 56.1-11 56.1-10 56.1-9 56.1-8 56.1-7
56.1-6 56.1-5 56.1-4 56.1-3 56.1-2) 'SIMPLIFIED EFFECT'

56.2.3 LState = ESTABLISHED (56.1-14 56.1-10 56.1-6 56.1-5 56.1-11 56.2.2

56.1-12 56.1-13) 'SIMPLIFIED NEW CRITERION'

.si .1-1!
56.2.4 False (56.1-14 56.2.3 56.1-1) SIMPLIFICATION

56.2 LState = CLOSED (56.2.4) 'Q.E.D.'
56.3 N" LState = LISTEN (56.2 56.1-11 56.1-10 56.1-9 56.1-8 56.1-7 56.1-6

56.1-5 56.1-4 56.1-3 56.1-2) 'SIMPLIFIED EFFECT'

.subst .1-12 0.l!
56.4 LISTEN = ESTABLISHED (56.1-12 56.3) SUBSTITUTION(56.3L)
56.4-1 False (56.4) SIMPLIFICATION

56 NOT PRINTED 'Q.E.D.'
*0000 DANGER! LIBRARY THEOREMS NOT PROVED 0***

THEOREM FROM LEVEL MECHANISM FOR: LRCVRESET
READY FOR INPUT 57.1-13

.1 0-1 -13!
57.1-1 LState ESTABLISHED -> LSeqToSend = RSeqToRcv & RSeqToSend

= LSeqToRcv (57.1) 'AND SPLIT'

57.1-2 (RtoL NIL & RtoL.1.Op = Reset
Z> N" RtoL = RtoL:2
& (LState=SYNSENT & LAckTest I LState-=SYNSENT & LState~=LISTEN

& LSeqTest
=> N" LState = CLOSED
<> N" LState = LState)

<> N" RtoL a RtoL & N" LState = LState) (57.1) 'AND SPLIT'
57.1-3 N" ROldUnack = ROldUnack (57.1) 'AND SPLIT'
57.1-4 N" RSeqToRcv = RSeqToRcv (57.1) 'AND SPLIT'
57.1-5 N" RSeqToSend = RSeqToSend (57.1) 'AND SPLIT'

57.1-6 N" RState = RState (57.1) 'AND SPLIT'
57.1-7 N" LtoR = LtoR (57.1) 'AND SPLIT'
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57.1-8 N" LOldUnack = LOldUnack (57.1) 'AND SPLIT'
57.1-9 N" LSeqToRcv = LSeqToRcv (57.1) 'AND SPLIT'
57.1-10 N" LSeqToSend = LSeqToSend (57.1) 'AND SPLIT'
57.1-11 N" LState = ESTABLISHED (57.1) 'AND SPLIT'
57.1-12 N" LSeqToSend -= N" RSeqToRcv I N" RSeqToSend -= N" LSeqToRcv (57.1)

'AND SPLIT'
57.1-13 LSeqToSend -= RSeqToRcv I RSeqToSend -= LSeqToRcv (57.1-9 57.1-5

57.1-4 57.1-10 57.1-12) 'NEW SUBSTITUTION'

.p *-2 Bi!
57.2.1 RtoL = NIL I RtoL.1.Op -= Reset (18 1) ASSUME
57.2.2 AND NOT PRINTED (57.2.1 57.1-10 57.1-9 57.1-8 57.1-7 57.1-6 57.1-5

57.1-4 57.1-3 57.1-2) 'SIMPLIFIED EFFECT'
57.2.2-1 N" RtoL = RtoL (57.2.2) 'AND SPLIT'
57.2.2-2 N" LState = LState (57.2.2) 'AND SPLIT'
57.2.3 LState = ESTABLISHED (57.1-13 57.1-9 57.1-5 57.1-4 57.1-10 57.2.2-2

57.1-11 57.1-12) 'SIMPLIFIED NEW CRITERION'

.si .1-1!
57.2.4 False (57.1-13 57.2.3 57.1-1) SIMPLIFICATION
57.2 AND NOT PRINTED (57.2.4) 'Q.E.D.'
57.2-1 RtoL -= NIL (57.2) 'AND SPLIT'
57.2-2 RtoL.1.Op = Reset (57.2) 'AND SPLIT'
57.3 AND NOT PRINTED (57.2-2 57.2-1 57.1-10 57.1-9 57.1-8 57.1-7 57.1-6

57.1-5 57.1-4 57.1-3 57.1-2) 'SIMPLIFIED EFFECT'
57.3-1 N" RtoL = RtoL:2 (57.3) 'AND SPLIT'
57.3-2 (LState = SYNSENT & LAckTest I LState - SYNSENT & LState -= LISTEN

& LSeqTest
=> N" LState = CLOSED
<> N" LState = LState) (57.3) 'AND SPLIT'

p *-2 B1!
57.4.1 AND NOT PRINTED (9 2 38 2 40) ASSUME
57.4.1-1 LState ~= SYNSENT I -LAckTest (57.4.1) 'AND SPLIT'
57.4.1-2 LState = SYNSENT I LState = LISTEN I -LSeqTest (57.4.1) 'AND SPLIT'
57.4.2 N" LState = LState (57.4.1-2 57.4.1-1 57.3-1 57.3)'SIMPLIFIED EFFECT'
57.4.3 LState = ESTABLISHED (57.1-13 57.1-9 57.1-5 57.1-4 57.1-10 57.4.2

57.1-11 57.1-12) 'SIMPLIFIED NEW CRITERION'

.si .1-I!
57.4.4 False (57.1-13 57.4.3 57.1-1) SIMPLIFICATION

57.4 LState = SYNSENT & LAckTest I LState -= SYNSENT & LState -= LISTEN
& LSeqTest (57.4.4) 'Q.E.D.'

57.5 N" LState = CLOSED (57.4 57.3-1 57.3) 'SIMPLIFIED EFFECT'

.subst .1-11 0.l!
57.6 CLOSED = ESTABLISHED (57.1-11 57.5) SUBSTITUTION(57.5L)
57.6-1 False (57.6) SIMPLIFICATION

57 NOT PRINTED 'Q.E.D.'
*0000 DANGER! LIBRARY THEOREMS NOT PROVED "

THEOREM FROM LEVEL MECHANISM FOR: LRCVACK
READY FOR INPUT 58.1-11 58.2
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58.1-1 LState =ESTABLISHED -> LSeqToSend =RSeqToRcv & RSeqToSend
LSeqloRcv (58.1) 'AND SPLIT'

58.1-2 (RtoL -=NIL & RtoL.1.Op z Ack
Z> N" RtoL a RtoL:2

& ( LState =SYNRECEIVED & LAcklest & LSeqTest
=> N" LO~dUnack a LOldUnack+1 & N" LState a ESTABLISHED
0> N" LOldI~nack =LOldUnack & N" LState *LState)

& N" LtoR
=(LState = CLOSED I LState z LISTEN I LState =SYNSENT & -LAcklest

ILState z SYNRECEIVED & LSeqTest & -LAckTest
=> LtoR;.MakePkt(RtoL.1.Ack, 0, Reset)
0> (LState = SYNRECEIVED & -LSeqTest

0 LtoR;.MakePkt(LSeqToSend. LSeqToRcv, Ack) 0> LtoR))
0 N" RtoL RtoL & N" LOldUnack = LOldUnack & N" LState =LState

& N" LtoR = LtoR) (58.1) 'AND SPLIT'
68.1-3 N" ROldUnack = ROldUnack (58.1) 'AND SPLIT'
58.1-4 N" RSeqToRcv = RSeqToRcv (58.1) 'AND SPLIT'
58.1-5 N" RSeqToSend = RSeqToSend (58.1) 'AND SPLIT'
58.1-6 N" RState =RState (58.1) 'AND SPLIT'
58.1-7 N" LSeqToRcv z LSeqToRcv (58.1) 'AND SPLIT'
58.1-8 N" LSeqToSend =LSeqloSend (58.1) 'AND SPLIT'
58.1-9 N" LState = ESTABLISHED (58.1) 'AND SPLIT'
58.1-10 N" LSeqToSend -~ N" RSeqToRcv I N" RSeqToSend -- N" LSeqToRcv (58.1)

'AND SPLIT'
58.1-11 LSeqToSend -~ RSeqToRcv I RSeqToSend - LSeqToRcv (58.1-7 58.1-5

58.1-4 58.1-8 58.1-10) 'NEW SUBSTITUTION'

58.2 (RtoL -~ NIL & RtoL.1.Op =Ack
0> N" RtoL- RtoL:2
& ( LState = SYNRECEIVED & LAckTest & LSeqrest

=> N" LOldUnack = LOldUnack+1
0 N" LOldUnack =LOldUnack & N" LState mLState)

& N" LtoR
-(LState =CLOSED I LState =LISTEN I LState =SYNSENT & -LAckTest

LState mSYNRECEIVED & LSeqTest & -LAckTest
=> LtoR;.MakePkt(RtoL.1.Ack, 0, Reset)
0) (L-State =SYNRECEIVED & -LSeqTest

0 LtoR;.tMakePkt(LSeqToSend, LSeqToRcv, Ack) 0> LtoR))
0) N" RtoL RtoL & N" LOldUnack = LOldUnack & N" LState aLState

& N" LtoR a LtoR) (58.1-9 58.1-8 58.1-7 58.1-6 58.1-5
58.1-4 58.1-3 58.1-2) 'SIMPLIFIED EFFECT'

.p Bi!

58.3.1 RtoL =NIL I RtoL.1.Op -a Ack (18 1) ASSUME
58.3.2 AND NOT PRINTED (58.3.1 58.2) 'SIMPLIFIED EFFECT'
58.3.2-1 N" RtoL = RtoL (58.3.2) 'AND SPLIT'
58.3.2-2 N" LOldUnack z LOldUnack (58.3.2) 'AND SPLIT'
58.3.2-3 N" LState = LState (58.3.2) 'AND SPLIT'
58.3.2-4 N" LtoR z LtoR (58.3.2) 'AND SPLIT'
58.3.3 LState a ESTABLISHED (58.1-11 58.1-7 58.1-5 58.1-4 68.1-8 58.3.2-3

58.1-9 58.1-10) 'SIMPLIFIED NEW CRITERION'

.si .1-1!
58.3.4 False (58.1-11 58.3.3 58.1-1) SIMPLIFICATION
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58.3 AND NOT PRINTED (58.3.4) -Q.E.D.-
58.3-1 RtoL -- NIL (58.3) 'AND SPLIT'
58.3-2 RtoL.1.Op =Ack (58.3) 'AND SPLIT'
58.4 AND NOT PRINTED (58.3-2 58.3-1 58.2) 'SIMPLIFIED EFFECT'
58.4-1 N" RtoL = RtoL:2 (58.4) 'AND SPLIT'
58.4-2 (LState a SYNRECEIVED & LAckTest & LSeqTest

z> N" LOldUnack LOldUnack+1
0> N" LOldUnack =LOldUnack & N" LState = IState) (58.4) 'AND SPLIT'

58.4-3 N" LtoR
- ( LState =CLOSED I LState x LISTEN I LState =SYNSENT & -LAckTest

I LState = SYNRECEIVED & LSeqTest & -LAckTest
0> LtoR;.MakePkt(RtoL.l.Ack, 0, Reset)
0) (LState = SYNRECEIVED & -LSeqTest

=> LtoR;.MakePkt(LSeqToSend. LSeqToRcv, Ack) 0 LtoR))

(58.4) 'AND SPLIT'

.p 0-2 BI!
58.5.1 LState - SYNRECEIVED I-LAckTest I -LSeqTest (9 2 38 40) ASSUME
58.5.2 AND NOT PRINTED (58.4-3 58.5.1 58.4-1 58.4) 'SIMPLIFIED EFFECT'
58.5.2-1 N" LOldUnack =LOldUnack (58.5.2) 'AND SPLIT'
58.5.2-2 N" LState = LState (58.5.2) 'AND SPLIT'
58.5.3 LState =ESTABLISHED (58.1-11 58.1-7 58.1-5 58.1-4 58.1-8 58.5.2-2

58.1-9 58.1-10) 'SIMPLIFIED NEW CRITERION'

.si .1-1!
58.5.4 False (58.1-11 58.5.3 58.1-1) SIMPLIFICATION

58.5 AND NOT PRINTED (58.5.4) 'Q.E.D.'
58.5-1 LState =SYNRECEIVED (58.5) 'AND SPLIT'
58.5-2 LAckTest (58.5) 'AND SPLIT'
58.5-3 LSeqTest (58.5) 'AND SPLIT'
58.6 AND NOT PRINTED (58.5-3 58.5-1 58.5-2 58.4-1 58.4) 'SIMPLIFIED EFFECT'
58.6-1 N" LOldUnack = LOldI~nack+1 (58.6) 'AND SPLIT'
58.6-2 N" LtoR =(LState = CLOSED I LState = LISTEN

=> LtoR;.MakePkt(RtoL.1.Ack. 0, Reset) 0 LtoR) (58.6) 'AND SPLIT'

.si 53!
58.7 RtoL.1 <: RtoL (58.3-1 53) SIMPLIFICATION
58.7-1 RtoL.1 <<: STRUCTURE OF (INTEGER = SEQ. T" #0:INTEGER(#O >= 0) =Ack.

(Syn. SynAck. Ack. Reset) =Op) (58.7) TYPE2
J1 51 RtoL.1!
58.8 RtoL.1<:RtoL & RtoL.1.Op=Ack & LAckTest & LSeqTest & LState=SYNRECEIVED
-> RtoL.1.Ack =RSeqToRcv & RtoL.1.SEQ = RSeqToSend (51 18) INSTANTIATION
58.8-1 AND NOT PRINTED (58.5-1 58.5-3 58.5-2 58.3-2 58.7 58.8)SIMPLIFICATION
58.8-2 RtoL.1.Ack =RSeqToRcv (58.8-1) 'AND SPLIT'
58.8-3 RtoL.1.SEQ = RSeqToSend (58.8-1) 'AND SPLIT'

.su .5-2 LAckTest.]!
58.9 RtoL.1.Ack a LOldUnack.1 (58.5-2 38) SUBSTITUTION(38L)

.su .5-3 LSeqTest.l!
58.10 RtoL.1.SEQ - LSeqToP~cv (58.5-3 40) SUBSTITUTION(40L)

.su 0.8-3.1!
58.11 RSeqToSend =LSeqToRcv (58.10 58.8-3) SUBSTITUTION(58.8-3L)
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.su .9 .8-2.1!
58.12 RSeqToRcv c LOldL~nack+1 (58.9 58.8-2) SUBSTITLJTION(58.8-2L)

.si .1-11!
58.13 LSeqToSend -=RSeqToRcv (58.11 58.1-11) SIMPLIFICATION

.si 50!
58.14 LSeqToSend =LOldUnack+1 (58.5-1 50) SIMPLIFICATION

.su 0.12.r!
58.15 LSeqToSend =RSeqloRcv (58.14 58.12) SUBSTITUTION(58.12R)
58,15-1 False (58.15 58.13) CONTRADICTION

58 NOT PRINTED 'Q.E.D.'I
00* DANGER! LIBRARY THEOREMS NOT PROVED

THEOREM FROM LEVEL MECHANISM FOR: RCVSYN
READY FOR INPUT 59.1-9

.1 .1-8 .1-8!
59.1-6 N" RState = RState (59.1) 'AND SPLIT'
59.1-7 N" LState = ESTABLISHED (59.1) 'AND SPLIT'
59.1-8 N" LSeqToSend -a N" RSeqToRcv I N" RSeqToSend N" LSeqToRcv (59.1)

'AND SPLIT'
.p *-2 Bi!
59.2.1 RtoL = NIL I RtoL.1.Op - Syn (18 1) ASSUME
59.2.2 AND NOT PRINTED (59.2.1 59.1-6 59.1-5 59.1-4 59.1-3 59.1-2)

'SIMPLIFIED EFFECT'
59.2.2-1 N" RtoL = RtoL (59.2.2) 'AND SPLIT'
59.2.2-2 N" LSeqToSend = LSeqToSend (59.2.2) 'AND SPLIT'
59.2.2-3 N", LOldUnack =LOldUnack (59.2.2) 'AND SPLIT'
59.2.2-4 N" LSeqToRcv = 'SeqToRcv (59.2.2) 'AND SPLIT'
59.2.2-5 N" LState = LState (59.2.2) 'AND SPLIT'
59.2.2-6 N" LtoR = LtoR (59.2.2) 'AND SPLIT'
59.2.3 False (59.1-1 59.2.2-4 59.1-5 59.1-4 59.2.2-2 59.2.2-5 59.1-7

59.1-8) 'SIMPLIFIED NEW CRITERION'
59.2 AND NOT PRINTED (59.2.3) 'Q.E.D.'
59.2-1 RtoL -a NIL (59.2) 'AND SPLIT'
59.2-2 RtoL.1.Op x Syn (59.2) 'AND SPLIT'
59.3 AND NOT PRINTED (59.2-2 59.2-1 59.1-6 59.1-5 59.1-4 59.1-3 59.1-2)

'SIMPLIFIED EFFECT'
59.3-1 N" RtoL x RtoL:2 (59.3) 'AND SPLIT'
59.3-2 N" LSeqToSend =(LState =LISTEN -> LSeqToSend+2 0> LSeqToSend)

(59.3) 'AND SPLIT'
59.3-3 N" LOldUnack (LState LISTEN 0> LSeqToSend+1 0 LOldUnack)

(69.3) 'AND SPLIT'
59.3-4 N" LSeqroRcv (LState =LISTEN I LState -SYNSENT

c> RtoL.I.SEQ+1 0 LSeqToRcv) (59.3) 'AND SPLIT'
59.3-5 N" LState a (LState = LISTEN I LState - SYNSENT

=> SYNRECEIVED 0 LState) (59.3) 'AND SPLIT'
59.3-6 N" LtoR

(LState - SYNSENT -> LtoR;.MakePkt(LSeqToSend. RtoL.1.SEQ+1. Ack)
0> (LState=LISTEN 0> LtoR; .MakePkt(LSeqToSend~l. RtoL.1.SEQ+1, SynAck)

0 (IState z CLOSED 0) LtoR;.MakePkt(O. RtoL.l.SEQ+1. Reset)
0> LtoR))) (59.3) 'AND SPLIT'
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.t LState-=LISTEN!
59.4:1 LState = LISTEN (9 2) ASSUME
59.4.2 AND NOT PRINTED (59.4.1 59.3-1 59.3) 'SIMPLIFIED EFFECT'
59.4.2-1 N" LSeqToSend = LSeqToSend+2 (59.4.2) 'AND SPLIT'
59.4.2-2 N" LOldUnack = LSeqToSend+1 (59.4.2) 'AND SPLIT'
59.4.2-3 N" LSeqToRcv = RtoL.I.SEQ+1 (59.4.2) 'AND SPLIT'
59.4.2-4 N" LState = SYNRECEIVED (59.4.2) 'AND SPLIT'
59.4.2-5 N" LtoR

(LState = SYNSENT => LtoR;.MakePkt(LSeqToSend, RtoL.1.SEQ+I, Ack)
<> LtoR;.MakePkt(LSeqToSend+l, RtoL.1.SEQ+I, SynAck)) (59.4.2)'AND SPLIT'

.su .1-7 *-4.1!
59.4.3 SYNRECEIVED = ESTABLISHED (59.1-7 59.4.2-4) SUBSTITUTION(59.4.2-4L)
59.4.3-1 False (59.4.3) SIMPLIFICATION

59.4 LState -= LISTEN (59.4.3-1) 'Q.E.D.'
59.5 AND NOT PRINTED (59.4 59.3-1 59.3) 'SIMPLIFIED EFFECT'
59.5-1 N" LSeqToSend = LSeqToSend (59.5) 'AND SPLIT'
59.5-2 N" LOldUnack = LOldUnack (59.5) 'AND SPLIT'
59.5-3 N" LSeqToRcv = (LState = SYNSENT => RtoL.I.SEQ+l <> LSeqToRcv)

(59.5) 'AND SPLIT'
59.5-4 N" LState = (LState = SYNSENT => SYNRECEIVED 0) LState) (59.5)

'AND SPLIT'

59.5-5 N" LtoR
= ( LState = SYNSENT => LtoR;.MakePkt(LSeqToSend, RtoL.l.SEQ+l, Ack)

< (LState CLOSED => LtoR;.MakePkt(O, RtoL.I.SEQ+I. Reset) > LtoR))
(59.5) 'AND SPLIT'

59.6 LSeqToSend ~= RSeqToRcv I RSeqToSend -= N" LSeqToRcv (59.1-7 59.1-5
59.1-4 59.5-1 59.1-8) 'SIMPLIFIED NEW CRITERION'

.t LState-=SYNSENT!
59.7.1 LState = SYNSENT (9 2) ASSUME
59.7.2 AND NOT PRINTED (59.7.1 59.5-2 59.5-1 59.5) 'SIMPLIFIED EFFECT'
59.7.2-1 N" LSeqToRcv = RtoL.1.SEQ+1 (59.7.2) 'AND SPLIT'
59.7.2-2 N" LState = SYNRECEIVED (59.7.2) 'AND SPLIT'
59.7.2-3 N" LtoR = LtoR;.MakePkt(LSeqToSend, RtoL.I.SEQ+I, Ack) (59.7.2)

'AND SPLIT'
.su .1-7 *-2.1!
59.7.3 SYNRECEIVED = ESTABLISHED (59.1-7 59.7.2-2) SUBSTITUTION(59.7.2-2L)
59.7.3-1 False (59.7.3) SIMPLIFICATION

59.7 LState -= SYNSENT (59.7.3-1) 'Q.E.D.'
59.8 AND NOT PRINTED (59.7 59.5-2 59.5-1 59.5) 'SIMPLIFIED EFFE:T'
59.8-1 N" LSeqToRcv = LSeqToRcv (59.8) 'AND SPLIT'
59.8-2 N" LState = LState (59.8) 'AND SPLIT'
59.8-3 N" LtoR = (LState = CLOSED => LtoR:.MakePkt(O, RtoL.1.SEQ+I. Reset)

> LtoR) (59.8) 'AND SPLIT'
59.9 LSeqToSend -= RSeqToRcv I RSeqToSend - LSeqToRcv (59.8-1 59.6)

'SIMPLIFIED NEW CRITERION'
.si .1-71
59.10 LState = ESTABLISHED (59.8-2 59.1-7) SIMPLIFICATION

.si .1-1!
59.11 False (59.9 59.10 59.1-1) SIMPLIFICATION

59 NOT PRINTED 'Q.E.D.'
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*~*DANGER! LIBRARY THEOREMS NOT PROVED

THEOREM FROM LEVEL MECHANISM FOR: LRCVSYNACK
READY FOR INPUT 60.1-11 60.2

60.1-8 N" LSeqToSend z LSeqToSend (60.1) 'AND SPLIT'
60.1-9 N" LState = ESTABLISHED (60.1) 'AND SPLIT'
60.1-10 N" LSeqToSend - N" RSeqToRcv I N" RSeqToSend ~aN" LSoqToRcv

(60.1) 'AND SPLIT'
60.1-11 LSeqToSend -m RSeqToRcv I RSeqToSend - N" LSeqToRcv

(60.1-6 60.1-5 60.1-8 60.1-10) 'NEW SUBSTITUTION'

60.2 (RtoL -~ NIL & RtoL.1.Op = SynAck
=> N" RtoL z RtoL:2

& (LState a SYNSENT & LAckTest
=> N" LOldUnack a LOldUnack+1 & N" LSeqToRcv = RtoL.1.SEQ+1
0> N" LOldUnack aLOldUnack & N" LState =LState

& N" LSeqToRcv =LSeqToRcv)
& (LState =CLOSED I LState LISTEN I LState mSYNSENT & -LAckTest

ILState a SYNRECEIVED & LSeqTest & -LAckTest
=> N" LtoR =LtoR;.MakePkt(RtoL.1.Ack, 0. Reset)
0> (LState aSYNRECEIVED I LState c ESTABLISHED) & -LSeqTest

I LState aSYNSENT & LAckTest
0 N" LtoR LtoR;.MakePkt(LSeqToSend, N" LSeqToRcv. Ack)
0> N"LtoR = LtoR)

0 N" RtoL = RtoL & N" LOldUnack z LOldUnack & N" LState = LState
& N" LSeqToRcv - LSeqToRcv & N" ItoR = LtoR)

(60.1-9 60.1-8 60.1-7 60.1-6 60.1-5 60.1-4 60.1-2) 'SIMPLIFIED EFFECT'

.p 0I!
60.3.1 RtoL = NIL i RtoL.1.Op -a SynAck (18 1) ASSUME
60.3.2 AND NOT PRINTED (60.3.1 60.2) 'SIMPLIFIED EFFECT'
60.3.2-1 N" RtoL = RtoL (60.3.2) 'AND SPLIT':
60.3.2-2 N" LOldUnack a LOldUnack (60.3.2) 'AND SPLIT'
60.3.2-3 N" LState x LState (60.3.2) 'AND SPLIT'
60.3.2-4 N" LSeqToRcv a LSeqToRcv (60.3.2) 'AND SPLIT'
60.3.2-5 N" LtoR = LtoR (60.3.2) 'AND SPLIT'
60.3.3 False (60.1-1 60.3.2-4 60.1-6 60.1-5 60.1-8 60.3.2-3 60.1-9 60.1-10)

'SIMPLIFIED NEW CRITERION'
60.3 AND NOT PRINTED (60.3.3) 'Q.E.D.'
60.3-1 RtoL -a NIL (60.3) 'AND SPLIT'
60.3-2 RtoL.1.Op = SynAck (60.3) 'AND SPLIT'
60.4 AND NOT PRINTED (60.3-2 60.3-1 60.2) 'SIMPLIFIED EFFECT'
60.4-1 N" RtoL a RtoL:2 (60.4) 'AND SPLIT'
60.4-2 (LStat. a SYNSENT & LAckTest

a> N" LOldUnack a LOldUnack+1 & N" LSeqToRcv =RtoL.1.SEQ+1
0> N" LOldUnack - LOldUnack & N" LState c LState & N" LSeqToRcv

- LSeqToRcv) (60.4) 'AND SPLIT'
60.4-3 (LState a CLOSED I LState - LISTEN I LState c SYNSENT & -LAckTest

ILState aSYNRECEIVED & LSeqTest & -LAckTest
a> N" LtoR a LtoR:.MakePkt(RtoL.1.Ack. 0. Reset)
0> (IState SYNRECEIVED ILState a ESTABLISHED) & -LSeqTest

ILState a SYNSENT & LAckTest
a> N" LtoR a LtoR;.MaksPkt(LSeqToSend, N" LSeqToRcv. Ack)
0> N" LtoR a ItoR) (60.4) 'AND SPLIT'
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.p *-2 Bi!
60.5.1 LState - SYNSENT I-LAckTest (9 2 38) ASSUME
60.5.2 AND NOT PRINTED (60.5.1 60.4-1 60.4) 'SIMPLIFIED EFFECT'
60.5.2-1 N" LOldUnack = LOldUnack (60.5.2) 'AND SPLIT'
60.5.2-2 N" LState = LState (60.5.2) 'AND SPLIT'
60.5.2-3 N" LSeqToRcv = LSeqToRcv (60.5.2) 'AND SPLIT'
60.5.2-4 (LState =CLOSED I LState =LISTEN I LState =SYNSENT & -LAckTest '

ILState = SYNRECEIVED & LSeqTest & .LAckTest
=> N" LtoR =LtoR;.MakePkt(RtoL.I.Ack, 0, Reset)
0> (LState =SYNRECEIVED I LState =ESTABLISHED) & -LSeqTest

=> N" LtoR =LtoR;.MakePkt(LSeqToSend, N" LSeqToRcv, Ack)
0) N" LtoR =LtoR) (60.5.2) 'AND SPLIT'

60.5.2-5 (LState CLOSED I LState =LISTEN I LState = SYNSENT & -LAckTest
I LState = SYNRECEIVED & LSeqTest & -LAckTest

=> N" LtoR LtoR;.MakePkt(RtoL.1.Ack, 0, Reset)
0> (LState =SYNRECEIVED ILState =ESTABLISHED) & -LSeqTest

=> N" LtoR =LtaR:.MakePkt(LSeqToSend. LSeqToRcv, Ack)
0> N" LtoR =LtoR) (60.5.2-3 60.5.2-4) 'NEW SUBSTITUTION'

60.5.3 False (60.1-1 60.5.2-3 60.1-6 60.1-5 60.1-8 60.5.2-2 60.1-9 60.1-10)
'SIMPLIFIED NEW CRITERION'

60.5 AND NOT PRINTED (60.5.3) 'Q.E.D.'
60.5-1 LState = SYNSENT (60.5) 'AND SPLIT'
60.5-2 LAckTest (60.5) 'AND SPLIT'
60.6 AND NOT PRINTED (60.5-2 60.5-1 60.4-1 60.4) 'SIMPLIFIED EFFECT'
60.6-1 N" LOldUnack =LOldUnack+1 (60.6) 'AND SPLIT'
60.6-2 N" LSeqToRcv = RtoL.1.SEQ+1 (60.6) 'AND SPLIT'
60.6-3 (LState = CLOSED I LState = LISTEN

=> N" LtoR LtoR:.MakePkt(RtoL.I.Ack. 0, Reset)
0 N' LtoR LtoR;.MakePkt(LSeqToSend, N" LSeqToRcv. Ack)) (60.6)

'AND SPLIT'

60.7 LSeqToSend RSeqToRcv I RSeqToSend - RtoL.1.SEQ+1 (60.1-11 60.6-2)
SUBSTITUTION(60.6-2L)

.si 50!
60.8 LSeqToSend LOldUnack+1 (60.5-1 50) SIMPLIFICATION

.si 53!
60.9 RtoL.l <: RtoL (60.3-1 53) SIMPLIFICATION
60.9-1 RtaL.1 <<: STRUCTURE OF (INTEGER =SEQ. T' #0:INTEGER(#0 >= 0) = Ack,

(Syn, SynAck, Ack, Reset) =Op) (60.9) TYPE2
.1 52 RtoL.1!
60.10 RtoL.1 <: RtoL & RtoL.1.Op =SynAck & LAckTest & LState =SYNSENT

-> RtoL.1.Ack = RSeqToRcv & RtoL.1.SEQ#1 = RSeqToSend (52 18) INSTANTIATION
60.10-1 AND NOT PRINTED (60.5-1 60.5-2 60.3-2 60.9 60.10) SIMPLIFICATION
60.10-2 RtoL.1.Ack =RSeqToRcv (60.10-1) 'AND SPLIT'
60.10-3 RtoL.1.SEQ+1 = RSeqToSend (60.10-1) 'AND SPLIT'

.su .5-2 LAckTost.1!
60.11 RtoL.1.Ack --LOldUnack+1 (60.5-2 38) SUBSTITUTION(38L)

.su 0.10-2.1!

60.12 RSeqToRcv zLOldUnack+1 (60.11 60.10-2) SUBSTITUTION(60.10-2L)

.su .8r
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60.13 RSeqroRcv - LSeqToSend (60.12 60.8) SUBSTITIJTION(60.8R)

.c .7,.13,.10-31
60.14 False (60.7 60.13 60.10-3) CONTRADICTION

60 NOT PRINTED 'Q.E.D.,
SDANGERI LIBRARY THEOREMS NOT PROVED

6 [
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IV. AFFIRM PROOF TRANSCRIPT (EDITED) FOR MAIN THREE-WAY
HANDSHAKE PROPERTY

76 U: read threeway.lemmas;
(Reading AFFIRM commands from <INC-PROJECT)THREEWAY.LEMMAS.4)

theorem Synci. all t( LState(t) =ESTABLISHED
imp LSeqToSend(t) =RSeqToRcv(t)

and LSeqloRcv(t) =RSeqToSend(t));

78 U: read threeway.lemmas.2;
(Reading AFFIRM commands from <INC-PROJECT>THREEWAY.LEMMAS.2)

theorem GoodAcki. all p(all t( p in RtoL(t)
and Control(p) aAck
and Ack(p) a L0ldUnack(t) + 1
and Seq(p) = LSeqroRcv(t)
and LState(t) =SYNRECEIVED

imp Seq(p) =RSeqToSend(t)
and Ack(p) = RSeqToRcv(t)));

theorem GoodSynAckl, all p(all t( p in RtoL(t)
and Control(p) =SynAck
and Ack(p) = LOldUnack(t) + 1
and LState(t) =SYNSENT

imp Seq(p) + 1 RSeqToSend(t)
and Ack(p) - RSeqloRcv(t)));

79 U: try Synci;
Synci is untried.

all t
LState(t) -ESTABLISHED

imp (LSeqToSend(t) = RSeqToRcv(t)) and (LSeqloRcv(t) a RSeqroSend(t)))

80 U: employ Induction(t);
Case Init: Prop(Init) proven.
Case LActiveOpen: all u (IH(u) imp Prop(LActiveOpen(u))) remains to be shown.
Case LPassiveOpen: all u (IH(u) imp Prop(LOassiveOpen(u))) remains to be shown.
Case LRcvReset: all u (IH(u) imp Prop(LRcvReset(u))) remains to be shown.
Case LRcvAck: all u (IH(u) imp Prop(LRcvAck(u))) remains to be shown.
Case LRcvSyn: all u (IH(u) imp Prop(LRcvSyn(u))) remains to be shown.
Case LRcvSynAck: all u (IH(u) imp Prop(LRcvSynAck(u))) remains to be shown.
(LActiveOpen: )

(will raise embedded if-expressions)
(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)
Going to leaf LPassiveOpen:.
(will raise embedded if-expressions)

By the way, this command has generated the following children which already

Rpl"G1LO PAM BLAJW-NOT FIJg&D
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existed, and which already have proof attempts.
Thus, you are not currently at a leaf.

43 used in the proof of theorem Synci
(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)
Going to leaf LRcvReset:.
(will raise embedded if-expressions)
(will invoke induction hypothesis IH)

TRUE
(will go to the next proposition to prove)
Going to leaf LRcvAck:.
(will raise embedded if-expressions)
(will invoke induction hypothesis IH)

all u
(LState(u) -~ ESTABLISHED) and (RtoL(u) -~NewQueueOfPackets)

and Control(Front(RtoL(u))) =Ack
and LState(u) =SYNRECEIVED
and Ack(Front(RtoL(u))) =LOldUnack(u) + 1
and Seq(Front(RtoL(u))) = LSeqToRcv(u)

imp (LSeqToSend(u) =RSeqToRcv(u)) and (LSeqToRcv(u) =RSeqToSend(u)))

81 U: apply GoodAckl;

some p, t
( p in RtoL(t) and (Control(p) =Ack)

and Ack(p) = LOldUnack(t) + 1
and Seq(p) z LSeqToRcv(t)
and LState(t) =SYNRECEIVED

imp (Seq(p) = RSeqToSend(t)) and (Ack(p) = RSeqToRcv(t)))

82 U: put pzFroni'?toL(u)) and t=u;

all u
(if Front(RtoL(u)) in RtoL(u)

then Control(Front(RtoL(u))) =Ack
and Ack(Front(RtoL(u))) =LOldUnack(u) + I
and Seq(Front(RtoL(u))) = LSeqToRcv(u)
and LState(u) =SYNRECEIVED
and Seq(Front(RtoL(u))) =RSeqToSend(u)
and Ack(Front(RtoL(u))) = RSeqToRcv(u)

imp LState(u) = ESTABLISHED
or RtoL(u) = NewQueueOfPackets
or LSeqToSend(u) RSeqToRcv(u)

and LSeqToRcv(u) RSeqToSend(u)
else LState(u) - ESTABLISHED

and RtoL(u) -~ NewQueueOfPackets
and Control(Front(RtoL(u))) = Ack
and LState(u) = SYNRECEIVED
and Ack(Front(RtoL(u))) = LOldUnack(u) + 1
and Seq(Front(RtoL(u))) =LSeqToRcv(u)

imp LSeqToSend(u) =RSeqToRcv(u)
and LSeqToRcv(u) =RSeqToSend(u))
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88 U: apply Q2, -Empty(q) imp Front(q) in q;

some q ((q =NewQueueOfPackets) or Front(q) in q)
<(collecting lists .... 33 pages left>)

89 U: put q=RtoL(u):
((collecting lists.... 33 pages left>>

all u
( RtoL(u) -NewQueue~fPackets

and Front(RtoL(u)) in RtoL(u)
and Control(Front(RtoL(u))) =Ack
and Ack(Front(RtoL(u))) =LOldUnack(u) + 1
and Seq(Front(RtoL(u))) = LSeqToRcv(u)
and LState(u) =SYNRECEIVED

and Seq(Front(RtoL(u))) =RSeqroSend(u)
and Ack(Front(RtoL(u))) = RSeqToRcv(u)h

imp LState(u) =ESTABLISHED
or LSeqloSend(u) =RSeqToRcv(u)

and LSeqToRcv(u) RSeqToSend(u))

90 U: replace-,

all u
( RtoL(u) - NewQueueOfPackets

and Front(RtoL(u)) in RtOL(u)
and Control(Front(RtoL(u))) =Ack
and Ack(Front(RtoL(u))) =RSeqToRcv(u)
and Seq(Front(RtoL(u))) = RSeqToSend(u)
and LState(u) =SYNRECEIVED
and LSeqloRcv(u) =RSeqToSend(u)
and LOldUnack(u) + 1 RSeqloRcv(u)

imp LSeqToSend(u) =RSeqloRcv(u))

91 U: apply ISTS:

some t
( (LState(t) =SYNSENT) or (LState(t) = SYNRECEIVED)

imp LSeqroSend(t) = LOldUnack(t) + 1)

92 U: put tu;

all u
(if LState(u) SYNSENT

then LSeqToSend(u) = LOldUnack(u) + 1
and RtoL(u) -= NewQueueOfPackets
and Front(RtoL(u)) in RtoL(u)
and Control(Front(RtoL(u))) z Ack
and Ack(Front(RtoL(u))) a RSeqToRcv(u)
and Seq(Front(RtoL(u))) a RSeqToSend(u)
and LState(u) = SYNRECEIVED
and LSeqToRcv(u) = RSeqToSend(u)
and LOldUnack(u) + I = RSeqToRcv(u)
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imp LSeqToSend(u) =RSeqloRcv(u)
else LState(u) SYNRECEIVED

and LSeqToSend(u) = LOldUnack(u) + 1
and RtoL(u) -~ NewQueueOfPackets
and Front(RtoL(u)) in RtoL(u)
and Contr'ol(Front(RtoL(u))) = Ack
and Ack(Front(RtoL(u))) =RSeqToRcv(u)
and Seq(Front(RtoL(u))) =RSeqloSend(u)
and LSeqToRcv(u) =RSeqToSend(u)
and LOldUnack(u) + 1 RSeqroRcv(u)

imp LSeqToSend(u) =RSeqToRcv(u))

93 U: split;
(first:)

all u
( LState(u) = SYNSENT

and LSeqToSend(u) = LOldUnack(u) + 1
and RtoL(u) - NewQueueOfPackets
and Front(RtoL(u)) in RtoL(u)
and Control(Front(RtoL(u))) =Ack
and Ack(Front(RtoL(u))) =RSeqloRcv(u)
and Seq(Front(RtoL(u))) =RSeqToSend(u)
and LState(u) =SYNRECEIVED
and LSeqToRcv(u) =RSeqToSend(u)
and LOldUnack(u) + I =RSeqToRcv(u)

imp LSeqToSend(u) =RSeqToRcv(u))

94 U: replace LState(u);

TRUE
(will go to thie next proposition to prove)
Going to leaf second:.

all u
( LState(u) -~ SYNSENT

and LState(u) = SYNRECEIVED
and LSeqToSend(u) = LOldUnack(u) + 1
and RtoL(u) .- NewQueueOfPackets
and Front(RtoL(u)) in RtoL(u)
and Cortrol(Front(RtoL(u))) =Ack
and Ack(Front(RtOL(u))) =RSeqToRcv(u)
and Seq(Front(RtoL(u))) =RSeqToSend(u)
and LSeqToRcv(u) = RSeqToSend(u)
and LOldUnack(u) + 1 = RSeqToRcv(u)

imp LSeqToSend(u) = RSeqToRcv(u))

95 U: replace LOldUnack(u)+1;

TRUE
(will go to the next propos.ition to prove)
Going to leaf LRcvSyn:.
(will raise embedded if-expressions)
(will invoke induction hypothesis lIH)

all u
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(LState(u) = ESTABLISHED) and (LSeqloSend(u) RSeqToRcv(u))
and LSeqToRcv(u) = RSeqToSend(u)
and RtoL(u) - NewQueueOfPackets
and Control(Front(RtoL(u))) = Syn
and -LIor'SS(u)
and LState(u) =LISTEN

imp LSeqToSend(u) + 2 =RSeqToRcv(u))

96 U: invoke LIorSS;

TRUE
(will go to the next proposition to prove)
Going to leaf LRcvSynAck:.
(will raise embedded if-expressions)
(will invoke induction hypothesis IH)

all u
(if LState(u) = ESTABLISHED

then (LSeqToSend(u) = RSeqToRcv(u)) and LSeqToRcv(u)
=RSeqToSend(u)

and RtoL(u) - NewQueueOt'Packets
and Control(Front(RtoL(u))) = SynAck
and LState(u) =SYNSENT
and Ack(Front(RtoL(u))) LOldUnack(u) + 1

imp Seq(Front(RtoL(u))) + I =RSeqToSend(u)
else RtoL(u) -~ NewQueue~fPackets

and Control(Front(RtoL(u))) z SynAck
and LState(u) =SYNSENT
and Ack(Front(RtoL(u))) =LOldUnack(u) + I

imp LSeqToSend(u) =RSeqToRcv(u)
and Seq(Front(RtoL(u))) + 1 RSeqToSend(u))

104 U: apply 02:

some q ((q = NewQueueOfPackets) or Front(q) in q)

105 U: put q=RtoL(u);

all u
( RtoL(u) -~ NewQueueOfPackets

and Front(RtoL(u)) in RtoL(u)
imp if LState(u) = ESTABLISHED

then LSeqToSend(u) =RSeqToRcv(u)
and LSeqToRcv(u) - RSeqToSend(u)
and Control(Front(RtoL(u))) z SynAck
and LState(u) z SYNSENT
and Ack(Front(RtoL(u)))

=LOldUnack(u) + 1
imp Seq(Front(RtoL(u))) + 1 = RSeqToSend(u)

else Control(Front(RtoL(u))) zSynAck
and LState(u) aSYNSENT
and Ack(Front(RtoL(u)))

=LOldUnack(u) +~ I
imp LSeqToSend(u) zRSeqToRcv(u)

and Seq(Front(RtoL(u))) + I
=RSeq~oSend(u))
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106 U: apply GoodSynAckl;

some P. t
(p in RtoL(t) and (Control(p) =SynAck)

and Ack(p) = LOldUnack(t) + 1
and LState(t) = SYNSENT

imp (Seq(p) + I = RSeqloSend(t)) and (Ack(p) = RSeqToRcv(t)))

107 U: put t=u and p=Front(RtoL(u));

all u
( Front(RtoL(u)) in RtoL(u)

and Control(Front(RtoL(u))) =SynAck
and Ack(Front(RtoL(u))) =LOldUnack(u) + I
and LState(u) = SYNSENT
and Seq(Front(RtoL(u))) + 1 =RSeqroSend(u)
and Ack(Fr'ont(RtoL(u))) = RSeqToRcv(u)

imp (RtoL(u) = NewQueueOfPackets) or (LState(u) ESTABLISHED)
or LSeqToSend(u) =RSeqroRcv(u))

108 U: replace LState(u);

all u
( Front(RtoL(u)) in RtoL(u)

and Control(Front(RtoL(u))) =SynAck
and Ack(Front(RtoL(u))) = LOldUnack(u) + 1
and LState(u) =SYNSENT
and Seq(Front(RtoL(u))) + 1 =RSeqToSend(u)
and Ack(Front(RtoL(u))) = RSeqToRcv(u)

imp (RtoL(u) = NewQueueOfPackets) or (LSeqroSend(u) RSeqToRcv(u)))

109 U: apply LSTS;

some t
( (LState(t) = SYNSENT) or (LState(t) = SYNRECEIVED)

imp LSeqToSend(t) =LOldUnack(t) + 1)

110 U: put t=u;

all u
( LState(u) a SYNSENT

and LSeqToSend(u) = LOldUnack(u) + 1
and Front(RtoL(u)) in RtoL(u)
and Control(Front(RtoL(u))) x SynAck
and Ack(Front(RtoL(u))) = LOldUnack(u) + I
and Seq(Front(RtoL(u))) + 1 RSeqToSend(u)
and Ack(Front(RtoL(u))) = RSeqToRcv(u)

imp (RtoL(u) = NewQueueOfPackets) or (LSeqToSend(u) RSeqToRcv(u)))

Ill U: replace;
Synci is awaiting the proof of lemmas GoodAcki, Q2. and GoodSynAckl.

TRUE
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118 U: print proof;
theorem Syncl, all t( LState(t) a ESTABLISHED

imp LSeqToSend(t) = RSeqToRcv(t)

and LSeqToRcv(t) = RSeqToSend(t));
Syncl uses GoodAckl?, Q2?, GoodSynAckl?, and LSTS!.

proof tree:
80:1 Syncl

employ Induction(t)
-> Init:

immediate

80: LActiveOpen:
37 cases

80: 43 invoke IH I all 1
80: (proven!)
80: LPassiveOpen: {Syncl)

38 cases

80: 43 invoke IH I all
80: (proven!)
80: LRcvReset: (Syncl)

39 cases
80: 45 invoke IH I all
80: (proven!)
80: LRcvAck: {Syncl)

40 cases

80: 47 invoke IH I all
81: 48 apply GoodAckl
82: 49 put (p = Front(RtoL(u))) and (t=u)

88: 50 apply Q2
89: 52 put q = RtoL(u)

90: 53 replace
91: 54 apply LSTS
92: 55 put t=u
93: 56 split
94: first:

57 replace LState(u)
-> (proven!)
95: second:

58 replace LOldUnack(u) + 1

-> (proven!)

95: LRcvSyn: (Syncl}
41 cases

95: 59 invoke IH I all
96: 60 invoke LIorSS
96: (proven!)
98: LRcvSynAck: {Syncl)

42 cases

96: 62 invoke IH I all
104: 63 apply Q2

105: 66 put q = RtoL(u)
106: 67 apply GoodSynAckl
107: 68 put (t=u) and (p = Front(RtoL(u)))
108: 69 replace LState(u)
109: 70 apply LSTS
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110: 71 put tzu
117: 72 replace
-> (proven!)

119 U: print status;
The untried theorems are GoodAckl, GoodSynAckl, and Q2.
No theorems are tried.
No theorems are assumed.
The awaiting lemma proof theorem is Syncl.
The proved theorem is LSTS.
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V. GYPSY SPECIFICATION OF THE ALTERNATING BIT PROTOCOL

scope AB_.Protocol z
begin

const timeout :integer =pending: { but > 0)

type bit =(zero, one);

const initialbit :bit =pending; 
( either will do

type info = pending; ( probably sequence of 
character)

type msgpacket =record (packSeqflo: 
bit; packmSg :info);

type ackpacket = bit;
type infobuff = buffer of info;

type msgpacketbuff = buffer of msgpacket;

type ackpaCketbuff =buffer of ackpacket;

type clockbuff = buffer of integer;

procedure Protocol (var infoto..sefd :infobuff<input>;
var info-rcvd :infobuff<output>)

beg in
entry timeout > 0;

block lag(outto(inforcvd,m 
id) .infrom(infonmyid)

exit false; ( never stops )

var msgs~f rom.Selder, msgstorcvr msgpacketbuflf

var acks-from -rcvr, acks-to-sender 
ackpacketbuff-

var clock in, clock out :clockbuff;

cobeg in
tMsg..Mediuml (msgs..from..sefder, msgs..to..rcvr);

AckjMedium (acksjfrom..rcvr, acks...to.sender);
Timer (clock..in, clock..out);

Sender (info..to-Sed, msgs--rom-sender, 
acks-.to..Sender,

clock~in, clock..out):

Receiver (info..rcvd, msgs-to.rcvr, acks-from.rcvr);

end
end { procedure Protocol )

procedure Timer (var clock-inl clockbuff~input>;
var clock.out clockbuff(output>)

beg in
exit false; {never terminates)
pending;

end-. ( Timer)

procedure Sendert var info..to~Send :infobuffilput>;
var msgs-from-isender :msgpacketbuff(output);

var acks-to-sender :ackpacketbuff<input>:
var clock-in clockbuff(output>;
var clock..ut clockbuff<iflput>)

begin
block la~ismg~ut~sg-rmsne~yd)infrom(infloto~send,myid)) and
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lag( firstacks( inf rom(acksto..sender, my id)) ,
firstseqnos(outto(msgs-from..sender,myid))) and

size(infrom(info to_send~myid)) -
size(firstacks(infrom(acks to_sender,myid))) le 1 and

repeatedmsgs(outto(msgs.from.sender,myid))
exit false; (never terminates}

var expect bit :zinitialbit;
var msgx msgpacket;
var ack ackpacket;
var clockseqno integer :=pending;
var clock-return integer;

loop
assert infrom(infoto..send,myid)

firstmsgs(outto(msgsjfrom.sender,myid)) and
firstseqnos(outto(msgs-from-sender,myid))=

firstacks(infrom(acksto.sender,myid)) and
size(infrom(info_to send,myid))

size(firstacks( infrom(acks..to sender,myid))) and
expect = expecting(outto(msgs..from .sender.myid))

receive msgx.packmsg from info-to_send;
msgx.packseqno :=expect;
send msgx to msgs-f.rom...sender;
clock..seqno := clock..seqno + 1;
send clock_seqno to clock.in;
loop

await
on receive ack from acks...tosender then
if ack = expect then
expect := flip(expect);
lesave

end;
on receive clock-return from clock-out then
if clock -return = clock.~seqno then

send msgx to msgs..from_sender;
send clock~seqno to clockin;

end
end; ( await)

end; ( await loop)
end {main loop}
end; {Sender )

procedure Receiver(var info_ rcvd :infobuf f<output>;
var msgsto..rcvr :msgpacketbuff <input>;
var acks-from_ rcvr :ackpacketbuf f<output>

beg in
block lag(outto(info.rcvd,myid),firstmsgs(infrom(msgs.to..rcvr~myid))) and

lag(outto(acks-_from~rcvr,myid),allseqnos(infrom(msgs-to~rcvr,myid)))
and size(outto(inforcvd,myid))-

size( f irstacks(outto(acks.f ron..rcvr~myid) in [O..1]
exit false; [ never terminates}

var msgx :msgpacket;
var expect bit :=initialbit:
loop
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assert outto(info~rcvd,niyid) =firstmsgs(infrom(msgstorcvr,myid)) and
outto(acksfrom..rcvr~myid) = al lseqnos( infrom(msgstorcvr,myid))
and size(outto(info.rcvd,rnyid)) =

size(firstacks(outto(acks from rcvr,myid))) and
expect z expecting(infroi(msgs..to..rcvr,myid));

receive msgx from msgsto.rcvr;
if expect = msgx.packseqno then

send msgx.packmsg to info_rcvd;
expect :aflip(expect)

end.
send msgx.packseqno to acks~fromrcvr;

end;
end; ( Receiver)

procedure MsgMedium (var pkts.in :msgpacketbuff<input);
var pkts..out :msgpacketbuff~output)

begin
block outto(pkts-.out.myid) sub infrom(pktsin~myid);
exit false; ( never stops)
pending;

end;

procedure AckMedium (var pktsin :ackpacketbuff~input>;
var pkts~out :ackpacketbuff~output>)

begin
block outto(pkts..out,myid) sub infrom(pkts~in,myid);
exit false; {never stops
pending;
end;

function flip(b bit) :bit
beg in
exit result =if b =zero then one else zero fi;
result := if b = zero then one else zero fi

end;

(00* specification functions 000*)
type msgpackseq = sequence of msgpacket;
type ackpackseq = sequence of ackpacket;
type infoseq sequence of info;
type anything pending;
type anyseq = sequence of anything;

function lag(sl,s2 :anyseq) :boolean
beg in

exit (assume result z [ sa s2 or si nonlast(s2)])
end;

function allseqnos(mpseq msgpackseq) ackpackseq
begin

exit (assume result
if mpseq - null(msgpackseq)
then null(ackpackseq)
else allseqnos(nonlast(mpseq)) <: last(mpseq).packseqno

end:
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function firstmsgs(mpseq msgpackseq) infoseq
begin

exit (assume result
if mpseq =null(msgpackseq)

then null(infoseq)
else if last(mpseq).packseqlo= expecting(nonlast(mpseq))

then firstmsgs(nonlast(mpseq)) <: last(mpseq).packmsg
else firstmsgs(nonlast(mpseq))

f i
fi )

end;

function firstseqnos(mpseq :msgpackseq) ackpackseq
beg in

exit (assume result
if mpseq = null(msgpackseq)

then null(ackpackseq)
else if last(mpseq).packseqlo = expecting(nonlast(mpseq))

then firstseqnos(nonlast(mpseq)) <: last(mpseq).packseqnO
else firstseqnos(nonlast(mpseq))

fi
fi )

end:

function firstacks(apseq :ackpackseq) :ackpackseq I
beg in
exit (assume result=

if apseq = null(ackpackseq)
then null(ackpackseq)
else if last(apseq) = seqexpecting(nonlast(apseq))

then firstacks(nonlaSt(apseq)) <: last(apseq)
else firstacks(nonlast(apseq))

fi
fi )

end:

function repeatedmsgs(mpseq :ms 'ackseq) :boolean
begin

exit (assume result
if mpseq = null(msgpackseq) or nonlast(mpseq) = null(msgpackseq)

then true
else (last(mpseq).packseqno ne expecting(mpseq))

-> last(mpseq) =last(nonlast(mpseq))
fi )

end;

function expecting(mpseq :msgpackseq) :bit
begin

exit (assume result = seqexpecting(allseqnos(mpseq)));
en d:

function seqexpecting(apseq :ackpackseq) :bit
beg in
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exit (assume result if apseq = null(ackpackseq)
then initialbit
else flip(last(apseq))

fi ):
end:

end ( scope ABProtocol };

scope lemmas =
begin
name msgpackseq, ackpackseq, lag, firstacks, firstseqnos, firstmsgs,

allseqnos, repeatedmsgs from ABProtocol;

lemma mainlemma (mpsl, mps2 : msgpackseq)
(mpsl sub mps2 and lag(firstseqnos(mpsl).firstseqnos(mps2)) and

repeatedmsgs(mps2)) -> lag(firstmsgs(mpsl),firstmsgs(mps2));

( properties about the functions which remove duplicate packets }
lemma firstl (mpsl, mps2 : msgpackseq) 2
mpsl sub mps2 -> firstseqnos(mpsl) sub firstseqnos(mps2);

lemma first2 (apsI, aps2 : ackpackseq)
apsl sub aps2 -> firstacks(apsl) sub firstacks(aps2);

lemma first3 (mpsl, mps2 : msgpackseq) c
mpsl sub mps2 -) firstmsgs(mpsl) sub firstmsgs(mps2):

lemma first4 (mps msgpackseq) = firstacks(allseqnos(mps))=firstseqnos(mps):

{ properties about the lag function )
type anything = pending;
type anyseq sequence of anything;
type anybuff = buffer of anything;

lemma lagI (sl. s2 anyseq) = lag(sls2) -> sl sub s2;
lemma lag2 (a, b, c anyseq) =

(a sub b and b sub c and lag(ac)) -> lag(bc);
lemma lag3 (a,bcd : anyseq)
(lag(a.b) and lag(bc) and lag(c,d) and size(d) - size(a) le 1)

-) lag(a,d):

{ properties about sequences }
lemma seql(s anyseq: b anybuff) = allto(b) sub s -) allfrom(b) sub s
lemma seq2(s anyseq; b anybuff) a s sub allfrom(b) -) s sub allto(b);
lemma seq3(sl. s2 anyseq) = sl sub s2 -> size(sI) le size(s2);
lemma seq4(sl, s2. s3 : anyseq) = (sl sub s2 and s2 sub s3) -> sl sub s3;
lemma seq5 ( ab,c anyseq ) a c sub b c iff a sub b;
lemma seqcases (s anyseq)
s = null(anyseq) or some sl anyseq, some x : anything. s = si <: x;

lemma nullsize (s anyseq) - s null(anyseq) iff size(s) = 0;
lemma sizelemma (s anyseq) = size(s) ge 0;

( a property about integers )
lemma squeeze (a,b.c,n : integer)

(a le b and b le c and c - a le n) -> (c - b le n):

( Gypsy doesn't reason well about enumerated types )



74

name bit from AB_Protocol;
lemma bitlemma (b bit) =b =zero or b one;

end; (scope lemmas
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VI. GYPSY SPECIFICATION OF THE THREE-WAY HANDSHAKE

scope threeway =
begin
type packetop = (reset, syn, ack, synack);
type command =(activeopen, passiveopen):
type nodestate =(closed, listening, synsent, synrcvd, estab):
type packet =record (i

op :packetop;
seqno integer;
ackno integer;
Vislast :boolean ):{tells the Medium to exit)

type packetseq = sequence of packet;
type packetbuff = buffer of' packet;
const dontcare :integer = pending:
const Linitseqno integer =pending:
const Rinitseqno integer =pending;

procedure Protocol(Lcid, Rcmd :command:
var VLseqno. VRseqno. VLackno. VRackno integer)

begin
exit VLseqno zVRackno and VRseqno zVLackno;
var Lout, Rin, Rout, Lin :packetbuff;
cobeg in
Medium(Lout,Rin);
Med ium( RoutL in):
Node( Lcmd ,Lout ,L in, Lin itseqno, VL seqno, VL ackno);
Node(Rcmd,RoutRir,Rinitseqno,VRseqno,VRackno);

end
end; ( Protocol)

procedure Node(const cmd :command;
var outbuff packetbuff~output);
var inbuff packetbuff<input);
const initseqno :integer;
var Vseqno integer;
var Vackno integer

beg in
exit

estab amystateof(nonlast(outto(outbuff,myid)),infrom(inbuff,myid)) &
Vseqno = seqnotosendof(nonlast(outto(outbuff~myid)).infrom(inbuff,myid)) &
Vackno a seqnotorcvof(nonlast(outto(outbuff,myid)).infrom(inbuff,myid)) &
seqnotosendprop(nonlast(outto(outbuff,myid)), infrom( inbuff,myid)) &
seqnotorcvprop(nonlast(outto(outbuff.myid)),infrom(inbuff,iyid));

var mystate :nodestate := closed:
var seqnotosend integer 2dontcare;

var oldestunack integer :=dontcare;

var seqnotorcv :integer :2dontcare;

var pin :packet;

docmd(outbuff.cnid~mystate~initseqno~seqnotosend,oldestunack);
loop
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assert
properstate(mystate, seqnotosend ,ol destunack ,seqnotorcv.

outto( outbuff my id) ,inf rom( inbuff my id));
if mystate =estab then

le~ave
end:
receive pin from inbuff;
case mystate
is closed: doclosed(outbuff,pin,mystate);
is listening: dolistening(outbuff,pin,mystate,initseqno.seqnatosend,

oldestunack,seqnotorcv);
is synsent:
dosynsent(outbuff,pin,mystate,seqnotosend,oldestunack,seqnotorcv);

is synrcvd:
dosynrcvd(outbuff,pin.mystate~seqnotosend.oldestunack~seqnotorcv):

is estab: ; { can't happen with this setup)
end; case mystate

end; {loop)
Vseqno :=seqnotosend;
Vackno :seqnotorcv;
send packlast(ack,seqnotosend,seqnotorcv) to outbuff;

end; ( Node}

procedure docmd(var outbuff :packetbuff<output>; cmd : command;
var mystate :nodestate; initseqno, integer;
var seqnotosend :integer;
var oldestunack :integer)

beg in
entry mystate =closed;
exit if cmd = activeopen

then outto(outbuff,myid) = [seq:pack(syn,initseqno,dontcare)] and
oldestunack = initseqno and seqnotosend = initseqno+1 and
mystate = synsent

else outto(outbuff,myid) = null(packetseq) and mystate =listening

fi oldestunack = oldestunack' and seqnotosend =seqnotosend'

case cmd
is activeopen:

send pack(syn,initseqno,dontcare) to outbuff;
oldestunack :=initseqno;

seqnotosend :=initseqno + 1;
mystate :=synsent;

is passiveopen: mystate := listening;
end; (case cmd}

end; {docmd )

procedure doclosed(var outbuff : packetbuff~output>; pin :packet;
mystate : nodestate)=

begin
entry rystate = clc:ed;
exit if pin.op = syn

then outto(outbuff,myid) = [seq:pack( reset~dontcare,pin seqno+l)]
else if pin.op =reset

then outto(outbuff,myid) = null(packetseq)
else outto(outbuff,myid) = [seq:pack(reset,pin.ackno,dontcare)]
f i
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f i
f i

case pin.op
is reset: (do nothing
is syn: send pack(reset.dontcare,pin.seqno+1) to outbuff:
is ack: send pack(reset~pin.ackno.dontcare) to outbuff;
is synack: send pack(ri--.-et,pin.ackno,dontcare) to outbuff:

end; { case pin.op}
end: ( doclosed )

procedure dolistening(var outbuff :packetbuff~output>; pin : packet;
var mystate :nodestate; const initseqno : integer;
var seqnotosend :integer; var oldestunack : integer;
var seqnotorcv :integer)

beg in
entry mystate =listening;
exit if pin.op = syn

then outto(outbuff,myid) = [seq:pack(synack~initseqno,pin.seqno+l)] &
seqnotorcv =pin.seqno+1 and oldestunack =initseqno and
seqnotosend = initseqno+1 and mystate =synrcvd

else mystate =listening and seqnotosend = seqnotosend' and
oldestunack = oldestunack' and seqnotorcv =seqnotorcv' and
if pin.op =reset
then outto(outbuff,rnyid) = null(packetseq)
else outto(outbuff,niyid) = [seq:pack(reset,pin.ackno,dontcare)]
fi

fi.
case pi nop
is reset: :{do nothing
is syn:

seqnotorcv :=pin.seqno + 1:
send pack(synack,initseqno,seqnotorcv) to outbuff:
oldestunack :initseqno;

seqnotosend :initseqno + 1:
mystate := synrcvd;

is ack: send pack(reset,pin.ackno,dontcare) to outbuff;
is synack: send pack(reset,pin.ackno,dontcare) to outbuff:

end:; case pin.op
end:; dolistening}

procedure dosynsent(var outbuff :packetbuff~output>: pin : packet:
var mystate :nodestate;
seqnotosend :integer: var oldestunack :integer:
var seqnotorcv : integer)

beg in
entry mystate = synsent:
exit if (pin.op =ack or pin.op =synack) and pin.ackno =oldestunack' + 1

then oldestunack = oldestunack' + 1
else oldestunack =oldestunack'

fi and
if pin.op = syn or (pin.op = synack and pin.ackno =oldestunack' + 1)
then seqnotorcv = pin.seqno + I and

outto(outbuff myid) = [seq:pack(ack~seqnotosend.pin.seqno+l)]
else seqnotorcv = seqnotorcv' and

if pinop ne reset and pinackno ne oldestunack' + 1
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then outto(outbuff~myid) =[seq:pack(reset~pin.ackno~dontcare)]
else outto(outbuff,myid) znull(packetseq)
fi

fi and
if pin op z syn

then mystate =synrcvd
else if pin.ackno = oldestunack' + 1

then if pin.op = reset
then mystate = closed
else if pin.op =synack

then mystate = estab
else %~state = synsent

fi
fi

else mystate =synsent
fi

fi:
case pin.op
is reset:
if pin.ackno = oldestunack + I then
mystate := closed

end;
is syn:

seqnotorcv := pin.seqno + 1;
send pack(ack.seqnotosend,seqnotorcv) to outbuff;
mystate := synrcvd

is ack:
if pin.ackno =oldestunack + 1 then

olciestunack := oldestunack + 1
else
send pack(reset~pin.ackno,dontcare) to outbuff

end;
is synack:
if pin.ackno oldestunack + 1 then

seqnotorcv :=pin.seqno + 1;
send pack(ack,seqnotosend~seqnotorcv) to outbuff;
oldestunack := oldestunack + 1:
mystate := estab;

else
send pack(reset,pin.ackno,dontcare) to outbuff;

end;
end:; case pin.op

end; {dosynsent )

procedure dosynrcvd(var outbuff :packetbuff~output); pin :packet;
var mystate :nodestate;
seqnotosend integer; var oldestunack :integer;
seqnotorcv :integer)=

begin
entry mystate = synrcvd;
exit if (pin.op = ack or pin.op =synack) and pin.seqno = seqnotorcv

and pin.ackno ne oldestuneck'+I
then outto(outbuff,myid) =[seq~pack( reset~pin.ackno~dontcare) 1
else if if pin.seqno =seqnotorcv

then pin.op =synack and pin.ackno = oldestunack' + I
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else pin.op ne reset
fi

then outto(outbuff,myid)=[seq:pack(ack,seqnotosend,seqnotorcv)]
else outto(outbuff .myid)znull1(packetseq)
fi

fi and
if (pin.op = ack or pin.op =synack) and pin.seqno =seqnotorcv

and pin.ackno =oldestunack' + I
then oldestunack =oldestunack' + 1
else oldestunack = ldestunack'

fi and
if pin.seqno = seqnotorcv

then if pinop =ack and pin.ackno oldestunack' + 1
then mystate =estab
else if pin.op = reset

then mystate = closed
else mystate =synrcvd

fi
fi

else mystate =synrcvd
fi;

case pin.op

is in~seqno = seqnotorcv then

mystate := closed
end;

is syn:
if pin.seqno ne seqnotorcv then

send pack(ack,seqnotosend~seqnotorcv) to outbuff
end;

is ack:
if pin.seqno = seqnotn'-cv then
if pin.ackno = oldestunack + 1 then
oldestunack :=oldestunack + 1;
rystate := estab;
else
send pack(reset,pin.ackno,dontcare) to outbuff

end:,
else
send pack(ack,seqnotosend,seqnotorcv) to outbuff

end;
is synack:
if pin.seqno = seqnotorcv then
if pin.ackno = oldestunack + I then
oldestunack :=oldestunack + 1:
send pack(ack~seqnotosend.seqnotorcv) to outbuff;

else
send pack(reset.pin.ackno.dontcare) to outbuff

end;
else
send pan~k( seqnotosend,seqnotorcv) to outbuff

end;,
end:; case pin.up

end; (dosynr'cvd)
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procedure Medium(var packets _in : packetbuff~input>;

beginvar packets~out : packetbuff~output>

exit
all p :packet, p in outto(packets_out~myid)

-> p in nonlast(infrom(packpts in~myid));
pending;

end; ( Medium}

function pack(pop :packetop; pseqno :integer; packno integer) packet
beg in
exit (assume result.op = pop and result.seqno =pseqno and

result.ackno = packno and not result.Vislast);
result.op :=pop;
result.seqno :=pseqno;
result.ackno :=packno;
result.Vislast := false;

end;

function packlast(pop: packetop; pseqno: integer; packno: integer): packet
beg in
exit (assume result.op =pop and result.seqno =pseqno and

result.ackno = packno and result.Vislast);
result.op :=pop;
result.seqno :=pseqno;

result.ackno :packno;
result.Vislast := true;

end;

{**.***.specification functions ***.

function properstate(mystate : nodestate; seqnotosend :integer;
oldestunack : integer; seqnotorcv :integer;
oseq :packetseq; iseq : packetseq) :boolean

begin
exit (assume result [

mystate =mystateof(oseq,iseq) and
seqnotosend =seqnotosendof(oseq,iseq) and
oldestunack = oldestunackof(oseq~iseq) and
seqnotorcv = seqnotorcvof(oseq,iseq) and
seqnotosendprop(oseq, iseq) and
seqnotorcvprop(oseqiseq) ])

end;,

function seqnotosendprop(oseq, iseq : packetseq) :boolean
beg in
exit ( assume result=[

(mystateof(oseq,iseq) = synsent or
mystateof(oseq,iseq) = synrcvd or
mystateof(oseq,iseq) = estab)

-> ((all p : packet, p in oseq and (p.op = syn or p.op =synack)
-> seqnotosendof(oseq,iseq) = p.seqno + 1)) ])

end;

function seqnoto ivprop(oseq,iseq : packetseq) : boolean
beg in
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exit ( assume result [
(mystateof(oseq,iseq) = estab or mystateof(oseqiseq) synrcvd)
-> some p : packet, (p.op = syn or p.op a synack) and p in iseq

and seqnotorcvof(oseq,iseq) = p.seqno + 1 ] );
end;

function mystateof(oseq, iseq : packetseq) : nodestate
begin
pending; {restates state transitions--see page 241

end;
function seqnotosendof(oseq, iseq packetseq) integer =
begin
pending; (see page 24)

end;
function oldestunackof(oseq, iseq packetseq) integer =
begin
pending; (see page 24)

end;
function seqnotorcvof(oseq, iseq packetseq) integer =
begin
pending; (see page 24)

end;

{**'*'*** lemmas *******}

lemma mainlemma(oseql, iseql, oseq2, iseq2 packetseq) =
[ estab = mystateof(oseql,iseql) and

estab = mystateof(oseq2,iseq2) and
seqnotosendprop(oseql,iseql) and
seqnotorcvprop(oseq2,iseq2) and
( all p : packet, p in iseq2 -> p in oseql ] ]

-> seqnotosendof(oseql,iseql) = seqnotorcvof(oseq2,iseq2);

{ The following lemma is used to reduce the VC for the
procedure Protocol to two instances of mainlemma. It
is formulated so that it can easily be used in the proof,
and says that if everything sent to buffer bl was received
from buffer b2 (other than the last one received), then
everything received from bl was sent to b2 (other than the
last one sent). )

lemma fromto(bl, b2 packetbuff; p : packet) =
[ p in allto(bl) -) p in nonlast(allfrom(b2)) ]
-> [ p in allfrom(bl) -> p in nonlast(allto(b2)) ];

( The following basic facts about sequences and enumerated
types are neither built into nor provable in Gypsy. )

lemma seqprop(s : packetseq) =
s a null(packetseq) or some sl: packetseq, some p: packet, s = sl <: p;

lemma packetopcases(x : packetop) =
x = reset or x = syn or x = ack or x = synack;

end; { scope threeway )
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VII. PROOF OF MAINLEMMA IN GYPSY

Notes: User commands appear after the prompt "-" and are put in upper case here. (Note that

other arrows in this transcript represent implication, not prompts.) This proof uses no lemmas,

although the properties seqnotosendprop and seqnotorcvprop act as lemmas in that they are strong

enough to prove the theorem but must themselves be proved true. Since the proof steps consist of

substitutions and simplifications with no case splitting or other branching of the proof tree, the final

status line "(. E .E .... QED .)" represents the whole proof tree. Normally, the current path from the

root of the proof tree is only a small part of the whole tree. The QED command at the end of the proof

tells the prover itself to try to prove the current theorem. The prover was actually able to do this, but

only because we had manually brougt to a point where a couple of substitutions would finish the

proof.

1 Vsys -> PROVE
Unit or vc names -> MAINLEMMA

Entering Prover with lemma MAINLEMMA
all OSEQi, ISEQI, OSEQ2, ISEQ2 : PACKETSEQ,

(all P#1 : PACKET, P#1 in ISEQ2 -> P#1 in OSEQ1)
& MYSTATEOF (OSEQi, ISEQ1) = ESTAB & MYSTATEOF (OSEQ2, ISEQ2) = ESTAB
& SEQNOTORCVPROP (OSEQ2, ISEQ2) & SEQNOTOSENDPROP (OSEQ1, ISEQi)

-> SEQNOTOSENDOF (OSEQi, ISEQI) = SEQNOTORCVOF (OSEQ2, ISEQ2)
HI: MYSTATEOF (OSEQ1, ISEQi) = ESTAB
H2: MYSTATEOF (OSEQ2, ISEQ2) = ESTAB
H3: SEQNOTORCVPROP (OSEQ2, ISEQ2)
H4: SEQNOTOSENDPROP (OSEQI\ ISEQi)
H5: P#12$ in ISEQ2 -> P#12$ in OSEQI

Cl: SEQNOTOSENDOF (OSEQI, ISEQ1) = SEQNOTORCVOF (OSEQ2, ISEQ2)
Backup point
(.)

Prvr -> EXPAND
Unit name -> SEQNOTORCVPROP

Backup point
(.E .)

Prvr -> EXPAND
Unit name -> SEQNOTOSENDPROP

Backup point
(. E . E .)

Prvr -> THEOREM
Hi: MYSTATEOF (OSEQI, ISEQI) = ESTAB
H2: MYSTATEOF (OSEQ2, ISEQ2) = ESTAB
H3: MYSTATEOF (OSEQ2, ISEQ2) = ESTAB

or MYSTATEOF (OSEQ2, ISEQ2) = SYNRCVD
-> SEQNOTORCVOF (OSEQ2, ISEQ2) = P#13.SEQNO + 1 & P#13 in ISEQ2

& (P#13.OP = SYN or P#13.OP = SYNACK)

f

CDLOC=1 PAZ BLAM°NOT FILP&D

- --- ,t,.ai



84

H14: MYSTATEOF (OSEQi, ISEQ1) - ESTAB
oMYSTATEOF (OSEQi. ISEQ1) -SYNRCVD

or MYSTATEOF (OSEQi, ISEQ1) z SYNSENT
-> ( P#16S in OSEQ1 & (P#15$.OP =SYN or P#15S.OP = SYNACK)

-SEQNOTOSENDOF (OSEQ1, ISEQ1) = P#15S.SEQNO + 1)
H16: P#12S in ISEQ2 -> P#12$ in OSEQi

Cl: SEQNOTOSENOOF (OSEQi, ISEQ2) - SEQNOTORCVOF (OSEQ2, ISEQ2)

Prvr -> INTERACTIVE SIMPLIFY HYPOTHESIS
What hypotheses (by label) would you like to simplify?

hypothesis labels -> 3 4
What hypotheses would you like to assume?

hypothesis labels -> 1 2
Backup point
(. E. .E .SIMP4

Prvr -> THEOREM
HI: P#12$ in ISEQ2 -> P#12$ in OSEQI
112: SEQNOTORCVOF (OSEQ2, ISEQ2) =P#13.SEQNO + 1
113: P#15S in OSEQi & (P#15$.OP = SYN or P#15S.OP = SYNACK)

-> SEQNOTOSENDOF (OSEQi, ISEQ1) =P#15S..SEQNO + 1
114: P#13 in ISEQ2
H65: P#13.OP =SYN or P#13.OP = SYNACK
116: MYSTATEOF (OSEQi. ISEQ1) =ESTAB
117: MYSTATEOF (OSEQ2. ISEQ2) a ESTAB

Cl: SEQNOTOSENDOF (OSEQi, ISEQ1) =SEQNOTORCVOF (OSEQ2. ISEQ2)

Prvr -> PUT
For what? **P#12S;

Put what? *P#13;
For what? *P#15S;

Put what? *P#13;
For what? *$DONE
Typelist equalities

SEQNOTORCVOF (OSEQ2, ISEQ2) P#13.SEQNO + 1
Backup point
(. E E .SIMP .PUT .

Prvr ->THEOREM

HI: MYSTATEOF (OSEQ2. ISEQ2) = ESTAB
112: MYSTATEOF (OSEQ1, ISEQ1) =ESTAB
113: P#13.OP = SYN or P#13.OP = SYNACK
114: P#13 in ISEQ2
115: P#13 in OSEQI & (P#13.OP = SYN or P#13.OP =SYNACK)

-SEQNOTOSENDOF (OSEQi. ISEQi) = P#13.SEQNO + 1
116: SEQNOTORCVOF (OSEQ2, ISEQ2) =P#13.SEQNO + 1
117: P#13 in ISEQ2 -> P#13 in OSEQ1

Cl: SEQNOTOSENDOF (OSEQI. ISEQ1) a SEQNOTORCVOF (OSEQ2. ISEQ2)

Prvr -> FORWAROCHAIN H17
Forward chaining gives

P#13 in OSEQi
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Backup point
(E E . SIt4P .PUT .FC .

Prvr -)HYPOTHESES
Hi: P#13 in OSEQ1
H2: MYSTATEOF (OSEQ2. ISE02) =ESTAB
H3: MYSTATEOF (OSEQi. ISEQ1) =ESTAB
H4: P#13.OP = SYN or P113.OP =SYNACK
H5: P#13 in ISEQ2
H6: P#13 in OSEQ1 & (P#13.OP =SYN or P#13.OP =SYNACK)

-> SEQNOTOSENDOF (OSEQ1, ISEQ1) aP#13.SEQNO + 1
H7: SEQNOTORCVOF (OSEQ2, ISEQ2) = P#13.SEQNO + 1
HB: P#13 in ISEQ2 -> P#13 in OSEQ1

Prvr -> FORWARDCHAIN H6
Forward chaining gives
SEQNOTOSENDOF (OSEQ1, ISEQ1) = P#13.SEQNO + 1

Typelist equalities
SEQNOTOSENDOF (OSEQI, ISEQ1) = P#13.SEQNO + 1

Backup point
(. E .ESIMP .PUT . FC . FC.

Prvr ->HYPOTHESES

Hi: SEQNOTOSENDOF (OSEQi. ISEQi) =P113.SEQNO + 1
H2: P#13 in OSEQi
H3: MYSTATEOF (OSEQ2, ISEQ2) =ESTAB
H4: MYSTATEOF (OSEQI, ISEQ1) =ESTAB
H5: P#13.OP = SYN or P#13.OP =SYNACK
H6: P#13 in ISEQ2
H7: P#13 in OSEQ1 & (P#13.OP = SYN or P#13.OP SYNACK)

-SEQNOTOSENDOF (OSEQi, ISEQ1) z P#13.SEQNO + 1
H8: SEQNOTORCVOF (OSEQ2, ISEQ2) =P#13.SEQNO + I
H9: P#13 in ISEQ2 -> P#13 in OSEQ1

Prvr -> RETAIN
hypothesis labels -> 1 8

Typelist equalities
SEQNOTORCVOF (OSEQ2, ISEQ2) P#13.SEQNO + 1

& SEQNOTOSENDOF (OSEQ1, ISEQi) P#13.SEQNO + 1
Backup point
(. E .E . SIMP . PUT . FC . FC . D .

Prvr ->QED

(. E , E .SIMP. PUT .FC .FC . DQED)
:Equality proved TRUE

QE D
MAINLEMMA proved in theorem prover.
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V~III. PROOF OF SIMPLE ALTERNATING BIT PROTOCOL IN CSD

Notes: Each item (CSDa, CSDb) represents the currently active CSDs in each processor. The

processor with the different CSD from the last item has been active and has completed a CSD. When

a CSD has two (or more) exits (e.g., SB and RB), then a "disjunction' branch is created for each.

When either processor could finish a CSD next, then an "interleaving" branch is created. The first

number in the left column (before the slash) is an increasing branch point ID, while the second

number refers to the earlier branch point for which this is a later alternative.

The proof tree at the end summarizes the symbolic execution paths discovered by listing just the
CSD pairs sequentially on a line, with branch points matched vertically under one another. Numbered

lines are continuations of the top lines.

-~assume (UTIEOUTMAXD)ELAY MAXOELAY ge MINDELAY MINDELAY>O MAXLOSS=l)
_prove SPEC

(SA RA) (SB3 RA)
2-way disjunction branch SenderPCll4=B3t

UNOEFINEDll3-TRUE and SenderPCll4=Bf
d1/1 Start disjunction branch #1 SenderPCil4=B3t

(Slt RA) (SC RA) (SC RAt) (SC RB)
2-way disjunction branch ReceiverPC128=SenderPCll4

UNDEFINEDl27-TRUE and
ReceiverPC128=Bf

d2/2 Start disjunctioi. branch #1 ReceiverPCl28=SenderPCI!4
(SC Rlt) (SC RA) (SCt RA) (SA RA)

Goal reached at time SB112+RB126
d3/2 Start disjunction branch #2 UNDEFINEDI27-TRUE and

ReceiverPCl23=Bf
(SC IRV) (SC RA) (SB RA)

2-way disjunction branch SenderPCl42=SenderPCll4
UNDEFINEDl4I-TRUE and

SenderPC142=ReceiverPC128
d4/4 Start disjunction branch #1 SenderPCl42=SenderPCll4

(SBt RA) (SC RA) (SC RB) (SC RBt) (SC RA) (SCt RA) (SA RA)
Goal reached at time SBl4O+TIMEOUT+RBI5l+SBll2

d5/4 Start disjunction branch #2 UNDEFINEDl4l-TRUE and
SenderPC142=ReceiverPCl28

(SBf RA) (SC RA) (SB RA) (SBt RA) (SC RA) (SC RB) (SC Rlt) (SC RA)
(SCt RA) (SA RA)

Goal reached at time SB165+SB112+RB176+2*TIMEOUT+SBI40
d6/1 Start disjunction branch #2 UNDEFINEDll3-=TRUE and SenderPCll4=Bf

(SBf RA) (SC RA) (SB RA) (SBt RA) (SC RA) (SC RAt) (SC RB)
2-way disjunction branch ReceiverPC2O6=SenderPCl92

UNDEFINED2O5-TRUE and
ReevrP26SedrC14

d7/7 Start disjunction branch #1 ReceiverPC2O6=SenderPCl9Z

1PiLCM4.L -PA( BuANc-NTgy 11i*V
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(SC RBt) (SC RA) (SCt RA) (SA RA)
Goal reached at time SB19O+TIMEOUT+RB204+SBI12

d8/7 Start disjunction branch #2 UNDEFINED2O5-TRUE and
ReceiverPC2O6=SenderPCl 14

(SC RBf) (SC RA) (SB RA)
2-way disjunction branch SenderPC22O=SenderPC192

UNDEFINED219-TRUE and
SenderPC22O=ReceiverPC2O6

d9/9 Start disjunction branch #1 SenderPC22O=SenderPC192
(SBt RA) (SC RA) (SC RB) (SC RBt) (SC RA) (SCt RA) (SA RA)

Goal reached at time SB218+SB19O+RB229+2*TIMEOUT+SB112
dlO/9 Start disjunction branch #2 VNDEFINED219-TRUE and

Sender'PC220=ReceiverPC2O6
(SB? RA) (SC RA) (SB RA) (SBt RA) (SC RA) (SC RB) (SC RBt) (SC RA)
(SCt RA) (SA RA)

Goal reached at time SB243+SB112+3*TIMEOUT+RB254+SB190+
SB218

TRUE

-tree
(SA RA) (SB RA) dl (SBt RA) (SC RA) (SC RAt) (SC RB) d2 (SC RBt) (SC RA) 1

d0 (SC RBf) (SC RA) 2
d6 (SB? RA) (SC RA) (SB RA) (SBt RA) (SC RA) (SC RAt) 3

I (SCt RA) (SA RA)
2 (SB RA) d4 (SB. RA) (SC RA) (SC RB) (SC RBt) (SC RA) (SCt RA) (SA RA)

d5 (SBf RA) (SC RA) (SB RA) (SBt RA) (SC RA) (SC RB) (SC RBt) 4
3 (SC RB) V7 (SC RBt) (SC RA) (SCt RA) (SA RA)

d8 (SC RBf) (SC RA) (SB RA) d9 (SBt RA) (SC RA) (SC RB) 5
dID (SB? RA) (SC RA) (SB RA) 6

4 (SC RA) (SCt RA) (SA RA)
5 (SC RBt) (SC RA) (SCt RA) (SA RA)
6 (SBt RA) (SC RA) (SC RB) (SC RBt) (SC RA) (SCt RA) (SA RA)
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IX. CSDS FOR THE THREE-WAY HANDSHAKE

SW

[WAIT pre: (.SIn.type=Empty .SSendFlag-=TRUE
exp: .Sln.type-=Empty
procs: (S)
wait: (Sln.type)

smed
[WAIT pro: (.SSendFlag=TRUE)

exp: .TIn.type=Empty
Sig: (TIn.type Tln.seq TIn.ack SSendFlag)
procs: (S)
thenpost: (#TIn.type=.SBuf.type #TIn.seq=.SBu1'.seq #TIn.ack=.SBu'.ack

#SSendFl ag=FALSE)
wait: (TIn.type SBuf.type SBuf.seq SBuf.ack)]

58
[PSD pre: (.SState=Closed .SIn.type=ActiveOpen)

mod: (SIn.type SState SSeqloSend SBuf.seq SBuf.ack SBuf.type
SSendFlag S0ldUnack)

procs: (S)
post: (#SIn.type=Empty #SState=SynSent #SSeqToSend=SMaxval+l

#SBuf.seq=SMaxval SBuf.ack=O #SBuf.type=Syn
(SSendFlag=True #SoldUnack=S~axval)

time: (Range 0)]

Sb
[PSD pre: (.SState-=Closed Sln.type=ActiveOpen)

mod: (SIn.type)
procs: (S)
post: (#SIn.type=Empty)
time: (RANGE 0)]

Sc
[PS0 pre: (.SState=Closed .SIn.type=PassiveOpen)

mod: (SIn.type SState)
procs: (S)
post: (#Sln.type=Empty #SState=Listen)
time: (RANGE 0)]

sd
[PSD pre: (.SState-=Closed .Sln.type=PassiveOpen)

mod: (Sln.type)
procs: (S)
post. (#SIn.type=Empty)
time: (Range 0)]

Se
[PSD pre: (.SState-Listen or .SState=Closed .Sln.type=Rst)

mod: (Slri.type)
procs: (S)
post: (#SIn.type=Empty)
time: (RANGE 0)]
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s f
CPSD pre: (.SState=SynSent .SIn.type=Rst)

read: (SIn.ack SoldUnack SState)
mod: (SIn.type SState)
procs: (S)
post: (#SIn.type=Empty

(if .Sln.ack=.S~ldUnack+l then #SState=Closed
else #SState=.SState))

time: (r,.,NGE 0)]

sg
[PSO pre: (.SState2SynReceived or .SState=Established .SIn.type=Rst)

read: (SIn.seq SSeqloReceive SState)
mod: (SIn.type SState)
procs: (S)
post: (#SIn.type=Empty

(if .Sln.seq=.SSeqToReceive then #SState=Closed
else #SState=.SState))

time: (RANGE 0)]

sh
[PSO pre: (.SState=Closed or .SState=Listen .SIn.type=Ack)

read: (SIn.ack)
mod: (SIn.type SSendFlag SBuf.seq SBuf.ack SBuf.type)
procs: (S)
post: (#Sln.type=Empty SSendFlag=TRUE SSBuf.seq=.SIn.ack

#SBuf.ack0O #SBuf.type=Rst)
time: (RANGE 0)]

51
[PSD pre: (.SState=SynSent .SIn.type=Ack)

read: (SIn.ack SOldUnack SSendFlag SBuf.seq SBuf.ack
SBuf.type)

mod: (SIn.type SSendFlag SBuf.seq SBuf.ack SBuf.type)
procs: (S)
post: (SIn.type=Empty

(if -(.Sln.ack=.SOLDUnack+l)
then

#SSendFlag=TRUE and #SBuf.seq=.SIn.ack and
#SBuf.ack=0 and #SBuf'.type=Rst

else
#SSendFlag=.SSendFlag and #SBuf.seq=.SBuf.seq

and #SBuf.ack=.SBuf.ack and #SBuf.type=.SBuf.type))
time: (RANGE 0)]

sj
[PSD pre: (.SState=SynReceived .SIn.type=Ack)

read: (SIn.ack SOldUnack SIn.seq SSeqlo~eceive SSendFlag
SBuf.type SBufseq SBuf.ack SState SSeqToSend)

mod: (SIn.type SOldUnack SState SSerdFlag SBuf.seq SBuf.ack
SBuf. type

procs: (S)
post: (#SIn.type-1,npty

(if .Sln.ackz.S~ldUnack+l and .SIn.seq=.SSeqToReceive
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then
#SOldUnack=.SOldUnack+l and #SState=Establ4ished

and #SSendrlag=.SSendFlag and #SBuf.type=.SBuf.type
and #SBuf.seq=.SBuf.seq and #SBuf.ack=.SBuf.ack

else
#SOldUnack=.SOldUnack and #SState=.SState and
#SSendFlag=TRUE and
(if -(.Sln.seq=.SSeqToReceive)

then
#SBuf.seq=.SSeqloSend and #SBuf.ack=.SSeqloReceive

and #SBuf.type=Ack
el se

#SBuf.seq=.SIn.ack and #SBuf.ack=O and
NSBuf .type:Rst)))

time: (RANGE 0)]

sk
[PSD pre: (.SState=Established .Sln.type=Ack)

read: (SIn.seq SSeqToReceive SSeqToSend SBuf.seq SBuf.ack
SBuf.type SSendFlag)

mod: (SIn.type SBuf.seq SBuf.ack SBuf.type SSendFlag)
procs: (S)
post: (#SIn.type=Empty

(if -(.SIn.seq=.SSeqToReceive
then

#SBuf.seq=.SSeqToSend and #SBuf.ack=.SSeqToReceive
and #SBuf.typezAck and #SSendFlag=TRUE

else
#SBuf.seq=.SBuf.seq and #S8uf.ack=.SBuf.ack

and #SBuf.type-.SBuf.type and #SSendFlag=.SSendFlag))
time: (RANGE 0)] i

sl
[PSD pre: (.SState=Closed .SIn.type=Syn)

read: (SIn.seq)
mod: (SIn.type SSendFlag SBuf.seq SBuf.ack S~uf.type)
procs: (5)
post: (#SIn.type=Empty #S~endFlag=TRUE #SBuf.seq=O

#SBuf.ack=.Sln.seq+l #SBuf.type=Rst)
time: (RANGE 0)]

sm
CPSO pre: (.SState=Listen .SIn.type=Syn)

read: (SIn.seq)
mod: (SIn.type SSendFlag SState SSeqToSendToReceive SBuf.seq

SBuf.ack SBuf.type SOldUnack)

procs: (S)
post: (#Sln.type=Empty #SSendFlag=TRUE #SState=SynReceived

#SSeqToSend=SMaxval+1 #SSeqToReceive:.Sin.seq+l
#SBuf.seq=SMaxval #SBuf.ack=#5SeqToReceive #fS
#SBuf.type=SynAck #SOldUnack=SMaxval)

time: (RANGE 0)]

Sn
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[PSD pre: (.SState=SynSent .SIn.type=Syn)
read: (SIn.seq SSeqToSend)
mod: (SIn.type SState SSeqToReceive SSendFlag SBuf.seq

SBuT.ack SBuf.type)
procs: (S)
post: (#Sln.type=Empty #SState=SynReceived #

#SSeqroReceive2.SIn.seq+l #SSendFlag=TRUE
#SBuf.seq=.SSeqToSend #SBuf.ack=#SSeqToReceive
#SBu' type=Ack)

time: (RANGE 0)]

so
[PSD pre: (.SState=SynReceived or.SState=Established .SIn.type=Syn)

read: (SSeqToSend SSeqToReceive)
mod: (SIn.type SSendFlag SBuf.seq SBuf.ack SBuf.type)
procs: (S)
post: (#SIn.type=Empty #SSendFlag=TRUE #SBuf.seq=.SSeqToSend

#SBuf.ack=.SSeqToReceive #SBuf.type=Ack)

time: RANGE 0)]

sp
[PSO pre: (.SState=Closed or .SState=Listen .SIn.type=SynAck)

read: (SIn.ack)
mod: (SIn.type SSendFlag SBuf.seq SBuf.ack SBuf.type)
procs: (S)
post: (#SIn.type=Empty #SSendFlag=TRUE #SBuf.seq=.SIn.ack

#SBuf.ack=0 #SBuf.type=Rst)
time: (RANGE 0)]

sq
[PS0 pre: (.SState=SynSent .SIn.type=SynAck)

read: (SIn.ack SOldUnack SSeqToSend SIn.seq SState SSeqToReceive)
mod: (SIn.type SSendFlag SState Sl-qToReceive SBuf.seq

SBuf.ack SBuf.ty 3OldUnack)
procs: (S)
post: (#Sln.type=Empty #SSendFlag=TRUE

(if .SIn.ack=.SOldUnack+l
then

#SState=Established and #SSeqToReceive=.Sln.seq+1
and SS~uf.seq=.SSeqToSend and #SSbuf.ack=.SIn.
seq+1 and #SBuf.type=Ack and #SOldUnack=.SoldUnack+l

else
#SState=.SState and #SSeqToReceive=.SSeqToReceive and

#SBuf.seq=.SIn.ack and #SBuf.ack=0 and
#SBuf.type=Rst and #SOldUnack=.SOldUnack))

time: (RANGE 0)]

s r
[PSD pre: (.SState=SynReceived or .SState=Established .SIn.type=SynAck)

read: (SSeqToSend SSeqloReceive)
mod: (SIn.type SSendFlag SBuf.seq SBuf.ack S~uf.type)
procs: (S)
post: (#SIn.type=Empty #SSendFlag=TRUE #SBuf.seq=.SSeqToSend

#SBuf.ack=.SSeqToReceive #SBuf.type=Ack)
time: (RANGE 0)]
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X. PROOF OF FIRSTHALF OF A SIMPLE THREE-WAY HANDSHAKE
IN CSD

Notes: See Appendix VIII for explanations. The trace shows which CSD has just completed in each

state pair (after the ;) in addition to the information described in Appendix VIII. This proof covers only

the case in which both nodes are performing an Active Open. (The Active/Passive case is much

simpler.)

29prove FirstHalf
(ta sa)

2-way interleave
il/i Assume first to finish is (T)

(tmed sa ; ta) (tmed smed ; sa)
2-way interleave

i2/2 Assume first to finish is (T)
(tw =SynSent smed ; tmed) (tw :SynSent sn smed)

2-way interleave
3/3 Assume first to finish is (T)

(tn sn ; tw)
2-way interleave

i4/4 Assume first to finish is (T)
(tried sn ; tn) (tmed smed sn)

Goal reached at time sdll4+snll5
i5/4 Assume first to finish is (S)

(tn smed ; sn) (tmed smed tn)
Goal reached at time sa114+tnll6

i6/3 Assume first to finish is (S)
(tw =SynSent smed , sn) (tn smed - tw) (tmed smed tn)

Goal reached at time snll5+sall4+tnll7
i7/2 Assume first to finish is (S)

(tmed sw =SynSent ; smed) (tn sw=SynSent ; tmed)

2-way interleave
i8/8 Assume first to finish is (T)

(tmed sw =SynSent ; tn) (tmed sn *w) (tmed smed sn)
Goal reached at time tnll8+sall4+snI19

i9/8 Assume first to finish is (S)
(tn sn : sw)

2-way interleave
i10/I0 Assume first to finish is (T)

(tmed sn ; tn) (tmed smed sn)
Goal reached at time sa114+sn120

ill/ 0 Assume first to finish is (S)
(tn smed : sn) (tmed smed tn)

Goal reached at time sa314+tn118
i12/1 Assume first to finish is (S)

(ta smed ; sa) (tmed smed ta)
2-way interleave

i13/13 Assume first to finish is (T)
(tw =SynSent smed ; tmed) (tw =SynSent sn smed)

2-way interleave
i14/14 Assume first to finish is (M)
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(tn Sn :tw)
2-way interleave

i15/15 Assume first to finish is (T)
(tmed Sn ; tn) (tmed sued : sn)

Goal reached at time ta113+snl2l
116/15 Assume first to finish is (S)

(tn sued ; sn) (tmed smed ; tn)
Gci'j reached at time ta1l3+tnl22

i1114 Assume first to finish is (S)
(tw aSynSent sued ; sn) (tn smed : tw) (tmed sued ;tn)

Goal reached at time snl2l+tallS+tn123
i18/13 Assume first to finish is (S)

(tmed sw 2SynSent ; sued) (tn sw %SynSent ; tmed)
2-way interleave

i19/19 Assume first to finish is (T)
(tued sw =SynSent ; tn) (tmed Sn : sw) (tmed sued ;sn)

Goal reached at time tn124+tall3+sn125
i20/19 Assume first to finish is (S)

(tn sn ; sw)
2-way interleave

i21/21 Assume first to finish is (T)
(tued sn ; tn) (tued smed ; sn)

Goal reached at time ta113+snl26
i22/21 Assume first to finish is (S)

(tn sued ; sn) (tmed sued ; tn)
Goal reached at time tall3+tn124

455886 conses
346.754 seconds
106.979 seconds, garbage collection time
TRUE

30-*tree
(ta sa) il (tmed sa ; ta) (tued sued ;sa) i2 (tw =SynSent sued ; tmed) 1

17 (tued sw -SynSent ; sued) 2
112 (ta sued ; sa) tued sued ;ta) i13 (tw =SynSent sued ; tued) 3

118 (tmed sw -SynSent ; sued) 4

1 (tw=SynSent sn ;smed) 13 (tn sn ; tw) 14 (tmed sn ;tn) (tued sued ;sn)
iS (tn sued ;sn) (tued sued ;tn)

i6 (tw:SynSent sued ;sn) (tn sued :tw) (tued sued :tn)
2 (tn sw=SynSent :tued) i8 (tued sw-SynSent ;tn) (tmed sn ;sw) (tmed smed ;sn)

19 (tn sn ;sw) 110 (tmed sn :tn) (tmed sued ; sn)
ill (tn sued ;sn) (tmed sued : tn)

3 (twaSynSent sn ;smed) 014 (tn sn ;tw) i15 (tued sn ;tn) (tmed sued ; sn)
i16 (tn sued ;sn) (tmed sued ; tn)

M1 (twzSynSent sued ;sn) (tn sued ;tw) (tued sued ; tn)
4 (tn sw=SynSent ;tued) 119 (tued sw-SynSent ;tn) (tmed sn :sw) (tued sued ;sn)

i20 (tn sn 3 W) i21 (tued sn ; tn) (tued sued ; sn)
122 (tn sued ; sn) (tued sued ; tn)

NIL
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XI. CSDS FOR A THREE-WAY HANDSHAKE USING QUEUES

M~otes: Predicates, defined first, are substituted wherever their name appears in the CSDs, with

actual arguments replacing the formal ones (& 1, &2,..)

prod SSend
(if .SLost go SMaxioss then #SLost=O and (peed SEnqueue &1 &2 &3)
else #SLost=O and (pred SEnqueue &1 &2 &3)

or #SLostx.SLost+1 and #TIn.typex.TIn.type and #TIn.seqs.TIn.seq
and #TIn.ack=.TIn.ack))

prod SEnqueuo
#Tln.typen(ENQUEUiE .TIn.type &1) and #Tln.seqrn(ENQUEUE .TIn.seq &2)

and #TIn.ack=(ENQUEUE .TIn.ack &3))
prod Soequeue #SIn.typez(DEQUEUE .SIn.type) and #SIn.seq=(DEQJEUE .SIn.seq)

and #SIn.acka(DEQUEUE .Sln.ack))
pred SIn (if (EMPTYQUEUE .SIn.type) or .STimeoutFlagsTRUE

then FALSE else (FRONTQUEUE .Sln.type)=&1))
pred SSetPending #SPending.type=&1 and #SPending.seq:&2 and #SPending.ackm&3)
prod SClearPending #SPending.type-Empty)
prod SNothingSent #SLost=.SLost and #Tln.type-.TIn.type

and #TIn.seq-.TIn.seq and #TIn.ack=.Tln.ack)

SW
[WAIT pre: ((EMPTYQIJEUE .SIn.type) .STimeoutFlegaFALSE)

exp: -(EMPTYQUEUE .SIn.type)
sig: (STimeoutFlag)
procs: (S)
thenpost: (#STimeoutFlag=FALSE)
elsepost: (#STimeoutFlagzTRUE)

Walt: (SIn.type)
time: STimeout]

sz
[PSD pro: (.STimeoutFlag=TRIE)

road: (SPending.type SLost TIn.typo TIn.soq TIn.ack
SPending.soq SPonding.ack)

mod: (STimeoutFiag SLost TIn.type TIn.soq TIn.ack)
procs: (S)
post: (#STlmeoutFlag=FALSE

(if .SPending.typecEmpty then (prod SidothingSent)
else

(pred SSend .SPending.type .SPending.seq
.SPending.ack)))

time: (RANGE SMin SMax)]

3a
(PSO pre: (.SState*Closod (peed SIn ActiveOpen))

read: (SIn.type SIn.seq SIn.ack SLost TIn.type TIn.soq
TIn.ack)

mod: (SIn.typo SIn.soq SIn.ack SState SSeqToSend SLost
TIn.type TIn.seq TIn.ack SPendlng.type
SPondlng.seq SPonding.ack SOldUnack)
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procs: (S)
post: ((prod SOoqusue) #SStateuSynSent #SSeqToSend=SMaxval+l

(prod SSond Syn SMaxval 0)
(prod SSotPending Syn S~axval 0) #SOld~inack=SMaxval)

time: (RANGE S~in SMax)]

sb
[PSO pro: (.SState-zClosed (prod SIn ActiveOpen))

road: (SIn.type SIn.seq SIn.ack)
mod: (SIn.type SIn.seq SIn.ack)
procs: (S)
post: ((prod Sooqueuo))
time: (RANGE S~in SMax))

Sc
[PS0 pro: (.SStato=Closod (prod SIn PassiveOpen))

road: (SIn.typo SIn.seq SIn.ack)
mod: (SIn.typo SIn.seq SIn.ack SStato)
procs: (S)
post: ((prod S~equoue) #SState=Listen)
time: (RANGE SMin SMax))

sd
[PSD pro: (.SState-=Closed (prod SIn PassiveOpen))

road: (SIn.type SIn.seq SIn.ack)
mod: (SIn.typo SIn.seq SIn.ack)
procs: (S)
post: ((prod Soequeue))
time- (RANGE S~in SMax)]

so
[PSD pro: (.SState=Listen or .SStatexClosed (prod SIn Rst))

road: (SIn.typo SIn.soq SIn.ack)
mod: (SIn.typo SIn.soq SIn.ack)
procs: (S)
post: ((prod SDoquouo))
time: (RANGE S~in St~ax)J

sf
CPSO pro: (.SStatouSynSent (prod Sin Rst))

road: (SIn.type SIn.soq SIn.ack SOldUnack SStato)
mod: (SIn.type SIn.seq SIn.ack SStato SPonding.type)
procs: (S)
post: ((prod SDequoue)

(if (FRONTQUEUE .Sjn.ack)*.SOldUnhcke1
then ffSStatezClosed and (prod SCicarPonding)
else #SState* .SStato))

time: (RANGE SHin S~ax))

[PS0 pro: (.SStetewSynReceived or .SStatezEstablishad
(prod Sin Rst))

read: (Sln.type SIn.seq SIn.ack SSeqToReceiv. SStato)
mod: (Sln.type S~n.seq SIn.ack SStato SPonding.type)

prods: (S)
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post: ((prod Sooquoue)
(if (FRONTQUEUE .Sln.seq)=.SSeqToReceive

then #SStatezClosed and (prod SClearPonding)
else #SStato .SState))

time: (RANGE S~in SMax))

sh
(PSO pro: (.SStatesClosed or .SState=Listen (prod SIn Ack))

read: (SIn.type SIn.seq SIn.ack SLost TIn.type TIn.seq
TIn.ack)

mod: (SIn.type SIn.seq SIn.ack SLost TIn.type TIn.seq
TIn.ack)

procs: (S)
post: ((pred SDequeue)

(prod SSend Rst (FRONTQUEUE .SIn.ack) 0))
time: (RANGE S~in SMax)]

si
(PSD pro: (.SStato:SynSent (prod SIn Ack))

read: (SIn.typo SIn.seq SIn.ack SOldUnack SLost TIn.type
TIn.seq TIn-ack)

mod: (SIn.type SIn.seq SIn.ack SLost TIn.type TIn.soq
TIn.ack)

procs: (S)
post: ((prod S~equs)

(if -((FRONTQUEUE .Sln.ack)z.SOldUnack+l)
then (prod SSend Rst (FRONTQUEUE .Sln.ack) 0)
else (prod SNothingSent)))

time: (RANGE S~in Sl4ax)]

Si
[PSD pro: (.SStato.SynRoceived (prod SIn Ack))

read: (SIn.typo SIn.seq SIn.ack SOldUnack SSeqToRocoive
Tintype Tln.soq TIn.ack SState SLost
SSeqToSend)

mod: (SIn.type SIn.seq SIn.ack SOldUnack SStato TIn.typo
TIn.soq TIn.ack SPending.type SLost)

procs: (S)
post: ((prod Sooquous)

(if
(FRONTQUEUE .Sln.ack)z.SOldUnack+l and

(FRONTQUEUE .Sln.seq)- .SSoqToReceive
t~hen
#SOldUnackw.SOldUnack+1 and #SStatenEstabl ishod

and (prod SNothingSont) and

alo(prod SClearPendlng)

#SOldUnacku.SOldUnack and #SStatom.SStato and
(if -((FRONTIJEUE .Sln.soq)-.SSoqToReceive)

then
and
(prod SSend Ack .SSoqToSond

SSeqTOROce i ye)
else (prod SSand Rst (FRONTQUEUE .SIn.ack) 0)



time: (RANGE St~in St~ax)]

sk
[PSO pro: (.SStatozEstabiishod (prod SIn Ack))

read: (SIn.type SIn.soq SIn.ack SSoqToReceive SLost TIn.type
TIn.seq TIn.ack SSeqToSend)

mod: (SIn.type SIn.seq SIn.ack SLost TIn.typo TIn.seq
TIn.ack)

procs: (S)
post: ((prod SDoqueuo)

(if -((FRONTQUEUE .Sln.seq)-.SSeqToRoceive)
then (prod SSend Ack .SSeqToSend .SSeqToReceive)
else (prod SNothingSent)))

time: (RANGE SMin SMax)]

s1
[PSO pro: (.SState=Closed (prod SIn Syn))

read: (SIn.type SIn.soq SIn.ack SLost TIn.type TIn.seq
TIn.ack)

mod: (SIn.type SIn.seq SIn.ack SLost TIn.type TIn.seq
TIn.ack)

procs: (S)
post: ((prod SDequeue)

(prod SSond Rst 0 (FRONTQUEUE .SIn.seq+l)))
time: (RANGE SMin SMax)]

sm
[PSD pro: (.SState=Listen (prod SIn Syn))

road- (SIn.type Sln.seq Sln.ack SLost TIn.type TIn..seq
TIn. ack)

mod: (SIn.type SIn.seq SIn.ack SState SSoqToSond
SSeqToRecoive SLost TIn.type TIn.seq TIn.ack
SOldUnack SPending.type SPending.seq
SPending .ack)

procs: (S)
post: ((pred SOoquouo) #SState=SynReceived

#$'SeqToSend=SMaxval+l
#SSeqToReceive=(FRONTQUEUE .SIn.seq)+l
(prod SSond SynAck SMaxval #SSeqToReceive)
#SOl dUnack:S~axval
(prod SSotPonding SynAck SMaxval #SSoqToReceivo))

time: (RANGE S~in SMax))

sn
(PSO pro: (.SState=SynSont (prod SIn Syn))

road: (SIn.typo SIn.soq SIn.ack SLost TIn.type TIn.soq
TIn.ack SSoqToSond)

mod: (SIn.typo SIn.seq SIn.ack SStato SSoqToReceivo SLost
TIn.type TIn.soq TIn.ack)

procs: (S)
post: ((prod SDoquouo) MSt,%te-SynRecelvod

#SSeqToRocolve-(FRONTQUEUE .SIn.seq)+l
(prod SSend Ack .SSeqToSend #SSeqToRocelve))

time: (RANGE SHin SMax))



997

so
[PSO pro: (.SState-SynRoceivod or .SStatexEstablished

(prod SIn Syn))
read: (SIn.typo SIn.soq SIn.ack SLost TIn.typo TIn.seq

TIn.ack SSoqToSend SSeqToRoceivo)
mod: (Sln.type SIn.seq SIn.ack SLost Tln.type TIn.seq

procs: (S) Tnak

post: ((prod SDequoue)
(prod SSend Ack .SSeqloSend .SSeqloReceive))

time: (RANGE SMin SMax)]

sp
[PSD pro: (.SState=Closod or .SState=Listen (prod Sin SynAck))

read: (SIn.typo SIn.seq SIn.ack SLost TIn.type TIn.seq
TIn. ack)

mod: (Sln.type SIn.seq SIn.ack SLost TIn.typo TIn.seq
TIn.ack)

procs: (S)
post: ((prod SDequouo)

(prod SSend Rst (FRONTQUEVE .SIn.ack) 0))
time: (RANGE St~in SMax))

sq
EPSD pro: (.SState=SynSent (prod SIn SynAck))

road: (SIn.type SIn.seq SIn.ack SOldUnack SLost TIn.type
TIn.seq rln.ack SSeqToSend SState
SSeqToReceive)

mod: (SIn.type SIn.seq SIn..ack SState SSeqToReceive SLost
TIn.type TIn'.seq TIn.ack SPendlng.type
SOldUnack)

procs: (S)
post: ((pred SDequeue)

(if (FRONTQL'EUE .SIn.ack)-.SOldUnack+l
then

#SStato=Establishod and
#SSeqToReceive-(FRONTQUEUE .Sln. seq)+l and
(prod SSend Ack .SSeqToSend #SSoqToRoceivo) and
(prod SCigarPonding) and
#SOldUnacku .SOldUnack+l

else
ffSStaten.SState and #SSeqToReceivou.SSogToRoceivo

and (prod SSond Rst (FRONTQUEUE Sln.ack) 0)
and #SOldUnacku.SOldUnack))

time: (RANGE St~in SMax)]

sr
[PSO pro: (.SState*SynReceived or .SStatenEstablished

(prod SIn SynAck))
read: (Sln.type Sln.seq SIn.ack SLost TIn.type TIn.seq

TIn.ack SSoqToSond SSoqToRecoive)
mod: (Sln.type SIn.seq SIn.ack SLost TIn.typo TIn.soq

TIn.ack)
procs: (S)
post: ((prod SDequouto)



100

(prod SSend Ack .SSeqToSend .SSeqToReceive))
time: (RANGE SMin SMax))
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