
7 126 244 REASONING ABOUT KNOULEDGE
AND ACTIONCU) SRI

/3
INTERNATIONAL MENLO PARK CR ARTIFICIAL INTELLIGENCE

U MCLAS CENTER R C MOORE OCT 88 5RI-TN-i9i

UNCLASSIFIED F/G 614 N

S*.~. **. .-.-- - - -

- - . . *...

13.6

L4_0

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS 963 -A

*'"0''

-0 •..

0- ' + '

* 0 0 0 0 0 0 0 0 0 0 0 0 00 0.-+

* REASONING ABOUT KNOWLEDGE
* AND ACTION

let Technical Note 191

October 1980

By: Robert C. Moore, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

DTIC
ELECTEM

APRi1 1983

A
This report Is a slightly revised version of a thesis submitted to the
Department of Eiectricai Engineering and Computer Science of the
Massachusetts Institute of Technology on February 9, 1979, in partial
fulfillment of the requirements for the degree of Doctor of Phlosophy.

Approred fm~ vublic release;
Distrihtifon Milixntpd

CD SRI International
333 Ravenswood Avenue

Menlo Park, California 94025
LAJ (415) 326-6200

Cal:SIIT1P
TWX: 910-373-1246

~ 83 03 21 013

REASONING ABOUT KNOWLEDGE
AND ACTION

©
Technical Note 191

October 1980

By: Robert C. Moore, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

This report is a slightly revised version of a thesis submitted to the
Department of Electrical Engineering and Computer Science of the
Massachusetts institute of Technology on February 9, 1979, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Approved: ' " ,

Nils J. Nilsson, Director .. 4
Artificial Intelligence Center

David H. Brandin, Executive Director "

Computer Science and Technology Division . ,

-9 l k ' !

IIFlI"-

Abstract

This report deals with the problem of making a computer reason about the interactions

between knowledge and action. In particular, we want to be able to reason about what

knowledge a person must have in order to perform an action, and what knowledge a person

may gain by performing an action. The first problem we ,ace in achieving this goal is that

the basic facts about knowledge which we need to use are most naturally expressed as a

modal logic. There are, however, no known techniques for efficiently doing automatic

deduction directly in modal logics. We solve this problem by taking the possible-world

semantics for a modal logic of knowledge and axiomatizing it directly in first-order logic.

This means that we reason not about what facts someone knows, but rather what possible

worlds are compatible with what he knows. We integrate this theory with a logic of actions

by identifying possible worlds with the situations before and after an action is performed.

We use these notions to express what knowledge a person must have in order to perforn, a

given action and what knowledge a person acquires by carrying out a given action. Finally,

we consider some domain-specific control heuristics that are useful for doing deductions in

this formalism, and we present several examples of deductions produced by applying these

heuristics.

This report Is a slightly revised version of a thesis submitted to the Department of

Electrical Engineering and Computer Science of the Massachusetts Institute of Technology

on February 9, 1979, in partial fulfillment of the requirements for the degree of Doctor of

Philosophy.

I

F.-~ 7. - 7

"°

Contents

Abstract ii

List of Illustrations iv

I. Introduction I

I . I The Importance of Knowledge in Reasoning about Action I
1.2 Overview of the Thesis 9

2. Reasoning about Knowledge 15

2.1 Formalizing Properties of Knowledge 15
* 2.2 Computational Problems in Reasoning About Knowledge 19

2.3 Possible-World Semantics for Knowledge 25-
2.4 A Note on Belief 33
2.5 Knowledge, Equality, and Quantification 35
2.6 Other Work on Reasoning about Knowledge 47

3. An Integrated Theory of Knowledge and Action 53

3.1 Possible-World Semantics for Actions 53
3.2 The Dependence of Action on Knowledge 62
3.3 The Effects of Action on Knowledge 67

4. Formalizing the Possible-World Semantics for Knowledge 75

4.1 Object Language and Meta-Language 75
4.2 A First-Order Treatment of the Propositional Logic of Knowledge 78
4.3 Introducing Predicates, Quantifiers, and Equality 88

5. A First-Order Theory of Knowledge and Action 101

5. I Formalizing the Possible-World Semantics for Actions 101
5.2 Formalizing the Dependence of Action on Knowledge 112
5.3 Formalizing the Effects of Action on Knowledge 118
5.4 An Example of Acquiring Knowledge Required for an Action 127

6. Automating Deductions about Knowledge 337

6.! Procedural Deduction and First-Order Logic 137
6.2 Outline of a Procedural Deduction System 140
6.3 Procedural Interpretation of Complex Assertions 144
6.4 Inference Rules for Equality 152
6.5 Procedural Interpretation of the Axioms for Knowledge 155
6.6 Some Examples 160

.. . -

II
i,"v

7. Automating Deductions about Knowledge and Action 169

7. Interpreting Axioms for Knowledge and Action 169
7.2 An Example of an Action which Requires Knowledge 179
7.S An Example of an Action which Produces Knowledge 185

7.4 An Example of Acquiring Knowledge Required for an Action 191
7.5 Remarks on the Examples 204

8. Summary and Conclusions 209

8.1 What has been Achieved? 209
8.2 Limitations and Extensions of the Current Approach 212
8.3 Conclusions 221

Bibliography 223

Appendix A: First-Order Axioms for Knowledge and Action 227

Appendix B: Procedurally Interpreted Axioms for Knowledge and Action 231

'

6

'I

V

Illustrations

L 2.1 *John knows that P.' - "John doesn't know whether Q. 28

2.2 "A knows that P." - "P is true in every world which is compatible with what 28
A knows."

2.3 "If A knows that P then he knows that he knows that P.0 SO

7 2.4 "John knows that Bill knows that P." S$

3. I Know(A I ,Res(Do(A2 ,Act),P))" 59
Vw1 (K(:A l ,w0,w1i) a 3w2 (R(:D(.:A 2,:Act),wj ,w2) A T(w2 ,P)))

3.2 The effect of performing an action that is not knowledge-producing on the 70
knowledge of the agent

3.3 The effect of performing a knowledge-producing action on the knowledge of 71
the agent

3.4 The effect of a test on the knowledge of the agent 73

5.1 A typical blocks-world problem 108

5.2 "John can open Sfi by dialiM ,,mbSfj)." 116

5.3 "CI is the combination of Sf I." 123

5.4 *CI is not the combination of Sf 1 126

5.5 Acquiring knowledge required for an action ISO

i.4

r ".

I. Introduct!on

1.1 The Importance of Knowledge in Reasoning about Action

Planning sequences of actions and reasoning about the effects of actions is one ot the

areas which has received the most attention from researchers in artificial intelligence (Al).

Systems such as SHRDLU (Winograd. 1971). STRIPS (Fikes and Nilsson, 1971), BUILD

(Fahlman, 1973), HACKER (Sussman. 1973). and NOAH (Sacerdoti, 1977) have explored

issues including plan generation and debugging, representing changes to a world, skill

acquisition, resolving conflicting goals, and hierarchical plan refinement. To date, however.

little attention has been paid to the important role that the agent's knowledge plays in

planning and acting to achieve a goal.

Almost all Al planning systems assume that they have complete knowledge of all

relevant aspects of the problem domain and problem situation in which they operate.

Often, any statement which cannot be inferred to be true is assumed to be false. In the real

world, however, planning and acting must frequently be performed without complete

knowledge of the situation. This imposes two additional burdens on an intelligent agent

trying to act effectively. First, when the agent entertains a plan for achieving some goal, he

must consider not only whether the physical prerequisites of the plan are satisfied, but also
whether he has all the information necessary to carry out the plan. Second. he must be able

to reason about what he can do to obtain the necessary information that he currently lacks.

Consider the problem of trying to open a safe. Typically, Al systems assume that if

there is an action that an agent is physically able to perform, and that action results in some

proposition P being true, then the agent can achieve P. In the case of opening a safe. there

is certainly some action that any human agent of normal abilities iM physically able to
4 perform and that will result in the afe being open, namely, dialing the combination of the

I

r.r f" lf "l -' -' . - - ' - -'o '""" - -

2

safe. It would be highly misleading, however, to claim that an agent could open the safe

simply by dialing the combination unless he knew what the combination of the safe was. If.
on the other hand, he had a piece of paper that had the combination of the safe written on

L,."

it, he could open the safe by reading what was on the piece of paper and then dialing the

combination of the safe, even if he did not know the combination initially.

What we seek are techniques for creating computer systems capable of drawing

conclusions such as this based on a general understanding of the relationship between

knowledge and action. The question of generality is somewhat problematical. since different

actions obviously have different prerequisites and results that involve knowledge. To make

this Issue concrete, consider trying to take knowledge into account in the STRIPS approach

to the representation of actions. In this 4pproach. knowledge about an action is represented

by three lists: a list of preconditions that must be satisfied for the action to be applicable, a

list of deletions which might not be true any longer after the action has been performed.

and a list of additions which become true as a result of the action being performed. For

instance, the action of pushing an object from one location to another is represented by the

following schema (Fikes and Nilson, 1971. p. 201,

Push(klm,n): Robot pushes object k from place m to place n.
Preconditions: At(km), Atr(m)
Deletions: Atrim), AItDm)
Additions: Atr(n), At(kn)

The interpretation of At(km) is that object k is at place m, and the interpretation of

Atr(m) Is that the robot is at place ft Thus, the interpretation of the entire schema is that

for the robot to push an object from one place to another, the robot and the object must

both be in the first place, and after the robot pushes the object, the robot and the object are

no longer in the first place, but are now in the second place.

The problems that we will point out in trying to represent facts about the interaction of

6I

knowledge and action in a STRIPS.like formalism are not unique to that system. Similar

difficulties would arise in trying to extend any of the systems mentioned above to take

knowledge into account. While the more recent systems use more sophisticated planning

techniques than STRIPS does, their representations of the effects of actions are roughly

equivalent to that used in STRIPS.

If we want to represent an action like dialing the combination of a safe, the obvious

thing to do (and essentially the only thing that can be done within the STRIPS approach)

would be to have one of the preconditions be that the agent knows the combination of the

safe. This is much more specific than it needs to be. however. Doing things this way fails

to suggest any connection between the fact that dialing the combination of the safe requires

knowing the combination and the fact that calling someone on the telephone requires

knowing his phone number or the fact that pushing a block to a certain location requires

knowing where that location is.

What all these examples have in common is that being able to use any action to achieve

a goal requires knowing what action to take. From this point of view, knowing the

combination of a safe is not really a precondition for dialing the combination of the safe.

rather, It is required for knowing what action dialing the combination of the safe is.

Similarly, knowing what action constitutes calling someone on the telephone normally

requires knowing his phone number, and knowing what action constitutes pushing

something to a certain location requires knowing where that location is.

Now, we propose that for a general action like dialing combinations of safes, if an agent

knows what the action is (i.e., he knows how to dial combinations of safes "in general), then

he knows what some specific instance of the action is (e.g. dialing combination C! on safe

Sf1) if he knows what objects the action is being applied to in that instance. So knowing

what combination C1 is and knowing what safe SfI is would be sufficient for knowing what

4

action dialing C, on Sf1 is. On the other hand, an agent could know that dialing the

. combination of Sf1 on Sf1 will result in SfI being open, but not be able to open SEI because

he doesn't know what combination the description "combination of Sf1 " refers to, and

therefore doesn't know what action constitutes dialing the combination of SI. A similar

analysis applies to the examples of calling someone on the telephone or pushing a block to a

certain location, so we have one general principle that covers all the examples, rather than

different knowledge preconditions for each case.

Adequately representing the effects of actions on knowledge also goes beyond what can

easily be represented using the STRIPS approach. This might seem to be rather straight.

forward. If we have an information gathering operation, like looking into a box, we could

simply put on the list of additions for the action that the agent knows what is in the box

and put on the list of deletions that he does not know what is in the box. This might be all

right for gains In knowledge by direct observation, but there are more subtle problems that

it overlooks.

Consider the notion of a test. The essence of a test is that it is an action that has a

directly observable result that depends conditionally on an unobservable precondition. In

the use of litmus paper to test the pH of a solution, the observable result is whether the

paper is red or blue, and the unobservable precondition is whether the solution is acid or

alkaline. What makes such a test useful for acquiring knowledge Is that the agent can infer

from his knowledge of the behavior of litmus paper and the observed color of the paper

whether the solution Is acid or alkaline. In a test It is usually this inferred knowledge,

rather than what is directly observed, that is important. After all, the color of a piece of

litmus paper is seldom an intrinsically interesting piece of information.

If we follow the previous suggestion in trying to formulate a STRIPS operator for using

.0 litmus paper, we will have to include the result that the agent knows whether the solution is

5

acid or alkaline as a separate fact from the result that he knows the color of the paper. If

we do this, however, we completely miss the point that the knowledge of the pH of the

solution is inferred from other knowledge, rather than being a direct observation.

Moreover, we are in effect specifyLng what actions constitute possible tests, rather than

creating a system that is able to infer what actions are possible tests.

If we want to capture the inference that the agent must make to use a test, we have to

q represent several independent pieces of knowledge that the agent must have. Obviously, we

have to represent that after the test is performed, the agent knows the observable result.

This much is handled by the STRIPS approach. Furthermore, we have to represent the

fact that he knows that the test Aas ben performed. If he just walks into the room and sees

the litmus paper on the table, he will know what color it is, but unless he knows its recent

history, he won't have gained any knowledge about the acidity of the solution.

Representing this knowledge in a principled way is a problem for the STRIPS approach.

The formulas on the lists of additions and deletions are taken to be true or false at a

particular time, without reference to other times. We could introduce an ad hoc predicate

on actions, Has-Just-Occurred(x), but there is no way to relate this predicate to the notion of

time implicit in the distinction between preconditions and postconditions (additions and

deletions) in the descriptions of actions.

4 We also need to represent the fact that the agent understands how the test works; that is,

he knows how the observable result of the action depends on the unobservable

precondition. Even if he sees the litmus paper put into the solution, and he sees the paper

change color, he still won't know whether the solution is acid or alkaline, unless he knows

how the color of the paper Is related to the acidity of the solution. This knowledge is, in

fact, just what would be expressed by the STRIPS description of the action. This creates

another problem for the STRIPS approach, since descriptions of actions are not part of the

77

6

language that preconditions and postconditions are written in. If knowing how the physical

preconditions of an action affect the physical results of an action is a precondition to using

* the action as a test, then the language in which preconditions are written must be able to

describe at least the physical effects of the action.

Finally, the system must be able to reason that if the agent knows (i) that the test took

place. (i) the observable result of the test, and (iII) how the observable result depends on

the unobservable precondition, then he knows the unobservable precondition. Thus the

system must incorporate a logic of knowledge to tell it when someone's knowing a certain

collection of facts implies that he knows other facts.

From the preceding discussion, we can conclude that any system that is capable of

reasoning about tests at this level of detail must be able to explicitly represent facts of the

following types:

(1) A knows that Q will be true after he performs Act just in case P is true now.

(2) After A performs Act, he knows that he has Just performed Act

(3) After A performs Act, he knows whether Q is true.

In order to reason that an agent can use a certain test to find out a piece of informacon the

system must also embody or be able to represent general principles sufficient to conclude.

E4 (4) If (i), (2), and (3) are true, then after performing Act, A will know whether P was
true before the action was performed.

(5) If A knows that it is possible for him to achieve P by performing Act and he
knows what action Act is, then he can achieve P by performing Act.

4 (6) If Ad is a specific instance of a class of actions that A knows how to perform in

general, then he knows what action Act is Just in case he knows what the
arguments of Act refer to.

4 It is important to emphasize that for any work on these problems to be of real value it

I

7

must seek general principles. For Instance, It would be possible to represent (I), (2), and (3)

in an arbitrary ad hoc way and add an axiom which explicitly states (4). thereby

"capturing' the notion of a test. Such an approach, however, would simply restate the

observations that we have made In this section. Our goal In this thesis will be to create a

system in which specific facts like (4) follow from the most basic principles of reasoning

about knowledge and action.

There has been little previous work in Al on these problems. McCarthy and Hayes

(1969) were the first Al workers to take note of the problem of actions with knowledge

preconditions. Their proposed solution is somewhat sketchy, and it seems to have some

problems. They first present a set of axioms expressed in the situation calculus that can be

used to deduce that dialing the combination of a sate will result In the safe being open.

They then point out that this procedure may be infeasible for an agent, because he may not

know the combination of the safe. Next they introduce the expression Ida-aot-

combination(p,sf,s) to mean person p's idea of the combination of the safe sf in situation s,

and suggest, but do not formalize, that it would be feasible for anyone to dial his idea of

the combination of the safe, since he presumably does know that. Given this, if it can be

shown that p's idea of the combination of the safe is, in fact, the combination of the safe,

then dialing the combination of the safe is both feasible for p and effective in opening the

safe, so it is possible for p to open the safe.

The requirement that the action be feasible for the agent seems too weak, however.

Suppose that I IL-22R-33L is the combination of the safe. If this is true, then dialing I IL-

22R-33L will result in the safe being open. Furthermore, dialing I IL.22R-33L will be

feasible for anyone who understands in general how to dial combinations of safes. But

McCarthy and Hayes's argument would lead us to infer that any such person could open

the safe, whether or not he knew the combination. The central role of knowing the

combination has been missed.

• 8

Another problem with McCarthy and Hayes's approach is the ad hoc character of the

idea-of-combination function. The problem is that the logic does not make any special

connection between ik a-of-combination and combination, the function which picks out the

actual combination of a safe. Therefore, for each term in the language that we wanted to

talk about someone's knowledge of, we would have to introduce a separate idea-oft function.

McCarthy and Hayes acknowledged the clumsiness of this approach, but saw no other way

of preserving the property of referential transparency. the ability to substitute equals for

equals. They would have preferred to use a general idea-of function, such that idea-

of(pcombination-of(sf),o) would refer to p's idea in a of the combination of of. The trouble is

that if equals can be substituted for equals, and the combination of if1 is the same as the

combination of 9f2. then this would imply that p's idea of the combination of of, would

"-' have to be the same as p's idea of the combination of 8f2, which is not necessarily the case.

. . We will present a much more elegant solution to this problem in section 2.5. More recently,

McCarthy (1979) has also taken a different approach to this problem which we will discuss

in section 2.6.

The only other work in Al that deals explicitly with the interaction of knowledge and

action seems to be that of Cohen (1978). Cohen's formalism is a straightforward encoding

of the STRIPS approach into semantic network notation, with all the limitations that we

have pointed out. Cohen never faces any of the issues we have raised, because he does not

really deal with the problems of reasoning about knowledge. His system generates plans

that have effects on what people know and that require knowledge to execute, but all

statements about knowledge must be explicitly asserted; the system has no ability to infer

them.

0

p.

9

1.2 Overview of the Thesis

This thesis attacks the problems of representing the kinds of facts and making the kinds

of Inferences described In the previous section. First we will discuss the representation

problems. Then we will describe a formalism that captures the distinctions we need to make

and permits reasonably efficient automatic inferencing. Then we will outline a system (as

yet unimplimented) for automatically carrying out deductions in this formalism and

illustrate its operation with several hand-simulated examples. We will organize the

presentation around a set of examples having to do with dialing combinations and opening

safes. Starting from a set of premises that respect the generalizations we have discussed, we

will show how to automatically deduce that:

(i) If John is at the same place as the safe SI1, and he knows the combination of the
safe, he can open the safe by dialing the combination.

(2) If C1 is the combination of SfI, and if John tries to open SfI by dialing C1, he
will then know that C, is the combination of SfI .

(3) If John is at the same place as the SfI and the piece of paper Ppr I , and he
knows that the combination of SfI is the only thing written on Ppr 1. he can open
SfI by reading the piece of paper and dialing the combination.

The first of these examples involves understanding what knowledge is sufficient for
being able to achieve a goal by performing a certain action. The second example shows

how knowledge can be acquired by using an action as a test. The third example involves

carrying out a sequence of actions, first performing one action to obtain some knowledge,

and then using that knowledge to perform another action that achieves a goal.

It should be emphasized that we are not attacking the problem of automatically

generating plans which take into account the acquisition and use of knowledge. Rather, as

the examples suggest, we are limiting our efforts to reasoning about how knowledge

10

interacts with a given action or sequence of actions. Although we would claim that this is a

prerequisite to solving the planning problem, it is certainly not sufficient by itself.

Besides wanting to extend the capabilities of Al systems in reasoning about actions,

there are more general reasons for undertaking this study. First of all, there is a need for

Al to break out of what might be termed "the blocks-world syndrome'. Most of the work in

Al on common-sense reasoning and common-sense problem olving has dealt only with

discrete physical objects and physical relations, sometimes operated on by simple sequences

of actions.

This leaves a multitude of representational problems untouched. Some of these

problems include modalities such as possibility ('It might be the case that), necessity ('It

must be the case that..."), ability ('John can do-.), permissibility ('John may do..'). and

obligation ('John should do..'). Other problems include counterfactual conditionals ('If I

* had struck the match, it would be burning now.'), action modifer's ('almost', 'quickly',

'carefully'), and propositional attitudes ('wants". 'fears', 'believes', 'knows'). Most Al

systems treat time as a sequence of discrete states, rather than as a continuum, and little

work has been done on reasoning about continuous substances such as water and air. (This

last observation is due to Hayes (1974).)

There is a large literature in modern philosophical logic in many of these areas which

seems directly applicable to Al problems, but very little of it has been explored by the Al

community. One of the goals of this thesis Is to take the ideas of philosophical logicians in

one particular area, in this case the logic of knowledge, and see to what extent they can be

* applied to Al problems.

Another goal of the thesis is to provide a testbed for exploring ideas about automatic

deduction. Most work on automatic deduction has been done in the area of mathematical

theorem proving, with what is generally perceived to be mixed results. Despite years of

effort, no theorem proving program has ever proved a significant new result in

mathematics. The difficulty in evaluating this work is that the problems are so hard that it

is not clear what should count as success. After all, the number of people who have proved

interesting new results in mathematics is miniscule compared to the number who can solve

the block stacking problems that have been studied in Al.

The example problems which we will look at do not share this uncertainty. They are

clearly solvable by anyone of normal intelligence, yet they will turn out to be a non-trivial

test for our deductive system. So this domain gives us problems that are rich enough to be

challenging, but easy enough that we are sure we should be able to solve them.

The first problem we will face in carrying out this project is that the basic facts about

knowledge that we need to use are most naturally expressed as a modal logic (Hughes and

Cresswell, 1968). So far, no satisfactory way of applying automatic deduction techniques

directly to modal logics has been developed. In chapter 2, we first discuss what properties

of knowledge we need to formalize, and explain the computational problems created by

some simple approaches. Fortunately, we can get around these problems by making use of

the possible.world semantics for the logic of knowledge developed by Hintikka (1962, 1969),

based on the possible-world semantics for necessity of Kripke (1963a, 1963b). The

approach which we will pursue is to axiomatize this model theo./ for the logic of

knowledge directly in first-order logic. We will have axioms which say such things as that

A knows that P if and only if P is true in every possible world which is compatible with

what A knows. In this way, we can reason about simple relations among possible worlds

rather than troublesome modal operators like Know. In the rest of chapter 2. we briefly

discuss applying the same approach to reasoning about belief, consider in detail the issues

raised by the introduction of quantifiers and equality into knowledge contexts, and review

some alternative approaches that have been proposed.

0

12

In chapter 3 we show how to extend this approach to reasoning about the interaction of

*: knowledge and action. The key ideas are (I) to recast McCarthy's situation calculus

" . (McCarthy, 1963), (McCarthy and Hayes, 1969). as a modal logic with a corresponding

possible-world semantics, and (2) to unify this formalism with the one for knowledge by

identifying possible worlds in the formalism for knowledge with situations in the formalism

for actions. We show how to describe both the dependence of .ction on knowledge in terms

of knowing precisely what action to perform, and how to describe the effects of action on

knowledge in terms of relations between possible worlds.

In chapter 4, we present the details of a first-order axiomatization of the possible-world

semantics for knowledge, and Illustrate its use with a number of examples of formal

* deductions. In chapter 5 we extend the formalism to handle our integrated theory of

. •knowledge and action, giving more examples.

In chapter 6, we turn to problems of automatically generating deductions involving

statements about knowledge. We first present an outline of an automatic deduction system

In which certain formulas are given procedural interpretations. This is in the tradition of

PLANNER (Hewitt, 1972) and related formalisms, and was studied in detail by Moore

(1975). We then discuss the appropriate procedural interpretations for facts about

knowledge. and show how to use these interpretations to generate some simple deductions.

In chapter 7 we consider automatic deductions Involving both knowledge and action,

and discuss in detail the choice of procedural interpretations for the axioms describing

dialing the combination of a safe and reading a piece of paper. This chapter concludes

with detailed explanations of automatically generated deductions of the three sample

problems given In this section. Finally, chapter 8 summarizes and evaluates our results, and

suggests possible extensions.

This thesis makes a number of substantial original contributions. One of these pointing

- .- ...-. ,...- - -.

IsI
out the efficiency advantages of using a first-order formalization of the possible-world

semantics of a modal logic of knowledge and action over some of the more obvious

approaches to reasoning directly in the modal logic itself. The idea of doing deductions in

modal logics indirectly using first-order formalizations of their semantics has been suggested

a few times in the Al literature (McCarthy and Hayes. 1969). (Morgan, 1976). but has not

been extensively pursued. Our point is that the possible-world approach is not merely one

of several possible ways of reducing a modal logic to an ordinary first-order logic, but that

it has important properties that enable standard deduction techniques to be used with

reasonable efficiency. The reasons for this are explained in section 2.3, with analysis of the

shortcomings of alternative approaches being given in sections 2.2 and 2.6.

Also, our formalism seems to be the first using this approach to give a fully adequate

treatment of quantification and equality for the logic of knowledge. The only previous

application (of which I am aware) of a first-order formalization of the possible-world

semantics for modal logics to reasoning about knowledge is in some unpublished notes by

McCarthy and one of his students (McCarthy. 1975), (Goad, 1976). Their work considers

only a propositional form of the logic of knowledge, however. Our formalism, on the other

hand, deals with a full quantified logic of knowledge with equality, which is essential for

carrying out the inferences about knowledge and action that we want our system to handle.

The ideas on integrating reasoning about knowledge and action seem to be entirely

new. The main contributions here are the idea of describing the effects of actions in terms

of a modal logic parallel to the modal logic for knowledge, unifying the two logics by

identifying the situations in the semantics of the logic of actions with possible worlds in the

semantics of the logic of knowledge, analyzing the knowledge preconditions for actions in

terms of knowing what action to perform. and describing the effects of actions on

knowledge in terms of relations between possible worlds. These ideas are the major

i~i- - .' -_.-. -.. , , .._. -. .- .-... '.... .-. .. ,',.-.-. . .- -.--... ..-. -..-. .- .-. ...-...

1-14

theoretical contribution of this thesis, and they make it possible to do reasoning about
knowledge and action with the kind of generality that we are seeking. For instance, they

make it possible to derive the properties of tests which we discussed in the previous section

from our general theory of knowledge and action. The possible-world semantics for action

also provides a very attractive picture of the relation between procedures and processes. It

falls out naturally from this semantics that a procedure is a description of a process.

Technically, the denotation of a certain procedure in a certain environment is the process

which results from executing the procedure in the environmenL

Finally, no other work has seriously investigated the problems of doing automatic

deductions in this domain. Most of the techniques we present are not new (although many

of them are due to this author (Moore, 1975)), but applying them to our formalism requires

* extensive and subtle analysis. In fact, it is probably fair to say that this is the most complex

formalization of a common.ense domain to which these sorts of techniques have been

applied and represents their most severe test to date.

0

Le

2. Reasoning about Knowledge

2.1 Formalizing Properties of Knowledge

Since techniques for reasoning about action have been extensively studied in Al. while

techniques for reasoning about knowledge have not, we will attack the problems of

reasoning about knowledge first In chapter $ we will see that the formalism that we are led

to as a solution to these problems turns out to be wel suited for an integrated system for

reasoning about both knowledge and action.

The first step in devising a formalism for reasoning about knowledge is to decide what

general properties of knowledge we want that formalism to capture. It should be

emphasized, however, that we are not going to attempt to define what knowledge is. That

enterprise, which belongs to the branch of philosophy called epistemology, has been going

on for several thousand years without reaching a consensus, and we cannot hope to solve

the problem in this thesis. More importantly, it is not necessary to solve that problem for

our purposes. The goal of epistemology is to have an eXplanUtory theory of knowledge,

whereas all we need is a descriptiue theory. We can perfectly well do common-sense

reasoning about knowledge without having a theory of epistemology, just as we can do

common-sense reasoning about physical objects without having a theory of physics. What

we will need to do is to specify some of the basic properties of the common-sense notion of

knowledge, or more precisely, a common-sense notion of knowledge that is useful for

reasoning about planning and acting. Any philosphical theory of knowledge that explains

these properties would be acceptable from this point of view, but it is not necessary for us to

have such a theory to achieve our goals.

This being said, the properties of knowledge that we will be most interested in

formalizing are the ones that are relevant to planning and acting. One such property is

4

16

that anything that someone knows is true;, It is Impossible to have false knowledge. If P is

false, we would not want to say that John knows P. We might say that John believes P or

that John believes he knows P. but if P is false, then it simply could not be the case that

John knows P.

This is, of course, a major difference between knowledge and belief. If we say that

John believes P. we are not committed to saying that P is either true or false, but if we say

* that John knows P, we are committed to the truth of P. The reason that this distinction is

important for planning and acting is simply that for an agent to achieve his goals, the

beliefs that he bases his actions on must generally be true. After all, merely believing that

performing a certain action will bring about a desired goal is not sufficient for being able to

* achieve the goal; the action must actually have the intended effect.

Another fact that turns out to be important for planning is that if someone knows

something, he knows that he knows it. This principle is often required for reasoning about

plans consisting of several steps. Suppose an agent plans to use Actl to achieve his goal.

but in order to perform Actj he needs to know whether P is true and whether Q Is true.

Suppose further that he already knows that P is true, and can find out whether Q is true by

* performing Act 2. The agent needs to be able to reason that after performing Act, he will

know whether P Is true and whether Q is true. We will be willing to assume that he knows

6 that he will know whether Q is t,,ue if he understands the effects of Act 2, but how does he

know that he will know whether P is true? Presumably it works something like this: He

knows that P is true, so he knows that he know. that P is true, and he knows how Act 2

4
affects P. so he knows that he will know whether P is true after he performs Act 2. The key

step in this argument is an Instance of the principle that if someone knows something, he

knows that he knows it.
I
It might seem that we would also want to have the principle that If someone doesn't

r.. -.. ,i

17

know something he knows that he doesn't know it, but this turns out to be false. Suppose

that John believes that P, but in fact. P is not true. Since P is false, John certainly doesn't

know that P, but it is highly unlikely that he knows that he doesn't know, since he thinks

that P is true.

Probably the most important fact about knowledge that we will want to capture is that

people can reason based on their knowledge. All of the examples we have given depend on

the assumption that if an agent trying to solve a problem has all the relevant information.

he will apply his knowledge to get a solution. This presents a difficulty for us. however,

since people don't, in fact, know all the logical consequences of their knowledge. The

trouble is that we never can be sure which of the inferences that a person could make, he

will make. I believe that the best solution is to adopt the principle that if P Is implied by

what someone knows, then he also knows P. but to treat it as a *plausible implication7.

By "plausible implication", we will mean an implication schema that we will accept in

any particular case unless we have other information to the contrary. A plausible

implication, then, would behave just like an ordinary implication so long is nothing is

inferred which contradicts a previous conclusion. If only one plausible inference is made in

a chain of reasoning that leads to a contradiction, then that inference is almost certainly the

one which should be withdrawn. If more than one plausible inference is involved, then we

get into the complicated problem of choosing between alternative plausible views of the

world (McDermott, 1974), (Doyle, 1978). This is a very general problem of which the effects

of adopting the proposed principle are only one example. However, since our examples

involve such mundane bits of reasoning that it Is extemely unlikely that any intelligent

agent would fail to make them, we will treat the principle as if it were an ordinary

implication, and not consider the problem any further.

Finally, we will need to include the fact that these basic properties of knowledge are

18

themselves common knowledge. By this we mean that everyone knows them, and everyone

knows that everyone knows, and everyone knows that everyone knows that everyone knows,

etc. This type of principle is obviously needed when reasoning about what someone knows

about what someone else knows, but it is also important in planning, because an agent must

be able to reason about what he will know at various times in the future. In such a case.

his "future self" is analogous to another person.

In his pioneering work on the logic of knowledge and belief. Hintikka (1962) presents a

formalism that captures all these properties. We will define a formal logic based on

Hintikka's ideas, but modified somewhat to be more compatible with the additional

developments in this thesis. So, what follows is similar to the system developed by Hintikka

in spirit, but not in detail.

The language of this system is the language of propositional logic augmented with the

operator Know. The formula Know(AP) is interpreted to mean that the person denoted by

the term A knows the proposition corresponding to the formula P. So if John refers to John

and Likos(Bill,Mary) means that Bill likes Mary, Know(John,Likes(Bill,ary)) means that John

knows that Bill likes Mary. The closure of the following axiom schemata with respect to

the inference rule modus ponens (from (P D Q) and P, infer Q) defines the theorems of the

system:

M1. Axioms of ordinary propositional logic (e.g. as in Rogers (197))
M2. Know(A,P) = P
M3. Know(A,P) a Know(A,Know(A,P))
M4. Know(A,(P a Q)) a (Know(A,P) a Know(AQ))
M5. If P Is an axiom, then Know(A,P) is an axiom.

This system is very similar to the systems studied In modal logic. In fact, if A is held

fixed, the resulting system is Isomorphic to the modal logic S4 (Hughes and Cresiwell, 1968).

We will refer to this system as the modal logic of knowledge.

These axioms formalize in a straightforward way the principles for reasoning about

U1

19

knowledge which we discussed. M2 says that anything that is known is true. MS says that

if someone knows something, he knows that he knows it. Mi says that if someone knows a

formula P and a formula of the form (P a Q), then he knows the corresponding formula Q.

That is, everyone can (and does) apply modus ponens. M5 is a recursive schema which tells

us that all the axioms are common knowledge. It first applies to M I - Mi, which says that

everyone knows the basic facts about knowledge, but it also applies to its own output, so we

q get axioms that say that everyone knows that everyone knows, etc. Since M5 applies to the

axioms of propositional logic (Ml), we can Infer that everyone knows the facts they

represent. Furthermore, since modus ponens is the only inference rule needed in

propositional logic, the presence of MI will enable us to infer that someone knows any

propositional consequence of his knowledge.

2.2 Computational Problems in Reasoning about Knowledge

The modal logic of knowledge that we have just presented is an elegant and concise

formalization of the properties of knowledge that we want to capture, but it has one major

drawback as a basis for Al systems for reasoning about knowledge;, so far, there have not

been devised any satisfactory ways of applying automatic deduction techniques directly to

systems of this type. The reason that the standard techniques cannot be applied directly is

that Know is an Lntensional rather than an xtensional operator. Classical logics are

extensional because the truth value of a complex formula depends only on the extensions,

or denotations, of its subexpressions. (The denotation of a term is the individual it refers

to, the denotation of a predicate symbol is the set of individuals that satisfy it, and the

denotation of a formula is its truth value.) For Instance, the truth of (P v Q) depends only

on the truth of P and the truth of Q; no other properties of P and Q matter. In particular,

the intensions, or meanings, of P and Q are irrelevant, except in so far as meaning

02

determines truth value. This is true of both first-order and higher-order classical logics.

This restriction was recognized by the founders of modern logic (Whitehead and Russell.

1910), and it is one of their great triumphs that they succeeded in formalizing essentially all

of mathematics within a purely extensional framework.

Knowing, on the other hand, is an intensional notion because the truth of 'A knows that

P,' depends generally on the meaning of P, rather than just its .ruth value. The truth value

of P is clearly important, since it is impossible to know a false proposition, but it is not the

whole story, since it is possible to know some true propositions and not know other true

propositions. The standard techniques for automatic deduction have been worked out only

for extensional formalisms, so we either have to extend the known techniques or find a way

to convert the modal logic of knowledge into an extensional formalism.

To see what the difficulties really are we will examine some simple approaches and

point out where they fail. Suppose that we have a system for doing deductions in

propositional logic and we simply add formulas of the form Know(A,P) to the data base. It

is easy to imagine that such a system could match formulas like this, even though they are

not propositional in the strictest sense, and be able to Infer things like Know(AQ) from

Know(A,P) and Know(A,P) * Know(AQ). The system would not, however, be able to do any

Inferences that depend on the occurrence of logical operators inside of a Know operator.

The rules of propositional logic alone would not be sufficient to Infer Know(AQ) from

Know(A,P) and Know(A,(P n Q)).

The obvious next step would be to ad-i the axioms of the modal logic of knowledge to

the data base. This might present something of a problem, since they are schemata rather

than simple axioms (MS would seem to be particularly troublesome), but we will let this

pass, since there are more severe difficulties to follow. This would produce a system capable

6 of doing all the deductions permitted by our logic of knowledge, but would be horrendously

S!

21

inefficient if done in the obvious way. Basically, this move reduces the role of the

underlying deductive system to that of a simple Interpreter, with the real control structure of

the deductive process being encoded in the axioms. Using a set of axioms to specify a

procedure is not necessarily inefficient. Indeed, recent work in "logic programming* (e.g.

Kowalski (1974)) is based on this very notion. Sussman and his colleagues (de Kleer. et al.,

1977) also use axioms to specify control information, but in a quite different way. The

point is that such axiom sets must be carefully designed to produce reasonable procedures

when interpreted. The modal logic of knowledge which we have been considering was

obviously not designed for that purpose. Consider deductions involving the axiom schema

M:

Know(A,(P * Q)) a (Know(AP) n Know(A,Q)).

How should this schema be used? If we use it to add new facts to the data base, it will

match any formula of the assertion of the form Know(A,(P a Q)), producing a new assertion

of the form (Know(A,P) * Know(A,Q)). Used this way, however, MI will Interact with M5 to

add infinitely many new assertions to the data base. The result of applying M5 once to M4

could be written as:

Know(B,Know(A,(P = Q)) o (Know(A,P) z Know(AQ))),

but M4 would apply to this in turn to produce-

Know(B,Know(A,(P * Q))) n Know(B,(Know(A,P) v Know(AQ))).

This would apply to the schema that results from applying M5 twice to M4, eventually

producing a formula that would apply to the axioms that result from applying M5 three

times to M4, etc., ultimately producing analogues of M4 for all depths of nesting of Know.

So, to avoid generating infinitely may new assertions, we would have to use M4 as a

K7

22

subgoal generator. If it is to be used at all. Used in this way, it would match any goal of the

form Know(AQ), generating the conjunctive subgoals Know(A,(P a Q)) and K WCAP).

Whichever of these goals is attempted first, M4 applies again, producing still more

complicated goals. It is possible to continue in this way to an arbitrary depth without ever

considering any substantive facts relevant to deducing the original goal.

The fundamental problem with this approach is that no matter how smart the basic

deductive system Is, the axioms for knowledge seize control of the deductive process. These

axioms were originally selected for their elegance and brevity, not for efficent generation of

proofs. What seems to be needed, then, is a way of running the basic deduction system

*inside" the operator Know.

One way of producing such a system would be to avoid having axioms for knowledge

altogether by finding a computational analogue of knowing, some computational structure

.* which can serve as a direct representation of someone knowing something. There is an idea

along these lines that initially seems very appealing. Using the multiple data-base

capabilities of advanced Al languages, we could set up a separate data base for each person

whose knowledge we have some Information about. We then can record what we know

about his knowledge in that data base, and simulate his reasoning by running our standard

inference routines in that data base. This would allow us to eliminate any explicit reference

to knowing individual facts, and so avoids dealing with the modal operator Know. This

idea seems to have wide currency in Al circles, and I advocated it myself in an earlier paper

(Moore. 1973).

This idea handles simple statements about knowledge quite well. Suppose that OBrw

contains what we believe to be true about the real world. If we want to assert that John

knows that P we would create a new data base, 0 8rw.john, assert P in this new data base,

and set a pointer in the old data base to indicate where we can find information about

4

23
p.o

John's knowledge. Furthermore, to assert that John knows that Bill knows that P, all we

have to do is iterate this process. We create a third data base. DB w.john.bill. assert P in this

data base, and set a pointer to it in DBrwjohn labeled "Bill's knowledge Since this is

already in a data base which is restricted to John's knowledge, It would automatically be

interpreted as what John knows about what Bill knows.

If we want to make assertions that are logically more complex, however, we run Into

trouble. Consider the problem of representing "John knows that P or John knows that Q."

We can't represent this by simply adding (P v Q) to Drwjohn, because this would mean

"John knows that P or Q,; - something quite different. We could set up two data bases,

OBw~john ! and DBrwjohn2, add P to one and Q to the other, and then assert in DB w

"DBrw.john) represents John's knowledge, or DBnv.john2 represents John's knowledge."

However, if we also wanted to assert "John knows that R, or John knows that S. or John

knows that T" we would need six data bases to represent all the possibilites for John's

knowledge -one for each of the combinations P and R, Q and R. P and S. etc. As we add

more disjunctive assertions, we get a combinatorial explosion in the number of data bases.

A more sophisticated approach might retain the modal operator Know for the basic

representation and convert to the data base representation only after the specific facts

relevant to the problem at hand have been identified, thus limiting the combinatorics.

Stallman and Sussman (1976) and Doyle (1978) have worked out advanced techniques for

handling multiple data bases that might be useful in this approach, but the details remain

to be worked out.

A more serious problem is representing what someone doesn't know. Suppose we want

to represent "John doesn't know that P." We can't add -P to 09rw.john. because this would

be asserting "John knows that .P," and simply omitting P from Orw.john means that we

don't know whether John knows that P.

24

I have heard two suggestions as to how this problem might be overcome. One

suggestion is that we change conventions so that omitting something from D ~rw.joh n means

that John doesn't know it. This would, however, require explicitly representing all aspects

of John's knowledge of which we are ignorant, a prospect which seems far more

troublesome than the original problem.

The other suggestion is to let the logic used in the data bases be three-valued - true,

false, and undefined. If P is marked as true in DB,.john. then John knows that P; if P is

marked as false, then John knows .P; if P is marked as undefined, then John doesn't know

one way or the other. This doesn't work for multiple embeddings of Know, however.

Representing "John knows that Bill doesn't know whether P.m is no problem. We simply

mark P as undefined in DBrw.john.bill. But how can we represent "John doesn't know

* whether Bill knows that P."? There is no assertion in DBjohn to mark as undefined.

because "Bill knows that P,' is represented implicitly by asserting P in DBrw.john.bill.

It appears, then, that what John doesn't know has to be kept separate from what he

does know. But there are inferences that require looking at both. For example. if we have

"John doesn't know that P," and *John knows that Q implies P.0 we might want to conclude

that "John doesn't know that Q," is probably true.

This Is representative of a class of inferences that the data base approach doesn't

capture. There seems to be a fundamental problem in saying things about a person's

knowledge that go beyond simply enumerating what he knows. There may be ways of

getting around these difficulties, but it is clear that any adequate solution is going to be

much more complex than *just using data bases".

S

6I

25

2.3 Possible-World Semantics for Knowledge

So far. all of the proposals that we have seen for reasoning directly about formulas of

the form Know(A,P) have led to problems. There may well be solutions to these problems.

but it turns out that they can be circumvented entirely by changing the language we use to

describe what people know. Rather than talk about the individual statements that someone

knows we will talk instead about what states of affairs are compatible with what he knows.

In philosophy, these states of affairs are usually called "possible worlds", so we will adopt

that term as well.

This move to describing knowledge in terms of possible worlds is based on a rich and

elegant formal semantics for systems like our modal logic of knowledge that was developed

by Hintikka (1962, 1969) in his work on knowledge and belief. The advantage of this

approach is that it can be formalized within ordinary first-order classical logic in a way

that permits the use of standard automatic deduction techniques in a reasonably efficient

manner.

Possible-world semantics was first developed for the logic of necessity and possibility. It

is a very old Idea in philosophy (usually attributed to Leibniz) that a proposition is

necessarily true if and only if it Is true in all possible worlds. Conversely, a proposition is

possibly true if and only if there is some possible world where it is true. Intuitively. a

possible world may be thought of as a set of circumstances that might have been true in the

actual world. This informal analysis leaves many questions unanswered, however. We

have said that a necessary truth must be true in all possible worlds, but must it be

necessarily true in all of them? Or. are possibly true propositions necessarily possible?

Axiomatizations of modal logics have proliferated as philosophers have argued various

sides of questions such as these.

In the early 1960's, the development of formal possible.world semantics provided a

26

unifying framework for viewing these various axiom systems. The key new idea was to

regard different worlds as being possible, not absolutely, but only relative to other worlds.

That is, the world WI might be a possible alternative to W2 , but not to W3. The structure

of which worlds are possible alternatives to which other worlds is said to define an

accessiblity relation. The high point in the development of this theory came when Kripke

(1963a) proved that the differences among some of the most important proposed axiom

systems for modal logic corresponded exactly to certain restrictions on the accessibility

relation of the possible-world models of tho!,- 'ystems. These results are reviewed in Kripke

(1963b).

Concurrent with these developments, Hintikka (1962) published the first of his work on

the logic of knowledge and belief, which included a model theory that was much like

Kripke's possible-world semantics. Hintikka's original semantics was done in terms of sets

of sentences, which he called model sets, rather than possible worlds. Later (Hintikka, 1969).

however, he recast his semantics into Kripke's terms, and it is that formulation which we

will use here.

Kripke's semantics for necessity and possibility can be converted into Hintikka's

semantics for knowledge by changing the interpretation of the accessibility relation. In

order to analyze statements of the form Know(A,P), we will introduce a relation K, such that

* K(A,W I w2) means that the possible world W2 is compatible or consistent with what A knows

In the possible world Wl. In other words, for all that A knows in W1. he might Just as well

be in W2 . It Is the set of worlds 1w2 I K(A,Ww 2)) that we will use to characterize what A

knows in W1. We will discuss A's knowledge in W, in terms of this set, the set of states of

affairs that are consistent with his knowledge in W1, rather than in terms of the set of

propositions that he knows. For the present we will assume that the first argument position

of K admits the same set of terms as the first argument position of Know. When we consider

27

quantifiers and equality in section 2.5, we will have to modify this assumption, but it will do

for now.

Introducing K is the key move in our analysis of statements about knowedge, so

understanding what K means is particularly important. To illustrate, suppose that in the

actual world - call it W0 - John knows that P. but doesn't know whether Q. If W, is a world

where P is false, then W, is not compatible with what John knows in W0, so we would have

-K(John,W 0,Wl). Suppose that W2 and W3 are compatible with everything John knows, but

Q is true in W2 and false in W3. Since John doesn't know whether Q is true, for all he

knows, he might be in either W2 or W3 instead of W0 . Hence, we would have both

K(John,W0 ,W2) and K(JohnW 0,W3). This is depicted graphically in figure 2. 1.

Some of the properties of knowledge can be captured by putting constraints on the

accessibility relation IK For instance, requiring that the actual world W0 be compatible with

what each knower knows in W0 , i.e., Val (K(a1 ,w0,w0)), is equivalent to saying that anything

that is known is true. That is, if the actual world is compatible with what everyone

(actually) knows, then no one has any false knowledge. This corresponds to the modal

axiom M2.

The definition of K implies that if A knows that P in W0, then P must be true in every

-4 world W, such that K(AW 0 Wl). To capture the fact that people can reason with their

knowledge, we will assume the converse is also true. That is, we assume that if P is true in

every world W, such that K(A,W0 Wl), then A knows that P in W0 . (See figure 2.2.) This

principle is the model-theoretic analogue of axiom MI in the modal logic of knowledge. To

see that this Is so, suppose that A knows that P and that (P a Q). Therefore, P and (P m Q)

are both 'ue in every world that is compatible with what A knows. If this is the case,

though, then Q must be true in every world that is compatible with what A knows. By our

assumption, then, we conclude that A knows that 0.

4

28

W

W3

Figure 2.1 "John knows that P."
"John doesn't know whether Q."

4P

Wn

Figure 2.2 "A knows that P."

"P is true in every world which
is compatible with what A knows."

I

V 29

Since this assumption, like M4, is equivalent to saying that a person knows all the

logical consequences of his knowledge, it should be interpreted only as a plausible

implication. In a particular instance, the fact that P follows from A's knowledge would be a

justification for concluding that A knows P. However, we should be prepared to retract the

conclusion that A knows P in the face of stronger evidence to the contrary.

With this assumption, we can get the effect of MS, the axiom that if someone knows

something, he knows that he knows it, by requiring that for any W, and W2, if W, is

compatible with what A knows in W0 and W2 is compatible with what A knows in W1. then

W2 is compatible with what A knows in W0. Formally this is:

ve ,w1*w2(K(,l,Wo~wl) a (K(,lawlw2) a K(al Wo0 w2)))

By our previous assumption, the facts that A knows are the facts that are true in every

world that Is compatible with what A knows in the actual world. Furthermore, the facts

that A knows that he knows are those that are true in every world that is compatible with

what he knows in every world that is compatible with what he knows in the actual world.

By the constraint we have just proposed however, all these worlds must also be compatible

with what A knows in the actual world (see figure 2.3). so if A knows that P he knows that

he knows that P.
I

Finally, we can get the effect of MS. the assertion that the basic facts about knowledge

are themselves common knowledge, by generalizing these constraints so that they hold not

only for the actual world but for all possible worlds. This follows from the fact that if these
4

constaints hold for all worlds, they hold for all worlds that are compatible with what anyone

knows in the actual world, and they hold for all worlds that are compatible with what

anyone knows in all worlds that are compatible with what anyone knows in the actual

world, etc. Therfore, everyone knows the facts about knowledge that the constraints

4

i: so[KA
KA

b K AK AK A

W0
KA

KK
A

I

SO

Figure 2.3 "If A knows that P, then he knows that P."

represent, and everyone knows that everyone knows, etc. Notice that this generalization has

the interesting effect that the constraint that corresponds to M2 becomes the requirement

that for a given knower. K is reflexive, and the constraint corresponding to MS becomes the
requirement that for a given knower, K is transitive. In other words, for each knower. K

specifies a partial ordering on the set of possible worlds.

Analyzing knowledge in terms of possible worlds gives us a very nice treatment of

knowledge about knowledge. Suppose John knows that Bill knows that P. Then if the

actual world Is W0. in any world W, such that K(JohnW 0,Wj). Bill knows that P. We now

continue the analysis relative to W1, giving us that in any world W2 such that K(Bill,W1 W2),

P is true. Putting both stages together, we get that for any worlds W1 and W2 . if

$1

KK Jihn

Ki W0ow K Bil

Figure 2.4 "John knows that Bill knows that P."

K(John,W0 ,W1) and K(BillW 1,W2), then P Is true in W2. (See figure 2.4.) This is somewhat

similar to the treatment of knowledge about knowledge In the data base approach. There

we used chains of pointers between data bases to represent what one person knows about

what another person knows. Here we are using chains of accessibility relationships between

possible worlds for the same purpose.

Given these constraints and assumptions, whenever we want to assert or deduce

something that would be expressed in the modal logic of knowledge by Know(A,P), we can

instead assert or deduce that P Is true In every world which is compatible with what A

knows. We can express this In ordinary first-order logic, by treating possible worlds as

- 32

individuals (in the logical sense), so that K Is just an ordinary relation. We will then

Introduce an operator T such that T(W,P) means that the formula P is true in the possible

world W. If we let W0 denote the actual world, then we can convert the assertion Know(AP)

into:.

Vw I K(AWowj) 1 T(w1,P))

iq It may seem that we haven't made any real progress, since, although we have gotten rid

of one nonclassical operator, Know, we have introduced another one, T. T, however, has an

* important property that Know does not. Namely, T "distributes" over ordinary logical

operators. That is, -P is true in W just in case P is not true in W, (P v Q) is true in W Just in

-case P is true in W or Q is true in W, etc. We might say that T is extensional, relative to a

*possible world. (The strict sense of extensionality requires that only the actual world be

considered.) Thus, I', contrast to Know, logical operators cannot become "trapped* Inside of

T where they are inaccessible to the ordinary inference procedures. This means that we can

transform any formula so that T is applied only to atomic formulas. We can then turn T

into an ordinary first-order relation by treating all the nonintensional atomic formulas as

logical individuals. This is no loss to the expressive power of the language, since where we

would have previously asserted P, we simply assert T(Wo,P) instead.

*e In this way, we can transform a modal propositional logic with the nonstandard

Intensional operator Know into an ordinary first-order theory containing the relations K and

T, and in which possible worlds and the atomic formulas of the modal logic are treated as

* individuals. It may seem that we have introduced notions such as possible worlds and

formulas as individuals with too little regard for whether such things actually exist, I.e.,

without worrying whether the resulting theory Is actually true. The answer to this type of

objection is that from an Al point of view, it just doesn't matter. What we are seeking are

II

33

ways of creating systems that exhibit certain desired behaviors. Any notion that helps us

achieve this goal is an acceptable analytical tool. We are not required to believe that

possible worlds "really exist* for our systems to work any more than the electrical engineer

who uses complex analysis Is required to believe that imaginary numbers "really exist" for

his circuits to work.

2.4 A Note on Belief

The ideas we have presented for formalizing statements about knowledge could easily be

extended to handle the related concept of belief. We could give a modal axiomatization of

belief very similar to the one for knowledge, the main difference being that there would be

no analogue to M2, the axiom that states that anything that is known must be true. In

corresponding fashion, we could define a possible-world semantics for this theory. This

semantics and the one for knowledge would differ mainly in that the accessibility relation

for belief would not be reflexive, since there Is no reason to expect the actual world to be

compatible with everything that someone believes. In other words, we would want to allow

for false beliefs.

It might even be argued that we ought to take belief as the more fun iarnental notion

and define knowledge in terms of belief. We have two reasons for not doin'r this, one

theoretical and one practical. The theoretical reason is that it is not at all clear that

knowledge can be defined in terms of belief. The idea that knowledge is simply true belief

would probably not get us into trouble in the examples in this thesis, but it is certainly not
4

correct in general. For example, a compulsive gambler who firmly believes that the number

he has chosen will hit has no better claim to knowledge on those rare occasions when he

guesses right than on the many occasions when he is wrong. Knowledge, therefore, is more
tthan simply true belief. Exactly what else is required is one of the classical questions of

I

34

epistemology, and still has no generally accepted answer. Gettler (1963) has pointed out

,. counter-examples to some widely held views.

The practical reason for not basing our formalism on the notion of belief is that we

want to concentrate on issues relating to actions, and the effects of actions on belief are

* much harder to state than than the effects of actions on knowledge. The problem is that,

while knowledge tends to be cumulative, belief does not. 1, we observe or perform a

, physical action, we generally know everything we knew before, plus whatever we have

learned from the action. Similarly. if someone tells us something true, we usually gain new

knowledge without having to give up .any old knowledge.

It is true that some actions, like shuffling a pack of cards, can in a sense reduce our

knowledge. But this depends on the frame of reference. If we know the order of a deck of

cards at time t1 , and we shuffle the cards until t2. we still know the order of the cards at tI.

What the shuffling does is to prevent us from acquiring some new knowledge, the order of

the cards at t2.

On the other hand, If the results of an action or the contents of a message contradict a

previous belief, it is much harder to say what happens. If the new information is to be

accepted, then certainly the contradictory belief must be given up. However, individual

beliefs are part of complex belief structures which may have to undergo global adjustments

* in order to remove the discarded belief. Even true beliefs may be given up in this process,

if they were based on other false beliefs (which underscores the inadequacy of "true belier.

type theories of knowledge). Furthermore, there is the problem of whether the new

4 information will be accepted at all, since it contradicts what the person thinks he knows.

These issues are difficult enough for a system to handle in revising its own beliefs,

where it is at least possible for the system to know the dependency structure of the beliefs

4 (Doyle, 1978). To replace knowledge by belief in our system, however, would require the

4

35

system to reason about how some other agent would revise his beliefs, without necessarily

knowing the relevant dependencies. People often deal with this problem by trying to find

out what those dependencies are. For instance, in trying to persuade another person to give

up some belief of his, someone might ask, *Why do you believe that?, so that he can argue

against the basis for the be%e: It is certainly an important area for research to try to devise

systems with these capabilities, but it would lead us in a different direction from the one we

q want to follow in this thesis.

2.5 Knowledge, Equality, and Quantification

The formalization of knowledge presented so far is purely propositional. A number of

problems are encountered when we attempt to extend the theory to handle equality and

quantification. The first person to recognize the special problems that contexts such as

knowledge and belief present for the logic of equality was Frege (1892). He pointed out

that since the phrases *the morning star" and *the evening star" both refer to the planet

Venus, according to Leibniz's principal of substituting equals for equals, for any sentence

containing "the morning star', the corresponding sentence containing "the evening star-

ought to have the same truth value. Yet this is not the case. The sentence "John knows

that the morning star is a body illuminated by the sun,' may be true, while "John knows

that the evening star is a body illuminated by the sun," may be false, if John does not know

that the morning star and the evening star are the same.

Frege's solution to this problem depends on distinguishing the denotation of an

expression from its sense. The denotation of an expression is the object in the world to

which the expression refers. In the case of 'the morning star', the denotation would be

Venus. The sense of an expression is an abstract entity *in which Is contained the manner

and context of presentation,' (Frege. 1892, p. 86). Thus 'the morning star" has a different

63Ii 36

sense from "the evening star", because the first attempts to present an object as the star seen

In the morning, while the second attempts to present an object as the star seen in the

evening. We have to qualify these statements with the word "attempts". because a phrase

can have a sense, and still not refer to anything. Frege gives the example of "the series with

the least [i.e., slowest] convergence".

Having made this distinction, Frege goes on to assert that a indirect discourse, in which

he includes knowledge and belief contexts, the denotation of a term is not its usual

denotation. Instead, the denotation of a term in the context of indirect discourse is claimed

to be the usual sense of the term. Since the usual senses of "the morning star" and "the

evening star" are different, Leibnitz's law does not apply to them in the context "John

knows that . is a body illuminated by the sun." Therefore the invalid inference which we

were worried about cannot be made.

Frege does not go beyond this informal analysis to provide us with a logic of sense and

denotation which we would need in order to use these Ideas. Formally, what is required is

that in the logic of knowledge, Know(A,P(B)) and (B "C) should not entail Know(A,PCC)).

Frege's sense/denotation distinction seems to be adequate for this. However, we also want to

account for the fact that Know(A,P(B)) and Know(A,(B "C)) does imply (at least plausibly)

Know(A,P(C)). Frege gives us no help here.

The possible-world analysis of knowledge provides a very neat solution to this problem,

once we realize that a term can denote different objects in different possible worlds. For

- instance, it might be possible that had the history of the solar system been different it would

0 have been Mercury that was "the morning star" rather than Venus, or that two different

planets that don't even exist in the actual solar system would have been "the morning star"

and "the evening star". Thus, we will say that an equality statement such as (B a C) is true

ie in a possible world W just in case the denotation of the term B in W is the same as the

L.

S7

denotation of the term C in W. This is a special case of the more general rule that a

formula of the form P(A ..'An) is true In W just in case the tuple consisting of the

denotations in W of the terms A1,...,A n in W is in the extension in W of the relation P. In

other words, we fix the interpretation of "-. in all possible worlds to be the Identity relation.

Now everything will work correctly. If Know(A,P(B)) and Know(A,(B s C)) are true, then

in all worlds which are compatible with what A knows the denotation of B is In the

extension of P and is the same as the denotation of C, hence the denotation of C is in the

extension of P. But from this we can infer that Know(A,P(C)) is true. If (B w C) were true.

but not Know(A,CB @ C)), then the denotation of 0 would be the same as the denotation of C

in the actual world, but not in all worlds which are compatible with what A knows, so the

inference would not go through. Recalling our discussion in section 1.2 of McCarthy and

Hayes's approach to this problem, we can see that we wouldn't need to have different

expressions to refer to someone's idea of the combination of a safe and the actual

combination as they propose. We would simply regard the denotation of the expression for

the combination of the safe as depending on which possible world it is evaluated in. The

denotation of that expression could well be different in the actual world than in the worlds

which are compatible with what someone believes.

The introduction of quantifiers also causes problems. Suppose John is trying to repair

a radio. Consider the sentence 'John knows a transistor is burned out.' This sentence has

at least two interpretations. The first is that John knows that some transistor is burr,-!)ut,

but he does not necessarily know which one. The second interpretation is that there is a

particular transistor which John knows is burned out. Sentences such as this were first

studied by Russell (1905). He explained the ambiguity by analyzing sentences of the form

OA P is Q," as "P(x) and Q(x)' is sometimes true." In modern notation, we would write this as

3x(P(x) A Q(x)). So a sentence of the form OA transistor is Q," would be formally represented

as 3x(Transistor(x) A Q14)).

I..

P.

Russell goes on to point out that in sentences of the form "John knows a P is Q,= the rule

for eliminating the phrase "a P can be applied either to the whole sentence, or only to the

subordinate clause, na P is 0." Applying this observation to "John knows a transistor is

burned out," gives us the following two formal representations:

(I) Know(John,3x(Transistor(x) A Burned-out(x)))

(2) 3x(Transistor(x) A Know(JohnBurnd-out(x)))

The most natural English paraphrases of these formulas are "John knows that there is a

burned out transistor,' and 7There is a transistor which John knows is burned out." These

seem to correspond pretty well to the two interpretations which we identified for the original

sentence. So. the ambiguity in the original sentence is mapped into an uncertainty as to the

scope of the operator Know.

There is another possible interpretation of "John knows a transistor is burned out.

which isn't accounted for by Russell's theory of how English sentences of the form "A P is

Q." are expanded, but which can be represented in this notation, namely:

(3) 3x(Know(John,(Transistor(x) A Burned-out(x)))).

(3) can be read as "There is something that John knows to be burned out and (knows) to be

a transistor." The difference between (2) and (3) is that (3) asserts that John knows that the

thing which he knows is burned out is a transistor, while (2) simply asserts that it is is a

transistor without asserting whether John knows that it is. Thus (2) is weaker than (3) in

that it would be true if John knew that a particular transistor was burned out without

knowing that it was a transistor. He might know nothing about electronic components but

see smoke rising from a certain object and say to himself, "That thing (whatever it is) is

burned out." In this case, it would be correct to say that he knows of a particular transistor

S9

that it is burned out, and he knows that something is burned out, but he does not know

that it is a transistor that is burned out.

Following a suggestion of Hintikka (1962), we can use a formula similar to (2) or (3) to

express the fact that someone knows who or what something is. He points out that a

sentence of the form "A knows who (or what) B is," intuitively seems to be equivalent to

* -"there is someone (or something) that A knows to be B. But this can be represented

formally as 3x(Know(a,(O a x))). To take a specific example, "John knows who the President

is," can be paraphrased as "There is someone whom John knows to be the President," which

can be represented by:

(4) 3x(Know(John,(President a x))

In (I), Know may still be regarded as a purely propositional operator, although the

proposition to which it is applied now has a quantifier in it. Put another way, Know still is

used simply as a relation between a knower and the proposition he knows. (2) and (4) are

not so simple. In these formulas there is a quantified variable that is bound outside the

scope of the Know operator, but has an occurrence inside. This situation is usually called

"quantifying in", and it creates problems for the formal interpretation of Know as a relation

between a knower and a proposition.

Consider trying to apply the usual Tarskian notion of satisfi;i;,iry (Rogers. 1971) to (2).

This is of the form 3x(P), so we must bind x to an individuai that makes P true. In this

case P is a conjunction, so the value of x must satisfy both conjuncts of P. The first

conjunct is Transistor(x), which we chose to represent the faLL that ,ie value of x is a

transistor, a physical object. For the second conjunct. Know(Joh,2.iurned-oul(x)), to be true.

Burnod-out(x) must denote a proposition. The value of x has to be a physical object to

satisfy the first conjunct, but Frege's argument shows that Burnd-out(x) does not determine

...H"I " III I l 1

77 -- - - - - - - - -

40

a proposition unless the value of x tells us how the object is identified. The analysis we

have does not supply us with any such description, so we are stuck; the Tarskian definition

of satisfiability doesn't work here.

The possible-world analysis, however, provides us with a very natural interpretation of

quantifying in. We keep the standard interpretation that 3x(P) is true just in case there is

some value for x that satisfies P. If P is KnowM,Q) then a value for x satisfies P just in case

that value satisfies Q in every world that is compatible with what A knows. So (2) is

satisfied if there is a particular transistor which is burned out in every world that is

compatible with what John knows. That is. in every such world, the same transistor is

burned out. On the other hand, (I) is satisfied if in every world compatible with what

John knows there is some burned out transistor, but it doesn't have to be the same one in

every case. In either situation, there is no problem about determining a proposition from a

physical object, because we do not speak of propositions. We simply talk about various

possible worlds and which transistors are burned out in those worlds.

This analysis does require us to talk about the same individual existing in several

different possible worlds, which may seem unintuitive, but as Kripke (1972) has pointed out

this is a common feature of ordinary discourse. When we say that Humphrey would have

won the 1968 Presidential election if he had only done such-and-such, we are really

O asserting that there is some other course of events (i.e., another possible world) in which

Humphrey would have done such-and-such and therefore have won the election.

Furthermore, we really do mean Humphrey, the very same individual who in fact lost the

* election, when we talk about this other possible world. Of course, there are other possible

worlds in which Humphrey does not exist. The best way to think about this is in terms of

one universal domain of possible Individuals with the domains of particular possible worlds

* being subsets of that domain.

4'

- Notice that the difference between (I) and (2) has been transformed from a difference in

the relative scopes of an existential quantifier and the operator Know to a difference in

relative scopes of an existential and a universal quantifier (the "every" in "every possible

world compatible with..."). Recall from ordinary first-order logic that 3x(Yy(P(x,y))) entails

Vy(3x(P(x,y))) but not vice versa. The possible.world analysis, then, implies that we should

be able to infer "John knows that something is burned out, from 'There is a transistor

that John knows is burned out," as indeed we can.

When we look at how this analysis applies to our representation for "knowing who" we

get a particularly nice picture. We said that A knows who B Is means that there is someone

whom A knows to be B. If we analyze this we conclude that there is a particular individual

who is B in every world that is compatible with what A knows. Suppose this were not the

case, and in some of the worlds compatible with what A knows one person is B and in the

others, some other person is B. In other words, for all that A knows, either of these two

people might be B. But this is exactly what we mean when we say A doesn't know who B Is.

Basically, the possible-world view gives us the very natural picture that A knows who 8 is if

A has the possibilities for B narrowed down to a single individual.

There is at least one more consequence of this analysis that is worth noting. Suppose

that A knows who B is and who C is. Then the denotation of 8 is the same in all the

worlds which are compatible with what A knows, and the same is true for C. Since in all

these worlds, B and C each have only one denotation, they either have the same denotation

everywhere or different denotations everywhere. Thus, either (B n C) is true in every world

compatible with what A knows or (B j C) is. From this we can infer that either A knows

that B and C are the same individual or that they are not. The end conclusion is that If A

knows who both B and C are, he must know whether they are the same person, another

very intuitive result.

42

We now have a coherent account of quantifying in that does not talk about knowing

particular propositions. Still, in many cases there will be a certain proposition such that

knowing that prop sition counts as knowing something which we would express by

quantifying in. For instance, the proposition that John knows that Bill's telephone number

is 321-1234 might be represented as:

(5) Know(John,(Phon.-num(Bill) * 321-1234)),

which does not involve quantifying in. We want to be able to infer from this, however.

that John knows what Bill's telephone number is. which would be represented as:

(6) 3xlKnow(John,(Phone-num(Bill) a x))).

It might seem that (6) can be derived from (5) simply by the logical principle of

existential generalization (EG), but the situation is more complicated than that. Suppose
that (5) were not true, but instead, John simply knew that Bill and Mary had the same

telephone number. We could represent this as:

(7) Know(John,(Phone-num(Bell) w Phone-num(FMary))).

It is clear that we would not want to infer from (7) that John knows Bill's telephone

number, yet if we can get (6) from (5) by EG. then we ought to be able to get (6) from (7) by

the same process.

To take another example, suppose there is a collection of blocks that John knows

something about. If John knows that the number of cubes is greater than ten, then there is

a number such that John knows that the number of cubes is greater than that number. If.

on the other hand. all that John knows is that the number of cubes is greater than the

number of pyramids, then there may not be any number such that John knows the number

of cubes is greater than that number.

F-

4S

It seems then that EG can be applied to occurrences in knowledge contexts of the terms

which represent "321-1234" and "ten" but not the terms which represent "Mary's telephone

number" and "the number of pyramids*. What is the difference in these cases? The

difference seems to be that "321-1234" and Oten" are standard names for the things they

refer to, whereas "Mary's telephone number" and "the number of pyramids" are noL A

standard name can be thought of as a name such that knowing what the name denotes is

part of knowing the language that the name occurs in. Thus, not to know which number is

the number of cubes in a certain collection Is to be Ignorant of a certain feature of the

world. Not to know which number is ten is to be Ignorant of part of English. namely the

meaning of the word "ten".

Now we can show formally why EG works for standard names in knowledge contexts

even though it doesn't work in general. Suppose John knows that P(B) is true, where B is a

standard name-

(8) Know(John,P(B))

Since B is a standard name, it is part of knowing the language to know what B Is; so we will

assume that everyone, including John, knows what B is:

(9) 3x(Know(John,(B @ x)))

By ordinary first-order logic, we can conjoin (8) and (9), bringing (8) inside the scope of the

quantifier in (9). This is valid because (8) does not contain any free occurrences of the

variable in (9).

(10) 3xKnow(John,(B a X) A Know|JohnP(B)))

Now, using the results on equality substitution that we developed in the first part of this

section, we can substitute z for B in P(B).

44

S(i) 3x(Know(JohnP(x)))

It should be noted that we are not claiming that the only way of knowing who or

knowing what is to know a proposition that contains a standard name. For instance if John

picks up an unusual rock and puts it in his pocket, we would not want to claim that John

doesn't know what is in his pocket just because there is no standard name in the language

for that particular rock. To say exactly what the other ways of knowing who or knowing

what are is one of the basic problems of epistomology. and is, therefore, beyond the scope of

-this thesis. As with the concept of knowledge itself, we have a formalism that makes some

intuitively plausible predictions, and any epistemological theory that explains these

prediction, would be acceptable.

In terms of possible worlds, standard names have a very straightforward interpretation.

Standard names are simply terms that have the same denotation in every possible world. If

the denotation of a standard name is fixed by the language alone, then no matter what

possible world we are talking about, the name must have that denotation. Following Kripke

(1972), we will call terms that have the same denotation in every possible world rigid

designators. The conclusion that standard names are rigid designators seems inescapable.

How could any expression be a standard name, a canonical identifier, of an individual if

under some circumstances that expression refers to something else?
0

The validity of EG for standard names follows immediately from this definition. The

possible world analysis of Know(John,P(B)) Is that in every world which is compatible with

what John knows, the denotation of 8 in that world is in the extension of P in that world.

EG fails because we are unable to conclude that there is any particular individual which is

In the extension of P in all the relevant worlds. If B is a rigid designator, however, the

denotation of B is the same in every world, so it is the same in every world compatible with

what John knows, and that denotation is an individual which Is in the extension of P in all

those worlds.

45

In addition to rigid designators which are simple constants, we will also need to have

terms built up using rigid functions. Rigid functions will have the property that if the

arguments to the function are rigid designators, then the term consisting of the function

applied to the arguments is also a rigid designator. We will make considerable use of this

notion in section 3.2 when we formalize the notion of an action having knowledge

preconditions. If Act(xl,...xn) represents a general action that we assume anyone can

perform, then we will treat Act as a rigid function. In our possible-world semantics for

actions, this will have the consequence that an agent knows how to perform some specific

instance of Act, just in case he knows what individuals the arguments of Act refer to.

Saying that a standard name is a term whose denotation is determined by the language

it occurs in leaves open the question. "What language?* It would be possible to have two

languages that were identical in syntax and semantics, except that some of the terms which

were standard names in one language were not standard names in the other. In fact, this

happens all the time. The linguistic community comprising the users of any natural

language will contain subcommunities who use certain terms as standard names that are not

shared by the larger community. This is done more or less formally in professional and

scientific disciplines, and informally in other contexts.

This is an important point for Al systems, because they usually assume that there is a

common vocabulary shared by the system and the user that goes beyond the bare essentials

of the basic language. For example, in systems for analysis of electronic circuits [e.g.,

(Stallman and Sussman. 1976), (Brown. 1977)1 individual components and nodes are

typically assigned identifiers that function as standard names. If 0 01 is such an identifier

and the transistor it refers to is burned-out, then the system knows which transistor is

burned out only if it knows that 0301 is burned out. We will make use of this notion of

specialized vocabularies of standard names in our examples. Standard names for objects

0

46

mentioned by an example will be freely introduced whenever the identity of that object Is

-- not directly relevant to the point which we are using the example to illustrate. It should be

noted, however, that this is never essential for making the examples work. We could always

eliminate the assumption that the identifiers are standard names by adding explicit

assertions that the agent in the example knows what objects the Identifiers refer to.

There are a few more observations to be made aboui standard names and rigid

designators. First. in describing standard names we assumed that everyone knew what they

referred to. Identifying them with rigid designators makes the stronger claim that what

they refer to is common knowledge. That is, not only does everyone know what a particular

standard name denotes, but everyone knows that everyone knows, etc. Second, although it

is natural to think of any individual having a unique standard name. this is not required

by our theory. What the theory does require is that if there are two standard names for the

same individual, it will be common knowledge that they name the same individual.

Finally, there is a question about how a rigid designator can refer to the same

individual in all possible worlds, when that individual may not exist in some of those

worlds. At first glance, the idea that the denotation of a term in a possible world could be

something that does not exist in that world seems paradoxical, but an examination of

ordinary discourse shows that we very often say things which are most naturally analyzed in

this way. We can talk about things like *the largest tower that could be built out of these

six blocks,* and if there Is only one way of arranging the blocks to fit this description, it will

denote a well-defined possible, though nonexistent, individual. In fact, we frequently

* quantify over possible individuals as well, as when we ask how many possible towers could

be constructed with a certain group of blocks, or whether any of them would be over ten

inches high.

0 If we let the quantifiers in our formalism range over possible individuals, then we can

47

allow rigid designators for possible Individuals that do not actually exist and still allow

existential generalization over rigid designators, without "precipitating an ontological crisis".

If we want to treat Santa-Claus as a rigid designator, then we can infer:

(12) 3x(Beliovos(JohnLives-at(xNorth-Polo)))

from:

(13) Bolioves(JohnLives-at(Snta-Claus,North-Polo))

without claiming that Santa Claus actually exists. We are merely claiming that Santa Claus

might have existed.

In such a system, since existential quantifiers indicate possible existence, to talk about

actual existence we would need a predicate whose extension In each possible world is the

subset of all the possible individuals who actually exist In that world. Most universally

quantified statements, however, would not need modification so long as ordinary predicates

are restricted to actual individuals. Thus, "All men are mortal* could still be true even if

there are possible men who are immortal, so long as the predicate "men" picks out just the

men who actually exist in the possible world that the sentence is evaluated in.

4! 2.6 Other Work on Reasoning about Knowledge

Although the work cited in section 1.1 seems to be the only previous work in Al to

consider the interaction of knowledge and action, there has been slightly more done on

reasoning about knowledge alone. Most of this work is due to John McCarthy and his

students, much of it unpublished. As we mentioned in section 1.2, in addition to their

unsatisfactory attempt to formalize knowledge prerequisites for actions, McCarthy and

Hayes (1969) review Hintikka's work on the logic of knowledge and make the point that the

_ ~~~~~~......:.:. \.- s , .,-... •.. . . :.

48

possible.world semantics for this logic could be formalized In first-order logic. This seems

to be the first time that this idea appears in the Al literature, but they do not pursue the

approach. They do make a tantalizing reference to another idea that is crucial to our

efforts to integrate knowledge and action, namely Identifying possible worlds in the

semantics for knowledge with situations in their formalism for actions. They give no

examples that make use of this identification, however, so it is not clear that they have In

mind the same interpretation that we will use. Subsequently McCarthy (1978) recalled that

they abandoned this idea, because they could not see how to express that someone knows

the effect of an action if possible worlds and situations are identified. As we will sw In

chapter 3, our approach does not suffer from this problem.

Sato (1976) uses some techniques due to Gentzen to prove some very general results

about the soundness, completeness, and decidability of various propositional modal logics

with respect to Kripke-style possible-world semantics. He then applies these results to some

puzzles In the logic of knowledge, using an axiomatization due to McCarthy. Since we will

be using the model theory directly in our system, his results on the properties of the modal

logics themselves do not seem directly relevant to our work. Sato's work is Interesting,

however, In that he does integrate a simple logic of time into his logic of knowledge.

Because he does not identify possible worlds with possible situations, though, all formulas in

his system are required to be definite as to time. In chapter 3 we will explain why this is

the case and what problems it creates.

In an unpublished note, McCarthy (1975) uses the possible-world semantics developed

by Sato to construct a first-order axiomatization of knowledge in exactly the same way that

we will use Hintikka's. He then uses this axiomatization to give a formal proof of the

solution to a puzzle involving reasoning about knowledge. Goad (1976) uses the same ideas

to formalize some interesting problems in reasoning about lack of knowledge which we will

49

L discuss in chapter 8. As we have mentioned, the main limitation of this work is that it

deals only with the propositional part of the logic of knowledge, while handling quantifiers

and equality will be essential for the problems we wish to solve.

More recently McCarthy (1979) (summarized in McCarthy (1977b)) uses a completely

different approach to handle the problem of referential transparency in knowledge contexts.

He proposes that the notion of knowing a phone number, for instance, be regarded as a

q relation between the knower and the concept of the phone number, rather than as a relation

between the knower and the phone number itself. This allows McCarthy to account for the

fact that although Mary and Bill may have the same phone number, it does not follow from

the fact that John knows Mary's phone number that John knows Bill's phone number.

This point is that while the phone numbers are the same, the concept of Mary's phone

number is distinct from the concept of Bill's phone number. Thus knowing one of them

does not imply knowing the other.

This is just the problem described by Frege (1892) which we discussed in section 2.5,

and McCarthy's concept/object distinction seems to be essentially the same as the

sense/denotation distinction which Frege proposed as a solution to the problem. McCarthy's

proposal is interesting, though, because he formalizes these ideas entirely within first-order

logic by treating concepts as individuals. McCarthy gives many examples of representations

of various types of statements, but since he axiomatizes few of the properties of knowing

and presents few deductions in the system, it is difficult to evaluate these methods.

None of the work cited above deals with the problem of automatically generating

deductions about knowledge. The only previous work which comes close to this problem is

by Morgan (1976). Morgan deals with purely abstract modal logics, rather than the logic of

knowledge specifically, but the general issues are the same in either case. He presents two

methods for using standard theorem proving techniques to prove theorems in modal logic.

50

One of these is to axiomatize the possible-world semantics of the logic in exactly the same

way as is done here and in M,'..arthy's formalism. The other method, which he calls the

syntactic method, is to make sentences of the modal logic into terms in a first-order logic,

and introduce the predicate PR(P) which means that P is provable in the modal logic. The

only axioms necessary are one axiom of the form PR(P) for each axiom or axiom schema P

in the modal logic, and one axiom for each rule of inference in the modal logic. For

instance, (PR(implies(pjP2)) * (PR(pl) a PR(p 2))) would represent modus ponens. Morgan

-then feeds these axioms to a simple resolution theorem prover, and for any formula P which

he wishes to prove in the modal logic, he tries to prove PR(P) in the resolution system.

The trouble with this approach is that it suffers the same problems of efficiency that we

saw in section 2.2 when we explored the consequences of adding modal logic axioms to a

standard deduction system. Morgan's idea runs into the same difficulty that most of the

control of the deductive process actually resides in the axioms and rules of the modal logic

rather than in the theorem prover, and, as we pointed out before, these formalisms are

usually designed to be concisely stated, rather than to be efficient in generating proofs. To

see what can happen in this type of situation, consider using the axiom which describes

modus ponens to try to prove an arbitrary goal P. Resolving this goal against that axiom

would produce a new goal of trying to find some other formula 0, such that Q and (Q a P)

can be proved. Whichever of these goals we attack first, the modus ponens axiom applies

again, producing still more complicated goals. It is possible to continue in this way to an

arbitrary depth without ever touching ground, so to speak.

Morgan does not seem to be aware of the possibilities for this sort of behavior, although

he does note somewhat innocently that he was able to prove certain theorems using the

possible-world approach that he had not been able to prove using the syntactic approach.

What is really disappointing about Morgan's work, however, is that he gives no suggestions

for efficient use of either approach other than to simply turn loose a uniform resolution

theorem prover on them. The main point of chapters 6 andi 7 of this thesis will be to try to

* improve on that idea.

'7j

55

S. An Integrated Theory of Knowledge and Action

3.1 Possible-World Semantics for Actions

P In the preceding sections, we presented a theory for talking about knowledge in terms of

possible worlds. If we are to capture the interactions between knowledge and action, we

need a theory of actions in these same terms. Happily, the standard Al way of looking at

actions gives us exactly that. Most Al programs that reason about actions view the world as

a set of possible situations, where each action determines a binary relation on situations o

one situation being the outcome of performing the action in the other situation. We will

integrate knowledge and action by identifying the possible worlds that are used to describe

knowledge with the possible situations that are used to describe actions.

The identification of possible worlds with situations is somewhat nonstandard in

possible-world semantics. Usually a possible world is thought of as including an entire

course of events. For example, we might say that in some possible worlds the European

discovery of America occurs 100 years later than it actually did. It might seem that taking

possible worlds to be situations, and therefore not extended in time, might make it difficult

to talk about what someone knows about the past or future. That is not the case, however.

Knowledge about the past and future can be handled by modal tense operators which have

corresponding accessibility relations on possible situation/worlds. We could have a tense

operator Future, such that Future(P) means that P will be true at some time to come. If we

let F be an accessibility relation such that F(W1 ,W2) means that the situation/world W2 lies

in the future of the situation/world WI, then we can define Futur*(P) to be true in WI Just

in case there is some W2 such that FCW1V,W2) holds and P Is true in W2 .

4 This much is standard tense logic, as in Rescher and Urquhart (1971). The interesting

7, 7+
.7

-

54

point is that statements about someone's knowledge of the future work out exactly right,

even though knowledge is analyzed in terms of alternatives to a situation, rather than

alternatives to a course of events. The proposition that John knows that P will be true is

represented simply by Know{JohnFuure(P)). The analysis of this is that FutureP) is true in

every situation which is compatible with what John knows, from which it follows that, for

each st uation which is compatible with what John know , P is true in some future

alternative to that situation. An Important point to note here Is that two situations can be

internally" similar (that is, they agree in truth value for all nonmodal statements), but be

distinct because they differ In their accessibility relations to other possible situations. So

although we treat a possible world as a situation rather than a course of events, it is a

situation in the particular course of events defined by its relationships to other situations.

It turns out that treating possible worlds as situations is actually a more flexible way of

handling time than treating possible worlds as courses of events. If. following Sato (1976).

we formalize possible worlds as extending over time and Identify a person's knowledge with

.. the set of propositions which are true In every possible world which Is compatible with

what he knows, then all propositions will have to be specific as to what times they refer to.

Thus, "A is on B," would not be a proposition because it does not have a unique truth value

in each possible world. In some worlds it will be true at some points in time and false in

A others. So, only sentences like *A is on B at time T would express definite propositions. As

a result, we could not say that at time T (or in situation W) John knows that A Is on B.

Instead we would have to say that at time T John knows that at time T A is on B.

* Furthermore, since a person can know something at one time that he did not know at an

earlier time, the accessibility relation for knowledge, K, will have to have an extra argument

position for the time in question.

S-For a planning system this distinction is extremely Important. Suppose the system has

the goal of bringing about P. and it knows that if Q is true, performing Act will cause P to

be true. If its knowledge about the truth of Q is limited to statements of the form Q is true

at time T. there is a problem, because the system has no way to represent what time T is with

respect to the time at which the system is doing its planning. What it needs to know is that

Q is true now, i.e., Q is simply true, but this is not representable In the logic. The logic

cannot have a formula such as T @ Now either, since this is not a statement that can be true

at all times in a given possible world. Of course, the effect of having such a fact can be

built into the planner, but it is necessary to go outside of the logic to do it.

For reasoning about actions, instead of a tense operator like Future, which simply says

what will be true, we need an operator that talks about what would be true if a certain

action were performed. Our approach will be to recast McCarthy's situation calculus

(McCarthy, 1963). (McCarthy and Hayes 1969), to mesh with our possible-world approach

to reasoning about knowledge. The situation calculus is a first-order language in which

predicates which can vary in truth value over time are given an extra argument to say what

situations they hold in, and there is a function Result that maps an agent, an action, and a

situation into the situation which results from the agent performing the action in the first

situation. Statements about the effects of actions are then expressed by formulas like

P(Result(A,Act,S)), which means that P is true in the situation that results from A performing

Act in situation S.

In order to integrate these ideas into our logic of knowledge, we will redefine the

situation calculus as a modal logic. We will introduce a modal operator Res for talking

about the results of actions, parallel to the modal operator Know for talking about

knowledge. Situations will not be referred to explicitly in this language, but they will

reappear when we specify the possible-world semantics for Res and formalize that semantics

in first-order logic. We will let Re. take as its arguments a description of an event and a

56

formula, such that Res(Ev,P) means that if the event described by Cv occurs, the formula P

will then be true. The possible-world semantics for R" will be specified in terms of an

accessiblity relation R, parallel to K, such that R(:Ev,W1 ,W2) means that W2 Is the

situation/world that would result from the event sEv happening in W1. We need to

distinguish between expressions that represent event descriptions (e.g., Ev) and expressions

that represent events (e.g., :Ev), because the same event description may refer to different

events in different possible worlds. (Generally, If X is a symbol in the modal language, A

will be the corresponding symbol In the possible.wor'1- language.) For example.

Dial(Combination(Sfj)) will refer to different sequences of dial twisting in worlds where the

combination of St1 differs.

We will assume that if It Is impossible for :Ev to occur In W, (i.e.. the preconditions of

:Ev are not satisfied), then there is no W2 such that R(:Ev,W1 ,W2) holds. Otherwise, we

assume that there is exactly one W2 such that (:6v,WjW 2) holds. Formally, this amounts to

an assumption that all events are deterministic, which might seem to be an unnecessary

limitation. Pragmatically, however, it doesn't matter whether we say that a given event is

nondeterministic, or that it is deterministic, but no one knows precisely what the outcome

will be. If we treated events as being deterministic, we could say that someone knows

exactly what situation he is in, but doesn't know what situation would result if :Ev occurs,

because :Ev is nondeterministic. It would be completely equivalent, however, to say that -Ev

is deterministic, and that this person doesn't know exactly what situation he is in because he

doesn't know what the result of :Ev would be in that situation.

Giving a possible.world semantics for Res requires specifying which possible worlds a

formula of the form Res(EvP) is true in. (If we want to say that Res(EvP) Is simply true, we

have to say that It is true in the actual world.) With the assumptions we have just made,

57

we can say that Res(EvP) is true In WI just in case there is some W2 which Is the

situation/world that results from the event described by Ev happening in W1, and in which

P is true. Because this definition involves an existential quantifier. we get a strong

interpretation of Res in that it must be possible for the event described by Ev to occur for

Res(EvP) to be true. There is a corresponding weak Interpretation which is noncommital as

to whether it is possible for Ev to occur, but asserts that if it did. P would be true in the

resulting situation. This weaker interpretation is obtained by saying that P must be true in

every situation that results from the occurence of the event described by Ev. We will give

this weaker interpretation to the operator Rosil.

With this definition, we can develop a theory based on Res and Roil parallel to our

theory of Know, and then convert the theory into first-order logic. An instance of Res(Ev,P)

whose truth is to be determined relative to W, will be replaced by the corresponding

instance of:

3w2 (R(:Ev,W 1 ,w2) A T(w2 ,P)),

and an instance of Resl (EvP) whose truth is to be determined relative to WI will be

replaced by the corresponding instance of:

Vw 2 (R(:Ev,W l ,w2) a T(w2 ,P)).

Both of these can be handled in the same way as the possible-world transformations of

formulas containing Know.

The type of event we will normally be concerned with is an agent performing an action.

We will let Do(A.Act) be a description of the event consisting in the agent named by A

performing the action named by Act We will assume that the set of possible agents is the

same as the set of possible knowers. Do will be a rigid function, so Do(A,Act) will be the

58

standard name of an event If A Is the standard name of an agent and Act is the standard

name of an action.

It would be more precise to say that Do(AAct) names a type of event rather than an

individual event, since an agent can perform the same action on different occasions. We

would then say that Res and R are relations on event types. We will let the present usage

stand, however, since we will not need to distinguish individual tvents in this thesis.

Most actions can be thought of as a general procedure applied to some specific objects.

These general procedures will be represented by functions which map the objects the

procedure is applied to into the action of applying the procedure to those objects. For

Instance, If Dial represents the general procedure of dialing combinations of safes, C,

represents a combination, and SfI represents a safe, then Dial(C I ,S11) represents the action of

dialing the combination C1 on the safe SfI.

This formalism gives us the ability to talk about someone's knowing about the effects of

an action. In the modal logic, we can express the assertion that A1 knows that P would

result from A2 doing Act as Know(A i ,Re s(Do (A2 ,Act),P)). The possible-world analysis of this

statement is that in every world that is compatible with what A1 knows, there is a world

which is the result of A2 doing Act and in which P Is true (see figure &1). Formally, this is

expressed by:

Vwj ((sA 1 ,W0 ,wl) 0 3w2 (R(:Do(sA 2 ,Ac),w I ,w2) A T(w2,P))),

4 assuming that A1, A2 , and Act are rigid designators. As with event descriptions and events,

we distingush between terms in the modal logic such as A1, A2, and Act and terms in the

possible-world notation such as :A1, :A2 , and :Act. In general, terms in the modal logic may

correspond to different terms in the possible.world notation depending on what possible

world they are evaluated In. This is discussed In more detail in section 4.3.

,a

59

R:Do (:A2 , :Act) Q

K:AjR:DO (:A2 , Act) Q
Figure 3.1 Know (A1 , Res(Do(A 2 , Act), P))

Vw I (K(:A 1 , W0 , wl) D 3w 2 (R(:Do(:A 2 , :Act), w 1 , w 2) A T(w2 , P)))

McCarthy and Hayes ran into difficulty with Identifying possible worlds with situations

because they wanted to express knowledge about the effects of actions in terms of knowing

formulas of the situation calculus (McCarthy, 1978). This requires allowing occurrences of

terms that denote situations inside the modal operator Know. The problem is how to relate

these terms to the references to possible worlds that are Introduced when an occurrence of

Know is eliminated. From our point of view, this problem is the result of confusing two

different levels of language. In the modal notation we do not have terms denoting

situations. At this level, all talk about the effects of actions Is in terms of the modal

operators Res and Rosl. All references to situation/wors are introduced In transforming

the modal notation into posuible.world notation. Thus, we never have the problem of

introducing references to possible worlds in the analysis of a formula that already refers to

situations.

In addition to simple, one-step actions, we will want to talk about complex combinations
I of actions. To facilitate this, we will introduce sequences, conditionals, and iterations. If P

60

.. is a formula, and Act, and Act 2 name actions, then (Actl;Act2), If(PAct1 ,Act 2) and

WhilI(PAct 1) also name actions. The result of A doing (Act,; Act 2) in WI will be W2 just in

case there is some situation W3 such that W3 is the result of A doing Act1 in W1 and W2 is

the result of his doing Act 2 in W3 . That is, doing (Actj; Act 2) is equivalent to doing Act1

and then doing Act 2. The result of A doing lf(P,ActlAcl2) in WI will be W2 just in case P

*is true in W, and the result of A doing Act, in W1 is W2. or P is false in W1 and the result

* of A doing Act2 in W, is W2 . This means that doing lf(PActiAct 2) is equivalent to doing

Act, or Act2 depending on P. The result of A doing While(P,Actl) in W, will be W2 just in

case the result of A doing lf(P,(Actl; While(PActj)),Nil) in W1 is W2, where the result of A

doing Nil in W1 is WI . In other words, doing While(PAct 1) is equivalent to doing Act,

followed by While(PActj) if P is true, otherwise doing nothing, i.e., doing Act1 as long as P

remains true.

The choice of programming language constructs for sequences, conditionals, and

iterations is more than coincidental. If the references to agents are eliminated and possible

situations/worlds are identified with machine states, then these rules amount to a partial

specification of the semantics of an imperative (Algol-like) programming language. In fact,

this approach to formalizing the semantics of complex actions is based on some ideas of V.

R. Pratt and this author for formalizing the semantics of programs in modal logic. Pratt

and his associates have used this approach to develop a powerful formalism for talking

about the semantics of programs which they call dynamic logic (Pratt, 1976), (Harel, Meyer.

and Pratt, 1977).

To continue the analogy between actions and programs, we can think of the distinction

between our strong and weak operators, Res and Resl in terms of the program-verification

notions of total and partial correctness. Since Res(EvP) is defined to be true just in case P is

61

true in at least one possible outcome of Ev and we are assuming determinism, Res expresses

both termination and correctness. On the other hand, since Reel (EvP) is true when P is

true in every possible outcome of Ev, Resi should be satisfied when, due to nontermination,

there are no possible outcomes. This corresponds to the notion of partial correctness in the

semantics of programs.

The rules that we have given so far are not sufficient to prove that there is no situation

which is the result of a nonterminating iterative action, but we can remedy this by adding a

possible-world version of Hoare's (1969) rule for partial correctness of While loops. In our

terms, the rule is that if Q is true in every situation that might result from A doing Act, in a

situation where P and Q are true, then Q is true and P is false in every situation that might

result from A doing Whilo(PActl) in a situation where Q is true. Intuitively, Whil.(PAct l)

will not terminate if it is executed in a situation where some condition Q holds that always

implies P and is never changed by doing Act,. What we want to show Is that in such a

situation, there Is no situation that is the result of carrying out While(P.Actl). This follows
.9

immediately from the rule we have Just stated, because if Q is Invariant with respect to Act 1

then Q will be true and P will be false in every situation that might result from doing

While(PActj), but since Q always implies P, P would have to both true and false in any such

situation. Therefore, no such situation can exist.

Our possible-world semantics for actions leads us to say that a primitive action

description Act denotes some primitive action In each possible world. (If Act is a rigid

designator it will name the same action in every possible world.) This leads us to ask what

the denotation of complex action descriptions such as (Acti1 Act 2), H(PActIAct 2), and

WhilI(PAct 1) might be. The most natural answer consistent with the treatment of primitive

actions Is that the denotation of a complex action description is the sequence of primitive

62

actions that would be performed in carrying out the complex action. Such a sequence seems

to be a natural interpretation of the term process as it is used in computer science. If we

regard procedures as action descriptions, then we conclude that the relation between

procedures and processes is that in a given environment, a procedure denotes the process

that would result from executing the procedure in that environment. Pratt (1979) has

independently proposed a similar approach, but with a slight;i different notion of what a

process is. This type of approach seems to be definitely preferable to the notion that a

procedure denotes the function it computes, since that idea ignores questions of efficiency

and does not seem to handle programs such as operating systems which do not in any

interesting sense compute a value.

3.2 The Dependence of Acti on Knowledge

As we pointed out in section I.I. knowledge and action interact in two principal ways.

First, knowledge is often required prior to taking action, and second, actions can change

what is known. In the first area, we need to consider knowledge preconditions as well as

physical preconditions for actions. Our main thesis is that almost all knowledge

preconditions for actions can be analyzed as a matter of knowing what action to take.

Recall from chapter I our example of of trying to open a locked safe. Why is it that for an

agent to achieve this goal by using the plan "Dial the combination of the safe," he must

know the combination? The reason is that an agent could know that dialing the

combination of the safe would result in the safe being open, but still not know what to do,

because he does not know what the combination of the safe is. A similar analysis applies to

knowing a telephone number in order to call someone on the telephone or knowing a

password in order to gain access to a computer system.

It is important to realize that even mundane actions that are not usually thought of as

63

requiring any special knowledge are no different from the examples just cited. For instance

none of the Al problem solving systems that dealt with the blocks world tried to take into

account whether the robot had sufficient knowledge to be able to move block A to point B.

Yet if a command were phrased as "Move my favorite block back to its original position.

the system could be just as much in the dark as with ODial the combination of the safe." If

the system does not know what actions satisfy the description, it will not be able to carry out

the command. The only reason that that the question of knowledge seems more salient in

the case of dialing combinations and telephone numbers is that, in the contexts where these

goals naturally arise, usually there is no presumption that the agent knows what action fits

'4 the description.

An important consequence of this view is that the specification of an action will not

need to include anything about knowledge preconditions. These will always be supplied by

our general theory of using actions to achieve goals. What we will need to specify are

criteria for knowing what action is referred to by an action description. As we will see,

though, this can often be done implicitly.

In terms of our possible-world semantics for knowing, the usual way of knowing what

entity is referred to by a description 8 is by having some description C that is a rigid

designator, and knowing &hat B - C. (Note that if B itself is a rigid designator, it can be

used for C.) In particular, then, knowing what action is referred to by an action description

means having a rigid designator for that action. But if this Is all the knowledge that is

required for carrying out the action, then a rigid designator for an action must be an

executable description of the action in the same sense that a computer program is an

executable description of a computation for the interpreter of the language in which the

program is written. Note that by "executable description". we mean that the description can

be executed provided the physical preconditions of the action are satisfied. This is true of

--I

64

programs as well. If the preconditions of a program are not satisfied. it may not be possible

to execute the program because of run-time errors.

Often the actions we want to talk about are mundane general procedures that we would

be willing to assume that everyone knows how to perform. Dialing a telephone number or

the combination of a safe are likely examples. In many of these cases, assuming an agent

knows the general procedure, if he knows what objects the p.-ocedure Is to be applied to

then he knows everything that is relevant to the problem. In such cases the function which

represents the general procedure will be a rigid function so that if the arguments of the

function are rigid designators, the term consisting of the function applied to the arguments

will be a rigid designator. Hence knowing what objects the arguments are amounts to

knowing what action the term refers to. We will treat dialing the combination of a safe as

this type of procedure. That is, we assume that anyone who knows what combination he is

to dial and what safe he is to dial it on knows what action he Is to perform.

There are other procedures which we might also wish to assume that anyone could

perform, but which cannot be represented as rigid functions. Consider the blocks world

action Puton(B,C). Even though we would not want to question anyone's ability to perform

Puton in general, knowing what objects B and C are will not be sufficient to perform

Puton(B,C) without knowing where they are. We could have a special axiom stating that

* knowing what action Puton(B,C) is requires knowing where B and C are, but this will be

unneccessary if we simply assume that everyone knows the definition of Puton in terms 0 f

more primitive actions. If we define Puton(x l~x 2) as something like

(Movehand(Location(x I)); Grasp; Movehand(Location(Top(x 2))); Ungrasp)

then we can treat Movehand, Grasp, and Ungrup as rigid fuactions, and we can see that

@ C executing Puton requires knowing the location of the two objects because the locations are

65

mentioned in the definition. So. although Puton itself is not a rigid function, we can avoid

having a special axiom saying what the knowledge preconditions of Puton are, by defining

Puton as a sequence of actions which are represented by rigid functions. Of course, in a

practical system we would probably want to "compile this information, rather than going

back to the definition each time we reason about Puton. The compiled information would

be in the form of theorems that can be derived from the basic axioms of the system and the

definition of Puton.

In the preceding discussion, we have been assuming that knowing what to do amounts

to knowing what single specific action to perform; e.g., we have assumed that Dial(C 1 ,Sf4I

names only one action. Obviously, there are many different sequences of movements that

would constitute dialing a particular combination on a particular safe, so we really ought to

regard Dial(CI,Sf l) as naming a class of actions rather than a single action. It would be

completely straightforward to modify our theory to take this into account, but none of the

interesting problems we want to look at turn on this point. Therefore we will merely note

the fact and let it pass. It should be realized, though, that this is different from the

distinction between individual events and types of events that we made in the prevc-is

section. Even if in a strict sense there were only one way to dial the combination of a safe,

so Dial(Ci,Sfl) referred to a definite action, performing this action on different occasions

would still constitute different individual events.

The picture we have presented seems to be an adequate account of knowing how to

perform the sort of action that one can be told how to perform, but many skills do not

appear to fit well in this theory. For instance, knowing how to ride a bicycle, play the

piano, or speak a language does not seem to consist entirely in being in possession of the

right factual knowledge. For instance, someone could be an expert on piano playing,

knowing all about such things as the notation of piano music and the theory of technique

~.7 7 .

66

(e.g., what fingerings to use for various chords), but not be able to play because he had

never practiced. The difference between such a person and a concert pianist, though, would

.* not be a matter of knowledge (in the sense we have been using) at all. It seems probable

* that any analysis of the difference would have to be at the level of physiology. Therefore,

in our theory, whenever we consider an action that can only be performed by someone

possessing a specific skill, we will not treat the skill as a matte, of knowledge, but rather as

one of the "physical" preconditions :or performing the action. For example, In the

specification of the action Read we will require ,hat the agent of the action satisfy the

condition Reads (i.e, "is able to read').

To formalize the theory we have developed, we will Introduce a new modal operator

Can. Can(A,Act,P) will mean that A can achieve P by performing Act, In the sense that A

knows how to achieve P by performing Act This notion could be used in a planning

system to achieve a goal P by finding some plan Act such that the system can deduce

Can(A,Act,P), where A is the system's name for itself. We will not give a possible.world

- semantics for Can directly; instead, we will give a definition of Can In terms of Know and Res,

which we can use in reasoning about Can to transform a problem into terms of possible

worlds. For a simple action that cannot be decomposed into more primitive actions, the

definition of Csn(AAct,P) will be that A knows what action Act describes, and he knows that

his performing Act will result in P being true. The "will result" In the second condition

must be interpreted in the strong sense that it is possible for A to perform Act (i.e., Re.).
This forces the planner to check that the preconditions of his plan are fulfilled.

This definition of Can is adequate for simple actions, but it Is too stringent for complex

plans. The reason Is that It requires the agent to know ahead of time exactly what he is

going to do. In a complex plan, however, he may take some action that results in his

4 acquiring knowledge about what to do in later stages of the plan. All that is required when

67

he starts executing the plan is that he knows what to do first and he knows that at each

subsequent step he wilU know what to do next. So, the definition of Can for sequences of

actions Is that A can achieve P by doing (Act,; Act 2) just in case by doing Act, he can bring

it about that by doing Act2 he can achieve P. If Act, is a simple action, then the two rules

we have given require that for Can(A,(Actl; Act 2),P) to be true, A must know what action

Act, describes, and he must know that after performing Act, he can achieve P by

performing Act2.

Finally, we will define Can for conditional and iterative plans. The rule for conditionals

is that Can(A,lf(PActljAct2),Q) is true just in case A knows that P is true and A can achieve

Q by doing Act 1,. or A knows that P is false and A can achieve Q by doing Act2. In other

words, for an agent to know how to achieve a goal using a conditional plan, he must know

whether the condition is true and know how to achieve the goal using the appropriate

branch of the conditional. The rule for iterative plans is quite simple, It just specifies one

level of expansion of the loop. The rule is that Can(A,Whil.(PAct1),Q) is true just in case

Can(A,lf(P,(Act1; Whilo(PActi)),Nil),Q) is true. Since Nil is a primitive action, it is covered by

the first rule, but we will note that the result of applying this rule to Nil is that Can(A,NilP)

is true just in case A knows that P is true. This may seem to be a trivial point, but it is

important for a planner to realize that if its goal is already true then it doesn't have to do

anything.

4 3.3 The Effects of Action on Knowledge

In reasoning about the effects of an action on the knowledge of the agent, our chief

concern will be whether the action gives the agent any new information. Those actions that

provide the agent with new information will be called Anowledgf.produeing actions. We will

68

say that an action is knowledge-producing just in case after performing the action the agent

would know more about the resulting situation than he did before performing the action.

In the blocks world, looking inside a box could be a knowledge.producing action, while

moving a block probably would not. Even if after moving the block the agent could see

what configuration the blocks are in, the action would not be considered a knowledge.

producing action, provided the agent could have predicted be,are hand what configuration

would result. In the real world there are probably no actions which are never knowledge.

producing, because all physical processes are subject to errors. Nevertheless, it seems clear

that we do and should treat many actions as not being knowledge-producing to simplify the

process of planning.

Even if an action is not knowledge-producing in the sense that we have just defined,

performing the action will still alter the state of knowledge of the agent. The reason for

this is that, assuming the agent is aware of his action, he will then know that the action has

been performed. As a result, the tense and modality of many of the things he knows will

change. For example, if before performing the action he knows that P is true, then after

performing the action he will know that P was true before he performed the action.

Similarly, if before performing the action he knew that P would be true after performing

the action, then after performing the action he will know that P is true.

4 We can represent this very elegantly in terms of possible worlds. Suppose Act describes

an action which is not knowledge-producing and A names an agent. Then let :A be the

agent described by A, and let :Ev, be the event described by Do(AAct), i.e. the event which

4 consists in :A performing the action described by Act. Then for any possible worlds Wi and

W2 such that W2 is the result of :Ev1 happening in W1, the worlds which are compatible

with what :A1 knows in W2 are exactly those worlds which are the result of :Ev I happening

in some world which is compatible with what :A1 knows in WI. This tells us exactly how

69

what A, knows after :Ev! happens (i.e. after A performs the action described by Act) is

related to what :A, knows before :Evj happens.

We can try to get some insight into this analysis by studying figure 3.2. Sequences of

possible situations connected by events can be thought of as possible courses of events. If

WI is an actual situation and :Ev, happens producing W2. then W, and W2 form a

subsequence of the actual course of events. Now we can ask what other courses of events

are compatible with what A knows in W, and in W2. Suppose W4 and W3 are connected

by :Ev I in a course of events that is compatible with what A knows In W1. Since :Ev I is

not knowledge-producing for :A, the only sense in which his knowledge is increased by :Ev1

is that he knows that :Ev I has happened. Since :Evj happens at the corresponding place in

the course of events that includes W4 and W3 , this course of events will still be compatible

with every thing :A knows in W2 . However, the appropriate 'tense shift" takes place. In

Wl , W4 is a possible alternative present for A, and W3 is a possible alternative future. In

W2 , W3 is a possible alternative present for :A, and W4 is a possible alternative past.

Next consider a different course of events that includes W5 and W6 connected by a

different event :Ev 2 . This course of events might be compatible with what A knows in W1

if he is not certain what he will do next, but after :Ev1 has happened and he knows that it

has happened, this course of events is no longer compatible with what he knows. Thus, W6

is not compatible with what :A knows in W2. We can see then that even actions which

provide the agent no new information from the outside world still filter out for him those

courses of events where he might perform actions other than those which he actually

performs.

The idea of a filter on possible courses of events also provides a good picture of

-~i - . . .- - ..r.. -. ._.

70

Ko°

.- iFigure 3.2 The effect of performing an action that is not knowledge-producing
. on the knowledge of the agent.

~knowledge-producing actions. With these actions, though, the filter is even stronger. since

~they not only filter out courses of events that differ from the actual course of events as to

*what happens, but they also filter out courses of events which are incompatible with the

' information the action produces. Suppose Act describes a knowledge-producing action,

where the knowledge that the agent gains is whether P is true. If Ev is the event which

* consists in tA performing the action described by Act, then for any possible worlds WI and

* W2 such that W2 is the result of :Ev happening in W1, the worlds which are compatible with

'9 what :A1 knows in W2 are exactly those worlds which are the result ol :Ev happening in

some world which is compatible with what .Ai knows in WI aud Ln rvl'dcA P Aes tAt same

ITruA ualue as In W2. It is this final condition that distinguishes actions that are knowledge.

producing from those that are not.

I A

71

KK:A

.. W2 W3

2w 5

"R:Ev R:EvW6 1P

07 C. R:Ev

Figure 3.3 The effect of performing a knowledge-producing action
on the knowledge of the agent.

Figure 3.3 illustrates this analysis. Suppose W, and W2 are connected by :Ev and are

part of the actual course of events. Suppose further that P is true in W2. Let W4 and W3

also be connected by :Ev, and let them be part of a course of events that is compatible with

what :A knows in W1. If P Is true in W3 , then if the only thing tA learns about the world

from :Ev (other than that it has happened) is whether P is true, this course of events will

Ki still be compatible with what .A knows after :Ev happens. That is, W3 will be compatible

with what :A knows in W2 . Suppose, on the other hand. that W5 and W6 form part of a

similar course of events, except that P is false in W6 . If tA does not know in W, whether P

would be true after :Ev happened, then this course of events will be compatible with what

he knows in W1. After :Ev has happened, however, he will know that P is true, so this

course of events will no longer be compatible with what he knows. That is, W6 will not be

compatible with what tA knows In W2.

L

L,

72

One major advantage of this approach to describing how an action affects what the

agent knows Is that, not only have we specified what he learns from the action, but also

what he does not learn. Our analysis gives us not only sufficient conditions for inferring

that :A knows that P after event :Ev, but also necessary conditions. In the case of an action

which is not knowledge-producing, we can Infer that unless :A knew before performing the

action whether P would be true, he does not know after #ards either. In the case of a

knowledge-producing action where what is learned is whether Q is true, he will not know

whether P is true unless he already knows, or he knows how P depends on Q.

This possible-world analysis of the effects of action on knowledge gives us everything

we need to formalize the notion of a test that we presented in section 1.1. Recall that a test

was defined to be an action that has a directly observable result that depends conditionally

on an unobservable precondition. In the terminology of this chapter we would say that a

test is a knowledge.producing action where the observable result Is part of the information

provided by the action. In chapter I we identified three conditions on an action belig

usable as a test for P:

(I) The agent knows that Q will be true after he performs the action just in case P is
true before he performs the action.

(2) After the agent performs the action, he knows that he has Just performed the
action.

(3) After the agent performs the action, he knows whether Q is true.

Conditions (2) and (3) will be satisfied if Act describes a knowledge-producing action,

* where the knowledge provided includes whether Q is true. So, any such action can be used

as a test for P just in case (I) is also satisfied. Using the theory that we have presented, we

can show that this is the case, as illustrated by figure 3.4.

* Suppose the action described by Act satisfies (I). (3), and let :Ev be the event which

K. I

7S

Q w Q

R:Ev R:EvW6

:Ev

K:A

w5

Figure 3.4 The effect of a test on the knowledge of the agent.

consists in :A performing the action. Suppose that P is true in W1. but A does not know

whether P Is true. Under these conditions, there will be at least one situation which is

compatible with what he knows in W1 in which P is true (W4) and at leasz one such

situation in which P is false (Ws). Since tA knows how the truth of 0 after :Ev depends on

the truth of P before :Ev, if W3 is the result of :Ev happening in W4, then Q must be true in

W3. Similarly, if W6 is the result of :Ev happening in WS, then Q must be false in W6. Now,

since P is In fact true in W1, Q must be true in W2. By condition (S). A knows this fact, so

W3 will be compatible with what A knows in W2, but W6 will not. This argument shows

that after :Ev actually happens no possible course of events in which P is false before :Ev

happens will be compatible with what A knows. Thus we conclude that after :Ev happens,

A will know that P was true. It should be easy to see that if we assume that A knows

74

whether :E changes the truth value of P we could also show that sA knows whether P is

true after :Ev occurs. An exactly parallel argument would apply if P were false in WI, so we

can see that our theory completely captures the reasoning about tests that we described in

chapter I1* based on the general principles that govern reasoning about knowledge and

action.

75

4. Formalizing the Possible-World Semantics for Knowledge

4.1 Object Language and Meta-Language

We have now presented all the basic theory that we need to construct a formalism for

reasoning about knowledge and action. The essence of our approach is to define a logical

language that contains modal operators for stating facts about knowledge and action, specify

a possible-world semantics for the modal operators, and formalize that semantics in an

ordinary first-order theory to which standard automatic deduction techniques can be

applied. A major question that we have not answered, though. is what formal role, if any.

the modal language will play in this formalism. In most, and perhaps all, cases it would be

possible to frame the problem entirely within the concepts of the possible-world semantics,

by-passing the modal operators completely. If we did this. the modal language would simply

be a heuristic device for us to use in formulating problems in the possible-world formalism.

Rather than follow this approach, we will incorporate the modal language directly into

our formalism. We will do this by encoding expressions of the modal language (which we

will henceforth call the object language) as terms in a first-order language that talks about

possible worlds (which we will call the meta-language). Then we can axiomatize the

interpretation of modal expressions in terms of possible worlds using the relation T that we

introduced in chapter 2. where T(W,P) is a meta-language formula which means that the

object-language formula P is true in the world W. This is an idea adopted from McCarthy

(1975).

There are several reasons for doing things in this way. First of all, even where the

translation from modal notation to possible-world notation is quite direct, the modal

notation is much more concise. Recall from section 3.1 the example of saying that A, knows

that A2 performing Act will result in P being true. in the modal nntation this is expressed

simply as Know(AI,Res(Do(A 2,Act),P)). in the possible-world notation, however, it becomes:

76

Vwl (K(:A i ,Wow I) a 3w2 (R(0o(:A2,sAct),w ,w2) A T(w 2 ,P))).

. As a language for problem specification, then, the modal notation is clearly preferable to the

-: possible-world notation.

There is a deeper problem than this, however, which seems not to have been previously

noted. The possible-world framework is, in a sense, conceptually impoverished compared to

the modal framework. Even if we can represent the same states of affairs within either

framework, it does not follow that for every concept we can express in the modal language

there will be a corresponding concept in the possible-world language. This seems to be the

case with the modal operator Can. Notice that while there is a simple correspondence

between the modal operator Know and the accessibility relation K, and between the modal

operators Res and Rool and the accessibility relation R, we have no accessibility relation that

- corresponds directly to Can. Nevertheless, any for,,ula of the form Csn(AActP) has a

corresponding formula in the possible-world language. That formula can be obtained by

expanding the definition of Can in terms of Know and Re (see section 5.2) and then

transforming the occurrences of these operators into their possible-world counterparts. The

* problem is that the axioms that describe this transformation appear not to be formulatable

completely within the possible-worlds framework.

It is important to remember that Can Is not simply a relation among an agent, an action,

and a goal; it is a relation among an agent, an action described in a particular way, and a

goal described in a particular way. Furthermore, if the action is a described by a complex

sequence of subactions, then the requirement that the agent know what subactions are being

described is distributed over the execution of the whole sequence. The agent does not have

to know exactly what action a particular step of the sequence describes until he actually has

to do it. This seems to require that Can be defined recursively over action descriptions. In
p0

particular, the definition of Can has to allow for the fact that Can(AActj,P) can be true and

L

77

Can(AAct 2,P) can be false even if Act, and Act 2 both describe the same action. We can

accomodate this in the modal framework, because it allows such intensional constructions.

The possible-world framework, however, is extensional, so there is a problem.

This sort of difficulty does not arise with Know because there is no need for a recursive

definition to capture the meaning of Know. Res(Do(AAct),P) and Resi (Do(AAct),P), like Can

may be defined recursively over Act (indeed, we will find it convenient to do so), but the

recursion can pushed into the possible-world framework, because Act occupies an

extensional position in these formulas. That is, Res(DoActj),P) and Res(DoA,Act 2),P)

must have the same truth value if Act, and Act 2 describe the same action. Therefore we

can give the definitions of Res and Reel as simple formulas in terms of the whatever event

is denoted by its first argument. The recursion is then introduced in a natural way in

determining what action is denoted by a complex action description. The problem with Can

is that it not only requires a recursive definition, but the argument that definition recurs on

is interpreted intensionally. There may be some way to make such a definition fit naturally

into a pure possible-world framework, but I have not been able to find it.

The result of these considerations is that although any particular formula invoving Can

will have a possible-world equivalent, there is no single concept in the possible-world

framework which corresponds directly to Can in the way that the accessibility relations K

and R correspond to the other modal operators. We can draw an analogy here with various

levels of programming languages. We know that in theory any program can be translated

Into any universal basis for computation no matter how primitive, for example Turing

machines or combinatory logic. The constructs that are used in one system may have no

analogues in another system, however. Program variables are a good example of such a

construct. Almost every practical programming language has some notion of variable in it,

yet there are bases for computation, like combinatory logic (Curry and Feys, 1958). in which

07

78

Ithere are no variables. So even though any program in a language with variables can be

translated into combinatory logic, the variables will disappear In the process, the same way

the concept Can disappears in translating from the modal notation to the possible-world

notation.

Thus it is not merely clumsiness of syntax that leads us to prefer the modal language for

purposes of problem specification, as one might be led to preier PASCAL to FORTRAN.

It is a fundamental difference in conceptual power, like the difference between both of these

languages and assembly language.

Given that the modal language in some ways has greater conceptual power than the

"O possible-world language because of its ability to express intensional concepts. we might ask

how it is possible to axiomatize the interpretation of the modal language in an extensional

first-order logic. Again the analogy with programming languages is helpful. Even though

one programming language may be more powerful conceptually than another, it is always

possible to write an interpreter for the first language in the second. Thus, we can write a

LISP interpreter in assembly language, even though LISP has recursion and assembly

language does not. We can do this because the interpreter treats LISP programs as data.

We have the same sort of situation with respect to logical languages. Oir extensional meta-

language can interpret intensional object-language formulas, because those formulas are

* treated as logical individuals (i.e., data) in the meta-language.

4.2 A First-Order Treatment of the Propositional Logic of Knowledge

O

We will develop our formalism for reasoning about knowledge and action in a staged

f ahion In this section we will deal with the propositional logic of knowledge, stating the

ressary axioms and illustrating their use in some sample deductions. In the next section,
O

, will introduce quantifiers and predicates, and in chapter 5 we will extend the formalism

handle ou. integrated theory of knowledge and action.

L' ! !'I

4I

79

As we discussed in the previous section, the modal object language will be encoded as

term expressions in a first-order meta.language. Typically this sort of thing is done using

string operations like concatenation, so that the conjunction of P and Q would be

represented by something like '('IPI'A'JQI')'. This would be interpreted as the string

consisting of a left parenthesis followed by P followed by the conjunction symbol followed

by Q followed by a right parenthesis. Thus the meta.language expression '('IPI'A'Ir)' would

q denote the object-language expression (PAQ).

There is a much more elegant way to do the encoding, however, which is due to

McCarthy (1962). For purposes of semantic interpretation of the object language, which is

what we want to do, the details of the syntax of that language are largely irrelevant. In

particular, the only thing we need to know about the syntax of conjunctions is that there is

some way of taking P and Q and producing the conjunction of P and Q. We can represent

this by having a function And such that And(PQ) denotes the conjunction of P and Q. To

use McCarthy's term. And(P,Q) is an abstract syntax for representing the conjunction of P

and Q. We will represent all the logical operators of the object language by functions In an

abstract syntax.

The object language will contain the usual logical operators and quantifiers with

equality, and the modal operators Know, Res, Rosl, and Can. The predicates, functions, and

constants will vary from example to example, but will include the function Do discussed in

chapter 3, and the composition functions for sequences, conditionals, and iterations of

actions. The meta-language will include all the well-formed expressions of the object

language as terms, the truth predicate T, the accessibility relations R and K, and analogues of

all the nonintensional constructs of the object-language. The meta-language will also

contain some additional constructs which will be introduced later. The domain of discourse

of the meta-language Includes the domain of discourse of the object language, plus object-

language expressions and possible situation/worlds.

80

Since the axioms of our formalism will be introduced gradually over this chapter and

the next with a large amount of intervening material, we list all of them in appendix A,

indicating where in the text they are introduced. The axioms that specify the interpretation

of object-language expressions in the meta-language constitute a recursive definition of the

truth predicate T. Recall that T(WP) means that the object language formula denoted by P

Is true In the possible world denoted by W. Often we will want to say that a formula is

q simply true, i.e., true in the actual world. We will therefore introduce a special constant

symbol W0 to denote the actual world and a monadic truth predicate True to mean true in

the actual world. True is defined in terms of T and W0 by the following axiom:

'4

LI. Vp1 (True(pl) a T(Wo,pl))

In the our formalism (i.e., the first-order meta-language) all predicates, functions, and

constants will begin with upper-case letters, while variables will be in lower-case letters. We

will be using a many.sorted logic, with different sorts assigned to differents sets of variables.

For instance, the variables wl, w2,... will range over possible worlds, the variables PI, P2,-

will range over object.language formulas, and the variables a1 , a2 . will range over agents.

For the sake of clarity, we once again note that object-language expressions are not formulas

from the point of view of the logic. They are merely terms in the meta-language which we

interpret as representing formulas of another language outside the formal system.

The recursive definition cif T for the propositional part of the object language is as

follows:
4

L2. VY,I P 2 (T(wlAnd(pjp ;2)) N (T(WjPl) A T(w1,P2)))

. Vwk~pP2(T(w 1,Or(p P2 ,') * (T(wjpl) v T(wj,P2)))

4. VwlPjP 2(T(wjCp1 a) p2)) a (Twl,pl) a T(wlP 2)))

I I- L.

L. Vwj,pjp 2 (T(wl,(pl (> P2))' (Tawppl) * T(w 1,P2)))

L6. Vw ,pj (T(wl ,Nt(pl)) .T (wi,pl))

Axioms LI . L6 just translate the logical connectives from the object language to the

meta-language, using the ordinary Tarskian definition of truth. For instance, according to

L2, And(PQ) is true in a world if and only if P is true in the world and Q is true in the

world. The other axioms state that all the truth-functional connectives are *transparent" to

T in exactly the same way. As we pointed out In section 2.3. the major advantage of

analyzing the object language in this way is that by lifting the logical connectives directly

into the meta-language, we avoid having to formalize object-language axioms or rules of

inference for them, and thereby avoid the problem of such axioms and rules taking control

of the deductive process.

We should note that although we are axiomatizing truth for the object language, the

well-known results of Tarski (see Rogers (1971), pp. 210 - 215) on the Impossibility of

axiomatizing truth do not apply here. What Tarski proved was that it is impossible for

any language rich enough to contain arithmetic to consistently axiomatize its own truth

conditions. But in our system the meta.language axiomatizes not its own truth conditions,

but rather the truth conditions of the object-language. In particular, Tarski showed how to

construct a term S which denotes the sentence "S is not true.* This immediately gives rise to

the classical liar paradox. This construction cannot be carried out in our system, because

there is no representation of the predicates T or True in the object.language.

To get the propositioral logic of knowledge, we need add only the following three

axioms:

KI. Vwi ,trm.aI ,pl (T(wi,Know(trm.as,pI)) * Vw2 (K(D(witrm. j),wj #w2) a T(w2 ,pj)))

K2. Va 1,wI(K(aI w Iw))

82

K3. Va ,w I w2 (K(al I w I w2) o Vw3 (K(al w2 ,w3) D K(a1,wl w3)))

K I gives the possible-world analysis for object-language formulas of the form Know(AP).

The Interpretation is that Know(A,P) Is true in world W, just in case P is true in every world

which is compatible with what the agent denoted by A In W1 knows In WI . Since an object

language term may denote different individuals in different rossible worlds, we Introduce

the function D, such that D(WA) is a meta-language term that refers to the individual

denoted by the object-language term A in world W. K represents the accessibility relation

associated with Know, so K(DCWIA),WI,W 2) is how we represent W2 being compatible with

what the agent denoted by A In W, knows In WI.

As we pointed out in section 2.3, the principle embodied In K I is what we use to infer

that an agent knows what is implied by his knowledge. Since this is not strictly true, in a

more thorough analysis we would regard the inference from the right side of K I to the left

* side as being a plausible Implication. K2 and KS state constraints on the accessibility

relation K that we use to capture other properties of knowledge. Together, they require that

for a fixed agent A, K(Awlw 2) must be a partial ordering on possible worlds. We have

* already shown in section 2.3 that this entails the principles that anything that anyone knows

must be true, and that If someone knows something he knows that he knows it. Below we

" show how to derive these principles formally. Finally, the fact that K I - KS are asserted to

hold for all possible worlds entails that everyone knows the principles they embody, and

!. everyone knows that everyone knows, etc. In other words, these principles are common

O knowledge.

One of the features of our formalism Illustrated by K I Is the method of writing meta-

language variables for object-language terms. As we mentioned above, we are formalizing

* the meta.languge as h many-sorted first-order logic. Since the domain of discourse of the

83

meta-language includes various types of well-formed object-language expressions, we will

need meta-language variables to range over these expressions. We have already introduced

the variables PI, P2,-- which range over object.language formulas. Now we introduce the

variables trm1 , trm2 ,.. to range over object-language terms. However, we also want to

consider the object language to be a many-sorted logic, so we will need meta-language

variables to range over object-language terms of a particular sort. Since the domain of

discourse of the meta-language includes the domain of discourse of the object language. we

will construct these variables so that if s1, $2,.- are meta-language variables of sort s and

this sort is also in the domain of discourse of the object language, then Irms, trm 2 .., will

be meta-language variables that range over object-language terms of sort L In K I. for

instance, trm.aI ranges over object-language terms which refer to possible agents. Notice

that this requires us to allow sorts to be hierarchically organized since the range of Irm.aI is

a subset of the range of trml.

To illustrate the use of these axioms, we will show how to derive some simple results in

the propositional logic of knowledge. To simplify the formulas in these examples, we will

assume that the object-language term A is a rigid designator for an individual who is also

denoted by the meta-language term tA. This allows us to substitute :A for the more

complicated D(W,A). Our proofs will be in natural deduction form. The axioms and

preceding lines which justify each step will be given to the light of the step. Subordinate

proofs will be indicated by indented sections, and Ass will mark the assumptions on which

these subordinate proofs are based. Dis(n,,m) will indicate the discharge of the assumption

on line n with respect to the conclusion)n. line m. The genral pattern of proofs in this

system will be to assert the object-language premises of the problem, transform them into

their meta-language equivalents using axioms LI-L6 and Ki, teen derive the meta-language

48

expression of the conclusion using first-order logic and purely meta-language axioms such

* as K2 and KS. and finally transform the conclusion back into the object language. again

using L 1-.6 and K 1. Our first example will be to show that axiom M4 in the modal logic

of knowledge follows from K 1.

Provet Tru.(Know(A,(P a) Q)) 0) (Know(AP) 0 Know(A.Q)))

1. T(W01Know(A,(P a) Q))) Ass

3. T(W0*Know(A.P)) Ass
4. K(:A.W0,wi) a T(wjP) KI 13
5. K:A,W0,wj) Ass
6. T(wj,(Ps)Q0)) 2,5
7. T(w,P) *T(wQ) L4,6
8. T(wl,P) 4,5
9. T(w11Q) 7.8

11. T(W09Know(AQ)) K1.10
12. T(W0,Know(A,P)) * T(W0,Know(AQ)) Dis(3,l 1)
13. T(W0,(Know(A,P) 0 Know(A,Q))) L4,12
14. T(W0,Know(A,(P a> Q))) * TCW,(KnowA.P) 0 Know(AQ))) Dis(1.13)
15. T(W0,(Know(A,CP 0) Q)) 0) (Know(A,P) 0) Know(AQ)))) L4,1 4
16. True(Know(A,(P o) Q)) o) (KnowCA,P) 0 Know(A.Q))) 1.1.15

This proof Is completely straight-forward. Lines I - 4 assume the two antecedent

conditions and then express them In possible-worlds notation. Then we pick wl as R typical

world which is possible according to what A knows. In lines 6.- 9, we do the inference that

we want to attribute to A. Since this inference can be done in an arbitrarily chosen member

of the set of worlds which are possible for A, it must be valid in all of them (line 10). From

this we conclude that A can probably do the inference also (line 11), We then discharge our

assumptions and express the result in the same form as M4.

Another Interesting example is the Inference that proved to be! so troublesome for the

data-base approach - concluding ..KnowCA,P) from lKnow(A,(P a Q)) and ..Know(AQ)

Given: Tru.(Know(A,(P 0) Q)))
True(Not(Know(AQ))

Prove: True(Nt(Know(A.P)))

1. True(Know(A,(P 0) Q))) Given
2. TCW0,Know(A,(P 0) Q))) LI .1
3. K(:AW 0 wj) = T~wj,CP 0) Q)) 11
4. True(Not(Know(A.Q))) Given
5. T(W01Not(KnowCAQ))) LI .4
6. .'T(W 0,Know(AQ)) L6,5
7. K:A,W01Wl) 1(3,6
8. .'T(W 1,Q) KI,6
9. T(W11(P 0) Q)) 3.7

10. TCW 11P) a T(W1 Q) L4,9
11. -.T(W3*P) 10.8
12. -'T(W 0,Know(A,P)) 1(1.7,11
13. T(W0,Not(Know(A,P)) L6,12
14. True(Not(1(now(A.P)) L.113

In this proof, like the preceding one. most of the steps simply translate between the

modal notation and the possible-world notation. Lines I - express the first premise in

possible-world notation. Lines 4 - 8 do the same for the second premise. The key step is

concluding from the fact that A doesn't know Q (line 6), that there is a world. Wi. which Is

compatible with everything that A knows and in which Qfalse (lines 6 and 8). From this

and the fact that In every world compatible with what A knows, if P is true then Q is true, It

follows by modus tollens that P must be false in W, (line 11). Translating back into modal

U notation, we get that A doesn't know P.

For our final two examples in this section. we will show formally that K2 and KS entail

M2 and M3:

Prove: True(Know(AP) 0) P)

1. T(W0,Know(A,P)) Ans
2. 1((:A.W 0.wj) T~wj.P) 1(1,1
3. 1((:AW 0,W0) K(2
4. T(W0,P) 2.3

• - _ . m -. 7777- -

86

5. TWOoKnowCA,P)) a T(WoP) Dis(I.4)
6. T(Wo,(KnowA,P) a) P)) L4.5
7. True(Know(A,P) a) P) LIA

We assume that A kr, ws that P (line 1), so P must be true in every world which is

compatible with what A knows (line 2). By K2. the actual world, W0. must be compatible

with what A knows (line 3). so P must be true in W0 (line 4).

Prove: True(Know(A,P) a) Know(A,Know(A,P)))

I . T(OWKnow(Ap)) An
2. K(:A,Wo,wj) z T(wI,P) KI,i
3. K(:A,Wo,wl) a (K(:Awiw 2) a K(tA,Wow 2)) (3
4. K(:A,Wowl) Ass
5. K(:A,wl ,w2) a K:AWow 2) 3,4
6. K(:A,w 1*w2) Ass
7. K(tAWow 2) 5,6
8. T(w2 ,P) 2,7
9. K(:Aw I w2) a T(w2,P) Dis(6.9)

10. T(wj ,Know(A,P)) K),9
11I. K(:AWowl) =a T(wi ,Know (A,P)) Dis(4,10)

12. T(WoKnow(A,Know(A.P))) KI,l I
13. T(Wo,Know(A,P)) * T(WoKnow(A,Know(A,P))) Dis| ,12)
14. TCWo,(Know(A,P) .) Know(AKnow(A,P)))) L4,13
15. True(Know(A,P)) Know(A,Knw(A,P))) L,14

Again we assume that A knows that P (line I). and again we conclude tha, P is true in

every world which is compatible with what A knows (line 2). We let wI be a typical world

compatible with what A actually knows (line 4), and we let w2 be a typical world compatible

with what A knows in w, (line 6). By KS. w2 must also be compatible ,with what A actually

knows (line 7), so P muxt be true in w2 (line 8). Therefore. A knows that P in wI (line 10),

and A knows that A knows that P in the actual world (line 12).

Actually. this last proof contains something of a cheat. When we made the assumption

that A was a rigid desigator. we did so mainly to simplify the formulas that we had to work

Vi

4i

87

with. In the proofs before this one, nothing depends on that assumption. In those proofs,

everything still goes through if DO(W0,A) is used instead of t. Here that is not the case, and

the proof depends on A being a rigid designator. The formalism that we are developing in

this chapter is correct, though. The problem is with the propositional logic of knowledge

that we presented back in section 2.1. Recall that the intent of MS was to represent the fact

that if someone knows something, he knows that he knows it. It seems very natural to

assume that this entitles us to infer Know(A,Know(A,P)) from Know(A,P). This is not quite

right, however, because there is no guarantee that the person who is described by A will

know that he is the person described by A.

Suppose the richest man in the world knows that he has less than ten billion dollars, If

we apply M3, we will infer that the richest man in the world knows that the richest man in

the world knows that he has less than ten billion dollars. This might not be true, however,

if he does not know that he is the richest man in the world. He might think that someone

else is the richest man in the world and has more than ten billion dollars. What we really

want to infer is that the richest man in the world knows that he knows that he has less than

ten billion dollars. This is in fact the principle that is captured by KS. One way of making

the M3 version valid is to restrict the term that denotes the knower to be a rigid designator.

That way we can be sure that he recognizes it as a description of himself. That is what we

have done in this proof.

In this section we have seen how to axiomatize the possible.world semantics of the

propositional modal logic of knowledge, so that its inferences can be captured in first order

*logic. In the next section, we will extend this approach to handle the quantified logic of

knowledge.

I

f: ~~...........

: 88

4.3 Introducing Quantifiers, Predicates, and Equality

We will represent object-language quantifiers in our formalism by two functions in the

abstract syntax. Exist and All. These functions will take two arguments, a term denoting an

object-language variable and a term denoting an object.language formula, presumably

containing at least one free occurrence of the variable. The terms that denote object-

language variables will be meta.language constants beginning with a TV. The scheme for

Indicating what sort the variable belongs to will be the same as in the metalanguage, but

since formally these symbols are constants we will use upper-case rather than lower-case

letters. Thus, corresponding to the meta-language variable sa, we will have the object-

language variable 7SI . Exist(TS1 ,P) will denote the object.language formula which means

there is an individual of sort S such that the open formula P is true of that individual.

Similarly. AII(?Si P) will mean that P is true of every individual of sort S.

Axiomatizing the interpretation of quantified object.language formulas presents some

minor technical problems. We would like to say something like Exist(?Sl|P) is true in W just

in case there is some individual such that the open formula P is true of that individual in

W. We don't have a way of saying that an open formula is true of an individual in a

world, however; we just have the predicate T which simply says that a formula is true in a

world. One way of solving the problem would be to introduce a new predicate, or perhaps

redefine T, to express the Tarskian notion of satisfiability rather than truth. An elegant

way to do this is to borrow the computer science notion of a closure (Sussman and Steele,

1975). which can be defined as an ordered pair consisting of a formula containing free

variables and a set of bindings for those variables. If we used this notion we would talk

about closures being true in a world rather than formulas. In interpreting a closure.

whenever we came across a free variable we would use the binding specified by the closure

Uq

89

to interpret the variable. A closure whose body was Exist(0S 1 ,P) would be true in W if there

is some Individual of sort S such that the closure of P in which that Individual is bound to

?S 1 is true in W.

While this approach is semantically elegant, it is syntactically clumsy, as it requires a

complicated syntax to describe closures, and even purely propositional formulas have to be

represented as closures with empty sets of bindings. We will take the simpler approach of

finding substitutions for the free variables of a formula such that the resulting formula has

the same truth value in every world as the equivalent closure. Using this approach to

interpret quantified formulas, for every individual that satisfies the open formula P we need

to be able to find a term that can be substituted for the free variable to make the resulting

closed formula true. In an extensional object language any term that denotes the individual

would do. Since our object-language is intenslonal, however, we have to take Into account

whether the term that we substitute will be evaluated with respect to a different possible

world where it might denote a different individual. Therefore, we must use a rigid

designator for the individual in question to insure that all occurrences of the subtituted

expression will denote the intended referent.

This approach is semantically unattractive since it requires us to assume that there is at

least one rigid designator for every individual in the domain of discourse. Our theory does

not require this, and we even pointed out in section 2.5 that not requiring all individuals to

have names was a desirable feature of the theory in respect to interpreting certain

statements about knowing what something is. Therefore, we will adopt the substitutional

approach for its syntactic simplicity, but we will refrain from making use of it in any w:,

that would be incompatible with the closure approach.

In order to formalize the substitutional approach to the interpretation of quantified

object-language formulas, we need to be able to construct a rigid designator In the object

I

90

language for any arbitrary individual. Since our representation of the object language Is in

*the form of an abstract syntax, we can simply stipulate that there is a function s such that

* for any individual in the domain of discourse of the object language. if zX Is a meta-

language term refering to that individual, then (.X) denotes an object-language rigid

designator for that individual. (We can read @(:X) as "the standard name of .X.) We can

now state our interpretation rules for object language quanti.",ers. In the following axiom

schemas P may be any object-language formula, ?S1 may be any object-language variable, si

is the corresponding meta-language variable, and the notation P[Trml/Trm2] indicates the

expression which results from substituting Trm1 for every free occurrence of Trm2 in P:

L7. Ywl (T(w1 ,Exist(?Si,P)) v 3si(T(w I ,P[($si)/?Si])))

Lit. Vw1 (T(w ,.All(?Si,P)) a Vsi(T(w ! ,P[a(si)/?Si]))

L says that an existentially quantified formula is true in a world W if there is some

individual of the sort indicated by the bound variable, such that the formula which results

from substituting a rigid designator for that individual for the bound variable in the body

of the formula is true in W. L8 says that a universally quantified formula is true in W if

every individual of the sort indicated by the bound variable is such that the formula which

results from substituting a rigid designator for that Individual for the bound variable in the

body of the formula is true in W.

Note that one of the instances of L asserts the equivalence of the analysis of 'knowing

who" in terms of quantifying-in with the analysis in terms of rigid designators:

T(w1 ,Exist(?X 1 ,Know(A,Eq(?X 1 ,9)))) @ 3xi T(wI ,Knoiv(A,Eq(G(x I),B))))

This says that there is something which A knows to be B (i.e. A knows who B is), just in

case there is some individual x, such that A knows the proposition which asserts the

equality of a rigid designator for x, and B.

91

Up to this point we have left nonintensional atomic formulas unanalyzed, reasoning in

terms of meta-language expressions of the form T(WP). In order to analyze object-language

predicates and terms we will need a few new tools. We have already introduced one of

these tools, the function D which maps a possible world and an object-language term into

the denotation of that term in that world. Using this function, the simplest method of

interpreting object-language atomic formulas would be to introduce, for each n-ary object

language predicate, an n.i.ary meta-language predicate that took as its arguments the

possible world in which the object-language formula is to be evaluated and the denotations

in that world of the arguments of the object-language predicate. If we did this, then

T(W,P(A)) would be analyzed as something like :P(W,D(WA)). This treatment of predicate- is

similar to that used by McCarthy (1963) (McCarthy and Hayes, 1969) in his situation

calculus.

This approach, however, creates problems when we try to formalize the effects of

actions. If we do things this way, when we axiomatize a parti&.jlar action we will have to

say explicitly for each predicate, function, and constant how the action changes its extension.

That is, for each predicate we will have to say how what the predicate is true of after the

action is performed depends on what is true before the action is performed. Similarly, for

each function or constant we must say how the action might change the referent of any

terms that mention that function or constant. This problem was first pointed out by

McCarthy and Hayes (1969) and was called by them the frame problem. We will call axioms

that describe the effects of actions frame axioms.

4 It has often been noted that most actions affect relatively few aspects of a situation, so

that the most concise formulation of the frame axioms for an action would be to explicitly

state what things do change and then add that "everything else stays the same.' If we

4 follow the approach of translating object-language predicates into meta-language predicates,

L

VD-R126 244 REASONING ABOUT KNOWLEDGE AND ACTION(U) SRI 2/3
INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE
CENTER R C MOORE OCT 88 SRI-TN-191 g

UNCLASSIFIED F/G 6/4 NEhhhlhhhlhhiE
EhhhhhhhhlhhhI
EhhhhhhhhhhhhI
Elllllllhhhll'

IIIIIIIIIEIIEE

-. ~~~~
-. - - --------------~- - .:.

4.

L1.0.

L3.,2

IQ 6

NAINLBRA FSADII1963-A

92

however, we cannot express the notion of everything else staying the same, because our

meta-language is first-order, and we would have to quantity over those predicates.

So that we can state frame axioms more easily, we will adopt a notation where the meta.

language analogue of an object-language predicate is a function rather than a predicate.

We will analyze T(W,P(A)) as H(W,:P(D(WA))). This formula can be read as VP holds in W

for the denotation of A in W." The difference between P and &2 is that the argument of P is

an object-language description of an individual which has to be interpreted relative to a

possible world; the argument of sP is a meta-language description of the individual which is

independent of possible worlds. (This is similar to the difference between Eval and Apply in

LISP. When a function is Apply'ed its arguments have already been evaluated with respect

* to the relevant environment.) We can regard :P as function which maps an individual into

an intensional object which may or may not hold in a given possible world. The

interpretation is that :P(:A) holds in W, just in case :A has the property P in world W. H is

the meta-language predicate which expresses this relationship. The difference between H

and T is that TCW,P(A)) means that the object.language formula P(A) is true in the world W,

while H(W,:P(:A)) means that the individual :A has the property tP in W. That is. the latter

expression gives the semantic interpretation of the former.

If we use this notation the nonintensional atomic formulas of the object language are

analyzed in the meta-language as term expressions such as :P(:A)). Since these are terms, we

can quantify over them in our first-order meta-language and express the "everything else

remains the same clause in our frame axioms. This will be explained in more detail in the

4 qnext chapter. The basic idea here was first suggested by Kowalski (1974) as a modification

of McCarthy's situation calculus. The integration into the possible-worlds framework is

original.

4I Now we can state the interpretation axioms for object-language predicates. These

I

Up to this point we have left nonintensional atomic formulas unanalyzed. reasoning in

terms of meta-language expressions of the form T(W,P). In order to analyze object-language

predicates and terms we will need a few new tools. We have already introduced one of

these tools, the function D which maps a possible world and an object-language term into

the denotation of that term in that world. Using this function, the simplest method of

Interpreting object-language atomic formulas would be to introduce, for each n-ary object

language predicate, an n*l-ary meta-language predicate that took as its arguments the

possible world in which the object-language formula is to be evaluated and the denotations

in that world of the arguments of the object-language predicate. If we did this, then

T(W,P(A)) would be analyzed as something like :P(W,D(WA)). This treatment of predicates is

similar to that used by McCarthy (1963) (McCarthy and Hayes, 1969) in his situation

calculus.

This approach, however, creates problems when we try to formalize the effects of

actions. If we do things this way, when we axiomatize a particular action we will have to

say explicitly for each predicate, function, and constant how the action changes its extension.

That is, for each predicate we will have to say how what the predicate is true of after the

action is performed depends on what is true before the action is performed. Similarly, for

each function or constant we must say how the action might change the referent of any

*I terms that mention that function or constant. This problem was first pointed out by

McCarthy and Hayes (1969) and was called by them theframe pr0oem. We will call axioms

that describe the effects of actions frame axioms.

It has often been noted that most actions affect relatively few aspects of a situation, so

that the most concise formulation of the frame axioms for an action would be to explicitly

state what things do change and then add that "everything else stays the same." If we

follow the approach of translating object-language predicates into meta-language predicates.

93

axioms and the ones that follow formalize the convention that for most predicates,

functions, or constants in the object language, the corresponding construct in the meta-

language uses the same symbol preceded by a colon. L9a and L9b are axiom schemata.

where P can be any nonintensional atomic predicate in the object language.

,.. Lga1.9. Vwl trm! ,...,trmn(T(w ! ,P(trrnl,...,trrnn)) a Hlwl ,:P(O(wI trm|),. (wl trmn))))

if P is not an essential property of the things it is true of.

L9b. Vwl ,trml ,...,trmn(T(w ! ,P(trml ,...,Irmn)) a :P(D(wi ,trmI),..,O(w l trmn)))
if P is an essential property of the things it is true of.

L9a and L9b both say that an atomic formula is true if the corresponding relationship

holds among the referents of the terms in the formula. The distinction between an essential

and a non-essential property is that if an individual (or tuple of individuals) has an

essential property, It has that property In all possible worlds. A good example is the fact

that numbers are essentially numbers. That is, if some individual is a number, it is a

number regardless of what possible world it is In. It would make no sense to talk about a

possible world where the number five were, say, a chair. So the translation of object.

language expressions for essential properties into the meta-language requires no reference to

possible worlds. In this special case, the meta-language construct corresponding to an

object-language predicate is in fact a predicate. This Is the reason for the difference

between L9a and L9b.

Whether there are In fact such things as essential proptrties is a very controversial issue

in philosophy. The idea of essential properties originated with Aristotle, but by this

century the idea had fallen into general disrepute. For instance. Quine (1953) bases his

attack on quantified modal logic on the argument that such logics contain sentences whose

interpretation presupposes the existence of essential properties, which Quine takes to be an

Incomprehensible notion. With the advances in formal semantics for modal logic, however,

94

essentialism has regained a certain degree of respectability, with Kripke (1972) arguing

rather persuasively in its favor.

Whether or not we take essentialism seriously as a philosophical doctrine, it will be

convenient to identify those properties in any problem domain which are unchangeable.

We will sometimes treat certain predicates as being essential properties even if they are not,

when we are interested only in a subset of possible worlds wh~ere they do not change. In

the blocks world, we will consider being a block to be an essential property of all blocks, so
long as we don't consider any actions which change blocks into non-blocks or vice-versa,

and we are willing to assume that the robot knows of all blocks that they are blocks.

This last point is particularly important. If one of the knowers we are considering does

not know that some object exists, then that object cannot have any essential properties.

This Is because the object would have to have those properties in all the worlds compatible

with what that knower knows. The knower then would know that the object had these

properties, and would, therefore, know that the object exists. An alternative formulation of

the notion of essential properties would be to say that P is an essential property of A if A

has P In every world where A exists. This would require more complicated axioms,

however, and would not help in any of the examples we will consider, so we will stay with

the simpler formulation.

0 The next set of axioms specifies the translation of object-language terms into the meta-

language. LI I& and LIlb are axiom schemata where CMI may be any object-language

l . constant. L 12a and L12b are axiom schemata where F may be any object language

*1 function.

LIO. VWlx 1 (D(wl,t(xi)) - xl)

LI1a. Vwj (D(wj,Cnst) v V(w1,:Cnst)) if Cmt is not a rigid designator.

LI lb. VwI (D(wI,Clnt) a ste) If Clst is a rigid designator.

0

95

LI 2a. Vwl *rml,...,trmn(D(w F(trm l . Irmn)) • V(wI Fd (D(w ,trmI),...,(wItrmn))
if F is not a rigid function.

LI 2b. Vwl trml,...,trmn(D(w j F(trml , ...,trmn)) a FC(witrmI), A (wI ,trmn)))
if F is a rigid function.

Since *(xj) is a rigid designator for x1, its value is xI in every possible world. An

object-language constant which is not a rigid designator translates Into an intenslonal object

(like the intensional objects corresponding to predicates), which determines an individual in

each possible world. The function V maps a possible world and one of these intensional

objects into the corresponding individual. The reason for interpreting object-language

constants this way, as In the case of object.language predicates, is to be able to state frame

axioms more easily. The referent of a rigid designator does not depend on which possible

world it is evaluated in, so its translation into the meta-language Is simply a constant.

Similarly, non-rigid object-language functions translate into meta-language functions which

map tuples of individuals into intensional objects. Rigid object-language functions translate

into meta.language functions from tuples of individuals to individuals.

The final logical axiom in our system deals with equality:

LI 3. Ywl trmntrm2 (T(wI Eq(trm1 ,trm2)) w (D(w ,trml) " D(wltrm2)))

L I3 is a special case of L9b, where the meta-language interpretation of the object-language

predicate Eq is the known meta-language predicate a, rather than an undefined predicate

:Eq. Two object-language terms are equal in a possible world If they name the same

individual in that possible world. Note that since a does not depend on what possible world

it is applied in, we are assuming that being Identical to oneself is an essential property of

every individual.

It may be instructive to see how translation into the meta-language distinguishes

quantifiers which have different scopes with respect to the operator Know. In our current

='

96

formalism, the examples from section 2.5 of differing quantifier scopes would be expressed

as follows:

(1) True(Know(JohnExist(?X l ,And(Trans islor(?Xl),Burned-out(?X)))))

(2) Tru.(Exist(?X I ,A n d(Transistor(?X I),Know(JohnBurned-ou(?X)))))

Recall that (I) says that John knows there is a burned out transistor, while (2) says that

there is a transistor which John knows is burned ouL

*Applying the axioms we have just given will produce the following meta-language

translations for these two formulas:

a " (3) Vw1 (K:John,Wo0 w!) * 3x1 (H(w,:Trs nsistor(x1)) A H(wI ,:Burned-out(x1)))

(4) 3xl (H(WO,:Transistor(xj)) A Vwl (K(John,Wo,w 1) a H(wl,:Burned- out(xl))))

(3) says that in every world which is compatible with what John knows in the real world,

there is some transistor which is burned out. (4) says that there is some particular transistor

which is burned out in ,very world which is compatible with what John knows in the real

world.

With these axiomt we can also show formally how the fact that A knows that P(C) can

be derived from the fact that A knows that P(B) and A knows that 9 a C.

Given: True(Know(A,P(B)))
True(Know(A,Eq(BC)))

Prove: True(Know(A,P(C)))

1. True Know(A,P(B))) Given
2. T(Wo,Know(A,P(B))) LI,I
3. K(D(WOA),Wo,w I) a T(w1 ,P(B)) K1,2
4. K(V(W o ,:A),Wo,w I) a T(w1,P(B)) L Ia,3
5. True(Know(A,Eq(BC))) Given
6. T(WOKnow(AEq(B,C))) LI,5

il* 7. K(D(W 0 ,A),W0 ,wl) a T(w I ,Eq(B C)) Ki .6

al

97

8. K(V(W 0,:A),W 0,wl) a T(wI,Eq(BC)) L 1a,7
9. K(V(Wo,:A),Wo0 wj) Ass

10. T(wi,P(B)) 4,9

1i. H(w!,:P(D(w1 ,B))) LM,10

12. H(wl ,:P(V(wj,:B))) LIa,!I
13. T(w1 ,Eq(BC)) 8,9
14. D(wl,B) D(w1 ,C) LI3,13
15. V(wl,:B) V(w,C) LJla,14

16. H(wl,-P(V(wl,.C))) 12,15
17. H(w,:P(D(wI,C))) LI Ia,16

18. T(w1 ,P(C)) M,17
i-' 19. K(V(W0,:A),WWl) a T(w I ,P(C)) Dis(9,18)

20. K(D(WoA),Wo,w I) a T(wP (C)) Llla,19

21. T(WoKnow(A,P(C))) K1,20
22. Tru.(Know(A,P(C))) L1,21

A knows that P(B) (line 1). so P(B) is true in every world compatible with what A knows

(line 4). Similarly, since A knows that B c (line 5), B a C is true in every world compatible

with what A knows (line 8). Let w, be one of these worlds (line 9). P(B) and B a C must be

true in w I (lines 12 and 15). hence P(C) must be true in w, (line 16). Therefore, P(C) is true

in every world compatible with what A knows (line 19), so A knows that P(C) (line 22). If

Tru*(Eq(B,C)) were given instead of True(Know(A,Eq(B,C))), we would have had B w C true in

W0 instead of w1 . In that case, the substitution of C for B in P(B) (line 16) would not have

been valid, and we could not have concluded that A knows that P(C). This proof seems

I long because we have made each routine step a separate line. This is worth doing once to

illustrate all the formal details, but in subsequent proofs, we will combine some of the

routine steps to shorten the length of the derivation.

* Another good example of reasoning about equality and quantification in knowledge

contexts is to show formally that if A knows who B is and A knows who C is, then A must

know whether B a C. Recall that the modal formula that represents A knowing who B is. Is

4 3x(Know(A,(x - 8))).

4

96

Given: True(Exist(?X, lnow(A,Eq(?X I.B))))

True(Exist(?X ,Know(AEq(?XIC))))

Prove: True(And((Eq(BC) 0) Know(AEq(B,C))),(Not(Eq(BC)) a) Know(A,Nt(Eq(BC))))))

1. True(Exis(?X IKnow(A,Eq(?X IB)))) Given
2. T(WoExist(?X1 Know(AEq(?Xi.B)))) LI ,I
3. 3x, (T(Wo,Know(A,Eq(&(xl),B)))) L7.2
4. T(WoKnow(AEq(n(:B'),B))) 3
5. K(V(Wo,:A),W0,w !) * T(w i ,Eq(&(:B'),B)) KIL I 1 #4

6. True(Exist(TXI ,Know(AEqCTX1 ,CI))) Given

7. K(V(Wo,:A),Wow 1) a T(wi Eq(o(.C'),C)) LI.7,KII 1 as

Lines I - 7 translate the premises from the object language into the meta-language. letting

:8' be the Individual whom A knows to be the thing referred to by 8, and letting 1C be the

individual whom A knows to be the thing referred to by C. Some of the intermediate steps

have been suppressed.

8. T(Wo,Eq(m(:B'),B)) K2.5

9. DCW0,m:B')) a DCO0,B) L13,8

10. :6'• D(W0 ,B) L 0.9

Ii. :B' . V(Wo,:B) Lii ag0

12. T(WO0 ,Eq(v(.C'),C)) K2,7

13. :C' w V(Wo,:C) L13,LIO,Li l.,12

According to K2. the actual world must be compatible with what A knows, so B must denote

:9' in W0 (line II). A similar argument applies to C (lines 12 and IS).

The rest of the proof is divided into two cases; we show that if a a C, then A knows that

B a C, and if B i C. then A knows that B j C.

* 14. T(WO0 ,Eq(BC)) Ass
15. V(W0 ,:B) a V(WO0 ,:C) L13,ULl1,14

16. :3' a:C' 11,13,15

First we assume that B a C is true in the actual world (line 14). According to lines I I and

IS. this means that :9' and V' must be the same Individual (line 16).

- -

17. K(V(W 0,:A),W01w1) Ass
is. T(w1 ,Eq(m(:B'),B)) 5,17

J9. :13'a V(wi,:B) L3LO1&I
20. T~w1 ,Eq(&(:C'),C)) 7.17
21. .C' a V(w11:C) L I3,LI 0,LI 11a,20
22. V(w11:9) a V~w1,:C) 16,19,21
23. K(V(W 0,:A),W0,w1) = (V(wl,:B) aV(wl,-C)) Dis(17,22)
24. T(W01KnowCA,Eq(BC))) LI 1 &,L13,1(1,23
25. T(W01Eq(BC)) a T(W09Know(A,Eq(BC))) DisC 14,24)
26. T(W6(E(BC) a) KnowCAABC))) L4.25

We let WI be a typical world which Is compatible with what A knows (line 17). Therefore.

it must be true in w1 that B denotes :9 (ine 19) and C denotes :C' (line 21). Since, :B' and

-C' are the same individual. B and C have the same denotation In WI (line 22), so A must

know that B a C (line 24). Discharging the assumption. If B aC, then A knows that B *C

(line 26).

27. T(W0,Not(Eq(BC))) Asn
28. V(Wo,:B) i V(Wo,:C) L13,L I a,14
29. :B' i VC 11,13,21
30. K(V(W 0,:A),W0,wl) Ass
31. T(w1 ,Eq~v(:B'),B3)) 5,30
32. :13'a V(w1 ,:B) ,L 3,LI0,L I I a,31

34. VC a V(w1 ,:C) LI3.L10,LI Ia.33
35. V(wj,:B) i V(wj,:C) 29,32,34

*36. K(V(W 0,:A),W0,wl) *(Y(wl,:B) V(wl,1C)) Dis(30,35)
37. T(W01Know(A,Not(Eq(B,'C)))) L II aL I13,16,1(1,36
38. T(W 0,Not(Eq(l3,C))) a T(W0,Know(A,Not(Eq(BC)))) Dis(27,37)
39. T(W0,(NoI(Eq(B,C)) o) Know(A,Not(Eq(BC))))) L4.38
40. T(W0,And((Eq(B3,C) w) Know(A,Eq(8,C))), L2,26.39

(Not(Eq(BC) 0 Know(A,Not(Eq(9,C))))))
6 41. Tru.(And((Eq(BC) 0~ Know(A,Eq(BC))), 1.1,40

(Not(Eq(BC) o> Know(A,Not(Eq(BC))))))

In the second case, we assume that B 1f C (line 27). This means that tBl and :C' are not the

* same Individual (line 29). By an argument completely parallel to the first case, we conclude

- 100

that If 8 j C. then A knows that 8 C (line S9). Combining the two came gives the desired

final result (line 4!1).

, .- -- . .

101

5. A First-Order Theory of Knowledge and Action

5.1 Formalizing the Possible-World Semantics for Actions

In the preceding chapter we showed how to formalize in first-order logic the possible-

* •world semantics for knowledge. In this chapter we will extend that formalism to encompass

our Integrated theory of knowledge and action. We will begin by presenting a first-orr

treatment of the possible-world semantics for actions. In the rest of the chapter we

bring in the ideas about the interaction of knowledge and action presented in chapter S.

In chapter 3 we introduced the object-language modal operator Res which takes -

arguments a description of an event and a formula. The interpretation of RosEvP) being

true in W was that it is possible for the event described by Ev to occur in W and it it did. P

would be true in the resulting situation. By assuming that all events are deterministic, we

could express this in terms of possible worlds by saying that there is some world which is

the result of the event described by Ev happening in W and in which P is true. In our first.

order formalism this is represented as follows:

RI. VwI trm.evj,pl
(T(wi,Res(lrm.evpPl)) a 3w2(R(D(wltrm.vl),WlW 2) A T(w 2 ,P))

The only new notation introduced in this axiom is the variable trm.ev I which ranges over

object-language terms that denote events.

In chapter 3 we also noted that the events that we are interested in consist of agents
a

performing actions. We introduced an object-language function Do such that Do(A,Act)

names the event in which the agent described by A performs the action described by Act.

We decided to let Do be a rigid function, so that Do(A.Act) will be a rigid designator of an

event if A is a rigid designator of an agent and Act is a rigid designator of an action.

Hence, by axiom L12b, D(WD(AAct)) a zDo(D(WA),D(WAct)).

|

- ~~~~~~~~~~- .-' '- -.= . . .•...

102

We also Introduced several operators to construct complex actions out of simpler ones,;

for sequences, If for conditionals, and While for iterations. In chapter 3 we Informally

described how a possible-world semantics could be given for these complex actions directly.

Here, however, we will take a slightly different approach. The problem is that to apply an

axiom like R I to a formula containing a complex action description, we would have to

axiomatize what these action descriptions denote. That is, we vould have to define how the

function D behaves with respect to these operators. We cannot simply apply the L12 axioms

because these complex action descriptions must be interpreted intensionally. In particular, if

we have an action described as a sequence, any expression mentioned in a step of the

sequence must be interpreted relative to the situation in which that step of the sequence is

executed. For example, If we execute the sequence "(chop down the tallest tree; chop down

the tallest tree)", the trees refered to by the two instances of *the tallest tree" will be

different. The same sort of thing occurs in the interpretation of programming language

expressions, e.g., Ox <- X.I; X (- X.i). Here the interpretations of the two occurrences of X on

the right side of the assignment statements will be different.

So, the interpretation of complex action descriptions will not be trivial. In general, the

natural thing to take as the denotation of a complex action description in a situation W

would seem to be the particular sequence of simple actions that would result from executing

the complex description In W. Determining what that sequence is could require a complex

series of deductions and, if loops are involved, it may be undecidable. 411 we really want to

do for this thesis, however, is to be able to do some inferences about formulas in which a

complex action description appears as an argument to R,, Rosl, or Can. We have already

argued that Can has to be defined recursively in the object-language. If we look back at

section 3.2, we see that defining Can this way did not require talking about the denotation of

complex action descriptions. This suggests that we can avoid the problem altogether by

4

103

defining Res and Roil for complex actions in a similar way. Of course, this does not make

the theoretical problem go away. What it does do is allow us to confine our attention to the

specific problem we want to address, deducing formulas containing Res and Roil, without

having to deal with the general problem of what sequence of simple actions is denoted by a

complex action description. We should note, though, that the conceptual framework that we

have developed seems to be adequate for attacking this harder problem. It Is the

procedural difficulties of actually getting a system to do the deductions that we want to put

off for further research.

Taking these considerations into account, we will work with the following recursive

definition of Rem for sequences, conditionals, and iterations:

R2. Vw ljrm.a1 ,rm.att ,trm-act 2*Pl
(T(w1 ,R,,(Do(trm.aj ,(trm.act1; trm-act 2))-Pl))

(TCwj ,Ros(Do~trm.aj ,If(p1 ,trm.act1 ,trm-act2)),P2))
((T(W1 ,pl) A T(w1 ,Ros(Do(trun.a1 ,trm.actj)P2) v
(-T(wj pl A T(w1 ,Res (Do(trm.a1 ,trm-act 2)-P2)))))

CT(wj ,Ros(Do(trm.a1 ,Whilo(pj ,trm.actljP) a
T~w1 ,Res(Do(trm.aj ,lf(p1 ,(trm.act 1; While (pj ,rmact I)Nl),2)

R5. Vtrm.ajlwjw 2(R(0o(trm.aj,Nil),w1,w2) a (wl a w2))

R2 defines Res for a sequence of actions. A proposition p, Is true in the situation

resulting from the agent trn.a1 carrying out the sequence of actions (lrm.actl; trMaCt 2), just

in case p1 is true in the situation resulting from the agent trm.al carrying out the action

tlrm.ac 2 In the situation resulting from the agent Irma, carrying out the the action trm.eCtI.

The agent of the second action Is more precisely specified by *(D(wj ,rm.a 1)).' This

104

expression denotes a rigid designator for the referent of trm.al in w1. This makes sure

that the agent of the second action is the same as the agent of the first action, In cases the

referent of trm.a1 is changed by the first action.

RS defines Roe for a conditional action. A proposition p2 is true in the situation

resulting from the agent trm.a1 carrying out the conditional action lf(pl 1rm.g ,trm.sCt 2),

just in case p, is true and, in the situation resulting from the agent trm.a1 carrying out the

action trm.actl, P2 is true, or Pl is false and, in the situation resulting from the agent trmA

carrying out the action trm.ct2, P2 is true.

R4 defines Res for an iterated action. A proposition P2 is true in the situation resulting

from the agent trm.a1 carrying out the iterated action While(pltrm.actl) just in case P2 i

*true in the situation resulting from the agent trma1 carrying out the action lf~pI,(trm.tI1;

While(plj,trm.act)),Nil). That is, to carry out Whilep 1 ,trm.actl), an agent would repeat the

action trm.act I as long as pl remained true.

R5 defines the execution of the null action as the event which maps every situation into

itself. That is, the null action changes nothing. We introduce the action Nil merely to fill

out the unused branch of conditionals, as in R4.

We can give a set of axioms for Reel that parallel those for Res. Recall that Roll is a

weaker operator than Res in that to deduce Res(EvP) we must show that it is possible for Ev

to occur, while to deduce Reel (Ev,P) we need only show that if Ev does occur P will be true

in the resulting situation. We can express this as follows:

R6. VwI ,trm.ev I ,Pl

(T(w I ,Roil (trm.r.v IOI)) u Vw 2 (R(O(wl,trm.@v I),wlW 2) a T(w2 ,pI)))

Rol (Ev,P) is true in WI if. assuming W2 is the result of Ev happening in W1, P is true in

105

W2. We will not explicitly go through the axioms for sequences, conditionals, and iterations

for Resl. but we will simply note that they would be identical to R2 - R4. with Resl

substituted for Res.

While we want our formalism to be able to handle the problems of reasoning about

knowledge and action in as general a way as possible, there will obviously have to be special

axioms for particular actions. After all, what effect an action has on the world is a question

of physics, not logic. Still, our goal will be to put the minimum necessary amount of

information into the axioms for specific actions and to use general principles as much as

possible.

To illustrate how information about the physical effects of a specific action would be

represented in our system we will work out an example from the blocks world. Suppose we

have a table and.a number of blocks. Any number of blocks can be on the table, but only

one block can be on a given block. We will assume there is one agent in the world, called

Hand. which can move a block using the action Puton. if the block being moved has nothing

on it and the destination is either the table or another block with nothing on IL We will

give three axioms for Puton:

PI. Va ,xi ,x2 ,wI ,w2

(w 2 (R(:Do(a ,:Puton(x I ,x2)),w! ,w2)) a
4 ((:Block(x|) A Vx3 (-H(w l,:On(x3,x I))) A

((x 1 x2) A Vx3 (C4(wi,:On(x3 ,x2)))) v :Table(x2))))

P2. Va1 ,x! ,x2,w,w 2
(R(Do(a i,:Puton(xI ix 2),w I,w2) =

4 (H(w2 ,:On(xj,x2)) A Vx3 ((x2 i1 x3) * .,(w 2,)n(xlx 3)))))

P3. Va ,xI ,x2 ,wI ,w2

(R(:Do(ae ,:Puton(x I ,A2),wj ,w2) a
(Yint.trm I (V(wpinttrml) 6 V(w2,int.trmI)) A
Vint.p1 (Yx3(nt.pg 1 On(xl.x 3)) a ((wlint.p 1) * H(w2 ,tnt'pI)))))

4

106

P I gives the prerequisites for Puton. It is possible to put xon x2 just in case is a

block with nothing on it, and x2 is either a different block with nothing on it or is the table.

*Since we have made the meta-language predicates :Block and sTabl independent of any

reference to possible worlds, we are treating being a block or a being a table as essential

properties of blocks and tables. In the blocks world, this is enforced by the lack of any

actions which transform blocks and tables into anything else.

P2 and PS are frame axioms which describe the effect of of Puto. P2 says that in the

world resulting from putting x, on x2-N is on x2 and is not on anything else. P3 describes

what Puton does not change. In PS int.trmj is a variable which ranges over the intensional

objects corresponding to object-language terms, and int.p1 is a variable which ranges over

the intensional objects corresponding to object-language propositions. What PS asserts,

* then, is that Puton(xlx 2) does not change the extension of any of the basic functions or

relations of the language except what x, Is on.

PS illustrates the advantages of mapping object-language formulas and terms into

intensional objects In the meta-language as we discussed in section 4.S. To make effective

use of this axiom, though, we will have to have some knowledge built into the system about

what expressions for intensional objects are equal to each other. We will assume that two

terms which denote intensional objects and begin with : are equal only If they are the

same constant or are the same function with equal arguments. So tA will be implicitly

unequal to :B, and sOn(xlx 2) will be equal to :On(x 3 ,x4) only if x, is equal to x3 and x2 is

equal to x4. This allows us to use axioms like PS without having a large number of

inequality axioms for intensional objects.

An action still may affect a great many relations or functions, but usually we can

*Identify a relatively small number in terms of which the others can be defined. For

instance, Above could be defined in terms of On:

O_

b 7.

107

ABVI. Vw ,trm.x ,trm~X2
.-. (T(wI Above(trm.x I ,trm.x2))

(T(w1 ,On(trm,xI ,trm~x2)) v
3x3 (T(wI ,Abovo(trmxIl ,m(x3))) A T(wI Abvo((x 3),trnux2)))))

If we do not have intensional objects corresponding to propositions like Abovo(AB),

then we will be forced to use the definition ABV I, and we will not be in danger of using

PS to infer that Abovo(A,B) is still true after we move B. Most Al problem solving systems

have this technique embodied in their programs. What we have done here is to express it

formally.

By asserting that P I. PS apply to all possible worlds, we are claiming that they apply In

all situations in the actual course of events; i.e. they are true at all times. Furthermore, we

are claiming that all agents knowthat P I- PS apply to all situations, and all agents know

that all agents know that they apply to all situations, etc. In other words, the facts about

Puton are assumed to be common-knowledge.

We can use these axioms to do "program verification" for the blocks world. For

example, we can verify the solution to Sussman's (197S) "anomalous situation" problem.

Suppose that block A and block B are on the table, block C Is the only thing on A. and

nothing is on B or C. We can achieve A on B and B on C by putting C on the table,

putting B on C, and putting A on B. This is expressed formally by the following deduction

(See figure 5.1 for a diagram of the relevant situations):

Given: True(Block(A))
True(Block(B))
True(Block(C))

4 True(Table|Tbl))
True(On(A,Tbl))
Truo(On(B,Tbl))
Truo(On(C,A))
True(AIl(X,(Not(Eq(XC)) 0 Not(On(XA,))))
True(AIl(X,Not(On(X,B))))
True (All(X,Not(OnOX,C))))

Prove: True(Rs(Do(Hmnd,(Puton(C,Tbl); (Puton(BC)i Puton(A,B)))),And(OnCAB),On(B,C))))

I

: " A

100

0

b"IV,

0w

.o

CC

0A

.0

I-.

Figure 5.1 A typical blocks-world problem.

11"'ii II f

. * ... * * .
.7

7 71 .

109

1. :BlOCk(:A) GivenLI LgbLI Ib
2. :Block(:B) GivenU,L9b,Ll lb
3. :Block(:C) GivenL ,Lgb.L 11 b
4. :Table(:TbI) GivonL 1,L9bLI Ib
5. H(W01:.On(:A,:TbI)) GiveLI 1,L9aLI Ib
6. H(W0*:.On(:B,:Tbl)) Giv~nLIJ9aLII b
7. H(W0,:On(-C,:A)) GivenL 1.L9&,LI Ib
8. (x1 J -C) a "H(WO,t~n~xlA)) GivenLIL8,L4,L6,L I3,LlIO,L I I bLg
9. -H(W01a.Onxj,:B)) GivonLIL8L6,L9aLI 0,LI Ib
1 0. .'HCW,0n(xj 1.4)) GivenLI 1L&,L6,L9aL I 0,L. l Ib

These first ten lines merely translate the premises of the problem from the object language

to the meta-language. We are assuming that A, 0, C, and Tbl are the standard names for

the objects they refer to.

11. R(:Oo(:Hand,:Puton(.C,:TbI)),W0,Wl) 3,10,4,Pl
12. (Xj J :Tbi) a -H(W1,.0n(-Cx 1)) I lP2

13.Yx3 intpj 0nCx 3)) a ((W 0.int.p1) *HCW 1 intpI)) I1P
14. .-H(W1 ,sOn(tC,:A)) 12
I15. "H~W 1 ,:-OftlC,:B)) 12
16. --HCW1 :On(:C,-C)) 12
17. x, a:C Ass
18. -H(W1 ,:On(x1 ,:A)) 14,17
19. -H(W1 ,:On(x1 ,:B)) 15,17
20. -H(W1,.:On(x1 ,:C)) 16,17

24. x :CAss
25. -H(W0 ,:On(x1 ,:A)) 8,24
26. H(W0,:On(xj,x2)) a H(Wj,:.On~xjlx 2)) 13,24
27. 44H(W 1,:-On(x 1 ,:A)) 25,26
28. -N(W1 ,:On(x1 ,:9)) 9,26
29. -H(Wvsin(x1,,-C)) 10,26

32. (xl J :C) 0 -H(Wj,..On(xi,zC)) Ois(24.29)
33. -H(W1,:#On(xj ,:A)) 21,30

35. .'H(W1 ,sOn(xl,:C)) 23,32

110

Lines II - 35 take us through the execution of the first step of the plan. Since nothing

is on C and Tbl is a table, there is a possible situation which Is the outcome of putting C on

TbL We call this situation W, (line II). In W1, C is not on anything other than Tbl (line 12).

and everything besides C is where it was in the original situation, W0 (line 13). We

conclude that C is on neither A, B, or C in W1 (lines 14 - 15). In drawing these conclusions

we use an implicit rule that two standard names (e.g. A and Tbl) which are not Identical do

not have the same referent.

We then do some reasoning by cases. First we suppose that the variable x, equals C

(line 17). It follows immediately that x, is not on A, B, or C in W1 (lines 21 - 23). Next we

-"assume that x, is not equal to C (line 24). We can conclude that x, is not on A in W0 (line

25), and that x1 is the same place in W1 as in W0 (line 26). This means that x, is not on A,

8, or C in W, (lines 30- 32). Therefore, nothing is on A, B, or C in W, (lines 33 - 35).

36. R(:Do(:Hand,:Puton(:B,.C)),Wj ,W2) 2,3,34,35,P!
37. H(W2 ,:On(:B,:C)) 36,P2
38. (xI i :C) 0 -H(W2 ,:On:B,xl)) 36,P2
39. Vx3 (int.p I / :On(:B x3)) a (H(WI,int.pl) a H(W2 ,in.Pl)) 36,P3
40. -H(W2,:On(:B,=A)) 38
41. -H(W2,:On(:B,:B)) 38
42. x, a :B Ass
43. -H(W2,:On(xl ,:A)) 40,42
44. -H(W2,:On(xl,:B)) 41,42
45. (xj w :9) a -H(W2,:On(xl,:A)) Dis(42,43)
46. (XI N :8) :* -H|W2,:On(xl,:B)) Dit(42,44)

47. x, j :8 Ass
48. H(Wl,:On(xlx 2)) a HW2,:On(xlx 2)) 39,47

* 49. -H(W2,:On(xl,:A)) 33,48
50. -H(W2,:On(x1 ,:B)) 34,48
51. (x I :8) * -H(W2,:On(xl,:A)) Dis(47,49)
52. (x o :B) a-.H(W,.On(x|,:B)) Dis(47,50)
53. -H(W2,:On(xj ,:A)) 45,51

* 54. .H(W2 ,:On(xl,:B)) 45,52

0

~III

Lines 36 - 54 describe the execution of the second step. Since nothing is on B or C in

WI. it is possible to put B on C (line 36). In the outcome of this action, W2. B is on only C

(lines 37 - 38), and everything besides B is where it was in W, (line 39). In particular, B is

not on A or 8 (lines 40 - 41). As we did for C in W1. we reason by cases that nothing.

whether or not it is B, is on A or B in W2 (lines 42. 54).

55. R(:Do(:Hand,:Puton(:A,B)),W2 ,W3) i ,2,53,54,PI
56. H(W3 ,:On:A,:B)) 55,P2
57. Yx3 (int.pl J :On(:A,x3)) * (HW2,int.pl) H(W3,nl.pI)) 55,P3
58. H(W2 ,:On(:B,x2)) * H(W3,:On(:Bx 2))) 57
59. H(W3 ,:On(:B,:C)) 37,58
60. T(W3,And(On(A,B),On(B,C))) 56,59,L2,L9a,LI I b
61. R(D(W 2 ,Do(Hand,Puton(A,B))),W 2 ,W3) 55,L II bL I 2b
62. T(W2,Res(Do(Hand,Puon(A,B)),AndOnA,B),On(BC)))) 55,61 ,RI
63. R(D(W 1 ,Do(Hand,Pulon(BC))),W I W2) 36,L II b,LI 2b
64. T(W2 ,Res(Do(Hand,Puton(BC)), 62,63,RI

Res(Do(Hand,Puton(A,B)),AndOn(A,B),On(BC)))))
65. T(W2,Res(Do(Hand,(Puton(B,C); Puton(A,B))), 64,R2

And(On(A,B),On(8,C))))
66. R(W(Wo,Do(Hand,Puton(CTbl))),Wo,W 1) 11,1.1 1bL[2b
67. T(Wo,Res (Do(Hand,Puton(C,Tbl)), 65.66,R1

Res(Do(Hand,(Puton(9,C) Puton(A,9))),And(On(A,B),On(BC)))))
68. T(WoRes(Do(Hand,(Puton(C,Tbl)1 (Puton(B,C); Puton(A,B)))), 67,R2

And(On (A,B),On(B,C))))
69. True(Res(Do(Hand,(Puton(C,Tbl); (Puton(B,C); Puton(A,B)))), 681.1

And(On(A,B),On(B,C))))

Now we consider the final step. Since nothing is on A or B in W2. it is possible to put A

on B. bringing about W3 (line 55). We know that In this situation. A is on B (line 56). and

everything else Is where it was before (line 57). In particular, 8 is where it was before (line

58), on C (line 59). At this point we are essentially done. All that remains is to translate

our results back into the object language (lines 60 - 69).

This example shows that we can express the usual Al approach to actions in a rigorous

possible-world formalism. In the rest of this chapter we will show how to formalize the

interactions between knowledge and action within the same framework.

112

5.2 Formalizing the Dependence of Action on Knowledge

In section 3.2 we discussed the ways in which being able to act effectively depends on

. knowledge. The conclusion we reached was that in general it is not neccessary to regard

particular actions as having knowledge preconditions, but that using any action to achieve a

goal requires knowing what action to take. To formalize this idea we introduced the modal

operator Can(AAct,P) to mean that the agent denoted by A can use the action described by

Act to achieve P. in the sense that A knows how to achieve P by performing Act. In section

4.1 we argued that the most natural way to specify Can formally Is by a recursive definition

in terms of object-language expressions. That definition is given by axioms Ci -C4:

CI. Vw3 ,trm.a ,trm.act I Pl I
(T(wj ,Know(trm.a1 ,And(Eq(l(D(wl ,trm.act1)),trm.actl),*Res(Do(a(D(wj ,Irma3)),trm.act!),Pi)))) =

T(w1 ,Can(trm.al ,trm.actI ,pj)))

C2. Vw! ,trm.a& ,trm.act IJ ,trm.act 2,p1

(T(w1 ,Can(trm.a ,(trm.ct Ij; trm.act 2),P))
T(w1 ,Can(trm.a1 ,trm.actj ,Can(U(O(w ,Itrm.aj)),trm.act2 ,pj))))

C3. Yw1 ,trm.a1 ,trm.actj,trm.sct 2,pi P2

CT(w 1 ,Can(trm.aj ,If(pl ,trm.actl ,trm.act2),p2)) a
((T(w 1 ,Know(trm%.& ,p l)) A T(w1 ,Can(trm.nl ,trm.act i P2))) v
(T(wI ,Know(trm.as ,Not(p I))) A T(wi .Can(trm.al ,trm.act2 ,p2)))))

C4. Vwj ,trm.a1 ,trm.actl ,p 2 ,2
(T(wi ,Can(trm.aj ,While(pl ,trm.act i),P2)) •

T(w1 ,Can(trm.J ,If(pt ,(Irm.ctl; While(pj ,tr.act I)),Ni),p2)))

C I says that the agent named by trm.a1 can achieve p, by doing the action named by
4

trm.act, if he knows what action trm.act, names and knows that if he does the action

named by trm.iact i , P will result. The first of these conditions Is expressed by saying that

there is a rigid designator (an executable description) for an action which the agent knows

I

"II$

describes the same action as trm.act1 . C2 says that the agent named by Irm.al can achieve

Pl by doing the sequence of actions (trm.actl; trm.Kt 2). just in case by doing trm.uct i . he can

achieve a state where by doing trm.act 2, he can achieve P.

CI and C2 together imply that in performing a sequence of actions, an agent is not

required to know precisely what is to be done in the second part of the sequence until the

first part has been carried out. He does have to know some description of the second part

of the sequence, but not an executable description. This will allow for sequences of actions

in which the early stages are actions that gather information to find out what to do in the

later stages. In both these axioms trm.al is converted to a rigid designator to guarantee that

the agent knows that he is the one who is able to achieve the result described.

CS says that the agent Irma can achieve P2 by doing lf(pltvm.&ctllrtm.at 2). just in case

he knows that Pl is true and he can achieve P2 by doing trm.act 1, or he knows that p, is

false and he can achieve P2 by doing trm.act 2. C4 says that the agent Irm.a1 can achieve P2

by doing While(p,trm.actl), just in case he can achieve P2 by doing trm.act, as long as P,

remains true.

We will illustrate the use of the operator Can with the sample problems from chapter I

about opening safes. First, we need some facts about dialing combinations:

Di. Val,xl,2,wl
(3w2(R(:Do(aj ,:Dial(xl ,x2)),w ,w2))

(3w3(xl a V(w3,:Comb(x 2))) A :SaI.(x 2) A H(w1,*At(alX 2))))

D2. Va! x I ,x2,wI,w2
R(:Do(a ,:Diml(I x2)),w ,w2) 2

(((xj n V(wI ,:Comb(x2))) =* H(w2,:-OPen(x2))) A

(((x I i V(wj,:Comb(x2))) A .H(wI ,:Opan(x2))) a .H(w2,..Open(x 2))) A
(Hwp~tOpen(x2)) =* H~w2,:OFen(x2)))))

We will let the action Dial refer to the entire sequence of turning the dial of the safe and

114

then attempting to turn the handle and open the safe. DI says that an agent can dial xi on

K2 if it is possible for x, to be the combination of x2, and x2 is a safe, and the agent is at

the same place as the safe. D2 tells how dialing a combination affects whether the safe is

open: if the combination is the combination of the safe, then the safe will be open; if it is

not the combination of the safe and the safe was locked, the safe stays locked; if the safe

was already open. it stays open. Notice that we have asserted that these facts are true in all

possible worlds. This is lets us infer that they are always true, everyone knows that they are

always true, everyone knows that everyone knows that they are always true. etc.

Besides the axioms for Dial, we will need one additional fact in order to work out our

.examples:

, ~~~At. Vw I,a Ix I(H(w I,:At(&l xl)) aP Vw2(K(a Ilww) aP H(w2,:At(al I))))

A I says that when an agent Is at the same place as'some object, he knows that he is at

the same place as the object. This is not really true, of course; the object may be hidden so

that the person doesn't know that it is there. We justify our use of A I in our examples by

the observation that If a person were asked under what conditions it is possible to open a

safe, he probably would not consider the possibility that the agent might be at the location

of the safe and not know it. Actually, dealing with all the unlikely ways in which a plan

0 might fail (dubbed the qualification problem by McCarthy (1977)) is a very serious problem

in Al for which no one seems to have a good solution, and it is beyond the scope of this

thesis to find one.

Our main example to illustrate the use of Can is to show that if John knows the

combination to the safe S 1, and he Is in the same place as Sf1, then he can open the safe

by dialing the combination. The interesting point is that knowing the combination of the

safe comes in, not as a specific precondition of the action, but as a way of satisfying the

general conditions on Can. The possible-world structure for this proof is pictured in figure

5.2.

Given: True(Safe(Sf 1))
True (At (John,Sf I))
True(Exist(?X 1 ,Know(John,Eq(?X1 ,Comb(Sf 1)))))

Prove: True(Can(John,Dial(Comb(Sfj),Sf1),Open(Sf 1)))

1. :aoSI)Given,L I ,Lgb,L I I b

2. H(Wo,:At(:John,:Sf I)) Given, 1 ,19a,L1 lIb
3. 3x, (TCW,Know(John,Eq(u(x 1),Comb(Sf l))))) Givon,L1I,L7
4. T(W01Know(John,Eq(m(:C)Comb(S 1 M)) 3
5. K(D(WO~hn),W01w1) * T(w1 ,Eq(V(:C),Comb(Sf 1))) 4,1(1
6. K(:JohnW 01w) = (D(w1,o(:C)) a O(w1,Comb(Sf 1)) 5,LllIbL13
7. K(:JohnW 0,w) = (:C a V(wl,:Comb(:Sfj)IM 6,L1I0,11I2al l Ib

9. :C a V(W 0,:Comb(:Sf I)) 7.1K2
10. K(:John,W 0,wi) Ass
11. XC m V(wi,:Comnb(:Sf 1)) 7.10
12. V(W0,:Comb(:Sf 1)) a V(w ,:Comb(:Sf 1)) 9.11
13. :Dial (V (W09:Comb(:Sf I)),:Sf 1) a :Dial(VMw 1 ,:Comb(:Sf I)).:Sf 1) 12
14. D(W0OiaICComb(Sf 1),St 1)) m D(w1 ,Dial(Comb(Sfj),Sf 1)) 1 3,L I I b,L 12&
15. D(w1 ,m(D(W 0*DiaI(Comb(Sfj),Sf1)))) a D(w1 ,Diat(Comb(Sfj),Sf1)) I 4,L1 0
16. T(wj ,Eq(m(D(W 0,DiaI (Comb(Sfj),S11))),Oiat(Comb(Sfj),Sf1))) 1 5,113
17. H(w1 ,:At(:John,:Sf1)) 8.10
18. R:Do(:John,:DiaI(V(w1 ,:Comb(:Sf 1)),:Sfj)),wI NO2 1.17.01
19. H(W2,:Open(:Sf 1)) 18,02
20. T(W2*Open(Sfj)) 19,11 1b.19a
21. R(:Do(D(W 0,John),:DiaI (Y(wj,:Comnb(:Sfj)),:Sfj),wl IWO 18,111I b
22. R(:Do(D(w 1 ,u(O(W0,John))),:0,al(V(w1 ,:Comb(:Sf 1 f,:S 1)).W 1 W2)2 1 ,LI 0
23. T (w1 ,Res (DOR(D (W0,John)),DiaI (Comb(Sfj),Sf 1)),Open(Sf~ IM 22,111 b,LlI2a,I 2bR 1
24. T~wj ,And(Eq(Q(D(W0,Dial(Comnb(Sf 1),Sf1))),Dial(Comb(S11),Sf1)), 16,2342

Res (o(m ((W*John)),Dia (Comnb(Sf 1),Sf 1)),Opon(Sf1)))
25. K(:John.Wow 1 a Dis(I 0.24)

4 T(w1 ,And(Eq(O(D(W 0 ,Dial(Comb(Sf 1),Sf 1))),DiaI(Comb(Sf 1),Sf 1)),
Ros(Do(m(D(W 0,John)),Dial(Comnb(Sf 1),Sf 1)),Open(Sf 1))))

26. T(W0,Know(John, 25,11 I b,K I
AndC(Eq(&(D(W 0 ,DialC(Comb(Sf 1).Sf I)%)DialI(Comb(Sf1),Sf 1)),

Res(Do(g(D(W0,John)),Dial(Comb(Sf 1),Sf1)LOenS1)))
27. T(W0,Can(John,DiaI(Comb(Sf 1),Sf1),Opon(Sf 1)) 26,CI
28. True(Can(John.Dial(Comb(Sf 1),S11),Open(S11 M) 27,UI

4A

116

OPEN 0S1)

W2

0

)KJohn

WO Wl

Figure 5.2 "John can open Sf1 by dialing Comb(Sfj)."

Line I translates into the meta-language the premise that Sf1 is a safe, and line 2

translates the premise that John is at the same place as the safe. The third premise. that

John knows the combination to the safe, is handled by lines $ - 7. We have stretched out

the translation of this premise into the meta.language to expose the details of how the

existential quantifier is handled. There is something which John knows to be the

combination of the safe, and we choose to call that thing :C (line 4). Since John is at the

same place as the safe, we conclude that he knows he is at the same place as the safe (line

8). Since John knows :C to be the combination of the safe. :C must, In fact, be the

combination to the safe (line 9).

To make deductions about what John knows, we let w I be a typical world which is

-p
possible according to what John knows (line 10). Since John knows that IC is the

I

117

combination of the safe, C is the combination of the safe in wl (line 11). Therefore, the

combination of the safe In wl is the same as the combination of the safe in the actual

world, W0 (line 12). and the action of dialing the combination of the safe in wl is the same

as the action of dialing the combination of the safe in W0 (line 16).

Since John is at the same place as the safe in wl (line 17), and since the combination of

the safe is a is a possible combination, it is possible for John to dial the combination of the

safe in w, (line 18). We will call the resulting situation W2. Since the combination dialed

is, in fact, the combination of the safe in w1, the safe is open in W2 (line 19). So. John

dialing the combination of the safe in w1 would result in the safe being open (lines 20 - 23).

Translating everything back into the object language, John knows which action dialing the

combination of the safe is, and he knows that dialing the combination of the safe will result

in the safe being open (lines 24 - 26). Therefore, John can open the safe by dialing the

combination (lines 27 and 28).

The major point of this example is that In deducing that John can open the safe, we

did not have as an explicit piece of knowledge the fact that knowing the combination is one

of the requirements for opening a safe. Instead we used a much more general piece of

knowledge, the fact that in order to achieve any goal it is necessary to have an executable

description of a procedure that causes the goal to be satisfied. In this case, the combination

of the safe is part of the executable description of the procedure for opening safes.

In this section we have looked at how the possibility of taking effective action depends

on having the right knowledge. In the next section we will examine how actions can affect

what an agent knows.

Ildm m - m rm + a l ki1 t• "

"" 118

5.3 Formalizing the Effects of Action on Knowledge

In section 3.3 we explained how our theory handles the effects of an action on the

knowledge of the agent. The basic idea was to represent these effects by a pattern of

accessibility relationships among various possible worlds. We distinguished actions on the

basis of whether or not they are knowledge-producing, a knowledge-producing action being

one where after performing the action the agent would know more about the resulting

situation than he did before performing the action. We showed how to account for this

distinction in terms of the possible.world semantics for knowledge and action.

The formalism that we have now developed is adequate to capture the effects on

knowledge of both types of actions. As an example of an action which is not knowledge-

producing, we can use the blocks world operation Puton that we formalized in section 5.1.

We can extend our formalization of Puton to include its effect on the knowledge of the agent

by adding the following axiom to those we have already given:

P4. V&aI ,x1 ,x2 ,wI,w2
(R(:Do(I 1 ,Rul0o I x2)),w i ,w2) a

Vw3 (K(al ,w2,w3) @ 3w4(K(aI ,wiw 4) A R(:oO(al,:Puton(xl .x2)),w4 ,w3))))

P4 says that if w2 is the situation which results from &I putting xi on x2 in w1 , then the

6 worlds which are compatible with what I knows in w2 are exactly those worlds (w3) which

are the result of &1 puting x, on x2 in one of the worlds (w4) which are compatible with

what a1 knows in w1. This is exactly the situation that was illustrated by figure 3.2. We

can think of a, puting x, on x2 as having the effect of filtering out from the courses of

events compatible with what &I knows in wl all those in which some other event occurs at

that point in time.

Using P4. we can show that after performing Puton(A,B), an agent would know that A is

11

119

on B. In this example we will not be interested in showing that the agent is able to put A

on B. so we will use the weak modal operator for actions Rel.

"[* Prove: True(Rosl (Do(Hand,Puton(A,B)),Know(HandOn(AB))))

1. R(:Do(:Hand,:Puton(:A,:B)),Wo0 wl) Ass
2. K(:Hand,wl,w 2) Ass
3. 3w3 (K(:Hand,W O,w3) A R(&Do(sHand,:Puton(:A,sB)),w 3 ,w2)) 1,2,P4
4. R(:Do(:Hand,:Pulon(:A,:B)),W3 ,w2) 3
5. H(w2 ,:On(:A,:B)) 4,P2
6. T(w2 ,0n(A,9)) SL9,LI Ib,LI2b
7. K(:Hand,w l ,w2) o T(w2,0n(A,B)) Dis(2,6)
S. T(W1 ,Know(HandOn(A,B))) 7,LI Ib,K1
9. R(:Do(:Hand,:Puton(:A,.B)),Wo,w i) * T(Wl,Know(HandOn (A,B))) Dis(l A)

10. T(Wo,Rosl (Do(Hand,Pulon(A,O)),Know(HandOn(A,B)))) 9,LI I b,LI 2bR6
11. True(ResI (Do(Hand,Puton(A,B)),Know(HandOn(A,B)))) 10,11

We start by assuming that w, is the world which results from Hand putting A on B in

W0 (line I). Notice that we are assuming that Hand, A, and B are all rigid designators. The

assumption that Hand is a rigid designator is merely a convenience. A and 8. on the other

hand, must be rigid designators for the conclusion to be valid in the exact form that it is

stated. If A and B were not rigid designators, Hand might not recognize them as referring to

the objects he acted upon, so we would have to substitute something like.

Exist(?X1 ,And(Eq(?X1 ,A),Exist(?X2,And(Eq(?X 2,B),Know(Hand(On(?Xj ,?X2)))))))

for Know(Hand,OnCA,B)) in the conclusion. This would make the proof longer, but not really

any harder.

We let w2 be a typical world which is possible according to what Hand knows in w1 . P4

implies that w2 must be the result of Hand putting A on B In some other world, say W3 (line

4). So, A must be on B in w2 (lines 5 - 6); hence In wl, Hand knows that A is on 8 (lines 7 -

8). This leads to the conclusion that In the result of putting A on B, Hand knows that A is

!

120

on 9 (lines 9 - I1). At a very general level, the argument of this proof Is that Hand knows

that he has put A on B. and he understands the effects of putting A on B. so he must know

that A is on B.

The analysis we presented for knowledge-producing actions is similar to that for actions

that are not knowledge-producing except that we also take into account the knowledge

gained. We can use the action Dial from the previous section as an example of knowledge.

tg producing action if we assume that after trying to open a safe by dialing a combination the

agent knows whether he has succeeded. This can be a genuine increase In his knowledge.

since he might not know beforehand whether he would succeed. We can express this fact

by adding D3 to our axioms for Dial:

03. Va I,x I x2,w Iw 2
(R(:Do(a 1 ,Dial(x ,"2)),wI w2) a

Vw3 (K(al ,w2 ,w3) @ (((w 2,:Opon(x 2)) 5 H(w3 ,:Op*n(x 2))) A
3w4 (K(a8 ,w1 ,w4) A R(:Do(a1 ,:Dialix i ,x2)),w4,w3)))))

D3 describes how dialing affects the knowledge of the dialer. Roughly it says that the

agent knows he has done the dialing, and he now knows whether the safe is open. More

.precisely, it says that the worlds that are now possible as far as he knows are exactly those

which are the result of doing the action in some world which was previously possible

*O according to what he knew, and which agree with the world which actually results from

trying to open .the safe as to whether the safe is open. This is the type of situation that was

pictured in figure 3.3.

*1 We can show that this axiom implies that after trying to open a safe an agent would

know whether the safe were open:

Given: Truo(Rs(Do(JohnDial(C i ,SfI)),Open(SfI)))

Prove: True(Res(Co(JohnDial(C 1 ,SfI)),Know(JohnOpen(Sf 1))))

I l . - - . . -

r--I~~~~. . --

K 121

1. T(Wo,Ros(Do(John,Oial(C l ,Sf I)),Open{Sf I))) GivonL

2. 3w (R(:o(:ohn,:Diil(:Cl,tSf 1)),WoWl) A H(wl,tOpen(tSf1)) I ,RI Li I b,l1 2bl.o
3. R(:Do(:John,:Dial(:Cl,:Sfl)),Wo,W 1) 2
4. H(Wj ,:Open(:Sf 1)) 2
S. K(:John,W 1,w2) Ass
6. H(W1 ,:Opon(:SfI)) a H(w2 ,:Open(:Sf 1)) 3,5,D3
7. H(w2 ,:Op.n(:Sf)) 4,6
8. T(w 2,Open(Sf 1)) 7,LI I b,L9a
9. K(:JohnW I ,w2) = T(w 2 ,0pon(StI)) Dis(S,8)

10. T(W l ,Know(JohnOpe n(S f I))) 9,U I b,K1
11. T(Wo,Res(Do(John,Dial(Cl,Sf l)),Know(JohnOpen(Sf)))) 3,L IbLI 2b, O.Rl
12. True(Res(Do(JohnDial(C I 1 Sf)),Know(JohnOpen(SIM)))) I 1,L

In the first case, we assume that John dialing the combination C, on the safe Sf1 results

4 in the safe being open. Line 2 translates this premise into the meta-language. For the same

reasons as in the previous example, we assume that John, Cl, and SI1 are rigid designators.

We let W, be the world which results from John trying to open SfI (line S), so the safe is

open in W, (line 4). We let w2 be a typical world which is possible according to what John

knows in WI (line 5). DS implies that w2 must agree with W, as to whether the safe is open

(line 6). so the safe must be open in w2 (lines 7. 8). Therefore, in W, John knows that the

safe is open (lines 9. 10), so after trying to open the safe, John knows that the safe is open

(lines II - 12).

Given: True (Res(Do(John,Dial (C ,Sfl)),Not(Open(Sf 1))))

Prove: True(Res(Do(John,Dial(CI.s fi)),Know(JohnNot(Open(St1)))))

I. T(Wo,Res(Do(John,Dial(Cj ,Sft)),Not(Opn(Sf I)))) Given,L
2. 3w , (R(:Do(:John,:Dial(:Ci ,:Sf)),Wo0 wl) A ..H(w l,"Open(:Sfl)) I ,R I ,L 11 b, 12b,L geL9e
3. R(:Do(:John,:Dial(:C1 ,:S11)),Wo,W 1) 2
4. .H(W1 ,:Open(:Sf 1)) 2
S. K(:John,WI ,w2) Ass
6. H(Wl ,:Open(:Sf I)) a H(w2,:Open(:Sf l)) 3,5,03

4 7. "H(w2,:Open(:Sf 1)) 4,6
8. T(w 2 ,Not(Open(Sf 1))) 7.11 b,L9aL6

4J

122

9. K(:John,W1 ,w2) a T(w2 ,Nol(Open(Sf 1))) Dis(SA)
10. T(W 1 ,Know(John,Not(Open(Sf)))) 9,LI I bK1
11. T(W 0,Res(Do(JohnDial(C I SI)),Know(JohnNot(Open(Sf1))))) 3,LII bLI. 2b,IORI
12. True(R@s(Do(JohnDial(Cj ,Si)),Know(John,Not(OpenSf 1))))) 1I I,

The proof of the second case is identical in form to the proof of the first case. This

time we are given that the safe is not open in the result of John trying to open it. so the

safe is not open in W, (line 4). This in turn Implies that the safe is not open in w2 (line 7),

so after trying to open the safe, John knows that the safe is not open (line 12).

A more interesting example is the second of our benchmark problems from chapter :

showing that after trying to open the safe Sf1 . which he knows to be locked, by dialing C1.

*John would know whether C1 is the combination of SfI. This proof depends on the facts

that after trying to open the safe, John knows that he tried to open the safe, he knows

whether the safe is open, and he understands how the safe being open depends on whether

, .the combination he dialed is the combination of the safe. In addition, John must know that

trying to open the safe does not change the combination. To show this we need an

additional frame axiom for Dial:

D4. Ya 1 ,xl,x 2,w,w 2
(R(:Do(&I ,:Dial(x I ,x2)),w I w2) a)

(Yint.trm1 CV(wpinl.trmn) a V(w2 ,int.trmr)) A
:4 Yini'p ((int'pl j Open(x2)) * (H(wpint.pl) a H(w2 ,int.pl)))))

D4 says that Dial doesn't affect any basic function or relation other than whether the safe is

open. Therefore Dial does not change the combination of the safe.

We will divide the proof into two cases, according to whether or not C, Is the

combination of SfI1. The structure of the possible worlds mentioned in the proof of the first

case is illustrated in figure 5..

I

12S

K:Johfl
OPEN (Sf1) OPEN (Sf1)

Wi W2

0 0

0 0

-1 OPEN (Sf1) 1OPEN(Sfi)

wo w3

Figure 5.3 "C1 is the combination of Sf1 ."

Given: True(Know(John,Not(Open(Sf I))))

True (Eq(Cj Comb(9f IM)

Provo: True(Resl (Do(JohnDiaI(C1 ,Sf1)),Know(johnCq(CI .Cmb(Sfj)))))

1. K(:John,W0,wl) m -H(wj,-:Opon(:Sfj)) GivonLI.K1.L4,LgaLI lb

2. X,1 a V(W 0,:.Comb(:Sfl)) Given,L IL I3,LI IbL 2b

3. R(:Do(:John,:DiaI(:.C1 ,:Sf)),W0,wl) Ass

4. H(wj ,:Opon(:Sf 1)) 3.2.02
5. K(:Johnwjw 2) Ass

6. H(wj ,:Open(:Sf 1)) * H(w2*:.Open(Sf 1)) 3,5,03
7. H(w2,:Opon(:-Sf 1)) 4,6

a. 3w3(K(:JohnW 01w3) A R(Do(aohn,:Diat(:C1 ,:Sfj)),w39w2)) 3,5,D3
9. K(:JohnW 0,W3) 8

10. -H(W3,.:Opn(Sfj)) 119
11. R(:Do(:John,:DiaI(C,:Sf 1))W3 1v2)a

124

12. ((:C I i V(W3 ,:Comb(:Sf)))A -4iCW 3 tOpon(Sf 1))) , 11,02
"H(w2 ,:Open(:Sf 1))

13. (:C1 u V(W3,:Comb(:Sfl))) v H(W3 ,Omn(Sf 1)) 7,12
14. tC1 V(W3 ,:Comb(:$Sl)) 10,13
15. V(W3 ,:Comb(:Sf I)) a V(w2,:Comb(:Sfj)) 11 j)4
16. :CI - V(w 2 ,:Comb(:Sf 1)) 14,15
17. T(w 2 ,Eq(CI,COmb(Sfi))) 16,LI lb,L 2bL13
18. K(:John,w I ,w2) T(w2 ,Eq(C I ,Comb(SfI))) Dis(O7)
19. T(w ,lKnow(John,Eq(C i ,Comb(Sf I)))) 18,LI 1bKl
20. R(:Oo(:John,:ODial(:C I , :S fI M)Wo~w I) MOOs(,1)

T(wi ,Know(John,Eq(C l ,Comb(Sf1))))
21. T(Wo,Res1 (Do(John,Dial(C 1 ,S 1)),KnOw(John,Eq(Cl ,Comb(Sf 1))))) 20.1 Ib,LI 2bR6
22. True(Res1 (Do(JohnDial(Cj ,Sf1)),Know(JohnEq(Cj ,Comb(Sf I))))) 21 iI

Lines I and 2 translate into the meta.language the premises that John knows the safe Is

locked and that C1 is the combination to 1he safe. We let wI be the result of John trying to

open the safe in W0 (line 3). Since C1 is the combination to the safe, the safe will be open

in w, (line 4). We then let w2 be a typical world which Is possible according to what John

knows in wI (line 5). D3 Implies that w2 must agree with W1 as to whether the safe is open

. (line 6), so the safe must be open in w2 (line 7). DS also implies that w2 must be the result

John trying to open the safe in some world, say W3 , which is possible according to what

John knows in W0 (lines 8. 9,11). Since in W0 , John knows that the safe is locked, the safe

must be locked In W3 (line 10). But according to D2, If C1 were not the combination of the

safe in W3 , since the safe is locked in W3, the safe would still be locked in w2 (line 12).

Since the safe is open in w2, C1 must be the combination of the safe in W3 (lines IS - 14).

* Since trying to open a safe does not change the combination (line 15), C1 is still the

combination of the safe is w2 (lines 16 - 17). Therefore, in wl John knows that C1 is the

combination of the safe (lines 18- 19), i.e., after trying to open the safe John knows that C1

Is the combination of the safe (lines 20 - 22).

w

125

Given: True(Know(JohnNot(Open(Sf 1))))

True(Not(Eq(C ,Comb(Sf I))))

Prove: TrueCRei (oo(johnOial(Cj ,Sf|)),Know(ohn,NOt(Eq(C l ,Comb(Sfj))))))

I. K(:John,Wo,wI) * -H(wl,"Open(:Sfl)) Givon,LI,K IL4,L9aL I b

2. :C i V(Wo,:Comb(:Sf 1)) Given,Ll,L6,L13,Ll b,Ll2b
3. .H(Wo,:Open(:Sf 1)) IK2

4. R(:Do(:john,:Dial(:C1 ,:Sf1)),Wo0 wj) Ass
5. .,H(w l ,:Open(:Sf 1)) 4,2,3,A2
6. K(:John,w1 ,w2) Ass
7. H(wI ,:Open(:Sf I)) a H(w2 .Open(SfI)) 4,6,D3

a. "H(w2,:Open(:Sf 1)) 5,7
9. 3w3 (K(:John,Wo,w3) A R(Do(:John,sDial(s ,:Sf i)),w 3 ,w2))4,6,D3

10. R(:o(:John,:Dial(:Cj ,:Sf1)),W3 ,w2) 9
11. (:C I a V(W 3 ,:Comb(:Sf 1))) a H(w2,.Open(:Sf1)) 10,02
12. :Cl i V(W3 ,:Comb(:Sf I)) 8,11
13. V(W3 ,:Comb(:Sf 1)) - V(w2 ,:Comb(:Sf 1)) 10,04
14. :CI i V(w 2,:Comb(:Sfj)) 12,13
15. T(w 2,Not(Eq(C ,Comb(Sfj)))) 14,L I b,Ll 2b,Ll 3,X6
16. K(:John,wj ,w2) * T(w 2,Not(Eq(Ci ,Comb(Sf I)))) Dis(6,1 5)
17. T(w1 ,Know(JohnNot(Eq(C 1 ,Comb(Sfl))))) I6,L I b,KI

p,. - i 18. R (:Do (:John,:Dial (:ClI,:-Sfli)),Wowli) = Dis(4,17)

T(w 1 ,Know(John,Not(Eq(C 1 iComb(Sfl)))))
19. T(WoRes] (Do(John,Dial(Ci ,Sf1)), 1 8,L II b,LI 2b,R6

Know (John,Not (Eq (C1 ,Comb (Sfj)))))
20. True(Resl (Do(John,Dial(C3 ,Sfl)), 19,L

Know(John,Not (Eq(C 1 ,Comb(Sfj))))))

The second case is proved very much like the firSt. Figure 5.4 gives the possible-world

structure for this case. Lines I and 2 translate into the meta-language the premises that

John knows the safe is locked and that C3 is not the combination to the safe. We note that

since John knows the safe is locked, the safe must be locked (line $). We let w, be the
I

result of John trying to open the safe in W0 (line 4). Since C1 is not the combination to the

safe, and the safe is locked in W0 , the safe will remain locked in wI (line 5). We then let w2

4| be a typical world which is possible according to what John knows in wl (line 6). DS

implies that w2 must agree with WI as to whether the safe is open (line 7), so the safe must

".777

126

-1OPEN(Sf1) K.Johfln PNS 1-- a, -i" E (Sj

W1 W2

0

o o

-1 OPEN(St 1) K:jOhn-0PEN(Sfl)

WO w3

Figure 5.4 "C1 is not the combination of Sf1 .'

be locked in w2 (line 8). DS also implies that w2 must be the result John trying to open the

safe in some world, say W3, which is possible according to what John knows in W0 (lines 9 -

10). According to D2, if C1 were the combination of the safe in W3. the safe would be open

In w2 (line ii). Since the safe is still locked in w2. C1 must not be the combination of the

sate in W3 (line 12). Since trying to open a safe does not change the combination (line IS),

C1 is not the combination of the sate is w2, either (lines 14 . 15). Therefore, in w1 John

* knows that C1 is not the combination of the safe (lines 16 -I7. i.e., after trying to open the

safe John knows that C1 is not the combination of the safe (lines 18 - 20).

This example is a good illustration of the power to be gained from using a rigorous

logical formAlism. The conclusion of this proof was not explicitly, or even con;ciously. built.

6i

127

in to the axioms used in the proof. With the more ad hoc representation schemes that are

frequently used in Al, it often seems that an additional fact is required for each new

inference that is made. By making a thorough analysis of the problem domain and using a

powerful deductive formalism, we have created a much more robust system.

5.4 An Example of Acquiring Knowledge Required for an Action

We conclude this chapter by considering the last of the sample problems from chapter I.

This is example shows how one step of a plan can produce knowledge which is necessary to

carry out the rest of the plan. One way of obtaining such knowledge is to read it

somewhere. To formalize this, we need a new action Read, a predicate Reads to say that an

agent can read, and the operator Info, to say what Information the thing being read contains.

INFI. VwI trm.x l e xpI

(T(w1 ,Info(trm.x I ,oxpI)) a (expi a V(wI ,:lnfo(D(w!,trm.xI)))))

RDI. VaI,xI,wi,w 2
(3w2(R(:Do(ol .:Re Iol (x l])),w i w2))

(H(wi ,:R ads(a I)) A H(wI ,:AI(aI xI))))

RDS I. Vwl ,a (H(wi ,:R.eads(a)) V Vw2 (K(aj ,wl w2) * H(w2,:Reads(a I))))

RD2. Va1 ,xi ,wi ,w2

(R(:Do(. i ,:Road(x I)),wI ,w2) a
Vw3 (K(ai ,w2,w3) a ((V(w 2 ,:lnfo(xl)) • V(w3,:lnfo(xl))) A

3w4 (K(aI ,wi ,w4) A R(:Do(a ,:R*d(xI)),w4 ,w3)))))

RD3. VaixIwiw 2

(R(:Do(a1 ,:Read(x|)) wI ,w2) a
(Yint.trm1 (M(, ' ,int.trmi) " V(w2 inttrml)) A

Yint.p I (H(w l ,int.p i) I H(w2 ,int.P1))))

To represent that an object has information written on it, we introduce the operator Info

Into the object language. Info(trm~x1exp I) will mean that the object-language expression

128

*xpl represents the information written on the referent of trmix. *xpl is a meta.language

variable that ranges over all well-formed object-language expressions, both terms and

formulas. It is important to realize that even though Info can take terms as arguments, it is

not an ordinary predicate. For example, if Father(John) is a term denoting the father of

John, then Info(Paporl,Father(John)) means that Paper, has written on it some expression

(presumably in natural language) whose meaning is represented by the formal expression

Father(John). If Info were an ordinary predicate, lnfo(Paporl,Father(John)) would have to

assert some relation between the piece of paper and John's father, that is, between the

denotations of the two argument expressions. Here, however, we have a relation between

the denotation of the first argument expression and the second argument expression Itself

(not its denotation). It might be more intuitive to quote the second argument (e.g.

Info(Paper ,Quote(Father(John)))). but we will want to quantify into the quoted context, and

quotation is usually interpreted as blocking such quantifications.

One of the advantages of working with both a meta-language and an object language is

that we can introduce an operator like Info whose semantics are unlike anything we have

seen before, and we can define those semantics right in the meta-language. This is done in

INF i. Notice that on the right side of INF I the first argument of Into is evaluated, but the

second is not. Another unusual feature of INFI is that :lnfo, the meta-laaiguage correlate of

Info, is the sort of expression usually associated with an object-language term. We might

have expected the right side of to be H(w,:lnfo(D(wjtrmaxl),expl)). Instead, we let

V(wl,:lnfo(D(wltrm.xl)) be a meta-language term which denotes the information contained

in the referent of trm.x1 in w1. Info is treated this way because we want to imply that expl

represents all the information contained in xl. :Info(xipl), however, would not do this, so

* extra axioms would be required. On the other hand, we don't want to have Info as an

129

object.language function, because its referent would itself be an object-language expression.

We do not want to have object-language expressions as Inuividuals in the object language,

because that might allow the introduction of self-referential statements, !.ading to the

familiar semantic paradoxes (e.g. statements like "This statement is false.").

RDI says that a, can read x, if and only if a1 can read, and a, is at the same place as

x1 . RDS I says that if a, can read, he knows that he can read. This fact is necessary for an

agent to be able to reason about how he can acquire knowledge. RD2 tells how reading

something true affects the knowledge of the reader. It says that if w2 is the result of &I

reading x, in w1, then the worlds which are possible according to what aI knows in w2 are

exactly those worlds which satisfy both of the following conditions: First, they must agree

with w2 as to what information is contained in xl. Second, they must be the result of *1

reading x, in some world which Is possible according to what &1 knows in wl. Informally,

this means that after reading xi, a knows what information is contained in x1, and he

knows that he has read xi.

We can use these axioms to show that if John has a piece of paper which he knows has

the combination of the safe SfI written on it, he can open the safe by reading the

combination from the piece of paper and then dialing it on the safe. The premises are as

follows:

Given: True(Safe(Sfj))
True(At(John,Sf 1))

* True(At(ohn,Pprl))
True(Reads(John))
True (Know (John,Exist (?XAnd(Eq?X1 ,Comb(Sf I)),lnfo(Ppr1 ,?XI)))))

The meanings of the first four premises should all be obvious. These are the conditions

which ensure that John can physically perform the actions required. The last premise is

In -I I 1 I - I 1 n " h- - l I

w5

0

CLC

0

0.0

K:Johfl K:Johfl

WO Wi W

Figure 5.5 Acquiring knowledge required for an action.

13

the really interesting one. It says that John knows that the combination of the sate is

written on the piece of paper Ppr 1. The interpretation of quantifiers in terms of

substituting rigid designators enables us to make sense out of quantifying into the second

argument pnsition of Info. Technically, this violates our promise not to use the

substitutic-- A~ analysis of quantification in any way that goes beyond the analysis in terms

of closures. In this case, however, the substitutional analysis is exactly what we want since

there must be some linguistic expression written on the paper. If we were using the closure

approach, we would need a special axiom for this case. In particular, we want to infer that

It is the standard name of the combination of the safe that is written on the paper. We can

describe this as eCVW 0 :Comb(:Sfj))), which is equivalent to the expression we get by

eliminating the quantifier (See lines 5 and 6).

The possible-world structure for the proof for this example is pictured in figure 5.5.

This example provides an execeilent illustration of the power of the possible-world

approach to reasoning about knowledge and action. The possible worlds mentioned in the

proof are related in a fairly complicated way by instances of K and R, and the whole pattern

of interconnection is needed to produce the desired conclusion.

Prove: True (Con(John,(Read(Ppr 1) hial(Comb(Sf1),S11)),Opon(Sfj)))

4 1. :Saf.(Sf I) Given,Ll ,L9b,Ll lb
2. H(W0 :At(:John,:Sf 1)) Given,L 1.1L9a,l I Ilb
3. H(W0,:At(:John,:Ppr1)) Given,L I L94,Ll lIb
4. H(W0 :Reads (John)) Given,Ll ,L.9a,l. Ib
5. K(:John,W0,w1) 23xI ((xj - V(w1 .:Comb(:Sf1))) A Givon,L I,Kl I11 I b,17,

* (,(x1) a V(w1 ,:Info:Pprj)))) L2,L 13,LI 2b.INF I
6. K(:John,W 0,w1) * (&(V~w1 ,:Comb(:-S11))) w V(w1 ,:lnfo(:-Ppr1))) 5
7. K(:JohnW 0,wl) m H~w1 ,:At(:John,:SfI)) 2,AI

9. K(:JohnW 0,w) = H(wI,:R&ads(:John)) 4,RDSI

Lines I -5 translate the premises into the meta-language. Line 6 is a restatement of line

132

5. From the premises we conclude that John knows that he is at the same place as SfI and

Ppr I (lines 7 - 8), and that he knows that he can read (line 9).

10. KfJohn,WOW1) Ass
1 1. O(V(wl,:Comb(:Sfl))) I V(wl,:lnfo(:Pprl)) 6,10
12. H(wI ,:AtC(:John,:Sf 1)) 7,10
13. H(w! ,:At (:John,:Pprl)) 8,10
14. H(wI ,:Reads(:John)) 9,10
15. R(:Do(:John,:Read(:Ppr I)),wI ,W2) 13,14,RDI
16. G(V(W 2 ,:Comb(:Sf I))) a V(W2 ,:lnfo(:Pprl)) 11,3 S.D4
17. H(W2 ,:At(:John,:Sf 1)) 12,15,04
18. K(:JohnW 2 ,w3) 0 H(w3,:At(:John,:Sfj)) 17,AI
19. K(:John,W2,w3) u ((CV(w2,:nfo(Ppr |)) a V(w3,:lnfo:Pprl))) A I 5,RD2

3w4 (K(:John,w I ,w4) A R(:Do(:John,:Read(:Ppr I)),w4,w3)))

We let wl be a typical world which is possible according to what John knows in W0

(line 10). In w1 , then, the information written on Pprl is the standard description of the

combination of the safe (line II). John Is at the same place as the safe and the piece of

paper (lines 12 - 13), and John can read (line 14). Since John can read and he is at the

same place as the piece of paper, John can read the piece o paper, resulting In situation W2

(line 15). Since reading the piece of paper doesn't change either what is on the paper or the

combination of the safe, the information written on the piece of paper in W2 is the standard

description of the combination of the safe in W2 (line 16). Also, John is still at the same

place as the safe in W2, and he knows that this is true (lines 17 - 18). After reading the

piece of paper, John knows what Is on the piece of paper, and that he has read it (line 19).

20. K(sJohn,W2 ,w3) Ass
21. H(w3 ,:At(:John,:Sf 1)) 18,20
22. V(W2 ,:lnfo(Ppr I)) a V(w3,:lnfo(:Pprl)) 19,20
23. 3w 4 (K(:John,w I ,w4) A R(:Oo(iJohnsRead(:Ppr)),w4 ,w3)) 19,20
24. K(:John,w1,W4) 23
25. K(:John.Wo,W4) 10,24,K3

a

26. *(V(W 4 ,:Comb(:Sf1))) V(W4 ,:lnfo(:Pprl)) 6,25
27. R(:Do(:John,:Read(:Pprl)),W4 ,w3)) 23
28. *(V(w 3 ,:Comb(:S i))) a V(w3 ,:Info(:Ppr 1)) 26,27,04
29. v(V(w3,:Comb(:Sf I))) a V(W2 ,:lnfo(:Ppr !)) 22,28
30. Q(V(W 2 ,.Comb(:SI))) m(V(w 3 ,:Comb(:Sf1))) 16,29
31. V(W 2 ,:Comb(:Sf I)) w V(w3,:Comb(:Sf 1)) 30,1.10
32. :Dial(:V(W2,:Comb({Sf i)),:Sf 1) w :Dial(sV(w 3,:Comb(:Sf I)),:Sf 1) 31
33. D(W 2 ,Dial(Comb(Sf),Sf 1)) a D(w3 ,Dial(Comb(Sf1),Sf 1)) 32,.1 Ib.12&,Ll2b
34. D(w 3 *(D(W 2 ,ial(Comb(Sf I),Sf I)))) a D(w3 ,0ial(Comb(Sf1),Sf1)) 331.10
35. T(w 3 ,Eq(m(D(W 2,Dial(Comb(Sfj),Sf I))),Oial(Comb(Sf I),Sf 1))) 34,1.13

We let w3 be a typical world which is possible according to what John knows in W 2

(line 20). We conclude that in w3 John is at the same place as the safe (line 21) and the

piece of paper has the same information on It as it does In W2 (line 22), and that w3 is the

result of John reading the piece of paper in some world which Is possible according to what

John knows in w, (line 23). We call this world W4 (line 24). Since in W0 John knows

whether he knows something, W4 is also possible according to what John knows in WO (line

25). From this we conclude that the information written on the piece of paper in W4 is the

standard description of the combination of the safe (line 26). Since w3 is the result of John

reading the piece of paper in W4 (line 27). the information written on the piece of paper in

w3 is the standard description of the combination of the safe (line 28). Since what is

written on the piece of paper in w3 is the same as in W2. and in both cases that is the

standard description of the of the combination of the safe 4o that world, the two

descriptions must be the same (lines 29 - 30), so the combination of the safe must be the

same in w3 as it is in W2 (line SI). This allows us to conclude that dialing the combination

of the safe in w3 is the same action as dialing the combination of the safe in W2 (lines S2 -

35).

134

36. R(:Do(:John,:Dial(V(w3 ,:Comb(:Sfj)),sSfY)),w3,W5) 1.21 .01
37. H(W5,:Open(:Sf)) 36,D2
38. T(W 5 ,Open(Sf I)) 37,L11 bL9a
39. R(:DoCD(W2 ,John),:OiaI(V(w 3 ,:Comb(:Sf 1)),:Sf1)),w3 ,W5) 36,1.11 b
40. R(:Oo(D(w 3 ,(D(W 2,John))),:Dal(V(w 3 ,:Comb(:Sf i)),:Sf1)),w 3 .WS) 39,LI 0
41. R(D(w 3 ,0o(u(D(W2,John)),DiaI(Comb(Sf1),Sfg))),w3 ,W5) 40,. lb,LI 2a,I 2b
42. T(w 3 ,Res(Do(o(D(W 2,John)),Dial(Comb(Sf),Sf 1)),Open(Sf1))) 38,41,RI
43. T(w 3 ,And(Eq(G(DCW 2 ,DiaI(Comb(Sf1),Sf I))),Dial(Comb(Sf 1),Sf1)), 35,42,1.2

Res(Do((D(W2 ,John)),Dial(Comb(S f),Sf1)),Open(Sf ')))

U Since in w3 John is at the same place as the safe, it is possible for him to dial the

combination of the safe, and we call the resulting situation W5 (line $). Since the

combination John dials Is the combination of the safe, the safe is open In Ws (lines 7 - S8).

Hence, It is physically possible in W3 for John to open the safe by dialing the combination

(lines S9 . 42). Line 43 conjoins this fact with the previous conclusion that dialing the

combination of the safe is the same action in w3 as it is in W2 .

44. K(:John,W2 ,w3) D Dis(20,43)
T (w3,And(Eq(W(2 ,Oial(Comb(Sf1),Sf I))),Dial(Comb(SfI),Sf i)),

Res (Do(vD(W 2 ,John)),Dial(Comb(Sf1),Sf1)),Opon(Sf))))

45. K(D(W 2,GCD(Wo,John))),W 2,w3) = 44,1.11 bLlO
* T(w 3 , And(Eq(v(D(W2 ,Dial(Comb(Sf 1),fI))),Dial (Comb(Sf 1),Sf 1)).

Res(Do(m(D(W 2,John)),Oial(Comb(Sf 1),Sf 1)),Open(S 1))))
46. T(W2,Know(@(D(WoJohn)) 45,KI

T(w 3 ,And(Eq((DW 2 ,Dial(Comb(Sfj),Sf 1))),Dial(Comb(Sf),Sf 1)),
* Res (Do(v(D(W2 ,John)),Dial(Comb(Sf 1),Sf 1)),Open(SfI))))

47. T(W 2 ,Can(g(D(WoJohn)),Dial(Comb(SfI),Sf i),Open(Sf i))) 46,C(1

Since w3 is an arbitrarily chosen world which is possible according to what John knows

in W2 , we conclude that in W2 John knows what action dialing the combination of the safe

is, and he knows that dialing the combination of the safe will result in the safe being open

(lines 1 - 46). So in W2 John can open the safe by dialing the combination or the sate

(line 47).

0

49. D(W0,R~ad(Pprj)) aD(wl,RoadCPprl)) Ll lb,L12b
49. D(wj ,vCD(W,R~ad(Pprj)))) a D(w1 ,R*ad(Ppr 1)) 49,1.10
50. T(wj,Eq(m(D(W 0,Read(Ppr 1))),Read(Pprl)) 49XI.3
51. R:Do(D(w1 ,m(D(W 0,John))),:Road(:Ppr1)),W1 W2) 15,1.11 bL 0
52. R(D(w 1 ,Do~m(D(W 0 John)).Read(Ppr1))),wI NO2 5 1, 1I b.LI 2b
53. T(wj ,Ros(Do(m(D(W 0,John)),Road(Ppr1)), 52,47.RI

54. T(w1 ,And(Eq(m(D(W 01Read(Ppr1))),Rosd(Pprl)), 50,53,1.2
Ros(Do(ma(0CW 0,John)),Road(Pprj)),

Can((D(W0,John)),Dial(Comb(Sf 1)Sf1),Op~n(Sf 1)))))

By making Pprl a rigid designator, we imply that John knows what object has the

combination of the safe written on it, so reading the the piece of paper in w, Is the same

action as reading the piece of paper in W0 (lines 48 - 50). We already know that in W

John can open the safe by dialing the combination and that W2 is the result of reading the

piece of paper In wl, so in the result of reading the piece of paper In wl. John can open

the safe by dialing the combination (lines 51 -53). Line 5M conjoins this fact with the

previous conclusion that reading the piece of paper in w, is the same action as reading the

piece of paper in W0.

55. K(:JohnW 0,w) * T(w1 ,And(Eq(m(D(W 01R~ad(Pprj))),Road(Ppr1)), Dis(10,54)
Res (Do((D(W0 ,John)),R~ad(Ppr I)),

Can(s(D(W0 ,John)),Di&I(Comb(S 1).Sf1),Open(Sf 1)))))
4 56. T(W01Know(John,And(Eq(u(D(W 0,Read(Ppr1))),Road(Ppr1)), 55,LI1I b,K1

Res (Do((D(W0 ,John)),Read(Ppr I)),
Can(m(D(W 0 ,John)),DiaI (Comb(Sfij),S$1),Opon(Sfj))))))

57. TCW0,Can(Jhn,R9ad(Ppr1), 56,C I
Can(m(D(W 0,John)),Dial(Comb(S11),Sfl),OponCSfl))))

4 58. T(W01Can(John,(R~ad(Ppr 1); DialI(Comb(Sf I),Sf 1)l,Opon(Sf I))) 57,C2
59. True (Can(John,(Read(pr 1); Dial(Comb(Sfj),Sf1)),Opsn(Sf 1))) 59,U1

Since w, is an arbitrarily chosen world which is possible according to what John knows

4 in WO, we conclude that In WO John knows what action reading the piece of paper It, and

~IS6

he knows that reading the piece of paper will result in a situation where he can open the

safe by dialing the combination (lines 55. 56). So in W0. by reading the piece of paper

John can bring about a situation where he can open the safe by dialing the combination

(line 57). Finally. John can open the safe by first reading the piece of paper and then

dialing the combination of the safe (lines 58. 59).

This section concludes the discussion of purely representational and logical issues. We

have presented a formalism that allows us to represent and reason with information about

what someone knows, information about the effects of actions, and information about the

interactions between the two. While we have used axioms describing the properties of

particular actions and predicates. much of the power of the system comes from its ability to

make use of general principles about knowledge and action. In the rest of the thesis we will

examine the problems involved in designing procedures to do this reasoning automatically.

6.i

157

6. Automating Deductions about Knowledge

6.1 Procedural Deduction and First.order Logic

In this chapter. we will discuss the problem of how to algorithmically generate a

deduction of a desired conclusion from a gro'up of facts involving knowledge and action.

We will begin by looking at some general considerations in the area of automatic deduction.

This subject was reviewed in detail in Moore (1975), and on many points the reader may

refer to this source for further discussion.

Before going further, we should consider the possibility that we have made an

insurmountable mistake by choosing first-order logic as the basis of our representation. It is

often argued in the Al literature (Minsky, 1974) (Hewitt, 1975) (Smith. 1977) that there is

something fundamentally wrong with formal logic (and its semantics) as a representation of

knowledge, and that many of the problems of creating reasoning programs are more easily

handled by using Frames, Actors, or some other representation scheme instead.

It is certainly true that traditional logic is limited in many ways. Notions of plausible

inference and retracting conclusions in the face of better evidence do not fit comfortably

into the framework of model-theoretic semantics, as we have already seen. However. I

believe that these deficiencies must be remedied by extending logic, not replacing it. Any

system adequate for representing the knowledge of an intelligent being must surely be able

to:

(i) Say that something has a certain property without saying which thing has that
property.

(2) Say that everything in a certain class has a certain property without saying what
everything in that class is.

(3) Say that at least one of two statements is true without saying which statement is
true.

D1,8

(4) Explicitly say that a statement is false.

(5) Either settle or leave open to doubt whether two non-identical expressions name
the same object.

Any representation scheme that has all these abilities will have at least a subset which is

isomorphic to first-order logic, and for which model-theoretic semantics will be an

acceptable, if not total, explanation. Furthermore, it is preci: 'ly the difficult problems of

reasoning with quantifiers disjunction, and equality that have not been dealt with

adequately by any of the proposed alternatives to logic.

It is important to note that in reasoning about knowledge and action we have to face

most of the problems of reasoning in first-order logic. Often Al systems avoid this by

embodying simplifying assumptions about the logical structure of the system's knowledge.

The most frequent such assumption is that the system has a complete description of the

problem domain and the problem situation. The blocks world reasoning component of

Winograd's (1971) SHRDLU is the paradigm example of this type of system. In SHRDLU,

questions of the form 3x1 (PtxI)) or Vx1 (P(x)) are answered by checking whether the system

knows of an object that satisfies P, or whether every object the system knows about satisfies

P; any two terms are assumed to represent different objects unless they can be evaluated to

the same expression; and any statement which is cannot be shown to be true is assumed to

be false. In chapter I of Moore (1975) it is shown how these assumptions are virtually built

into PLANNER and related Al problem-solving languages.

We cannot make any of these assumptions, however. The examples we looked at in the

preceding chapters make use of the full logical power of our formalism. In particular. we

depend crucially on being able to quantify over an infinite set of possible worlds, we reason

explicitly about the equality of terms, and we seek positive evidence for inferring statements

to be false.

L

67

139

These observations narrow the range of possibilities open to us. One extreme approach

would be to devise an ad hoc set of inference procedures for exactly the inferences we think

we will need to make. This approach, although it sometimes produces impressive

performance, has serious problems. There is no reason to assume that the techniques used

will generalize to other problem domains, or even to other problems in the same domain.

Moreover, as the system is expanded to handle more and more situations, It can bog down

in searching for rules or procedures that apply to the particular situation at hand.

The other extreme would be to use one of the uniform proof procedures for first-order

logic and the axioms described in chapters 4 and 5. Experience has shown, however, that

for even a moderate number of axioms this approach can be very inefficient, especially

when many of the axioms are not needed for the solution of the problem. A number of

possible reasons for this are discussed in Moore (1975).

We will try to steer a middle course between these two extremes. We will describe an

approach which uses a general proof procedure, but which augments that procedure with

domain-specific knowledge of how certain facts are to be used. We will call systems that

take this approach procedural deduction systems.

In taking this type of approach, we have to decide what constitutes "cheating". In an ad

hoc approach, nothing is considered to be cheating, but this leaves open the possibility that

l the answers to specific problems are directly built into supposedly general problem.solvlng

techniques. In a strict approach based on a uniform proof procedure, including anything

other than first-order axioms is considered cheating.

4l Neither of these attitudes seems to be quite right. We want to design programs which

are expert at reasoning about knowledge and action. Certainly part of that expertise is

knowing how and when to use a given fact, but this kind of knowledge is not accessible to a

uniform proof procedure. At the same time, we don't want to require that the system have

4

a

140

special knowledge in order to solve specific problems; we seek generality at least across the

problem domain. Therefore, problem-specific assertions and goals will be represented as

expressions in pure first-order logic, and specific control information will be provided only

for facts which have domain-wide applicability.

6.2 Outline of a Procedural Deduction System

The procedural deduction system we will use can be characterized as being a natural-

deduction system which uses both backward and forward chaining, handles quantifiers by

means of Skolemization and unification, and has some limited ability to handle equality.

We will begin by describing how the system works given a complex goal and data-base of

simple assertions. We will then go on to describe how complex assertions are used as either

backward-chaining or forward-chaining rules of inference.

The most basic operation in any deduction system Is matching. An assertion satisfies a

goal just in case they match. For our matching routine we will use the unification

procedure from resolution theorem proving. (See Chang and Lee (1973) for a review of

this field.) Two expressions match if and only if there is a substitution for the variables in

each expression which makes the expressions identical. For instance, the goal P(xiA)

matches the assertion P(B,x 2) because they can be made identical by substituting B for x, inI

the goal and A for x2 in the assertion. It should be obvious that the substitution must be

uniform within each expression. That is, every instance of a particular variable in one of.

* the expressions must receive the same value. If the two expressions being unified contain

the same variables, it may be necessary to change the variables in one of them to avoid

confusion in specifying the substitution.

*l Frequently, we will need to know what substitution was used to unify the expressions.

I

i -

141

When that is the case, and when there is more that one possible unifying substitution, we

will pick the most general (i.e. least restricting). This is called the most general unifier. For

example. P(xlx 2) and P(x3 ,A) can be unified by substituting A for every variable, but it

would be less restrictive to substitute x3 for x, and A for x2.The most general unifier is

guaranteed to be unique down to the choice of variable names.

Quantifiers are handled by Skolemization. Whenever a formula of the form Vx(P~x)) is

asserted, it will be replaced by the formula P(x). Whenever a formula of the form

3x(P(x,yl,..,yn) is asserted, where Yl..',Yn are the only free variables in the formula, we

replace the formula by P(F(yl,...,yn),yl,...,yn) where F is a newly created function symbol. If

there are no free variables in the formula, 3x(P(x) becomes P(F) where F is a newly created

constant symbol. These two cases can be combined if we think of constants as being

functions of no arguments.

The function symbol F is called a Skolem function. The intuitive idea behind the

introduction of Skolem functions is that if we know that some object satisfies the formula

P(x), we can give that object a name such as F. If that name is not used anywhere else in

the system, then we are in no danger of proving anything from P(F) that we couldn't have

proved from 3x(P(x)). If there are free variables in the formula, F must be a function of

those variables to allow for the possibility that for each assignment of values to those

variables, there is a different object which makes P(x) true.

For quantifiers in goals, the process is reversed. Any goal of the form 3x(P(x)) will be

replaced by the goal P(x). A goal of the form Vx(P(x,yl,...,yn). where Yl,"',yn are the only

free variables in the goal, will be replaced by the goal P(F(y,.,yn)Y,_,n) where F is a

newly created function symbol. The intuitive basis for replacing universal quantifiers by

Skolem functions in goals is that if we can prove that the arbitrarily selected object named

by the Skolem function satisfies P(), then everything must satisfy P().

11' In nnm -4

IF

142

To see how Skolemization interacts with unification, consider how we can prove

Vx('3y(Px,y))) from 3u(Yv(P(v,u))). By Skolemization, the goal gets converted into P(Fy), and

the assertion gets converted into P(v,G), where F and G are newly created Slkolem constants.

The goal and the assertion can be made to match by substituting F for v and G for y.

Notice that we cannot make the converse inference, which would be invalid. That is, we

cannot inter 3u(Vv(P(vu))) directly from Vx(ly(Pxy))). In ths case, the goal is converted

Into P(G(u),u), and the assertion is converted into Ptx,F(x)). If we try to unify these two

formulas, we have to substitute G(u) for x which makes Fx) into F(G(u)). But this

expression then has to be unified with u, and there is obviously no substitution for u which

will make it identical with F(G(u)), so the match fails.

We will elaborate this system slightly to handle the typed variables, functions, and

constants introduced into our logical formalism in chaptert 4 and S. We will restrict

unification so that two expressions match only if they are of the same type. Furthermore,

Skolem functions and constants will always be of the same type as the variables the)

replace.

This method of handling quantifiers is essentially the same as is used in resolution

theorem provers, except that we treat goals directly, rather than doing proof by

contradiction. Unification of Skolemized formulas is known to be a logically complete

treatment of quantifiers (see Chang and Lee (197S)). In our treatment of propositional

connectives, however, we will give up completeness in order to simplify our approach.

In proving complex goals built up using propositional connectives, we will use an

4 elaboration of the standard And/Or.tree approach. A goal of the form (P v Q) will be

replaced by two independent goals P and Q. if either of these goals is satisfied, then the

original goal is satisfied. Conjunctive goals are more complicated. If we have (P(x) A Q(x))

as a goal. we not only have to prove P(x) and prove Q(x), but we have to make sure that x

4

14S

receives the same value in each proof. That is, if we prove P x) by matching the assertion

P(A), we have to then prove Q(A) in order to satisfy the original goal. So our procedure for

handling conjunctive goals is as follows: To prove (PI A..A Pn), first prove PI. then prove

each Pi, i > 1, in order using the bindings for free variables obtained from the proof of Pi.l.

The original goal Is satisfied If and only if all of the subgoals are satisfied. This method of

solving conjunctive goals is called splitting.

We will also allow implications and bi.onditionals to occur as goals. and these will be

proved using natural deduction. We will have several different ways of writing

implications and biconditionals, corresponding to their different procedural interpretations

as assertions, but all variants will be treated the same when they occur as goals. A

biconditional goal, e.g. (P w Q) will be replaced by an equivalent conjunction of

implications, ((P -> Q) A (Q -> P)). This new goal will then be attacked using splitting. An

implication, such as (P - Q) will be proved by asserting the antecedent P and proving the

consequent 0 using any assertions derived from P and previously known facts. The proof

of (P -> Q) succeeds if the proof of Q succeeds or if asserting P generates a contradiction. If

(P - Q) is being proved as a subgoal of a branch of a split, then the assertion of P is local

to that branch of the split. The data base of assertions must be returned to its former state

before the next branch of the split is attacked. If we are trying to prove ((P -) Q) A R) we

first assert P and try to prove Q. Then we must remove the effects of asserting P before

trying to prove R. or else we will be proving only the weaker condition (P -> (Q A R)).

Finally, we will treat negations in both goals and assertions by pushing them down to

the atomic level. We will replace -,(P v Q) by (-,P A -Q)..-(P A Q) by (-P v .Q), -(P -> Q) by (P

A -Q), -(P -> Q) by ((P A -Q) v (Q A -P)), and .P by P. At the atomic level, negation will

be handled by the matcher. So just as P~x) matches P(A), .Pbx) matches -,P(A).

We will augment these methods with some simplification and deletion procedures. The

144

simplification rules are based on recognizing certain contradictory or tautologous

subexpressions in goals and assertions. The easiest way to state these rules is to introduce

the special proposition symbols T for true and F for false. The simplification rules are as

follows: Replace any conjunction containing both a formula and its negation by F. Replace

any disjunction containing both a formula and its negation by T. Then replace (T v P) by

T, (T A P) by P. (T -> P) by P, (P -> T) by T, T <-> P) or . <-> T) by P. and -T by F.

i Replace (F A P) by F, (F v P) by P, F -> P) by T, (P -> F) by -P, F (-> P) or (P <-> F) by

-P. and -F by T.

If an entire assertion simplifies to T, It is a tautology which can be discarded. If an

assertion simplifies to F and it occurs as the result of asserting the antecedent of an

implication we are trying to prove, then the implication is proved, otherwise it indicates that

the premises of the problem are inconsistent. If a goal simplifies to T then the goal has

been solved. If a goal simplifies to F then it is self-contradictory and should be abandoned.

The other deletion rules that we will use are to delete repeated instances of assertions

and goals, and goals that are contradicted by a single assertion. We could use more

elaborate techniques of this type based on the subsumption procedure used In resolution

systems, but these simple methods are sufficient for our examples.

* 6.3 Procedural Interpretation of Complex Assertions

Complex assertions will be broken down less than complex goals. We have already

explained the handling of quantifiers and negation in complex assertions. Conjunction will
4

be handled quite simply by replacing any assertion of the form (P A Q) by the two

independent assertions P and Q. This leaves us with disjunctions, implications, and

biconditionals still to treat. We will use these logical expressions as domain-specific

inference rules. By specifying control information In these rules, we justify calling our

deductive system procedural.

I.

-7-- -7

145

There are two types of control Information that we will use. The first of these derives

from the original work on PLANNER, where Hewitt (1972) pointed out that an assertion of

the form (P a Q) has two very natural interpretations as an inference procedure, either

assert Q whenever P is asserted, or in order to prove Q, try to prove P. The first of these

two methods is usually called forward chaining, and the second, backward chaining; so we

will refer to Implication assertions used in these ways as forward.chaining or backward-

chaining rules, respectively.

The same observation holds for the contrapositive form, (-Q * -P), so there are two

more interpretations In the list of possibilities; either assert -P whenever .,Q is asserted, or in

order to prove -,P. try to prove -'Q. In many situations choosing a set of procedural

interpretations for axioms of the form (P * Q) is the most Important way of controlling the

size of the space that must be searched in making a deduction.

Most deductive systems do all their reasoning by backward chaining from the goal.

This is done because unrestricted forward inference will frequently produce large numbers

of formulas that have nothing to do with the current goal. This problem would be

especially severe in a large data-base containing many types of knowledge. Unrestricted

backward Inference at least produces subgoals which are relevant to the main goal. There

are many cases, however, when very large backward-chaining searches can be eliminated by

allowing limited forward deduction.

One type of situation where this is true Is reasoning about membership in a

hierarchically structured set of classes. For Instance, we might chose to represent the fact

that cats are mammals by the formula (Cat(xl) 0 MammaNl(xI)). We would have similar

formulas to represent the facts that all dogs are mammals and that all mammals are animals.

In the set of formulas defining this hierarchy, a predicate can occur many times on the right

side of an implication, but only once on the left

146

Suppose #e kncw that Felix is a cat, and we want to deduce something about Felix that

requires showing that Felix is an animal. If we interpret the axioms that define the

hierarchy as backward-chaining rules, then to show that Felix is an animal, we may have to

search through most of the kinds of animals we know about before hitting upon the

assertion that Felix is a cat. If, on the other hand, we interpret the axioms as forward.

chaining rules, then for each individual we know about we would make a few assertions

about what classes in the hierarchy the individual belongs to, but there would be no

searching at all on goals. So at the cost of a few assertions per individual, we can entirely

avoid searching a potentially very large space.

Another case where forward deduction is desirable Is where inferences can form a chain

which is finite in the forward direction, but infinite in the backward direction. For instance

one of the axioms of number theory is that if the successor of x, is less than x2 , then xI is

less than x2 : ((S(xf) (x2) a (xJ ' x2)). If we interpret this axiom as a backward-chaining

rule, it will generate infinitely many subgoals whenever it is invoked. The goal (A (B) will

generate the subgoal (S(A) B)), which will in turn generate the subgoal (S(S(A)) B B), etc.

If we interpret the axiom as a forward-chaining rule, however, the number of assertions

generated will be limited by the depth of nesting of S's In the original assertion. The

assertion (S(5(A)) < B) will generate the assertion (S(A) < B), which will generate the

assertion (A < B) and then stop.

Other cases where forward deduction is useful include expanding defined terms by their

definitions, putting a problem description into canonical form, or making a change of

representation for a problem. This last case would include our translating from the modal

representation of facts about knowledge and action to the possible-world representation.

it is frequently the case that if there is a strong argument for interpreting an implication

(P a Q) as a forward-chaining or backward-chaining rule there is an equally strong dual

174

~14"7

argument for interpreting the contrapositive form (.Q a -P) in the opposite way. For

instance, if we know that some individual is not an animal, we would not want to have to

assert all the different kinds of animals that it is not. Moreover, to prove by backward

chaining that this individual is not a cat would require checking only the few classes in the

hierarchy above cat. So the formula (Mammalx I) a .Cat(xI)) should definitely be

interpreted as a backward-chaining rule. Similarly, a moment's thought will show that (-(xI

<x2) a -(S(x i) (x2)) should also be Interpreted as a backward-chaining rule.

We will use different notations to specify different combinations of possible procedural

interpretations of complex assertions:

I. (P -> Q): If P is ever asserted, also assert Q.

2. (Q <- P): In order to prove Q, try to prove P.

3. (P 0) if P is ever asserted, also assert Q, and in order to prove -P, try to prove

4. (Q (a P) In order to prove Q, try to prove P. and if -Q is ever asserted, also assert
-P.

5. (P v Q): In order to prove P, try to prove -Q, and in order to prove Q, try to
prove -P.

I - 4 are all different procedural interpretations for (P a Q). I and 2 are simple

interpretations as a single forward-chaining or backward-chaining rule. $ and 4 reflect our

observation that frequently if an implication is most efficiently used as a forward-chaining

rule, its contrapositive form is most efficiently used as a backward chaining rule, and vice-

versa. 5 can also be thought of as a procedural interpretation of implication because (P v Q)

is equivalent to (-P a Q) and (-Q a P). 5 would be useful when there is no particular reason

to use forward chaining, so backwards chaining is used in both cases. 5 can be generalized

to handle more than two disjuncts as follows:

148

5. (PI v...v Pn): In order to prove Pi. try to prove (-'PI A^A 4i.1 A "Pil A-A Pn)"

That is, if the goal we wish to prove is one of a number of possibilities, we should try to

prove that all the other possibilities are false.

We also have two procedural interpretations of biconditionals:

6. (P <W> 0): In order to prove P, -P, Q, or Q,, try to prove Q, -Q, P, or -P,
respectively, but do not immediately reapply this rule.

7. (p <01 Q): In all goals and assertions replace any active occurrence of P by Q

6 interprets a (P W-> Q) as a set of backward chaining rules for transforming a goal

containing P to a goal containing Q, or vice-versa. Since the rules go both directions, it is

useful to restrict (P w Q) from being applied twice in a row to prevent regenerating the

original goal. 7 is used when we always want to reason in terms of Q rather than P. It not

only generates a new formula containing Q, but also eliminates the formula containing P.

By an active occurrence of P, we mean an occurrence that is currently a candidate for being

matched. This would include the current goal, all atomic assertions, the left hand side of I

4 and 7, and all of 5 and 6. We restrict our attention to active occurrences, so that if we

have an assertion like (P > Q) and Q is a very complicated expression, we don't have to go

rummaging around in Q looking for possible substitutions until we actually try to use Q.

* All of the interpretations of I - 7 have been stated in purely propositional terms, but

they should be taken to cover cases with variables as well. For example, if we had the goal

Q(A) and the assertion (Q(x) . P(x)), we would generate the goal P(A). The result of

l applying a rule must of course take into account the substitution that was used to make the

match succeed.

Notice that because our matcher works only on atomic expressions, the formulas in

active positions in assertions in the forms given in I - 7, must be atomic expressions in

149

order to be used. For instance, we have not specified any way to use an assertion like ((P A

Q) o> R). This is not as much of a restriction as It seems, however, because formulas can

always be re-written or expanded. so that they fit into the patterns we handle. ((P A Q) -o R)

can be re-written as (P a) (Q a) R)). We could work out a set of rules for doing this

automatically, or we could extend our matching rules to handle more complex assertions, but

since all of our examples can be handled by the current rules, we won't bother to do so.

The other type of control information we will want to put into assertions is syntactic

restrictions on the use of those assertions. For example, one very concise way to say that

John knows whether P is true is (K(:John,W0 ,w1) a (T(wI,P) a T(W 0 ,P))). That is, any world

which is compatible with what John knows in the actual world must agree with the actual

world as to whether P is true. A straight-forward way of using a fact of this type would be

as a forward-chaining rule- whenever we have an assertion that a world, say W 1, is

compatible with what John knows in the actual world WO, i.e. K(LJohnWoW 1). we would

assert that WI agrees with W0 as to whether P Is true.

Recall, however, that since anything that is known by someone must be true, we have

axiom K2, Va1*wj(K(a1,W,wl)), which says that every world is compatible with what

anyone knows in that world. Combining this assertion with the rule representing the fact

that John knows whether P Is true would produce the tautologous conclusion (TOWoP) a

T(Wo,P)).

We could add to our rules for recognizing tautologies a check for this pattern, but a

simpler soiution to this problem would be to put a syntactic test into the assertion to prevent

application of the rule if the expression being bound to wl is W0 . The representation of

the assertion might then look like.

(K(:John,Wo,w I)/[W0 Ji wl] -) (T(wi P) (.) T(Wo,P))).

The square brackets indicate that [W0 i wl] is a syntactic test and not a goal to be

* - proved. The test indicated by j is satisfied if after the pattern match the arguments of j

* are not unifiable. Another way to achieve the same effect would be to add a piece of

advice (as in PLANNER) not to apply this rule to axiom K2. Neither of these restrictions

can be expressed as a pure logical formula. The closest we could come would be to write

something like:

U ((K(:John,W0 ,wj) A (W0 i w1)) a (T(w ,Pa T(W0.P))).

This is too strong, however, since it would require us to prove that W0 and w1 are not

the same pcssible world before applying the the rule. To avoid the problems we discussed

above, we only need to do a simple test to see whether they are the same expression. In

section 7.1 we will see a more complex example involving the axiom D3, where the use of a

syntactic restriction is used to prevent a forward-chaining rule from generating infinitely

many assertions.

The use of syntactic restrictions is also helpful in solving a problem relating to our

treatment of (P <a> Q). We have interpreted this as a rule to replace all occurrences of P by

Q. But what happens if the occurrence of P being replaced is more general than the

instance in the replacement rule? For example, suppose we have the assertions (PX) v R(x))

0 and (PA) (@> Q(A)). We can generate the new assertion MOCA) v RCA)) by substituting A for X

in the first assertion, and then substituting Q(A) for P(A). but if we delete the old assertion.

we will lose the information that (P(x) v R(x)) is true for values of x other than A. We could

Just leave the old assertion as it is. but this would create an undesirable redundancy. If we

came along later with the goal P(y), we would match (P(x) v Q(x)) and generate the goal

•R(y). We would also match (P(A) wi) (A)) and generate the goal P(A) which would in turn

match (Q(A) v R(A)) and generate the goal .Q(A). But this is a special case of a goal we

A

have already generated, and is therefore redundant. In complicated situations this can lead

to massive generation of redundant goals.

A solution to this problem is to have the replacement rule change the first assertion to

be (P(x) v R(x))/[x J A]. That is, we do effectively delete the particular instance of the

assertion that our replacement rule applies to, by putting a syntactic restriction on the

assertion not to match that instance. With this procedure, if we have as a goal P(y) we will

ultimately generate one goal which is R(A) and another goal which is .,R(x)/[x i A] these

two goals are mutually exclusive as to the patterns they will match, so the redundancy is

eliminated.

Except for the equality rules to be discussed in the next section, these are all the

inference rules that we will use In our deduction system. As they stand, they are far from

forming a logically complete system. The most glaring deficiency is an inability to do

reasoning by cases. That is, even if we have asserted (P <. 0), (P <, R), and (Q v R). we

cannot deduce P. Our system can be modified in a relatively straightforward way to handle

reasoning by cases by changing the treatment of disjunctive assertions to a splitting

procedure which is the dual of the one we are using for goals. A system of this type

requires a much more complicated control structure than we wish to use, and since none of

our sample problems involve reasoning by cases, it did not seem worth the effort to

describe. To see what is required for such a system, see Nevins (1974). Nevins's system is

quite similar to ours, but he does not impose as much control as we do over the use of

complex expressions, and he does not use syntactic restrictions at all.

Alternatively, we could have described a much simpler system closer in spirit to

resolutaon, but conjunctive goals which include implications would not be handled as

naturally as in a system based on splitting. This is particularly important in our domain,

since every attempt to prove that someone knows something generates a goal of the form

-L- -i. :.. . . n II I l I I .. a 'Tin J . , .- .

152

(K(:A,W 1,W2) -> T(W2 ,P)). For a comparison of splitting.based system to resolution-style

systems, see chapter S of Moore (1975).

The global control strategy we will use is simply depth-first search. We could put in

some heuristics to try to be more intelligent, but they would be unncecessary. The point is

that just by the choice of procedural interpretations of our domain-specific axioms and the

use of syntactic restrictions, we can constrain the search space for our examples so tightly

that the order in which the space is searched does not matter very much.

6.4 Inference Rules for Equality

In this section we give the Inference rules for reasoning about equality. The first rules

embody the fact that everything is equal to itself:

J. Replace an, .expression of the form (A • A) by T.

2. Replace any expression of the form (A i A) by F.

S. If (A :. 6, is a goal where A and B are unifiable, solve the goal by unifying A and S.

The first two rules should require no explanation. The point of actually carrying out the

unification in the third rule Is that the goal (A a B) may have been generated by splitting a

conjunctive goal. and the variable bindings created by the unification may be required by

the other conjuncts of the goal which was split.

One practical problem in reasoning about equality in an Al system is that typically

there are large numbers of specific Individuals that the system knows about and has names

for. In the blocks world every block usually has an "Internal" name, and in circuit analysis

systems every component is usually given a unique identifier. The problem this creates is

that to reason using these identifiers the system needs to know that they refer to distinct

individuals. For instance, suppose there are three blocks, A, B, and C, and B is put on C.

r•

To be able to infer that A is still in its original location, the system must not only

understand the effects of putting one block on another, it must also know that A and S are

not the same block.

In standard logic the only way of indicating that A and 8 are not the same is to have a

specific axiom (A J B). To avoid cluttering up our system with large numbers of axioms of

this form, we can make use of the notion of a standard name for an individual which we

introduced in section 2.5. If we assume that each individual has only one standard name.

then it follows that two syntactically distinct standard names must name different

individuals. We will designate certain constants in our formalism as being standard names,

and we will build into our system the assumption that two distinct standard names cannot

be equal. This fact gives us the following two rules:

4. If A and B are different standard names, replace (A n B) by F.

5. If A and B are different standard names, replace (A J B) by T.

We also have functions that act as constructors of standard names. A standard name

constructor is a function symbol such that a term consisting of the function symbol applied

to standard names is itself a standard name. For instance, sDiaI(C,1 :Sf 1) is the standard

name of the action of dialing the combination named by .CI on the safe named by :Sf 1. just

in case :C1 and :Sf1 are themselves standard names.

In an actual implementation we would probably pick some notational convention to

distinguish standard names from other terms. In our examples, however, we will not use

any special notation, but will simply point out when we are assuming that an expression is a

standard name. We will note, however, that the meta-language terms that we use to denote

object-language expressions will be regarded as standard names of those expressions. Also.

the : terms that denote intensional objects will be the standard names of those objects.

Since there are several levels to deal with, we must be careful which level we are in. For

example. Comb(Sf 1) is the standard name of the object-language expression which means

"the combination of SfI . That is, we know implicitly that Comb(Sf 1) J Comb(S12), because

the two terms denote different object-language expressions. Xomb(:S~f) is the standard

name of the intentional object corresponding to the combination of the safe named by Sf1 ,

just in case SfI is the standard name of the safe. V(W0, Comb(:Sf I)) refers to the actual

combination of the safe, so it can't be a standard name since it might be the case that

VW 0 ,:Comb(:Sfj)) a V(W0 ,.Comb(:Sf 2)). That is, two different safes can have the same

combination.

There are four special rules for standard name constructors:

6. If F and G are different standard name constructors, replace all expressions of the
form F(AI,...,An) a G(BI,...,Bn) by F.

7. If F and G are different standard name constructors, replace all expressions of the
form F(A1,...,A n) J G(B...,Bn) by T.

8. If F is a standard name constructor, replace all expressions of the form F(A1 .. ,An)

a F(81 ..,Bn) by ((A - B1) A ... A(An @ Bn)).

9. If F is a standard name constructor, replace all expressions of the form F(AI,....An)
i F(Bi,...,Bn) by ((A I 1 1) v...v(A n i Bn)).

After all of the previous rules have been applied, the following more general rules are

applied:

* 10. If (A a B) is an assertion, replace all active occurrences of A by B, unless A is a
standard name, in which case, replace all active occurrences of B by A.

11. If (A J B) is a goal, for each assertion of the form P(A), generate the goal .P(B).
If that cannot be proved, for each assertion of the form P(B), generate the goal
.IP(A).

12. If F(AI,..,A n) w, F(BI,..,Bn) is a goal, generate (A, a 01) A- (An" on) as a goal.

,. 155

IS. If F(Aj ..,An) # F(Bj. -OBl is an assertion, also assert (A 1 8) vv (A. On).

Rule 10 is the standard equality substitution rule. It rewrites all expressions involving

one of the terms as expressions involving the other. When given a chance, it prefers to

state things in terms of standard names, because this cuts down the possibilities for further

equality substitutions, and also because there is usually more known about an object under

its standard name than under other descriptions This rule needs the same odification as

the replacement rule for (a). If the expression that would be replaced is more general than

the replacement rule. the old expression is not deleted, but is instead modified by a syntactic

restriction. For instance, if F(A) a 8 is applied to the formula P(F(x)). the result is the two

formulas P(B) and P(F(x))/[x J Al

Rule I I is the dual of equality substituition. The Idea is that two individuals cannot be

the same if they differ in some property. Since this rule is so general it should be tried only

as a last resort. It probably could be tightened up. but since no applications of it will be

made in our examples, there is little motivation to do so.

As with the rules in the previous section, these rules for equality are incomplete,

although they are adequate for our examples. In particular, equalities which are part of a

larger assertion. e.g. ((A a B) v P), and equalities which permute expressions e.g. (xI 02

x2*x* are not adequately handled. These problems are discussed more fully in chapter 4

of Moore (975).

6.5 Procedural Interpretation of the Axioms for Knowledge

In this section we will give procedural interpretations to the basic axioms for knowledge.

(The procedural versions of all our axioms are listed for reference in appendix B.) For

axioms LI - LIS the procedural interpretations are quite straightforward. Each of these

156

axioms or schemas specifies an equivalence between an object-language expression and its

meta-language interpretation. The procedural interpretation of these axioms will be simply

to replace the object-language expression by its meta-language equivalent

LU. True(pl) <a) T(WO,pl)

L2. T(wl,(And(p,,P2)) (iN) (T(WI.pl) A T(w,-P2))

L3. 1(w, ,(Or(p 1 ,p2))) (0n (T(wj,pj) v, T(w, P2))

1.4a. T(wI,(pj P2) (2> (T(wj,pj) ->T(wj,p2))

L4b. T(wl,(p1 (P2)) (§>) (T(Wj,Pl) (T(w,,P 2))

1.4c. T(wl,(pl 8> P2)) (2n> CT(wj,pj) on T(w1*p2))

L4d. T(wj,(pj (a p2)) wU (T(wj,p1) oa T(wj~p2))

L.5a. T(Wl,(pl <i8> P2))(U (T(wl,pl) WU T(w,-P2))

L.5b. T(wj,(pj (@> P2)) (i>(T(w,pl) WU T(w,,P2))

L6. T(w1,Not(pl)) (0 n> pi

L7. T(wj ,Exist(?Si1P)) Wa 3zi(T(w1 ,P(s(ei)/?S1))

LaS. T(wl AII(?Si,P)) (0n Yu1(T(w1,PJG(si)/7Si)))

if P is not an essential property of the things it is true of.

* if P is an essential property of the things it is true of.

LI0a. D(w1,o(x)) a x,

LIOb. (D(x1) a GNP2) (8> Nm1 @ 2

L LIa. D(wj.Cnst) a V(w1*:-Cnat) if Cnsk Is not a rigid designator.

L I l b. D~wj,Cnat)J a :Cnst if Cnt is a rigid designator.

LI12a. D(wj ,F(trm1 rm,)) a V(wj ,tF(D(wl trm1),...D~wj trmn))

if F is not a rigid function.

157

Li 2b. D(wI ,F(trmI,..,trmn)) :F(D(wl ,trm1),D(wI'trmn))
If F is a rigid function.

L13. T(wl ,Eq(trm I trm2)) () (D(wptrm1) u D(w1,tr m2))

These axioms are basically straightforward translation rules, but there are a couple of

interesting points. First, since the meta-language now has several forms for implications

and biconditionals we have augmented the object-language to contain these same forms.

Although we have used the same symbols in both the object language and the meta-

language, the context will always disambiguate their use.

Second. we have introduced L lob as a new simplification rule. It says that if two

standard names are the same, the objects which they refer to must also be the same. This is

actually a logical consequence of LIOa and is not strictly necessary, but it will simplify

certain proofs to have it explicitly asserted.

KI. T(wj ,Krow(trm.a p l
)) (§) Yw2 (K(D(wj ,trm.a1),wI ,w2) -> T(w2,Pl))

K2. K(a wi ,w1)

K3. K(al ,wl ,w2)/[w1 i w2] -) (K(al ,w2,w3)/[w2 i w3] -) K(al ,wl ,w3))

Axiom K2 is also very simple, being an atomic assertion, but K I and KS are more

complicated. Like LI. LI , K I translates from the object language into the meta-language,

but the meta-language side contains an implication for which we have to choose a

procedural interpretation. The Interpretation we have chosen is to assert that everything

that John knows in W, is true in W2, for any world W2 such that KCA,W 1,W2) is asserted.

Furthermore, the implications in KS have been Interpreted in a way that promotes the

principle that whenever a formula of the form K(A,W1,W2) Is true. it should be explicitly

asserted.
TThe reason for these decisions is the fact that otherwise, forward chaining in the context

I

158

of someone's knowledge wilt not work. In section 6.3 we cited several cases where efficient

reasoning about ordinary, non-modal concepts requires forward chaining. Suppose (P a Q)

is such a case. That means that given (P a Q) and P as assertions and Q as a goal, we

should proceed by reasoning forward from P to Q rather than backwards from Q to P. We

might choose to represent (P * Q) as (P -> Q).

Suppose that this reasoning was embedded in a knowledge context; e.g.

T(WoKnow(John,(P a> Q)))). Presumably, we still want (P a> Q) to function as a forward-

chaining rule, so the meta-language expression of John's knowledge would be a forward-

chaining rule that asserts H(WI,.-Q) for any world W, for which H(Wj,:P) is asserted,

:O provided K(:John,W0 ,Wl) Is true. Now the meta-language translation of T(WO0,Know(John,(P a)

Q)))) would be K(:John,Wo,w l) -> T(wg,(P > Q). Suppose that K(:JohnW 0 ,W1) is asserted.

This will result in T(W,(P > Q)) being asserted, which will be transformed by the L rules

into H(W1 ,:P) -> H(W2,:Q), which is exactly what we wanL If we had chosen to represent the

meta-language translation of T(WO0 ,Know(John,(P w> 0))) as a backward chaining rule, the

formula H(WI,:P) 8> H(W2,:Q) would not have been explicitly asseried, and so, would not

function as a forward-chaining rule. Therefore, the right side of K I needs to be a forward

chaining rule. Furthermore, K(:JohnW 0 ,Wl) also had to be explicitly asserted; for it to be

* merely derivable would not have been enough. Therefore, we will want facts like

K(:John,Wo,W1) to be asserted whenever possible, so rules like KS will always be expressed In

forward-chaining form.

* Another point about K I and KS is that the procedural interpretation we have chosen

for the implications in those axioms Ignores the contrapositive form of the axioms. The

most natural contrapositive of a forward-chaining rule which triggers on (K.I ,w l w2) would

be a backward-chaining rule for showing ,K(alwlw2). For instance, KS could give rise to

159

a rule which says to prove something of the form -K(alwlw 2) try proving K(alw 2,w3) and

"K(ajWW 3). The reason that we ignore the contrapositive form of assertions like KS or

the right hand side of K I is that we can structure our system so that assertions and goals of

the form -K(al ,wjw 2) do not occur.

To see this, note that the only axiom which translates from the object language to the

meta-language and produces formulas containing the predicate K is K i. If we assert

T(W1 ,Know(A,P)) we obviously do not generate any formulas containing anything of the form

-K(aI,w 1 ,w2). If we have a goal of the form T(Wl,Know(A,P)), we would generate a subgoal

of the form Vw2 (K(:A,Wl,w 2) -> T(w2,P)). This would be Skolemized to something likeI
(K(:A,W1 ,W2) -> T(W2,P)), which would be proved by natural deduction, asserting

K(:A,W1 ,W2) and deriving (T(W2,P).

Conversely, asserting T(W1 ,NoIUXnow(A,P))) would result in asserting something like

K(:A,W1 ,W2) and ,T(W2,P), and trying to show T(WioIt(Know(AP))) would generate the

subgoal IK(:A,W1 ,w2) A -T(w2,P)).

In neither case is anything of the form -K(al ,WW2) generated. So if all proLlem

descriptions are stated in the object language, they will not create anything of the form

-K(aj ,ww 2). Furthermore, it is quite easy to structure the other axioms so that they do not

introduce any formulas of that form. So whenever we have a forward-chaining rule that

triggers on Ka!,wI 1 ,w2), it will not be necessary to have the contrapositive rule. One way of

, viewing this fact is tw note that the meta-language of our formalism is in some ways richer

th~'n the object language, but we do not need to make use of all of thrt richness.

A final point about KS is that it includes syntactic restrictions on its application. These

4 syntactic restrictions are included because having K2 around makes it important to check

whether a rule produces useful information if its input is KMalwlwl). If we did not place

I

160

these restrictions on K3, It would combine with K2 to produce the tautologous assertion

(K(alWlw 3) -> K(ajl,ww 3)). Moreover, even if wl and w2 are distinct, the inner rule of

K3 requires w2 and w3 to be distinct to avoid asserting K(alwlW2), which would simply

repeat the initial pattern which triggered the inference.

6.6 Some Examples

We are now in a position to work out some examples of automatically generated

deductions about knowledge. It should be noted that no program has been written to

produce these deductions, so our examples are subject to all the possible errors and omisions

of hand simulations.

Our "automatically" generated proofs will be produced by applying all applicable

inference rules in a depth-first fashion. The order of application of the rules will be to first

apply any rules which replace the current expression by another expression, then if no

further rules of that type apply, to try any other rule. Within these two groups of rules we

will follow the order that they are presented in the text. Rules which involve a second

formula will take those formulas in the order they appear in the prook. The point is to

show that the search space Is so tightly controlled that a fixed search strategy produces

satisfactory results.

In respect to the form of proofs. indentations will indicate the tree structure of the proof,

with each indented line being directly derived from the most recent line at the next higher

level. These proofs will intermix assertions and goals. Goals will be distinguished by being
40

prefixed with a s. Formulas which are deleted as they are generated, whether by

application of a deletion rule or by replacement by another formula, will be prefixed with a

0. A solved goal will be indicated y *T.

Since the structure of the proof indicates which preceding line each line is immediately

derived from, the justification column gives only the additional lines or axioms used for

that step. We will suppress much of the detail of translating from the object language to

the meta-langu age. Whenever two or more consecutive steps involve rules LI LI S. we will

combine them into a single step and simply give L as the justification.

The special justification notations Ant* and Cons indicate the assertion antecedent and

the goat consequent of an implication being proved by natural deduction. Subgoals

generated by splitting a conjunctive goal will be indicated by the notation Splilt. The

notation Eq indicates the application of one of the simplification rules for equality.

One simple txample is to show that if A knows that P implies Q then. if A knows that P.

* - then A knows that Q.

Prove: True(Know(A,(P -> Q)) o (Know(AP) 0) Know(AQ)))

1. **True (Know(A,(P a> Q)) a> (Know(AP) a> Know(AQ))) Goal
2. **T(W0,Know(A,(P *) Q))) a TCWo,(Know(A.P) a> KnowKAQ))) L
3. *T(W0,Know(A,(P 0 Q))) Ant*
4. K(:A,W0*wl) -> T(w11(P -) Q)) 1(1
5. *T(W01(P -> Q)) K2
6. H(W0,:P) 0) T(W0*Q) L
7. **T(W0,(Know(A,P) a) Know(AQ))) Cons
9. a*T(W0,Know(A,P)) a> T(W0*Know(AQ)) L
9. eT(W 0,Know(A,P)) Ant*
10. K(:AW 0,w) 0T(wl,P) KI
11. *T(WoP) K2

412. H(W01:P) L
13. *T(W0,Q) 6
14. H(W01:.Q) L
15. N*T(W 0,Know(A.Q)) Cons
16. @*K(:AW 0,W1) 0> MIA,) K!
1 7. K(:AW 01W1) Ante
18. K(:A,Wl w3)/[Wl i w3 l 4) K(:AW 0 w3)) K3
19. *T(W1 ,(P a) Q)) 4
20. N(W1 ,:P) 0) T(W1 ,Q) L
21. IT(W1 ,P) 10

4 22. HMOj,:) L
23. @T(W 1Q) 20

162

24. H(W1,1Q) L
25. esTW I Q) CoMi
26. SHCW 1AQ) Cos
27. *T 24

Line i is the statement of the problem in the object-language. Line 2 translates this into

a meta-language implication to be proved by natural deduction. Line $ asserts the

antecedent, that A knows that P implies Q. Line 4 translates tIis into meta-language terms.

saying that P implies Q in every world which is compatible with what A knows in W0. We

are treating A as a rigid designator to make the formulas simpler, although this does not

affect the length of the proof. Since every world Is compatible with what anyone knows in

that world, P implies Q in W0 (lines 5 - 6). We now try to prove the consequent of line 2.

* that if A knows that P. then A knows that Q (line 7). This translates into a meta-language

implication (line 8). so the antecedent is asserted (line 9). which translates into the assertion

that P Is true in every world which is compatible with what A knows in W0 (line 10). This

implies that P Is true In W0 (lines 11 - 12). and hence, that 0 is true in W0 (line IS. 14).

We now try to prove the consequent of line 8, that A knows that Q (line 15), which

translates into the goal of proving that Q is true in every world compatible with what A

knows in WO. The quantifier in this goal is removed by Skolemization, so we try to prove

that if W, is a typical world which Is possible according to what A knows in W0, then Q is

true in W1 (line 16). To prove this implication we assert the antecedent, that W, is possible

according to what A knows in W0 (line 17). which triggers an application of KS (line 18),

and also Implies that P implies Q in W1 (lines 19 - 20). and that P is true in W, (lines 21 -

22), hence Q is true In W1 (lines 23 - 24). We now try to prove the consequent of line 14,

that Q is true In W, (lines 25 - 26). This immediately succeeds (line 27). completing the

proof.

165

It is worth making a few comments about this proof. First of all, not every formula

generated was needed for the proof. In fact, none of the inferences that depended on

axioms K2 or KS were used. These inferences, however, accounted for only seven of the

twenty-seven lines generated. Perhaps more significant is the low branching factor of the

proof tree. For the non-terminal nodes of the tree (i.e. those formulas which generated at

least one other formula) the average number of branches was less than 1.5. This is reflected

in the fact that of the twenty-seven formulas generated, fifteen were immediately replaced

by other formulas and deleted. These are cases where the knowledge that there is only one

reasonable inference to make from a formula is embedded in the rules of inference and

axioms of the system.

Finally it should be emphasized that these are the only inferences that can be made

from the initial problem statement, given the way the axioms are structured. If we modified

the problem slightly, so that the final goal were to prove that Q is not true in W1, there

would still only be about thirty formulas generated, even though the proof would fail. This

would definitely not be the case if we turned a standard theorem prover loose on the purely

logical version of the formalism given in chapter 4. There are many possibilities for

infinite search paths through these axioms, such as trying to prove T(WIQ) by proving

T(W1 ,And(Q,pl)) or by the meta-language equivalent of trying to prove that A knows that Q4

by proving that A knows that he knows that Q. (Both of these approaches obviously recurse

infinitely.) If we tried to prove anything that did not follow from the premises of the

problem, a typical theorem-proving algorithm would never terminate. It is the care taken in

structuring the domain-defining axioms that makes our system tightly controlled.

As a second example, we will show an algorithmically generated proof that if A knows

who B is and A knows who C is, then A knows whether B equals C.

4

A
164

Givens True(Exist(?X 1 ,Know(AEq(B,?Xi))))

True(Exist(?Xj IKnow(A,Eq(C,?Xj))))

Proves True(And(Eq(BC) a) KnowAEq(BXC))),(NoI(Eq(BXC))) Knew(Atot(Eq(BC)))))
1. *True(Exist(?X ,Know(AEq(B,?X 1)))) Given
2. K(:A,Wo,wl) -> T(wlEq(B,a(:B')) L,KI

3. 8T(Wo,Eq(B,G(:B'))) K2
4. V(Wo,:B) * :B' L
5. aTrue(Exist(?X1 ,Know(A,Eq(C,?X1)))) Given
6. K(:A,Wo,wl) -> T(w ,Eq(C,m1"C')) LKl
7. *T(Wo,Eq(C,&(.'C'))) K2

8. V(Wo,:C) a :C' L

Lines I - 8 give the premises of the problem and the forward deductions made from

them. Line I is the first premise, and line 2 is its translation into the meta-language. We

have combined several applications of L rules and an application of K I into a single step.

The object-language premise says that there is some individual which A knows to be named

by B, which translates into the meta-language assertion that there is some individual

(represented by the Skolem constant :B') which is the denotation of B In every world which

is compatible with what A knows in W0 . Since W0 Itself Is one of those worlds, :B' is the

denotation of B in W0 (lines S -4). Lines 5 - 8 make the analogous inferences for the

premise that A knows who C is. As in the previous example, we are assuming that A Is a

rigid designator to simplify the meta-language formulas, without affecting the length of the

* proof. B and C, of course, must not be rigid designators to avoid trivializing the proof.

9. e*True(And(Eq(B,C) a) Know(A,Eq(BC))), Goal
(Not(Eq(B,C)) a) Know(A,Not(Eq(B,C)))))

10. a*T(Wo,(Eq(B,C) n) Know(A,Eq(BC)))) o L
) T(WO,(Not(Eq(,C)) .> Know(A,Not(Eq(B,C)))))

It. f*T(Wo,(Eq(BC)) Know(A,Eq(BC)))) Split
12. a*T(Wo,Eq(B,C)) a) T(WO,Know(AEq(BC))) L

13. eT(WOEq(BC)) Ante
14. *V(Wo,:B) M V(Wo,0 C) L

* iS. e:B'.•VO ,:C) 4

165

16. jr, s¢ 8

17. V iW0:1)•C 4

Now we try to prove the goal, that if 8 and C are the same individual, A knows that

they are the same individual, and if they are not the same individual, he knows that they

are not. Line 9 states the goal in the object language, and line 10 transforms it into a meta-

language conjunction to be solved by splitting. Line I I states the first conjunct of the split.

and line 12 converts it into a meta-language implication, to be proved by natural deduction.

Line IS asserts the antecedent, which translates into the meta-language statement that the

denotation of B In W0 is the same as the denotation of C in W0 (line 14). Since the

denotation of B is ti' and the denotation of C is C'. it follows that :B' is the same as C'

(lines 15 - 16). Making this inference causes the the instance of s9S In line 4 to be replaced

by C'. From this point on in this branch of the split line 4 is deleted.

is. %ST(WoKnow(A,Eq(B,C))) Cons
19. *K(:A,W 0 ,W1) *> TW1i ,Eq(BC)) LK1
20. K(:A,W 0,WI) Ante
21. K(:A,WlW 3)/(Wi J w3] -) K(aA.Wow 3)) K3
22. *T(WI ,Eq(B,@(:B'))) 2
23. *V(W1.:B) a :B' L
24. Y(W1,:B) a :C' 16
25. *T(W1 ,Eq(C,e(.C'))) 6
26, V(WI,:C) a .C' L
27. **TNWI,Eq(BC)) Come
28. s*V(W I ,:B) s V(W ,:C) L
29. *S:C' a V(W,:C) 24
30. ec:C' a sC' 26
31. T Eq

Line 18 makes the consequent of line 12 into the goal of showing that A knows that B

and C are the same individual. This translates into the meta.language goal of showing that

in every world (represented by the Skolem constant W I) which is compatible with what A

knows in WO, B and C refer to the same individual (line 19). This is itself an implication to

_ __,

166

be attacked using natural deduction, so we assert the antecedent (line 20). which triggers KS

(line 21). The fact that W, Is one .if the worlds which are compatible with what A knows In

* W0 triggers lines 2 and 6 to assert that the denotations of 3 and C in W, are t9' and C,

respectively (lines 23 and 26). The occurrence of :8' in line 23 Is replaced by :C' (line 24).

We now try to prove the antecedent of line 19, by showing that the denotation of B in W1

is the same as the denotation of C In W, (lines 27 -28). Since the denotations of B and C

are both C. this goal is transformed into the goal of showing that SC' is the same as :C'

(line 30), which is immediately satisfied, completing the proof of the first branch of the

split (line S1).

32. u*T(Wo,(Not(Eq(B,C)) g> Know(A,Not(Eq(BC))))) Split
33. **T(W0 ,NOt(Eq(BC))) -> T(W0,Know(A,Not(Eq(B.C)))) L
34. vT(W0,Not(Eq(BC))) Ante
35. *V(Wo,:B) f V(W0,:C)
36. *:B' if V(W0,:C) 4
37. :B' i 1C' a
38. nST(W0,Know(A,Not(Eq(B,C)))) Cons
39. **IK('A,W 0,Wj) > T(Wi ,Not(Eq(B,C))) L,KI

40. K(:A,W0,WI) Ante
41. K(:A,WIw 3)/[W1 j w3] > K('A,Wow 3)) K3
42. eT(W I ,Eq(9,@(:B'))) 2
43. V(WI ,:B) a :B' L
44. oT(W ,Eq(C,e(:C'))) 6
45. VW I, :C) M :C' L

e 46. n*TWg,Not(Eq(BC))) Com
47. O*V(W I :B) if VCjN,:C) L
48. ss:B' i V(Wi ,:C) 43
49. aIB' F SC' 45
50. *T 37

The proof of the second branch of the split Is quite similar to that of the first. We

begin with the goal of showing that if B and C are not the same, A knows that they are not

the same (lines 32 -SS). This is an Implication, so we assert the antecedent (line 34), which

is translated into the meta-language assertion that the denotation of B in W0 is not the

6 , l " '1 •- 1 " i i l ,

167

same as the denotation of C in W0 (line 35). Since we know from lines 4 and 8 that these

-' denotations are to' and ,C. respectively, we infer that :B' and C are not the same (lines 36 -

- s7).

Now we try to prove the consequent of line 33, showing that A knows that B and C are

not the same individual (line 38). This translates into the meta-language goal of showing

that in every world (represented by the Skolem constant WI) which is compatible with what
A knows In W0. a is not the same individual as C (line 39). We assert that W, is compatible

with what A knows in W0 (line 40), which triggers KS (line 41), and implies that the

denotations of B and C in WI are :B' and .C', respectively (lines 42 - 45). We now try to

prove that the denotations of S and C in W, are not the same (lines 46. 47). Lines 43 and

45 transform this into the goal of showing that :B' and C' are not the same (lines 48 - 49).

This matches the assertion on line 37, so we are done (line 50). This completes both

branches resulting from spitting line 10, so the entire proof is complete.

I,

tl

169

7. Automating Deductions about Knowledge and Action

7.1 Interpreting Axioms for Knowlege and Action

In this chapter, we deal with more complex problems of algorithmically generating

deductions involving both knowledge and action. In the previous chapter, the examples of

greasoning about knowledge alone involved only one or two possible worlds The problem

was simply to set up a typical world which is compatible with what someone knows, and to

do a simple deduction relative to that world. In reasoning about both knowledge and

action, however, we will be dealing with fairly complicated structures of several possible

worlds. Managing the flow of information among these possible worlds is a major problem.

The axioms relating to action and Its interaction with knowledge must be structured to

manage this information flow in an efficient manner. These issues can best be explored by

examining the axioms involved. It may be helpful to refer to appendix A to compare the

procedural versions of these axioms with the purely logical versions.

~~Rl. T(wI ,Res(trm.evl I))/

[(trm..vj J Do(trm.a i ,(trm.act 2; trm.act3))) A
(trm.ev, J Do(trm.ai,lf(P2 ,trm.act2,trm.act 3))) A
(trm.ev1 j Do(trm.aj ,WhiIe(P2,trm.act2))] *-

* 3w2(R(DwOo(trm.a I ,trm.actj)),wl ,w2) A T(w2,P))

R2. T(w ,Res(Do (trm.al,(trm.act I; trm.act2)),pI)) Wa)
T(w1 ,Res(Do(trm.a ,trm.act I),Ras(Do(a(D(wi ,trm.a1)),trm'act 2), P)))

R3. T(w1 ,Res(Do(trm.al ,If(p ltrm.actl ,trm.act 2)),p2)) (-)
* ((T(wl ,Pl) A T(w1 ,Res(Do(trm.aj ,trm.actI),p2))) v

(-T(wlp I) A T(w I,Res(Do(trm.a1 ,trm.ct2),P2))))

R4. T(wI ,Res(Oo(trm.aI ,While{Pl ,trm.actI)),p2)) <1>
T(wl Res(Do~trm.sI ,If~pl,(trm.actli While(pl trm.ctIA))Nl)p2))

R5. R(Do(lrm.a&,Nil),w1,w2) (au (wI a w2)

I-

" 170

Res is the basic object-language predicate for talking about the results of actions.

Recall from chapter 3 that T(WI,Res(EvP)) means that in the world W, it is possible for the

event Ev to occur and that in the resulting situation/world P is true. R I is a translation rule

from the object language to the meta-language that embodies this definition. The syntactic

restrictions in R I prevent its application to events that are described as complex sequences

of actions. We use syntactic restrictions here because, although R I is true for complex

sequences, heuristically we want to use R2 - R4 instead if they are applicable. The syntactic

restrictions on R I simply rule it out in cases where R2. R4 apply. R2 is an expansion rule

for object-language expressions which transforms a formula which talks about the results of

* a sequence of actions Into a formula which talks about doing the first action in the

sequence, and then doing the rest. If the first action in the sequence is a simple action. R I

can the be applied. Otherwise, the decomposition of the complex action continueJ. R$ -RS

describe similar decompositions for conditionals and loops.

In addtion to Res, we also have the weaker operator Real. Recall that the difference

between Res and Real Is that Real assumes that the event is possible, rather than asserting

that it is. That is, Rosl (Ev,P) means that if Ev were to happen, P would be true in the

resulting situation, while Res(EvP) makes the additional assertion that It Is possible for Ev to

happen. The procedural version of the axiom which defines Real for one-step actions is as

* •follows:

R6. T(w ,Re$1 (trm.ev1 ,pl))/
[(trm.ev1 j Do(trm.al,(trm.wct 2 ; trm.act3))) A
(trm.ev1 i Do(trm.a 1 ,If(P2 ,trm'act2,trm.act 3))) A
(trm.ev J/ Do(Irm.a ,While (p2,trm.act2))] (4>

Vw2 (R(O(wl ,Do(irm.aj ,trtn.act I)),wj ,w2) -) T(w2 ,pj))

Proving a goal involving Real will be the same as proving a goal involving Res, except that

we will assert that there is a situation which Is the r, sult of the event happening, instead of

proving that there is such a situation.

1

K 171
Cl. T(wj ,Can(trm.a ,tra.act1 ,Pj))/

C(trm.actI J (trm.&ct 21 trm.act 3)) A
(trm.act, i If(p2 ,trm.act2,trm.1ct 3)) A
(trm.actl i While(P2 ,trm.at 2))] <"

T(w 1 ,Know(trm.a ,And(Eq(o(D(wl ,trm.actl)),trm.a tl),
Res(Do(o(D(w| ,Ira.area)),trm.Kt|),p|))))I

C2. T(wj ,Can(Irm.al ,(trm.actl; trm.aKt 2),pj)) ()
T(wj ,Can(irm.al ,trm.act ,Can(m(D(wj ,trm.al)).trm.act 2,p1)))

C3. T(w],Can(trm.al,if(p|,trm.at i trm.&t2),P2)) (5>
((T(w I ,p) A T(w1 ,Can(Irm.aj ,trm.atj,p2))) v

(-T(wl ,pl) A T(wl Can(trm.&| ,trm.act 2 , p2))))

~~C4. T(wI ,Can~trm.aI ,While(p| tr.act I),2)) (3>

T(w 1 ,Can~trm.a I ,lf(pj ,(trm.actl I While(pj ,tr.acIl)),Nil),p2))

The object language operator Can describes the ability of an agent to obtain a result by

performing a given action. In essence, T(W1 ,Can(AAct,P) means that A knows how to

achieve P by doing Act. Ci says that T(Wj,Can(AAct,P) is true if A knows what action Act

describes, and knows that his doing Act will bring about P. Like RI. Cl is restricted to

apply only to simple actions, but for a somewhat different reason. The trouble with

applying Cl to a complex action is that it imposes too strong a requirement on whether an

agent can carry out the action. Recall that in chapter 3. we said that knowing what action

Act describes amounts to knowing exactly how to carry out Act, But if Act describes a

sequence of actions, it need not exactly specify every step of the sequence in order for an

agent to be able to carry out the sequence. The first step must be specified exactly, but for

the remaining steps described by Act, it is only necessary that the agent know that at each

step he will know what to do next. This allows for steps during which the agent acquires

information about what to do. This idea is expressed by the expansion rule C2, with CS

and C4 integrating loops and conditionals into this structure.

This this finishes most of the very general axioms; the remainder are about specific

172

Iactions or predicates. Since all our examples involving both knowledge and action deal

with opening safes, we will look at the axioms for Dial next.

Die. R(:Do(a ,:Dial(xI ,x2)),wI w2) 8>
3w3(V(w3,Comb(x 2)) a x!) A :Safo(x2) A H(w1 ,:At(aj ,x2)))

Di b. R(:Do(a ,:Dial(x I 0x2)),wl,F (aI ,xl x2,w)) (8
((V(w 3 ,:Comb(x 2) a xI) A $Saf°(x2) A H(wl ' At(a x2)))

D la and D Ib describe the circumstances under which it is possible to perform a dialing

action. The thing being dialed must be a combination, the thing it is dialed on must be a

safe, and the agent must be at the same place as the safe. We have split axiom DI Into two

parts so that the existential quantifier could be removed from the left side. Removal of the

quantifier is necessary for the unification-based matching routine to work properly. The

-. biconditional In DI had to be broken apart because the quantifier in a formula of the form

C3x(P) > Q) is Skolemized differently than the quantifier in 3x(P) (a Q).

02. R(Do(ej ,:Dil(xI x2)),wI w2 -
((H(w 2 ,int.p!) (n)

(((int.pj a :Opon(x2)) A
((V(w,:Comb(x2)) a x!) v H(wi ,:Ope n(x2)))) v

((int.p! J :Open(x2)) A H(w ,int.p!)))) A
(V(w2,int.trmi) a V(wl,int.trml)))

0 D2 is significantly more complex than the preceding axioms and deserves special

attention. D2 describes the total physical effects of dialing and Incorporates the previous

frame axiom D4. It says that in the situation/world resulting from dialing the combination

* x, on the safe x2, any proposition Is true just in case the proposition is that the safe is open,

and either the combination dialed was the combination of the safe or the safe was already

open, or the proposition is something other than that the safe Is open and the propostion

*) was true before the dialing took place. Also, any term refers to the same object in the new

situation as it did in the preceding situation.

4

I73

D2 is structured so that all assertions and goals "flow* backwards in time from the new

situation to the oii situation. This incorporates a solution to the frame problem which has

been advocated by many authors, including Kowalski (1974). Hewitt (1975). and Waldinger

(1975). That method is: To decide whether a proposition is true in the situation resulting

from performing an action, first see whether the action made the proposition true or false

and report success or failure accordingly, and if the action did not affect the proposition, see

whether the action was true in the situation prior to the action. If there is a sequence of

situations leading to the situation we are interested in, the procedure is recursive. D2

implements this procedure for physical propositions, because whether the safe is open is the

only physical condition affected by dialing.

D2 also takes in to account another possibility ignored by most systems. That possibility

is that we may be told something about a situation that implies something about a

preceding situation. For instance, If we are told that the safe is not open after the dialing

action, this implies that the safe was not open before the dialing action either. D2 handles

this inference, since its output functions as a forward-chaining rule which, for any fact

which Is asserted about the situation resulting from the action, asserts the information it

provides about the preceding situation.

Another significant fact about D2 is that it is a forward-chaining rather than a

backward-chaining rule. If we are trying to verify the effects of a given action, we clearly

want to confine our attention to assertions about that action. If we turned D2 around and

made it a backward-chaining rule, the test whether the action involved is the one we are

interested in would be the last thing checked. If we had axioms describing many other

actions, the system could do a lot of useless search before finding the action it needed. On

the other hand, if we were doing plan generation, we would be looking primarily for a

specific result, and be willing to take any action that provided it to us, so a backward-

174

chaining rule would be appropriate. We would probably want to have two logically

equivalent rules, with restrictions on the input variables to distinguish them. If the variable

*i for the resulting situation were unbound, It would indicate that we were looking for a way

*to achieve a goal, and we would use the backward-chaining rule. If the variable for the

resulting situation were bound. it wc d indicate that we were trying to verify the results of

a particular action, and we would use the forward-chaining ru.,.

*Also note that for D2, we do not use the contrapositive form. The natural

contrapositive would be a backward-chaining rule for proving a goal of the form

* -R(:Do(a ,:Dial(xIx 2)),wI,w2). but the only goals of that form will be attempts to prove that

a dialing action is not possible because its prerequisites are not satisfied. In these cases, Dia

Is the only appropriate rule to use. This is another case where the meta-language provides

for more possibilities than the object language requires.

*There is one problem with using D2 as a forward-chaining rule, however. Suppose we

want to prove something of the form T(Wj,Res(Do(A,Dial(CI,SIj)),P). That Is, we want to

show that P could be achieved by A doing Dial(C,Sf 1) in W1 .This would get translated by

R I Into the meta-language goal of showing that there is some world w2 such that

R(:Do(:A,:DiaC:Cj,:Sfj)),W1 ,w2) Is true and T(w2,P), i.e. w2 is a possible outcome of

DoA,Dial(CI,Sfl)) happening in W1, and P Is true in w2. The only rule we have for

attacking a goal of the form R(:Do(:A,:Dial(:C,':Sfj)),Wlw 2) is DIb. If all the prerequisites

are satisfied, this rule will succeed, leaving w2 bound to the Skolem term Fl(:A,.C,:Sfl,W1)

(which we will abreviate as W2), and we will try to prove the remaining goal T(W2 ,P).

T ipcalsy. showing this will depend on the information contained In D2. The trouble is

D? 1) needs the explicit assertion R(:Do:A,:Dia(:Cj,:Sfl)),WjW 2) in order to trigger.

S.. , we have just proved this formula, the proof procedure we currently have does

175

not cause it to be asserted. There is a danger here that asserting everything that Is proved

may produce an explosion of forward-chaining inferences. Therefore we will make a

special case of formulas of the form R(evl,wlw 2). Whenever anything matching this

pattern is proved, it will be be explicitly asserted in order to give rules like D2 (and. as we

shall see, D3) a chance to fire.

D3. R(:Do(a& ,:Dial(xl ,x2)),wl ,w2) -
(K(ai w2 ,w3)/[w2 i w3] (->

(Jw4 (K(ai ,wi ,w4)/Iwl if w4] A

R(:Do(a I ,:Dial(xix 2)),w4,w3)) A
(H(w2 ,.zOpon(x2)) <(> H(w3,:Open(x2)))))

D3 explains how dialing affects the knowledge of the agent. Basically, it says that after

dialing, the agent knows what action he has performed and he knows whether the safe is

open. How this is expressed in terms of possible worlds was thoroughly explained in

chapter 3. D3 is similar in many respects to D2. It is a forward-chaining rule with no

contrapositve interpretation for exactly the same reasons as D2. The consequent of D3

introduces some new concerns. just as in its purely logical form, the cons'. ,ent of DS is a

biconditional. The interpretation of this biconditional, however, is different from either of

the principal procedural interpretations introduced In chapter 6. (P (-> Q) may simply be

regarded a syntactic abreviation for simultaneously expressing (P -> Q) and (P (- Q). That

is. only goals and assertions corresponding to P are dealt with; --P is ignored. We make this

restriction in D3, since the formula on the left side of <-> is K(a1,w2,w 3). a formula whose

*l negation should never occur,

D3 also contains syntactic restrictions on some of its subformulas. To see why, we need

to look In detail at how DS works. Suppose W2 is the result of DO(A,Dial(C 1,Sf1) occurring

* in W1. D3 will trigger on this assertion, producing the new assertion:

aI

176

(1) KC:A,W 2 ,w3)/[W2 i W3 1 (">

a3w4(K(:A,W1 ,w4)/(Wl j w4) A
R(:Oo(:A,:Dia{:C l ,:Sf1)),w4,w3)) A

(H(W2 ,:Op.n(:Sf 1)) (-w H(w3 ,:Open(sSfj))))

This says that any world w3 which is compatible with what A knows in the new

situation W2 must be the result of Do(A,Dial(C 1,Sfl)) happening in some world which was

possible according to what A knew in the old situation W1, and agree with W2 as to whether

Sf 1 is open. The syntactic restriction [W2 i w3] prevents consideration of W2 itself as a

binding for w3. One reason for this restriction is that to allow W2 as a binding for w3

would generate no real information. We already know that W2 is the result of

(Do(A,Dial(Cj ,SfI))) happening in a world which was possible according to what A knew in

Wl , namely W, itself, and W2 obviously agrees with itself as to whether Sf1 is open.

An even more important reason for the restriction CW2 i w3] is to avoid generating an

infinite number of assertions. Suppose we did allow w3 to be bound to W2. K2 would then

apply, generating-

(2) 3w4(K(:A,Wj ,w4)/(Wl i w4] A
R(:Do(:A,:Dial(:C1 ,:Sf1)),w4,W2)) A

(H(W2 ,:Open(9Sf)) (8) H(W2,:Open(:Sfj)))

TI-e last part of this assertion could be deleted as a tautology, but the first part would be

Skolemized and turned into the two assertions:

* (3) K(:A,W I,W)
(4) R(:Do(:A,:Dial(:Cj ,:Sf!)),W4 ,W2)

Assertion (4), however would trigger DS all over again. recursing infinitely. The trouble

* is that the Skolem constant W4 really refers to the same world as W1, but our techniques are

• - 4 JU , IN |-a ii ,

177

not clever enough to catch this. If we had a more clever from form of subsumption. we

could notice that the existentially quantified part of assertion (2) Is already known to be true

before Skolemization takes place. Alternatively, we could have an axiom saying that every

world Is the successor of exactly one other world with respect to a particular action. This

fact plus assertion (4) would cause us to conclude that W4 equals W1, and W4 would be

replaced by W, 4n assertions (3) and (4), which would then be deleted by subsumption.

Either of these methods, however, Is much more complicated than using a simple syntactic

restriction.

The other syntactic restriction in DS ([wl i w4] in the third line) Is used when the

consequent of D3 is used as a backward-chaining rule. Suppose we know that in WI , A

knows that the safe is open, but does not know that P is true, where P has nothing to do

with whether the safe is open; and we want to show that after performing Dial(CI,Sfl), A

still does not know that P is true. Asserting that A already knows that the safe is open is

the easiest way to insure that finding out whether the safe is open after dialing will not

indirectly tell A whether P is true. The forward inferences from the premises of the

problem will include meta-language assertions to the effect that there is some possible world,

say W4 , which is compatible with what A knows in Wi , i.e. K(:AWj,W4), and in which P is

false, i.e. -H(W4,:P), and the safe is open.

In proving that A does not know that P is true after dialing the safe, we would assert

that some world, say W2, is the result of Do(A,Dia1(C 1,SfI)) happening in Wl , which would

trigger D2 and D3. As in the previous example, D3 would produce assertion (1). above.

Then we would try to 3rove that there is some world which is compatible with what A

knows in W2 in which 11 is false, i.e. K(:A,W2,w3) A .H(w3 ,:P). K2 provides one solution to

the first goal in this conjunct. That Is, one way to prove that A does not know that P Is

I

178

true in W2 is to prove that P is, in fact, not true In W2. If this fails the only other

applicable rule we have is assertion (I). Assertion (i) is now used as a backward-chaining

rule and produces the following conjunctive goal:

(5) K(:A.Wl,w4)/[Wl i w4] A

R(:Do(:A,:DiaI(:C ,:Sf I)),w 4 ,w3) A
(H(W2 ,:Open(:SfI)) (-> H(w3,sOpen(:Sf)))

Now the syntactic restriction in goal (5) comes into play. If we let w4 be bound to WI,

then the second conjunct would be solved by binding w3 to W2, which would give us the

same case we considered when we applied K2 to our top level goal. So this restriction, like

the others we have seen eliminates a redundancy in our search space.

If we continue with the deduction, we would eventually try binding w4 to W4 . Solving

the second conjunct would produce a binding for w3 . say W3. which is the result of

Do(ADial(CI,C 2) happening in W4 . Since the safe was open in both W1 and W4, the safe

would also be open in both W2 and W3 , so the third conjunct of goal (5) is also satisfied.

This leaves us with only the second conjunct of the top level goal. -H(W 3 ,:P), left to satisfy.

Since W3 is the successor of W4, and -H(W3 ,:P) is true, the part of D2 that says what does

not change will let us prove that .-H(W3,:P) is true, completing the proof.

"There is one more comment to make about D3. Since the output of D3 has one

interpretation as a backward-chaining rule for proving goals of the form K(aI,w 1.w 2), and

since most of the rules that have K(ai ,w! ,w2) as an antecedent are forward-chaining rules,

we may have a problem proving goals like K(A,W 1,w2) A T(w2,P). A goal like this could

come from trying to show that A doesn't know that -P is true in WI . The problem is that

that we might use the output of D3, i.e. assertion (I). to solve the first part of the goal, but

I :

.179

K(A,W1 ,W2) might have to be explicitly asserted to trigger forward-chaining rules to solve

the second part of the goal. This is essentially the same problem as with R(evjw 19 w2),

which we pointed out in the discussion of D2. As in that case, we will make a practice of

explicitly asserting any formula that matches K(alwlw 2) which has just been proved using

a backward-chaining rule.

This concludes the analysis of the most important rules which we will use in doing

deductions that involve both knowledge and action. The point of going into so much detail

about them is to convey a feeling for the kinds of considerations that go into making a

procedural deduction system work efficiently. It should also be obvious by now that no

uniform inference procedure could hope to do the right thing in all these special cases. If

there were a good theory of this sort of thing, it would probably be possible to paint a more

coherent picture of what is going on. Unfortunately, such a theory does not currently exist.

7.2 An Example of an Action which Requires Knowledge

In the rest of this chapter, we will examine in detail algorithmically generated proofs of

our three benchmark examples of reasoning about knowledge and action from chapter I.

In the first example. knowledge is required to achieve a goal; in the second, an action is

used to obtain knowledge;, and in the third, there is a sequence of two actions, where the

first action produces information required by the second action. The possible-world

structures for these proofs are the same as for the hand generated proofs in chapter &. It

may be of some help, therefore, to refer to figures 5.2. 5.5 in studying the examples.

These examples are long and complicated. so the casual reader may prefer to skim them

or skip over them entirely. Some general analysis of the examples is presented in section

7.5. The major point made there (and the thing to note in the proofs themselves) is how

- o • -. o , . , - . - . .

[:: 180

tightly the procedural information we have built into the axioms constrains the search for

*. proofs. In fact, there is almost no blind searching at all and the search space Itself is finite.

*The general pattern of these proofs is that the goal is transformed into an implication

which is proved by assening the antecedent and deriving the consequent. The assertion of

the antecedent triggers off many forward deductions which describe the possible world

structure relevant to the problem. and the consequent of the go.AI is derived by doing simple

* backward-chaining inferences in that structure. As a result, although these proofs are long.

no combinatorial explosion of formulas occurs.

The first example is to show that if John is at the same place as a safe, and he knows

the combination to the safe, then he can open the safe by dialing the combination. As we

saw in chapter 5, this proof requires one auxiliary fact in addition to those already

discussed:

Al. K(a1 ,wl w2)/Ewl i w2J -)
(H(w2 ,:At(a I ,xI)) v ,H(wI ,,At(a1 .xI)))

This axiom says that if a person is at the same place as some object, he knows that he is

at the same place as the object. A I is stated somewhat differently than in chapter . Here

it is treated as a forward-chaining rule triggered by K(a1 ,wl,w 2). We restrict wI and w2

from having the same binding in order not to allow K2 to trigger the tautologous

conclusion H(wi :A(a i xI)) v -H(w1,:At(a i xI)). The consequent Is expressed as a disjunction,

which is procedurally interpreted as two backward-chaining rules, because there does not

seem to be any need to use a fact of this form as a forward-chaining rule.

We can now algorithmically generate the follving proof (see figure 5.2.

Given: True(Safe(Sf I))
True(At(John,Sf 1))
True(Exist(TX 1,Know(JohnEq(X IComb(Sti)))))

"" 181

Prove: True(Can(John,Dial(Comb(SfI),Sfl),Open(Sfj)))

1. sTrue(SafeSf I)) Given
2. :Safe(Sf 1) L

3. @True(At(John,Sf I)) Given

4. H(Wo,:AtW:John,:Sf I)) L

5. nTrue(Exist(?X I ,Know(John,Eq(Comb(Sf I),?X i)))) Given
6. K(:John,Wo0w1) -> T(wI Eq(Comb(Sf),) LKI
7. 8T(WoEq(Comb(Sfj),at:C))) K2
8. V(Wo,.Comb(:Sf I)) a ,C L

Lines I - 8 state the premises of the problem and the forward inferences made from

them. Line I says that Sil is a safe, and line $ says that John Is at the same place as the

safe. Lines 2, and 4 translate these facts into the meta-language. Line 5 expresses the fact

that John knows the combination to the safe, by saying that there Is some entity which John

knows to be identical to the combination of 'he safe. In translating this statement into the

meta-language, we let :C denote this entity. The meta-language translation of line 5 says

that in every world which is compatible with what John knows in W0. the combination of

the safe is :C (line 6). Since W0 is compatible with what John knows in W0 . we conclude

that the comination of the safe in W0 is :C (lines 7 - 8). This is the meta-language

expression of the fact that the entity which John knows to be the combination to the safe, is

the combination to the safe.

9. @*True (Can(John,Dial(Comb(SfI),Sf I),Open(Sf i))) Goal
10. *T(WoCan(John,Dial(Comb(Sfj),Sfl),Open(Sf I))) L
11. aT(Wo,Know(John, Cl

And(Eq(v(D(WoDial(Comb(Sf 1),Sf1))),Dial(Comb(Sf I)Sf1)),
Res(Do(m(D(WoJohn)),Dia(Cornb(Sfj),Sf I)),Open(Sf)))))

12. **K(:John,W 0 ,Wl) -> K 1L
T(WI ,And(Eq(G(D(WO,Dial(Comb(Sfj),Sf1))),Dial(ConMb(Sf1),Sf)),

Res(Do(g(D(W0 ,John)),Dial(Comb(Sfj),Sfj)),Opon(fj))))

Lines 9 - 12 state the goal and its meta-language translation. The goal Is to show that

182

John can open the safe by dialing the combination (lines 9- 10). According to Cl. he can

do this if he knows precisely what action dialing the combination of the safe is, and he

knows that dialing the combination of the safe will result in the safe being open (line 11).

This is re-expressed as the goal of showing that in every world which is compatible with

wl it John knows in W0, dialing the combination of the safe is the same action as it is in

WO, and dialing the combination of the safe will result in the safe being open (line 12).

13. K(:John,W0 ,WI) Ante
14. K(:John,W1 ,w3)/[Wj J w3] -) K(:John,WOw 3) K3
15. H(W1 ,:AI(:John,xI)) v -H(Wo,:Al(tJohnxl)) Al
16. 8T(W l ,Eq(Comb(Sf I),m(:C))) 6

* 17. VNIW,.Comb:Sf) :C L

Since line 12 is an implication goal, we assert the antecedent and try to prove the

consequent. We assert K(:John,W0,W1) which triggers KS (line 14) and Al (line 15). We

also conclude from line 6 that the combination of the safe in WI is .C (lines 16 - 17).

18. T(WI ,And(Eq(n(D(WO0 Dial(Comb(Sf1),Sfj))),Oial(Comb(Sfj),Sfj)),
Ros(Do(m(D(Wo,John)),Dial(Comb(Sf i),Sf1)),Open(Sf1))))

9. **T(Wi ,Eq(m(D(WODial(Comb(StI),Sf I))),Dial(Comb(Sfl),Sf1))) A Conso
T(WI ,Res(Do(e(D(WOJohn)),Dial(Comb(Sf 1),Sf1)),Open(SfI)))

20. esT(Wi ,Eq(e(D(WoDial(Comb(Sfg),SfI))),Dial(Comb(Sf I),Sf I))) Split
21. **:Dial(V(Wo,:Comb(:Sf I)),:Sf I) n -Oial(V(W I ,:Comb(:Sf1)),:Sf I) L
22. **:Dial(:C,:Sf) a :Dial(V(M ,:Comb(:S 1)),1Sf 1) a
23. S*:Dial(-C,'Sf 1) s :Dial(:C,:Sf!) 17
24. *T Eq

We now try to prove the consequent of line 12, that in W1, dialing the combination of

the safe is the same action as it is in W0. and dialing the combination of the safe will result

in the safe being open (lines 18. 19). This conjunctive goal is split into two subgoals. First

we try to prove that dialing the combination of the safe in W0 is the same action as dialing
1S

0

383

the combination of the safe In W, (lines 20 - 21). Since the combination of the safe is C in

both W0 and W1. this goal is transformed into the goal of showing that the action of dialing

:C on :sf is Identical to itself (line 22 - 23). This simplifies to proving T (line 24). so this

branch of the split succeeds.

25. *T(W1I ,Res(Do(e(D(WoJohn)),Dial(Comb(Sf |),Sf1)),Open(Sf1))) Split
26. **R(:Do(:John,:Dial(V(W ,:Comb(tSfl)),:Sfj)),Wl ,w2) A RI ,L

T(w2,Opsn(Sf))
27. e*R(:Do(:John,:Dil(VW1 ,:Comb(: s f|1)),:Sfj)),W ,w2) Split
28. *R(:Do(:John,:Dial(:C,:Sfl)),W1 ,w2) 37
29. u*(V(w3 ,:Comb(:Sf 1)) a -C) A Dlb

:SSfe(:Sf I) A H(WI ,:At(:John,tSfj))
30. *V(w3,:Comb(sSfj)) a C Split
31. **:C 0 :C a
32. *TEq
33. *:Saf.(:S! 1) Split
34. *T 2
35. *H(WI ,:At(:John,:Sf 1)) Split
36. *H(WO,:At(:.John,:Sf I) 15
37. *T 4

The other branch of the split is to show that dialing the combination of the safe in WI

will result in the safe being open (line 25). This reduces to showing that it is possible to for

John to dial the combination of the safe in W1, and that in the resulting situation the safe

is open (line 26). We split this goal, and try first to show that it is possible for John to dial

the combination of the safe in W, (line 27). Since the combination of the safe in W1 is tC.

this is transformed into showing that it is possible for John to dial 1C on SfI in W, (line 28).

1 According to DIb, this can be done if C is a possible combination of Sf1, SfI is a safe, and

John is at the same place as SfI in W, (line 29). This goal splits three ways. The first

subgoal is satisfied by the fact that :C is the combination of Sf1 in W0 (lines S0 - 32), and

* the second is sitisfied by the fact that SfI is asserted to be a safe (lines S - 34). The third

4c

184

subgoal Is that John is at the same place as the safe in W, (line SU) According to line 15.

this is true it John Is at the same place as the safe in W0 (tine 36). But this is one of the

* premises of the problem, so we have solved this subgoal (line 3S) and also the conjunctive

goal on line 29, and the goal on line 28.

38. R(:Do(:John,:Dial(:C,:Sf 1)),W1 W2) Solved
39. V(W3,-.Comb(:Sf 1)) a Di e
40. 8:Saf 0(:Sf I) Di a
41. *H(Wl,:At(:John,:.Sf 1)) Die
42. H(W2,int.pl) (a) 02

C((int.pj - :Opon(:Sf)) A
((V(W1 ,-Comb(:Sf I)) a :C) v H(W1 ,.Opon(:Sf 1)))) v

((int.pl # :Opon(:Sf 1)) A N(WI~int.P1)))
43. V(2 intirml) a V(Wjpint~trmj) D2

44. iC(:John.W 2,w3)/[W2 i w33 (-) 0
(3w4(K(:JohnWl w4)/EWI i w4 I A

R:Do(:John,:Dis(C.:Sj 1)),w4,w3)) A
CH(W 2,:OPen(:Sf 1)) (8) 1(w3,:Open(:Sf I)

Since line 28 is a solved goal which matches R(ov 1,wjw 2), we now turn the solution to

line 28 Into an assertion. Line 28 was solved by binding w2 to F, (:John,-CtiSfj ,). but for

simplicity we abreviate this as W2 (line 38). This assertion triggers several forward-

chaining rules. Dia produces assertions that :C Is a possible combination of Sf1, Sf1 Is a

safe. and John is at the same place as Sf , in W, (lines 39 - 41). Basically, alt this

information is redundant. If we made the algorithm a bit more clever, it might notice that

D Ia and D lb together form a biconditional, and since we just proved line 38 using D I, we

* already know all the information that it contains, and i. is unnecessary to trigger DI again

as a forward-chaining rule. Line S8 also triggers D2, which produces assertions describing

* the physical effects of dialing :C on SfI (lines 42 - 43), and DS. which produces an assertion

4 describing the effects of the action on John's knowledge.

-oii 185

45. 4sT(W2 ,Open(Sf)) Split
46. e*H(W 2 ,:Open(:Sfj)) L

47. **(.Open(:Sf) a .0pen(:Sj)) A 42
(Y(Wl ,:Comb(:Sf 1)) - sC) v H(WI,sOpen(sSf1)))

48. e*(:Opon(:Sfl) a .Open(:SfM)) Split
49. sT Eq
50. e*V(W1 ,:Comb(:S1I)) a u: Split
51. S*:C a 3C 17
52. sT Eq

Now we try to solve the second branch of the split of line 26. Taking the binding from

the solution to the first branch, we try to show that the safe is open in W2 (line 45 - 46).

This is a question about the physical effects of dialing :C on Sf1, so line 42 is used (line 47).

Since we are asking about whether the safe is open (lines 48 - 49), we can solve our goal by

showing that :C is the combination to the safe in W, (line 50). But we know this is true, so

the current subgoal is satisfied (lines 51 -52). Since this is the last branch of the last split.

the entire proof Is complete.

7.3 An Example of an Action which Produces Knowledge

In this example, we assume that C1 is the combination of Sf1 and that John knows that

StI is not open. We show how to algoithmically generate a proof that if John tries to open

SfI by dialing C1. he will know that C, is the combination of SI. This proof involves the

facts that after dialing C, John knows that he tried to open the safe, he knows whether the

safe is open, and he understands how the safe being open depends on whether the

combination of he dialed is the combination of the safe. (See figure 5.S.)

Given: True(Know(John,Not(Open(Sf I))))

True(Eq(Comb(Sf i),Cl))

Prove: True(Re.l (Do(John,Dial(CI ,Sft)),Know(John,Eq(Comb(Sf 1),C1))))

d I 1 I.. .. . I I i I 1 I I I ,, *l d .. . I ,

Ise

1. eTrue(Know(John,Not(Open(Sfj IM) Given
2. K(:JohnW 01wl) -)T(w1 l~ot(Open(S11))) L,KI
3. *T(W0,Not(0 1.n(Sf 1))) K2
4. .H(WO,:Op~n(:Sf 1)) L

S. *True (Eq(CombCSfj).CI)) Given

6. VCW,:Comb(:S 1)) - C I L

Line I is the premise that John knows that the safe is not open. and line 2 is its meta-

language translation. Since John knows that the safe is not open, we can conclude that the

* safe is not open (lines 3 - 4). Line 5 is the premise that C, is the combination of the safe.

* and line 6 is its meta-language translation.

7. O*True(Rez I (Do(John,Diat(Cj ,Sf1)),Know(JohnEq(Comb(Sfj 1).C)))) Goat
8. u*R(:Do(:John,:Diat(:.Cj,:Sfj)),W0,Wl) 4 LR6

T(W1 ,Know(John,Eq(Comnb(Sf 1),C1)))
9. R(:Do(:John.:DiaI(:C1 ,.:Sfj)),W0,Wl) Ante

10. V(W 3,tComb(:Sf IN a Dl We

II. :Safe:Sf I) Dla

12. H(W0,:At(:John1:Sf 1)) Dl.

13. H(Wlint.pj) (0 02

M(int.p1 e :Opon(:Sf 1)) A
W((W0,:Comb(:Sf 1)) w :Cl) v H(W,:Op~n(:Sfj I)

((nt.pl i' :Opon(:Sfj)) A H(W0,int4~j)))
14. VWp int.trmj) a Y(W0,int~rmj) D2
15. K:John,Wj,w3)/CWj i w3J (-> D3

(3w4(K(:John-W0,w4)![W0 ji w43 A
R(:Do(zJohn,:Dial(:Cj ,:Sf1)),w4,w3)) A

(H(W1 ,:Open(:Sf I)) Wa 1(w3,.0Op~nC:Sfj I)

Line 7 Is the goal of showing that if John dials C1 on SfI he wilt find out that C1 is the

combination of Sf1I. R6 transforms this into the goal of showing that if WI is the resuilt of

John dialing C1 on StJ 1in WO, then in W, John knows that C, is the combination of Sf

(tine 8). Since this Is an implication, we assert the antecedent, and try to prove the

consequent. Asserting that WI is the result of John dialing C1 on Sfl in WO (tine 9) triggers

187

several forward-chaining rules. DIa produces assertions that C1 Is a possible combination

of Sf1, that SfI is a safe, and that John is at the same place as SfI (lines 10 - 12). D2

produces assertions specifying the physical effects of John dialing C1 on SfI (lines 13 - 14).

and D3 produces a specification of the effects of the action on John's knowledge (line I).

16. e*T(W1 ,Know(John,Eq(Comb(S i),C1))) Cons*
17. **K(:John,W I ,W2) -> T(W2 ,Eq(Comb(Sf I),C|)) LKI
18. K(:JohnW 1,W2) Ante
19. K(:JohnW 2 ,w3)/[W2 J w3] - K(:John,W i ,w3) K3
20. @H(W 2 ,:At(:John,x1)) v -H(Wj,:At(:John. xI)) Al
21. *H(W2,:At(:Johnxi)) v 13

(((tAt(:John,x2) i :Open(:Sf I)) v
((V(Wo.:Comb(:Sf 1)) i :Cj) v -H(Wo,:Open(;Sf 1)))) A

((:At(:John(x1) a :Opon(:Sf1)) v -.H(Wo0 int,p I)))
22. H(W2 ,:At(:John,x |)) v -H(Wo,:At(:Johnxl)) Eq

Now we try to prove the consequent of line 8, that in WI John knows that C, is the

combination of SfI (line 16). This is transformed into the goal of showing that in every

world which is compatible with what John knows in WI, C1 is the combination of Sf I (line

17). This Is an implication so we assert the antecedent, letting W2 be a ypical world which

is possible according to what John knows in W1 (line 18). This triggers KS (line 19) and

A I (line 20). The result of A I is the assertion that either John is at t;.e same place as the

safe in W2, or he is not at the same place as the safe in Wi . Since whether John is at the

same place as the safe in W, depends on the physical effects of John dialing C, on SfI in

W0 , line 13 applies to this assertion. The occurrence of -H(Wi,:At(:John,:Sfl)) in line 20 is

replaced by the corresponding instance of the right side of line 13 (line 21), but since John

being at the same place as the safe is unaffected by this action, this formula simplifies to the

4 assertion that either John Is at the same place as the safe in W2 or he Is not in the same

I

-A129 244 REASONING ABOUT KNOWLEDGE AND
ACTION(U) SRI 2/2

INTERNATIONAL MENLO PARK CR ARTIFICIAL INTELLIGENCE
CENTER R C MOORE OCT 80 SRI-TN-1i91UNCL tSIFIED

F/G 6/4 Nlllllllllmmlll

llIIIoolso
E hE_ __i
mhhhh~hIhhL

-A51 I 28 *2.5

ijiji .0 u~ Kilor

'L3.2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS'91

3A4

.

188

place as the safe in WO.

23. K(JohnW 0,W4) is
24. K(:John.W4,w 3)/1W4 J w3) 4) K(LlshnW~w3) K3
25. H(W4,:At(:John,x1)) Y .'HCW 0*:At(JhNxl) Al
26. *T(W4*NOt(Op~n(Sf 1))) 2
27. -HCW4:OPsn(:Sf d) L
28. R(:Do(:John,:Dial(:C1 ,:Sf 1)),W41W2)) 15
29. V(W59:Comb(:Sf 1)) n :CI DIe
30. *:Safo(:Sf I) DI&
31. H(W4 :At:John,:Sf 1)) Dla
32. H(W2,int.pj) Win D2

C((intp 1 a tOpn(:Sfj)) A

((CW 4,.Comb(:Sf 1)) a :CI) v HCW 4,1:Opn(:Sfj)))) v
MAntP, /i Opon(:-Sf 1)) A H(W4,int.P1)))

33. *(((:At(:John,:Sf I) an -Open(:Sf 1)) A 22
((V(W 4,:Comb(:Sf 1)) a XC1) v 14(W4,:Open(sSf 1)))) V

((:At(:John,-Sf 1) Ji :Opon(:Sf 1)) A HCW4 .nt~pj))) V
-H(WO,:At(:John,xI))

34. eII(W4,:At(:John,x1)) v "H(W01:At(LJhnx)) Eq
35. V(W2,int.trmj) a V(W4,int~rmI) 02
36. K(:JohnW 2,w3)/(W2 i w33 (-> D3

(3w4(K(:JohnW4,w 4)/[W4 pf w4 I A
R(:Do(:John,:Dial(:Cj ,:Sf 1)).W4,W3)) A

CH(W 2,:Op~n(:Sf 1)) (Wn H(w3,1:Opon(:Sf I)

The assertion on line 18 that W2 Is compatible with everything John knows In WI also

triggers line 15 as a forward-chaining rule. This results In assertions to the effect that there

is some world, say W4, such that W4is compatible with everything that John knows in W0

* (line 23), and W2 is the result of John dialing C, on Sf I in W4 (line 28). and that W2 agrees

with WI as to whether Sfj IIs open (line 35). The assertion that W4 is compatible with what

John knows in WO triggers K S (line 24) and AlI (line 25). We also conclude that the safe is

not open In W4 (lines 26 - 27), since this Is something John knows In WO.

The assertion that W2 is the result of Do(Johe.DiaI(C,SfI)) happening In W4 triggers Dia

189

to assert that C1 is a possible combination of SI! (line 29). that Sf Is a safe (line SO). and

that John is at the same place as the safe in W4 (line 31). D2 triggers, producing an

assertion which describes how the physical conditions in W2 depend on its being the result

of Do(John,Dial(Cj,SfI)) happening in W4 (line 32). Since line 22 involves a physical

condition in W2. this assertion is immediately applied as a substitution rule. The instance

.* of -H(W2 ,:At(:John,:SfI)) in line 22 is replaced by the appropriate instance of the right side

of line 32. Since the proposition In question has nothing to do with the safe being open,

this expression simplifies to -HCW4,:At(:John,:Sfl)) , leaving the whole expression as it is on

line 34. Since this repeats line 25, it is deleted.

Some comment should be made on this last set of steps. We effectively had one

assertion that John knows where he before the dialing action, and another assertion that he

knows where he is after the dialing action. But since the dialing action does not affect

where John is, and he knows this, one of these two assertions is redundant; we could deduce

either of them given the other. By using the frame axiom for dialing, we transformed one

of these assertions into the other, enabling us to recognize the redundancy and eliminate It.

Line 35 is the rest of the frame axiom for dialing, noting that dialing does not change

the reference of any term expressions. The last rule triggered by the assertion that W2 is

the result the dialing happening In W4 is D3, which produces a description of the effects of

the action on John's knowledge in W2 (line 36).

* 37. mH(W!,:Open(.Sf 1)) W,> H(W2 ,:Open(:Sf 1)))) 15
38. a(((:Open(:Sf) :Open(:Sf I)) A 13

((V(W 0 ,:Comb(:Sf I)) a .CI) v H(Wo,:Open(tSf)))) V
((:Open(:SfI) j :Open(:Sf I)) A H(Wo0 int.pI))) W,>

H(W2,:Open(:Sf1))
O 39. e|(V(W0,.Comb(:Sf 1)) s .CI) v H(Wo,:Open(:Sf 1))) (> Eq

H(W2 ,'Open(:Sfl))

Il

.

190

40. *((:C I I sC1) v H(Wo,.Open(:Sf 1 1 (a) 5
HCW2 ,:Opn(:S 1))

41. 0H(W 2,Open(:Sfj)) Eq
42. u((:Open(:Sf I) • ..Opon(:Sfj)) A 32

((V(W 4 ,:Comb(:Sf)) .CI) v H(W4 ,Open(:Sf)))) V
((:Open(:Sf|) J .Open:Sfl)) A HCW4,in.pj))

43. CV(W 4 ,.Comb:Sf1)) a :CI) v H(W4 ,.'Opon(:Sf1)) Eq

Now we pop back up and resume considering the consequences of the assertion on line

18 that W2 is compatible with what John knows in W1. The last inference which is drawn

from this assumption and line 15 is that the safe is open in W2 if and only if it is open in

W1 (line 38). Both sides of this assertion refer to physical conditions in situations to which

a frame assertion applies, line iS for Wi , and line 32 for W2 . We first replace

H(WI ,.Opn(Sf I)) in line 37 with the matcbing instance of the right side of line I (line 38).

This expression simplifies to (V(Wo,:Comb(:Sfj)) a :C1) v H(Wo,Opn(:SfI)) (line 39). Since

we know that C1 is the combination of SfI in W0, the left side of line 39 simplifies to T.

* Since this is a biconditional, we conclude that the right side is also true (lines 40 - 41).

leaving us with the assertion that the safe is open in W2. We now apply the frame assertion

for W2 to line 41. and the resulting expression simplifies to the assertion that either C1 is

the combination of the safe in W4 or the safe is open in W4 (lines 42 - 43). Since W2 Is the

'4 result Do(John,Dial(Ci,S1f)) happening in W4 . these are the only two alternatives that could

lead to the safe being open in W2.

44. eT(W2 ,Eq(Comb(Sf1),C1)) Cons*
45. e*V(W2 .tComb(:SfI)) s C L
46. *V(W4,:Comb(:Si)) C1 35
47. *"H(W 4 ,1Open(:Sf1))) 43
43. *T 27

I

191

Finally we come to trying to prove the consequent of line 17, given all the conclusions

which we have drawn from the antecedent. The goal is to show that C1 is the combination

of Sf I in W2 (lines 44 - 15). Since dialing does not change the combination of the safe, this

is equivalent to showing that C1 Is the combination of Sf, in W4 (line 46). According to

line 43, we can show this if we can show that the safe is not open in W4 (line 47). But we

already know that this is true from line 27, so the proof is complete (line 48).

7.4 An Example of Acquiring Knowlege Required for an Action

Our final example Is to produce a proof that if John has a piece of paper with the

combination of the safe written on it, if he can read, and if he is at the safe, then he can

open the safe by reading the piece of paper and dialing the combination. This requires the

introduction of a new action Read. and the associated predicates Reads and lnf.

INF i. T(wI ,Info(trm.xi ,exp1)) (0n (V(w ,:Info(D(w l trm.xI))) a oxpl)

RDSI. K(al,w1,W2)/[w I i w2] ->
CH(w 2 ,:Reads(a.)) v -H(wj ,:Reads(a1)))

An object-language formula of the form Info(X,Exp) means that the object X has the
information Exp written on it, where Exp is some well-formed object-language expression.

INFI translates this into the meta-language. An object-language language formula of the

form Reads(A) means that A can read. We will treat Re*ds as though it were a simple

* physical predicate, so its translation into the meta-language will be handled by Lga. RDS I

says that anyone who can read knows that he can read. This rule is expressed in exactly

the same form as A I.

RDI a. R(:Do(a i ,:R@&d(x I)),wI ,w2) a)

(H(wI ,:Read(a)) A H(w,|Al(&1,x)))

a

192

ROM b R(:Do(a1 ,:Road(xj)).w1 ,F2(a3 x1 w1)) (a
CH(w 1 ,:Reads(sI)) A H(wj ,:At(al x1)))

R02. R(:Do~aj ,:Read(xj))-w1 .w2) -
CKa 1 ,W2-w3)/[W2 ji W31 -

- .3wA(K(al-WI IW4)/[wl i w4] A

(V(w4,:Info~xl)) a V(W1*:InfO(gj))) A
R:Do(aj ,:Read(x1)),w4,w3)))

RD3. RC:Do(a1 ,:Road(x1)),w1,w2) -

((V(w 2,int.trmj) a V~w1 ,int.trm1)) A
(Hw2*int.pl) (0n H(wlj nt.pl))

RoedWX is the object-language representation of the action of reading the information

written on the object X. RDIa and RDIb specify the prerequisites for reading something,

-~ the agent has to be able to read, and he has to be at the same place as the thing he is going

to read. These to rules are expressed in the same form as Dia and Dlb. RD2 gives the

* effects of reading on the knowledge of the agent. It says in the usual form that he knows

what was written on the object, and he knows that he has just read what was written on the

object. RD3 describes the physical effects of reading. Since there really aren't any, it just

says that all physical conditions are the same as they were before the action took place.

The proof is as follows (see figure 5.5

Givens True(Safe (SI1))
* . Tru.(At(John,Sf1))
0 Tru.(At(John,PprI))

True(Reads (John))
Tru (Know (John,Exist?X1 IAnd(Eq(Comb(Sf 1),?XI),Info(Ppr1 ,?X I)))))

* . Prove: True(Can(John,(Road(Ppr 1)l Dial(Comb(Sf1),S11))Opon(Sf IM)

I1. eTru*(Saf*(Sf I)) Given
2. iSafe(Sf 1) L
3. *True (At (John,Sf ID Given
4. H(WO:At(John,:Sfj)) L
5. *True (At(John,Ppr I)) Given
6. HCW0 :At(Jhn,sPpr1)) L

• "+ 19$

7. *True(Reads(John)) Given
8. H(Wo,:Reads(:John)) L
9. True(Know(JohnExist(?XI ,And(Eq(Comb(Sf,),?X1),lnfo(Ppr,,?Xl))))) Given

10. K(:John,Wo,w i) -> T(w1 ,Exist(?XI ,And(Eq(Comb(SfI),?X),Info(Pprl,?X1)))) L1KI
I1. *T(WoExist(?X I ,And(Eq(Comb(Sf),?X i),Info(Ppr ,?X1)))) K2
12. V(Wo,:Comb(:Sf I)) 'Co L
13. V(Wo :lnfo(:Ppr I)) a G(CO) L

Lines I - 8 give the first four premises and their meta.language translations. These are

the assertions that Sf I is a safe, that John is at the same place as the safe, that John Is at

the same place as the piece of paper Ppr 1 . and that John can read. Line 9 says that John

knows that there is some entity which is the combination of the safe, and which is the

information written on the piece of paper; i.e. John knows that the combination of the safe

is the only thing written on the piece of paper. K I transforms this into the assertion that in

every world which is compatible with what John knows in the actual world, the

combination of the safe is the only thing written on the piece of paper (line 10). K2 triggers

this rule to assert that the combination of the safe, represented by 0, is actually the only

thing written on the piece of paper (linea i j - IS).

14. e*True(Can(John,(Read(Ppr I); Dial(Comb(Sf 1),Sf I)),Opon(S1I))) Goal
15. *T(WoCan(John,Read(Pprl), L,C2

Can(oD(WoJohn)),Dial(Comb(Sf i),Sf1),Open(Sf1))))
16. **T(WoKnow(JohnAnd(Eq(e(D(Wo,Read(Ppr i))),Read(Pprl)), CI

Res (Do((D(Wo,John)),Read(Ppr)),
Can(m(D(Wo,John)),OiatCComb(Sf1),Sf1),Open(Sf1))))))

17. 8*K(:John,WoW I) -> KI
T(W1 ,And(Eq(e(D(Wo,Read(Ppr |))),Read(Ppr I)),

Res(Do(m(D(WoJohn)),Read(Pprl)),
Can(g(D(Wo,John)),Oial(Comb(Sfl),Sf1),Open(Sf1)))))

Line 14 states the goal that John can open the safe by reading the piece of paper and

dialing the combination of the safe. C2 expands this into the goal that by reading the piece

of paper John can bring It about that he can open the safe by dialing the combination (line

4.

194

15). CI expands this into the goal that John knows what action reading the piece of paper

is, and he knows that reading the piece of paper would bring it about that he can open the

safe by dialing the combination (line 16). Finally, K I transforms this into the goal that if

is a typical world which is possible according to what John knows in Wo, then it is true

in WI that reading the piece of paper is the same action that it is in the actual world, and

that John reading the piece of paper would bring it about that he can open the safe by

dialing the combination (line 17).

18. K(:John,WoW |) Ante

1 i 9. K(:John,W1 ,w3)/Wi j w3) K('Jhn,Wow 3) K3
20. H(W1 ,:At(:John,x1)) v ,H(Wo,:At(John,xj)) At
21. H(W] ,:Reads(:John)) v .H(Wo,:Reads(:John)) RDSI
22. *T(W I,Exist(?X I And(Eq(Comb(Sf 1),?X I),Info(Pprl ,?X 1)))) 10
23. V(Wj,:Comb(:Sf 1)) a :Cl L
24. V(Wl ,:lnfo(sPpr I)) a &(:C|) L

To prove the implication on line 37, we first assert the antecedent, that W, is compatible

with what John knows in W0 (line 18). This triggers KS, Al, and RDSI (lines 19 - 21). It

also triggers line 10 to assert that the combination of the safe in WI, represented by C1, is

the only thing written on the piece of paper in WI (lines 22 - 23).

25. esT(WI ,And(Eqln(DCWo,Read(Ppr))),Read(Ppr I)), Cons*
0 Re(s{Do (e&(D(Wo,John)),Read(Ppr)),

Can(m(D(Wo,John)),Dial(Comb(Sf1),Sfj),Open(Sf 1)))))
26. e*T(W ,Eq(u(D(W 0 ,Read(Ppr I))},Read(Pprl))) A L

T(W1 ,Res(DO((D(Wo,Jhn)),Read(Pprl)),
Can(e(D(WOJohn)),DiaI(Comb(Sf 1),Sf 1),Open(Sf1))))

4 27. UsT(W1 ,Eq((D(Wo,Read(Ppr))),Read(Ppr I))) Split
28. a*:Read(:Ppr!) @ tRead(sPpr I) L
29. *T Eq

Now we try to prove the consequent of line 17, the goal that reading the piece of paper

L

195

ins W, is the same action that it Is In the actual world and that John reading the piece of

paper in W, would bring it about that John can open the safe by dialing the combination

(lines 25 - 26). Since this Is a conjunctive goal, we tplit it into two subgoals. The first

subgoal, showing that reading the piece of paper in W, Is the same action as It is in the

actual world, is easily solved it we treat Pprl as a rigid designator for the piece of paper.

This amounts to assuming that John knows what object Ppr1 IL. If he knows what object

he Is supposed to read, then he certainly knows what action reading that object is (lines 27.-

29).

30. usT(W1 ,R*s(Oo(m(D(W 0John)),Road(Pprj)), Split
Can(e(D(W0,John)),Oial(Comb(Sf I %Sf 1).Op~n(Sf 1I))))

31. **R(Do(:Jhn,Read(Pprj)),W1 w2) A RIL
T(w2,Can(a(D(W 1John)),ial(Co.-ibCSf 1),Sf 1),OponCSf 1))))

32. *R(Do(:JohnR~ad(Ppr1)),W1 NO2 Split
33. e*(W 1 ,:R@ads(:-John)) A H(Wg .:At(:JoniPprI)) RD1 b
34. *H(W1 ,:R~adsC:John)) Split
35. *1(W,:Roads(:John)) 21
36. *T a
37. *H(W1 ,:At(:Jahn,:Pprl)) Spit
38. *H(W0,:At(:John,:Pprj)) 20
39. *T 6

Now we try to prove the second subgoal which results from splitting line 26, the goal

that John reading the piece of paper in W, would bring it about that John can open the

safe by dialing the combination (line 30). R I transforms this into the goal that there is

some world which is the result of John reading the piece of paper In W, and in which John

can open the safe by dialing the combination (line 31). This goal is split, with the first

subgoal being to find a world which Is the result of John reading the piece of paper in W

(fine 32). RDIb says there is such a world if John can read, and if John is at the same

place as the piece of paper (line 33). This goal is also split. and we first try to show that

John can read in W, (line 34). Since if John can read, he knows he can read, this goal is

satisfied if John can read in the actual world (line 35). This was one of the premises of the

problem, so this branch of the split succeeds (line 36). The other branch requires us to

show that John is at the same as the piece of paper in WI (line 37). We are assuming that

if John is at the same place as the piece of paper, he knows he is at the same place as the

piece of paper, so this goal Is satisfied if John is at the same place as the piece of paper in

the actual world (line 38). This is also one of the premises, so this branch of the split is also

satisfied (line 39). This proves line 33, and hence produces a solution to line 32. with w2

bound to F2 (:John,:Pprl,W1). To keep formulas short in the rest of the proof, we will

abreviate this as W2.

40. R(Do(:John,Read(PprI)),WI ,W2) Solved
41. H(W I ,:Reads(:John)) RD 1 a
42. H(W! ,:At(:John,:Ppri)) RDI a
43. K(:JohnW 2,w3)/[W2 i w3] <- RD2

3w4 (K(:John,W | ,w4)/[W | i w4] A
(V(w4,:Info(:Pprl)) " V(W1 ,:lnfo(:Pprl))) A
R(:Do(:John,:Read(:Ppr i)),w4,w3))

44. V(W2,int.trm1) a V(W1 ,int.IrmI) RD3
45. V(W2 ,:Comb(:Sf1)) a :Cu 23
46. aV(W2,int.trm1) a V(Wj,int.trm I)/Eint.trmI J :Comb(:Sf 1)] 23
47. V(W2 ,:lnfo(:Ppr I)) a &(:Cj) 24
48. V[W2 ,int.trm1) a V(W1 ,int.trmI)/ 24

* [(int.trml j tComb(:Sf I) A (int.trm J :Info(:Pprj)]
49. H(W2,int.Pj) (a) H P(W ,int.P1) RD3

Since we have just solved a goal which matches R(evlw 1,w2), we asert the solution

(line 40). RDIa causes us to assert that John can read in W, and that John is at the same

place as the piece of paper in W, (lines 41 - 42). RD2 triggers, producing a description of

the effect of reading the piece of paper on John's knowledge (line 43). RDS, the frame

axiom for reading also triggers, producing two assertions. The first assertion is that all

197

terms in W2 refer to the same objects as they do in W, (line 44). However, on lines 2S and

24. we have assertions specifying the referents of two particular terms in W1 . the

combination of the safe, and the information written on Ppr1 . In section 6.4 we described a

rule for equality substitutions where the term being substituted for is more general than the

assertion specifying the substitution. Applying this rule in the present case produces an

assertion that all terms in W2 refer to the same objects as they do in WI, but with syntactic

restrictions preventing the assertion from being applied to the terms for the combination of

the safe and the information written on the piece of paper. We also get specific assertion

saying that the information written on the piece of paper in W2 is the combination :C1

(actually, its standard name), and that the combination of the safe in W, is also C1 (lines 45

18). In addition, to these three assertions, RDS produces the assertion that all simple

physical conditions are the same in W2 as they are in W, (line 49).

50. *T(W2,Can(e(D(W0 ,John)),DialComb(Sf i),Sfl),Open(Sf 1))) Split
51. e*T(W2 ,Know(e(D(Wo,John)), CI

And(Eq(v (D(W2,Dial(Cornb(Sf I),Sf I))),Dial(Comb(Sf I),Sf)),
Res(Do(m(D(W 2,John)),Dial(Comb(Sf I),Sf1)),Opon(Sf)))))

52. **K(:JohnW 2,W3) -> Kl .
T(W3 ,And(Eq(m(D(W2,Oial(Comb(Sf I),SfI))),Dial(Comb(Sf I),Sf1)),

Res(Do(o(D(W2 John)),Dial(Comb(Sf1),SfI)),Open(Sf1))))
4

Now we try to prove the second half of the goal on line Si, that in the world which we

have just shown to be the result of John reading the piece of paper in WI . namely W2.

John can open the safe by dialing the combination (line 50). CI reduces this to the goal

that in W2 John knows what action dialing the combination of the safe is, and he knows

that dialing the combination of the safe would result in the safe being open (line 51). K I

" reduces this to showing that if W3 is a typical world which is compatible with what John

knows in W2 , then in W3 , dialing the combination of the safe is the same action as it is in

198

W2 and John dialing the combination of the safe would result in the safe being open (line

52). To prove this, we first assert the antecedent, and then try to prove the consequent.

53. K0:JohnW 2,W3) Ante
54. K(:JohnW 3 ,w3)/[W3 w3 K(:JohnW 2,w3) K3
55. @H(W 3 ,:At(:John,xj)) v .H(W2 ,.Al(:John,x I)) Al
56. H(W3 ,:At(:Johnx I)) v -H(WI ,:At(:Johnx I)) 49
57. SH(W 3 :Reads(.John)) v .H(W2,.:R@ds(:John,) RDS
58. H(W3,:Rads(:John)) v .,H(W l ,:Reas (:John)) 49

Asserting that W3 is compatible with what John knows in W2 triggers a number of

forward-chaining rules, including K3. Al, and RDSI (lines 53, 55. and 57). Since the

formulas asserted by Ai and RDSI both mention a physical condition in W2, and every

physical condition in W2 is the same as in WI, The occurrences of W2 are replaced by W1

(lines 56 and 58).

59. K(:John,W1 ,W4) 43
60. K(:JohnW 4,w3)/[W4 0 w3] > K(:John.W I w3) K3
61. H(W4,:At(:John,xl)) v -H(W1 ,:At(:John;x1)) Al
62. H(W4,:Reads(=John)) v .,H(Wj,:Reads(.John)) RDS I
63. K(:JohnW 0 ,W4) 19
64. K(:JohnW 4 ,w3)/[W4 0 w3] -> K(:JohnW 0,w3) K3
65. H(W4 ,:At(:John,xI)) v -H(W0 ,:At(:John,xI)) Al

" 66. H(W4 ,:R&ds(:John)) v -H(W0 t:Reads(:John)) RDS I
67. OT(W 4,Exist(?XI .And(Eq(Comb(Sfj),?XI),Info(Ppr ,?XI)))) 10
68. V(W4 ,..Comb(:Sfj)) 'C4 L
69. V(W4 ,dnfo(:Ppr |)) G m(:C4) L

The assertion K(:JohnW 2 ,W3) on line 53 also triggers the assertion on line 43 which

decribes what John knows in W2. This results in assertions that there is a world, say W4 .

which is compatible with what John knows in W1 (line 59) In which the information written

on the piece of paper is the same as in WI (line 70) , and in which the result of John
r

* reading the piece of paper is W3 (line 768). The first of these assertions triggers KS. A I, and

199

RDSI as usual (lines 60 - 62). It also triggers line 19 to assert that W4 is compatible with

what John knows in W0 (line 63). This is the first time we have actually used the fact that

for a particular knower, K is transitive (axiom KS). This in turn triggers KS, A I, and

RDS I (lines 64 - 66). It also triggers line 10 to assert that in W4 the combination of the

safe, represented by :C4 , Is the only thing written on the piece of paper (lines 67 - 69).

70. 8V(W 4,:Info(:Ppr I)) a V(W1 ,:tnfo(:Pprl)) 43
71. 88('C4) a V(W,:Info(:Ppr)) 69
72. a(:C4) a G: I) 24
73. *L73. :C4 a :C I L

74. V(W4,:Comb(:Sf 1)) -Cl 68
75. V(W4,:lnfo(:Ppr l)) m(:Ci) 69

The second assertion produced by line 43 is that the information written on the piece of

paper in W4 is the same as the information written on the piece of paper in W1. Since the

information written on the piece of paper in W4 is the standard name of the combination

:C4 , and in WI the information written on the piece of paper is the standard name of the

combination :C1, we conclude that -C4 is the same as .C1 (lines 71 - 73). This causes us to

substitute :CI for :C4 in lines 68 and 69, producing assertions that the combination of the

safe in W4 is :Cj, and the information wriiten on the piece of paper in W4 Is the standard

name of :CI (lines 74. 75). This gives us all the information we need to prove that in the

actual world, W0, John knows that reading the piece of paper would result in his knowing

the combination of the safe.

76. R(:Do(:John,:Read(:Ppr I)),W4,W3) 43
77. H(W4,:Reads(:John)) RDI •

78. H(W4 :At(:John,:Pprl)) RD.&
79. K(:JohnW 3 ,w3)/[W3 ji w3] (-) RD2

3w4 (K(.JohnW4,w4)/[W4 ji w4 1 A

- 7. 77

200

(V(w4 ,dnfol:Ppr 1)) a V(W 4 ,:lnfoC:Ppr))) A

R(:o(:John,:Read(:Pprl)),w4,w 3))
go. *V(W3 ,int.trmI) a V(W4 int.trml) RD3
81. V(W 3 ,:Comb(:Sf I)) a I 74
82. *V(W 3,int.trmI) a V(W4,int.trm3)/[int.trmI J a4omb(S 1)] 74
83. V(W 3 ,:lnfo(:Pprl)) a u(:CI) 75
84. V(W 3 ,int.trmI) a V(W 4 ,int.trmI)/ 75

[(int.trmj Js Comb(:Sf I) A (int.trmj n :nfo(:Ppr l)
15. H(W3 ,int.pl) (m) H(W4 ,int.P1) RD3
86. *H(W4 ,.At(:John~xI)) v -H(WI ,:At(John,xI)) 56
87. *H(W4 ,:Reas(John)) v -H{W,:Reads(sIohn)) 58

The last assertion added by line 43 is that W3 is the result of John reading the piece of

paper in W4 . This triggers Dia to assert that in W4 John can read and he is at the same

place as the piece of paper (lines 77. 78). It also triggers RD2 to produce a description of

the effects of reading the piece of paper on what John knows in W3 (line 79). Finally. it

*triggers the frame axiom RDS to produce a description of the physical effects of John

reading the piece of paper in W4 . The first part of this description is the assertion that all

terms refer to the same objects in W3 as they do in W4 (line 80). Since we have specific

assertions about the referents of the terms for the combination of the safe and the

information written on the piece of paper in W4 . we syntactically exclude these cases from

the general axiom, and explicitly assert that the information written on the piece of paper

* in W3 is the standard name of :C1 and that the combination of the safe in W3 is :C1 (lines

81 - 84). The other assertion produced by the frame axiom is that all simple physical

conditions are the same in W3 as they are in W4 (line 85). This causes the references in line

56 to what John is near in W3 and in line 58 to John being able to read in W3 to be

replaced by these same conditions in W4 (lines 86 - 87). This transforms these assertions

into copies of lines 61 and 62, so they are deleted.
a

a

201

8. **T(W3,And(Eq((DW 2,ial(Comb(Sf 1),Sft))).Oial(Comb(Sf I),Sf 1)), Code.
Res(Do(m(D(W2,John))Dial(Comb(Sf 1),Sf i)),Opon(Sf 1))))

89. e*T(W3 ,Eq(a(D(W2 ,Dial(Comb(Sf I),S1i))),Dial(Comb(SfI),S! g))) A L
T(W3 ,Res(Oo(m(D(W 2,John)),OiaI(Comb(Sf 1),Sf)),Open(Sf 1)))

90. **T(W3 ,Eq(e(D(W2 ,DiaI(Comb(Sf ,),SII))).Dial(Comb(Sf i),Sft))) Split
91. a*:Dial(:V(W2 ,.Comb(:Sf ,)).:Sf 1) u L

:Dial(:V(W 3 ,:Comb(:Sf i)),'Sf)
92. s*(V(W 2,.Comb(:SI)) - V(W 3 , mb(:Sf 1))) A Eq

(:S1- :St I)
93. O*V(W 2 ,.Comb(:Sf1)) 8 VW3 ,..Comb(SI !)) Split
94. *:C, V(W3,aComb(Sf1)) 45

95. M Ia tC1 91
96. 8T Eq
97. 8s*Sf I a SfI Split
98. *T Eq

Now we go back and try to prove the consequent of line 52 from the information

generated by asserting the antecedent. The goal is to show that in W3 . dialing the

combination of the safe is the same action as In W2, and that John dialing the combination

of the safe would result in the safe being open (lines 88 - 89). We split this goal into its two

subgoals. The first subgoal reduces to showing that the combination of the safe is the same

in W2 as it is in W3 , and that the safe is identical to itself (lines 90 - 92). This goal is also

split, and the first subgoal is solved by noting that the combination to the safe in both W2

and W3 is :C, (lines 93 - 96). This is basically a proof that in the actual world, W0 . John

knows that reading the piece of paper would result in his knowing the combination of the

safe. The goal that the safe is identical to itself is trivially solved by the simplification rules

for identity (lines 97 - 98).
'4

99. u*T(W3 ,Res(Do((D(W2,John)),Dial(Comb(Sfl),Sf i)),Open(Sf l))) Split
100. a*R(Do(:John,:Dial(V(W 3 ,Comb(:Sf1)),:Sf,)),W3 ,w5) A RI ,L

T(w 5 ,Open(Sf i1))

101. m*R(Do(:John,:Dial(V(W 3,Comb(aSf I)),sSf)),W 3 ,ws) Split
1f 02. *R(Do(sJohn,:Oial(:C I ,tSf,)),W3,wS) 31

103. 8*(V(w 3 ,.Comb(:Sf1) , C,) A D, b

I-

202

.Salf(:S 1) A H(W3 ,tAt(lohn,tS1))
104. *sV(w3 ,:Comb(:StI) a sC1 Split
105. *:CO a .'Ci 12
106. @sV(w 3 ,.Comb(:Sf1) 41/ 12

.w3 Wo]
107. *.C 1 . -.C1 23
108. *T Eq
109. *:Safe(:Sf) Split
110. *T 2
Ill. *sH(W3 ,:At(tJohn,:Sf 1)) Split
112. *H(W4 ,:At(:John,:Sf 1)) 85
113. *HCW 1, :At(John,:Sf1)) 61
114. sH(Wo,:At(:JohnsSf 1)) 20
115. *T 4

The second subgoal of line 89 is to show that dialing the combination of the safe In W3

will result in the safe being open (line 99). This reduces to showing that there is some

world which is the result of John dialing the combination of the safe in W3 in which the

safe is open (line 100). We split this goal into two subgoals, first trying to find a world

which is the result of John dialing the combination of the safe in W3 (line 101). Since the

combination of the SfI in W3 is known to be .Cl . we transform the goal into showing that

there is a world which is the result of John dialing :CI on SfI In W3 (line 102).

Dib says that there is such a world if .C1 is a possible combination of StI , if St I is a

safe, and if John is at the same place as Sf1 In W3 (line 10S). We split this goal, and first

try to find a world in which :CI is the combination of Sfi (line 104). We know that the

combination of Sfl in W0 is :CO, so by equality substitution we first try showing that tCO is

the same as :C1 (line 105). We have no rules or assertions that apply to this goal, so it fails.

Next we try to show that sCl is the combination of the safe in W1. and this succeeds (lines

JOS- 108).

The second subgoal of line 10S showing that SfI is a safe, is immediately satisfied by

4

203

one of the premises of the problem (lines 109 -I 10). The last subgoal of line 103 is to show

that John is at the same place as the safe in W3 (line I 1). Since all physical conditions in

W3 are the same as in W4 . this is transformed into showing that John is at the same place

as the safe in W4 (line 112). Since W4 is possible according to what John knows in W, and

we are assuming that if John is at the same place as the safe he knows it, we can solve this

goal by showing that John is at the same place as the safe in W, (line I IS). A similar

argument reduces the goal to showing that John is at the same place as the safe in W0 (line

114). But this is another of the problem premises, so the goal is solved (line i 15). This

solves all of the subgoals of line 103. so line 102 is also solved with w5 bound to

F1 (:John,:C I Sf1,W3), which for simplicity we will abreviate W5 .

116. R(Do(:John,:DialC. C ,:Sft)),W3 ,WS) Solved
117. V(W 6,:Comb(:SfI) w.'X| Di|
18. N:Safo(:Sf i) DI•

119. *H(W3,:A(:Jhn,:Sf 1)) Die
120. H(W4,:At(:John,:Sf 1)) 85
121. H(W5,int.pj) Wi) D2

(((int.pl a :Opon(:Sf 1)) A
((Y(W 3,:Comb(:Sf 1)) w :C 1) v H(W3 ,.'Opon(:Sf1)))) v

((int.pj $:Open(:Sf)) A H(W3,int.pI)))
122. V(W5,int.trmj) a V(W3 ,int.rmj)) D2
123. K(:John,W5 ,w3)/IW 5 i w3] (-) D3

* (3w4(K(:JohnW 3 ,w4)/[W3 i w4] A

R(:Do(:John,Diat(:CI .Sf1)),w4 ,w3)) A

(H(w3 ,:Open(:Sf 1)) (a) HNW 5,tOpen(:Sf1))))

Since line 102 Is a goal of the form R(evlw 1 ,w2), we assert its solution (line 116). This

triggers DIa to assert that :C1 is a possible combination of Sf1 , that SfI is a safe, and that

John is at the same place as Sf in W3 (lines 117- 119). This last assertion is transformed

into the assertion that John is at the same place as the safe in W4 (line 120). Also, D2

P.

., o b -. - . . . -,-. ' , , '

204

triggers, producing a description of the physical effects of John dialing .Cl on Sf1 in W3

(lines 121 - 122), and DS triggers, producing a description of the effects of the action on

what John knows in W5 (line 123).

124. *sT(W2,Open(Sf)) Split
125. **H(Ws,.Open(sSf 1)) L
126. a*(..Opon(:Sf!) I 0pen(:Sf1)) A 121

((V(W 3 ,:Comb(:S1I)) " tC) v HCW3 ,0Open(Sfl)))
127. *:Opon(:Sf1I) a 0Open(sSf1) Split
128. aT Eq
129. a*V(W3 ,'-C*(:Stf)) a 9C* Split
130. **.C a SCI 81
131. aT Eq

Finally we try to satisfy the other subgoal of line 100, using the solution to the first

subgoal. This gives us the goal of showing that the safe is open in WS (lines 124 - 125).

This is a question about a simple physical condition in W5, so line 121 is applied. Line 121

tells us that if we want to show that the safe Is open in W5, we have to show either that :CI

is the combination of the safe in W3. or that the safe was already open in W3 (line 126).

Whether the safe is open is the question we are interested in (lines 127- 128). so we try to

show that :C1 is the combination of the safe in W3 (line 129). But we already know that

this is true, so the goal is satisfied (lines 130. 131). This was the last case we had to

4 consider, so the proof is complete.

7.5 Remarks on the Examples

Following three rather complex examples of algorithmically generated deductions

involving knowledge and action, some general remarks are in order. First of all, it is rather

surprising that such intuitively simple problems require such complicated deductions. It is

possible that our formalism is more complicated than it should be. although since it seems

205

possible to come up with a fairly straightforward example which turns on any given detail.

this seems unlikely. It is more probable that common-sense reasoning is more complicated

than it first appears.

Although the proofs were long and complex, the deduction process was extremely well

controlled with virtually no blind searching. In the last and most complicated example, of

the ISI lines generated. 93 were actually necessary for the proof. In terms of percentages.

71% of the lines generated were used; only 29% were not. Another measure of the efficiency

of the search is the fact that 54 formulas were transformed into other formulas or deleted.

as soon as they were generated. These represent cases where the knowledge Is built Into the

system that there Is only one appropriate inference to do. Furthermore, the search space

was finite. If at the last moment the proof had failed, it would have soon terminated

anyway. At that point, there was only one alternative left to try, showing that the safe was

already open before the dialing action took place.

This efficiency in searching for a proof was achieved by the careful structuring that

went into the procedural interpretations for the axioms. The proofs were largely driven by

forward chaining. In the last example, there were 75 assertions generated, but only 58 goals.

Most of the assertions were not generated by blind forward chaining from the premises,

however. Only 13 assertions were created in that way. The remaining assertions were

E triggered by the goals, either in trying to prove an implication, or by asserting the solution

to a goal of the form R(ovl,wlw 2).

The fundamental structure of these proofs Is that the goal itself triggers a large number

of forward inferences which describe a structure of possible worlds, and the goal is reduced

to some fairly simple backward inferences involving that structure. This enables us to

tightly constrain the backward searching. Again, in the last example, while 38 of the 75

assertions generated were actually used in the proof. 57 of the 58 goals were used. This is

.I. . . • -

206

- somewhat misleading, since the premises of the problem provided only just enough

* , information to solve the problem, but the really complex parts of the problem involving the

relations among possible worlds offered plenty of possibilities for thrashing if not treated

correctly. Even the forward deductions which were not used in the proof mostly represented

inferences that were reasonable to make. Many of these set up forward-chaining rules that

would have been triggered if the goals had been still more complicated.

There seems to be only one way in which these methods create a possibility of

generating large numbers of unnecessary Inferences. That way involves assertions about

what someone knows that are not required for the problem at hand. These assertions

would be represented as forward-chaining rules of the form (K(A,W1 0w2) -) T(w2,Pi). If we

have a lot of information about what A knows, and hence a large number of Pi's. then

whenever we want to deduce that A knows something, we will assert K(A,W1,W2) and be

inundated by assertions of the form 1(W2,Pi). This problem is particularly severe in the

case of axioms like Al and RDSI, which assert something about what everyone knows.

The only alternative to this within the present framework would be to represent the

statements about what people know as backward-chaining rules, but this seems to be ruled

out for the reasons discussed In section 6.5.

One possible way out of this problem would be to introduce a new kind of syntactic

restriction into the pattern matching routine, so that the pattern H(w2,:P)/[KCA,W,w 2)]

matches the pattern H(W2 ,:P) if and only if K(A,WIW 2) is asserted. That way. if K(AWIW 2)

is asserted, then the fact that A knows P will match the pattern H(W2 ,tP), without any

F explicit new formulas being generated. For this to work really efficiently the indexer for

the data base should take these restrictions into account, so that K(AW 1 W2) will be checked

before looking at any of the assertions about what A knows. It appears that this could be

207

done without too much trouble. The implications of this approach need to be looked at In

more detail, to take into account all the various possibilities of pattern matching, but the

idea looks promising.

U

I

I

.~~.. u e

209

8. Summary and Conclusions

8. What has been Achieved?

In chapter I. the goal of this thesis was stated to be the development a formalism which

(i) takes into account the important role of the agent's knowledge in planning and acting

and (ii) permits reasonably efficient automatic deduction. I believe that the formalism

presented here achieves that goal. The most important ideas which were used in bringing

this about appear to be the following:

(I) Rather than reason directly about what facts someone knows, we can gain
efficiency by reasoning instead about what possible worlds are compatible with
what he knows.

The first problem that we faced in reasoning about knowledge was that, while the basic

facts about knowing are most easily expressed in a modal logic, there are no known.

techniques for efficiently searching for proofs in such logics. The solution to this problem

which has been pursued in the thesis is to translate statements expressed in the modal logic

of knowledge into a language which talks about possible worlds, where the reasoning can be

carried out without the use of modal operators. While this idea is not original in itself, the

realization that the possible-world approach could lead to more efficient proof methods than

the known alternatives seems not to have been made before. The reason for this efficiency,

as we pointed out in section 2.3, is that the possible-world approach permits the standard

4 logical operators to be lifted directly into the first-order meta.language where they can be

operated on using standard deduction methods. The inefficiencies that result from the lack

of this feature in other approaches were analyzed in sections 2.2 and 2.6.

(2) We have worked out the details of formalizing the semantics of a fully
quantified logic of knowledge and action in a first-order rneta-language.

210

There have been other formalizations of the possible-world semantics for the

propositional logic of knowledge carried out in first order-logic, but ours appears to be the

* first to successfully work out the important problems of handling quantifiers and equality.

This extension of the previous work was essential to our overall theory of knowledge and

action, which depended heavily on handling quantifying into knowledge contexts correctly.

(3) We axiomatize the syntax of the modal logic of knowledge and action and its
possible.world semantics within a single first-order theory.

Rather than axiomatizing only the possible-world language for knowledge and action.

we also axiomatize the interpretation of the modal logic of knowledge in that language.

This allows us to state problems in the more compact and more direct modal object
" :language, while reasoning in the possible.world meta-language, and to formulate concepts

using the object language which are difficult or impossible to represent using the meta-

language alone (e.g., Can). Again, this general technique was borrowed from elsewhere

(McCarthy, 1975), but the idea of using the object-language to gain conceptual power seems

to be new.

(4) We integrate the logic of knowledge with the logic of actions by identifying
possible worlds in the logic of knowledge with situations in the logic of actions.

0 To integrate the logic of knowledge with a logic of actions, the logic of actions should

also be expressed in terms of possible worlds. In Al the standard way of looking at an

action is as a binary relation on states of the world, or situations. But this already is

*41 formally a possible-world theory of actions. We make the integration complete by

identifying situations in the logic of actions with possible worlds in the logic of knowledge.

This is a nonstandard interpretation of possible worlds, but it turns out to be more flexible

*I than the usual approach and it enables us to state very easily the way actions affect what

the agent knows.

a

211

(5) We analyze the knowledge preconditions for actions in terms of knowing what
action to perform, and we describe the effects of actions on knowledge in terms
of patterns of relationships among possible-worlds.

These are the key theoretical contributions of this thesis. Both these ideas seem to be

entirely original. As shown in chapter 3, together they enable us to minimize the amount of

problem-specific knowledge that must be used to make the inferences we want to make

about the interaction of knowledge and action. An example of this is how the notion of a

test falls out as a special case of our general theory of knowledge and action.

(6) We use domain-specific control information to help produce efficient solutions to
problems.

The logic of knowledge and action used in this thesis is a complex axiomatization on an

infinite domain of possible worlds. There are numerous possibilities for generating fruitless

infinite searches in attempting to do automatic deductions in this formalism. By carefully

controlling the way the axioms of the theory are used, we have been able to restrict the

search in typical problems to a well-behaved finite space. While most of the techniques we

use are not new, our sample problems are some of the most complex to which they have

ever been applied, so our positive results represent encouraging evidence for the usefulness

of these techniques.

These ideas solve many of the problems of reasoning about knowledge and action, but

there are other questions in this area that we have left untouched. In the next section we

will examine some of the limitations of the current approach, and we will conclude by trying

to place this piece of work in the context of the overall goals of Al.

4

212

.2 Limitations and Extensions of the Current Approach

The approach to reasoning about knowledge and action presented in this thesis has a

number of limitations. Some of these are limitations of the logic of knowledge and action;

others involve the procedural ideas for generating deductions.

One way of improving the logic of knowledge would be to make it more in agreement
•," with "common-sense psychology", that is, make it closer to the way people usually describe

* the reasoning processes of others. A serious treatment of the issues of plausible reasoning

raised in chapter 2 would be a major improvement. For instance, it would be nice to be

*able to reason that although the laws of arithmetic imply that every positive integer is the

sum of four squares, if John does not know much mathematics, we shouldn't assume that he

knows this fact even if he knows the laws of arithmetic. Formalising this reasoning would

- require, among other things, specifying what inferences are "about" mathematics.

A general problem here is that the possible-world approach makes it difficult to specify

• ;exactly what inference a person fails to make. Suppose that John knows that P. that (P a

* Q), and that CQ a R). Suppose that we also know that John is likely not to notice that R is

true even if. he knows that Q is true. In the possible-worlds formalism, however, the only

* place that we can block the inference that John knows that R is true, is going from the fact

-i that R is true in every world which is compatible with what John knows, to the conclusion

that John knows that R is true. The step that really corresponds to the inference which

John fails to make is that if (Q a R) and Q are true in every world which is compatible with

what John knows, then R is true in every world which is compatible with what John knows.
Ir But this inference can not be blocked by the logic, because it is perfectly valid. One might

say that the inferences that John does not do get "stacked up" while reasoning in the

possible-world domain, and they all have to be cashed in, in the single step of going from

what is possible according to what he knows to what he actually concludes. Formalizing

this seems likely to be difficult.

1i

213

We can handle some of these problems if the reasoning processes we wish to describe

are expressible in terms of the procedural interpretations which we give to formulas. For

example, in chapter 6 It was shown how Know(John,(P 0> Q)) is processed so that (P a) Q) gets

Its usual procedural interpretation in the context of what John knows. Suppose then that

the reason that John does not infer R, even though he knows P. (P a Q), and Q a R), is that

he uses (P = Q) as a backward-chaining rule, e.g. (Q (a P), and he uses CQ a R) as a forward-

chaining rule. e.g. (0 -0 R). If this were the case, John would not be able to Infer R from P,

because both rules are triggered by the intermediate assertion Q. which never gets generated.

We can simulate this by making the assertions Know(John,(Q (a P)) and Know(John,(Q 8) R)).

-*. These assertions would not generate a deduction of the goal R from the premise P. not

because the logical interpretation blocks the inference, but because the procedural

interpretation does. This Is about as close as we can come to reasoning about what someone

knows by simulating his reasoning.

This idea seems fairly promising for many applications. Ironically, where it most

obviously fails is in reasoning about what someone knows about knowledge, that is, where

we would have two or more nested applications of the modal operator Know. The problem

is that the possible-world theory of knowledge is a much more powerful method of

reasoning about what people know than the methods people themselves seem to use. That

is all right when we are trying to reason about what John knows about blocks, but leads to

problems when we try to reason about what John knows about what Bill knows about

blocks. The difficulty is that we pretend that John also uses the possible-world theory of

knowledge In reasoning about what Bill knows. By doing this we run the risk that we may

credit John with much better abilities to reason about what Bill knows than John actualiy

uses.

To be more specific, most people seem to have little trouble with the inference that if

a

214

John knows that Bill knows that (P a Q) and John knows that Bill knows that P. then John

knows that Bill knows that Q. (This is. of course, a plausible inference based on the

assumption that people generally know the consequences of their knowledge.) But the same

assumptions that lead to this inference lead to the conclusion that if John knows that Bill

knows that (P a Q) and John doesn't know that Bill doesn't know that P is false, then John

doesn't know that Bill doesn't know that Q is false. This inference seems to be not obvious

i at all to most people, yet in the possible-world theory, it is of no greater complexity than the

first inference.

The trouble is that, given that John knows (P a Q), people seem much bet "ia

reasoning that if John knows that P, then he probabiYA"Wsiit Q, than at reasoning that

if John doesn't know that Q, then he-jrobably doesn't know that P. The second rule is

simply the contrapositive of the first, and is therefore logically equivalent to it. The second

inference In the previous paragraph requires two applications of this principle, one

application being to the axiom which expresses the principle. This self.application of an

already difficult principle of reasoning is what makes that inference so obscure. My

intuition is that if we allowed this principle to be applied where P and Q involve only

nonintensional concepts (i.e. operators that are not explained in terms of possible worlds).

then we would have a more reasonable model of the reasoning ability of people. I believe

* that this could be imposed on top of the possible-world theory of knowledge by syntactic

restrictions of the type we have been using, but the details of this remain to be worked out.

Probably, however, there ought to be a search for a different approach in which this

* restriction would be more natural.

Another problem is that simply saying that John knows that P(A) does not adequately

characterize John's knowledge. It does not distinguish the case where John is able to

I answer the question OIs P(A) true? from the case where he can supply A as an answer to a

ii

215

request to name something that has. property P. (This distinction was pointed out to me by

John McCarthy.) If the property P is being the solution to some high order polynomial

equation. the difference between the two is vast. The first interpretation requires only that

John have some very simple knowledge of elementary algebra, so that he can plug in the

proposed solution to see whether it works. The second interpretation might require John to

have very sophisticated skills in algebraic manipulation. Neither the possible-world

approach nor the modal logic of knowledge takes account of this distinction.

A related distinction which we might wish to draw is the difference between what

someone explicitly knows and what he can deduce from his knowledge. For example, most

people would explicitly know that 2 is an even number, but not that 38194604 is an even

number. Most people do "know" that this number is even, however, in the sense that they

can readily deduce that it is even from the fact that the last digit is 4. This distinction

would certainly be part of a more detailed theory of knowledge, but ignoring It does not

seem to produce any striking anomalies, as does ignoring the distinction made in the

previous paragraph.

Our system also has certain limitations in its fundamental logical power. Some of these

derive from basing our system on modal logic. The key fact here is that from the point of

view of the object language, Know is an operator which is applied to a term denoting a

possible knower and a formula which expresses a fact that he knows. An alternative

approach would be to make Know a predicate which applies to a term denoting a possible

knower and a term denoting a formula. With the modal logic we have to be specific about

what someone knows; making Know a predicate (usually called the "syntactic* approach

(Montague, 1963)) would allow much greater flexibility. For instance, currently we cannot

express something like "John knows what Bill said," in the object language, because the

0 English phrase "what Bill said" cannot be represented by a formula. If we know that Bill

6

0

216

said that all crows are black, we could express the fact that John knows that Bill said that

all crows are black, but the more direct statement that John knows what Bill said cannot be

made. With the syntactic approach, there would be no reason in principle why "what Bill

said" could not be represented as a term denoting a formula.

The main reason that modal logics are generally favored over syntactic methods.

however, is that there are severe difficulties in formalizing the syntactic approach.
Montague (1963) has proved that syntactic treatments of modal concepts which have certain

rather general (and superficially desirable) properties are in fact inconsistent. Specifically.

any syntactic treatment of a modal logic is inconsistent if it has axioms corresponding to

M I. M2, M4, and M5. and if It has a finite set of axioms which allow all recursive

functions on names of formulas to be represented. Such theories are inconsistent because

they allow the formation of self-referential, paradoxical sentences. The simplest example of

this is attempting to syntactically axiomatize the notion of truth. If this is done in a theory

that meets Montague's conditions, then there will be at least one term Exp I which dentotes

the formula -.Truo(Expl). This formula, then. asserts its own falsehood. A similar, although

more complex, construction can be carried out for syntactic treatments of modalities such as

Know. (See Montague (1963).)

One might attempt to restrict the language so that self-referential statements cannot be

*1 formed. Kripke (1975) points out, though, that whether a statement is self-referential is

often a matter of empirical fact rather than a matter of form. To take the simpler case of

the predicate True, suppose that on a certain day, John makes the prediction 'Everything

*I Bill says today will be true." and says nothing else all day. If all of Bill's statements on that

day have determinate truth values, then there will be no problem assigning a truth value to

John's prediction. Suppose, however, that the only thing that Bill says on that day is

*Everything John says today will be false." In this case, John's statement is true if and only

217

if Bill's statement is true, but Bill's statement is true if and only if John's statement is false.

Thus we have a paradox. The point is that the paradoxical nature of these statements

depends on their being taken together. Most of the time they can be used independently to

make perfectly reasonable assertions. Any attempt to restrict the form of such sentences will

have to rule out sentences that are all right most of the time. It seems likely that similar

considerations will apply in the more complicated case of Know.

Kripke's solution to this problem is not to restrict the language, but rather to define the

semantics of the language so that statements or sets of statements that are self-referential are

not assigned a truth value. How this is done for True is explained In Kripke (1975). These

techniques would seem to be applicable to Know as well.

Another extension to the logical power of the formalism would be to allow the system to

reason about its own knowledge. This raises issues which are surprisingly quite different

from reasoning about the knowledge of others. For example, if the system uses I to refer to

itself and W0 to refer to the current situation, then all true statements of the form

T(WoKnow(I,P)) are recursively enumerable for the system. Furthermore, if the underlying

logic is decidable, all statements of the form T(W0,Know(IP)) should be decidable. If this is

the case, it makes no sense to have any explicit assertions of the form T(WO,Know(I,P)) or

4 -T(W0 ,Know(I,P)). Any assertion of this form will either be implied or contradicted by an

assertion already implicit in the system. In fact, the most direct way to implement reasoning

about the system's own knowledge is as a recursive call to the deductive routines to evaluate

4 any expressions in this form.

Things get a little more complicated if we allow quantifying into such expressions. For

instance, suppose we want to tell the system that it knows everything that has property P.

4 This could be expressed formally as T(Wo,AII(?Xl,(P(?Xi) *> Know(I,P(lX))))). One

interpretation of this formula should be that in order to prove that P(A) is false, prove that

I -

218

A is not one of the objects which the system is able to deduce has property P. (Recall that

deducing that an object has property P means deducing P(S), where 8 is a rigid designator

"- for the object.)

At present it is not entirely clear to me how to implement this extension to our

formalism. One particular problem is that this interpretation of T(W0,Know(lP)) makes the

system "non-monotonic" in Minsky's (1974) phrase. That is, we can have a theory with the

property that adding axioms causes some statements that were previously theorems to be

non-theorems. The preceding paragraph provides a good example of this. Suppose that A,

B. and C are the only objects that we can explicitly prove have property P. Then if we

know that D is not the same as A, B, or C, and we know that we know everything that has

property P. we would want to be able to prove -P(D). But if we explicitly add P(D) as a

theorem, --P(D) should no longer be provable. It is well known that this type of reasoning

can create problems (Sandewall, 1972). For example, if P is asserted to be true whenever Q

is not deducible, and Q is asserted to be true whenever P is not deducible, then to be

consistent we must regard either P or Q as deducible, although we may have no basis to

choose one over the other. This is reminiscent of the self-reference problems which we

discussed above, and Kripke's techniques may be of use here as well.

There are also some interesting problems to be considered which relate to making

deductions about lack of knowledge. For instance, as this is being written, I am quite

certain that nothing that I know would tell me whether the President is sitting down at this

moment. It is clear, however, that I did not come to this conclusion by exploring all the

consequences of everything I know. Rather, it seems as though I have partitioned my

knowledge into independent subsets, and I find there is no information in the subset that

would contain statements about the President's postural position. (Once again, the credit for

recognizing this problem belongs to John McCarthy.)

219

Some work on this type of problem Is reported in an unpublished paper by Goad

(1976). The basic idea is this: If we have set of formulas that "span" John's knowledge (i.e.

everything he knows is derivable from those formulas), we can prove that he doesn't know

P by proving that there is some possible world in which all the formulas of the knowledge

set plus -P are true. This approach has two major difficulties. First it requires a complete

description of what worlds are a priori possible. A potential solution to this problem is to

use the techniques dicussed above to say that there is a possible world that fits a given

description unless there is a proof that no such world exists. The second and more serious

difficulty, though, is that Goad's proposal gives us no help with the partitioning problem.

What we need is a way of saying that such-and-such is all that John knows about P. so that

we restrict our attention to the relevant facts. It is not at all obvious how this notion of

about* can be captured.

In addition to the limitations of our logic of knowledge, it should be pointed out that we

do not even pretend to attack the serious limitations of the situation calculus approach to

describing actions. The most obvious such limitation is the inability to reason about

concurrent actions. We also have avoided the problem of actions being continuous

processes rather than discrete steps. A third problem would be representing action

modifiers, e.g. relating dialing the combination of the safe to dialing the combination of the

safe carefully or hurriedly or left-handed, etc. A really adequate logic of actions would

have to solve all these problems and probably many more.

Finally, there are the limitations of the procedural techniques we have used in

generating deductions. There is much less to be said about this than about the

representational issues, not because there are fewer problems, but because the problems are

much less well understood. One observation is that we have not presented anything like a

coherent strategy for doing deductions in this domain. Instead, we looked microscopically at

F-

L

220

Aindividual axioms to see how they would behave if used in certain ways. This gives us no

guarantee that we have not overlooked some major problem, or that if we attempt to extend

the system, things will not get completely out of control. This is largely a consequence of the

fact that Al has produced no real theory of how to control deductive processes. only a large

number of examples of what will or will not work in particular cases. Very recently some

serious work has begun on including explicit control axioms in deductive systems

- (McDermott, 1976) (de Kleer et al., 1977) (Doyle, 1978) (McAllester, 1978). This may

provide superior ways of supplying the control information that is needed by our formalism

and should be investigated further.

Two more points about these problems: First, one possible objection to the way we have

embedded heuristic knowledge in the axioms of our system is that although our goal was to

make any such knowledge applicable over the entire problem domain, we have actually put

it into specific axioms abou: specific actions. Although this is true, it should be pointed out

that all of the axioms describing actions were in very stereotyped forms. It does not appear

to be difficult for the system to accept one of these axioms in a neutral form, recognize what

type of axiom it is, and automatically add the required heuristic information.

Second, we pointed out in section 7.1 that the procedural interpretations which were

given to the axioms describing actions are strongly biased towards checking the effects of a

* given action, as opposed to finding an action which will produce desired effects. This

leaves completely open the problem of generating plans which involve the acquisition of

knowledge. A major worry here is that in our formalism it might be neccessary to search

* an infinite set of possible worlds to do plan generation. The deductive techniques we have

developed so far depend on the search space being finite. Perhaps one way out of this

problem would be to propose possible plans using some weaker formalism that does not talk

* about possible worlds, and then test the proposed plans in the more rigorous possible-world

formalism. Whatever the case, this looks like a very rich area for further research.

6l

221

8.3 Conclusions

In their classic (1969) paper, McCarthy and Hayes define three standards of adequacy

for representations of knowledge. The first standard is called metaphysical adequacy. A

representation is metaphysically adequate if every aspect of reality has a description in

terms of the representation. This seems to be what Laplace had in mind when he asserted

that given the position and velocity of every particle in the universe and all the forces
acting on them, he could predict exactly the future history of the universe. A modern

analogue of this representation might be the quantum mechanical wave equation for the

entire universe.

The trouble with representations such as these is that they cannot be used in any

practical way to represent the knowledge that an intelligent being actually has about the

world. Representations that can be used in this way are called epistemologically adequate.

This is the standard of adequacy to which formal logic directs itself. Finally, a

representation system is heuristically adequate to the extent that it can represent knowledge

about how to solve problems involving those aspects of the world represented in the system.

It seems clear that epistemological and heuristic adequacy are the twin standards by

which work in Artificial Intelligence must be Judged. Moreover, I believe that these two

goals cannot be pursued independently. Representation systems may display a remarkable

degree of epistemological adequacy without there being any indication of how they can be

used in a practical way to do reasoning. The modal logic of knowledge discussed in chapter

4 2 seems fit this description. On the other hand, heuristic methods that work for

representation systems of limited descriptive power may be of little use in richer systems. As

we pointed out in chapter A. the methods used in PLANNER and related languages run

into dlfficultiet if they are applied to systems that permit incomplete descriptions of

situations.

.

222

It is for these reasons that this thesis has emphasized both representational and

procedural issues. We have tried to increase the range of facts that an Al system can

describe, while at the same time giving the system some degree of competence in reasoning

with those descriptions. Much more progress will be required before Al systems approach

the common-sense reasoning abilities of humans, I hope that the research reported here is a

step In that direction.

U4

6~

I

0

223

Bibliography

Brown, A. L. (1977) Qualitative Knowledge. Causal Reasoning. and tA. Localization of
Failures. MIT Artificial Intelligence Laboratory. AI-TR-s62.

Chang, C. and Lee, R. C. (1973) Symbolic Logic and Mecanical Theorem Proving. New
York: Academic Press, Inc.

Cohen, P. R. (1978) On Knowing What to Say: Planning Speech Acts. University of Toronto.
Department of Computer Science, Technical Report No. 18.

Curry, H. B. and Feys, R. (1958) Combinatory Logic. Amsterdam: North-Holland Publishing
Company.

Doyle, J. (1978) Truth Maintenance Systems for Problem Solving. MIT Artificial Intelligence
Laboratory, AI-TR-4119.

de Kleer, J. et al. (1977) "Explicit Control of Reasoning". MIT Artificial Intelligence
Laboratory, AIM-427.

Fahlman, S. E. (1973) A Planning System for Robot Constuction Tasks. MIT Artificial
Intelligence Laboratory. AI-TR-283.

Fikes, R. E. and Nilsson, N. J. (1971) "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving". Artificial Intelligence, 2: 189-208.

Frege, G. (1892) "On Sense and Nominatum", in H. Feigl and W. Sellars (eds.) Readings in
PhilosopAical Analysis, 85-102. New York: Appleton.Century.Crofts, Inc., 1949.

Gettier, E. (1963) "is Justified True Belief Knowledge?*, in A. P. Griffiths (ed.) Knowledge
and Belief, 144-146. London: Oxford University Press, 1967.

Goad, C. (1976) "A Formal Representation for Situations Involving Knowledge",
unpublished manuscript.

Harel, D., Meyer, A. R., and Pratt, V. R. (1977) "Computability and Completeness in Logics
of Programs: Preliminary Reporta. Proceedings of the 9th Annual ACM Symposium on
Theory of Computing, 261-268.

Hayes, P. J. (1974) "Some Problems and Non-Problems in Representation Theory!. AISB
Summer Conference, University of Sussex, 63-79.

Hayes, P. J. (1978) "The Naive Physics Manifesto", unpublished manuscript.

Hoare. C. A. R. (1969) "An Axiomatic Basis for Computer Programming". Communications
of the ACM, 12: 576-583.

224

Hewitt, C. (1972) Description and TAoretical Analysis (Using Schemata) of PLANNZR:a
Language for Proving TAeorems and Manipulating Models In a Robot. MIT Artificial
Intelligence Laboratory. AI-TR-25&

Hewitt. C. et al. (197S) "A Universal Modular ACTOR Formalism for Artificial
Intelligence. Advance Papers of the Third International Conference on Artificial
Intelligence. 235245.

Hewitt, C. (1975) "How to Use What You Know". Advance Papers of the FourtA

International Joint Conference on Artificial Intelligence. 189- 198.

Hintikka. J. (1962) Knowledge and Belief. Ithica, New York: Cornell University Press.

Hlntikka, J. (1969) "Semantics for Propositional Attitudes", in L Linsky (ed.) Reference and
Modality, 145-167. London: Oxford University Press, 1971.

Hughes, G.E. and Cresswell, M. J. (1968) Introduction to Modal Logic. London: Methuen
and Co Ltd.

Kaplan. D. (1969) "Quantifying in", in L Linsky (ed.) Referentc and Modality. 112-144.
London: Oxford University Press, 1971.

Kowalski, R. (1974) Logic for Problem Solving. Department of Computational Logic, School
of Artificial Intelligence, University of Edinburgh. Memo 70.

Krlpke, S. A. (1963a) "Semantical Analysis of Modal Logic", Zeltschrlft fur Mathematlsckh
Logik und Grundlagen der Mathmatlk, 9: 67-96.

Kripke. S. A. (1963b) "Semantical Considerations on Modal Logic". in L. Linsky (ed.)
Reference and Modality. 6S-72. London: Oxford University Press, 1971.

Kripke. S. A. (1972) "Naming and Necessity". in D. Davidson and G. Harmon (eds.)
Semantics of Natural Language, 253-355. Dordrecht, Holland: D. Reidel Publishing
Company.

Kripke. S. A. (1975) "Outline of a Theory of Truth. The Journal of Philosophy. 72. 690-
0: 716.

McAllester. D. A. (1978) "A Three Valued Truth Maintenance System". MIT Artificial
Intelligence Laboratory, AIM-47S.

McCarthy, J. (1962) "Towards a Mathematical Science of Computation", in C. Popplewell
*I (ed.). Information Processing, Proceedings of IFIP Congress 62, 21-28. Amsterdam:

North-Holland Publishing Company.

McCarthy, J. (1963) "Programs with Common Sense", in M. Minsky (ed.) Semantic
Information Processing. 403-418. Cambridge, Mas: The MIT Press, 1968.

A;

225

McCarthy. J. and Hayes. P. J. (1969) "Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in B. Meltzer and D. Michie (edL) Machine intelligence 4. 463-
502. Edinburgh: Edinburgh University Press.

McCarthy, J. (1975) "An Axiomatization of Knowledge and the Example of the Wise Man
Puzzle". unpublished manuscripL

McCarthy, J. (1977) "Epistemological Problems of Artificial Intelligence. Proceedings of ie
Fifth International Joint Conference on Artificial Intelligence, 1038-1044.

McCarthy. J. (1978) personal communication.

McCarthy. J. (1979) "'irst Order Theories of Individual Concepts and Propositionso, in D.
Michie (ed.) Machine Intelligence 9. Edinburgh: Edinburgh University Press.

McDermott, D. V. (1974) Assimilation of New Information by a Natural Language
Understanding System. MIT Artificial Intelligence Laboratory. AI-TR-291.

McDermott, D. V. (1976) Flexibility and Efficiency in a Computer Program for Designing
Circuits. MIT Artificial Intelligence Laboratory, AI-TR-402.

Minsky. (1974) "A Framework for Representing Knowledge. MIT Artificial Intelligence
Laboratory. AIM.306.

Montague, R. (1963) "Syntactical Treatments of Modality, with Corollaries on Reflexion
Principles and Finite Axiomatizability". Acta Pilosp/ica Fennica, 16: 153167.

Moore. R. C. (1973) "D-SCRIPT: A Computational Theory of Descriptions". Advance
Papers of the Third International Joint Conference on Artificial Intelligence, 223-229.

Moore, R. C. (1975) Reasoning from Incomplete Knowledge in a Procedural Deduction
System. MIT Artificial Intelligence Laboratory. AI.TR-347.

Morgan, C. 0. (1976) "Methods for Automated Theorem Proving in Nonclassical Logics".
IEEE Transactions on Computers, C-25: 852-862.

Nevins, A. J. (1974) "A Human Oriented Logic for Automatic Theorem-Proving". Journal
of te Association for Computing Machinery, 21: 606-621.

Pratt, V. R. (1976) "Semantical Considerations on Floyd.Hoare Logic". MIT Laboratory for
Computer Science, LCS-TR.168.

Pratt. V. R. (1979) "Process Logic Preliminary Report". Conference Record of te Sixth
Annual ACM Symposium on Principles of Programming Languages, 934100.

Quine, W. V. 0. (1953) "Reference and Modality", in L. Linsky (ed.) Reference and
Modality, 17-34. London: Oxford University Press, 1971.

Qjuine, W. V. 0. (1966) "Quantifiers and Propositional Attitudes, in L. Linsky (ed.)
Reference and Modality, 101.111. London: Oxford University Press. 1971.

p,, .

226

Rescher. N. and A. Urquhart (1971) Temporal Logic. Vienna: Springer.Verlag.

Rogers, R. (1971) Mathematical Logic and Formalized TAeorles. Amsterdam: North-Holland
Publishing Company.

Russell. B. (1905) *On Denoting'. in H. Feigl and W. Sellars (eds.) Readings In
Philosophical Analysis. 85-102. New York: Appleton-Century-Crofts. Inc., 1949.

Sacerdoti, E. D. (1977) A Structure for Plans and BeAaior. New York: Elsevier North-
Holland, Inc.

Sandewall, E. (1972) "An Approach to the Frame Problem, and its Implementation', in B.
Meltzer and D. Michie (eds.) Machine Intelligence 7, 195-204. Edinburgh: Edinburgh
University Press.

Sato, M. (1976) A Study of Kripht-type Models for Some Modal Logics by Centzen's
Sequential Method. Research Institute for Mathematical Sciences, Kyoto University.
Kyoto, Japan.

Smith, B. (1977) 'Knowledge Representation Semantics'. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, 989-990.

Stallman, R. M. and Sussman G. J. (1976) 'Forward Reasoning and Dpendency.Directed
Backtracking in a System for Computer-Aided Circuit Analysis. MIT Artificial
Intelligence Laboratory, AIM-380.

Sussman, G. J. (1973) A Computational Model of Skill Acquisition. MIT Artificial
Intelligence Laboratory, AI.TR-297.

Sussman, 0. J. and Steele. G. L. (1975) "SCHEME: An Interpreter for Extended Lambda
Calculus'. MIT Artitficial Intelligence Laboratory, AIM.349.

Waldinger, R. (1975) "Achieving Several Goals Simultaneously'. Stanford Research
Institute, Artificial Intelligence Center. Technical Note 107.

Whitehead, A. N. and Russell, B. (1910) Prncipia Mathematica. Cambridge. Cambridge
University Press.

Winograd. T. (197"1) Proceedures as a Representation for Data In a Computer Program for
Understanding Natural Language. MIT Artificial Intelligence Laboratory. AI-TR-235.

227

Appendix A: First-.Order Axioms for Knowledge and Action

LI.. VpI CTru.Cpl) uTCW01pl)) go

L2. VwI,PI -P2CT(wl And(PI,0 2)) a CT(W.PI) A T~wlp 2))) go

L3. Vwl -PI-P2(T(wI,0r(p1,p2)) a CTw,pl) v T(wlP 2))) so

L4. VwI -PI P2(T~wl,(PI . P2)) a-(T(w 1,pl) aT(w, P2))) £0

L5. VwlPI -P2CT(w 1,(Pj u P2)) @ CTwjpj) s T(wjlp 2))) £

I.G. Vwl,pl CT~wjNot(pj)) a .sT~wj,pl)) £

L7. Ywl (T(w1 ,Exist(?Sj.P)) * 3sj(T~w1 ,Pja(s8)/?Sj]P)) 90

La. Vw1 (T(wj,AII(?Si.P)) @ Vs1 T(w,Pje(s1)/?S1j))) 90

1.9a. Vw1 ,trmj ,...,trmn(T(wj P(trm1 ...,trmn)) v H(w1 .:P(D(wj trwnl, ..,D(wl trm,)))) 93
if P is not an essential property of the things it is true of.

L9b. Ywj ,trm1 ,...,trm,(T(wj P(trmj ,...,trm,)) a oP(D~wjIrm1),D~wj .tm,))) 93
if P is an essential property of the things it is true of.

LIO. Vwl,x1CD~w1,m(xl))ax1) 9

LIlIa. Vw1 (D(wj Cnst) a V(wj ,:Cnst)) If Crat Is not A rigid designator. 94

LI lb. Yw1 (D~wj,Cnst) mCnut) if Crat is a rigid designator. 94

LI 2a. Vw1 ,trm1 ,....trmfl(D(wj ,F(trmI ,..trmn)) a V(wj,:F(D(w1 trm1),4,(w 1 trm,))) 95
if F Is not a rigid function.

4 ~LI 2b. Vw1 ,trmj ,...,trm,(D(wj ,F(trm1 ,...,trm,)) - :F(D(w 11trm1),...,Dw 1 trM,))t 95
if F is a rigid function.

L13. Vw1 trmj,trm2(T(wj,Eq(trmjitrm2)) *(D~wjtrmj) a D(wjltrm2))) 95

K I. Vwj ,trm.al pl (T(w1 Know(trm.aj pI)) *Vw 2 CK(D(wj ,trm.a1).w1 w2) a T(w2,pj))) W1

K2. Vajlwj(K(alwjiwl)) £

K3. V81 wjlw 2(K(al wl~w2) a Vw3(K(ajlw 2,w3) a K(ajlwjw 3)l) £2

4RI. Vw1*trm.evj,p 1 101

(Tcw1 Ras(trm.@vj p1)) * 3 2(R(Dcw 1 trw~av1),w1 w2) A Tcw2,p1)))

228

R2. Vw1 trm.al trm~actj trm-&ct2 ,PI 103
(T~wj .R~sCDo(trmnaj ,(trm.actli tfm~act2)),Pl))

T~w j .Rs(Dotrm..j trm~ast 1),Ros(D.(g(D(wj trma 1),Irmat 2))))

R3. Vwl trmn.al1 trm~aett Am-Ied2D1 '2 103
(T(wj ,RosCDo(trm-&I .iffpj,.trm.act1 ,trm-aet2))-P2))u5

((T(W1,p1) A T(W1 R..cD(trftA1 rm~Act).P2))) V
(-T(W1 pl) A T(WgR*S(D.(trmwa 1*rm~As 2),P2))

R4. Vw 1,trm.a1 trm.ct,.P1.ft 103
(T~wj .R~s(Do(trm.Q! ,WNd.(p~tmcl)p) a

R5. Vtrm-sjIww 2CR(O(trm.a1.I),w 1*w2) a tw1 a W2)) 103

R6. Vw1 ,trm.ov1 ,pi 104
(T~w1 Re.) (trm.syl pl)) s VW2 (R(D(WI .rRmIv).wl w2) a T(w2,p1)))

Ph. V 1 ,xx~w ,w 2 105
(3w 2(R(:Do(al,:Puton(xj x2)).w1 w2)).

(:Block(xi) A Vx3('H(wl*..On(x 3,xj))) A

((xl i x2) A Vx 3(-H(wl,0.n~x31x2)))) v 3Table~x2))))

P2. Va I A Ix 2 ow ,w2 105
CR(:Do(a' ,:Puton(xj ,x2),wI ow2)

CH(w 2 ,:On(x1 "'2)) A VX3C*2 i X3) a -N(w2*u-On(xj .x3)))))

P3. V&aI *x Ix 2 ,w1 ,w2 105
(R(:Do(aj ,:Puton(xl,x 2).wl,w2)

(Vint.trm1 CV~wj ,int.trml) a V(w2int.trmj)) A
Vint.pi (Vx3 (int.Pj i 0n(xl ,X3)) m (14Cw 1 ,nt-Pj) a H~w23int~Pj)))

P4. VsA I jx 2,w I w2 Ila
0 C(R(:Do(a1 ,:Puton(xi ,x2)),Wl -V12)m

Vw3 (K(a1 .w2 ,w3) v 3w4CK(sj ,wl IWO A R(:D.Caj .:Puton~xl x2)),w4,w3))))

Cl. Vw 1,trm.a1,trm.actjp 1 112
(T(w1 ,Know(trm.aj .And(Eq(m(D~wj ,trm.actj)),trmuat 1),

* Res(Do(e(D(wj ,trm.a1)),trm.act1),pj))))a
T(w1 ,Can(trm.a1 ,trm.act1 .pj)))

C2. Vw1 ,trm.a1 ,trm.actj ,trm-act 2,Pj 112
(T~w1 ,Can(trm.aj ,(trm.sctI I trm.act 2),Pl)).

* ~~T(w 1 ,Cen(trn~aj l.t t CAsn(uCD~wj ,rma 1)),trwmIac 2,P1))))

.
%

. -. - . -

229

C3. Vwl trm.aj trm.actl trm-act 2,P1 .P2 112

(T~wj ,Can(trm.al 1~if ,trm.act jtrm-act2),P2))
((T(wj ,Know(trm.alp) A T(wj ,Can(trm~fltrm-8ctl,p2))) v
(T(w1*Know(lrm.a,Not(pj))) A T(wj Can(trmal trm~act 2,P2)))))

C4. Vw1 trm.&1 ,trm-act1 .P1 P2 112

(T(w 1*Can(trm.a 1,While (p1 ,trm.actl -2)

02. Val Al A2 -w1,W 113

(3R(:Do(a ,:DiaI(xj x2)),wl 2)
Ow a V(w1 :Comb(x 2))) A H:w2 afp(x2) A wlAt&X))

D3.- Va1 I A Ix 2,w 1 M2
13

(R(:Do(aj ,:Dia(x 1 ,x2)),w1 ,w2) a
Yw3(K a V~w, 21w3 2)) m ~w2 :OPon(x 2))) A 3 .p4(2)

J 4(Kla 1 ,w1 ,w) * (:Doj,:DiI(xj 2)) w* 3))

04. Vaj .K,x 2 ,wj,w2
122

(Yint.trm1 (V(w 1,int.trml) a V(w 2 int.trm1)) A

Yint.pl ((bnt.p j if:Opon(x2)) a (H(wj -int-P1) 0 I4(w2 Int.pl)))))

ABY!. Vwj ,trm.x1 ,Irm-x2
107

(T(wj ,Abov.(trm.xj ,trm.x2))
(T(w 190n(trm xl trm-x2)) v
3x3 (T(w 3,Above(trmxj ,(x 3))) A T~w1 ,Abovoe(x3)trmix2)))))

IWLI Yw11trn.xjoxpi
127

4 (T(w1 ,Info(irmx 1 ,xp 1)) *(oxpl s V(wl 1:Info(D(wjltrm.Kj)))))

RDOI.-V Ya1 x Pw w2
127

(3w2 (R(:D@(aj ,:Road(xj)).W1 .w2)) a
(14(w l :Read.(s1)) A H(w1 ,:At(aj xj))))

RDS 1. Vw1 ,al (H(wj ,:Road(al)) a VW2(K(al owl 1w2) 0 H(w2tsReads(aj)))) 127

230

R02.Va I x I w Iw2 127

(R:DO(aj ,:Read(m1)),W11W2)
Yw3(K(al w2,w3) 9 ((V(W2,:Info(Xl)) .V(W 30infO(Xl))) A

3w4(K(a1 wl w4) A R(:0C11 zRoad(xj)).w4 .w3)))))

RD3. V@A 1 w 1 IW2 127
(R:D(aj,:Resd(xj)),w1 ,w2) a

(Yint-trml MVWj ,int-trml) a V(w21int-trml)
Vint.pj (H(wj mntpj) uH(w2 .in.pj))))

2S 1

Appendix B: Procedurally Interpreted Axioms for Knowledge and Action

L.I. TruCpi) (a) T(W 0,Pj) 158

L2. T(wj,(And(pjP2)) (8> (T~wjpi) A T(WjP2)) 156

L3. T(wI,COr(p 1P2))) (§> (T~w,,P) v T(w,,P2)) 156

1.4a. T~wj,(p1 4) p2)~) (T(wi,p1)) T(w, 02)) 156

L.4b. T(W1 .(pI 2~()(~ 1,~ -Tw 156

L~e. T~wj, P 2 >p)) (n) (T(wl,pj)) T(wl,p2))15

L4d. T(wl,(pl (NP) (§>) (T(wI-Pj) (a T(wj-P2)) 156

1.5a. T~wj,Cpj (0> P2)) ()(T~W,pj) W* T~wjIP2)) 156

L.5b. T(w1,(p1 (5> P2)) (>(T(wj,pl) (a) T~wlp 2)) 156

L6. T(wj,Not(p1)) Wa ..T~wl,p 1) 156

L9&. T(w1,P(trmj,...,rmn)) (<@) l(wj,:P(D~wl,trmj),..,D~w1,trm,))) 156
if P is not an essential property of the things it is true of.

1.9b. T~wj ,P (trm,trMn))3 (a) :PCD(wjltrm1),...,D~wj~trm,)) 156
if P is an essential property of the things it is true of.

LIO&. D(w,o(xl)) a x,156

LI0b. (G(x1) GOPx))(U (xI x2) 156

L I Ia. D(w ,Cnst) aV(wj sCnst) if Cat is not a rigid designator. 156

Li lIb. O~w 1,Cnst)l n iCnst if Cast is a rigid designator. 156

LI12a. D~wj ,F(trmI,...,trm,)) - V~wj .:F(D~w1,.trmj),..,(w 1 trm,)) 156
If F is not a rigid function.

LIM2b D(w1 ,F(trmj ,...,trm,)) a :F(D(wj trmI1),...,O~w1 trmn)) 157
it F is a rigid function.

232

L13. T(w15Eqtrm1 trm2)) (a) (D(wi.tvm1) aD(witrm2))15

K 1. T(wjKnow(trm-&jpj)) (0) Vw2(KCD~w 1trmaj),wjw 2) T-) ,l) 157

* K2. Wajlwgiw) 157

K3. M~al ,wl w2)/Iwl 0 W2J - (K(a15w2 5w3)/[w2 i w3] Mal K~ 1 wlw 3)) 157

*RI. T(wj,Ros(trm..v1 ,pl))/ 169
C(trm.vj j Do(trm.aj ,(trm-act 2l trm.act 3))) A

* (trm.evj I Do(trm.a 1 If (P2 trm..ct2 -trm-aet3)))A
(trm.ev1 Ji Do(trn.aj ,WiI(P 2*trm.aet 2))j (0n

3 2 (R(D(wj ,Do(trm.al trm.act1)),W1 W2) A T~w2 pl))

R2. T~w1 ,Res(Do(trm.a1 ,CtrmLactj; trm.act2)),P1)) (8> 169

T(wj ,Res(Do(trm.a1 trm.act1),R~s(Do(a(D~wj trma 1))tractd2).p1)))

R3. T(w1 ,Ros(Do(irm.a1 ,f(pj trm.aetl trm.act 2)).P2)) (i)169

((T(wl pl) A T(w19Ros(Oo(trm.aj,trm.act1),P2))) v
(.'T(W1 .pl) A T(wj ,Ros(Do~trm.a1 trm~ad 2).P2))))

R4. T(w1 ,Ros(Do(trm.aj ,WhiI.(pl trm.act 1).p) W 169

T(wj .Ros(DoCtrm.a1 fpj.Ctrm.actj; WhiIo(p1 *tem~atj))AQI)).p))

* .R5. R(Do(trm.a1*Nil).wjlw 2) (i)(wl aW2) 169

* R6. T(wj Real (trm.*vj .pj))/ 170
l(trm.evj j Do(trm.a1 ,(trm-act 2; trm-act 3))) A
(trm.ovl j Do(trm.a1 ,If(P2*trm.act 2*trmLact 3))) A

(trm.evj Ji Dotrmn.aj,Whei.(P26trm.act2))J (0)

VW2(R(D(w 1 ,Do(trm.al trm.act i)).wl w2) 4) T(w2,P)

Cl. T~wj ,Can(trm.aj trm.actj ,pj))I 171
6 [trm.ctl j (trm-act 2; trm-bct3) A

(trm.act I ji If (P25trm-act 2*trm.aCI 3)) A
(trm.actj pf While(P25trm-bct2))] (w

T(wj ,Know(Irm.aj And(Eq(u(D(wj trm.act1)),trm.actl),

C2. T(w1 *Can(trm.a1 ,(trm.actl; trm.act2),P1)) ()171

T(w1 ,Can(trma.atrw.ectj Can(e(D~wj trm.aj)),trNLact2 Pj)))

C3. T(wj ,Can(trm.a1 ,if(pj trm.act1 trmact2),P2)) (1>) 171

C(T~wj ~pl) A T~wj Can(trm.aj trmsact1 'P2))) v
6 ~(qT(wi .l) A T(wj .an(trmfiaj trmst 2,P2))))

25S

C4. T~wj ,Cain(trm.aj ,Whil.(pl tractlj 2) (a) 171
T~w1 ,Can(trm.a1 OIf(p 1 ,(trmactl; WhI~e(pj tr~Aet 1))jdi),p))

DI&a R(:Do(aj ,:Dia(xg1 x2)),W1 w2) 8) 172
C3w3(V(w3,5Comb(x 2)) a XI) A ISafs(x2) A H(wlsAt~alx 2)))

DI b. R(:Do~aj .Dimi(xi v2)),w,,Fl (81 Alj A21w1) 172
(CVw 3,:Com(x 2). -XI) A :Ssf*(x2) A H(WloAt~alx 2)))

02. R~sDo(aj ,:OiaI(x 1 x2)),w11w2) 1 72
((H~w2 intPj) (§>

((Cnt.pl w :Opon(x 2)) A
((Y(wl,:*Comb~x2)). 211) v H(w12Ope@n(x 2)))) v

C(int.pl f tOPsn(x2)) A H(wljnt~pj)D) A

(Y(w2,int.trm1Ju VWw 1 ,nttrm1 ID

D3. R:Do(aj ,:DiaI(x1 x2)),wl w2) ->173

(K~aj Iw 2,w3)/[w2 i W3 1 (->
(3w4 (K(al,wj,w4)I1w1 i W4 A

R(:Do(s1 1:Di&I(x1 x2)),w 41W3)) A

(H(w 2,:.Open(x 2)) C8> H(w3,:Opon(x 2)))))

Al. I ~jwl w2)/Cwl if w2l- ISO

(H~w2 :At(si x 3D v -H~wj ,:At(aj l))

INF 1. T(wlj nfo(tvm.x1 ,9xpI)) (W (V(w1 ,:Info(D~wl trmx 3))) *expl) 193

RDSI. I(jwjw 2)/(wj if W2 1 -> 191
(H(w 2 :Reads(sj)) v -I4(wj ,:R~adu(e1)))

ROE a. R(.:Do(a1 ,:-Rod(x1)).w1 ,w2) 0) 191
(H(w1 ,tReas(sj)) A 14(v1 ,:At(al xj)))

RDI b. R(:O(aj ,:Road(x11)),wl F2(a1 ,xl,wl)) (a 192
(H(w1 ,tR~sds(&l)) A H(w1 ,:At(sl xj)))

R02. R:Do(aj ,:Road(x1)),wjlw 2) -> 192
CK(. Iw 2,w3)/[w2 i W3J (-)

4 3wq(K (aj wiw4)l[wi i W4) A

CV(w 4,.:Info(xl)) a V(w1 ,:Info(x1))) A
R(:Do(aj ,:R*ad(xj)),w4,w3)))

RD3. R(zDo(al,:Road(xj)),wjIW2) -)192

4 ((V~w25int.trm1) a V(w1 ,nt.trmj)) A

(H(w 2 ,int-Pj) (1> H(Wl .nt-pi))

4

I

