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ABSTRACT

Since Griffith and Stewart firstly proposed as successive linear programing

method for solving general nonlinear programing problems, such methods have

been widely used in practice because of their ease of imlementation and their

K ability to deal with large scale problems. However, neither the original

* version, nor a more recent one contain convergence proofs possibly because of

*non-robustness of their algorithms. Using exact penalty functions and Levenberg-

Marquardtllke steps, an Improved algorithm has been recently devised. In this

" paper, we give this modified SLP method a theoretical analysis and convergence

proof, and thereby provide a sound basis for it.
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A Successive Linear Programing Method and Its Convergence
on Nonlinear Problems

by

J. Zhang

§1 Introduction

In this paper we discuss the following type of general nonlinear programming

problem

min f(xI) + px2

s.t. gi(x 1 ) + q(i)x 2 s: b i , i = 1,...,k

gi(xl) + q(i)x 2 4 bi , i - k+1,...,h (1.1)

,i(A1,A 2 ) 1 4C

• X2

where XlCRn, x2CRm, the vectors p, q(i) CRm, A1 and A2 are respectively

1 x n and 1 x m matrices, cCR1 , f and gi (i = 1,...,h) are continuously

differentiable functions in Rn. For simplicity, we write the scalar product

* of vectors x and y as xy. When there is no need to differentiate between the

nonlinear part and the linear part of the problem functions, we write

F(x) f(x ) + px2

G(X) a gi(xl) + - bi , i =1,..h

n+m
Here x= (xX 2 ) R

In 1961, Griffith and Stewart [1] proposed a successive linear programming

method for the above problem (1.1). In their method, linear approximations for

all nonlinear functions f and gi were made and then the resulting linear program-

ming problem was solved in a bounded region. Because of its ease of implementation

and its ability to deal with large scale problems, this method has been widely

used in various organizations. However, although this method has worked in

many examples, its convergence has not been established in general cases.
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Since its appearance, some modified and improved versions have appeared,

such as [2], [3]. For example, in [3] using penalty functions, another SLP

method has been presented. Computational results for it compare favorably with

the well-known Generalized Reduced Gradient Method. However, the algorithm of

[3) is rather complicated and its convergence was only proved (in an unpublished

dissertation) for linearly constrained problems. Using the basic idea of [3),

Lasdon, Kim and this author improved the SLP algorithm further in [4]. The new

SLP method has worked efficiently in extensive sets of test examples. In this

paper we give the method a theoretical analysis and convergence proof and thereby

provide a sound basis for it.

In the next section, §2, we discuss the exact penalty function of problem

(1.1). In §3 we introduce the improves SLP algorithm, and in §4 we solve the

problem of convergence of this method.

§2 Some Relative Results on Exact Penalty Function

For problem (1.1), we construct the exact penalty function

k h
P(z) A F(x) + E wi IGl(x)l z+  i max (O,Gi(x)) (2.1)

i=1 i=k+1

where w = (w l...wh) and are suitable positive numbers (i =

Now we consider the problem

min P(x) (2.2)
Ax 4 c

There are many papers devoted to expounding the close relation between the

*optimal solution of the exact penalty function problem and that of the original

- problem. According to the results of [5), and considering the linear inequality

*T constraints, which still remain in (2.2), we can easily find the relation

.. between problem (2.2) and (1.1).
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Set

= (x Gi(x) = 0 , i 1,...,k

G.(x) 4 0 , i = k+1,...,h ;

andAx 4 cl

, .i-and

R' {x : Ax 4 c}

We can obtain the following:

Proposition 2.1 If there exists a 0 such that for all wP ww, "x is a local

- minimum point of the penalty function P(xw) in N(r)fli2', which contains at

*. least one feasible point of original problem (here, N(x) is an open neighborhood

of x), then xC and is a local optimal solution of problem (1.1). Especially,

if for some w, the local optimal solution i is a feasible point of (1.1), then

x must be a local optimal solution of the original problem.

For the original problem (1.1), if we write the last constraint as xc 2', then

under any common K-T type constraii qualification (for instance, the qualifica-

tions of Mangasarian-Fromovitz or Kuhn-Tucker in [6]), we can state the necessary

' condition for an extremum point i as follows:

There are u = ,...,

v - k+I"'" ,Uh)

satisfying

ui > 0 , uiGi(x) = 0 , i = k+l,...,h (2.3)

and for VsCT(fl',i), we always have

h
(vf(i) + vGi( )) s > 0 (2.4)

.=1
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where T(fl',x) is the tangent cone of linear constraint set Wa at 7:

T(11 '-) = {s :ai s ( 0 , i C I I(-X)) (2.5)

and

I'(iX) {i : i( {1,2,...,l) and ax X C1 (2.6)

a. is the i-th row vector of matrix A.
1

In fact, (2.3) and (2.4) form an optimality criteria of the minimum

principle type, see [6), [7). Of course, we can also rewrite (2.4) as

*[Vf (i) + u.i vG () + E I

1=1 iI(ix)

where

10F {i ie{k+1,...,h} and Gi) 0).

Furthermore, it is easy to modify the standard Fiacco-McCormick second order

sufficient condition [8] as follows:

If the feasible point 7 of problem (1.1) satisfies the necessary conditions

* (2.3) and (2.4), and for any s 0 with the following properties:

VF M~s 4 0

VG.(i)s 0 i 19..,

VG Mis 4 0 ieif3)

5 s T(SI,',x)

The following strict inequality always holds:

h
s[V~f + ~UivGi]-s > o (2.7)

* then iis a strict local optimal solution of the original problem (1.1).
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Consulting the proof of lemma 4.5 and theorem 4.6 of [5], it is not difficult

to obtain:

r . Proposition 2.2 If the feasible point V of problem (1.1) satisfies second order

sufficient conditions (2.3), (2.4) and (2.7), and w = (wl... ,wh) has the property:

min {w > max Q1ill
ji=1,... ,h i=19,... ,h

then T must be a strict local minimum solution of exact penalty function P(x,w)

*i! in '.

From the above, we know that except in some particular cases (for example,

see [9)), usually by solving problem (2.2), we can get the optimal solution of

the original problem (1.1).

Now we turn to the optimality criteria for problem (2.2). Obviously, P(x)

is a nonsmooth function. However, since F(x) and G.(x) are all continuously
1

differentiable, P(x) is a locally Lipschitz continuous function and so, according

to [10], we know that along every direction s, function P(x) has generalized
directional derivative

P0(x;s) A lim sup P(x'+6s) P(x') (2.8)

and by virtue of it, Clarke defined the generalized gradient of P(x):

3P(x) { : VveRn +m , PO(x;v) > V} (2.9)

and furthermore, we know that DP(x) is a compact convex set of Rn+m and

P0(x;s) max cs (2.10)
rc3P(x)

Because the constraints in problem (2.2) are all linear, obviously the problem

satisfies common constraint qualifications for nonsmooth extremum problems and

therefore, according to [11], [12], [13], we have
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Proposition 2.3 The necessary condition for i being a local optimal solution

of extremum problem (2.2) is that for i - 1,2,...,l and i- I'(Z) (see (2.6)).

there exist xi )  0 such that

0 e aP(x) + a .

Or, if we denote

.XD(x) a(x) + x i a i  (2.11)
ieW(x)' ' 

2:1

,--:. . ) 0
1

E{x 0 D (x)}

and call Q?* the set of stationary points of non-differentiable programming (2.2),

then Proposition 2.3 implies that

Sis a local optimal solution of (2.2) -X> Q*.

In the last part of this section, we are going to discuss the structure

* of the generalized gradient aP(x). First, we have

'roposition 2.4 If q(xu(k)) is a finite family of functions, in which xER
n+m

(k.-) (k) (k)
u eR k = 1i...,s; and for every u(k), (uk) is a continuously differentiable

function of x, then the function

•(x) max o(x,u(k))
k=1 ... 9s

is a locally Lipschitz continuous function; and for every direction v, there

is a directional derivative '(x;v) under the usual meaning, which equals

p0(x;v); and furthermore,

a3(x) = co {V x(XU(k)) u (k)E M(x)} (2.12)

Sx
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where
MWx {u (k) V (xu(k)) =(~

and co(-) denotes the convex hull of set C)

In fact, this proposition is a particular case of £14], Ch. III, wherein

Pshenichnyi has some general results about quasi-differentiable functionals

involving extensive arguments. Here we give a straightforward proof for our

case.

Proof

Using the locally Lipschitz property of differentiable function (P, it is not

difficult to see that O'(x) is also locally Lipschitz continuous.

Now, for every uk) M(x),

+ Sxv u)) (k) (PXu(k)

W('~ )v lim V'(x+v u )- xu )

4 lm if '~x v) - i(x) (since (o(x + 6u(k))<V +6v

~liminf i(x + 6vvu Pi(x 6

< lim sup 'Px+ 6)- p)

< lp*(x;v)

=lirn sup P(x' + 60) 441~x)

6 4- 0

max (o(x' + 6v,u (k)) a ox,~ )
u(k)EMx (k)ma

lim sup u()Mx
x'*x 6
6+4-0
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(when x' nears x, 6 nears 0, we have

Mx') _ Mx) and Mx' + 6v) 9 Mx) )

i; lit sup max { 0(x' +6vu(k)) - p(x.,u(k ))

x u(k)Mx )  6
6+0

= lim sup max {VqP(x 'u(k))v + o()}

.,x' x u(k)eM(x)"." 6+0

= max V(o(x,u (k))v (2.13)

u(k)M(x)

S= max WV
w( co {vwo(x,u(k)) u(k)eM(x)j

Obviously, at the very beginning of the series of expressions above, we can

select the particular u(k), which makes the expression VW(x,u (k))v in (2.13)

reach its maximum, and it means that all these inequalities must be held as

strict equality. So, there qxists '(x,v) and

lim i(x + 6v) - *(x)

6-+0 6

= i' (x;v)

,':= °(x;v)

= max wv (2.14)

weco (wix,u(k)) u(k)M(x)}
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On the other hand, by virtue of (2.10),

-°(x;v) = max v (2.15)
• - j (x)

m Because both sets appeared respectively in (2.14) and (2.15) are closed convex

sets, so according to Corollary 13.1.1 of [15],

M~p(x) = co {Vo(x,u (k)) u (k)EM(x)}

From the above result, now it is easy to express the structure of 3P(x).

Proposition 2.5 For every positive vector w, the generalized gradient set of

function P(x) defined by (2.1) is

h
.P(x) = {VF(x) + Z uiW i VG(x)} (2.16)

i=1 1 1 1

and for i=l,...,k,

w~i snGi(x) if Gi(x) 0

Ui -1,1] if G if G- o (2.17)

"" for i=k+l,...,h,

ui = [1 + sgn Gi(x)]/2 if Gi(x) 0L[OI 1 if Gi(x) = 0 (2.18)

Proof

Since IGi(x)l = max {Gi(x).1 , Gi(x).-1}

max (Gi(x),O) = max {Gi(x)-i , Gi(x).O}

k h
' WiGi(x)l + Z wi max (Gi(x),O)
i=1 i=k+l
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h
max { W u
IJEU 1=1 1

ui = ±1 when tnl,...,k;

where UA {u = (U1,...,UkUk+1,...,Uh): ±
u1 = 0 or 1 when i=k+l,...,h

i;

We set

h
4(x,u) A F(x) + E WiGi(x)ui

i=11

then P(x) = max ((x,u)

utU

and by virtue of Proposition 2.4, we have

aP(x) = co {VP(x,u) ueM(x)}

h u i are determined
= co {VF(x) + Z w u.VG.(x) by (2.17) and (2.18))

and which is just the same as (2.16).

Incidently, Coleman and Conn has obtained nearly the same result, see [9),

- Theorem 1 and its Corollary 1, but in their proof, they assumed that vectors

{VGi(x) I Gi(x) = 0, i=1,2,...,h} are linearly independent, which is redundant

*according to the proof given here.

As a matter of fact, according to Propositions 2.3 and 2.5, it is obvious

that there exists another relation between the original problem (1.1) and the

.: penalty problem (2.2).

' Proposition 2.6 If x is a Kuhn-Tucker point of problem (1.1) with the corresponding

* multipliers ui (i=l,...,h) and . (i=1,...,l), and the coefficients wi of the

penalty function P satisfy the condition that
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00 ui1 -

then x must be a stationary point of penalty problem (2.2).

Proof

By K-T conditions, we have

2 h_
0 : VF(x) + E u.VG.(x) + E Ia.i=1 1 1 i'I'(i-) '

(ui > 0 and uiiGi(x) = 0 for i=k+1,...,h;

,. ; 0 for ieI'(X))

k
C VF(i) + Z a. {uiVGl(i) : uie[-1,1]}

i=1

h uuV.i t.[-1,1] if G1(7) =01
+ E W. 1 Gi-X
i=k+11 1 = 0 if Gi(i) 01

+ E X.a.

"= P(i) + Z -.a.i I ( ) 1 1

Here, the last equation is because of expressions (2.17), (2.18) and the fact

that x is a feasible point of the original problem (1.1).

Now, by virtue of Propositon 2.3, we know that

0O#D(i)

which means x is a stationary point of (2.2).

§3 Successive Linear Programmling Algorithm

Now we present the modified SLP algorithm of [4] which we shall employ in our

proof. Taking a linear approximation for penalty function P(x), that means for

x (X1,x 2 ) and d = (dl,d 2 ), where d1ERn, d2ERm, we approximately have
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P(x+d)

M R(N,d)

. (F(N) + VF()d) + I 2wIGi(x) + VG(i )dl

h
+ E W max (0,Gi(i) + VGi(N)d) (3.1)

i-k+1

In fact, because the second parts of F and G themselves are linear functions,

only the approximation for functions f and gi is needed.

The problem (2.2) has now been changed approximately to a linear programming

problem:

min R(xd)

s.t. Idll 1 G •

"d 2, •  M (3.2)

A(x+ d) 4 c

Here, the reason for restricting the norm of vector dI is clear, because it is

only when we do so that the linear approximation can be reasonable, and furthermore,

the value of a should be adjusted according to how better the linear approximation

was performed. Positive number M can be taken as any large amount. From the

approximate point of view, it is unnecessary to restrict the norm of vector d

however, in order to guarantee that the subproblem (3.2) must have a finite

optimal solution, we need to restrict d in a bounded area.

Using L, norm can make (3.2) easily become a linear programming problem,

and for simplicity, from now on we just use II It instead of sign I • Ia,. Now

we state the whole algorithm as follows:
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SLP Algorithm

10 Select initial point x(1) which satisfies linear constraint Ax 4 c, positive a1

and N (large enough), 0< P2 < P2 < 1, y > 1, set k * 1.

m 2°  Solve subprobl em

min R(x(k),d)

s.t. Id *

I, d2U < N (3.3)

" A(x(k) + d) < c

and obtain solution d(k) (if the optimal solutions are not unique. choose

any one of them as d(k)).

30 Calculate

Ap(k) P(x(k)) - p(x(k) + d(k))

AR(k) A P(x(k)) - R(x(k) , d(k))

if =R
(k)  0, then stop; otherwise calculate

ak = Ap(k),R(k)

40 Set

Jak/Y k < PI

ctk+l "k

"ak otherwise

and

(k+l) = x(k) d k 0

lx + ) otherwise

Set k *-k+1 , and return to 20.

l. ,- . .1 . . r x . s
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The main part of this algorithm is successively solving linear programmng

(3.3). We can rewrite the objective function R(x(k),d) as

(k) k + h +Vf(x• d d1pd wi(St - k+l

and at the same time supplement a set of constraint conditions:

g1(xl(k)) + vgj(xl(k))dl + q(l)(x 2(k) + ) b1  S+ - SI

S + , st >o

:i: t = 1,2,...,gh

Now the subproblems in the algorithm become ordinary LP problems.

We use the ratio of AP(k) and AR(k) to assess whether the last linearization

is a good approximation or not, and then to decide the maximum step length for

next iteration. This is a common technique in Levenberg-1iarquardt type methods

for nonlinear least square problems (see [16) and references therein).

§4 Convergence

In this section, we are going to prove the convergence of this modified

SLP algorithm. The main idea of our proof, especially the logic order of the

following Lemma 4.3, Lemma 4.4 and Theorem 4.5, to a large extent, come from

Zhu Meifang and author's paper [16], in which we gave a nearly unl.jrm proof

to several versions of Levenberg-Marquardt algorithm for nonlinear least square

problems. We find that the way of dealing with the convergence of restricted

*r step algorithms used in (16] is also very useful in the following argument and

the only difference is that now we have to notice the nondifferentiable nature

of the present problem.

Theorem 4.1 The AR(k) defined in above algorithm (k=1,2,...) are always

non-negative, and if AR(k) 0 0, the corresponding x(k) is a stationary point of
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programming (2.2), i.e., x(k)f jl*, and it is the case of finite convergence of

this algorithm.

Proof

Obviously d - 0 is a feasible solution of problem (3.3), hence

R(x(k),O) > R(x(k(,d(k 1) (4.1)

" By definition of function R, Rlxlk),o) - Plx ( k ) ) and so, (4.1) implies

AR(k) = P(x(k)) - R(x(k),d(k)) > 0

- Furthermore, AR(k) = 0 if and only if d - 0 is an optimal solution of problem

(3.3). Because the constraints appeared in (3.3) are all linear inequalities,

they meet usual constraint qualifications and the first two of them are obviously

inactive. So according to the Proposition 2.3, it is certain that there exist

Xi > O, iEI'(x(k)), such that

0 EadR(x(k)'d) Id=0 + EI,(x(k)) 'iai (4.2)

where a. is the i-th row vector of A.
1

Using Proposition 2.4 and Proposition 2.5, but instead of x with d and taking

values at d = 0, we get
rI~(' h (k)

adR (x (k),d) Id=O = VF(x(k)) 
+  E uiiVGi  )

i=1

and where, for i = 1,...,k,

Ssgn G (k)) if G1(x(k)) # 0

U1 = [-1,1 otherwise

and for i = k+l,...,h,

[ 1 + sgn Gi(x(k))]/2 if Gi(x(k)) f 0

u1 " [0,1) otherwise
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)dRlx(k) 'd) Id-O " aP(x(k)) (4.3)

and hence from (4.2) and (4.3) we know

S(k) f (*.

In order to prove the convergence when {x(k) is an infinite sequence, we

"- need several lemmas at first.

.. Lemma 4.2 For any x, we have

P(x + d) = R(x,d) + o(ld 1H1) (4.4)

and if the nonlinear part x1 of variable x is restricted in a bounded closed

set ACRn  then the o(11d 11) is independent of x on set AxRm.

Proof

From the calculus, we know that if function f is continuously differentiable

in an open set containing A, then for any X1 #A, we have

f(x1 + d1) = f(x1) + Vf(xl)d1 + o(ld 1l)

"' and the remainder o(11d 11) of it is independent of xI on A.

For the linear part of the objective function in problem (1.1), Px2 ,

obviously we have

P(x2 + d2) = Px2 + Pd2 , Vx2, Vd2

So,

F(x + d) = F(x) + VF(x)d + o(11dll).

And for the terms related to G.(x + d) in exact penalty function P(x + d), we

have similar results and so we get (4.4).
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Lemma 4.3 If the functions f and gi are continuously differentiable, then for
AA A A A

any x Q'\ f* , any p1 < 1, there must exist o - a(x) > 0 and e - e(x) > 0, such

that when xCN(x,c)n W and 0 < a 4 a , the optimal solution d = d(a,x) of the

subproblem

min R(x,d)

s.t. Rdl0 4 a

[d2 h < M (4.5)

A(x + d) < c

must satisfy the inequality

a(a,x) = P(x) - P(x + d) P IL (4.6)
P(x) - R(x,d)

A A A A

where N(x,C) {x lix - xll < C}

Proof

Since x 0 f2*, that means

0 D(X). (4.7)
A A

Because aP(x) is a compact convex set and {ZXiai4I'(x), Xi ) 01 is a finitely
i1

- generated convex cone, and it is a closed cone ([15), Th. 19.1). As the sum

set of these two sets we know D(x) is also a closed convex set [17]. According

to the separation theorem for convex sets, (4.7) implies that there exists a
4

vector t, litH - 1, and a number T > 0, such that for all s C D(x)

st < -T < 0 (4.8)

Especially for Vs e 3P(x) c D(x) the above inequality holds. So we have

max St <-T < 0
seap(X)
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By virtue of (2.10), the above inequality means

p(xt) .lir sup P(x+ at) - P(x) .
x-*x

-.+0

"" Hence there exist positive numbers T and E , such that when x e N(x), 0 < a

* we have

P(x +a t) - P(x) < (4.9)
a 2

On the other hand, (4.8) also implies that

ai t 4 0 , VieI'(x) (4.10)

Otherwise, if a t > 0 for some ieI'(x), then taking s' A Atat + deD(x) (deaP(x))

and letting the corresponding X - . we shall get a result which contradicts

(4.8).

For every d I' (), if we set

*-6 aX -C < 0
o2 " " i a a x ci <

* then there must exist an c such that when x e N(xe 1), we have

'i
ai x - cI < --
iX c1  2

. By selecting at > 0 such that when 0 < a < a

12
i= ctalt <

* now for Vi 0 I'(x), if x e N(x,c I) and 0 < a < a,, we have

a1(x + at) - cI 4 (aix - cI ) + oaiat < 0 (4.11)

• .Now we take

A min^ {Ec a"" ,i mm•.
101'(x)
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and for any x e N(x,e) nl W.' any 0 < a 4 because of (4.10) and (4.11), we

obta in

*ai(X + at) -4 c1  9 1 JS... 9l (4.12)

* and at the same time, inequality (4.9) holds, too.

For such x and a let us consider the optimal solution d(a,x) and corresponding

optimal value q(xd) of the subproblem (4.5).

From Lemma 4.2, it is clear that

AP(x,d) = P(x) - P(x + d

= P(x) - R(x~d) + o(I; 0)

= R(x,d).+ 0(a) (4.13)

*(Si nce Id11I < a )and so,

a~~x *AP(x~d) (4.140

*Now we are going to get an asymptotic estimation for AR(x,d).

Let d a at, then according to expressslon (4.12), we know that d is a

feasible solution of~ problem (4.5), so we have

and a

AR(x,d) > AR(x,d) (4.15)

By (4.9),

AP(x'd) P~)-Px+d) > l
2

Similarly to (4.13) ,we can have

AR(x,d) =AP(x,d) + o(a) > -a + 0(a)

*(Since Rd I Rat 1 4 altH a .)Substituting above expression for the right

* side of (4.15) ,we get
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AR(x,d) > la+ o(a)
2

and hence the right side of (4.14) tends to 1 when a approaches to zero, and
A

which means that for every p1 < 1, there exists a = (x) (<a), such that when
A AA

0 < a '4 , for every x e N(x,e)nlw, we have (4.6).

- Lemma 4.4 If bounded closed set RcIV\ Q*, then for every pie(0,1), there must

exist a* > 0, such that for any ae(0,a*J and arbitrary x e R, the quotient a(a,x)

determined by (4.6) satisfies the condition:

"(cx) 0 P1  (4.16)

Proof
AA A

According to Lemma 4.3, for every x e R, there are c(x) > 0 and a(x) > 0

*such that

x e N(x,c(x))nR

(0 < a < alx)

All these N(x,c(x)) cover the bounded and closed set R, so there must exist

finite number of neighborhoods N(xll), . . . , N(x ,j ), such that

j AA

RC U N(xiei).
i"11

From the finite number of ai = a(xi), which correspond to those neighborhoods,

we take their minimum value

0*= min {[a

and it is clear that when 0 < a • a*, (4.16) holds for all x e R.
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S'Theorem 4.5 If the constrained level set of exact penalty function P(x) about

the initial point x 1 of the algorithm,

L(x(1)) A {x : x e Q' and P(x) 4 P(x(1))}

is bounded, and the sequence of iterative points {x} obtained from SLP

(k)" algorithm is infinite, then {x must have limit points, and furthermore, at

. least one of them is a constrained stationary point of P(x) in Wi'.

• Proof

According to the rule of the algorithm, we have P(x(k+1)) < P(x (k)), and

hence {x (k) } c L(x(1)), which means {x (k) } must have at least one limit point

* because of the boundness of the level set L(x ().

We now prove the second conclusion by contradiction. Suppose none of the

* limit points of {x (k)I were constrained stationary points, then for every

x e L(x(1))n a*, there exists an e = e(x) > 0, such that neighborhood N(x,e)
'- {x(k)}

contains no point of {x . We denote the union of all these neighborhoods as E:

i U N(xe(x))xeL(x 1 ) n g*

then

{x C R A L(x(1))\ E C L(x()\ *

Since R defined in this way is obviously a closed bounded set, according to

Lemma 4.4 and the algorithm, if ak < a*, then we must have a(czk,x (k)) Pl

and ak+l will no longer be less than k k+l ;  k" and it means that

a m in {1- (k=1,2,...) (4.17)

From (4.17) we know that there must exist a subsequence {x(k) of {x

satisfying
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.a(ck'x(ki)) ) P1 • (4.18)

Otherwise, if there were a ko , such that when k ) ko,

a( kx (k) < Pl

then by the rule of SLP algorithm,

_ k

k+1 (k >k)

which leads to ak 0 0, contradicting (4.17).

In the bounded sequence {x(ki)}, there must contain a convergent subsequence

of {xk}( k) For simplicity, without loss of generality we assume

x(ki) x* e R (i ®)

From (4.18) and algorithm, we know that

x (ki+1) = X(ki) + ()

and

P(x Px(ki)) o p AR(ckx(ki)) ' i=1,2,... (4.19)

Now we estimate AR(k,x'ki)). Consider the following supplementary problemNki

min R(x*,d)

s.t. lid l 1
12

lid2 11 4 M - 2
l (4.20)

A(x* + d) < C

and assume the optimal solution of it is d* (because M can be taken as large

as one likes, and 8, if necessary, can be decreased from the value defined in



23

(4.19), we can always regard M4 as a positive number). Since x* Q*, by

Theorem 4.1, we have

AR(POx) =P(x*) -R(x*,d*) 6 > 0

* Set x =x* + d*, and in virtue of continuity, there is an i 0> 0 such that when

l!P(X(ki))- R(x(ki) ,x (ki)) > (421

and

j~x(ki) -X*I <

Now, from the above inequality and (4.17), when i > i we have

II~ -x(~))jI i(x -X*) 11 + II(x* x xk) 11

< 
k

* Similarly, we know that

iI(x - x~i) 2I < M

and clearly,

A(ki) + (x-x(ki))) 3*+ *

The above three inequalities indicate that vector

(ki) x _ x(ki)

is a feasible point of the ki-th subproblem (4.5) (i >, i) Hence,
0

R~~k),(ki)) ~ ((ki) , (ki))

and
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AR(ca ,X(k~i)) >i P(x (kl)) -R( x(ki) x -~ i

e
> (See (4.23))

combining above inequality and (4.19), we obtain

Pc(ki+1)) - (ki)) Pie (i~
20

which contradicts the convergence of the following series of positive terms:

z [P(x~k+) P(xki) < z [P(x~'iP P(xkif
* i=1 i =1

-P(x*) -P(x(kl)) < +
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