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ABSTRACT

;ince Griffith and Stewart firstly proposed as successive linear programming
method for solving general nonlinear programming problems, such methods have
been widely used in practice because of their ease of implementation and ;heir
ability to deal with large scale problems. However, neither the original
version, nor a more recent one contain convergence proofs possibly because of
non-robustness of their algorithms. Using exact penalty functions and LevenbergJ
Marquardtlike steps, an improved algorithm has been recently devised. In this
paper, we give this modified SLP method a theoretical analysis and convergence

proof, and thereby provide a sound basis for it. _.

i

i

KEY WORDS

Constrained nonlinear programming
Exact penalty function

Nonsmooth optimization

Stationary points

Generalized gradient

Linear subproblem
Restricted step length

Convergence




3 An A4
AR

-7'

ARERARE B+ LALK

MR §-4 (RERM

A Successive Linear Programming Method and Its Convergence
on Nonlinear Problems

by
J. Zhang

§1 Introduction

In this paper we discuss the following type of general nonlinear programming
problem

min f(xl) + pxy

s.t. gi(xl) + q(i)x2 = bi s T =1,...,.k
g,(xy) + ot xy by 4 i = k#l,eih (1.1)
*1
(Al,Az) €c
X2

where xICR", sz Rm, the vectors p, q(i)CRm, A1 and A2 are respectively
1 xnand 1 x m matrices, CG:R], f and 9; (i =1,...,h) are continuously
differentiable functions in R". For simplicity, we write the scalar product

of vectors x and y as xy. When there is no need to differentiate between the

nonlinear part and the linear part of the problem functions, we write

F(x) & f(x;) + px,

Gi(x)=A gi(xl) + q(‘)x2 - by, i=1,...,h

- (. n+m
Here «x (xl,xz)t RO,

In 1961, Griffith and Stewart [1] proposed a successiveriinear programming
method for the above problem (1.1). In their method, linear approximations for
all nonlinear functions f and g; were made and then the resulting linear program-
ming problem was solved in a bounded region. Because of its ease of implementation
and its ability to deal with large scale problems, this method has been widely
used in various organizations. However, although this method has worked in

many examples, its convergence has not been established in general cases.
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Since its appearance, some modified and improved versions have appeared,
such as [2], [3]. For example, in [3] using penalty functions, another SLP
method has been presented. Computational résuIts for it compare favorably with "
the well-known Generalized Reduced Gradient Method. However, the algorithm of
[3] is rather complicated and its convergence was only proved (in an unpublished'
dissertation) for linearly constrained problems. Using the basic idea of [3],
Lasdon, Kim and this author improved the SLP algorithm further in [4]. The new
SLP method has worked efficiently in extensive sets of test examples. In this
paper we give the method a theoretical analysis and convergence proof and thereby
provide a sound basis for it.

In the next section, §2, we discuss the exact penalty function of problem
(1.1). In 53 we introduce the improves SLP algorithm, and in §4 we solve the

problem of convergence of this method.

§2 Some Relative Results on Exact Penalty Function

For problem (1.1), we construct the exact penalty function

3 h
P(z) A F(x) + T ow: |6(x)|+ I w; max (0,6,(x)) (2.1)
i=1 : i=k+1
where w = (wl,...,wh) and ; are suitable positive numbers (i = 1,...,h).

2
- Now we consider the problem
- min  P(x) (2.2)
3 Ax € ¢
P_-.v.'
b
Ej There are many papers devoted to expounding the close relation between the
b..- » .
- optimal solution of the exact penalty function problem and that of the original
L
b

problem. According to the results of [5], and considering the linear inequality

constraints, which still remain in (2.2), we can easily find the relation

between problem (2.2) and (1.1).
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Set

Q={x:Gi(x)=0 s 1 =1,...,k 3
Gi(x) £0, 1 =ktl,...,h;
Ax € c}
and
Q' = {x : Ax<c}.

We can obtain the following:

Proposition 2.1 If there exists a w = 0 such that for all w » w, X is a local

minimum point of the penalty function P(x,w) in N(X)NQ', which contains at
least one feasible point of original problem (here, N(x) is an open neighborhood
of x), then XE€Q and is a local optimal solution of problem (1.1). Especially,
if for some w, the local optimal so]utioﬁ X is a feasible point of (1.1), then

x must be a local optimal solution of the original problem.

For the original problem (1.1), if we write the last constraint as xe€Q', then
under any common K-T type constratnc qualification (for instance, the qualifica-
tions of Mangasarian-Fromovitz or Kuhn-Tucker in [6]), we can state the necessary

condition for an extremum point X as follows:

There are u = (u;,...,u)
V= (Upyqoeeobp)
satisfying
u; 20, u6i(x) =0, i =ktl,...,h (2.3)
and for ¥s€T(Q',x), we always have

h
(vF(x) + 12_:1 u; V6, (X)) s > 0 | (2.4)




where T(Q',x) is the tangent cone of linear constraint set Q' at X:

T(@'x) = {s :a,s<0, i€1'(x)} (2.5)
and

I'(x)8 {i : i€ {1,2,...,1} and agx = c,} (2.6)

a; is the i-th row vector of matrix A.
In fact, (2.3) and (2.4) form an optimality criteria of the minimum

principle type, see [6], [7]. Of course, we can also rewrite (2.4) as
k

[% () + E T, 6, () + i€Elm T, v6,(R)] s >0

where

(%) A {i : ie{k+l,...,h} and G6,(%) = O},

Furthermore, it is easy to modify the standard Fiacco-McCormick second order

sufficient condition [8] as follows:

If the feasible point X of problem (1.1) satisfies the necessary conditions

(2.3) and (2.4), and for any s # O with the following properties:

”vpi(sz)s <0
V6, (X)s = 0, i = 1,...,k

VG, (X)s €0 i€l(x)

Lf eT(Q',x)

The following strict inequality always holds:
h _
s[V2f + Zuivze.]-s >0, (2.7)
i=1 X

then x is a strict local optimal solution of the original problem (1.1).

mtm et at .
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Consulting the proof of lemma 4.5 and theorem 4.6 of [5],A1t is not difficult
to obtain:

Proposition 2.2 If the feasible point X of problem (1.1) satisfies second order

sufficient conditions (2.3), (2.4) and (2.7), and w = (ml....,mh) has the property:

min  {w;} > max {[U, |}
i=1,...,h i=l,...,h

G
L-
:ir"
s
i
b,

then x must be a strict local minimum solution of exact penalty function P(x,w)
in Q'.

From the above, we know that except in some particular cases (for example,
see [9]), usually by solving problem (2.2), we can get the optimal solution of
the original problem (1.1).

Now we turn to the optimality criteria for problem (2.2). Obviously, P(x)
is a nonsmooth function. However, since F(x) and Gi(x) are all continuously
differentiable, P(x) is a locally Lipschitz continuous function and so, according
to [10], we know that along every direction s, function P(x) has generalized

directional derivative

P°(x;s) A Vim sup P(X'+GS)6' P{x') (2.8)

x"'-+x
5§40

and by virtue of it, Clarke defined the generalized gradient of P(x):

aP(x) A {g : yveR"M , P°(x;v) > vz} : (2.9)
ﬁ n+m
g and furthermore, we know that 3P(x) is a compact convex set of R and
:
3 P°(x;s) = max zs (2.10)
3 zeaP(x)
>
3

Because the constraints in problem (2.2) are all linear, obviously the problem

Lt k]

satisfies common constraint qualifications for nonsmooth extremum problems and

therefore, according to [11], [12], [13], we have
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— PPN W WO (P WU WP S B NPT I G I R S AR A W S |




. Tk A e I kNl XN I A T A N AL Tl S Y L A Nl P Y . MR e .« T o Cet,
‘.\Y\'E AUNLR NN P TN 10N IO ORISR RO CH TS SR S ALY . I Sl M R S R T AL A AL R i R R DT Y |

i R T P e O~ RO S P T i i S o e R o S D o L S R L I )

Proposition 2.3 The necessary condition for x being a local optimal solution

of extremum problem (2.2) is that for i = 1,2,...,1 and i€ I1'(X) (see (2.6)),
there exist Ai 2 0 such that

0 €3P(x) + E Ay

iel'(x)
Or, if we denote
D(x) A oP(x) + 2 Aa, (2:11)
jel'(x)
Ai 20

Q* A {x : 0eD(x)}
and call Q* the set of stationary points of non-differentiable programming (2.2),

then Proposition 2.3 implies that
x is a local optimal solution of (2.2) = X e Q*.

In the last part of this section, we are going to discuss the structure

of the generalized gradient 3P(x). First, we have

rroposition 2.4 If ¢(x,u(k)) is a finite family of functions, in which x ¢ R"+m,

(k)

u(k)éR, k=1,...,5; and for every u'"’, ¢(x,u(k)) is a continuously differentiable

function of x, then the function

p(x) = max w(x,u(k))
k=1l,...,s

is a locally Lipschitz continuous function; and for every direction v, there
is a directional derivative ¢'(x;v) under the usual meaning, which equals

Y°(x;v); and furthermore,

a(x) = co {Vx¢(x,u(k)) : u(k)e M(x)} (2.12)
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Mx) = w® :oiul®)y = y(x)
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and co(-) denotes the convex hull of set (-).

In fact, this proposition is a particular case of [14], Ch. III, wherein
Pshenichnyi has some general results about quasi-differentiable fﬁnctionals
involving extensive arguments. Here we give a straightforwafd proof for our

case.
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Proof
j} Using the locally Lipschitz property of differentiable function ¢, it is not
§; difficult to see that ¥(x) is also locally Lipschitz continuous.

Now, for every u(k)e M(x),

s vo(x,ulk))y = 1im o(x + 8v_, u(k;) - o(x,u'k))
i 840
< Tim inf p(x + Gvg = ¥(x) (since ¢(x + Gv,u(k)) < P(x + 6v
§+v0
., < Tim sup P(x + 8v) - p(x)
§40 8
- < p°(x;3v)
= 1im sup x' *+8v) - w(x')
X'+ x 6
= 8§+ 0
:; max @(x' + 6v,u(k)) - max w(x',u(k))
4 - tim sup W) uKemix)
- X'+ x 8
§+0




(when x' nears x, & nears 0, we have

M(x') € M(x) and M(x' + &v) € M(x) )

< Tim sup max  { o(x" +6vLu(k)) - w(x'.u(k)) }

15 uWenco 6

p max {V(p(x',u(k))v +0(1)}

n
b3
<
2
b
-
[~
—
>~
~—
—~—
<

(2.13)

max wv
W € Co {W(x.u(k)) : u(k)fM(x)}

Obviously, at the very beginning of the series of expressions above, we can
select the particular u(k), which makes the expression V<P(x,u(k))v in (2.13)
reach its maximum, and it means that all these inequalities must be held as

strict equality. So, there axists y'(x,v) and

lim P(x + &v) - p(x)
840 )

= ' (x;v)
= y°(x;v)

= max

wv (2.14)
WeCo {VW(x,u(k)) : u(k)cM(x)}
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On the other hand, by virtue of (2.10),

Y(x3v) = max gv ' (2.15)
zeay(x)

Because both sets appeared respectively in (2.14) and (2.15) are closed convex

sets, so according to Corollary 13.1.1 of [15],
p(x) = co {Vw(x,u(k)) : u(k)GM(x)}
From the above result, now it is easy to express the structure of 3P(x).

Proposition 2.5 For every positive vector w, the generalized gradient set nf

function P(x) defined by (2.1) is

h
P(x) = {VF(x) + % u;w; VGi(x)} (2.16)
i=]

and for i=1,...,k,

sgn G, (x) if G;(x) #0

Ui = Y[-1,1] if 6,(x) = 0 (2.17)
E} for i=k+l,...,h,
;» C o JI[1 +son G (x)]/2 if Gi(x) #0
. " {[0.1] 1 if 65(x) = (2.18)
g Proof
E Since |Gi(x)| = max {Gi(x)-l . Gi(x)--l}
i

max (Gi(x),o) max {Gi(x)-l , Gi(x)-O}

wr—————
-— .

-
we |G, (x)] + I w; max (G, (x),0)
i =kt i

k
5
=1 j=k+1 |

1

B« O |




h
=max { £ m.G.(x)ui}

uel =1 '
h U a1 ( ) uy = t1 when i=1,...,k;
where A{u = (UjseeaslpsUp qseeeslp)?
1 k*"k+l "h u; = 0 or 1 when i=k+l,...

" We set
- h
e o(x,u) A F(x) + I w.G;(x)u,
IE; then P(x) = max ¢(x,u)
o uel

and by virtue of Proposition 2.4, we have

aP(x) = co {V¥(x,u) : ueM(x)}

u. are determined

h
. 1
co {VF(x) + iff”i“ivsi(x) " by (2.17) and (2.18)}

and which is just the same as (2.16).

10

sh

Incidently, Coleman and Conn has obtained nearly the same result, see [9],

?f: Theorem 1 and its Corollary 1, but in their proof, they assumed that vectors
%; {VGi(x) | Gi(x) =0, i=1,2,...,h} are linearly independent, which is redundant
E ' according to the proof given here.

E'- As a matter of fact, according to Propositions 2.3 and 2.5, it is obvious
é; that there exists another relation between the original problem (1.1) and the
F* penalty problem (2.2).

;ii Proposition 2.6 If X is a Kuhn-Tucker point of problem (1.1) with the corresponding
i‘ multipliers Ui (i=1,...,h) and Xi (i=1,...,1), and the coefficients ws of the
Ei’ penalty function P satisfy the condition that
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w; ? lusl » i=l,...5h

then x must be a stationary point of penalty problem (2.2).

Proof

By K-T conditions, we have

h
0=vF(x)+ I UiVGi (x)+ I X’iai
j=1 jel'(X)

(31. >0 and '61.61(7) =0 for i=k+l,...,h;

fi>0 for iel'(X))

k
CVF(x) + I w; {uiVGi(Y) : uie[-l.l]}

i=1l
- "

F * Lo T.VG.(Y) . ugel-1,1] , if Gi(z) = 0}
g i=k+1 11 ) u_i =0 if Gi(x) <0
+ I _1X.a,

i‘I'(X) 11

= 3P(x) + I _ Tiai
jel'(x)

LA AR A
LRI LN LR PR

Here, the last equation is because of expressions (2.17), (2.18) and the fact

that X is a feasible point of the original problem (1.1).

[

t Now, by virtue of Propositon 2.3, we know that

4 0 ¢D(x)

k-

X which means x is a stationary point of (2.2).

.

'L‘ §3 Successive Linear Programming Algorithm

- Now we present the modified SLP algorithm of [4] which we shall employ in our
proof. Taking a linear approximation for penalty function P(x), that means for

= - . (T = - n m .

N X (xl,xz) and d (dl’dz)’ where dlfR R dsz , we approximately have
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P(x + d)

= R(Y’d)

k
A (F(x) + vF(x)d) + 1}: w [64(x) + VG, (x)d|
=)

h
+ I w; max (0,G,(x) + VG, (x)d) (3.1)
i i i
i=k+1
In fact, because the second parts of F and G1 themselves are linear functions,
only the approximation for functions f and 9, is needed.
The problem (2.2) has now been changed approximately to a linear programming

problem:
min  R(x,d)

s.t. ld) < a

ld 0, < M (3.2)

A(x +d) € ¢

Here, the reason for restricting the norm of vector d1 is clear, because it is

only when we do so that the linear approximation can be reasonable, and furthermore,
the value of o should be adjusted according to how better the linear approximation
was performed. Positive number M can be taken as any large amount. From the
approximate point of view, it is unnecessary to restrict the norm of vector dz;
however, in order to guarantee that the subproblem (3.2) must have a finite

optimal solution, we need to restrict d in a bounded area.

t! Using L_ norm can make (3.2) easily become a linear programming problem,
;‘ and for simplicity, from now on we just use | + I instead of sign ! - i . Now
jf we state the whole algorithm as follows:
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SLP Algorithm

1° Select initial point x(l) which satisfies linear constraint Ax € ¢, positive oy

and M (large enough), 0'< py <pp <1,y >1, setk = 1.

2° Solve subproblem

min R(x(K),q)

s.t. Hdlﬂ < o

Id,0 < M (3.3)
A(x(k) +d)<c

and obtain solution d(k) (if the optimal solutions are not unique, choose

any one of them as d(k)).
3° Calculate

ap(k) 5 p(x(k)y - prx(k) 4 g(K)y

if AR(k) = 0, then stop; otherwise calculate

o, = ap(K)/ar (k)

4° Set

ak/Y o, < P2

%k+1 T % % > P2

W otherwise
and
(k+1) _ J x(K) 6, <0
X =Yk, (k) K
x*\"' +d otherwise

Set k « k+1 , and return to 2°.
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The main part of this algorithm is successively solving 1inear programming
(3.3). He can rewrite the objective function R(x(k).d) as
k h
k) + - +
viix,K)) d, +pd, + Tu (st +S)+ I ust,
1 1 2 jup | i i fak+1 i

and at the same time supplement a set of constraint conditions:

(9,06, + 99,00, %N, + oMK 4 0y - by =57 - 5]
+ -
9 $;20,5;20

L i=1,2,...,h

Now the subproblems in the algorithm become ordinary LP problems. ’

We use the ratio of AP(k) and AR(k) to assess whether the last 1inearization
is a good approximation or not, and then to decide the maximum step length for
next iteration. This is a common technique in Levenberg-Marquardt type methods

for nonlinear least square problems (see [16] and references therein).

84 Convergence

In this section, we are going to prove the convergence of this modified
SLP algorithm. The main idea of our proof, especially the logic order of the
following Lemma 4.3, Lemma 4.4 and Theorem 4.5, to a large extent, come from
Zhu Meifang and author's paper [16], in which we gave a nearly uni.>rm proof
to several versions of Levenberg;Marquardt algorithm for nonlinear least square
problems. We find that the way of dealing with the convergence of restricted
step algorithms used in [16] is also very useful in the following argument and
the only difference is that now we have to notice the nondifferentiable nature

of the present problem.

Theorem 4.1 The AR(k) defined in above algorithm (k=1,2,...) are always

non-negative, and if AR(k) = 0, the corresponding x(k) is a stationary point of
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programming (2.2), i.e., x(k)e Q*, and it is the case of finite convergence of

this algorithm.

Proof

Obviously d = 0 is a feasible solution of problem (3.3), hence
R(x(K),0) > r(x{K),a(k)) (4.1)
By definition of function R, R(x‘*),0) = P(x¥)) and so, (4.1) implies

MK 2Ry L pexlK) glk)y 5 g

Furthermore, AR(k)

=0 if and only ifd = 0 is an optimal solution of problem
(3.3). Because the constraints appeared in (3.3) are all linear inequalities,
they meet usual constraint qualifications and the first two of them are obviously
inactive. So according to the Proposition 2.3, it is certain that there exist

A4 >0, iel'(x(k)). such that

k :
0 ¢adR(x( ),d) lg=0 * ieIF(x(k))Aiai (4.2)

where a; is the i-th row vector of A.
Using Proposition 2.4 and Proposition 2.5, but instead of x with d and taking

values at d = 0, we get

h
(k) 4) 140 = FOxIK)) + 5w ve, (x(%)

3 R(x
d i=1

and where, for i = 1,...,k,

sgn Gi(x(k)) if Gi(x(k)) £0
Yi * )C-1,1] otherwise

and for i = k+1,...,h,

[1+sgn 6, (N2 i 6,(x(®)) # 0
Ui = {10,1] otherwise

- - . . e e s N L. . . st . . . . . .
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The above result indicates that 16

a®(x{K),a) |40 = 9p(x{¥)) (4.3)

and hence from (4.2) and (4.3) we know

x(k)e QF,

In crder to prove the convergence when {x(k)} is an infinite sequence, we

need several lemmas at first.
Lemma 4.2 For any x, we have
P(x + d) = R(x,d) + O(IIdllI) (4.4)

and if the nonlinear part Xy of variable x is restricted in a bounded closed

set ACR", then the O(Hdln) is independent of x on set AxR™,

Proof

From the calculus, we know that if function f is continuously differentiable

in an open set containing A, then for any xleA, we have

f(x1 + dl) = f(xl) + Vf(xl)d1 + o(Hdlu)

and the remainder o(udlﬂ) of it is independent of xq on A.
For the linear part of the objective function in problem (1.1), sz,

obviously we have
P(x2 + d2) = Px, + sz » VX5, vd,

So,

F(x +d) = F(x) + VF(x)d + o(“dlﬂ).

And for the terms related to Gi(x + d) in exact penaity function P(x + d), we

have similar results and so we get (4.4).
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Lemma 4.3 If the functions f and g; are continuously differentiable, then for
any x ¢Q'\ 9% , any P < 1, there must exist o« = a(x) > 0 and e = e(;) > 0, such

that when x€N(x,e)N Q' and 0 < a € o ,» the optimal solution a= d{a,x) of the

subproblem
min R(x,d)
s.t. udlu <a
bl < M (4.5)
A(x +d) <c

must satisfy the inequality

P(x) - P(x + d) 5

o(a,x) = P(x) - R(x.3) Py (4.6)
where N(x,c) A{x : lx - xl < €}
Proof
Since ; ¢ 0%, that means
0 ¢ D(x). (4.7)

Because aP(;) is a compact convex set and {zkiailiel‘(;), Ay 2 0} is a finitely
generated convex cone, and it is a closed cone ([15], Th. 19.1). As the sum
set of these two sets we know D(;) is also a closed convex set [17]. According
to the separation theorem for convex sets, (4.7) implies that there exists a

vector t, IItl = 1, and a number t > 0, such that for all s € D(;)
st<-1<0 (4.8)
Especially for Vs e aP(;) C D(;) the above inequality holds. So we have

max_ st € -t <0
sedp(x)
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By virtue of (2.10), the above inequality means

(i) - g Bxtat) - o)
a+0 o

Hence there exist positive numbers € and a , such that when x e N(;.ED, 0O<af€a,

we have

P(x + at) - P(x)
)

T
< 3 (4.9)

On the other hand, (4.8) also implies that
ajt <0, viel'(x) (4.10)

Otherwise, if a;t > 0 for some ieI'(;), then taking s' = A‘a1 + deD(;) (deaP(;))
and letting the corresponding A1 + o , we shall get a result which contradicts
(4.8).

For every i ¢ I'(:), if we set

A ~

then there must exist an € such that when x € N(x,ei), we have

8
aiX'C1<'?

By selecting ag > 0 such that when 0 < a € ay
8'i
now for ¥i ¢ 1'(x), 1f x € N(x,;) and 0 < a <, We have
ai(x + at) - c; < (aix - ci) +aa;t < 0 (4.11)

Now we take

;_A- min, {e,e;} , &4 min, {u,04)
i¢1'(x) i¢1'(x)
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and for any x € N(;.E) NnQ', any 0 <o <a , because of (4.10) and (4.11), we

obtain

ai(x + at) < ¢y i=1,...,] (4.12)

and at the same time, inequality (4.9) holds, too.
For such x and o let us consider the optimal solution ;(a.x) and corresponding
optimal value q(x;J) of the subproblem (4.5).
From Lemma 4.2, it is clear that
AP(x,d) = P(x) = P(x + d)
P(x) - R(x,d) + o(ualu)

AR(x,d) + o(a) (4.13)

(Since Halu < a ) and so,

ola,x) = AP0xd) g, ola) (4.14)
AR(X.d) AR(X.d)

Now we are going to get an asymptotic estimation for AR(x,d).
Let 8 A at, then according to expresssion (4.12), we know that 3 is a
feasible solution of problem (4.5), so we have
R(x,d) < R(x,d)

and ~ ~
AR(x,d) > AR(x,d) ‘ (4.15)

By (4.9),
AP(x,d) = P(x) - P(x + d) > za

Similarly to (4.13) ,we can have
AR(x.a) = AP(x,a) + of(a) > :zf-a + o(a)

(Since u&ln = natlu Salth = o .) Substituting above expression for the right
side of (4.15) ,we get
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AR(x,a) > -;-a+ of{a)

and hence the right side of (4.14) tends to 1 when o approaches to zero, and
which means that for every p; < 1, there exists ; = a(;) (<a), such that when

0<a<a, for every x € N(x,e)nQ', we have (4.6).

Lemma 4.4 If bounded closed set RCQ'\ Q*, then for every ple(o,l), there must
exist a* > 0, such that for any ae(0,a*] and arbitrary x e R, the quotient o(a,x)

determined by (4.6) satisfies the condition:
o(a,x) 2 0 ‘ (4.16)

Proof

According to Lemma 4.3, for every x e R, there are e€(x) > 0 and a(;) >0

such that

X e N(;,e(;))r\R

~ == ola,x) > Py
0 <o < alx)

A11 these N(x,e(x)) cover the bounded and closed set R, so there must exist

finite number of neighborhoods N(xl,gl). e s N(;j,ej), such that

j ~ A
RC U N(xi,ei).
i=1

From the finite number of o, = “(xi)’ which correspond to those neighborhoods,

we take their minimum value

a* = min {&i}
§=1,n 0 s

and it is clear that when 0 < o € a*, (4.16) holds for all x € R.
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Theorem 4.5 If the constrained level set of exact penalty function P(x) about
the initial point x(l) of the algorithm,

L(x(l))lA {(x : x e 2 and P(x) < P(x'1))}

is bounded, and the sequence of iterative points {x(k)} obtained from SLP
algorithm is infinite, then {x(k)} must have limit points, and furthermore, at

least one of them is a constrained stationary point of P(x) in Q'.

Proof

According to the rule of the algorithm, we have P(x(k+1))=< P(x(k)), and
hence {x(k)} c:L(x(l)), which means {x(k)} must have at least one limit point
because of the boundness of the level set L(x(l)).

We now prove the second conclusion by contradiction. Suppose none of the
1imit points of {x(k)} were constrained stationary points, then for every
X € L(x(l))r\n*, there exists an ¢ = ¢(x) > 0, such that neighborhood N(x,e)

contains no point of {x(k)}. We denote the union of all these neighborhoods as I:

L= N(x,e(x))

v
xeL(x(l))r\Q*
then

oy e ratN s cnix VN e

Since R defined in this way is obviously a closed bounded set, according to
Lemma 4.4 and the algorithm, if o € a*, then we must have o(ak,x(k)) 2 Py

and 041 will no longer be less than Ol Oy 2 Qs and it means that

o > min fo, T} a8 (ke1,2,...) (4.17)

From (4.17) we know that there must exist a subsequence {x(ki)} of {x(k)},

satisfying
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Otherwise, if there were a Ko’ such that when k » Ko »
(k)
o(ak,x ) < pl
then by the rule of SLP algorithm,

(k > k)

T ’
which leads to o > 0, contradicting (4.17).

In the bounded sequence {x(ki)}, there must contain a convergent subsequence

of {x(k)}. For simplicity, without loss of generality we assume

(ki) g e R (i + =)

From (4.18) and algorithm, we know that
LK) (k) + k)
and

p(x ki) - pexlki)y 5 o AR(aki,x(ki)) L i1,2,...  (4.19)

Now we estimate AR(aki,x(ki)). Consider the following supplementary problem

min R(x*,d)

B
s.t. l|d1|l <€ 2

B
id l €M - &
2 2 (4.20)

A(x* +d) € C

and assume the optimal solution of it is d* (because M can be taken as large

as one likes, and 8, if necessary, can be decreased from the value defined in
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(4.19), we can always regard M -'% as a positive number). Since x* ¢ Q*, by

Theorem 4.1, we have

OR(5,x*) = P(x¥) - R(x*,d%) A 6 > 0

~

Set x = x* + d*, and in virtue of continuity, there is an i_ > 0 such that when

o]

i3>
- 103

P(X(ki))- R(x(ki),x - X(ki)) >% (4.21)
and
(ki) - < &
Now, from the above inequality and (4.17), when i 2> io’ we have
I(x - x(ki))lﬂ < H(; - x*)lﬂ + I(x* - x(ki))lﬂ
< B Kqg
ki
Similarly, we know that
H(x - x(ki))zu <M
and clearly,
a1 + (k- xkily] 2 A+ e < o
The above three inequalities indicate that vector
aiki) Ax - « (ki)
is a feasible point of the kj-th subproblem (4.5) (i 2 io). Hence,

R(x(ki),a(ki)) < R(x(ki) , X - x(ki))

and
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AR(aki ’ X(k1)) 2 P(x(ki)) - R(X(ki) s ; - X(ki))

> %- (See (4.23))
combining above inequality and (4.19), we obtain
. . pq.6
pi(kittly _oppelkidy > L (i)

which contradicts the convergence of the following series of positive terms:

; [P(x(ki+1)) - P(x(ki))] < .; [P(x(ki+1)) - P(x(ki))]

i=1 _ i=1

= P(x*) - P(x(kl)) < to
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