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EXECUTIVE SUMMARY

i3 1. Introduction

- The objective of this study is to assess the applicability of modern
computer and communication technology, to the problems of testbed
design and operation. The work is being conducted in two phases.
Phase I, reported here, was undertaken to gather and assimilate

- information on several DOD testbeds. Phase II consists of a critical
-- analysis of problem areas in networking simulations, the identification of

simulation network requirements, and the development of a preliminary
network design description.

2. Needs of the Testbed Community

* As a result of the information gathering phase of the project, the
following needs of the testbed community were identified:

1. improved capabilities for information gathering and
sharing on testbed models, data, and resources,

2. adoption of hardware and software standards, where
practical, to encourage the sharing and reuse of existing

r* hardware and software resources, and
3. further investigation of the communication and control

problems associated with geographically distributed
testbeds

3. Recommendations

Several modern data processing and communications capabilities can
be employed to address the above needs. The initial recommendations

* resulting from this study are that the potential of the initiatives listed
below be explored.

1. The development and use of a community-wide electronic
mail service.

2. The implementation of a database management system to
catalog information on available models, data, hardware
specifications, and testbed architectures.

3. The development and adoption of standards for the
design and implementation of mathematical models and of
both hardware and software testbed components.

4. The utilization of a computer-based communications
network to improve the reliability and availability of
communications for geographically distributed testbeds.

3.1 Electronic Mail

An electronic message transfer system will provide more timely
communications and improved information management for members of the
testbed community. The functions of an electronic message transfer
system should be:

1. an inter/intra office mail system capable of creating,



transmitting, editing, filing, searching, and printing
mail and documents,

2. a community/project bulletin board system,
3. a community/project broadcast message system, and
4. a calendar system for scheduling activities.

3.2 Database Management System

A database management system utilized by the test and evaluation
community would enhance the sharing and standardization of information
within the community. In a database management system, information
can be stored in a computer system in such a manner that the
information can be searched, correlated, and retrieved from a database.
Additionally, if a database management system were part of a network

4 of information sharing services such as an electronic mail system, the
database could be accessed remotely by testbed personnel over a
computer communications network. This would allow testbed personnel
across the country to obtain information on a timely basis.

3.3 Adoption of Standards

The adoption of standards would promote the reuse of resources that
have been developed by the testbed community. Standards also offer
greater flexibility in testbed design in that testbeds can evolve and
incorporate new components as they become available. Existing
resources that do not exactly meet the fidelity or performance
requirements of new testbeds could be used during the development andUtesting stage. This would allow the development process to proceed
without waiting for key resources. The reuse of existing resources
would reduce the overall cost of testbed development as well as the time
needed before a testbed produces meaningful results. The applicability
of standards in the following areas should be investigated:

1. mathematical models,
S2. softwa re, including programming methodology,

programming languages, and simulation interfaces, and
3. communications.

3.4 Computer- Based Communications Network

A computer network can provide a basic framework for developing
testbeds. The network should not be thought of as a dedicated set of
communications links but as a delivery service that guarantees the
timely delivery of information between sites served by the network.
The physical communications system may incorporate dial-up lines,
leased telephone company lines, microwave links, or satellite links, but
the user is presented with the illusion of a dedicated circuit. A
computer-based network provides the automatic services of error
detection and correction, message routing, and load balancing. The
services provided by a network relieve the testbed architects of the
problems attendant with the use of traditional communications channels
and thus allows them to concentrate on the testbed mission.
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FOREWORD

* -This report was prepared for the Director, Defense Test and

Evaluation by the Department of Computer Science at Clemson

" University under contract MDA903-82-C-0211. H. Eugene Thompson of

- OSD was the technical monitor for this contract and made many

significant contributions to the study.

Dr. E. W. Page served as the principal investigator for this study

with assistance from Drs. A. Wayne Madison and Harold C. Grossman.

Dr. Dan Warner of the Mathematical Sciences Department and Dr. John

-~.Spragins of the Electrical and Computer Engineering Department also

contributed.

The objective of this study is to assess the applicability of modern

computer and communications technology to the problems of testbed

* design and operation. Phase I of the study was undertaken to gather

and assimilate information on several testbeds; it is not a critical review

of DOD testbeds.

During the course of this phase of the project, the following testbed

sites were visited:

TESTBED LOCATION

IFFN Kirtland AFB, NM
C2 CM Kirtland AFB, NM
CSEDS Morestown, NJ
JINTACCS Ft. Monmouth, NJ
REDCOM JTC MacDill AFB, FL
REDCOM ASG MacDill AFB, FL

Additionally, visits were made to the Naval Ocean Systems Center

(NOSC) and to Logicon, Inc. of San Diego, California to gain insight on

-1-



- testbed design alternatives by talking with persons involved with both

o existing and new designs. Members of the project team also attended

the Manned Simulator Testbed Workshop held at the MITRE Corporation

on 22-24 June 1982.

-- This report provides an overview of modern testbeds, identifies

many of the most pervasive problems faced by testbed designers and

suggests approaches for dealing with the problems of testbed

implementation.

&
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1.0 Testbed Overview

P- The Department of Defense (DOD) has a well-established precedent

of using testbeds to train personnel, test procedural and doctrinal

concepts, and to test equipment. A testbed typically consists of

computer simulations, operational hardware, communications subsystems,

and human operators. A testbed will employ an appropriate mix of

simulations, hardware, and humans to simulate a complex system with

sufficient fidelity to satisfy the test objectives. Testbeds offer

substantially more realism than computer simulations alone while

maintaining a high degree of control over test variables. A testbed can

come arbitrarily close to simulating an actual system but with more

repeatability than is possible in testing a physical system. Because of

the complexity of modern testbeds, several years are required for a

testbed to progress from the conceptual stage to an operational stage.

1.1 Testbed Architecture
a

Although the testbeds surveyed have unique objectives and therefore

unique design requirements, there is a common philosophy of

organization as illustrated in Fig. 1. Fundamentally, a testbed consists

of two parts:

1. an interconnection of physical components and computer

simulations comprising the system being simulated, and

2. an auxiliary system that provides a test environment and

monitors the system's behavior.

Most testbed architectures require a central simulation facility. The

-3-
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central simulation facility is typically supported by a powerful mainframe

*m computer system that interprets a scenario script, generates stimulation

data, and monitors responses from the simulated system. The central

simulation facility may also support software simulations as if they were

an integral part of the system being simulated.

1.2 Testbed Components

A system may be thought of as a collection of components and

subsystems that operate within an environment. The testbed designer

decomposes the system to be tested into its constituent parts and then

determines which parts are best represented by actual hardware or

human participants and which parts may be simulated. Figure 2

illustrates the decomposition of a system.

Testbed components may be operational systems, computer simulations

or a combination of operational hardware and computer simulations. In

* the IFFN testbed, for example, the test system consists of both live

and simulated components such as the HAWK and PATRIOT batteries,

simulated radar tracks, manned command and control posts, and actual

tactical data links. The simulated system at the CSEDS testbed consists

of a live SPY-1 radar, manned radar and communication posts, the

actual computer hardware and software used for shipboard operations,

together with simulated threats and simulated interceptor missiles.

The testbed objectives together with time and cost constraints will

dictate requirements for the degree of real-time operation necessary and

the appropriate mix of live and simulated components. For testbeds

-5-
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such as IFFN that use human operators, events should be perceived as

occurring in real time. A testbed consisting solely of computer

simulations can use simulated time which may be faster or slower than

real tirra.

1.3 Testbed Control and Monitoring

The efficacy of a testbed is strongly dependent upon the capabilities

of the stimulation and data monitoring portions of the general model

(Fig. 1). A test typically consists of th ree stages: pretest

preparation, test execution, and post-test analysis. During the pretest

preparation, a scenario script is developed that provides the test

environment for the test. For some testbeds, a high-level language

i allows scenarios to be prepared off-line in an English-like language

developed especially for scenario generation.

During the test execution stage, the master simulation control

program interprets the scenario script and, in turn, generates the

appropriate stimuli for the simulated system. The master simulation

control also continuously updates displays available to the test director

and his staff. Events occurring within the simulated system can alter

the environment. An interceptor fired at a threat, for example, should

remove that track from all simulated radar scopes if the master

simulation control considers the intercept attempt to be successful. For

some testbeds, the scenario script may be altered during testing by the

test director.

During the test, data is collected for later analysis. This process

-7-



may be done in real time (i.e., the data is transmitted back to the

Ucentral site as it is collected), or it may be done off-line (i.e., the

data is recorded at the t1st component and sent back to the central site

after the test is completed).

In the post-test analysis stage, the collected data is reduced and

analyzed to determine the results of the test. The results can be used

to measure the effectiveness of the system being tested for the given

environment and to provide insight into changes that might be made to

the system to improve its effectiveness. System deficiencies can also be

high-lighted by using the collected data to replay the test. The

results of taking an alternative course of action at a particular point

during the test can be analyzed by replaying the test up to the point

of interest and then continuing the test based upon the different

actions.

1.4 Testbed Communications

The central simulation facility may communicate with the testbed

components through both analog and digital leased lines, dedicated

cables, or tactical HF links. A testbed such as JINTACCS, which is

designed for interoperability testing, needs to employ actual tactical

communications equipment. In the IFFN testbed, however, the test

results are influenced only by the contents of the messages being

transferred between sites, not by how the testbed designers chose to

actually transmit them.

If the testbed component is an operational system such as an

-8-



airborne E-3A, actual tactical data links are used for communications

with the central simulation facility. When the component is a computer

simulation or a combination of operational hardware and computer

"-. simulations, the communication link between the central simulation

facility and the remote component will likely be a leased line over which

both stimulation and response messages will be exchanged in addition to

tactical data.

The PATRIOT battery located at Ft. Bliss, TX is an example of a

remote component that incorporates both operational and simulated

components. The PATRIOT battery will interact with the IFFN central

simulation facility at Kirtland AFB, NM using digital land lines.

Messages generated by the central simulation facility are interpreted by

a computer at the PATRIOT site which, in turn, presents a realistic air

defense picture to human operators at the PATRIOT battery. Likewise,

events at the PATRIOT site, such as launching an interceptor, generate

messages to the central simulation facility which will alter the testbed

W. environment.

1.5 Testbed Topology

From a tcpological point of view, a testbed consists of a central

simulation facility and one or more simulation components. The

components of the simulated system may be co-located as in the CSEDS

testbed. Such testbeds represent a traditional approach to testbed

design and present relatively few communications and control problems

since the components can be attached to the simulation facility by

cables. In other testbeds such as JINTACCS and IFFN, the components

-9-
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are geographically distributed as depicted in Fig. 3. There are three

u primary reasons motivating the distribution of testbeds:

". 1. Remote simulation components represent a combination of

equipment and personnel and are not easily portable.

2. A given remote simulation component may be shared by

more than one testbed.

3. A distributed testbed may more accurately represent the

system being tested and may, therefore, increase the

credibility of the test results.

The distribution of testbed components introduces the additional

problems of delay and synchronization resulting from long-distance

communications. This study will concentrate on the problems unique to

geographically distributed testbeds.

1

h
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2.0 Common Testbed Needs and Requirements

The survey of testbeds identified three areas of common concern

among testbed designers:

1. the lack of well-established methods to collect and share

--. information within the testbed community,

2. the problems of interfacing new testbeds with existing

hardware and software components, and

3. the difficulties encountered in constructing and maintaining

a communications systems between distributed components.

This section will review these problems. Section 3 of this report will

offer initial suggestions for approaching these problems.

_5 2.1 Information Gathering and Sharing

Each testbed surveyed had a significant need on the part of

designers to gather and share information on models, performance data,
U

interface requirements, and scheduling problems. This process is

currently carried out through telephone conversations, literature

searches and, more typically, site visits. The process is often lengthy

and expensive and may fail to find pertinent information. At the

Workshop on Manned Simulator Testbeds for the Defensive Air Battle

he!d on 22-24 June 1982 at MITRE -. Washington, numerous participants

expressed the desire to have greater capability for sharing information

within the testbed community. In some instances researchers at one

installation were not aware of their counterparts at another installation,

were not aware of the availability of critical data, and were not aware

-12-



of the activities that are currently underway at peer installations.

An initial step in designing a testbed is generally a models survey.

This entails gathering information on models that have already been

developed and that are potential candidates for inclusion in the new

testbed. Models range from simulations of existing hardware to

mathematical models of weather patterns. Each model is evaluated to

determine if it meets the requirements of the new testbed. The results

of the evaluation of the model may result in its inclusion in the testbed,

the inclusion of a subset of the model, a modification of the model to

meet the needs of the new testbed, or its rejection. The ability to

kutilize all or part of an existing model can result in a significant

savings in time and cost associated with developing a testbed. The

failure to locate or to properly identify a model that already exists can

have a significant impact upon the cost and effort required to develop a

testbed.

1

2.1.1 Models

A testbed is composed of a set of hardware, software, and human

components that are being tested within a given environment.

Depending upon the goals of the test, an individual component may be a

physical component or it may be represented by a simulation. Simulated

components must be based upon a mathematical or conceptual model that

describes the dynamic behavior of the component with a level of fidelity

that is adequate for the test. The models seldom need to mimic the full

range of behaviors displayed by the physical component since usually

only a small subset of the component's actions affect other components

-13-
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in the overall system. The jettisoning of a fuel pod by an individual

aircraft, for example, will probably have little effect upon the outcome

of a full-scale air battle. A testbed for that individual aircraft,

however, may require that the model accurately describe the behavior

associated with the fuel pod component.

The major hindrance to sharing or reusing models is that each model

displays a level of fidelity that is unique to the particular test for

which the model was developed. Figure 4 illustrates how various nodels

capture different levels of reality and that such models are often not

subsets of each other. The various testbeds surveyed did find models

of components that could be included in the new testbed. Upon closer

scrutiny, however, a model was often rejected because it did not mimic

the subset of behavior that was required by the new testbed.

U
The unique object~ves of the different testbeds do not preclude the

sharing or reuse of models. There are often many components of a

testbed that are peripheral to the main test and can, therefore, be

modeled rather loosely. For a testbed that is to include the ability to

generate a large number of radar tracks, for example, several existing

aircraft models may produce tracks with reasonable fidelity.

A methodology that was identified in the IFFN testbed is the use of

table-driven models. In these instances, a generic model of a

component is developed. The particular characteristics of a component

for a given system are provided via a table. An aircraft, for example,

could be modeled from a collection of generic models for subsystems

such as the aircraft dynamics, radar systems, and weapons systems.

To use the model to simulate different aircraft, one simply provides a

-14-
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table of characteristics for each of the subsystem components for each

aircraft. Table-driven models appear to provide the potential for

sharing and reuse.

Three categories of models that are of interest to testbed designers

are:

1. mathematical or conceptual models,

2. computer simulations, and

3. testbed architectures.

Jo 2.1.1.1 Mathematical Models

A simulation of a testbed component must be based upon a

mathematical description of the behavior of that component. Such

models may range from complicated sets of differential equations to

event-driven state transition procedures or a combination of both. The

model usually attempts to describe only the behavior that relates to the

characteristics of the overall system being tested.

The survey of existing mathematical models is an important step in

A the initial design of a testbed. Even in cases where an existing model

does not provide the required fidelity or the computer simulations

derived from the model are incompatible with the new testbed, the model

provides a valuable kernel from which acceptable models can be

developed. A thorough models search is crucial to the successful and

timely development of a testbed.

-16-
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2.1.1.2 Computer Simulations

A computer simulation is a software implementation of a model. The

computer simulation mimics the dynamic behavior of the component over

time for a given environment. The development of good computer

simulations is time consuming and expensive. Such simulations,

therefore, represent a valuable resource that should be shared.

Unfortunately, even if the underlying mathematical model provides an

acceptable level of fidelity, there are many hindrances to reusing

computer simulations. Incompatibilities between testbeds may result

from the languages and hardware configurations chosen for the

implementation and from performance requirements that are imposed

upon the simulation.

The computer simulation may be written in a variety of languages

such as assembly language, Fortran, Jovial, and Simscript. A

simulation written in one language will not easily interface with

simulations written in other languages. Furthermore, the language used

* for a computer simulation may not be supported on another testbed's

computer system.

0 The implementation hardware imposes constraints on factors such as

memory requirements and arithmetic precision. A simulation developed

* for a system with substantial memory capacity may not run on smaller

systems. Differences in the internal representation of numbers may

result in unexpected differences in the behavior of the simulated

system.

Performance requirements can also seriously constrain the portability

-17-



of a simulation. A slower computer may not be able to process the

simulation in an acceptable amount of time, or the more stringent time

requirements of a new testbed may not be met by the existing

simulation.

Each of the testbeds surveyed encountered problems of this type in

trying to use existing simulations. In general, mathematical models are

reused or enhanced whenever possible; computer simulations, however,

are seldom reused.

2.1.1.3. Testbed Architecture

A major design question in developing a new testbed is the overall

architecture of the testbed itself. Should the testbed be centralized or

distributed? What type of equipment should be used? How might

models be used in conjunction with live units? A logical beginning to

the development of a new testbed is to study other testbeds. A good

example of the evolutionary development of a particular testbed

architecture can be found by tracing the family of distributed testbeds

that began with TACS/TADS. The JINTACCS, IFFN, and REDCOM JTC

0 testbeds each have a need to utilize distributed components and have,

therefore, adopted architectures similar to TACS/TADS.

2.1.2. Empirical Data

In developing and validating models, actual data on the system

being simulated is needed. This data ranges from design specifications

to actual performance data. The data is needed to aid in abstracting

-18-
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the behavior of the component during the development of the model, to

.Mob provide parameters to model, and to validate the model's fidelity.

Performance data collected from actual tests provides further bounds

on parameters and also provides a means to validate the model.

Empirical data is needed on both hardware and human performance.

Since actual tests are usually quite expensive, such data represents a

very valuable resource that should be made available to a wide

audience. The testbed community has a significant need to share

empirical data.

2.1.3 Interface Requirements

A testbed must interface with a variety of hardware and software

components. The testbed designer must determine the interface

requirements for each component. For hardware components this may

involve physical requirements such as pin assignments along with

electrical requirements such as wave forms and signal strengths. For

software components, the interface requirements might involve simulation

parameters and their formats, processing requirements, and output

formats. The testbed designer typically must contact the supplier of

the hardware or software to determine these interface requirements.

Each testbed that uses a common component may have to duplicate these

0 tasks. Documentation on interface requirements is another example of a

vital set of information that should be readily available to the testbed

community.

-19-
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. 2.1.4 Project Management

The development and use of a testbed may involve different services

and many different agencies, contractors, and consultants. The

problems encountered in manually monitoring each facet of the testbed's

development and implementation can be quite significant. Many of these

problems can be attributed to problems in gathering and distributing

information through traditional communications systems such as

telephone conversations, mail, and site visits.

* 2.1.5 Resource Sharing

A testbed requires personnel and hardware resources that must be

scheduled in advance of a test. Since many resources are involved in a

single testbed and since many testbeds may be contending for a single

resource, scheduling and allocation of resources can be a tedious and

demanding task. The testbed administrator must resolve conflicts

between many different calendars. The problem of resource scheduling

is likely to become more complicated as testbeds become increasingly

complex and are utilized more fully.

2.1.5.1 Hardware Scheduling

Hardware scheduling may require moving hardware to a test site for

a single field test, or it may involve making that resource available as a

remote component of a distributed testbed like IFFN. In either case,

there are typically many other demands upon the resource. Some

resources such as the E-3A simulators at Tinker AFB and the training

-20-



domes at McDonnell Douglas Corporation in St. Louis are in great

demand and require very careful scheduling. For a testbed to get

maximum usage of the resource and for the resource to be utilized as

profitably as possible, careful scheduling is essential. The chart in

Fig. 5 vividly illustrates the increasing demand that will be placed on

hardware resources in the future as more testbeds vie for the same

resou rces.

2.1.5.2 Personnel Scheduling

* A test also requires that many different teams of people be brought

together. These teams include the participants (players), test

monitors, umpires, control technicians, and a general support staff.

(7alendar conflicts for personnel are likely to be even more severe than

that for hardware resources. The personnel involved in tests must also

be advised in a timely manner on changes in schedule and

requirements.

2.2 Interfaces to Testbed Components
0

Each testbed must establish interfaces to the components that will

comprise the testbed. In cases where the component is actual hardware

• or an operational unit, the interface must be tailored to meet the

requirements of that component and to satisfy the needs of the testbed.

Interfaces to software components are usually tailored to meet the

* unique requirements of the testbed for which the software is being

developed. Although this approach appears to be very reasonable and
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cost-effective for a single testbed, major problems are usually

encountered in trying to reuse such software in other testbeds. Four

broad categories of interfaces have been identified:

1. hardware,

2. software,

3. communications, and

4. man/machine.

t - Designers for each testbed investigated in this study have addressed

the problems of defining interfaces to their various components, and

each group has developed unique solutions to the problems.

The interfaces developed for a testbed are determined by the test

goals for that particular testbed. A testbed which certifies hardware

communications capabilities must incorporate as much of the actual

hardware communications components as possible for the test results to

have any credence. A testbed directed towards the evaluation of

command and control procedures may use emulations of the

communications system when convenient without compromising the test

results. Such variances in test requirements result in significant

differences in interface designs and specifications. For a component

that could be shared by several testbeds, interface differences add to

the cost and development time for testbed implementation. The usual

result of trying to incorporate an existing hardware or software

component into a new testbed is the development of a totally new

interface. There has been no coordinated attempt to develop standards

for interfaces that might be utilized by more than one testbed.

-
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2.2.1 Hardware Interfaces

Part of the information gathering stage in developing a testbed

requires the identification of the interface requirements of the hardware

components. These requirements, however, simply define the inputs to

and the outputs from the device. Broader design questions include how

should the testbed stimulate the device, what information should be

gathered from its outputs, and where should probes be inserted to

collect data? The answers to these questions determine the nature and

complexity of the interface between the hardware component and the

testbed's central simulation facility. For testbeds such as IFFN and

JINTACCS, the sophistication of the interface and the distance between

the central site and the remote unit strongly motivated the decision to

employ a remote processor to stimulate the unit and to extract

information on its actions. Other testbeds such as CSEDS can directly

control and monitor the actions of its hardware components because of

their proximity.

2.2.1.1 Signal Injection

A standard practice in incorporating hardware into testbeds is to

provide the hardware with a simulated external environment by injecting

data from the central simulation facility directly into the unit. This

technique, called stimulation, was used by each of the testbeds

investigated. The most common application is to disconnect a live radar

from its displays and replace the radar with simulated video signals that

are injected directly into the displays. Similar techniques are used to

stimulate other hardware components.

-24-
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Stimulation requirements are determined by the nature of the

hardware interface and the environment to be simulated. Thephysical

and electrical interface requirements for an individual component will be

the same regardless of the testbed. What will be different is the

amount of data that is to be injected into the system and the response

time requirements for a particular test. A radar display, for example,

may need to display just a few tracks for one test or several hundred

tracks for another different test. Data volume and response time

requirements will determine the complexity and sophistication of the unit

that will provide the stimulation signals.

2.2.1.2 Component Monitoring

Each testbed must also monitor and record the actions of its

hardware components. In some cases this can be limited to simply

intercepting the normal outputs of the component; the data can be

collected by monitoring the signals emitted by the device. In other

situations, a greater level of detail may be required and therefore

probes must be inserted into the device itself. In these cases, the

type of data that is to be monitored is probably unique to the

requirements of the individual testbed.

2.2.2 Software Interfaces

In each testbed investigated the designers considered the use of

existing software components wherever appropriate. The desire to use

existing software is hardly surprising since software development costs

-25-
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rapidly become a major component of the overall cost of a testbed. The

software development process is a principal contributor to delays in

reaching initial testbed operational capability since software development

times are difficult to estimate. Testbeds can seldom use existing

software since the software is usually developed with the intention that

it will be employed only within a single testbed. Testbed software,

therefore, is heavily intertwined with the testbed's structure.

A technique used by IFFN shows promise for the reuse of software.

In the IFFN approach, simulations interface with their external

environment through the same types of data channels that the actual

hardware would use. A software simulation designed in this fashion

would then employ the same interface that is used to attach its

corresponding hardware component into the system. Another major

motivation for developing simulations of this nature is to simplify the

process of interchanging actual and simulated components between tests.

2.2.2.1. Distributed Software Simulations

Several testbeds incorporate simulations that execute on systems that

are remote from the central site. This technique is usually used to

reduce the amount of data that must be generated at the central site

and transmitted to the remote unit. An example is multiple radar

" tracks that must be updated in real time. The remote simulation can

maintain the radar displays by locally generating tracks that do not

change speed or direction. The central simulation facility then needs to

transmit only updates to tracks that have new velocity vectors.
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Distributed simulations present unique implementation problems.

Simulations that are executed at one central site can share state

information through a common memory. Synchronization between the

various components at the central site is then maintained with a single

real or simulated clock that insures the proper time-sequencing of

events. When components of the simulation are distributed between

computer systems that do not share a common memory, the exchange of

state information and the synchronization of the simulations becomes

significantly more complex. The underlying reason for this added

complexity is the time delays introduced by the communication system.

Communications time delays present two majo, problems:

1. the time needed to transmit state information between

simulations may be measured in milliseconds for distributed

simulations rather than nanoseconds for centralized

simulations, and

2. the amount of time delay will vary, depending upon the

distance between the simulations and the nature of the

communications medium.

Time delays in communications can clearly have a significant impact

upon the performance of distributed simulations. Performance can be

an overriding consideration in testbeds that must meet real-time

requirements. This implies that distributed simulations must

1. minimize the amount of data that is exchanged between the

distributed components, and

2. correspond to components that would normally be

* geographically distributed and would experience natural

communications delays.
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The designs of the JINTACCS and IFFN testbeds reflect these

requirements.

For distributed simulations, each simulation must insure that events

occur in the proper order, based upon information that is received via

the communications system from other components. In IFFN, for

example, the radar display at a remote site is generated by a simulation

executing on a processor at that site. The simulation periodically

- receives update information from the central site. When a simulation

generates a local event, the synchronization scheme must take into

account that an earlier event may have been generated at another

component and that notification of this event may have been delayed by

the testbed's communications system. For example, a radar track that

is being updated by a local simulation may actually represent a plane

that has already been destroyed by another site. As a result, the test

may be compromised by personnel at a remote site who are acting on old

or inaccurate information.

The IFFN testbed addresses the problem of event sequencing by

requiring that the simulations execute in real time. If all simulations

present the same real-time behavior as the components they are

simulating, the components will experience the same time delays as

would be experienced in an actual operational environment. This

approach can present problems. The distance between components in a

testbed may be much greater than would be the case in an operational

environment. The added delays that the longer distances introduce

must be compensated for within the testbed's design.

-
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Another major problem with real-time execution occurs when messages

are lost or distorted by the testbed's communications system. Real-time

execution may not allow time for the retransmission of erroneous

messages. Such communications problems cannot be dismissed since

they reflect testbed communications problems, not operational

communications problems. Real-time execution also imposes major design

constraints on the software. The design, implementation, and testing

of real-time software is far more complicated and expensive than that

for the equivalent software that does not need to meet real-time

constraints.

Several methods that do not rely upon real-time execution for the

synchronization of distributed simulations have recently been developed.

A survey of these techniques is presented in Appendix A. These

methods may provide a means for relaxing the real-time requirements of

- distributed simulations. Unfortunately, each method appears to

significantly increase the amount of information that must be exchanged

over the communications system.

2.2.2.2. Central Site Simulations

Central site simulations provide the environment for the overall test

and provide simulations of those components that are not physically

present during the actual test. These functions are not generally

distributed to the remote sites since the degree of interaction between

these components is very high. The processing requirements of such

simulations often demand that powerful mainframes and unique hardware

configurations be employed to satisfy the performance requirements of
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the testbed.

2.2.3 Communications Interface

Each testbed must establish communications between its central

facility and its components. In a centralized testbed, this problem may

involve little more than connecting cables between the components. In

distributed testbeds such as IFFN, JINTACCS, and REDCOM's JTC, the

communications problems can be quite substantial. These problems can

be divided into two components:

1. the interface between testbed components and the

communication system, and

2. the physical communications medium.

This section will discuss the communications interface; section 2.3 will

address the communications medium as a separate issue.

Most testbeds must provide at least five categories of

communications:

1. tactical data,

2. stimulation data,

0 3. collected data,

4. test coordination, and

5. voice.

Other forms of communications such as video may also be required.

o
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2.2.3.1. Tactical Data

The testbeds investigated used standard tactical data communications

links to transmit data between components. Most provided TADIL-A

and TADIL-B links and some incorporated additional links such as

TADIL-C, ATDL, PATDL, and LINK-14. These communications

standards as well as their interfaces are well-defined. Additionally, the

formats of the messages and their content are standardized.

The main problem in establishing these communications links is in the

transmission of the data itself. TADIL-A, for example, can be a major

problem to testbed developers since the use of the actual TADIL-A

modems imposes time constraints on the data link. Several approaches

have been adopted to overcome this problem such as including dummy

units in the TADIL-A network or excluding the modem from the

communications system. TADIL-C presents similar problems for long-

distance communications. In the future, testbed designers will have to

address the even more severe time constraints and bandwidth

requirements imposed by TADIL-J. TADIL-J is projected to become

operational during the lifetimes of current and projected testbeds.

2.2.3.2. Stimulation Data

0 The central simulation facility must continually transmit the current

state of the test to the various testbed components. The state data

may include stimulation data or the stimulation data may be derived from

the state data at the local site. The stimulation data must then be

interpreted and converted to signals that are injected into the remote
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testbed component. Each testbed has its own method for providing

stimulation data and its own format for the data.

2.2.3.3 Data Collection

Most tests require that data be collected on each unit's actions and

then transmitted back to the central site. The data may be used as

Fr feedback to drive the overall simulation, for post-test analysis, or for

test replay. Data that is used for post-test analysis can be collected at

the local site and transmitted back to the central site after the test.

Data that affects the test must be transmitted in real time. The nature

of the data collected reflects the needs of the individual testbed. Some

testbeds collect only the data transmitted on the tactical data links;

others collect more detailed information of the internal operation of

components. No community-wide standards currently exist for the

communications of the collected data.

2.2.3.4 Test Coordination

*Tests usually require that communications be provided to setup and

administer the test. Communications must be provided, for example,

between the central site and test monitors at the remote site. These

communicaticns have nothing to do with the actual operation of the

testbed component. Such communications are usually informal ind

reflect the individual needs of the testbeds.
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2.2.3.5 Voice (secure and non-secure)

Voice communication is typically employed between operational units.

A testbed must provide voice channels for the live participating players

and for simulated human components that must communicate via voice

with the live units. This typically involves the use of test personnel

who read either from scripts or from computer generated messages.

The testbed may also be required to provide secure voice channels.

Voice requirements were found to be similar for each testbed.

A 2.2.4 Man/Machine Interface

The testbeds surveyed involved a "man in the loop"; that is, humans

participate as actual components in the test. The need for such

participation is obvious for training systems and equally obvious for

testbeds that are intended to test doctrines and procedures tc be

carried out by humans. The participation of humans in a testbed adds

conAraints to the design and implementation of the system.

2.2.4.1 Equipment

The best interface between a testbed and a human participant is the

actual hardware that will be employed in the field. Testbeds usually

incorporate actual hardware wherever possible. When this is not

possible, designers try to provide a hardware interface that is as clos

to the actual system as practical. The use of actual hardware may be

0 constrained by availability and practicality. An F-15 simulator, for

example, may be more practical and cost-effective than an actual F-15
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for a given test.

2.2.4.2 Real-time Requirements

Humans must be given the illusion that the environment that they

are being presented is realistic. A major component of this realism is

the "real time" response of the system. Radar screens, for example,

must display tracks that change in an expect - fashion over time and

must react to actions taken by the human participant. This imposes a

major constraint upon the testbed since data must be processed and

acted upon within specified time intervals in order to give the human

participant the illusion that the system is real.

2.2.4.3 Fidelity Requirements

Time is just one of the fidelity requirements that are imposed upon a

testbed by the inclusion of human participants. For radar tracks the

human typically should not be able to distinguish between real and

simulated tracks based upon their actions. Voice communications from

simulated units must correspond to that from actual units.

Communications problems and capabilities should match those found in

the real world. The testbed designer must strive to present the human

participant with an environment that is as close to the real world as is

practical.

-4
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2.3 Communications

Testbed designers must deal with the constraints imposed by the

communications medium. These include testbed topology, communications

bandwidth, transmission delay, and reliability requirements.

For both practical and economical reasons, the physical medium used

for the bulk of testbed communications is leased telephone lines. The

leased lines are maintained by the telephone companies but are

otherwise under the control of testbed personnel. If conventional voice

channels are used for data transmission, a modem is required to convert

digital signals into analog signals that can be transmitted over telephone

lines. With present technology, voice-grade circuits are capable of

providing data tranmission rates up to 9600 bits/second. The public

telephone network is capable of supporting digital data transmission at

rates up to 56 Kbits/second. Unlike voice-grade circuits that require a

modem for digital data transmission, the 56 Kbits/second links employ

digital signaling techniques implemented by a data service unit (DSU)

that is supplied by the common carrier.

For point-to-point interconnections, testbed architects must

determine the volume of data to be transferred between sites and the

speed required. The required bandwidth may be obtained using

multiple low-speed lines as illustrated in Fig. 6 or a single multiplexed

high-speed line as illustrated in Fig. 7. The parallel approach of Fig.

6 becomes expensive and creates major management problems since

multiple lines with possibly different hardware configurations must be

* maintained. Moreover, the problem of data encryption is more

complicated in the parallel approach. The multiplexed approach of Fig.
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7 eases the management problem since there are fewer links to be

maintained. Additionally, the data encryption problem is simplified
I. I since bulk encryption techniques can be employed. Secure voice lines

are a by-product of this approach if voice channels are digitized and

passed through the same multiplexer and bulk encryption system.

2.3.1 Testbed Communications Topology

The physical testbed topology is dictated by the testbed's mission.

Geographically distributed testbeds such as IFFN and JINTACCS employ

1t a star configuration with the central simulation facility at the center.

The star configuration routes all communications through the central

simulation facility. The central simulation facility acts as a

communication switch and can therefore implement an arbitrary

interconnection of testbed components. The star configuration provides

several advantages:

1. It facilitates the solution of the problems relating to

synchronization of testbed components and the sharing of

global data.

2. It provides for arbitrary logical interconnections of testbed

components and allows impairment of selected links for test

purposes.

3. It facilitates the distribution of software modifications to

the remote sites and eases the problem of data collection.

Testbeds may employ some combination of leased lines, switched

lines, independently owned lines, or tactical data links. Both analog

and digital signaling techniques are employed. In a testbed such as
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TACS/TADS that makes use of actual ships, aircraft, and ground-based

systems, the topology is determined by the physical arrangement of

testbed components.

2.3.2 Transmission Bandwidth and Delay

Testbed designers are confronted with two distinct but related

communication considerations: bandwidth and delay. Bandwidth refers

to the rate at which information may be transferred while delay is the

elapsed time between end-to-end transmissions across a communications

link. A geostationary satellite link, for example, may exhibit a

bandwidth equivalent to 20,000 voice channels; the end-to-end delay,

however, takes roughly one quarter of a second. A coast-to-coast

voice circuit incurs only a 20 millisecond delay but the bandwidth is

limited to approximately 3 KHz.

The communications requirements for tactical data may be

significantly different from those imposed by stimulation and monitoring

needs. Current tactical data links require relatively modest

bandwidths; however, the tactical standards impose time-critical

signaling and protocol conventions. Stimulation and monitored data

usually require higher bandwidths and minimal time delays.

Transmission time delays will result from the transmission channel

itself (the physical link together with modems, multiplexers, encoders,

and decoders) as well as from protocol conventions and the application

of error control techniques. Studies have shown that human response

time is on the order of 200 milliseconds which would seem to indicate
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that a total delay of several hundred milliseconds would be acceptable

for the majority of testbed communications.

Transmissions delays are not usually a problem for a testbed

composed of simulation components in proximity to the central simulation

facility. For geographically distributed testbeds, transmission delays

are more significant, and testbed designers may have to make

compromises to obtain transmission delays that are within acceptable

limits.

2.3.3 Reliability and Availability

The reliability of a testbed's communications system and its

components is a significant consideration since the failure or

degradation of these subsystems can cause delays in testing ranging up

to a few days. Given the number of hardware resources and personnel

that may be involved in a test, such delays can have a significant

effect upon the overall cost of a test program. Subsystems exriibiting

intermittent failure can go undetected and can influence test results.

Even though testbeds are designed using state-of-the-art commercial

computer and communications equipment, reliability is a major concern to

testbed designers.

A principal factor in the reliability of distributed testbeds is the

leased telephone lines that the testbeds rely upon for their

communications. The JINTACCS program has experienced substantial

problems with the quality of their leased lines. They have also found

that the lines must be continually used and tested to insure a
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reasonable level of quality and availability. Leased lines provided by

commercial carriers do not offer automatic error detection/correction

capabilities or the ability to reroute data on alternate lines when the

original lines fail before or during a test. Given the substantial costs

of the communications network of leased lines employed by many

testbeds, the performance obtained through this approach appears to be

inadequate.

Testbed designers would like to further improve testbed reliability

but can not always justify the attendant costs of additional hardware

expenditures and added transmission delays that may be incurred
because of the application of reliability improvement techniques.
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3.0 Recommendations

This study has identified the following needs in the testbed

community:

1. improved capabilities for information gathering and sharing

on testbed models, data, and resources,

2. adoption of hardware and software standards where

practical to encourage the sharing and reuse of existing

U hardware and software resources, and

3. further investigation of the communicatior and control

problems associated with geographically distributed

testbeds.

Several modern data processing and communications capabilities can

be employed to address the above needs. The initial recommendations

;. resulting from this study are that the potential of the initiatives listed

below be explored.

1. The development and use of a community-wide electronic

mail service.

2. The implementation of a database management system to

0 catalog information on available models, data, hardware

specifications, and testbed architectures.

3. The development and adoption of standards for the design

_0 and implementation of mathematical models and of both

hardware and software testbed components.

4. The utilization of a computer based communications network

6 to improve the reliability and availability of communications

for geographically distributed testbeds.
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3.1 Electronic Message Transfer

An electronic message transfer system is recommended to provide

more timely communications and improved information management for

members of the testbed community. Each participating installation

should have a coordinator who is responsible for the electronic message

transfer system. Part of this person's responsibilities would be to

provide items or events of interest to the testbed community such as

the project's newsletter, group visits, current activities or other

pertinent information. The functions of an electronic message transfer

system should be:

1. an inter/intra office mail system capable of creating,

transmitting, editing, filing, searching, and printing mail

and documents,

2. a public/group bulletin board system,

3. a public/group broadcast message system, and

4. a calendar system for scheduling activities.

The ability to electronically distribute mail and documents would

introduce a proven technology to the test and evaluation community.

Several studies have shown a productivity improvement after an

organization initiates use of an electronic mail system, especially with

respect to a more timely sharing of information. A bulletin board

system would allow groups to post items of general interest to the

entire community or a selected group. A broadcast message system

would automatically inform users of urgent or global information. A

calendar system would allow the scheduling of activities of test beds,

meetings or resources in an orderly, productive manner.
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Several electronic message transfer systems should be evaluated to

_V Iradetermine their potential applicability. There are three independent

components of an electronic message transfer system that should be

evaluated independently of each other: communications medium, the

computer terminal equipment, and the computer software. The

communications medium evaluation should include a value-added network

such as Telenet or Tymnet and a common carrier. The computer

*software evaluation should include several commercially available

software mail packages. The computer terminal equipment that should

be evaluated include a dumb terminal, a smart terminal capable of full

* screen editing, a small portable terminal suitable for carrying on an

airplane, and several personal computers capable of off-line editing and

down loading documents.

3.2 Database Management System

A database management system developed, implemented, and utilized

by the test and evaluation community would enhance the sharing and

standardization of information within the community. I n a database

* management system, information can be stored in a computer system in

such a manner that the information can be searched, correlated, and

retrieved from a database. Retrieval of information can usually be

accomplished in an English-like language, thus allowing non-computer

personnel access to the database in a cost-effective manner.

Additionally, if a database management system were part of a network

of information sharing services such as an electronic mail system, the

database could be accessed remotely by testbed personnel over a
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computer communications network. This would allow testbed personnel

Facross the country to obtain information on a timely basis.

* . A database management system would provide a central, standardized

. repository of pertinent test and evaluation information. Categories of

potential information that would be shared via a database management

system should be identified. Some possible categories might be the

following:

1. simulations,

2. models,

3. test data,

4. documents,

5. scenarios,

6. software tools, and

7. characteristics of testbed components.

Many times the test and evaluation community is unaware of the

existence or applicability of simulations and models that have been

developed by the community. As a result, one of the first tasks in the

development of a testbed is a survey of simulations and models that may

be applicable to the testbed. For example, the IFFN testbed at

Kirtland AFB contracted PE Systems Inc. to do a simulation and model

survey. The USREDCOM JTC at MacDill AFB also commissioned a

simulation model survey as part of their initial preparation. In both

instances, the respective units were trying to gather information on

simulations and models that might be pertinent to their activity. In

addition to the inclusion of the simulations and models available, the

-45-
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corresponding documentation and certification records should be

included in the database.

The availability of simulation data along with a comprehensive

description of the data would be of value to the testbed designer. The

ability to share scenarios, especially if those scenarios were written in

a high-level language, might make the testing between testbeds more

uniform. Each testbed uses or develops software tools to help

accomplish its job. It seems reasonable that these tools might be

applicable to other testbeds. Rather than reinventing the same tools, a

sharing of those tools, even if they needed to be slightly altered,

would seem to be a step in the right direction.

The interface characteristics of interface components need to be

documented and that documentation should be made available to the

testbed community.

As an initial thrust on the database recommendation, a preliminary

study should be initiated that would concentrate on the following

questions:

1. What data would the installation have to contribute to a

database?

2. What potential data would be of use to the installation?

3. What attributes of the data would be of interest to the

installation?

4. What relationships between the data attributes would be of

interest to the installation?

After the initial study, a compilation of the desired data categories

along with their availability, attributes, and relationships would provide

the basis for a comprehensive questionnaire. This questionnaire should

-46-
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f.

be sent to each- installation to evaluate the potential of a database

ia management system.

3.3 Adoption of Standards

The adoption of standards would promote the reuse of resources that

have been developed by the testbed community. Standards also offer

greater flexibility in testbed design in that testbeds can evolve and

incorporate new components as they become available. Existing

resources that do not exactly meet the fidelity or performance

* requirements of new testbeds could be used during the development and

testing stage. This would allow the development process to proceed

without waiting for key resources. The reuse of existing resources

would reduce the overall cost of testbed development as well as the time

needed before a testbed produces meaningful results.

N3.3.1 Model Specification Standards

After identifying the testbed objectives and specifying the testbed

* architecture, the testbed designers can begin to develop the

mathematical models for the simulated components. The standard system

analytic approach to this process is to view the component as a "black

0 box" with internal states, inputs, and outputs. The outputs at the

current point in time are functions of the current internal state of the

black box, while the internal state of the black box at the next point in

time is a function of the current internal state and the current inputs.

-47-



A mathematical model of the component identifies the inputs, outputs,

and internal states and specifies their relationships. In developing a

model with a high level of fidelity, it is usually necessary to decompose

the model into submodels. The testbed philosophy suggests that in

principle it should always be possible to replace a simulated component

by operational hardware. This attitude dictates that decompositions

should always be "natural" (i.e., the inputs and outputs should always

be physically measurable). This in turn suggests that the modeling

process, in particular the documentation of the model, can be

standardized. Such standards should certainly include the requirements

41 that all inputs and outputs are listed, that all parameters are

identified, and all relationships are defined. The advantages of

standardizing the documentation include:

(U 1. Retrieval of models from a database would be facilitated.

2. The entire model's survey process would be more efficient

and effective.

3. Complete specifications should reduce software development

time and costs.

4. The resulting software would likely be more standard thus

increasing its potential for reuse.

5. Verification of the fidelity of the model would be eased.

The potential of standards for model specif ication needs further

investigation.

3.3.2 Software Standards

DOD has initiated several studier in recent years that address the
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problems of software development within DOD and its associated costs.

The new programming lan-, .age ADA* is an example of the results of

one such initiative. Ihe adoption of software standards could result in

savings from the reuse of existing software and from the ability to more

Veasily modify existing software to meet new needs.

3.3.2.1 Programming Methodology

Several new software design and implementation techniques that

improve programmer productivity have developed in recent years.

0 These techniques not only decrease the time needed to develop an

operational program, but they also result in software that is easier to

modify and upgrade. Several groups within DOD and more specifically

within the testbed community have adopted various programming

standards and are requiring that their programmers and contractors

adhere to these standards.

The advantages of adopting a community-wide set of programming

standards should be investigated. The use of a single set of standards

would benefit individual testbed projects as well as increase the

potential for reusing or modifying existing software.

3.3.2.2 Programming Languages

The testbed community should identify the smallest practical set of

programming languages that can be used to develop testbed software.

* ADA is a regisLered trade mark of the Department of Defense.
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These languages should represent languages that are generally available

on both large and small machines. The capabilities and applicability of

the new DOD-sponsored language ADA should be carefully considered.

Limiting the set of languages used for the development of testbed

software should greatly improve the ability to share software resources.

3.3.2.3 Simulation Interfacesr
The ability to share and reuse simulations would be greatly enhanced

if simulations communicated with their external environment through

standard methods. In the IFFN testbed, simulations of testbed

components communicate using the same formats and through the same

communications channels as their equivalent hardware components. This

is a good example of a technique that can be exploited to promote the

reuse of software simulations. The additional costs of this technique

must be balanced against the potential benefits of reusability and

flexibility.

The use of generic models to construct simulations of specific testbed

components also provides opportunities for the reuse of software

simulations. A good computer simulation of a generic model could be

utilized for many different applications by simply modifying the

parameters of the model. The testbed community should consider the

benefits of developing sound gene-ic models.

5
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".:: 3.3.2.4 Distributed Software

The reduced cost of hardware and the increasing sophistication of

*-."testbeds is encouraging the development of distributed software. In

both the JINTACCS and the IFFN testbeds, remote processors are

employed to drive data displays and to collect performance data in real

time, thus reducing the load on both communications lines and on the

central-site computer. Distributed processing introduces a new set of

problems, the most severe of which is process synchronization.

Research into the problems of process synchronization is in its

infancy and the implications of this research for the design of

distributed testbeds need to be investigated. The successful

development of practical techniques for distributing simulations will

result in:

1. the capability to more effectively exploit the potential of

low cost micro-processors,

2. the potential for reducing the amount of data that must be

communicated between distributed components of a testbed,

and

* 3. the ability to utilize existing simulation at a remote site

and to take advantage of the expertise at that site.

The methodology for distributed simulations should be developed before

* a proliferation of different methods pervades the community.

3.3.3 Communications Standards

A communication standard would specify protocols, hardware
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interfaces, and message formats. This study has identified the

resources in Fig. 5 as a focal point for establishing standards.

Currently, JINTACCS is using the RIU and the ESU to interface into

remote hardware components and IFFN is developing the SSU to

interface into its remote components. Some of these remote components

such as the E-3A simulators and the PATRIOT are common between the

two testbeds. Unless communication standards are agreed upon, there

tq will be a proliferation of interface units, protocols, and message formats

that must be supported by each remote resource.

Standards must address the issue that the resources may be used in

the different testbeds in different ways. One testbed, for example,

may incorporate a resource by using actual tactical equipment while

another may use the same resource and simply pass the equivalent

information over a leased line. The use of small computers within the

remote component hardware interface provides the potential of having

individual testbeds down load control and data monitoring programs and

parameters that could tailor the interface to the needs of the testbed.

A communications standard for interconnecting shared resources to

the central simulation facility would:

1. reduce time and cost necessary to implement a testbed,

2. make scheduling of scarce resources easier since each

0 testbed could access the resource via the same interface,

and

3. reduce the interaction required between the organization

maintaining a resource and testbed designers in order to

incorporate a remote simulation component into a testbed.
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The standard selected for the hardware interface and the communication

VU protocols should be a DOD or international standard; the message

formats, however, would be determined by the needs of the testbed

community.

3.4 Computer-Based Communications Network

A computer network can provide a basic framework for developing

testbeds. A computer network would:

1. allow a remote simulation component in one testbed to be

easily incorporated into another testbed,

2. simplify the job of providing interoperability between

testbeds,

3. greatly enhance communications reliability and availability,

and

4. potentially reduce the overall costs of DOD testbeds by

reducing the number of dedicated communications links

needed within the community and by increasing the

productivity of the testing procedure.

A network should not be thought of as a dedicated set of

C communications links but as a delivery service that guarantees the

timely delivery of information between sites served by the network.

The physical communications system may incorporate dial-up lines,

* leased telephone company lines, microwave links, or satellite links, but

the user is presented with the illusion of a dedicated circuit. The
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computer-based network provides the automatic services of error

detection and correction, message routing, and load balancing. The

services provided by a network relieve the testbed architects of the

problems attendant with the use of traditional communications channels

and thus allows them to concentrate on the testbed mission.

A communications network may be viewed as a series of layers that

are responsible for implementing a particular portion of the network

according to a prescribed protocol. The most commonly used model is

the ISO reference model as shown in Fig. 8. The model describes

seven layers with each providing transparency in operation to the layer

above it. Interaction between layers is possible only through well

defined interfaces. The layering approach allows complex network

design problems to be partitioned into independent, manageable modules

that can be integrated to form the final system. Furthermore, the

layering approach gives the designer the flexibility to alter layers in

the structure, to incorporate technology advances or to enhance

services, without affecting the other layers of the network.

With such a general purpose network, software designers can allow a

process running on one computer to communicate with a process on

another without having to understand the details of connection

management, error control, flow control or routing. This makes it

po3sible to develop application software that has no dependency upon

the physical network. The software designer need only know the

conventions for passing messages from one process to another. This

general approach provides for the development of software that is

independent of the physical network connections.
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A primary technical problem in designing a general network for the

testbed community is the delay that the network incurs as a result of
- network overhead functions such as error detection and correction,

* !routing, loading balancing, and packet assembly/disassembly.

W" The desirab'lity of developing a computer-based communications

network that could support many of the activities within the testbed

community should be further investigated. This would include

determining the particular characteristics of a network that will meet

testbed communications needs and the development of algorithms that

would provide efficient methods for controlling and synchronizing

distributed simulations.
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APPENDIX A

Distributed Program Synchronization

A.1 Motivation for Study of Geographically Distributed Programs

* The field of distributed simulation is relatively new. Recent

technological advances have created the ability to open an efficient and

cost effective data path between geographically distributed programs on

an interactive basis so they may cooperate in their processing. There

are several important reasons why it might be desirable to consider this

capability.

First, the components can be distributed based on the idea that some

are more suited for execution within one type of computer system while

others will execute more effectively in others (e.g., machines with

floating point instructions). This allows the most cost effective

performance system to be created. Advantages of such structures

include flexibility to grow and to add or replace systems as

requirements change.

Secondly, the behavior of many physical systems can be logically

explained by discrete interactions between entities, but the mathematical

methods are not available to represent these relations in a formulation

0 from which general deductions can be made. Queueing systems are an

example of this situation. Queueing systems are models of processes in

which customers arrive, wait their turn for service, are serviced, and

* then depart. With simulation, it is possible to formulate a computer

model for queueing systems. In many queueing systems, different
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servers work simultaneously. This inherent parallelism can be exploited

Wei by developing the communication interconnections of these systems. In

addition to increasing the execution speed, distributing the servers also

provides a one to one correspondence between the real system and the

simulator. It will be more cost effective if the memory requirements

and the overhead due to interprocessor communication are minimized.

Figure A-i illustrates some important results of recent technological

advancements. Computing costs and communication costs are both

decreasing, with computing leading the way. It is now reasonable to

use local computing facilities for local processing and communicating the

results as opposed to sending all the data over the communication lines

to a central computing facility for processing. Software costs,

however, are constantly increasing. It would be of great significance,

from an economic view, if different users could log in over a network

and interface with a geographically distributed program. This is

especially attractive when the program is large and complex, written in

an exotic language, machine dependent, or embedded in a web of

libraries, special system calls, and other nonportable environmental

features. Simulation programs often fall into this category. It is

4P desirable to have the capability of interfacing with any number of

simulation programs while allowing the developing, producing and

maintaining of the simulation programs to remain locally distributed with

the programming expertise.

Thirdly, in the situation where each simulation represents a distinct

entity in the real system and the simulation requires real time

interactions, it is ideal to be able to model a real system that is
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geographically distributed with geographically distributed simulations.

This makes it possible to have each of the simulations physically located

at the site of the corresponding entity in the real system. Therefore,

those who would normally interact with a particular entity in the real

system (i.e., those with expertise in that specific area) can interact,

from the same location, with the simulation modeling that real system

entity.

The concern with implementing discrete event simulations is

threefold: communications, synchronization, and standards for

simulation interfacing. Our current efforts are in synchronizing

distributed simulations but the other two problems are mentioned briefly

before beginning a discussion of synchronization.

A distributed program is a collection of processes which work on a

common problem by communicating with each other only through

messages and without sharing any global variables. Techniques must

be developed defining both a standard format for these communication

messages and the actual physical mechanism for passing communication

messages from one process to another. Defining a standard

* methodology for simulation interfacing is of extreme importance. This

will involve the specification, development, utilization and validation of

computer simulations as well as the services of resource sharing.

A.2 Overview of Synchronization Algorithms

A.2.1 Background

The term synchronization refers to the mechanism used by

cooperating entities to order events. The distribution and coordination
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of state information is one of the main sources of problems in a

distributed system. In a tightly-coupled distributed system, using

shared memory, all cooperating entities have a common time. This is

not the case in a loosely-coupled distributed system. Each entity in

the cooperating set maintains a different view of its total states, due to

arbitrary delays for message updating or reporting states. This

essentially prevents any shared variables and requires message-passing

for data communication.

A few distributed synchronization algorithms have appeared in the

literature. Most are yet to be implemented in an actual distributed

computer environment. Chandy and Misra [7,9] and Peacock [25], have

defined and designed several algorithms for simulating queueing systems

in a distributed manner. Some of these algorithms have been

implemented/simu lated on uniprocessors and some study on the

performance of distributed algorithms has been done by Seethalakshmi

[28].

A .2.2 Classification/Terminology

A scheme for classifying discrete simulations is proposed by Peacock

[25]. This taxonomy divides simulations into categories based upon

whether they are event-driven or time-driven. Furthermore, event-

driven simulations are categorized as either tight or loose and time-

driven simulations can be either scaled or unscaled in Fig. A-2.

Event-driven simulations enter a new state exactly when an event (a

change in the state of the system) occurs; the time value for the state

coincides with the time value associated with that event. In a time-
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driven simulation, there is a constant positive change in the simulation

time as the simulation progresses from one state to the next with zero

or more events occurring in each state.

An event-driven simulation is tight if all processes in the simulation

have the same simulation time, and loose if each has its own simulation

time value. A time-driven simulation is scaled if there is a relationship

between simulation time and real time whereby each increment of

,U simulation time takes a constant amount of real time.

A.2.3 Scaled Real Time Algorithm

The scaled real time method is a technique for scaling time-driven

simulations, allowing observation of the simulation dynamically. A hard

wired timer which is able to generate interrupts must be set at the

beginning of each event to kx/q where x is the simulation time for the

event and q is the interval of real time units that are measured by each

decrement of the timer. The algorithm causes a customer entering an

empty queue to be processed immediately by setting the -Lmer

appropriately and suspending execution until the service time has

expired. Other customers that arrive are queued until the server is

0 free. This algorithm may result in nondeterminism when it is used in

distributed simulations since the timing may vary from machine to

machine.

In order to synchronize tight event-driven simulations without the

use of a central controller, each process in the network must know,

simply by the sending and receiving of messages, when it owns the

next event to be processed--that is, the one with the lowest time value.
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The virtual ring is one such synchronization algorithm that causes the

orderly processing of the events in the simulation.

A.3 Virtual Ring Algorithm

The virtual ring synchronization mechanism takes advantage of the

fact that producers are given unique and permanent names. This

defines a total ordering on the set of producers. This ordering may be

used to view producers as being organized as on a ring or as on a

loop. Each producer has a unique predecessor and a unique successor.

Such a logical structuring does not imply any particular physical

topology.

In order to implement this synchronization, the network of

processors must be virtually configured as a ring apart from the

physical configuration provided by the network. There are other

problems that can arise which are not addressed in the algorithm

presented in Fig. A-3. In particular, the concept of preemptive events

which allow the output from one process to move to the front of the

queue for another process thereby preempting the other events. A

brief description of the algorithm follows.

Each node along the ring has a rank associated with it which

corresponds to the number of other processes which have lower minimum

event times. When the rank associated with a process is zero, that

processor has the lowest minimum event time and is then permitted to

4 process the event which is to occur at that time.
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procedure:
declare 1 message,

2 source fixed binary,
2 rank fixed binary,
2 min fixed binary;

declare (node, node-min, node-rank) fixed binary;
node-min, node-rank = 0;
do while (true);

if node-rank = 0 then do;
node-rain = min-event time( ):
noderank = node-rank - 1;
message.source = node;
message.rank = 0;
message. min = node. min;
write (message); /* asynchronous write *1

end;
read (message); /* synchronous read */
if message.source = node then

node-rank = message.rank;
else do;

if node-min < message.min then
message.rank = message.rank + 1;

if node-min <= fnessage.min then
node-rank = node-rank - 1;

write (message); /* asynchronous write */
end;

end;
end;

Figure A-3: Virtual Ring Algorithm

After an event occurs, the process sends a message around the ring

which has the value of its next event time. As this message is passed

around the ring, its rank is incremented by each process that has a

lower minimum event time than the message minimum event time, with

the result that the message returns to the originating node with the

correct rank for that event time. The process then reads the messages
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from other nodes as they are passed around the ring, decrementing its

own rank until it reaches zero and the event can occur.

A .4 Implementation

The virtual ring algorithm was implemented at Clemson on a single

VAX-11/780 operating under VAX/VMS Version 3.0. The programming

language was FORTRAN but included several operating system

gsubroutines. Four processes were executed simultaneously; this

simulated the processes as if they were executed on four different

machines. Each process has a random number generator that creates

the event times for the process. No events are passed from one

process to another; consequently, no allowance is made for preemption.

Each time an event occurs, the process at which it occurs sends a

message with the event time to a fifth process, or test-driver, which

simply serves as an output device to print the event times to a file as

they occur.

The processes are configured as a virtual ring and the

communication of messages between them is accomplished by use of the

MAILBOX feature provided by VMS. The mailboxes are virtual

communication devices which are assigned virtual channels and have

buffers which can store a variable number of variable-length messages.,

The buffers are implemented as queues where the size is a parameter

which can be controlled by the programmer at the time that the mailbox

is created. With a virtual ring, each process can write only to the

process on its immediate right and to the test-driver. It can read only

from the process on its immediate left.
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The reads and writes in these processes are performed via low-level

language calls to operating system subroutines and can be user

specified as either synchronous or asynchronous. These system

services have optional parameters which can be defined by the

programmer. They include a message length, message source, message

destination, and status information. To date, the implementation has

not been totally successful due to an apparent error in the way in

which the system performs synchronous input/output.

A.5 Summary and Future Work

0 The immediate goal is to realize a complete and successful

implementation of the virtual ring algorithm on a single processor. This

includes extending the algorithm to n processes and incorporating a

mechanism to handle preemptive events. Efforts are also underway to

implement other synchronization algorithms in order to make quantitative

comparisons of various characteristics of the algorithms. A network

model will be developed and implemented to allow a means for studying

the performance of these algorithms in. synchronizing distributed

programs in a network environment.

Several criteria will be used to evaluate the performance of the

synchronization algorithms. One important characteristic is the degree

of concurrency that can be achieved among distributed simulations for a

given algnrithm. Other characteristics which can be associated with the

algorithms include the amount of network traffic required for

synchronization and the degree of processor utilization. Of particular

interest are the ratio of synchronization messages to actual event

messages, the processing requirements for synchronization and the
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memory requirements imposed by the algorithms. A final performance

consideration is the idiosyncratic characteristics of these algorithms and

includes requirements associated with initialization, termination, and

synchronization-message length. Empirical data gathered from the

network modeling system will be presented on each of these

characteristics. Finally, at some time during the investigation of

synchronizing distributed programs, there will be a review of the

I potential use of synchronizing algorithms that require common memory

and/or a centralized controller.
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