
AD-A126 228 PRISM: A GENERAL PURPOSE PROGRAMMING SYSTEM(U) AIR
FORCE HUMAN RESOURCES LAB BROOKS AFB TX

C R ROGERS ET AL. MAR 83 AFHRL-TP-82-44

GNCLASSIFES F/G9/2

EHEHEmSENSEIII DT , 1

1.8

IIII L' ,+

1111 1.2 Hlll 1.4 ',1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 1963-A

tI

)~

AIR FORCE 13
PRISMs

£ H A GENERAL PURPOSE PROGRAMING SYSTEM

U6 ~M

A Steve. A. O'Hara

N
TECHNICAL SERVICES DIVISION
BrooksAirForeefBase,Texas 7823S

R
fit E

S March1983

0 FlnalTecmnkcal Paper0UA 1983

U
R
C Approved for public release; distribution unlimited.

E
S LABORATORY

C AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASETEXAS 78235

Lt.

.....................................

NOTICE

When Government drawings, specifications. or other data are used for any purpose other than

in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the
Government may have formulated or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication, or otherwise in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related
thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the National
Technical Information Service, where it will be available to the general public, including
foreign nationals.

This paper has been reviewed and is approved for publication.

WENDELL L ANDERSON, LtCol, USAF
Chief, Technical Services Division

~'

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whean Eerwi)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMP'TNG FoRM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3, RECIPIENTS CATALOG NUMBER

AFHRL-TP-82-44 I P L)" /I I .- (,, :2 -8

4. TITLE (and Subtal) 5. TYPE OF REPORT & PERIOD COVERED

PRISM: A GENERAL PURPOSE PROGRAMMING SYSTEM Final
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR (j) 8. CONTRACT OR GRANT NUMBER(s)
Charles R. Rogers
Steven A. O'Hara

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKTechnical Services Division AREA & WORK UNIT NUMBERS

Air Force Human Resources Laboratory 62703F
Brooks Air Force Base, Texas 78235 63230423

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
HQ Air Force Human Resources Laboratory (AFSC) March 1983
Brooks Air Force Base, Texas 78235 13. NUMBER OF PAGES

18

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Ofice) 15. SECURITY CLASS (of this report)
Unclassified

15.a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of this absirct entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rewrse side V necestwy and idens#y by block number)
artificial intelligence facilities management
binding time general purpose programs
computing algorithms interactive debugging
data structures interpreter
dynamic program structures operating system interface

20. AWSTACT (Continue on reprwa side if neveswr and identuf by block number)

, This paper describes the development, uses, and features of the general purpose programming system PRISM,
which is the foundation for future program development by the Computer Programming Branch and is available to
all personnel within the Air Force Human Resources Laboratory (AFHRL). PRISM was designed to meet the need
for an efficient and reliable programming tool that could be used like a high-order programming language but still
provide the operating system interface and hardware controls of assembly language. It has special features that make

DDFom 1473 EDITION OF I NOV &S IS OBSOLETE Unclassified
I Jan 73

SECURITY CLASSIFICATION OF THIS PAGE (When D4 Ewmied

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whme Daom Eajpnsd)

Item 19 (Continued)

PRISM subroutine libraries
programming language UNIVAC 1100
quality control universal file handler
runstream generator utility program
standard products

Item 20 (Continued)

it an especially powerful tool for new software development. These features were derived from an extensive analysis
of coding sequences in existing library programs, interactions between library programs, and the identification of
common programming procedures. PRISM was specifically designed for the development of general purpose programs
by the Technical Services Division of AFHRL within the Computer Programming Branch; however, it is also an
effective and efficient tool for applications programmers.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When De Enhaed)

AIHRL Technical Paper 82.44 March 1983

PRISM:
A GENERAL PURPOSE PROGRAMMING SYSTEM

Charles R. Rogers
Steven A. O'Hara

Software Development Section
Computer Programming Branch

Technical Services Diviaion

Reviewed and submitted for publication bya

Jimmy D. Sauter l

Chief, Computer Programming Branch

Accession For 1
Uiis- (CRA&I---

DUc' TABE l

This publication is published in the interest of scientific
and technical informnation eeange. -Di*tr £but ion/

,eal 1~t.y aaide
Dit Vsialdo

TABLE OF CONTENTS

Page

I. Introduction.. 3

Need for General Purpose Programs...................... 3
Evolution of PRISM 3
Qual ity Control Features.............................. 4
Flexibility ... 5
Mlaintenance.. 5

II. Potential Uses of PRISM................................. 7

For General Purposerrograms 7
For Special Purpose Programs.............................. 7
As an Interactive Runstream Generator 8

III. Special Features of PRISM................................ 9

Data File Access 9
Operating System Interface.......................... 10
User Definable Program Structures 10
Error Handling and Interactive Debu~gaing.................... 11

IV, Applications... 13

Current Uses.. 13

Future Uses.. 13

PRISM: A GENERAL PURPOSE PROGRAMMING SYSTEM

I. INTRODUCTION

This paper describes the development, uses and features of PRISM,
a general purpose programming system. As the newest and most
versatile general purpose program, PRISM is the foundation for future
program development by the Computer Programming Branch and is
available to all personnel within the Air Force Human Resources
Laboratory (AFHRL).

Need for General Purpose Programs

Customer Base. The Computer Programming Branch of the Technical
Services Division provides data processing support to a wide range of
customers, such as AFHRL research scientists, Air Force personnel
managers, and researchers from other major commands. This has led to
the development of large general purpose program libraries that
enable applications programmers to produce a diverse, but
standardized, set of computer products.

Increasing Workload. Since customers gain greater productivity
throughthe use of standard products, there is a natural increase in
the number of product requests. The continued use of standard
products is reinforced in two ways. First, the customer usually
requests the product by name. Second, it is faster and more reliable
to produce standard products via general purpose programs than to
write special purpose programs.

Software Requirements: At AFHRL, the programmer/analyst staff
has remained relatively static for several years while the number of
customers and volume of product requests have continued to increase.
Some of the additional time required to process the increasing number
of computer runs has been reduced by the installation of faster, more
reliable hardware. The remainder of the time must be made up by more
efficient software, both in terms of computational speed and
reduction of the number of work steps necessary to produce a standard
product.

Evolution of PRISM

Special Purpose Programs. A special purpose program is a
solution to a specific problem. When another request is received for
a similar special purpose product using different source data, a
programmer manually modifies the program to get the new product. If
requested often enough, the product then becomes a "standard product"
that can be requested by a generic product name.

3

PA-mA- eL

Standard Products. While the content of standard products may
vary, the general format of the products is the same. This format
would have been developed jointly by the customer and the
programmier. Interpretation of the product by the original customer
requires no additional training, and training for other customers can
be standardized.

The Generalization Process. When the original program author
leaves AFHRL, each standardized special purpose program is turned
over to the Software Development Section of the Computer Programming
Branch to determine if it should become generalized and placed in the
general purpose program library. A detailed analysis of the special
purpose program is made to separate the constant data and logic.
Control card comumands are then designed to enable the user to input
the variable information with the least amount of effort. A new
program is then developed that will "learn" the variable part of the
task from the control cards and then use that information to perform
the task plus all the necessary quality control operations. For
example, while a special purpose program must know the exact file and
record formats at compile time, a general purpose program learns this
information at run time.

General Purpose Programs. The use of general purpose programs is
the -mo-st -effective means of increasing programmer productivity.
Significantly less time is required to code general purpose control
cards than to code program language statements. General purpose
programs do not require the iterative compile and test steps
necessary to the development of special purpose programs. Decision
making is elevated to global system problems with little time spent
on the mechanics of input/output (I/0) and data manipulation.
Quality control is streamlined for individual work steps.

PRISM Design. The design of PRISM began with the analysis of
existing general purpose programs to isolate the standardized
operations common to more than one program. Some of these common
operations were placed into a subroutine library while others were
incorporated into PRISM as instructions, functions, or system
variables. The result is consolidation and standardization of
virtually all the computing algorithms necessary for general purpose
program development into a single modular programing system.

Quality Control Features

Computing Algorithms. Rigorous quality control of computing
algorithms is performed during the development of a general purpose
program. This reduces the time necessary to audit individual work
steps when general purpose programs are used in production runs.
Increased quality control productivity is achieved by elevatirig the
decision making to the overall system level. For example, an auditor
can concentrate on whether the correct statistic was used rather than
on the computational accuracy of the statistic.

4

P, .. - --

Logic Tracing. Quality control productivity is further increased
by automating tedious logic tracing procedures needed to prove the
accuracy of the individual work steps. All general purpose programs
include such things as 1/O counts, true/false counts at major
decision points, and descriptive diagnostics. Since quality control
personnel are involved in the program development process, they are
in a position to define specific audit aids.

Flexibility

Systems Desi n. The data processing for research studies can be
performd by Inng several general purpose programs into a chain.
As a general rule, the more complex studies require more program
links. Since each general purpose program evolved from a special
purpose program, there are times when extra links must be inserted in
the chains to transform intermediate data files from one format to
another. PRISM is the first of the general purpose programs to have
true file independence; that is, the remaining obstacles to total
flexibility in arranging the program links are removed.

Binding Time. Binding time refers to the instant when a symbolic
expression in a computer program is reduced to a form directly
interpretable by the hardware. Program flexibility increases as the
binding time of program information is shifted fron, compile to run
time. Because PRISM can bind new control statements while it is
executing, program logic can actually be changed while a program is
running. This gives the progyranmer the ability to take advantage of
artificial intelligence (AI) techniques. PRISM is so flexible that
it can be, and is, used to create other general purpose programs.

Maintenance

Simplicity. As a general rule, the number of statements in a
symbo1ic PISM1 program is less than half those in a comparable COBOL
or FORTRAN program and less than a tenth of a comparable assembly
language program.. A very large part of all general purpose programs
is the overhead necessary to interpret control statements at run
time. By providing powerful, built-in, free format scanning
functions, PRISM simplifies this activity, reduces the overhead
coding and stabilizes control statement syntax. Maintenance
programming is thereby simplified and standardized across all general
purpose programs.

Standardization. Coupled with standard programming conventions,
PRISM programs are significantly easier to maintain because the
powerful built-in functions reduce the tendency for programmers to
"Ire-invent the wheel." Experience with writing general purpose
programs in PkISM and using standard techniques has proved that

5

programs written by one programmner can be modified by another person
with little or no interaction between the two people. The obvious
benefits include a reduction in costly maintenance time and the
ability to apply a standard set of updates to a large number of
general purpose programs when changes to the operating environment
dictate.

6

II. POTENTIAL USES OF PRISM

Although PRISM was specifically designed for the development of
general purpose programs by the Software Development Section, it is
also an effective and efficient tool for applications programmers.
Because of its flexibility and power, it can be thought cf as a
stand-alone general purpose program, a high-order language for
writing both special purpose and general purpose programs, and an
interactive runstream generator.

For General Purpose Programs

Programming Language. Virtually any algorithm that can be
expressed-in any programming language can be expressed with PRISM
control statements. Besides incorporating the basic features from
other high-order languages, PRISM contains many unique features, some
of which are described later.

Utility Processors. PRISM has a special set of features which
allow programmers to create utility programs that perform like
compiled UNIVAC system processors. Applications personnel can
execute a utility processor and provide all pertinent control
information with a single processor call statement.

Examples. An increasing percentage of the programs written and
maint-ain-ed-by the Software Development Section are coded in PRISM.
These include the documentation retrieval system, a frequency
distribution reporting program, a generalized sort program, and a
utility file query program.

For Special Purpose Programs

One-Time Runs. There are occasions when a programmer needs to
perform a unique task and knows that this specific task will not be
performed again. Because PRISM is an interpreter, tasks of this type
can be easily coded and immediately executed without the
time-consuming cycles of compiling and testing.

Chained Runstreams. The ability of PRISM to access data in any
file format can' be used to create links which perform special data
transformations for the other programs in a chained runstream. PRISH
can also be used to create temporary communications files for passing
information between the other programs in the chain.

Examples. PRISM's file handling capability can be used to create
testditabefore the arrival of actual data. This enables
programhmers to write and test their programs without delay. PRISM
can efficiently extract and summarize selected portions of a print
file, thereby reducing both paper costs and time.

7

As an Interactive Runstream Generator

Pre-Corpiler. The versatile string manipulation capabilities of
PRISIFmakeit an excellent tool for coding pre-compiler languages
whereby the source statements are transformed into valid input for
some other language processor such as COBOL. This provides a very
powerful macro process with comprehensive error checking capabilities.

Runstream Prototypes. When a task is to be executed several
tines, with similar but not identical input, a PRISM program can be
used to insert the variable information into a predefined prototype
runstream. This process includes the prompting for all necessary
information and quality control of the information received. The
generated runstream can be started as an asynchronous batch activity
or executed immediately.

Examples. The COBOL pre-compiler (VGN) is being rewritten in
PRISM to take advantage of the upgraded COBOL compiler features,
increase efficiency, and provide additional flexibility. The summary
statistics package (STATPK) is both a FORTRAN pre-compiler and a
runstream generator. The general purpose report writer (RPT) is a
PRISM program that learns the report writing task and replaces itself
with a generated PRISM program which performs the learned task.

8

III. SPECIAL FEATURES OF PRISM

PRIStM has several outstanding features that make it an especially
powerful tool for the development of general purpose programs. These
features were developed after extensive analysis of coding sequences
in existing library programs, interactions between sequences in
existinS library programs, interactions between library programs, and
the identification of common programming procedures. In a stepwise
refinement process, new programs written in PRISM were examined for
coding patterns that could be reduced to single instructions or
functions by making enhancements to PRISM.

Data File Access

File Handling. The incompatibility of data file formats is a
common attribute of UNIVAC 1100 compiler languages. UNIVAC system
data format (SDF) files cannot be readily accessed by COBOL or
FORTRAN programs. A COBOL program cannot access a FORTRAN file, and
vice versa. While this has little effect on one-time special purpose
programs, general purpose programs must be able to access data from
any reasonable source. PRISM solves this problem by its ability to
read virtually any file format and to write more than one standard
format.

Input/Output Control. Under certain circumstances, it is
desirable for a program to do more than simply "read the next record"
or "write a record." PRISM maintains communications packets as
string variables and allows the user program to place information
into or receive information from these packets. This gives the
programmer complete control over I/O functions such as the processing
of file labels and simulated random access of sequential input files.

Run-Time File Definition. While language processors allow
multiple inputs and outputs, the number of files and file
characteristics are fixed at compile time. PRISM carries the file
definition concept one step further by associating a channel number
with each I/O file. This channel number can be a variable, and any
number of channels may be open at any time. The I/O commands and
communications packets are linked by this channel number. All
packets and buffers are created upon first reference, thus keeping
the central memory space to a minimum.

Non-Standard Files. In addition to the normal operations of
read, write, and print, PRISM provides several specialized operations
for accessing arbitrary units of mass storage files as logical
units. The table of contents for a program file is accessible as
though it were also a file.

9

Facilities Management. PRISM dynamically assigns files at run
time and returns them to their original state when closed. The user
program is in complete control of file errors. If a file is not
explicitly closed by the user program, PRISMl automatically closes it
at the termination of execution.

Operating System Interface

Run Information. With the exception of the current date and
time, UNIVAC language processors do not provide immlediate access to
other systen information, such as the user's run identification, site
identification, or breakpoint status. PRISM provides two forms of
predefined variables to accomodate those programs that need this
information. Some variables, such as user's account number or
project identification, are static. Other variables, such as the
current time of day or the user's namie, are computed when referenced.

Systemlnformiation. Historically, one of the main reasons for
writing assembler subroutines was to access information available
only through operating system interface routines called Executive
Requests (ERs). PRISM has special instructions and intrinsic
functions to provide direct access to the Program Control Table
(PCT), Master File Directory (11FD), and other system information.

System Processor Call. PRISM provides a mechanism whereby a
program may be converted to a standard system processor. The program
can then be executed like any other processor without the user's
having to know that PRISM is in control. The entire processor call
image (INFOR) is available to the program as a string variable.
There are special instructions and functions available to facilitate
the interpretation of the INFOR image.

Runstreai Control. For use as a front end processor, PRISM has a
special set of -in-struct ions to enable a program to queue other
programs for execution following termination of the PRISM program.

User Definable Program Structures

Dy'namic Instruction Generation. PRISM is unique with respect to
artificial intelligence (AI) progranuming techniques. There are three
different means for creating and executing PRISM instructions at run
time.

1. The EX command interprets and executes a string expression
as though it were a PRISM instruction.

10

2. The INS coriand inserts string expressions as PRIS M
instructions into the program as it is being executed. There is a
corresponding command to delete PRISM instructions.

3. The LINK command replaces the entire program being executed
by another PRISM program, which also could have been created at run
time.

Dynamic Structures. The nature of a compiler is such that
program structures are defined as much as possible at compile time.
Neither COBOL nor FORTR'*N provides any mechanism for dynamic data
structures. Because PRISM is an interpreter, it has no such
restrictions. With a few simple commands, and the use of pointer
variables, virtually any data structure can be created and easily
accessed.

Predefined Structures. In addition to the general case, PRISI
has several built-in data structures. These stacks, queues, and
binary trees represent those structures that are most commonly used
and that serve as efficient and reliable tools for general purpose
program development.

1. Stacks used on internal subroutine calls provide recursive
program- ming capabilities.

2. Queuing operations allow both first-in first-out and last-in
first-out queues to be used.

3. Binary tree functions provide optional capabilities for such
things as in-core sorts and frequency distributions.

Symbolic Substring Definition. Any PRISl string variable can be
treated as a record containing binary values, ASCII characters,
and/or FIELDATA characters. The subfield definition (FLD) allows
treating any portion of a record as a separate variable. The ability
to change the value of a subfield definition at run time provides
another degree of flexibility.

Error Handling and Interactive Debugging

Descriptive Diagnostics. Because a program rarely runs perfectly
the first time, a well designed processor must provide meaningful
diagnostic and debugging aids. PRISM has two sets of diagnostics,
one set for before execution starts and the other for run-time
errors. The user of PRISM is never left stranded by an aborted
program without a descriptive error message.

11

Dump Mode. The dump mode is a special option that assists in
debugging a program by decoding the entire program back to symbolic
form before or during execution. It is used to verify that PRISM has
correctly interpreted the symbolic input.

Trace Mode. A program controllable trace mode in PRISM provides
run-time tracing of both data and instructions. In this mode, a line
is printed before each instruction is executed, showing diagnostic
infornation about the flow of execution along with any user-defined
message.

Execute Mode. An interactive debugging execute mode gives
complete program control to the programmer with options available for
controlling program execution, including single-stepping. At each
step, the programmer can enter any PRISM instruction for immediate
execution.

12

IV. APPLICATIONS

PRISM was specifically designed to meet the need for an efficient and
reliable programming tool that could be used like a high-order
programmling language but still provide the operating system interface
and hardware controls of assembly language.

Current Uses

Replace Assembly Language. Utility programs that previously were
requi'red t be written in assembly language are now being replaced by
PRISM programs that have the same level of control over the machine.

Standardization. All new general purpose and utility programs
are written in PRISM. Each program that must be upgraded due to new
requirements or system changes is being converted to PRISM. This
standardization process also includes option letters and
specification fields on processor call statements, prompting
messages, and diagnostic messages.

Future Uses

New Algorithmis. Because PRISM was designed and written as a
symboliciiter-preler consisting of independent modules for each
istruction and function, creation and insertion of new computing

algorithms can be rapidly and efficiently implemented. That is, the
system was designed to be changed so that PRISM can remain current
with state-of-the-art programmning practices, operating system
changes, and new equipment.

Conversion. As an interpreter, PRISM can be written in any
pro gr anuNing language in the event of a complete computer system
replacemlent. The general purpose and utility programs written in the
PRISM language would not have to be rewritten beyond those changes
necessary to conform to new requirements such as file naming
conventions. This capability protects AFHRL's investment in software
development and maintenance.

4. 13

