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ABSTRACT

This Report deals with a number of interrelated topics. The common

thread is Laplace's method of initial orbit determination based on passively

acquired optical data. We discuss this method's principal competitor (that

of Gauss), the difficulties of Gauss's technique, and the traditional reasons

the Gaussian method is preferred to the Laplacian. We reject this hegemony

for a variety of reasons and concentrate on Laplace's method in an era of a

surfeit of high qu;'ity data. This leads us into a discussion of data

smoothing. Once one leaves the raw observatorial data the possibility of

combining observations from multiple observers comes to mind and hence the

determination of parallax by trigonometrical means. All of this may be

applied to two different classes of objects - asteroids and artificial

satellites. Our immediate interests are in fast moving asteroids (>O?5/day

or an abnormally fast ecliptic latitude rate) and high altitude artificial

satellites (p> 6 h). In both instances it is the high inclination and high

eccentricity subset which is of especial concern.
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I. OVERVIEW

This Report is about initial orbit determination utilizing passively

acquired angles only data - a classical problem in astronomy. So well

developed is the literature on the subject the educated reader might well

wonder what might be added. My rejoinder is the following question; "How

often have you really computed an orbit given only three sets of optical obser-

vations when it was of importance to (,o so?", and "Assuming that your answer

was yes, did it work?". I would hazard to guess that less than 1/10 of one

per cent of thy, readers of this report can answer yes to the first question.

Further, I will speculate that the answer to the second question has always

been "No". Moreover with the advent of ballistic missiles and artificial

satellites and the contemporaneous development and refinement of radars, many

of tne classical astronomical techniques were suitably refined for these new

problems with their new observables. The use of laser radars, beacon tracking,

electro-optical cameras, etc. have increased the meaningful data acquisition

rate on near-Earth objects both because of their mode of operation and because

near-Earth objects move so much faster than do the natural objects within the

solar system. As an example a typical minor planet has a geocentric angular

speed of O?25/day, a typical high-altitude satellite has a topocentric anguiir

speed of 15"/sec (=36 0 °/day) while a low altitude satellite might have a topo-

centric angular speed in excess of 10/min (=14,400°/day). And yet only one

initial orbit determination technique breaks with those of the past (see

references 1 and 2).

Allow me to elaborate further.



A. Astronomical Initial Orbit Determination

Consider the instances in astronomy when one computes orbits. We

might do it for a binary star system or for a moon of another planet. Obvi-

ously, in these two cases, there is no danger of losing the object due to an

inaccurate set of orbital elements. Nor are there any impediments to the

acquisition of an arbitrarily large amount of data. Thus, except for Luri-

osity or the challenge of being able to deduce an orbit from minimal informa-

tion, there i5 no compelling observational need to use only three sets of

observations nor is there any compelling need to compute an accurate orbit

with alacrity for these types of objects. Not that I neglect the power of

curiosity nor the drive of ego. The latter has dominated the entire subject

and the former goads all scientists on.

There are three other instances in astronomy where initial orbit

determination is practiced - planets, comets, and meteors. There could be a

problem for these objects before the advent of photography, but not after.

The reasons are several -- photographic plates cover large areas of the sky

obviating the need for precision pointing; photographic plates yield a per-

manent record and old plates can always be searched for pre-discovery images

thereby yieldi'ng more than the minimum number of observations; and photo-

graphic plates were developed at about the same time as rapid world wide

communication so that local events lost their ability to adversely influence

the making of an observation. Now to the pre-photographic era.

*
Yes planets go into conjunction and most stars set between observing seasons.

The planets always return to opposition and the stars always rise again.
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Meteors are so common, the sporadic rate is %10/hour, that one never

contemplated computing orbits for any but a few. Since a parallax was deter-

mined for a meteor only in 1798, and scientific interest in the subject wasn't

stimulated until the great Leonid shower of 1833, I'll take the position that

they have played a very minor role in celestial mechanics.

Comiets are another case in two regards. Host of them that are naked

eye visible are not periodic (Halley's is a notable exception). Hence.

recovery was never in question. Moreover, comets have comae and tails and are

difficult to lose or lose sight of. In addition Olbers (in 1797) solved the

initial orbit problem for parabolic comets and this is but a sideýlight on the

elliptical problem.

This leaves us planets. Planets were important (at least the modern

major ones and the first few minor ones). Remember though that Uranus (dis-

covered by Herschel in 1781) was naked-eye visible and 19 (some sources

indicate 20) pre-discovery observations were quickly found. Also with a

sidereal period of 83.7 years one was not in much danger of losing Uranus.

As both Neptune and Pluto were discovered on the basis of predictions one

clearly needed no initial orbit determination method (and they have even

longer sidereal periods). This leaves minor planets.

Let us review the solar system circa 1800. We knew of the planets of
**

antiquity - Mercury, Veinus, Earth, Mars, Jupiter, and Saturn. By and large

Modern re-examinacion of the bases for the Adams/Leverrier and Lowell stories

cast aspersions on the arithmetical validity of the work of these men. Notice
no one doubts Newtonian gravity.

The seven classical )lanets of antiquity were the above minus the Earth,

plus the Moon and the Sun.
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these lay in the plane of the ecliptic revolving about the Sun in nearly

circular orbits (see Table I). Moreover the semi-major axes of the planets

satisfied a progression discovered by Titius and recently published (in 1772)

by Bode. As yet though there was no body for the fifth piace. Presciently

Laplace (1780) publishes his technique of initial orbit determination. The

2' following year Herschel discovers the first new planet in the history of the

world and it fits the above scheme very well. This plus earlier (i.e., the

moons of Jupiter, etc.) discoveries shows the scientific community that the

solar system does contain additional bodies. Believing in the numerology of

the Titius-Bode relationship a search is organized for the missing planet.

On the first night of the nineteenth century Piazzi discovers Ceres. He keeps

the discovery to himself for three weeks, illness then forces him from the

telescope after 41 nights (not 3!) of observing. Ceres beats the slow mails

of the winter of 1801 to conjunction. Is this the missing planet and how

shall we find it after conjunction?

I regard this as the first time an orbit was really needed. The

stories one reads in contemporary astronnmy books recounts that Gauss hea d

of the difficulty in September, invented his methid of initial orbit determina-

tion in October, predicted (in November) a position for Ceres and von Zach

(a member of the original search team; Piazzi was a potential member; Bode

organized it) found it with 0?5 of that position on January 1, 1802 (it was

cloudy in December*). What better triumph can one ask of science? How far

,

Some accounts have one clear night, December 7, during which von Zach
"glimpsed" it. If so, this position obviously allow a differential correction
of large weight.
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TABLE I

PLANETARY DATA

Planet Semi-Major Axis Bode's Law Value Eccentricity Inclination
(A.U.) (A.U.)

Mercury 0.387 0.4 0.206 7000

Venus 0.723 0.7 0.007 3.39

Earth 1.000 1.0 0.017 0

Mars 1.524 1.6 0.093 1.85

(Ceres) 2.767 2.8 0.076 10.62

Jupiter 5.204 5.2 0.049 1.31

Saturn 9.580 10.0 0.051 2.49

Uranus 19.141 19.6 0.046 0.77
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off could the prediction have been before we stopped trumpeting this epic?

How did Gauss really do it? Before giving my answers to the last two questions,

we need to complete the story. Olbers too found Ceres (on January 2) and then

Pallas in the Spring. In 1804 Juno was discovered and in 1807 Olbers found

Vesta. The next minor planet was discovered in 1845. Photographic searches

were started in 1891

B. The Histor.cal Myth - Ceres

The above is the historical myth concerning the reacquisition of

Ceres. Now to my questions above and then some speculations. I would guess

that the errors could've been as large as 5° before the power of the tale

pales. With perfect hindsight, and both theoretical and observational exper-

tise in what I'm about to propose, I'd have done it as follows: The solar

system lies in a plane and this new object is discovered near it. Hence the

inclination is zero and the longitude of the ascending node is superfluous.

All orbits are circular so I'll assume zero for the eccentricity and the

argument of perihelion is meaningless. I believe in Bode's law so I know

the semi-major axis. Moreover the assumed semi-major axis correctly repro-

duces the observed angular speed. This leaves a single orbital element, the

mean longitude (say) to fix. Finally, had I tried all of this for the just

discovered Uranus it would've worked (look at Table I). I would've tried it

for Ceres and since I'm temporarily Gauss, the inventor of least squares, I

would've found an intelligent way to use Piazzi's 41 nights of data and perform

a simple differential correction of the orbit.
*

Note that of the inner planets Mercury has both the largest eccentricity
and the highest inclination. Even its values aren't huge and it's the
closest to the Sun.
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We don't know how Gauss actually computed the orbit of Ceres or any

of the other big four minor planets. We do know that however he did it, Gauss

did not use the method published in his Theoria Motus in 1809 (reference 3).

I quote at length, and in context, from the Preface to that work, first concern-

ing Uranus:

"As soon as it was ascertained that the motion of the new planet, discovered

in 1781, could not be reconciled wi.th the parabolic hypothesis, astronomers

undertook to adapt a circular orbit to it, which is a matter of simple and very

easy calculation. By a happy accident the orbit of this planet had but a small

eccentricity, in consequences of which the elements resulting from the circular

hypothesis sufficed at least for an approximation of which could be based the

determination of the elliptic elements. There was a concurrence of several

other very favorable circumstances. For, the slow motion of the planet, and

the very small inclination of the orbit to the plane of the ecliptic, not only

rendered the calculations much more simple, and allowed the use of special

methods not suited to other cases; but they removed the apprehension, lest the

planet, lost in the rays of the sun, should subsequently elude the search of

observers, (an apprehension which some astronomers might have felt, especially

if its light had been less brilliant); so that the more accurate determination

of the orbit might be safely deferred, until a selection could be made from

observations more frequc-t and more remote, such as seemed best fitted for the

end in view."

The next paragraph of the Preface discusses the general problem:

"Thus, in every case in which it was necessary to deduce the orbits of

heavenly bodies from observations, there existed advantages not to be
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despised, suggesting, or at any rate permitting, the application of special

methods; of which advantages the chief one was, that by means of hypothetical

assumptions an approximate knowledge of some elements could be obtained

before the computation of the elliptic elements was commenced. Notwithstand-

ing this, it seems somewhat strange that the general problem,--

To determine the orbit of a heavenly body, without any hypothetical

assumption, from observations not embracing a great period of time, and not

allowing a selection with a view to the application of special methods, was

almost wholly neglected up to the beginning of the present century; or, at

least, not treated by any one in a manner iirthy of its importance; since it

assuredly commended itself to mathematics by its difficulty and elegance, even

if its great utility in practice were not apparent. An opinion had univer-

sally prevailed that a complete determination from observations embracing a

short interval of time was impo~sible,--an ill-founded opinion,--for it is now

clearly shown that the orbit of a heavenly body may be determined quite nearly

from good observations embracing only a few days; and this without any hypo-

thetical assumption."

Finally, Gauss on Gauss and Ceres:

"Some ideas occurred to me in the month of September in the year 1801,

engaged at the time on a very different subject, which seemed to point to the

solution of the great problem of which I have spoken. Under such circumstances

we not unfrequently, for fear of being too much led away by an attractive

investigation, suffer the associations of ideas, which, more attentively

considered, might have proved most fruitful in results, to be lost from

neglect. And the same fate might have befallen these conceptions, had they

8



not happily occurred at the most propitious moment for their preservation and

encouragement that could have been selected. For just about this time the

report of the new planet, discovered on the first day of January of that year

with the telescope at Palermo, was the subject of universal conversation;

and soon afterwards the observations made by that distinguished astronomer

PIAZZI from the above date to the eleventh of February were published. No-

where in the annals of astronomy do we meet with so great an opportunity,

and a greater one could hardly be imagined, for showing most strikingly, the

"value of this problem, than in this crisis and urgent necessity, when all hopes

of discovering in the heavens this planetary atom, among innumerable small

stars after the lapse of nearly a year, rested solely upon a sufficiently

approximate knowledge of its orbit to be based upon these very few observations.

Could I ever have found a Pore beasonable opportunity to test the practical

value of my conceptions, that now in employing them for the determination of

the orbit of the planet Ceres, which during these forty-one days had described

a geocentric arc of only three degrees, and after the lapse of a year must be

looked for in a region of the heavens very remote from that in which it was

last seen? This first application of the method was made in the month of

October, 1801, and the first clear night, when the planet was sought for as

directed by the numbers deduced from it, restored the fugitive to observation.

Three other new planets, subsequently discovered, furnished new opportunities

for examining and verifying the efficiency and generality of the method.

Several astronomers wished me to publish the methods employed in these

calculations immediately after the second discovery of Ceres; but many things--

By de Zach, December 7, 1801.
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other occupations, the desire of treating the subject more fully at some sub-

sequent period, and, especially, the hope that a further prosecution of this

investigation would raise various parts of the solution to a greater degree of

generality, simplicity, and elegance,--prevented my complying at the time with

these friendly solicitations. I was not disappointed in this expectation, and

have no cause to regret the delay. For, the methods first employed have

undergone so many and such great changes, that scarcely any trace of resem-

blance remains between the method in which the orbit of Ceres was first com-

puted, and the form given in this work."

C. Modern Reality - Chiron

It should be instructive to review the published history of the

slow moving object discovered by C. T. Kowall in 1977. It is now known as

minor planet 2060 Chiron. It's preliminary designation was 1977UB.

The first International Astronomical Union Circular containing

info'mation about "Slow-moving Object Kowal" was Number 3129 (dated Nov. 4,

1977). It reported two accurate positions by Kowal (separated by 25 hours)

and one approximate position by Gehrels from a photographic plate taken a

week (Oct. 11) earlier. The motion was very slow and retrograde, at least

one-third of that of a main belt asteroid. Presumably it was the strange

motion that kept the Minor Planet Center from publishing (a potentially

embarrassing) orbital element set. Four days later I.A.U. Circular No. 3130

reported two accurate positions from Gehrels (replacing his preliminary one)

and two more positions from Mt. Palomar acquired on November third and fourth.

An orbital element set accompanied this and it was labeled "extremely indeter-

minate". The important parameters are the eccentricity e = 0.031 and the

10



periud P 66.1 years. We are advised that this orbit was "selected so as to

minimize the aphelion distince". As e is essentially zero this means minimizing

the period.

Sevpn days later I.A.U. Circular No. 3134 reported another pair of

observations (Nov. 9 and 10). It also contained the comment "that a near-

circular orbit solution (cf. IAUC 3130) is still viable, but an ellipse of

very high eccentricity is rnt". Very high is not defined (0.9 or 0.5?).

Additional observations from mid-November are reported in Circulars Nos. 3140

and 3143. Finally, by the end of November the jig is up. Circular No. 3145

reports two observations from 1969 based on the work of J. G. Williams. A new

orbital element set is also included, e = 0.37860, P = 50.70 yrs. Not very

circular. Within another week pre-discovery images from 1952 and the early

1940's are reported (Circular No. 3147). What is not reported there (but is

in reference 4) is the error in the predicted position -- ll for the 1969

observations based on the original orbital element set, 0025 for the 1952

observations based on the improved element set, and 0?5 for the 1941 points.

Williams had at least 15 positions to use to deduce the orbit that allowed

him to find the 1969 positions. Also not mentioned is that finding the short,

faint, trail of Chiron is as much luck as celestial mechanics--the trail was

marked on the 1941 plate in 1941 but subsequently ignored.

Finally, by mid-December, an observation from 1895 has been reported and

yet another orbit produced by the process of differential correction. Now

e = 0.378623 and P = 50.68 yrs. The small inclination has changed by 33%

from its original value of i = 5?2 (to 6?9229) but the effect and importance

of this are small. After the publication of this Circular (No. 3151) addi-

tional observations from 1940's and 1976 appear (Nos. 3156, 3215).

11



In my opinion it is clear that the deduction of a reasonable orbit

for 2060 Chiron depended much more on modern conmunications and large scale

(60 x 6V) photographic plates than it did on Carl Fredrich Gauss.

D. Modern Initial Orbit Determination

Modern initial orbit determination is concerned with rockets and

artificial satellites. While optical observations (both passive and active)

have and continue to be performed on these objects radar, sans doute is the

premier observing technique. Radars give distance (radio detecting and

ranging) and, distance determination is the essence of initial orbital deter-

mination by optical means.

In the only instance of which I am aware) when Gauss's method

(really it was Gibb's 1888 refinement but that's a detail) was used on high

altitude artificial satellites it failed (see reference 5). The causes of the

failure were two-fold. The permissible range of validity of the method was

exceeded and this is clearly no fault of the method. (Try and find a discus-

sion of this point in a celestial mechanics book though.) The other reason is

that the method doesn't work. It never did, it never has.

E. Outline of the Remainder

Section II reviews, in a more rigorous fashion than usual, the

fundamentals of Laplacian orbit determination. Most solar system problems

either have the Sun or the Earth as a force center and both of these cases

are covered. This Section also presents an elucidation of the essential

difference between the Laplacian and Gaussian forms of initial orbit determin-

ation. It concludes with a short discussion of refinements of the Laplacian

technique.

12



Section III discusses polynomial smoothing, through quartics, in as

general a manner as possible. Algebraic complexity rapidly overcomes univer-

sality though and further progress is made by assuming a uniform spacing in

time for data acquisition. Ideally one would want the minimum variance

analysis to dictate the frequency distribution of data acquisition. Unfortu-

nately, the fulfillment of this ideal is either beyond my patience or simply

impossible because the problem is intractable.

Section IV discusses new tests of the high quality data rich

Laplacian method. It has been applied to an asteroid discovered by us (1982HS).

This is in a very rare high inclination, high eccentr'city orbit. We have also

applied it to the original Earth-approaching minor planet (1862 Apollo), and a

high inclination, high eccentricity, 2 rev/day artificial satellite.

The last Section discusses the problem of trigonometrical parallax

determination for artifical satellites by non-simultaneous optical observations.

This is a natural outgrowth of our work on smoothing a large number of rapidly

acquired angles-only observations.

13



II. LAPLACE'S METHOD

Ni this Section I present Laplace's method from a heliocentric point of

view for minor planets and geocentric point of view for artificial satellites.

The last subsection stresses the es:ential mathematical differences betweci,

the Laplacian and Gaussian techniques.

A. Artificial Satellites

Let the observer's geodetic datum be (H,ý,4') his height above the

reference ellipsoid, his geocentric longitude, and his geocentric latitude.

From these data we can compute the observer's geocentric distance p and the

local sidereal time T corresponding to the local solar time t (which is simply

related to Universal Time; Ephemeris Time buffs will have to wait their turn).

Thus, we know the geocentric location of the observer p and can calculate its

derivatives with respect to t.

Consider now some artificial satellite whose geocentric location is

r in the equatorial coordinate system. Its topocentric location R is related

to r and p via

r =(1)

We can measure the direction to the satellite. To stress this let us write

R = Re (2)

Here t is the unit vector of topocentric direction cosines. We substitute (2)

into (1) and differentiate twice with respect to t;

14



Iq

r : Re + p (3a)

2. t (3b)

r IZ + 2 U + Rr + P (3c)

Since the satellite does orbit the Earth,

"r - GME r/r 3  (4)

where r = In and GME is the gravitational constant for the Earth. We replace

the left hand side of Eq. (3c) with its equivalent in (4) to find that

-GMEr
-3- - "ft + 2H + Rr + (5)

We can isolate R by finding a vector perpendicular to both Z and t. Clearly

,e xL will do and

rFGE + 1 (6)(Z-_x_-•. L3• (L~x•) •_ (_x_• '()

Next we take the scalar product of Eq. (3a) with itself to obtain

r' = R2  + 2RZ * p + p2  (7)

Finally, we replace r on the right hand side of (6) with its value from (3a),

viz.

R= -1 FGME X.+ X 8
t x

(zx_) . [-- (Z~x_) "_p + (z~x_)._ (8)

15



Equations (7) and (8) are two coupled, non-linear equations in the two unknowns

r and R. They are equivalent to a single eighth-order polynomial in r.

If we step back from the algebra and look at the terms appearing in

these two equations they are of three forms--quantities we know or can compute

pp, quantities we measure (_P), and quantities we need a way of calculating

(1 and 1). The formal solution to the initial orbit determination process

requires r and r (or R and A). Thus we need an equation for R. Clearly we

may obtain one from Eq. (5) upon scalar multiplication by £. x O,

2R E (x)(X) r + (xt).]

or after replacement of r by R_ + p,

2h - -[GME *(2xR-LrE (r x_) _ + (Zx P) • (9)

The reader should note that these results are completely rigorous.

I will discuss at length below (Section III) methods to obtain approximations

to the topocentric angular velocity -_ and the topocentric angular accelera-

tion ".

B. Asteroids

Let

r : heliocentric equatorial location of the asteroid

RS= geocentric equatorial location of the Sun = (Xs, Ys' Zs)

p geocentric location of observer = pt ( =,4') = p(n,

R topocentric equatorial location of the asteroid R_ (A,A)

R(1,6,v)

16



where the vector of direction cosines is given by

:_(a,6) = (cos6cosct, cos6sinc, sinO)

From Fig. 1 we see that

r = -R + p + R (10)
_ -s

The minor planet orbits the Sun. Ignoring the mass of the asteroid compared

to that of the Sun (=Ms) and planetary perturbations, (G is the universal

constant of gravitation)

r -GMs r/r 3  (11)

Substituting Eq. (10) into Eq. (11) yields

+ - -GMs (R + p -_Rs)/r' (12)

But the Sun orbits the Earth and (approximately; neglecting the mass of the

Moon, the geocentric distance of the Earth-Moon barycenter, and planetary

perturbations again)

=-GM R /R1 (13)
s -s s

Thus

_+ GMs R/r = -GMsR (1/R - l/r3 ) -•- GMsP/r 3  (14)
-s s 1

17
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Fig.,1. Exaggerated diagram showing the location of the Sun,
Earth, Observer, and asteroid.
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Consider (say) the x component of this equation. As d2 (RX)/dt *AX+ 2R,+ RY"

and p and 4' are constants, one finds

+ 5,(2R) + (x + GMsX/r 3)R -GM X (/R' 3 - l/r 3)

+ p(' - GM s/r 3 ) (15)

If we write down the corresponding y and z equations then we regard this as a

system of three linear, inhomogenous equations in 4te t.hree unknow,,s R. 2A, and

R. The determinant of the system, D, is given by

X + GMsX/r 3  x"

v= *, + GMs /r (16)

The solution for R is

R DI/D (17)

with

X GM X (I/Rs i/r 3 ) + 2 GMs/r 3)

D1 : i, -GMsY (1/R 3 l/r3) + pn(;2- GMs/r3)

v . GM Z (I/R - I/r) + Pý(o - GM /r 3) (18)
s s 5 5

If p= 0 we can simplify D to
II

XXs

D; (p 0 ) =-aMs (1/R• 3 1/r3) Ys D1
s 1 s(g

19
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Note that if one knows the topocentric direction cosines [eg. (X,p,v)], the

topocentric angular velocity [eg. , and the topocentric angular

acceleration [eg. (xi,)] then the formal solution for R in Eq. (17) is

really an expression for R(r) as the observer's location, velocity, and

acceleration as well as the solar location, velocity, and acceleration are

known. Hence, to solve the problem we need one more relationship between R

and r. To obtain it we square the basic geometrical relationship Eq. (10).

The result is

r 2  R2 + 2pRcosZ -2RRscosp + p2 + R (20)

where Z is the topocentric zenith distance of the minor planet 'R = pRcosZ],

and cosp = (AXs + PYs + vZ s)/Rs . This completes the solution of the problem.

We have two equations in two unknowns. One expresses the physics, the other

the geometry. If we take p 0, then they become

R = (DI/D) [1/R3- l/r 3]

r.2= R2 - 2R R cosý + Rs2  (21)
5 5

"The form of these is classic in angles only initial orbit determina-

tion as are the facts that the coupled system is equivalent to a single poly-

nomial equation of the eighth degree,

sl - (a 2 - 2acosl + l)s 6 + 2a(a - cosp)s 3 - a2 = 0 (22)

[where s = r/Rs and a = D /DR4] and that s = 1, R = 0 is a solution. The

latter represents the Earth. Note that the explicit inclusion of the diurnal

parallax removes this degeneracy--a useful point for Earth-approaching asteroids.
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Let me summarize: If one knows one's location, velocity, and

acceleration relative to the center of the Earth (as one can), and if one

knows the Earth's (equivalently the Sun's) location, velocity, and accelera-

tion (again, as one can), and if one knows the minor planet's position,

angular velocity, and angular acceleration (see below), then one can compute

the topocentric distance of the asteroid and its topocentric radial velocity.

The first statement follows since R is a solution of the coupled R(r) set,

Eq. (21). One finds R by returning to Eq. (15) and solving for 2A, viz.

2R = D'/D (23)

where

X - GMsXs (1/R' - I/r 3 ) + g(;2 GM /r 3 )

D' P - GMs s (1/R 3 - 1/r 3 ) + pn(;2- GMs/r 3 ) '

v - GMs Zs (/R 3 - 1/r 3) + pý(O - GM s/r 3 ) "v (24)

Note that

x xsx

D2 (p= O) -GMs(I/R- I/r 3 ) YS Ys =D 2

v Zs V (25)

Clearly once a complete topocentric specification of location and velocity is

available (coupled with the preserved ancillary information R, p, Rls, and R )

one can produce a corresponding heliocentric set. Going from the data r and

'at some time t = t0 to the or'bital element set is a straightforward algebra

problem.
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The essential points are these -i) there is no appreciable neglect

of physics, and ii) the geometry and physics are enforced at a single instant

of time. In practice we relax the proviso that no mathematical approximations

are made by numerically differentiating both R and Z(A,A) = (A,PM) to obtain
-S

R-s' i, and 1. Note that this enforces the geometrical constraint at more than

one point while still enforcing the physics at a single instant of time. Note

too that while numerical differentiation may well be inaccurate, it is neither

theoretically impossible, nor forbidden, nor can the time span of the observa-

tions preclude orbit determination.

How does one obtain t and I? At a minimum one needs three values of

Sto determine 1. Using only three sets amounts to a trick as far as I'm

concerned. Furthermore, on slow moving objects such as asteroids (%O?5-2°/day

for the really fast ones) numerical differentiation of three observations is

criminal. On the other hand, smoothing a dozen or two observations over a

night and then analytically differentiating might work.

C. The Gaussian Difference

An obvious method to obtain estimates for L and • is to numerically

differentiate an interpolating polynomial obtained from a set of Z values.

If we use three such values then we both satisfy our ego (since we know that

only three are necessary) and are just able to compute an approximation for

both 1 and 1. Clearly with obsErvational data of low accuracy acquired on

slowly moving objects the inherently unstable process of central difference

approximations for second derivatives will produce a value for I of little

utility or resemblance to reality. Thus, in the past, in practice, Laplace's

method failed.
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What Gauss did that was different was to exploit the fact that the

orbit lies in a plane. Then, for three points at tI, t 2 and t 3 one can write

arl + br 2 + cr_3 0

since the three three-dimensional location vectors are linearly dependent.

From the fact that the vector cross product yields an area and the known

properties of central force motion, one can derive formulas for a, b, and c.

The essential step that makes the computation feasible is the use of power

series (vs. numerical differentiation) to express rI and 3 in terms of r2.

We call these series the f and g series. As discussed at length in reference

6 (but nowhere else in the entire celestiaI mechanics literature!) the radius

of convergence of these series rapidly approaches 0 as the eccentricity of the

orbit approaches unity. Therefore, one may be a priori forbidden to use the

Gaussian technique and not know it. Thus, the central element of contrariness

between the methods of Laplace and Gauss lies in the nature of an approxima-

tion. Laplace's method forces one to make a numerical approximation in order

to calculate the angular velocity ani the angular acceleration of the unknown.

Note that the restriction to three observations is merely minimal. Gauss's

method forces one to make an analytical approximation in order to calculate

the ratio of the area of a sector to its associated triangle in Keplerian

motion. Again the use of only three sets of angular measurements rests on

minimality and not necessity. Note too that while a particular numerical

differentiation may be more or less accurate [and can be arbitrarily refined

without expanding the observational time span (but by increasing the data

acquisition rate)], Gauss's approximation may fail catastrophically without

notice or means of redress ex post facto.
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D. Refinements

Most of the refinements of the Laplacian method that I have seen

amount to a form of differential correction using the f and g series. I will

not advocate any use of the f and g series in initial orbit determination and

reject all of them. I would recommend that the next step be a differential

correction process at the individual instants of observation.*

The principal refinement of the Gaussian teclnique was developed by

Gibbs in 1888. It allows one to include additional terms in the f and g series.

As the problem is convergence, not truncation, little practical advancement

was accomplished. Actually, since the newly included terms are radial velocity

(e.g. eccentricity) dependent, one probably gains a false sense of security

when using Gibb's refinement of Gauss's technique. For if the eccentricity is

small, then so is the radial velocity and the additional terms are unimportant.

Moreover the radius of convergence of the f and g series is an appreciable

fraction of the period. On the other hand when the eccentricity is large,

the radius of convergence is shorter ir duration but one might feel better

using Gibb's advance because eccentricity dependent terms are being included.

One should feel better if the problem were a truncation difficulty rather

than a convergence failure.

* As the next Section discusses, all of the individual observations should be
combined to yield a single set of estimators for Z, I and •.
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III. DATA SMOOTHING

A. The Fundamental Decisions for Asteroids

The fundamental decisions concern the time interval over which the

smoothing is to be performed and the form of the smoothing function. In both

the fast moving minor planet and artificial satellite cases we rely on

Weierstrass's approximation theorem and use a polynomial form. The degree of

the polynomial is not so quickly decided upon and will be discussed in detail

below. In addition, while one would clearly smooth at most over a few hours

for an artificial satellite, one might do so for as long as a week (or be

forced to do so for such a duration) for an asteroid. Hence let us first

turn our attention to the relative advantages of night-to-night preliminary

srioothing for a fast moving minor planet versus a simultaneous fit of several

nights observations. While doing this we must keep in mind that what we want

are the best estimators for R and R. Considering the transcendental nature

of the dependence of R and R on the observations [cf. Eqs.(17) and (23)] we

settle for the best estimators of A, A and A and for A, ý, and A (if possible

to do so simultaneously).

At first glance the principal advantage of a nightly reduction of the

observations is that a low order polynomial will do. On the other hand, since

the total observing time is not a priori set and there may be an order of

magnitude difference in the angular speeds of the asteroids we observe, a

single polynomial may well not fit all cases of interest. The primary draw-

back of night to night reductions is the lack of a :-gorous, clearly benefi-

cial method of combination to yield position, angular velocity, and angular

acceleration at a simultaneous epoch.
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Let us first try and decide upon the appropriate order of the smooth-

ing polynomial for an individual night's observations. A fortiori nothing less

than a linear model will do -- even if one has a "single" observation.* As

the general premise of this work is that of an abundance of data, the question

of the highest order polynomial to be used must be addressed. Our analysis of

the physics and geometry is complete except, necessarily, for planetary aber-

ration. Therefore, since planetary aberration can not vary appreciably except

in the most unusual of circumstances (e.g. an asteroid whose relative motion is

nearly radial), an excessively high order polynomial is not necessary to absorb

unmodeled effects. Thus, considering our quarry, the inclusion of fifth order

terms seems superfluous, quadratic minimally sufficient. Only for the fastest

asteroids observed over the longer nights might the quintic be appropriate.

In general the results from the quartic fit can be used to check those from

the cubic fit.

Another digression -- I am aware of the fact that I've just argued

myself into the position of (theoretically) being able to determine an orbit

based on an extremely short time span. All Laplace's method requires are

direction cosines, their first and their second derivatives. Once the

smoothing polynomial is second order these are all computable. However, a

* I must now digress for one never acquires a single observation of an
artificial satellite or of an asteroid in a search mode. Consider a photo-
graphic search first. One discriminates the object because of its motion--
a trail is left on the photographic plate (exposed with the telescope in
sidereal drive so that the stars are held fixed) marking the passage of the
object. Hence, even if this is the only record one can (and does in extreme
cases) independently measure the endpoints of the trail to deduce two
positions. Streak formation by electronic means is analogous as is forming
a broken image by chopping with a rotating shutter. Hence, there are always
at least two observations.
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much better description of what I know is estimators for the direction cosines,

their rates of change, and their accelerations. I also have estimates of the
variance of these quantities which should preclude any premature attempt at

initial orbital determination.

Ideally one would prefer to use some objective criteria for ascer-

taining the correct number and type of terms to include in the interpolating

polynomial. Tests of significance, based on the F-test, can be constructed

but lack a rigorous logical basis. Hence I would rely on experience and

judgment to determine the correct degree of the interpolating polynomial and

eschew apparently formal procedures of dubious value.

Finally each night is likely to be different. Some will be com-

pletely cloudy, some cloudy in only the first half, some clear, etc. There-

fore, while quartic or quintic might be appropriate for the perigee passage

of an Earth-approaching asteroid observed near the winter solstice, a quadratic

fit the next evening (which is almost completely clouded out) would suffice.

One cannot afford to lose this element of flexibility. So, after observing

my minor planet for some number of nights 1 have, for each partially clear

night, a position, probably a good angular velocity, and likely an estimate

for the angular acceleration. In addition, the results of a given night's

fit may not be simultaneously epoched (to obtain the minimum variance

estimator, see below). From this inhomogenous and incomplete set of inter-

mediate reductions I must now deduce the values for A, A and 1, and for A,

A, and " to begin the calculations of Laplace's method.

How? How indeed. I know of no theoretically sound method of com-

bination that will unambiguously produce, in some well-defined and meaningful
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statistical sense, "best" estimates for a position, angular velocity, and

angular acceleration (all at one epoch). I can concoct a large variety of

apparently reasonable procedures to do this. In order to quantitatively

discuss their relative merits I need the results of subsection C below. Hence

the remainder of this discussion is postponed to subsection D.

B. Artificial Satellites

In general the observing span should be as short as possible commen-

surate with obtaining good estimates for the desired quantities. The order of

the polynomial necessary to do this depends on the topocentric appearance of the

orbit -- contrast two circular orbits with the same periods but one with an

inclination of zero and the other with an inclination of > 300. The variety

of combinations of orbital element sets and geographical circumstances are too

numerous for any but the most general rules of thumb. It also becomes impera-

tive that not only is the set of observations large but dense -- performing an

observation must be rapid enough that high order polynomial fits are necessary

because of the duration of the observing span. In any case, and the one to be

dealt with in practice, we need at least a quadratic form and a quintic would

be excessive. Finally, one can easily visualize situations wherein the order

of the right ascension (or azimuth) polynomial is different from the declina-

tion (or altitude) polynomial. Experience and wisdom are needed in general in

the artificial satellite case.

C. Polynomial Forms

A start on this subject at Lincoln Laboratory was made in a similar

context (see references 7, 8). The problem is the following: given a number

of observations of a quantity x(t) and their associated times, say {xn, t n
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where xn : X(tn). Let the weight of observation number n be wn. Find, using

polynomial forms to model x(t), the best estimates for x, dx/dt, and d2x/dt 2

at some epoch t'.

Ideally one would solve the minimization problem via a maximum likeli-

hood technique, form estimators for the parameters of the polynomial, deduce

estimators and weights for x, x, and " at t' and then require that these

quantities be evaluated at a time (=t') such that their variances are absolute

minima. This may or may riot yield a coeval set for x, x and x. Note ti;at the

search for the minimum variance estimators requires functional differentiation

with respect to the probability distribution of performing an observation. In

general this problem is intractable and I make two reasonable simplifying

assumptions to speed the analysis (rather what's left of it). The first assump-

tion is that the observations are executed, in time, symmetrically about <t'.

<t> wnt / w (26)
n m

Hence, for all odd k

W n • n 0 n tn <t>
n

The second, much more restrictive assumption is that the observations are

equally spaced with interval T,

=nT n = -N, -N +1, . . . ,N (27)n

and have equal weights wn = w vnc[-N, N]. These two assumptions are
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unnecessary ,'"Nen treating a zero'th order and first degree polynomial form for

x(t). Of course such forms don't yield an interesting estimator for R.

We shall need the sum S K$

+N
Sk = . n " n (28)

n=-N

(2N + l)w k= 0

0 k odd

2wTk• nk k even
n=l

In particular

SO = (2N +l)w

S2 = 2wT 2N(N + 1)(2N + 1)/6

S4 = 2wT 4 N(N + 1)(2N + 1)(3N2 + 3N - 1)/30

S6 = 2wT 6N(N + l)(2N .1 l)(3N" + 6N3 - 3N + 1)/42

Note that as N ÷

+N• NT (_ +
n•Nnk w N k 2w (N+_ k+l k even

S" n - n T u du T k+l
-NT

0 k odd
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Note too that for largeNit matters little whether there were 2N +1 or 2N

observations.

It seems best to present the zero'th order and first order poly-

nomial forms analysis in enough detail to allow for a straightforward repro-

duction by the reader and then present the quadratic, and cubic

results in an abbreviated form using a similar format.

1. Constant

The model is

x(t) = a (29)

and the data is {x , n A -N, -N + 1, . .. , N where xn X(t .The
n fnl n

n'th datum has a weight w . We minimize the sum of the square of the
n

residuals

+N
R E' w [X - a] 2  (30)

n=-Nn n

with respect to the parameter a. This leads to the normal equations

MA = D (31)

where M = (S0 ) is the matrix of the normal equations, A = (a) is the vector

of polynomial parameters, and D is the vector of observations D ( xW n).

By inverting M we find our estimators for the elements of A,

SEw x / E w m (32)n n3
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and along the diagonal of M"' the estimators for the variances of the elements

of A,

var (^) I/•w (33)
n

The off-diagonal elements of M"1 provide estimators for the covariances of the

elements of A (=O here).

We now use our model to propogate x and obtain an estimator for x(t)

at any time, x(t). Next we calculate an estimate for the variance of R(t) via

(in this simple case)

1
var[XL^(t = (@(t)/1)a var() Ew

n (34)

2. Linear

The model is

x(t) = a + b (t - t0 ) (35)

where t0 is an arbitrary epoch. We let ¶

T t - to0

Form

R - wn [x - a - bTn 21nIP. n n
and minimize R with respect to a and b. This leads to
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M= = , D=(
S l S 2 ( a)n, A D x( 3 6 )

Also,

M- IM F'1  (_S 2  -Sl 1\

SsI So 0(37)

where IMI : det (M) : SoS2 -S . Again A M and

var (a) : S2 /IMI cov (a, G) = -S1/IMI

var ( S) So/IMI (38)

Hence,

var [R(t)] : : (@/a)2 var (a) + (x/@)2 var (b) +

+ 2(A/3)(D/96) cov (ay b

= (W2S0 - 2tS1 + S2)/IMI

We now ask at what value of T= t - tO is var [x(t)] a minimum? We find that

Pvar [A(t)]/Dt = 0 iff

T = e ESl1/S 0 = <t> - to

that is, the variance of x(t) is an extremum at t = <t>. Moreover alvar[ (t)]/

= 2S 0/IMI > 0 so it is a minimum.* The value of var [x(t)] at t = <t>is

* That IMI >O follows from an application of the Cauchy inequality.
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I/S0, just as in the previous case. The variance J(t) is equal to var (•) =

S0 /IMI. Now choose to 0  <t> then S1 = 0 and coy (ab) = 0. Since IMI S S0 2

now the general expression for var [x(t)] is

var[x(t)lj =1 /Se + •2/S2

which clearly shows thatT= 0 (t = <t>) is that instant when var [X(t)] is a

mninimum, Further note that min var [ -(z)] is independent of the distribution
A

in time of the observations. For x the situation is different, var [x(t)] =

1/S 2 and we want the largest possible spread of observing instantz to minimize

this quantity.

3. Quadratic

The model is

x(t) = a + bT + cT2  , Tr t - <t> (39)

The normal equations are MA =D,

M S S 2 S3  A , D : Xn-n

S2 S3 S4  ci xWnn2 (40)

and

~2 S4  S3  2 ~3 1 ~4  1 S3 2S

MW = IMIl S 2 S3 -S1 S4 S0 S4 -S S S2 S S(

s1 s3 2s s1 s2 0s s3 so s2 -s (41)

where IMI SoS2S4 + 2SS 2S3 - S3 _SoS2 -S S2 . Hence,3 41
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I

var (^) = S -S•)!IMI, cov(S, •) : (S2S3-SIS 4)/IMI

'var (C) = (SOS4 - 2)/IMI, cov(b, 1) = (SlS 2-S0S3)/IMI

var (c) = S -S2)/tMI cov(•, •) = (SlS 3-S 2S2)/IMI (42)

So,

IMI var [X(t)] S24 S + 2(S2 S3 -SlS 4 )t + (S0S + 2SIS 3- 3SY)T2

+ 2(SIS 2 - S0 S3 )T3  + (S0S2 -

Note though that our choice of tO <t> renders S1 nil.

To search for that value of r which makes the variance of X(t) a

minimum we need to solve a cubic (obtained by setting S1 = 0 in the above

quartic and then differentiating it with respect to t). Despite the fact

that cubics are algebraically soluble in closed form, I expect little advance

of knowledge here. Introducing the assumption of symmetry (S3 = 0 too) makes

the above quartic a quadratic in T2 and

1 IMI a var [R(t)] = 2(S0S4- 3S')t + 4S0S2r 3

the right-hand side vanishes if r : 0 or:r= r+ where

(3S2 -S /
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We can also compute that

IMI 3var [2(t)] =

23 -S0S4 1+4 1 1±

There are three possibilities:

3S1 - So<O and -r are not real. Then t = 0 is the

single absolute minimum of the variance of

x(t).

3S' -S S >0 and T are both real. Then-r= 0 is a relative
2 0 4 +

maximum for var [x(t)] and the absolute minima

of var [2(t)] occurs at = = T+.

3S2 - SoS4=0 and r±0. Now T = 0 is the single absolute

minimum for var [x(t)] as well as a point of

inflection.

There is one last point. Suppose that T± are real. In general

IMI var [x(O)] 2 S2S4

and

IMI var [x(T±)] = S (3S- SoS4 )2 /(4SoS 2 )

showing the decrease in the variance of 2(t) from its value at T= 0(t <t>).
A

Now let us turn to a general analysis of the variance of x(t) = b +

A

ZCT. We have

IMI var [A(t)] S 0 S4 - + 4T(S 1S2 - S0S3) + 4(S -S2 )T2
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and avar [x(t)]/at vanishes iff

So S3 - S1 S2

e 2(SoS2 - S2)

Furthermore at this value of T,IMI 32 var [ý(t)]/at 2 = 8 (S - S2) so

that this represents a minimum (the proof of the positiveness of the second

derivative of x(t) with respect to t follows from a double application of the

Cauchy inequality). Once we introduce the symmetry assumption this value of

T is just 0 and

min var [J(t)] = 1/S2

as in the linear model. In genera, x(t) = 2 c so var [x(t)] = S - SP)>O.

IMI

Now let us introduce the uniform separation assumption into the above

results. Then

I = (2N 2 + 2N + l)T 2/10

var [A(O)]+ 9(18- 1/2 N)

A 3(l 3/2 N)
min var [A(t)] = 8wNT/

a 45(0 - 5/2N)var [R(t)] :2wN0T1

and the reduction in the variance of x(t) from T =0 to = T± is 1/5 of its

value.
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4. Cubic

The model is

x = a + bT + c- 2 + dT3  , T t <t> (43)

Immediately introduce the symmetry assumption so that in MA D

S0 0 S2 0 a EW x

0 S2 0 S4  b Wn nXn
M A= DS 2 0 S 4 0 c E]W nX nT2n

s2 s40 n nnn

054 056 d WXT4 6 n n n (44)

Here,

S4m' 0 -S2m' 0

IMI -l 0 S6m 0 -S4m

-S m 0 S0m' 0

0 -S4 m 0 S2m (45)

where

m =SS 4 - S, m' = 2S S, and IMI mm. (46)

One finds that

IMI var [x(t)] S4m' + (S m -2S 2m')T 2 + (S0m' - 2Sam)T 4 + mS2r 6

38



and the first derivative of x(t) with respect to T vanishes if T = 0 or

T = ±3±,

1/2
T2 + -(S 0m' - 2S4m) ± [(S 0 m' - 2S4m)2 - 3mS 2 (S6m-2S2m')]

2S2 m

At T = 0

a2 var [x(t)]
IMI 3T2LBIJ x 2(S 6m - 2S2m')

while at T± the same quantity is (it only depends on It+I)
tI

±8T' [(Som' - 2S4m)2 - 3mS 2 (S6m - 2S2m')]

Clearly either the radical surd is real or it's not. If it's not real
then neither of T2 are real and T = 0 provides the minimum of the variance of

±

x(t) (and S6m - 2S2m' >0). If the radical surd is real and only +2+ > 0

(T2 < 0), then T = ±T+ are the instants of absolute minima for var [A(t)]

while at T = 0 it has a relative maximum. Finally if the radical surd is real

and both T2 and ¶2_ are non-negative, then ±T+ are local minima, ±T_ are a local

maxima, and 0 is a local minimum.

Let us continue this discussion by introducing the assumption of

equal spacing in T. Furthermore assume that N is large.

Then,

M +16w
2T'N6 (l + 3/N)m÷ 45

m' 16w2T1N I( + 5/N)
525
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and the discriminant for T'_ is >0. In fact,

2 =3T2N2(l + /N) ' T2= T2N2 (l + I/N)
7 7

We also have

IMI var [X(0)] = S4m'l 32w3T1 2N15 (l + 15/2N)
2625

and

IMI var [- = (L) IMI var

while

IMI var [(-_)]= (L9) IMI var x(0)1

Figure 2 shows the normalized variance of x(t) in units of ITI/NT.
A A A

Now we can turn to the analysis of the variance of A(t) : b + 2cT +

3dT2 .
A

IMI var [X(t)] = S6m + 2(2S0m' - 3S 4m)T12 + 9S2mMT

A

and avar [d(t)]/Dt = 0 if T = 0 or

T2+ - (3S 4m - 2S0m')/(9S2m)

Moreover

-4 at T 0
IMI •2 var •(t)]=

03S4m" 2S0ml) 
+8 at
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Fig. 2. The normalized variance of the predicted position
[var(i(o))=l] in normalized time units T/NT. Only
T>O is shown as the var[(r(T)] is an even function
of T.
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This replicates the type of situation we had in the quadratic model for there

are three possibilities:

3S4m - 2S0m'<0 and neither ;+ is real. The absolute

minimum for var [x(t)] occurs at T = 0.

3S4m - 2S0m'>0 and the ;+ are the instants when var [•(t)]

has its absolute minimum. It has a relative

maximum at T = 0.

3S4m - 2S0 m'=0 and -± = 0. The origin is the point of an

absolute minimum for var [x(t)] as well as

a point of inflection.

Before becoming more specific note that

IMI var [A(0)] = S m
A6

IMI var = s6m - (3Sam " 2S 0m')0

F• Now assume equal spacing of the observations, Then

3S 4m - 2Sm' .+1L w3T'N" (1 + l1/2N) >0

4 20 105

A

so that var [ý(t)] has a local maximum at T = 0 and its absolute minima at u±;

NT (1 + 1/2N)
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Also,

IMI var [•(0)] 32w3T1VN 1 3 (l + 13/2N) A ̂  v315ar[X(~ = Z M var [x(ý±)]
3154 M

Lastly, we need to examine the variance of R(t) : 2c + 6dT.

IMI var [R(t)] = 4S0m' + 36S2 nMT2

which obviously has a single extremum, a minimum at T = 0;

IMI var ['(0)] : 4Sm' 128 W3T8N11(l + 11/2N).

D. Discussion of Alternatives

Among the competitors fur night-to-night reductions I have considered

are least squares fitting the nightly results to 1) a constant, 2) to a linear

form, and 3) to a quadratic form. Then I used the nightly resdlts as 'normal'

points to either redo the least squares fits over several nights (for options

1, 2, and 3) or simply average (option 3). With the results just obtained

for standard deviations a realistic comparison of the expected variances can

be made. Similar analyses based upon linear interpolations of nightly 'normal'

points (option1 ) or Hermite interpolation (option 2) have been performed. No

one of these procedures is better than the overall fit advocated above. Some

are noticeably worse.
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IV. TESTS

Why does one need an orbital element set for an asteroid today? To

recover it at the next opposition (,\, 1.3 years = 1 synodic period). Not to

recover it tomorrow, not to recover it at the next dark of the moon. There-

fore, it is difficult to get excited about constructing orbital element sets

for main-belt minor planets. For an Earth-approaching asteroid one needs an

element set for next month. Both 1982HS and 1982SA were discovered by our

search program. Unbeknownst to us 1982SA was also discovered prior to us (by

two days) by our competition (E. Shoemaker and E. F. Helin). The data dis-

cussed below for these objects and 1862 Apollo (recovered by us accidentally)

are real observations acquired by us. The data for the Molniya tests are

pseudo-observations good to 1".

A. 1982HS and 1982SA

Both of these are inner main-belt, high inclination, high eccen-

tricity minor planets. Since they are minor planets, and orbit the Sun, one

needs a heliocentric initial orbit generator, cf. Fig. 1. One also needs to

take into account the fact that the observer is on the surface of the Earth.

We did this in i IIB wherein the fundamental equations of the problem are

given -- the coupled pair of (17) and (20). In practice we solve this as

follows: From the observed angular speed we can tell that the minor planet

is not close, hence the diurnal parallax correction can be momentarily

ignored. We therefore solve the simpler system (21) which resulted in Eq. (22).

However, because s = 1 is an exact root of that eighth-order polynomial, we

actually use Eq. (22) divided by s - 1, viz.
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s7 + s6 - a(a-2 cos 0)(s' + s' + s3 ) + a 2 (S2 + s + 1) 0

This also protects us against unusual geometrical circumstances. Having

a guess for r = sRs we now correct the original observations for diurnal

parallax, redo the least squares fit and again solve the above seventh-order

equation for s. Note that since our topocentric observations have been

adjusted for diurnal parallax this is rigorous. We cycle through this pro-

cedure until convergence is achieved on the value of s. Typically this

requires at most three iterations.

Our software is set up to perform quadratic, cubic, and quartic

fits of both the right ascension and declination separately. The residuals

are exhibited in an effort to discern which order is appropriate for which

coordinate. For these asteroids fits for ecliptic longitude and ecliptic

latitude have also been considered. Obviously no advantage will be gained

for Earth-approaching asteroids by such a change of coordinate system.

Tables II and III contain the orbital element sets obtained by us

for the four possibilities of quadratic/cubic right ascension/declination

fits. Also listed is the closest approximation there is to an initial orbital

element set from the Minor Planet Center. Note that we recovered 1982SA a

month after its discovery using these orbital element sets (they predict a

position within 0?01 of each other).

B. Apollo

Appollo 1862 is the prototypical Earth-approaching asteroid. We

accidentally recovered on April 21, 1982. A total of nine observations were

secured that night, three on the next. Table IV shows the results from
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TABLE II

ORBITAL ELEMENTS FOR 1982 HS

a,6 fit order: 22 23 32 33 MPC*

a (A.U.) 1.90 1.97 2.19 2.32 2.47

e 0.19 0.21 0.27 0.29 0.33

W(°) 221.4 222.2 227.5 227.9 229.5

i(°) 18.5 19.8 23.3 25.2 26.4

•(o) 44.7 44.4 43.8 43.5 43.0

MO(°) 326.9 327.4 328.4 330.1 329.5

r (A.U.) 1.62 1.66 1.75 1.80 ---

Differentially corrected, Gauss-Gibbs, distance primed, using
more observations (over 6 days) than i.

46



TABLE III

ORBITAL ELEMENTS FOR 1982 SA

at,6 fit order 22 23 32 33 MPC*

a (A.U.) 1.91 1.88 1.86 1.82 1.85

e 0.14 0.13 0.14 0.14 0.10

W(°) 61.0 60.9 65.1 65.6 27.8

i(0) 21.0 20.1 19.5 18.5 20.0

Q(o) 350.6 350.3 350.1 349.7 350.1

Mo(0) 321.4 321.2 318.5 318.1 346.2

r (A.U.) 1.72 1.69 1.68 1.65 ---

Differentially corrected, Gauss-Gibbs, distance primed, using
more observations than I.
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TABLE IV

INITIAL CONDITIONS FOR APOLLO

Observational Ephemerides of

or Computed Minor Planets

r 1.2316 A.U. 1.1779 A.U.

14 h 0 5m 47s25 14 h 0 5m 49s60

6 -130 19' 52"2 -130 19' 13'.4

R 0.2251 A.U. 0.1711 A.U.

r -9.5154 x 10-3 A.U./day

-265s96/day -269.772/day

-763.39/day -751 '.29/day

R -1.9220 x 10 2 A.U./day -9.0496 x 10- A.U./day
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solving the full coupled set, Eqs. (17, 20) for the topocentric distance.

Also shown is the radial velocity result from Eq. (23). In addition I've

listed the results of our least squares fits for right ascension, declination

and their rates. The second column gives these same quantities as derived by

cubic interpolation within the two-day tabulations of the 1982 Ephemerides of

Minor Planets. The good agreement is clear for all but R - the quantity most

sensitive to the angular acceleration.

C. A Rising Molniya

It is very difficult to devise a fair test between the refinement

of Laplace's method presented herein and the classical Gauss-Gibbs angles

only method. The latter is restrained by three observations and the radius

of convergence of the f and g series. Nonetheless, I have restricted the

time span of the data set to 80% of the radius of convergence of the f and g

series at this place in the orbit and the frequency of data to the GEODSS

(not ETS) rate of once every two minutes. Thus a total of eight "observations"

spanning 14 minutes were used. Note that only the mean motion is in error

(by 13%), everything else is good to 1%. Note too that there has been no

mean motion/eccentricity swap. Don't forget too that this is angles only, no

distance fixing, over a fourteen minute time span, on the toughest deep space

satellite case.

D. A Molniya at Apogee

It shouldn't work for this case and it doens't. An orbit is also

superfluous here.
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TABLE V

ORBITAL ELEMENTS OF A TYPICAL MOLNIYA

Calculated SDC

n 2.2430 rev/day 1.9926 rev/day

e 0.7302 0.7397

w31367 316?13

62?86 62?87

S333?46 333113

M 0 30?45 27?18
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V. PARALLAX DETERMINATION

A. Problem Formulation

There is one technique of observation whereby passively acquired

angles only measurements can provide distance estimation--when two simultaneous

data sets are obtained by separate observers. Since the object (assumed to be

an artificial satellite in this Section) is a finite distance away, they will

see it projected against different places on the celestial sphere. Knowing

this parallactic displacement is equivalent to knowing the distance.

In order to explicitly seethat this assertion is true let the arti-

ficial sateilite's geocentric location be denoted by r while that of the

observer by p. The satellite's topocentric location R is related to these by

r = • + R (47)

In the equatorial coordinate system p = PZ(T,'') and R = RZ(A,A) where T is

the local sidereal time and ý' is the observer's geocentric latitude. A and

A are the topocentric right ascension and declination of the artificial satel-

lite. We know p and we measure Z(A,A).

Suppose that there are two observers at pl and p2. Suppose further

that they simultaneously observe the same satellite. Then

21 + RI = = :2 + R (48)

See Fig. 3 wherein we let APO 102 = 01, AP0 201 = 02. We form the scalar

products of the topocentric location vectors with the difference of the

site vectors,
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Fig. 3. Geometry for simultaneous observation of an artificial
satellite at P by two observers at O] and 02,
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(- R2  P - 2-21 cose 2

S " - _l) R1  12-2 " 2 I cosol (49)

or
"-RI (El -- 22) 2 R 121 p- 221 cos0 1

Let pL -1 2 = 1I - 221 2-12" Then these equations are equivalent to

cos01 =" 2-12 -(AI' A1)

cosa 2 = 2_12 ' _(A2 , A2 ) (50)

and we ciearly see that both 01 and 02 can be calculated. Moreover, using

the law of sines in AO O2 P

R1Csc0 2  R2cscO1 : 121- - 2.21 csc I - (1 + 02)] (51)

whence

R,1=:1 - 2.21 sin02 csc (01 + 02)

R 12 =1-I P221 sine, csc (01 + 02) (52)

which shows that both R1 and R2 may be computed. Finally note that

Il -a 2212 : + Pl 2 - 2p, P2  V (TI' I ' (2' 2

P1- 2 + P2
2 2 2p, P2 [sinql' sinp2' + cos ( - X2 )cosf 1' cos4 2

1]

(53)

where X, x 2 are the observers' longitudes.
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B. Analysis of Variance

As demonstrated above one can calculate R1 and R2. In an experimental

situation the errors associated with such values are of interest too. Since

the problem is 14--*2 symmetrical I arbitrarily choose to investigate the

variance of R var First we need expressions of the variances of 1

and 02.

The expression for var (01) includes three types of terms. One

group is the contribution to the variance of 61 due to the correlations in

the measurement errors of A and A1 with the random errors in the observers'

locations. While systematic errors in the site locations will produce biases

in A1 and A1 there should be no coupling between the two sets of random errors.

Hence this set of terms is ignored. There is a second group of terms contri-

buting to the variance of 81 which is due to random errors in p, and p2 and

their cross-correlations. These are not all zero but they should all br small,

say =OOI. As we anticipate that the random measurement errors in A or A

will be 1-10", this second set will be ignored in comparison. (The full

expression for var (61), contains 36 terms - 12 are in the first group and

21 are in the second group).

Given the above (excellent) approximations we have

var (01) : l var (A1 ) + (Bil) var (A1) +2( G1-- Al ) cov (A1 , AI)

(54)

As there exist observational techniques which ensure that cov (A1 , A1) 0

we'll use the first two terms to represent the variance of 01. Repeating

these type of approximations we have
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va ( 1)=( ~R1'2  +/~R \2
var (RI) : e kB var (0, + 2 var (02) (55)

since cov (0l, 02) = 0. In particular,

var (R1 ) = p21 sin02
2 csc 2 ( + 02) {ct2( + 02) var (01)

S(11

+ [cote1 - cot (01 + 02)]2 var (02)1 (56)

C. Analytical Insight

In order to acquire some feeling for the dependence of the variance
of R on - (AI, A1), retc., let us consider a two-dimensional situation.

Set, Y e c.,ltu onie w

pSet p = p2 = p (for simplicity), I :0, and A1  A2  0. Also for

simplicity we take var (A1) = var (A2) a2 and call X- X = AX > 0. Then

ILI - p_2 1 = 2psin (AX/2)

2cosO1 = [cos(Hl - AX) - cos H1] csc (AX/2)

2cosO2 = [cos(H 2 + AX) - cos H2] csc (AX/2) (57)

where H A is the topocentric hour angle. We find, after performing the

indicated differentiations in Eq. (54), that

var (01) = (a/2)2 [sin (H1 - AX) - sin Hi] 2 csc 2O1 csc 2(AX/2)

var (02) : (o/2)2 [sin (H2 + AX) - sin H2 j 2 csc 202 csc 2 (AX/2) (58)

Whence,

55



var (R1 ) = o2p2 sin 2 02 csc 2(01 + e2 CsC201 cot 2 ( + 02)

[sin (Hi - Ax) - sinHl] 2 + csc2 02 [coto2 - cot (01 + e2)]2

[sin (H2 + AX) - sinH2 ]2} (59)

Now further specialize to the instance when the satellite is midway between
the observers. Then 0I = e2 = 0, H = -H H, and 0 + H = (r + AX)/2. We

H 1  H2
find var (eI) = o2 and

var (R) = 2 sin 2 0 sin 2 (AX/2) (csc40 + sec40) (60)
2

As r 0 o, 0 - u/2 from below. But R : 21p1 - p21 sec 0 now so cos 0= (p/R)

sin(AX/2). Hence, if = 7r/2 - 60

60 = (p/R) sin (AX/2) = (p/r) sin (AX/2)

so

var (R) - csc 2 (AX/2) (61)

As an example, suppose r = 6.61p (geosynchronous distance), a = 10"

(worst case GEODSS), and AX = 1200. Then the standard deviation of the topo-

centric distance is llkm. The important points to note are that var (R)

increases as the fourth power of the geocentric distance, the measurement

variance, and the square of reciprocal of the site-to-site angular separation.

D. Numerical Results

One can show that when the artificial satellite is equidistant from

the observers the minimum of var (R) occurs when all three are coplanar
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(i.e. the above case). Hence this simple extension to three dimensions pro-

duces no new minima. One suspects that this is true in general and a full

numerical treatment of the two dimensional problem suffices to illustrate

optimistic distance estimation by parallax techniques. The results are in

Table VI, for the standard deviation of RV, for satellites from the horizon

of observer 1 to the equidistant case in steps of 100. The units of the

standard deviation of R are up. The multiplier fora 15 kmstandard deviation

with a ten arc second measurement error is 48.5 (eg. an entry in the Table

smaller than 48.5 means that the standard deviation of R will be less than

15km if a = 10").

E. Why Is This Subject Here?

This discussion is included in this Report because this is a report

about data smoothing. Simultaneous observation is difficult if not impossible.

Interspersed observations are much more reasonable. Smoothing the data sets

can then be used to produce a pseudo-observation (of higher quality) from

each observer at the same epoch. Following that this technique may be employed.

Note that the level is well within the range of utility and that the result

could be used in an initial orbit determination scheme, differential correction

scheme, or as a (severe) constraint on an initial orbit determination method.

One anticipates at most one such data point per satellite (due to lighting,

visibility, and siting constraints) so that this is only an adjunct tooptical

methods.
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TABLE VI

VARIANCE (RI) IN UNITS OF op

Geocentric Distance = 4.1645p

AX 300 600 900 1200

Altitude

0 142.32 32.98 16.02 11.87

10 80.39 24.40 13.80 11.35

20 55.22 19.83 12.66

30 42.33 17.30 12.23

40 35.06 16.01

50 30.90 15.57

60 28.74

70 28.04

Minimum

70.38 28.04

51.38 15.57

33.44 12.21

16.70 11.28
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TABLE VI (continued)

Geocentric Distance 6.6107p

= 300 600 900 1200

Altitude

00 402.08 98.42 48.05 33.69

10 234.19 74.22 41.25 31.58

20 165.26 60.95 37.42 30.81

30 129.35 53.27 35.54

40 108.70 48.99

50 96.53 47.07

60 89.84

70 87.24

Minimum

72.38 87.14

55.03 46.85

38.17 35.10

21.93 30.80
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TABLE VI (continued)

Geocentric Distance 1 13 . 7509 p

A= 300 600 900 1200

Al titude

00 1891.6 483.8 238.5 162.0

10 1130.2 370.6 205.1 150.2

20 815.1 307.7 185.4 144.6

30 649.0 270.3 174.6

40 553.0 248.5 170.5

50 495.2 237.5

60 462.3

70 448.2

Minimum

73.84 446.6

57.78 235.0

41.89 170.4

26.26 143.7
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