
7ft-R126 146 ADVANCED TOOLS FOR SOFTWARE
MAINTENANCE(U) ADVANCED

1/2 '
INFORMATION AND DECISION SYSTEMS MOUNTAIN VIEW CA

U hSS J SDEAN ET AL. DEC S2 AI/DS-TR-3e66-i RRDC-TR-82-3i3

UNCLSSIFIED F38662-88-C-9i76 F/G 9/2 N

1111.0 Kio 328 32
. L 3 ,

W1.25 1111.

iL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RADC-TR-82-313

Final Technical Report
December 1982

' ADVANCED TOOLS FOR SOFWARE
MAINTENANCE

Advanced Information & Decision Systems

OTIC
F I -- F CTF1

Jeffery S. Dean and Brian P. McCuneMAR 2 9 1983

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

Q.
C) ROME AIR DEVELOPMENT CENTERAir Force Systems Command

Griffiss Air Force Base, NY 13441
LA-

s~jz ~ G3

44

tslsbl,1 , has .tE~ .. I'

be Weib. t h ~~1pbt

MAD-TR-2-3l3 has, bowR rayaw":d 1.4 i~~pm~ i

APPROVED:

q DOUGLAS A. WRITE.
project Engineer

APPROVED:

jOHN J. HARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE CONKANER:

JOHN P4.RUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
sailing list, or if the addressed is no longer employed by your organization,
plea notify RADC (COES) Griffiss AFB NYT 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

. . .- _ -- ,. .- ".

UNCLASSIFIED
." SECURITY CLASSIFICATION OF THIS PAGE (MN. GDlefnaoro)

'-" READ ISTRUCTIZONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. GQvrACcESSION N 3. ECIPE'S CATALOG NUMBER

4. TITLE (And huabitle) S. TYPE OF REPORT a PERIOD COVEREO r
inal Technical Report

AVANCED TOOLS FOR SOFTWARE MAINTENANCE June 80 - 7 April 82
,. PERFORMING G. REPORT NUMBER':. rR 3006-1

7 ,i AUTHOR(s) S. CONTRACT OR GRANT NUMOiERr()

Jeffrey S. Dean 30602-80-C-0176
Brian P. McCune
S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Advanced Information & Decision Systems 52702F
201 San Antonio Circle, Suite 286

o9untain View CA 94040 5811

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COES))Prg.h-i.NU[MOIr RGS:!

Griffiss AFB NY 13441 170"
14. MONITORING AGENCY NAME &AOORES$(If differet free Conmtrolling Olle*) IS- SECUJRITY CL.ASS. (*I this report)""

JNCLASSIFIED !
Sa mve IS. OCCL ASSI I C ATI ON/OOWN GRAING i

SCH EDUL.E

0IA-
1. DISTRIBUTION STATEMENT (of this Reprt)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different flom Report)

Same

1. SUPPLEMENTARY NOTES - -.

RADC Project Engineer: Douglas A. White (COES)

19. KEY WOROS (Continue on rever e side ilnecessom, ad identity by block nuber)

software maintenance documentation ADA Programming Support

software comprehension program modification Environment (APSE)
program entropy C31 artificial intelligence I)
personnel turnover ADA knowledge-based system

(over)
20. ABSTRACT (Continue an reverse side If necocacy end Identify by block nuxtber)

This is the final report on a project entitled "Software Maintenance
Techniques". The purpose of this project was to study and design advanced
software maintenance tools and techniques for the future ADA programming
environment. Current maintenance prectices for Air Force C31 software were
studied. Three out of the four major problems identified were attributed
to the difficulty of comprehending software. Nine tools have been proposed
to help solve these and other problems, including a tool to help coordinate

DO 1,:2, 1473 EDITION Of I NOV, IS OGSOLETIE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (when Daoe Entered)

i .-

UNCLASSIFIED
SCCURITY CLAUIFICATION OF TWS PAG(IPhUS D09ttwE,

the programming process (the Pi'rogramming ManageeK, a tool to aid in the
collection and use of documentation ("the Documentation Assistant), and an

--- editor that is knowledgeable about what it is editing (TiFe Intelligent
17 Edito-r"). The nine tools are based on the computer science teclmologies

of artificial intelligence (particularly knowledge-based and expert
systems), automatic programming, intelligent user interfaces, formal veri-
fication, software engineering, programming environments, software metrics,
and computer-assisted instruction. .

Block 19 Cont'd

intelligent user interface software tool
program verification management of programming
program annotation program editing
software engineering style analysis
programming environment software change
software testing propagation
software metrics tool evaluation.
computer-assisted instruction (CAI)

UNCLASSIFIED
SECURITY CLASSIFICATION OF - AGE'W7en Date Ent.ed)

,:

Acknowledgments

The authors thank Prof. David C. Luckham of Stanford University for his
contributions to this report, particularly in the areas of ADA tools, ADA
style guidelines, and formal annotation and verification. Daniel G.
Shapiro and J. Roland Payne of AI&DS provided helpful criticism of the
report and contributed to the results reported herein. Other consultants
to AI&DS during this project were Prof. Elaine Kant, Carnegie-Mellon
University, and Prof. Alan W. Biermann, Duke University.

The Air Force software maintenance problem was studied in part by a series
of interviews and questionnaires. We are grateful to the following
organizations that participated: Air Force Satellite Control Facility,
Sunnyvale Air Force Station, Sunnyvale, California; Data Dynamics, Inc.,
Mountain View, California; Air Force Communications Computer Programming
Center, Tinker Air Force Base, Oklahoma; Strategic Air Command Data
Systems Organization, Offutt Air Force Base, Nebraska; and Rome Air
Development Center, Griffiss Air Force Base, New York.

Techniques relevant t3 software maintenance tools are under research and
development at a large number of university, government, and private
laboratories. Computer science researchers in the following organizations
were interviewed during this study: Stanford University, Massachusetts

Institute of Technology, Carnegie-Mellon University, Harvard University,
University of California at Irvine, and Xerox Palo Alto Research Center.

!Ace-ess1, or

NTT " a.

f. ..-

£/

- lii- ' .

Table of Contents

1. Executive Sumary*...aaa 1

* 1.1 Objectives................. I

1.2 Approach 1
1.3 Results.............. 2

* 1.4 Guide to Reading........ 3

2. Introduction

2.1 Goals and Approaches* 4

* 2.2 Assumptions........... *.. 5

3. An Introduction to Software Maintenance 7

3.1 What Is Software?......... 7
3.1.1lThe Software Life Cycle 8

3.2 WhatIs Maintenance?....................9
3.2.1 The Software Maintenance Cycle.............9

3.3 Why Is Maintenance an Important Problem? 10
3.4 WhyIs Maintenance Done?..................11

* 3.5lHowIs Maintenance Done?.................12
*3.5.1 Typical Maintenance Environment.......... 12

3.5.2 Typical Maintenance Administration.............13

* 4. Air Force Software Maintenance 15

4.1 overview of Selected Aii -irce Sites 15
- 4.1.1 Satellite Control Facility...............15

4.1.2 Communications Computer Programming Center.........19
4.1.3 Strategic Air Command Data Systems Organization 21

* 4.2 Air Force Software Maintenance Problems..............23
4.2.1 Reasons for Software Modification............23

* . 4.2.2 Software Maintenance Functions.............24
*4.2.3 Software Maintenance Problems........... 25

4.2.4 Summary and Analysis.................25
4.3 Future Air Force Programming Environment............26

* 4.3.1lTheAda Language..................26
04.3.2 The Ada Programming Support Environment (APSE)........27

4.3.3 Ada Programming Methodology..............28
4.3.4 The Effect of Ada on Software Maintenance..........29

5. The Comprehension Problem . a 30

* 5.1 Understanding ,Software.................30
* 5.2 Documentation.......................31

5.3 Program Entropy 33
* 5.3.1 Causes of Entropy................34

5.3.2 Measuring Entropy..................35
5.3.3 Controlling Entropy at the Micro-Level...........36

-iv-

5.3.4 Controlling Entropy at the Macro-Level 36

5.4 Summary 37

6. Overview of Software Technology Research Areas 39

6.1 Artificial Intelligence 39
6.2 Automatic Programing 40
6.3 Very High Level Languages 41
6.4 Program Transformation 43
6.5 Formal Verification 43

* 6.6 Symbolic Execution 45
6.7 Softvare Metrics 46

7. leviewof Related Work 48

7.1 Existing Advanced Programming Environments 48

7.1.1 UNIX 49
7.1.2 INTERLISP 53

7.2 Current Research Projects 56
7.2.1 Stanford Verification Project 56
7.2.2 Programmer's Apprentice 57
7.2.3 Gandalf 59

8. Designing Advanced Tools to Rase Maintenance 62

8.1 Softvare Productivity 62
8.2 Trends for Advanced Tools 63

8.2.1 Integration - Tools That Work Together 64
8.2.2 Intelligent User Interfaces 65
8.2.,3 Domain Knowledge and Reasoning 66
8.2.4 History - Keeping Track of What Has Been Done 67
8.2.5 Incrementalism 68

9. Advanced Tools for Software Maintenance 69

9.1 Programming Manager . . .o o 71

9.2 Intelligent Editor 78
9.3 Documentation Assistant 83
9.4 Style Analyzer o.... 87 "
9.5 Metrics Tool Set 91
9.6 Annotation Language 94
9.7 Change Propagation Detector 97
9.8 Test Case Analyzer 10099Intelligent Tutor o o 103 '
9.9 Inelgn uo...................................0

10. Evaluating Advanced Software Maintenance Tools 107

10.1 Techniques for Evsluation 107
10.1.1 Evaluating Criteria 108
10.1.2 Evaluating Tools 108

10.2 Tool Ratings - Maintenance Problem Areas 111

V -

10.3 Summary .

11. Conclusions 113

11.1 Accomplishments 113
11.1.1 Identification of Major Maintenance Problems 113
11.1.2 Identification of Useful Tools ... 113

11.2 Reconendations 114
11.2.1 Proposed Tools 114
11.2.2 Development Strategy for Proposed Tools 115
11.2.3 Other Research Areas 116
11.2.4 Other Recommendations 117

11.3 Deploying New Tools 118
li.3.1 The Ada Programming Support Environment 118
11.3.2 Retrofitting New Tools to Old Applications 118
11.3.3 Training People to Use New Tools 119

Appendix A. Ada Style Guidelines 121

* Appendix B. The Problem Questionnaire 128

Appendix C. The Criteria Evaluation Questionnaire 132

- Appendix D. Tool Evaluation Questionnaire - Air Force Evaluators 137

* Appendix D. Tool Evaluation Questionnaire - AIrS Evaluators 143

Appendix F. Tool Evaluation Result Scores 149

" References 152

vi

*i

- vi - "

[.,

1. ZJTW suI&R1

*" This is the final technical report of the Software Maintenance Techniques
.- project conducted for the Rome Air Development Center (RADC) by Advanced
. Information & Decision Systems (AI&DS). This chapter provides a synopsis of
* the work performed.

*.1.1 OBJECTIVES

The cost to the Air Force of maintaining software is measured in the billions
of dollars annually. The objectives of this project were to identify, design,
and evaluate software maintenance tool and technique concepts (for the Ada

* Programming Support Environment) that, if implemented, would help increase
*. productivity, improve reliability, and lower costs. The focus was on advanced

technologies, such as artificial intelligence and formal verification, that are
. still considered research topics and are not yet employed in existing
- programming environments, but which could have major impact if employed in the

future.

1.2 APPROACH

Five tasks were performed to achieve the objectives:

1. Software maintenance problem definition: To understand the software
maintenance problem, a survey of the literature on software maintenance
was performed. Then, extensive interviews were conducted with
maintenance programmers and managers at three Air Force C31 sites (the
Satellite Control Facility, Communications Computer Programming Center,
and Strategic Air Command Data Systems Organization). A questionnaire,
designed to assess maintenance problems in more depth, was sent to
selected personnel at all the interviewed sites.

2. Tool evaluation criteria: Criteria for evaluating advanced software
maintenance tools were defined. These criteria were evaluated by means of
a questionnaire sent to the previously mentioned Air Force sites.

3. Advanced technology investigation: Advanced software technologies were
investigated by reviewing the literature, attending conferences and other
lectures, and making visits to selected research institutions (including
Stanford University, MIT, Harvard University, Carnegie-Mellon University,
Duke University, and University of California at Irvine).

4. Tool definition: To design advanced maintenance tools, a list of several
dozen tools was enumerated. After extensive study and discussion, the
list was pared down to nine tools, which were then defined in more
detail.

-- -

Approach

5. Tool evaluation: To confirm our belief in the desirability and
feasibility of these nine tools, they were rated by means of two
questionnaires, one for the previously interviewed Air Force software

.- maintainers, and one for the AIDS project team. The responses were
analyzed, based on the evaluation in step two, resulting in a weighted
score for each candidate tool.

.1.3 RESULTS

Four major problems in the software maintenance process were identified:

-- high turnover of personnel and lack of qualified replacements

. - understanding what a software system does, without good documentation

.. - determining all relevant places to make changes

* - diagnosing and monitoring operations

These problems (especially the first three) revolve around the issue of
comprehension: for maintainers to work effectively with complex software

* systems, it is necessary for them to comprehend how these systems work.

Many concepts for software maintenance tools were considered. Nine tools to
help solve some of the major software maintenance problems were defined. These
tools draw upon various research areas, including artificial intelligence,
formal verification, automatic programming, intelligent user interfaces,
software engineering, software metrics, programming environments, and computer
assisted instruction. These tools are described briefly here:

* - The Programming Manager assists the programmer by systematically applying
* -administrative and technical policies, as well as helping apply both

general and application-specific programming techniques and methods.

- The Intelligent Editor provides facilities for manipulating programs at
several conceptual levels (e.g., textual, syntactic, semantic, and
intentional), and provides an intelligent interface to other tools.

- The Documentation Assistant is a tightly woven collection of tools for
creating, structuring, maintaining, and accessing all forms of
documentation.

- - The Style Analyzer checks programs for adherence to programming standards
and style guidelines (which are expressed with a specification method that
is independent of the analysis process itself).

-2-

. ..- . . .

Results

- The Metrics Tool Set provides tools for measuring, analyzing, and
assessing various properties of software systems over their lifetime.

The Annotation Lannuate is a method for extending a programming language
by allowing annotations which specify state properties and other aspects
of programs that cannot be conveniently expressed in the programming
language itself.

- The Change Propagation Detector analyzes a program for effects of a
program change.

- The Test Case Analyzer allows the output produced by test runs to be
automatically checked for correctness, based on a formal (or informal:
specification of what the output should look like.

- The Intelligent Tutor uses a knowledge-based approach to teach programmers
about programming languages and programming environments, using the tools
themselves.

All of these tools are good candidates for further research and development.
However, the evaluation process identified three tools as particularly
important for the medium term (3-7 years): the Programming Manager, the
Documentation Assistant, and the Intelligent Editor. For short-term payoff
(within 3 years), simplified versions of the Documentation Assistant and
Metrics Tool Set are recommended.

1.4 GUIDE TO READING

The next chapter discusses the goals of this project, and the approach taken
towards reaching those goals. Chapter 3 is an introduction to the software
maintenance process. In Chapter 4 the specifics of software maintenance in the
Air Force are presented. Chapter 5 explores the main problems of the
maintenance process. Chapter 6 presents an overview of several research areas
from the fields of artificial intelligence and software engineering that can
impact the maintenance process. A review of related work is presented in
Chapter 7, including existing programming environments and current research
efforts. In Chapter 8, design issues for advanced software maintenance tools
are discussed. Chapter 9 proposes nine high level designs for tools to improve
the maintenance process. In Chapter 10 these tools are evaluated. Chapter 11
presents the conclusions of this project, including recommendations for tool
development and further research on supporting topics.

4

I=

4

2. INTRODUCTION

The primary objective of this project has been to identify effective tools ,

and techniques for easing the task of maintaining software systems, assuming a
programming environment such as that provided by an Ada Programming Support
Environment (APSE). The focus has been on utilizing advanced technologies
(e.g., artificial intelligence, formal verification, software metrics),
research on which has resulted in techniques that are applicable today or in
the near future.

In identifying tools and techniques, this study focused on one aspect of the
maintenance problem: specific methods for improving parts of the maintenance
process. No attempt was made to provide a "total solution" (if such a goal
even makes sense). This approach, specified by the project sponsors, is a
pragmatic approach to a significant problem; namely, identifying techniques
that can be used today, and techniques that can be used in the future, to
ameliorate problems in the arduous process of software maintenance.

2.1 GOALS AMD APPROACHES

The goals of this project were specified in the Statement of Uork. A
restatement of each of the goals, with an explanation of the approach taken in
the course of this project, follows:

Goal: Develop criteria and metrics by which tools can be evaluated for their
impact on software maintenance problems.

Approach: To create a set of measurements for evaluating tools, the following
tasks were performed:

- conducted detailed interviews with all levels of maintenance personnel at
three Air Force sites to assess the general problem;

- created a questionnaire designed to probe further into the problems
associated with software maintenance;

- created a questionnaire designed to evaluate potential criteria for tool

evaluation;

- created two questionnaires for evaluating tools, one for Air Force
evaluators (maintainers) and one for AI&DS evaluators (tool developers).
The questionnaires were non-overlapping for most evaluation criteria.

- tabulated the results of the questionnaires in order to achieve a rating

44

Goals and Approaches

of proposed tools.

Goal: Investigate advanced software technologies and evaluate emerging
capabilities (based on the above criteria) with respect to their impact on
software maintenance problems.

Approach: The approach included reading the technical literature, attending
conferences and workshops, conducting in-depth interviews with researchers at a
number of universities, and holding many informal discussions at AI&DS. Many
technologies were looked at, including artificial intelligence, automated
software production technology ("automatic programming"), formal verification,
symbolic execution, code optimization, programming aids, very high level
languages, program transformations, graphics and other input-output techniques,
program annotation, documentation manipulation, software metrics, program
analysis, computer assisted instruction, and semi-automated management.

Goal: Develop conceptual designs for maintenance tools that have been
identified as having a significant impact on software maintenance problems.

Approach: High level designs for nine tools have been created. These designs
include functional descriptions of the proposed tools, a discussion of their
interrelationships with existing or planned tools, as well as discussions of
why the tool is needed, how it might be built, and further research that may be
needed.

2.2 ASSUMPTIONS

A number of assumptions were made during the course of this study:

1. This study focused on Air Force C31 (Command, Control, Communications,
and Intelligence) applications. Therefore, the analysis was based on
needs particular to this domain. However, there is a great deal of

*l similarity between the observations produced during the course of this
study and those reported for other applications; hence, many of the
results and conclusions reported here may be considered generally
applicable.

2. While the Ada programming language and the accompanying Ada Programming
* Support Environment (APSE) are not yet in general use, the

recommendations in this study have been based on the assumption that this
will be the language and environment used in Air Force C31 applications.
Once again, these recommendations can be considered generally applicable

because Ada and the APSE do appear to provide a solid foundation for
software development and maintenance. However, in an environment lacking

*I comparable facilities, the first step towards improving the maintenance

-5-

--a-

Aummptions

process should be the acquisition of similar facilities.

3. We assume that the organizational environment in which maintenance
programmers, analysts, and managers operate will be the same in the
future. In particular, neither formal training, duration of assignment,
nor management policies will change.

4. Since the goal was to study the application of advanced technologies to
software maintenance, little effort was spent looking at existing
production-quality, commercially available maintenance tools. The few
commercially available tools that were looked into use simplistic
approaches that are neither powerful nor flexible. These tools were
usually aimed at languages such as Cobol or Fortran, and so some of the
features offered by these tools are included as part of Ada.

I

--*-

O

3. Al INTRODUCTION TO SOFTWARI HITIIANCi

This chapter provides an introduction to the software maintenance process.
it explains some basic terminology and describes the software maintenance
process. The focus of this chapter is on the "general" software maintenance
process; the following chapter deals with software maintenance from the
perspective of the Air Force.

3.1 WI&T IS SOFTWARE?

Some basic definitions are in order:

Software A realization of a set of plans or specifications, encoded in a
computer language.

Program A piece of software that performs a task or set of tasks. It
usually provides limited capabilities, and is not a stand-alone
entity (i.e., it requires other software to function properly).

Documentation Technical exposition and data describing software, including
requirements, specifications, and design manuals (including
design rationale); code commentary (in-line comments as well as
external notes and diagrams); benchmarks; user manuals (and any
other information necessary for the operation of the software);
and software history (including all changes, results of test
runs).

Software System Traditionally defined as a stand-alone group of programs that
provide some set of related functional capabilities. In this
report, the definition is extended to include documentation,
test data, and possibly special purpose support tools built
during the software development stages (e.g., test drivers,

debugging aids), as well as the code itself. This extended
definition arises from purely practical considerations: it is
difficult to operate and maintain a system without this
additional material.

Software Tool A program or software system that assists the programmer in the

process of developing and maintaining software.

-7-

-hat Is Software?

3.1.1 The Software Life Cycle

The various phases that a software system passes though during its lifetime
is generally referred to as the software life cycle (e.g., [Zelkowitz 781).

-. The life cycle concept is a descriptive (rather than prescriptive) notion. It
divides the lifetime of a system, from initial conception to eventual

*. decommission, into six major phases:

1. requirements analysis: identify the problem (application)

A problem cannot be solved without first identifying what, why, when, and
where it is.

2. specification: identify the (software) solution

*Once the problem has been identified, the solution can be laid out. The
specification phase is an abstract solution, in the sense that it
identifies what the solution is, rather than stating details about how
the soltition works. Since this is a discussion of the software life

* cycle, the concern here is with the software part of the solution; but
note that a specification may also have non-software aspects (e.g., it
may include tasks to be performed manually by people).

3. design: describe the software

Deciding how the software works is done in the design phase. Appropriate
hardware and software environments are chosen during this phase (unless
the problem domain itself has particular hardware and/or software
requirements).

* 4. code: build the software

The software is actually written during the coding phase. The initial
stages of debugging (getting the software to work) are also included in
this phase.

5. test: ensure the software works

The testing phase is meant to insure that the software performs to
specifications. This is not the debugging stage, although bugs may be
uncovered. A system enters this phase when the programming group says
they have a working system.

6. maintain: modify, adapt, correct, and perfect the software

After the software is finally finished and put into operation, the
mainzenance phase begins. This phase itself can be broken down into
distinct sub-phases (this will be discussed later).

-8-

"4

.

K' What Is Software?

These steps describe the general process. In any given application, each
step may not be precisely delineated (e.g., it may not be possible to identify
a time when the system moves from the design phase to the coding phase). Nor
are these phases strictly sequential: they may overlap (e.g., certain parts of
the code can be tested before the coding is complete), and there are usually
feedback loops from some phase to a previous one (e.g., problems during coding
may result in redesign; problems found while testing may necessitate recoding).
Problems may propagate back several steps; e.g., problems during testing might

require a reassessment of the design, the specification, or even the
requirements analysis.

3.2 WHAT IS MAINTNEANCK?

Software Maintenance is all those activities associated with a
software system after the system has been initially defined, developed,

deployed, and accepted as operational.

In particular, a maintenance task is usually associated with a request for
modification to the software system. These requests are made by users and

others affected by the system. This definition takes an inclusive view of
maintenance by including enhancement and extension modifications (as well as
corrective modifications) as part of maintenance. This differs from the more
common exclusive view, which does not consider enhancements and extensions to
be part of maintenance. (The notion of inclusive and exclusive definitions of
maintenance is due to [Lientz 801). The reason for using the inclusive
definition is based on two observations, which are independent of the type of
modification. First, enhancing existing software seems closer in nature to
fixing it than developing it. Second, software modifications are more likely
to be performed in the maintenance environment (i.e., by maintenance
programmers, using tools, documentations, and hardware available to the
maintenance team).

3.2.1 The Software Maintenance Cycle

6 So far, software maintenance has been treated as a single phase in the
software life cycle. Looking at maintenance in more detail, it too is a cycle,
divided into a number of phases. Each phase of the maintenance cycle
corresponds to a phase in the software life cycle. (This leads to the
observation that maintenance is really a form of redevelopment.) The steps in
the software maintenance cycle are:a

1. reanalysis: the problems with the software must first be identified;

2. respecification: then the solution can be identified;

3. redesign: the solution must be mapped out in more detail;

-9

.. --. -.- -.- .: .

What Is Naintenance?

4. recoding: to implement the solution, old code may have to be changed, and
new code may have to be written;

5. retestina: the changed system must once again be tested to ensure that
the system satisfies the changed specifications.

Similar to the software life cycle, steps in the maintenance cycle are often
imprecisely delineated, and not necessarily sequential. Moreover, some of the
initial steps of the maintenance cycle may be bypassed. For example, when
modifications are simple, coders may be responsible for implementing changes
directly, without a formal reanalysis, respecification, or possibly even
redesign phase. Due to the variety of maintenance tasks, this can be
advantageous, in terms of cost. However, it is important to ensure that
omitting a step will not have a deleterious long term effect on the software
system (as might be the case if, for example, major code changes were made

*" without going through a redesign phase). Hence, it is desirable to have some
formal method for determining which steps of the maintenance cycle (if any) can
be bypassed.

The steps in the maintenance cycle are usually incremental; e.g., there is
usually no need to totally redesign the software as a result of
modifications, since the original design for most of the system will remain
unchanged. The only maintenance step likely to be performed in its entirety is
retesting.

3.3 WHY IS MAINTENNCE AN IMPORTANT PROBLM?

Software costs (including maintenance) in the United States are staggering.
* Software activities consume three percent of the gross national product. Total

software costs in the Department of Defense were nearly $5 billion by 1979
[Davis 791.

In attempting to reduce overall software costs, maintenance is the first area
that should be examined critically. Maintenance comprises a large part of the

'l software life cycle:

Almost every study that attempts to quantize the cost of software
maintenance comes up with ball park figures of 50% of total software
life cycle costs. Even the most conservative drop to only 40%; and

4 there are some figures at the 80% level. [Glass 791

Most studies indicate that maintenance costs range from 60% to 75% of total

* costs.

- 10 -

Why In Maintenamce an iportant Problem?

Why does maintenance consume such a large percentage of life cycle costs?
While the development phase requires a large initial outlay of resources, the
maintenance phase is much longer than the development phase (since maintenance
continues for the operational lifetime of the software). The lifetime of a
software system is often extended because software tends to evolve over time;
maintenance includes enhancements and extensions, as well as fixing things that
do not work.

Thus, over the lifetime of a large software system, considerably more time is
spent in maintenance than in development. In trying to minimize costs over the
total software life cycle, the greatest effect can be achieved by improving and
easing the maintenance phase.

3.4 WHY IS N&INTMANCE DOEN?

Maintenance is primarily a reactive activity: it is performed in response to
requests, rather than on the basis of some regular schedule. Maintenance
requests are for modifications to software. Modification requests can be
grouped into four basic categories:

1. correcting: "there was something wrong with the system"

A system failure (bug) is found. A failure may be due to nonconformity
with specifications (including performance) as well as an implementation
problem.

2. adapting: "something the system depended upon has changed"

The operating environment has changed. The operating environment
includes both the hardware and (external) software used by the system.
Changes of this type are external; they are not intrinsically necessary,
in the sense that, if the environment had not changed, the system would
not have otherwise required change.

3. perfecting: "we wanted to fine-tune the system"6

An enhancement is desired. Perfective modifications may be isomorphic to
modifications in any of the above categories. The distinction is that
perfective changes are not required to make the system correct. For
example, if specifications state that a certain level of performance is
required, then the failure to reach that level requires a corrective
change; however, if it is decided that "it might be nice" to have the
system operate at a higher performance level, then the change is
perfective. Such changes may provide improvements in system capability,
performance, documentation, etc.

4. modifying: "we didn't like the system the way it was"

- Ii -

Why Is Maintenance Done?

Requirements or specifications are changed. These changes may result
from inadequate initial analysis and specification; they may spring from
new insights or better ideas about the requirements and specifications;
or they may be caused by evolving applications and environments.

This categorization is similar to that described in [Lientz 80], with the
exception of the 'modifying" request, which was omitted (apparently, it was

" included under "perfecting").

These four categories can be further abstracted. The first two types of
requests, correcting and adapting, are requests for repair: something in the
system does not work properly, hence, a change is required. The last two
types, perfecting and modifying, are requests for refinement: things were
working fine, but some sort of extension or enhancement is desired.

3.5 HOW IS MAINTENANCE DONE?

To improve upon the maintenance process, it is first necessary to understand the

non-technical (organizational) aspects: what is the maintenance environment
like, and how is it organized? This section presents some generalizations that
addresses these questions. The following chapter presents a more detailed view
of several selected Air Force sites.

3.5.1 Typical Maintenance Environment

The term maintenance environment is used here to refer to the people
responsible for the maintenance task (including programmers, managers, and
support staff), as well as the hardware, software, and documentation available
to the maintenance staff.

In studying software maintenance, one of the first observations one makes is
that maintenance is viewed as a low profile, low prestige task. As a result,
the maintenance environment often lacks adequate personnel and resources.
System design and development are considered more glamorous, and when a system
is complete, the participants often scramble to avoid assignment of maintenance
chores. Organizations are forced to staff the maintenance team with junior
programmers; as a result, maintenance personnel tend to be less experienced
than their colleagues in development.

[Ledbetter 801 has listed a number of other attributes that are fairly
representative of contemporary maintenance environments:

- The original system designers and programmers are no longer present.

- 12 -

*,

ow Is Maintenamce Done?

- In dynamic environments, the original user team is no longer present.

- Many software maintenance personnel maintain a broad span of code
(possibly many systems) and are either junior to or inferior to the
development team. They also have little or no system design experience
and either work alone or as part of a small cadre.

- The test team is no longer present and the test input data and analysis
software is out of date. If simulators or drivers were used during the
development phase, they are normally useless after a few modifications
because they were undocumented and, therefore, basicalll unmaintainable.

- The original requirements, design, and implementation trade-offs and
analysis (performance and capabilities) are not reflected in the system
documentation. They were either in project memoranda or communicated
orally.

- The requirements, specification, design and interface definition documents
have not been kept up to date during the maintenance and modification
phase. 5

3.5.2 Typical Maintenance Administration

The term maintenance administration is used here to refer to the organization
and administration of the maintenance environment.

In a preceding section, the steps in the maintenance cycle were outlined.
These steps were the technical steps required to carry out the process. The
administrative aspects complicate the process. Typically, there is a formal
process for making maintenance modification requests: requests made by users
must be tracked (until resolved); formal approval is required at many levels,
from specification to test acceptance; modified software must be distributed,
and users must be notified of changes. Indeed, the whole maintenance process
can be obscured (and overwhelmed) by the administrative aspects of maintenance;
this leads to the observation that a software maintenance "support system"
would be helpful in keeping track of all the steps of the maintenance process.

As an example of the modification request process, listed below are the steps
required to make a change in one military environment (reproduced from [TRW
801):

1. Change Initiation

- receive and process requests
- preliminary analysis and problem/deficiency definition
- preliminary resource allocation and scheduling

- 13 -

How Is Maintenance Done?

2. Change Analysis and Specification

- feasibility

- requirements decomposition/definition

- detailed design
- generate change proposal

3. Engineering Development and Unit Test

- develop the change

- perform engineering tests

4. System Integration and Test

- test system performance

- produce test reports

5. Change Documentation

- document change
- update baseline
- configuration control

6. Certification and Distribution

- certify documentation
- distribute revised data
- provide installation procedures/instructions

This list contains the technical maintenance steps (e.g., develop the change)
within the framework of administrative steps (e.g., resource allocation
scheduling). Note that the actual changing of code is only a small part of the
whole process.

- 14 -

4. AIR FORCE SOFTWARI MaITEXANCE

This study has focused on software maintenance problems of the Air Force.
This chapter describes the specific Air Force environments studied, and
discusses the problems identified. One of the factors that distinguishes the
Air Force environment from industrial environments is the plan to abandon
existing outdated programming technologies and jump into a modern programming
environment based around the Ada language. This proposed environment is
discussed, as well as its effect on the software maintenance process.

4.1 OVERVIEW OF SELECTED AIR FORCE SITES

In gathering data about current Air Force maintenance practices, we were
concerned with three aspects: (1) the type of system being maintained (e.g.,
purpose, scope, duration, size, mode of operation, hardware, languages); (2)
the form of software maintenance practiced, in both management and technical
aspects; and (3) significant problems encountered. To gather data we visited
personnel at three centers of Air Force C31 software maintenance activities:
the Satellite Control Facility, the Communications Computer Programming Center,
and the Strategic Air Command Data Systems Organization.

4.1.1 Satellite Control Facility

The Air Force Satellite Control Facility (SCF) is located at Sunnyvale Air
Force Station, Sunnyvale, California. Its function is to control all Air Force
satellites, as well as some of those of other agencies such as NASA and NATO,
once the satellites are orbital. The control system's design and
implementation, including hardware, software, and communications network, date
back to 1967.

Command and control decisions emanate from Sunnyvale and are distributed to
eight ground stations located around the world. Ten CDC 3800 mainframes in
Sunnyvale are used for trajectory calculations. Varian and Univac
minicomputers are used for realtime command and control operations. For each
ground station, one minicomputer is located in Sunnyvale and the other at the
ground station, with a medium-speed communications channel linking the two.
JOVIAL J4 is used for the operating system and most of the applications
programs running on the 3800s. All other programs are written in assembly
language. There are nearly 1,000,000 lines of J4 code in use.

No programming is done by Air Force personnel at SCF. Maintenance is done by
more than ten different contractors. One contractor does system engineering
for new requirements; integration, testing, and documentation of the entire
system; and "realtime" maintenance of the system during operation. A second
contractor maintains the operating system for the 3800s, including utilities.

- 15 -

Overview of Selected Air Force Sites

A third contractor maintains the orbital ephemerous system and a library of

standard routines for such things as orbit trajectory calculations that are

widely useful to the other contractors. A fourth contractor maintains the
realtime software at the ground stations for command and control, data
communications, and telemetry processing. Finally, there were seven

. contractors (at the time of the interview) supporting the software specific to
the missions of fourteen special program offices (SPOs). To complicate
matters, this last set of contractors is funded by the SPOs themselves, rather
than by SCF. Security considerations for some missions make it impossible for
the integrating contractor to obtain adequate test data and for the support
contractor to know which of his routines are most useful and what new routines

* would be useful.

A representative contractor is Data Dynamics, Inc. (DDI), which maintains the

SCF library of orbit planning and trajectory calculation subroutines. DDI
developed the routines over ten years ago and has been maintaining them since.
DDI now has a library of 280 J4 routines totaling 120,000 lines of code. DDI

suffers from problems such as a slow cycle to have changes approved, difficulty
* in determining the ramifications of changes to their routines to the software

of other contractors, and redundant efforts by other contractors that don't

know what routines are already available. For example, without doing a massive
and time-consuming search of offline documentation, it is impossible for one
contractor to determine what coordinate transformation functions have been

written by any other contractor prior to developing a new function from
scratch.

Systems Development Corporation (SDC) maintains the operating system for the
CDC 3800s. It consists of 300-400 routines written in J4. Most of the other
maintenance contractors specialize in programs for dealing with the functions
specific to one satellite or class of satellites. Some of the companies
involved are General Electric, TI, Hughes Aircraft, Mellonics, Boeing, and
Lockheed.

The only hard data on software maintenance at SCF that we have obtained is
the 1980 annual budget for each contractor function and the estimated number of0 problems reported at each phase in the redevelopment of software to handle a
new satellite. Problems include bugs at any level (code, design, or
requirements), but not optional requests to alter requirements.

1

- 16 -

Overview of Selected Air Force Sites

SCF Contractor Software Maintenance Contract
m($ illions year)

integration
system engineering 5.0
integration and testing 5.0
system maintenance 5.0

operating system and utilities 1.3
orbital ephemerous system 1.1
ground stations 4.6
four large missions 5-10 each
ten small missions 1-2 each

* . TOTAL 52-82

Redevelopment Phase Approximate Number of Problem Reports
mission development and testing 100
system integration and testing 100
two command exercises 100 each
rehearsal 30-40
fly 200-500

TOTAL 630-940

We were unable to obtain sufficient quantitative data to determine the
relative importance of the various software maintenance functions. For
example, we would like to have known statistics on who originates a maintenance
request (a satellite user agency, SCF, or a maintenance contractor), what type
of request it is (requirements change, hardware/software environment change, or
bug report), what problems arise in dealing with the request (e.g., can't
locate bug, bug appears to be in software of another contractor, etc.), and
what the final disposition of the request is. Although all change requests are
archived after completion, no statistics are kept. The task of going back
through large files of changes manually would be too time-consuming and costly.
Without data of this form, we have been forced to base our tool evaluations on
qualitative assessments of the problems.

All program maintenance is done using batch job submission and archaic tools
(e.g., core dumps). The version of JOVIAL that is now in use, J4, does not
allow for separate compilation and loading of modules. And the unstructured

nature of the system's COMPOOL makes it difficult to isolate changes. For
example, a data structure change that should be transparent to other users may
in fact require every contractor to modify his code so that it will continue
working. In addition, stringent restrictions on the introduction of permanent
changes into the system slow down this process. For these reasons, a new
system with formally approved changes is released no more often than once every
six months. And a single change requires one and a half years or more to get
through the configuration control system. Therefore, when bug fixes or other
important modifications to the system are required for the success of a
mission, changes to the system's core image(1) are made amidst the normal

- 17 -

7

Overview of Selected Air Force Sites

satellite controlling operations of SCF.

As mentioned above, there appear to be two types of maintenance activities:
bug fixes and formally approved changes. The latter category has two subparts:

* (I) changes made to fulfill a specific requirement, the largest of which is
integrating new subsystems to handle a new satellite, and (2) optional, but
perhaps broader changes that redesign an entire subsystem in order to provide

more efficient or understandable code. Software maintenance because of changes
to the hardware is rare. Maintenance in response to a changing software
environment (e.g., operating system or subroutine library) is fully controlled
because the entire software environment is being maintained by 5CF and its
contractors.

Documentation, as with other large, long-lived systems, is a major problem.
A lag of two years between changes being implemented and documentation being
completely updated is typical. And documentation at SCF costs more than
coding.

Finding competent personnel for maintenance programming is difficult.
Maintenance programming has always had the stigma of being more mundane than
new development. The use of obsolete hardware and programming languages
compounds the situation at SCF.

SCF now handles as many as fifty missions concurrently, but a larger capacity
will be required by the mid-1980s. Because of this expanded workload, the
limited performance of the present system, and the outdated hardware and
software, an entirely new satellite control system is now being procured. It

* will be designed, built, and phased into operation during the next seven years,
at a cost of approximately $200 million. Although this is a large sum, it
should be noted that it is equivalent to between only two and four years of
maintenance on the present system. With this system, no local processing will
be done at the ground stations because they will be connected to SCF via a five
megabaud satellite communications link. Program development will be done
interactively. ADA will be used as a design language, while the implementation

language may be one or more of FORTRAN, JOVIAL J73, and ADA. The plan is to

phase into the use of ADA as compilers and other tools become available.

Our interviews with personnol of SCF and its contractors have impressed upon
us the importance of the management side of software maintenance, especially

when the software system is maintained for multiple computers, missions, and
agencies, and by multiple programmers and contractors.

24

- 18 -

II

Overview of Selected Air Force Sites

4.1.2 Communications Computer Programing Center

The Air Force Communications Computer Programming Center (CCPC) is located at
Tinker Air Force Base, Oklahoma City, Oklahoma. CCPC is the primary Air Force
agency for the development and maintenance of communications software, and

related software in command and control. Many of CCPC's systems make use of

AUTODIN I, the military communications network, as the underlying
communications medium. CCPC will also likely be in charge of packet-switched
network applications for the Air Force. Among the systems now maintained by
CCPC are satellite communications software, emergency communications system

, - (IEMATS), Realtime Autodin Distribution System (RAIDS) for logistics, Strategic
Air Command communications system (SACDIN), Automated Message Processing
Exchange (AFAMPE), navigational status system, and weather control software.

Unlike systems at SCF, each system maintained by CCPC provides an autonomous

function to the Air Force. These systems have been deployed independently over

the past fifteen years, typically on hardware that is unique within CCPC and
that ranges from minicomputers to large mainframes. The computer was usually
chosen by the developing contractor, and 95 percent of the communications
software is written in assembly language. The major exception to the use of
plain assembly language is the extensive use of COMAC, an assembler macro
package in use since 1971 that provides over fifty primitives important to
communications programming. This macro package has been ported to a number of
different machines. The size of a typical system ranges from 25,000 to 50,000
lines of code, although AFAMPE is 560,000 lines long.

CCPC's maintenance work is done in-house, with no external contractors
involved. Hence, control and execution of software maintenance is highly
centralized, in contrast to SCF. Because most major new systems are developed
via competitive procurement, CCPC's typical mode of operation is to take over a
new system at the start of the maintenance phase, i.e., at the time it is first
deployed and the developing contractor's work is finished.

CCPC has four relevant directorates: Analysis and Design, Production,
Maintenance, and Services. Maintenance handles simple fixes, defined
arbitrarily by CCPC to be those requiring under six man-months of effort.
Major problems and requirements changes from users go first to Analysis and -

Design, which does requirements analysis and high-level design. Then that
directorate hands the task to Production or Maintenance for detailed design and
coding, depending upon whether the task is a major development effort or not.
The Services Directorate provides software configuration management of fielded
systems, and an independent verification and validation function for both
Production and Maintenance.

Maintenance operations are primarily responses to problems, rather than
requirements changes. Requirements changes are usually for enhancements to the
software. The operating environment (instruction set architecture of the host

- 19 -

I

Overview of Selected Air Force Sites

*- computet, and operating system) rarely changes. However, the mix of
peripherals on some systems changes frequently. Many problems arise from

* - hardware peripherals and communications software protocols that are changed
without prior notification to CCPC.

Most program maintenance is still done using batch job submission and
debugging with core dumps, all on the target machine. However, in the case of
one recent system that is hosted on a DEC PDP-lI, programming is done

* interactively via CRT display terminals.

Perhaps the biggest maintenance problem at CCPC is the lack of adequate
documentation. Documentation standards aren't precise enough, so many
contractors deliver poor documentation with new systems. The lack of
high-level languages exacerbates the problem. Expending effort on such things
as improved documentation wasn't pushed in the past because the time :pan and
cost for maintenance weren't considered any more significant than for
development. However, the typical CCPC system was expected to be maintained
for eight years and has actually existed for twelve to fourteen years.

Finding, training, and keeping qualified personnel is a major problem for
* CCPC. With the high demand for analysts and programmers in industry, it is

hard to keep good people at CCPC in either uniformed or civilian positions.
CCPC is currently staffed at only seventy percent of its authorized manpower
level.

The major logistics problem is that of having many remote sites, each with a

slightly different hardware configuration that requires different software

options. The on-site operators are trained only in the use of the system, not
in technical aspects of its maintenance. CCPC is faced with the task of
remotely determining whether a problem is due to a hardware, software, or
operator error. If it is software, the subsystem at fault must be isolated.
This is becoming more difficult as complex software systems supported by
different agencies must interact via complicated protocols. Then the situation
must be reconstructed at CCPC in order to pinpoint the problem, fix it in all
required places in the code, and distribute software updates to the appropriate
sites. Often the testbed environment at CCPC doesn't exactly duplicate the
hardware/software configuration in the field, and complete information on the
status of the system in the field cannot be obtained remotely.

CCPC believes that future software will be written in a high-level language
and maintained interactively on a timesharing mainframe. ATECS, a system now
being planned that will monitor wideband communications circuits in Europe,
will be written in JOVIAL J73. CCPC is currently participating in the testing
of the interim J73 compiler. CCPC is also participating in the study and

* evaluation of the ADA tools being developed by RADC.

- 20 -

- -•

Overview of Selected Air Force Sites

From our interviews with personnel at CCPC, we have concluded that a major
problem in the maintenance of highly distributed systems (such as systems for
communications) is the fast isolation of problems that occur remotely from the
central maintenance site. Since the trend toward geographically distributed
C31 systems is accelerating, this problem is likely to intensify.

4.1.3 Strategic Air Coimand Data Systems Organization

The Strategic Air Command Data Systems Organization is part of Headquarters,
Strategic Air Command (SAC), located at Offutt Air Force Base, Nebraska. Its
mission is to support all of SAC's data processing requirements, which date
back to the 1950s, as well as those of a few affiliated organizations. Thus,
applications range from business data processing in support of SAC bases to
sensor data processing and planning the national strategic war plan.

SAC has twenty-four million lines of code to maintain. Most new systems

(including major upgrades) are done by contractors. Outside maintenance
contracts amount to approximately twenty million dollars per year. Other
maintenance of operational systems is done in-house. Maintenance staffs are
organized by functional areas.

We interviewed staff in the four divisions that support C31 systems. These
divisions are the Warning Programming Division of the Directorate of Sensor
Support, the Force Control Programming Division of the Directorate of Computer
Applications, the Intelligence Applications Programming Division of the
Directorate of Computer Applications, and the Program Management Division of
the Directorate of War Plans Programming. The Warning Programming Division
maintains the national strategic warning system used by SAC, North American Air
Defense Command (NORAD), and the National Military Command Center (NMCC). The
Force Control Programming Division maintains the systems that allow the SAC
command to communicate with SAC bases and to keep track of its missile and
bomber forces. The Intelligence Applications Programming Division maintains
various intelligence data handling systems for dealing with images, electronic

signals, and other forms of intelligence information. The Program Management
Division oversees the functions of the other, applications divisions within the
Directorate of War Plans Programming. This directorate maintains the national
strategic war plan, known as the Single Integrated Operational Plan (SLOP).

Since the scope of applications is broad and the number of individual

hardware and software systems is large, it is not surprising to find a host of
hardware models and programming languages in use. Hardware manufacturers
include International Business Machines (and compatible models from other
manufacturers), Honeywell, Burroughs, Univac, Digital Equipment Corporation,
ROLM, SEL, Perkin-Elmer, Hewlett-Packard, and Data General. Languages used
include various versions of JOVIAL (including J3), COBOL, FORTRAN, PL/I, and

assembler.

- 21 -

Overview of Selected Air Force Sites

SAC will likely move toward J73 and ADA eventually, but it has been slower' than, say, the Satellite Control Facility in this regard. The War Plans
Programming Directorate has tried to standardize on PL/I for the past few
years, but conversion of old programs hasn't happened. This has left it with
all of the old languages still in use (primarily COBOL and FORTRAN), plus
another, new language.

The STOP is a very complex system of programs that serves a central role in a

the nation's defense. There are over 2.5 million lines of code in over five
hundred separate programs. The cycle of a change request to the SlOP is
interesting to note. Requirements changes (as opposed to bug fixes) have to be
approved by local management and then by a high-level group in the Pentagon.
This process is time consuming, yet once approval is given the War Plans
Programming Directorate is under considerable pressure to effect the necessary
changes as soon as possible. Nevertheless, due to a number of reasons having
to due with the complexity of the programs and the importance of the
application, a typical SlOP release cycle takes up to five years, with up to
two years for software modification. This application is an obvious candidate
for new programming languages, design and documentation standards, and advanced
maintenance tools.

Changes to the Warning Programming Division's Command and Control Processing
Display System must also be approved outside of SAC, in this case by a
three-star group from SAC, NORAD, and the NMCC. Compatible versions of this
program are maintained at a number of command centers.

SAC estimates that its software maintenance efforts consume even more than
the 60-75% of the overall software life-cycle effort found in other places.
The maintenance problems at SAC are similar to those found at SCF and CCPC.
However, in addition to the problems of documentation and making changes, SAC
management was much more vocal about the personnel problems: high turnover and
lack of qualified staff. SAC has taken two important steps toward a solution:
(1) it relies upon a core of civilian programmers in each division to maintain
continuity, and (2) it has received dispensation from the Air Force to allow
its uniformed programmers to take a tour of duty averaging more than three
years. Both of these steps appear to have helped SAC and are to be highly -7

recommended.

Many systems being maintained lack adequate tools (e.g., even a basic
cross-reference listing generator). This forces current maintenance
programmers to get by with what they have, or attempt to fit tool building into
their already crowded schedules. Unlike CCPC, SAC has no central group of
technology watchers or developers that attempts to develop crucial tools or
monitor developments outside of SAC that might be transferred inside. This
function appears to take place in a very distributed and uncoordinated fashion.

- 22 -

0 Overview of Selected Air Force Sites

Virtually all of the divisions interviewed suggested the need for procedures
and tools for management and coordination of the maintenance process, to ensure
that activities (especially documentation and testing) are done by the right
person at the right time. Tools might range from simple on-line checklists to
fully automated retesting procedures.

SAC could benefit from aids to maintaining continuity of its software
maintenance functions, such as aids for training programers, maintaining
quality documentation, and managing the maintenance process. It is also clear
that, in the long run, standardizing on ADA as the programming language would
help immensely.

* 4.2 AIR FORCE SOFTWAR KM&INTENANCE PROBLEMS

We created a questionnaire to clarify the information learned during the site
visits. This section summarizes the results of the questionnaire. The
questionnaire and responses are included in Appendix B.

I
The questionnaire was divided into three parts:

1. reasons for software.modifications: "Why is software modified?"

2. software maintenance functions: "Where is time spent during maintenance?"

3. difficulties: 'Why is maintenance so hard?"

The results of the questionnaire confirmed the information we collected
during the site visits. Due to the diversity of the selected sites, there was
(as expected) a good deal of variance between individual responses. The
questionnaires were given to a total of nineteen people in the three Air Force
Organizations discussed above. There was no attempt to select organizations
that were similar or representative.

4.2.1 Reasons for Software Modification

Given the four categories of maintenance requests (section 3.4), respondents
were asked to estimate the percentage of requests that fell into each category.
The averaged responses, in decreasing order, were as follows:

- 23 -

Air Force Software Maintenance Problems

REQUEST PERCENTAGE

modifying 46%
correcting 31%
perfecting 15%
adapting 8%

Modification requests alone account for almost half of the maintenance
requests. Together with perfecting requests (the other category for refinement
requests), they account for over 60% of the maintenance requests (similar to
[Lientz 80], where refinement requests were found to account for over 50% of

the maintenance requests). Traditionally, maintenance has generally been
associated with repairing software. However, these results help confirm the
importance of software evolution (i.e., refining, as compared to repairing) as
part of the maintenance phase.

4.2.2 Software Maintenance Functions

In this section, respondents were asked to rate the importance (based on
amount of time spent) of a number of software maintenance tasks. The scale was
an integer from 0 to 10, with 0 signifying "no time spent" and 10 signifying
f"extreme amounts of time spent". The averaged responses, in decreasing order,
were as follows:

TASK IMPORTANCE

retesting 6.5
recoding 6.3
training of new maintenance personnel and users 4.8
monitoring, problem detection, diagnosis, resolution 4.7
redesign 4.4

* redocumentation 3.9
management 3.6
configuration control 3.4
reanalysis and respecification of requirements 2.9

4
It is interesting to note that more time was spent on lower level tasks (such

as testing and coding) than on higher level tasks (such as redesign,
configuration control, and respecification). Unfortunately, our questionnaire
was not designed to discover the reasons behind this distribution of effort; we
cannot tell if lower level tasks were performed more often, or if they were

* just inherently more time consuming. However, based on general knowledge of
the software maintenance environments, we hypothesize that lower level tasks

- 24 -

bJ

Air Force Software Maintemce Problems

are actually performed more frequently (and higher level tasks are being
somewhat neglected). If this is the case, it will most likely have a negative
impact on the overall maintainability of software; e.g., recoding without F

redesigning or redocumenting can easily result in inadequately documented
*I software that lacks coherent structure.

* 4.2.3 Software Maintenance Problems

The last section of the questionnaire identifies four major software
maintenance problems, and asks respondents to rate the importance of each on a
scale from 0 to 10, with 0 signifying "problem is not worth solving" and 10
signifying "it is extremely important to solve the problem". The averaged
responses, in decreasing order, were as follows:

PROBLEM IMPORTANCE

high turnover of personnel 8.7
understanding software (lack of good documentation) 7.5
determining all relevant places to make changes 6.9
monitoring and diagnosing operations 6.3

The major problems all appear to revolve around a lack of knowledge and
comprehension of the software. High turnover results in a lack of personnel
experienced with the software; lack of good documentation makes it difficult to
train personnel; difficulty in deciding all relevant places to make changes is
a result of inadequate information and comprehension. Only the last category,
difficulty in monitoring operations, really refers to another type of problem,
one of a more technical nature ("how can I watch the software system in action
to make sure it is working correctly?").

In this section, we also asked respondents to include and rate categories we

may have omitted. Of the responses, few were considered as important as the
above categories, and those that were tended to be quite environment specific.

4.2.4 Sumary and Analysis

The results of the questionnaire shed light on three important issues in the
maintenance process. First, most of the requests for maintenance are requests
for refinement, rather than requests for repairs. This seems to indicate that
maintenance is primarily a process of evolution. Second, most of the time
spent in maintenance is spent on low level tasks, such as testing and coding.
Not enough information was gathered to assess the importance of this breakdown:
Are higher level tasks being neglected, or are lower level inherently more time
consuming? Finally, most of the difficulty in the maintenance process seems to

- 25 -

* Air Force Software Maintenance Problims

arise from a lack of understanding of the software, which, in turn, is related
to the lack of readable, up to date documentation.

4.3 FUTURE AIR FORCE PROGIfIMIG MW

* 4.3.1 The Ada Language

The Ada language is the ambitious attempt of the Department of Defense to
provide a standard programming language. Its use should be expected to have a
significant effect on reducing software maintenance costs. Though the language
has a number of shortcomings, it will provide a significantly better medium for
programing than existing DoD languages (of course, just the acceptance of one

* language by all the military services is enough to help reduce costs). This
section discusses how various Ada qualities will impact the software
maintenance process.

Ada - The Positive Side

Ada has a number of important positive qualities, especially for maintenance.
These include:

- readability - Ada syntax and notation was designed to be particularly
readable. In fact, emphasis was placed on program readability over ease
of writing [Ada 80]1 The designers were very concerned with visual
fidelity;' i.e., "how will it look when printed out?" The designers also
tried to make use of "English-like"' constructs.

- structure - Ada is a highly structured language. It has flexible data
structuring facilities: packages provide data abstraction; the with clause
allows hierarchical structuring of modules. A rich set of control
structures is also provided: the loon construct is more general than the

* constructs provided by most other languages; exceptions provide a clean
way of handling unusual conditions and allow considerable flexibility
without resorting to the goto statement.6

- generality - Though the Ada effort was focused on embedded software
applications (large scale and real-time systems), the language is general
purpose, and will be used for many other applications. For non-embedded
applications, it is expected that many of the more esoteric features of
the language will not be used (e.g., tasks, machine code insertions).

- flexibility - The flexibility and extensibility of the language is
impressive: both functions and operators can be overloaded, allowing a
natural way for handling similar functions for a diverse set of data
objects; generics provide a powerful technique for creating isomorphic

objects.

- 26 -

4

Future Air Force Programing hyiroment

- protection - Strong typing is an important form of protection; it allows
the detection of erroneous constructs before they can even be executed

[((i.e., at compile time). Yet there is sufficient flexibility in Ada
typing so that programmers can do what is necessary without frustration.
The designers have also tried to avoid "error prone notations."

Ada - The Nexative Side

There is only one negative aspect of Ada that touched upon here. One of the
major problems to be faced in using Ada is the complexity of the language. Ada
has an overabundance of constructs and rules. For comparison purposes, it is
instructive to look at Pascal, a language so successful that all the top
proposals for the Ada language used it as their basis.

The success of the programing language PASCAL is in part due to its
simplicity. A rough comparison of complexity can be made by comparing
documentation of systems. The standard reference guide for Pascal users
[Jensen 74] includes both a user manual and a reference manual, yet appears

4 smaller in size than the Ada reference manual alone. Even Pascal has
constructs that might confuse users; for example, one computer scientist [Sale
81] has suggested that the repeat/until loop construct in Pascal is too
complicated(l), and often misunderstood by programmers. [Sale 81] goes on to
suggest that the construct should be removed from the language, arguing that
its removal would "...enhance the utility of Pascal by increasing the
probability of correctness in programs." While many may not take this
suggestion seriously, the question raised cannot be ignored: if people find
Pascal constructs difficult to use, what will happen when they start to use
Ada? This concern is reinforced by the observation that many computer
scientists currently working with Ada also seem to have problems understanding
the language.

As a result, training programmers will be a nontrivial task, and they will
need much practical experience before they can be considered expert
programmers. As suggested above, complexity of a language can have a negative
effect on the correctness of programs. It will be particularly important to
provide programmers with tools and aids that will help them manage the
complexity.

4.3.2 The Ada Programing Support Environment (APSE)

The purpose of an Ada Programming Support Environment (APSE) is to provide
support for Ada programs throughout all phases of the software life cycle
[Stoneman 80]. Like Ada, an APSE is an ambitious undertaking; its design

requirements represent the state-of-the-art in production programming
environments. A number of APSEs are planned, each with a set of tools
providing a common (minimal) set of capabilities (the MAPSE), built on top of a
kernel (the KAPSE) which provides the required, lowest level functionality. As

-27-

iFuture Air Force logrimn i mst

a reference point, Unix is an existing environment close in form and function
to an APSE (and in fact, could be called an ancestor of the APSE design). All
of the tools and technologies proposed in this report could exist quite happily
in an environment such as an APSE.

* The key features of an APSE are:

- a database, maintaining all the information associated with each project
(for its entire life cycle);

- a set of tools, providing the desired support;

i - user and system interfaces, providing access to the tools and the
database.

The user interface is provided by the APSE command language. In an effort to
make the command language natural for Ada programmers, [Stoneman 801 specifies
that "...wherever possible, the concepts of the Ada language should be used in
the APSE."

The APSE is designed to be easily ported to various machines. It uses a
virtual machine approach, and is coded (as much as possible) in Ada.

4.3.3 Ada Frograming Methodology

A methodology provides a systematic approach to designing and coding
software. Approaches have been based on various techniques, such as the use of
data flow or data structures to guide the structuring of the program [Bergland
811.

There is no programming methodology inherent to the APSE. This is

unfortunate, since the use of methodologies can help improve the software life
cycle process. It has been suggested that the APSE would benefit greatly by
taking on more of a methodological orientation, by providing a methodology
driven environment (Devlin 811. The lack of methodology is not altogether
surprising, since current knowledge about programming languages has matured
more than knowledge about programming methodologies. (It has been suggested
that the Ada effort has been somewhat backwards. In a top down approach, the
methodology would have been designed first, then the environment, and finally,
the language.)

Until methodologies have been selected for the APSE environment, the
environment will remain little more than just a set of tools.

- 28 -

A4
Future Air Force Progrinig Eviromsent

...we will not realize the full potential of Ada until we are able

to define a software development methodology complete with management
practices which can in turn be supported by automated tools. [Druffel
82]

Work in defining methodologies for the APSE is currently in progress.
Hopefully, these efforts will yield results before the APSE has been well
entrenched; it is desirable to avoid the phenomenon of having the environment
dictate the methodology.

We would make a big mistake in the Ada program if we simply allowed
our methodology to be defined by a collection of tools. Certainly
there are tools which can be used to support any methodology and which
we can begin to build immediately. However, in the longer term we must
address the definition of a more complete software environment and
better understand where the APSE path leads. [Druffel 821

6 Development of methodologies and standards alone is not enough. To ensure
that they are applied correctly and consistently, support tools must also be
developed.

...programming standards can not be effectively enforced without the
aid of automatic tools. Modern programming methodology requires
powerful tools to guide and enforce the use of proper practices.
[Devlin 81]

4.3.4 The Effect of Ada on Software Maintemance

It is most likely that Ada will dramatically help reduce software life cycle
costs. The Ada 'movement" has a number of things going for it. First, the
introduction of a standard programming language, to be used by all military
services for a wide variety of applications, eliminates a large number of
problems which arose from the use of many programming languages. Second, Ada
is truly a modern programming language; it was heavily influenced by past and
current research in programing languages, and it incorporates many features
and facilities totally lacking in previous languages. However, on the negative
side, the complexity of Ada is of great concern. The complexity issue can be
addressed through a number of routes: programmer training, programming
standards, support tools, etc. There also appears to be a movement underfoot

* in the direction of defining subsets of Ada, thus defining sub-languages with
sound features but reduced complexity.

- 29 -

5. TRZ COnPREiSIOi 0 PROBL

*The previous chapters defined software maintenance, and discussed maintenance

problems specific to the Air Force. With that as background, this chapter
discusses one of the major problems inherent in software maintenance, and
suggests some methodologies for reducing the magnitude of this problem.

The difficulty and expense of software maintenance has its root in many

factors. Some of these are technical, while other have more of an
administrative or political nature. Since the focus of this study was on
technical problems and technical solutions, the study does not delve deeply
into the administrative issues. Nonetheless, technical issues are not, of
course, entirely independent of administrative and political realities.

5.1 UNDERSTANDING SOFIWARIE

The first step toward improving the maintenance process is understanding the
major bottlenecks or trouble areas. This study has identified the biggest
technical problem in software maintenance as one of comprehension.
Comprehension refers to the ability to understand how a software system works.
To put it simply, software cannot be maintained unless those responsible for
maintenance understand the software.

On first impression, changeability (the ease with which code can be modified)
* is sometimes seen as the major maintenance problem. This perspective is

shortsighted. While the final goal of a modification request is to change the
software, the process of making the change is only a small part of the entire
process. Understanding why a change is necessary, how it should be made, what
repercussions it might have, etc., are all important parts of the change
process that are not directly related to changeability.

Of the major software maintenance problems identified in the previous
chapter, the three (out of four) highest ranked problems are directly related
to comprehension. These problems were:

- high turnover of personnel: Experienced personnel are replaced with new

personnel who are unfamiliar with the applications software, and may be
unfamiliar with the programming tools as well.

-difficulty in understanding (lack of good documentation)

- difficulty in deciding all relevant places to make changes: Programmers
have a hard time knowing where to make changes because they do not
understand well enough how the code works.

- 30 -

J

Understanding Software

The comprehension problem goes beyond understanding just the applications
software. It includes understanding the bureaucracy for making sftware
changes and comprehension of the maintenance programming environment itself.
Programming environments are characterized by some type of physical interface
(terminal, card punch), software interface (command language, job control
language), and software tools (editor, compiler, debugger). Programming
environments, in and of themselves, may be fairly difficult to grasp (just look
at the complexity of most commercially available operating systems). To make
matters worse, different projects often use different environments.
Programmers transferred between projects often have to become familiar with the
programming environment as well as the application.

5.2 DOCUMMN&TION

One obvious solution to the comprehension problem is documentation. Good
documentation dramatically eases the maintenance task by providing information
necessary to understand a system. The technique of "just looking at the code"
to determine how things work is not sufficient. At best, code specifies what
has been done; it cannot specify why things were done, nor can it specify why
things were not done. The intent of the original designers and programmers is
not discernible from program code.

Documentation includes a wide range of information beyond user and operations
manuals. The documentation of a well documented system includes requirements,
specifications, design and design rationale, program comments, test data, and
results (of test runs), history of changes, and user manuals. Since
documentation includes irlormation from every phase of the software life cycle,
the task of documenting must be distributed throughout the life cycle.
Documentation is not a distinct phase (though some may try to treat it as
such).

Unfortunately, documentation is probably the most neglected aspect of the
software process. A variety of reasons for this can Ye cited:

- Unlike other parts of the life cycle, which are discrete steps in the
cycle, documentation is continuous. It is an ungoing process, taking
place throughout all phases of the software life cycle. Attempts to
designate a single documentation phase are misguided, since they fail to
take into account the real nature of the documentation process.

- Often, it is not considered part of the deliverable software product; when
it is, the specifications for the documentation are usually less rigid
than the specifications for the software itself. Consequently, when
trying to cut costs and meet tight schedules, documentation is usually the
first to slip.

- The usefulness of documentation is not immediately obvious, since it does

- 31 -

Documetation

not actually run (i.e., "it does not do anything").

- It is also much easier to evaluate software than it is to evaluate
*documentation. Often, it is not until software needs to be changed that

the inadequacy of the documentation is recognized.

- Writing understandable documentation is difficult. This problem is
compounded when programmers are responsible for all of the documentation,
since they often have little training or experience in the area. It is
also difficult to judge the quality of the results. Guidelines,
formatting conventions, etc., are better developed for code than for
documentation.

- Current documentation tools are inadequate; actually, they don't exist in
most programming environments. The special needs of documentation are
simply not recognized.

Much of the documentation problem is an administrative one: adequate
resources must be allocated to the task. Various technical approaches have
been triod, none with much success. Some approaches that have been taken are:

- Tools to check programs for adequate documentation (in the form of inline
* comments) are relatively worthless unless intelligently applied. Using

tools of this type to force programmers to comment their code usually
results in meaningless documentation.

- Tools to automatically generate documentation from programs are no
substitute for human generated documentation. Existing documentation
generation tools take a syntactic approach, producing a low level
description (possibly improved by incorporating inline comments into the
generated documentation).

Technical approaches to easing the documentation problem seem to fall into
two basic classes. The first is providing support to the documentation writer.

"* The first tool mentioned above (the comment checker) is an example of this
approach. Other existing tools, such as report gencrators, database systems,
program analyzers, etc., can also be adapted, though tools specifically aimed
at documentation might be more usable. The other approach is automatic
documentation generation. This is a much harder problem. As mentioned above,
existing documentation generation tools tend to take a low level approach,

* producing documentation that reflects the low level nature of the code, rather
than the higher level nature of the intentions of the programmer. Also, tools
that work off the code are not very useful for other types of documentation,
such as requirements and specifications. In the future, sophisticated tools
will need to use more intelligent techniques for documentation support and
generation.

- 32 -

Documentation

One of the most important steps in the production of adequate documentation
is planning. During the planning stages of a software system, documentation
goals and milestones need to be developed. Documentation should be given as
high a priority as the software. Documentation must be planned carefully.
Otherwise, it may become part of the comprehension problem (rather than part of
the solution). Documentation generates a need for more documentation. For
example, if documentation gets too complex, then the documentation itself must
be documented. This "meta" level is necessary for the user to understand the
documentation. Unfortunately, it is one more layer that must be comprehended.
Also, if the process of creating and modifying documentation is complicated by
too many rules and requirements, .hen the documentation process itself becomes
difficult to comprehend.

q 5.3 PROGRAM ENTROPY

Another factor affeccing software comprehensibility is the loss of original
program structure and clarity due to changes introduced during the maintenance
phase. This phehomenon has been referred to as increasing entropy. The term
entropy comes from the physical sciences, referring to the tendency of physical
systems to become less organized and less structured over time. The problem
has been stated (somewhat dramatically) by Brooks:

All repairs tend to destroy the structure, to increase the entropy
and disorder of the system. Less and less effort is spent on fixing
original design flaws; more and -more is spent on fixing flaws
introduced by earlier fixes. As time passes, the system becomes less
and less well-ordered. Sooner or later the fixing ceases to gain any
ground. Each forward step is matched by a backward one. Although in
principle usable forever, the system has worn out as a base for
progress... A brand-new, from-the-ground-up redesign is necessary.
[Brooks 75]

The phenomenon of increasing program entropy results in software becoming
less comprehensible over its lifetime. The reason behind this is related to
the human cognitive processes of trying to understand a complex highly
interconnected system. It is necessary to mentally divide a complex system
into pieces first, and understand each piece separately. In a highly localized
(low entropy) system, the operation of the system as a whole is easily
understood on the basis of its component parts. In a less localized (higher
entropy) system, the operation of the system cannot be understood solely on the
basis of its parts, and so the human must work out another level of
understanding based on the interconnection of the segments. People are
relatively good at building local models of how systems work; they are not as
good at building global models.

Code localization is an important factor in understanding and changing code.
A section of code is said to exhibit a high degree of localization if its

- 33 -

Program Entropy

operation can be understood by looking at just it, and no other sections of
code. Localization is inversely related to entropy. As the program

- localization decreases, it becomes harder for the programmer to predict the
effects of a change. Changes to one part of a program are more likely to have
side effects on other parts of the program. With an inadequate model of the
program, the programmer may not notice these propagated side effects, resulting

* in program errors. This then requires changes to changes, resulting in a
~ 'cycle of changes."

Not only does increasing entropy make it more difficult to understand how the
system works; it also becomes more difficult to explain how the system works.
As a result, documentation suffers, even if an attempt is made to keep it up to
date. The net effect of iDcreasing entropy is an increase of effort necessary

I for maintaining software. [Belady 71] has claimed that the increase in entropy
has an exponential effect on total effort required to maintain a system.

*" 5.3.1 Causes of Entropy

Software maintenance is inherently an entropy increasing process. Unless
work is done specifically to decrease entropy, the entropy of a software system
will tend to increase over time. A number of factors contribute to this
behavior:

. - monotonic program growth - Programs become functionally more complex over
their lifetime. Features are always added but rarely taken away.

- poorly integrated changes - Maintenance personnel are not always familiar
with the original design philosophy and decisions, so their changes are
inconsistent with respect to the rest of the system.

- lack of time - Due to the reactive nature of maintenance, tasks are often
done in the quickest way possible.

- poorly designed program - Program modifications may be difficult to make
because the program structure is inflexible and inadequate.

- changes to changes - Failure to design changes that match the complexity
of the program and the problem result in a cycle of changes [Glass 81].

There are numerous ways to reduce the problem of entropy increase. Before
entropy can be controlled, however, it is necessary to develop some techniques
for quantifying entropy.

4

- 34 -

I

0

Program Entropy

5.3.2 Measuring Entropy

Ic Unfortunately, there is no single simple way of measuring program entropy.
The real problem lies in developing a concrete, generally accepted definition
of what entropy really is. However, based on the intuitive and abstract notion
of entropy as "degree of structure," a number of techniques are available or
can be developed to give some sort of approximation. An entrovy metric is a
tool that uses some technique to measure the entropy of a program. If one
metric is applied to a program at various intervals during the program's
lifetime, the change in program entropy can be observed. Though program
entropy tends to increase over time, it does not necessarily increase with each
change. It is possible for a change to be entropy preserving, or even entropy
decreasing. Note that the net change in entropy due to a modification depends
on the particular entropy metric as well as the modification itself.

Entropy is a measure of disorder. Disorder can arise at many levels, from
the "macro" level (modules, subsystems, etc.) to the 'micro" level (program
statements). Macro-level characteristics are dealt with primarily during
specification and design phases of the software life cycle; micro-level

0 characteristics are dealt with during the coding and debugging phases. It is
useful to make the distinction between macro-level and micro-level entropy
because the levels correspond to different life cycle phases. Different
metrics can be used to measure and control entropy at different levels.
However, this does not mean that there are two kinds of entropy; entropy is
entropy, regardless of how it is measured.

A good approximation of micro-level software entropy can be based on a
program connectivity metric [Yau 80]. Connectivity refers to the
interdependence between program parts (where dependencies can be based on
either data flow or control flow). Program connectivity is primarily a micro
level measurement; it is based on a graph theoretic analysis of individual
program statements. Connectivity as a measure of entropy is consistent with
the intuitive notion that an increase in the number of connections between
different parts of a software system lead to an increase in entropy. A
corresponding macro-level measurement might be logical connectivity, based
instead on an analysis of logical (abstract) structure (r&h._-r than physical
structure).

Entropy metrics are still considered a research area, especially macro-level
metrics. While micro-level entropy metrics could be constructed from current
research prototypes (e.g., the previously mentioned program connectivity
metric), macro-level metrics are still not very well understood. Similarly,
techniques for controlli. macro-level entropy are similarly not well
understood.

An entropy metric produces a single measurement representing a point in some
space, which is a static measurement of entropy at a particular time. However,

- 35 -

p., .. • .• , . . - , . • " ° ° "

Program Entropy

*. maintenance is concerned with the dynamic process, i.e., the change in software
! entropy over some period of time. Making effective use of entropy metrics

requires that measurements be taken at various points in the life cycle of a
program, allowing establishment of reference points for future comparisons, and
allowing a more critical examination of program evolution.

5.3.3 Controlling Entropy at the Micro-Level

At the micro level, entropy increase can be controlled incrementally by

minimizing the entropy increase for each set of modifications. For example, if
a program needs to be changed, one can chose among alternative changes by

* determining the effect of each change on the program's entropy, selecting thern change which results in the lowest overall entropy (balanced against other
criteria, such as efficiency). Note that it is possible for individual changes
to be entropy decreasing; but over the long term, changes tend to result in a
net gain.

The impact of micro-level control is not easily predictable. The incremental
approach is definitely myopic, looking at the immediate benefit of a particular
change, instead of looking at the software as a whole. Macro-level control is
more appropriate for long term results. However, micro-level control is still
likely to be useful on a more practical and immediate basis. Other techniques
can also be used to control micro-level entropy, such as the modern programming
practices of modularity and data abstraction. These may have a positive impact
even if the rest of the system does not make use of such techniques.

5.3.4 Controlling Entropy at the Macro-Level

As mentioned earlier, macro-level entropy is hard to quantify. Techniques to
control macro-level entropy are also difficult to prescribe. The best method
for managing macro-level entropy is planning. Long term needs of a software

* system as a whole need to be articulated during planning. Both the growth and
the structure of the system need to be taken into account. These factors are
ignored at the micro-level. Some general guidelines can be stated:

- Long term planning can help identify future directions for a software
system, allowing designers to build software with sufficient "flex" where
necessary. The result is software that is easier to modify.

* - The promulgation and enforcement of standards, throughout all phases of
development, is an important factor in improving maintenance. Judiciously
chosen standards result in better programs, as well as making
comprehension easier for the programmer, since things will always be done
in standard ways.

- Testing needs and capabilities should be planned from the start.
Testability can and should be built into systems. It is difficult to test

- 36 -

.I. .

0

Progrm Entropy

systems with no provisions for testing; they usually require special
procedures or tools to be devised. It is also important to ensure that
adequate resources are available for testing.

- Also important for starting the maintenance phase on a "good foot" are
acceptance reviews and audits. Viewed as an assembly line, software
should not be allowed to proceed to the next step of the line without
meeting the acceptance criteria for the current step.

Preventative maintenance (PM) for software is also useful for decreasing
entropy. Preventative maintenance is a technique generally used in hardware
maintenance: Hardware is inspected, cleaned, and adjusted on a regular basis,
regardless of whether it is broken. The purpose of preventative maintenance is
to help reduce the likelihood of hardware failures. In the case of software,
the goal of preventative maintenance is somewhat different: it aims to ease the
task of making software modifications (when modifications are necessary).
During software preventative maintenance, software is modified to reduce
complexity. At least one experiment has shown that preventative maintenance
can aid program readability [Elshoff 821.

It is rather unfortunate that preventative maintenance is generally not
considered applicable to software. The rationale usually given is that, since
software is a logical entity, it will not break unless someone does something
to break it; and until that point, there is no need to do anything. In
practice, this results in a demand driven process, where things get done only
when they no longer work properly; at this point, pressure often makes it
difficult to perform a quality repair. But preventative maintenance is
justifiable: As long as a software system is operational, it will need to be
modified. Spending a small amount of time improving code can save a large
amount of time later when trying to modify the code. Incremental approaches to
preventative maintenance are possible: when code needs to be changed, some time
is also spent improving the code. Preventative maintenance can be used to
reduce both micro- and macro-level entropy.

5.4 SuNxMY,

The problem of comprehension must be addressed by any tools or techniques
that aim at significantly reducing the software maintenance effort. The
solutions presented in this chapter are not meant to be comprehensive; they
were simply meant to be indicative of what might be done. A later chapter in
this report presents some ideas for tools that handle these problems.

Various administrative issues have been ignored here, since the goal of this
report is to study technical problems of software maintenance. However, even

technical solutions are applied in some sort of administrative environment, and
thus, administrative issues should not be ignored. Important administrative
issues include: putting design team members on the maintenance team, requiring

- 37 -

r n -+ - -+ . ; • . , • , + .- .. • + , + ; + - . + . + • . + - , , + • . ,. -+
+77.

SUUWY

that documentation be given high priority, allocating adequate time and
resources for training new personnel, etc. This list could go on and on. Many
of these issues turn out to be specific to the particular site in question.
For a technical solution to be successful, it must address a problem in the
specific environment, as well as meshing with the administrative policies.

0

3

- 38 -

S

.--. - ' . - .. - '

-a

6. 0VRVIW OF SOFIAR TICINDOLGY SIARCZ I hUL

L" One of the goals of this project was to investigate advanced technologies
which might help improve the software maintenance process. The major topics
studied (and discussed in this chapter) are artificial intelligence, automatic

- programming, very high level languages, program transformation, formal program
verification, symbolic program execution, and software metrics. Other areas
considered include advanced code generation and optimization, programing aids,
graphics and advanced forms of input-output, and computer-assisted instruction.

S . Future generations of programming tools and systems may well apply many of
these technologies. The discussion in this chapter is focused on technologies
and research areas in general. Specific uses of some of these techniques are
discussed in a later chapter.

6.1 ARTIFICIAL INTILLIGEECI

Artificial Intelligence (AI) is concerned with designing computer systems
that exhibit qualities or abilities generally associated with human
intelligence, such as reasoning, learning, problem solving, vision, and the
understanding and generation of natural language. The field of AI, as we know
it today, has been around for roughly twenty-five years; it sprang from the
union of the first modern (stored program) computer systems with theories of
mathematical logic and computation (due to Turing, Whitehead, Russell, Church,
Godel, and others) and the theories of cybernetics and self-organizing systems
(due to Wiener, McCulloch, Shannon, and others). The main characteristics of
AI systems are symbolic processing (as compared to numeric or textual
processing) and the use of heuristics ("rule of thumb" techniques instead of
"guaranteed" algorithms). Research in AI has not been limited to any single
aspect of human activity; researchers have studied a wide range of problems,
including game playing, image interpretation, medical diagnosis, design
automation, speech recognition, natural language understanding, cognitive
modelling, information retrieval, etc.

Some AI research has focused "inward," applying intelligence and
understanding to the programming process itself. These topics, including
automatic programming, formal program verification, and intelligent user
interfaces, are of direct interest to the software maintenance process. The
following discussion of AI tools and techniques will be limited to those
applicable to the software development and maintenance process.

The idea of using AI to approach programming has a great deal of intuitive

appeal. AI systems are generally realized through their implementation as
computer systems; why not apply AI to computer systems? Even a brief encounter
with programming makes it clear how fruitful this could be. With current

- 39 -

i .. • - - - - .- - -- -- -- - . .- .-- - . - -. .. -" .- . .'. "-. '. ' . .. - ,

Artificial intelligenceI.:

programming practices, almost all high level work involved in the software
process (e.g., designing programs, writing code, finding bugs) is still the
responsibility of the programmer. Tools available in current programming
support environments provide little more than "clerical" assistance. For
example, a text editor, used to create and modify programs, knows nothing about
programs or programming languages; a compiler translates statements (made in a
procedural language) to machine instructions, knowing nothing about what the
program is supposed to do; a debugger provides for the display and manipulation
of data and control flow, but it does not have any notion of what it means for
a program to be bug-free. These tools do not reduce the "cognitive effort"
required by the programmer to create, fix, or extend a program. They have no
knowledge of what the programmer wants to do, is doing, or should be doing.

The techniques and methods of AI address these issues. Reasoning, learning,
and problem solving are precisely the things lacking in current programming
support environments. The key to the future of programming is intelligence.

6.2 AUTOM&TIC PROGRAMMING

Automatic programming is an area of Al concerned with automating parts of the
programming process. The notion of automatic programming has changed over the
years; the first compilers (written in the 1950s) were called "automatic
programing systems" by their designers. The current notion of automatic
programming goes beyond high level languages: it deals with specifications.

Automatic programming systems can be identified by fodr characteristics [Barr
821:

1. specification method - The programmer must communicate his intent to the
computer. Automatic programming systems have provided several methods
for specification. One is formal specification, which involves a
rigorous specification of the program. This specification usually talks
about how the program is to behave (but not how that behavior is to be
achieved). Another method is specification by example: Given a number of
input/output pairs, the automatic programming system attempts to infer
the user's intentions. Yet another specification method is natural
language. The programmer simply states "what the program should do" in
his native tongue.

2. target language - The target language is the language in which the
automatic programming system generates the program. Automatic
programming systems generally write programs in a higher level language
(such as Lisp or Fortran) which can then be compiled by an existing
compiler.

3. problem area - The techniques used by automatic programming systems
usually limit these systems to certain types of problems. One technique

- 40 -

S

Automatic ftoraoig

to increase the power of an automatic programning system is to
incorporate knowledge about the problem area; this is especially useful
in a natural language specification system, where it is necessary to have
additional information to disambiguate the specification and resolve
inconsistencies. Some automatic programming techniques are more suitable
to specific problems (e.g., mathematical problems, data processing
problems).

4. method of operation - Several approaches have been used, with varying L

degrees of success. These include theorem proving (a formal mathematical
approach), program transformation (where a specification is refined by a
series of predefined transformations), knowledge-based/expert system
(which uses a set of rules that codify knowledge about programming), and
"traditional" problem solving (which uses goal-directed searches and
heuristics).

Efforts to construct automatic programming systems are still considered
research projects. Some of the techniques may begin to make their way into
real programming systems, e.g., techniques for translating very high level
languages and program transformations.

6.3 VERY HIGH LEVEL LAUGUAGES

A very high level language (VHLL) is a programming language that provides
capabilities significantly beyond the capabilities offered by traditional high
level languages. The "level" of a language refers to its similarity or
closeness to machine language. Assembly language is a low level language; it
maps directly into machine language, and requires the programmer to be familiar
with the basic cperations of the target machine. Languages like Fortran and
Pascal are considered high level programming languages (HLLs); they provide the
programmer with a computational model that is somewhat higher that machine
level (e.g., by allowing the programmer to talk about variables and loops,
instead of memory locations and jumps). Languages such as APL and Lisp are
considered even higher level, falling somewhere in between RLLs and VHLLs; they J
allow the programmer to talk about arrays, lists, and the composition of
operators. VHLLs such as SETL [Dewar ??] provide yet a higher level
computational model. VHLLs eliminate much of the need to specify the minute .

details of how things are done. They may provide non-procedural or
non-deterministic structures, which allow the programmer to concentrate on
specifying the behavior of the program (instead of worrying about how that
behavior is to be achieved). They provide sophisticated data structures, such
as sets, infinite structures [Ashcroft 771, etc.

VHLLs are closely related to automatic programming. It can be hard to define
the difference between a VHLL and a specification language. VHLLs remain a
research topic because the process of translating a VHLL program into an
efficient program is difficult. Much work has been done on translating VHLL
programs into more efficient programs (e.g., [Schwartz 75], [Low 74], [Dewar

- 41 -

Very Righ Level Languages

791, [Kant 791). Lacking efficient methods for translation, VHLLs can still be
effectively employed, by virtue of their ability to reduce manpower costs.
Even for "semi" VHLLs (like APL), program development times (when compared to
languages such as Fortran or Pascal) are often more efficient in terms of
programmer time by a factor of ten. "True" VHLLs could reduce that programming
effort further. The inefficiencies of a VHLL program can often be more than
compensated for by the reduced development and maintenance costs, especially as
the price of computers falls and the cost of programming (programmers) rises.

The use of VHLLs in real programming environments is somewhat controversial,
and the controversy goes beyond issues of efficiency. Much of the extra
"legwork" required in languages like Ada or Pascal (e.g., exhaustive type
declarations) is considered a desirable feature by the designers of those
languages. If programmers are forced to clearly state the relationships
between all parts of a program, there will be less likelihood of error (or so
the theory goes). The opposing view is that these features are overly
restrictive and that their absence makes the task of programming both easier
and more fluid.

Complete specification does allow certain types of program errors to be
caught at compile time, with relatively little effort. For example, an Ada

* compiler will catch a statement that tries to assign the value of variable of
type X to a variable of type Y. (Ada does strict type checking.) Contrast this
with a language such as APL, which does not do type checking: It even allows a
variable to change types during the course of computation. The only time APL
will complain is when the type of a variable is inconsistent with its context

* (e.g., applying an arithmetic operator to character strings). If objects have
different but consistent types, APL will perform the necessary conversions
(e.g., converting from integer to floating point or converting from integer to
boolean). Thus, APL programmers never have to declare variables, and they
don't have to worry about type constraints. The issue boils down to ease of
use versus rigid specification. For applications such as rapid prototyping,
ease of use is more important; for large, long-term projects, rigid
specification is more important.

* While VHLLs are unlikely to immediately replace HLLs in production
programming environments, it may be possible to integrate VHLLs into HLL
environments. For example, a VHLL might be incorporated into an APSE to
provide a tool for rapid prototyping or to write code that is less critical.
There might be some tools (such as program transformation tools) that could, if
needed, help convert these VRLL programs into HLL programs. An alternative to

* a VHLL is a set of library packages that provide very high level functions.
For example, infinite objects could be emulated used data abstraction
capabilities provided by Ada. These packages might then be placed in a library
for general use.

- 42 -

S

Program Transformtion

6.4 PROGRAM TRANSFORM&TION

Program transformation is the conversion of a program into another
computationally "similar" program, where the degree of similarity ranges from
"analogous" to "equivalent." Transformations may be done for a variety of
reasons: If a program library contains a routine similar to what the programmer
needs, it may be possible to automatically transform that routine into the
desired one (e.g., transforming a hashing routine to use chaining instead of
open addressing [Knuth 731); if a program is written in a non-procedural
specification language, it may be necessary to transform the program into a
more procedural form before it can be translated into some real programming
language; if the program is written using inherently inefficient constructs,
transformation can convert those constructs into more efficient ones.

Taking the idea of transformation one step further, the entire programming

process can be thought of as a series of program transformations or
refinements, going from a high level specification to the actual code. In
recent years, this concept has gained a good deal of popularity, and has been
advocated as the basis for the program development process; for example: r

The path from design to implementation should be by a repertoire of
trausformations, which convert the design into an efficiently runnable
form while preserving the correctness of the design. Ideally, these
transformations should be mechanized to guarantee the preservation of
correctness. [Jackson 821

Program transformation techniques have potential for short term impact on
programming systems. Because of the incremental nature of transformations, it
is possible to incorporate new transformations selectively, choosing ones that
are tried and tested. Many optimizations performed by compilers can be thought
of program transformations which are applied for efficiency (e.g., [Loveman
771, [Arsac 791). Complex languages (such as Ada) may find particular benefit
in transformation techniques as a means of mapping complex constructs into
simpler ones whenever possible.

6.5 FORMAL VERIFICATION

Formal verification is the demonstration that a piece of program is
consistent with a given specification. This demonstration is carried out as a
proof within the framework of a formal system which in most cases is based on
first-order predicate logic. The specification formally describes desired
properties of the program; it may give a complete specification of functional
behavior (relationship between input and output values), or a specification of
certain aspects, like absence of particular runtime errors, security of data

flows, termination, or bounds on running time.

43

Formal Verification

Formal program verification requires the following:

- a formalization of the semantics of the programming language under

consideration;

- a specification or annotation language, in which a programmer can formally

express the concepts that are to be used in specifying properties to be

verified;

- a mapping of specifications and annotated programs into theorems which,

when proved, express consistency of program and specification; these
theorems are commonly called "verification conditions";

1 - the capability for mechanical assistance in carrying out the required
formal proofs as they tend to be rather tedious and lengthy.

Formal program verification is one form of program validation. It differs
from others by requiring rigorous and formal specifications as well as the
capability for reasoning about programs, and in turn provides a much higher
degree of assurance that a program indeed performs as specified. Because of
the inherent difficulty and cost in resources involved in formal verification,
it should be expected to complement other debugging techniques, rather than
replace them.

Research in program verification has lead to a variety of techniques and
implemented systems (e.g., [Boyer 781, [Good 791, [Gerhart 801, [SVG 79],
[Robinson 791). Most approaches are based on the technique of inductive

assertions: A program is augmented by assertions stating properties of input
and output variables and certain critical internal states. An axiomatic
semantics of the programming language allows the programmer to formally analyze
such annotated programs (in particular, to reason about their consistency).

Axiomatic semantics and verification condition generaLors have been developed
for various programming languages, e.g., Pascal [Hoare 73], [SVG 791, Euclid

6 [London 78], Jovial [Elspas 801, and Fortran [Boyer 80]. The programming
languages are complemented by specification languages in which the intended
behavior of programs is expressed.

Existing verification systems are largely experimental. They have served to
demonstrate their usefulness in rigorous verification on at least medium-sized
programs. With a fair amount of effort, substantial programs can be specified
and verified (e.g., the major parts of compiler for Pascal-like language [Polak
80], and, most recently,-a software system for flight control [Melliar-Smith
82]).

- 44 -

6 *1

Formal Verification

The experience with existing systems has also pointed out certain limitations
and weaknesses of already available verification techniques and
implementations. Current research is concerned with extending available
verification techniques and making verification more widely useable.

Formal program verification is often perceived as expensive and
resource-consuming. Available verification systems almost always require an
expert user. Current research is to a large extent motivated by the needs of
application areas in which the requirement of high reliability justifies the
cost of applying formal methods. These include systems or system components
that are required to be secure or ultra-reliable (e.g. operating systems
kernel, flight-control software).

6.6 SYMBOLIC EXECUTION

Symbolic execution means evaluation of a program with (possibly) symbolic
values instead of actual data. Symbolic execution creates symbolic expressions
that represent the values of outputs as a function of input variables, and

* (symbolic) predicates ("path conditions") that characterize the subset of
values that cause the program to execute a particular program path. Symbolic
evaluation thus shows the dependencies between-the values of different
variables and between data and control flows.

Symbolic execution provides a versatile and powerful tool for debugging and
analysis of programs. In comparison with ordinary testing, one symbolic
execution run of a program may correspond to a potentially large (even
infinite) number of normal test runs. There are indications that symbolic
testing is more effective in catching errors than normal testing [Howden 77].

Symbolic execution is normally done by interpreting the source code; it is
thus more expensive than ordinary testing which uses compiled code. Testing by
symbolic execution is therefore probably most useful only for fairly small
program pieces. On the other hand, a program can be executed symbolically even
before all subprogram bodies have been supplied if the programmer provides a
symbolic description (specification) of the effect of subprograms which can be
simulated by the symbolic evaluator. This mode of testing fits nicely into the
currently advocated paradigm of programming with levels of abstractions.

Symbolic execution may be considered a weak form of program verification; it
shares some of the problems of verification systems. In fact, some
verification systems are really symbolic interpreters with an added facility to
understand symbolic assertions, thus providing a capability for program
verification (e.g. [King 751, [Boyer 75]). Symbolic execution can normally be
performed without programmer-supplied specifications (assertions) and often
requires only limited automatic deduction capabilities. The distinction
between verifiers and systems for symbolic execution is primarily one of

- 45 -

Symbolic hxecution

engineering, depending on what particular capabilities are supported by an
implementation. Systems for symbolic execution typically emphasize interactive
and more flexible use than systems for rigorous program verification.

Symbolic execution may be used to generate predicates which characterize
subsets of the space of input data. These predicates provide a basis for the

generation of test cases and selection of test data for which the compiled code
is then executed (e.g. [Clarke 761).

Besides pointing out design and programming errors, symbolic execution may be
helpful in identifying possible places of code improvement, for instance by
locating dead branches in the code [King 811.

More recent work has been concerned with developing a symbolic evaluator as a
kernel for an integrated program development system. A symbolic evaluator

builds up a data structure that records symbolically dependencies between
variables and control paths for the whole program (as opposed to individual
execution runs), thus representing all possible program executions; this data
structure is then used by various other tools in the program development system
(e.g., [Cheatham 79a], [Cheatham 79b], [Asirelli 791).

6.7 SOFTWAE METRICS

Software metrics provide quantitative, and thereby hopefully objective

measures of program complexity. An example metric is the degree of
interconnectivity of a set of modules as determined by an analysis of their
data and control flow graphs. These measures can be used to predict estimated
development or maintenance effort; to guide the development and maintenance
process; or to predict the reliability (lack of errors) of a program. Current
research efforts in software metrics grew out of the work done by Halstead
(e.g., [Halstead 77]).

No one metric will satisfy all needs; different metrics measure different

qualities of a program, and different reseaichers have different ideas about
what is worth measuring. Many different metrics have been proposed and
studied; e.g., see [Baker 801 for a comparison of several metrics. Metrics are
evaluated empirically, in experiments that apply one or several metrics to a
series of programs. These results are then evaluated on a subjective basis.

The uses of software metrics are diverse; they include:

- analysis - Software can be analyzed for "quality," where a high quality
program is one with low complexity. This analysis might be used as part
of the acceptance criteria fur a software system, or might be used to

- 46 -

Software Metrics

assess programmer skill.

- prediction - The complexity of a software system can be used to predict
the maintenance effort (where effort might be cost,, programmer time,
etc.). For example, if a program bug is found in a very complex module,
the cost of fixing that bug will be relatively high.

- control - Metrics can be used as a basis for control and decision making
in the development and maintenance processes. For example, if there were
several ways to correct a bug, the method which increased complexity the
least could be selected. Alternatively, if a proposed change resulted in
a large complexity increase, the programmer/analyst might be required to
find another way of making the change.

There are at least two requirements for the effective use of software
metrics. First, reliable metrics must be chosen or created. Reliability means
that a metric really measures what it is supposed to measure; it implies that
the metric performs consistently over all types of software. Second, baselines
may need to be established to interpret the results of applying metrics to
software: When metrics are used as an absolute measure (as in the above
discussions on analysis and prediction), interpretation is dependent on some
global understanding of what the metric means. This understanding can be
established empirically by deriving a set of baselines, which compare measured
complexity with actual maintenance effort (for some set of maintenance tasks).
On the other hand, if metrics are used comparatively (as in the above
discussion on control), baselines may not be necessary.

47

~- 47 -

7. iUEVIW OF aLATD WORK

This chapter discusses some specific programming support environments and
research prototypes that were reviewed in the course of this project.

7.1 EXISTING ADVANCED PROGRAHING EVIROIKNTS

A programming support environment is an interactive software system that aids
the programmer in many phases of the software life cycle. As one might expect,
it provides tools to help the programmer perform common tasks (e.g., editors,N. compilers, debuggers); it may also provide relatively advanced or unique tools
(e.g., specification tools, configuration tools). However, there are a number
of features that distinguish a programming support environment from a "plain"
programming environment. These have been summarized by [Osterweil 81]:

- breadth of scope and applicability

- user friendliness

- reusability of internal components

- tight integration of capabilities

- use of a central information repository.

The key idea behind a programming support environment is to aid the programmer
in all his activities, by providing both tools and tool-building facilities (to
construct new tools, as needed), as well as providing a flexible and easy to
use ("friendly") interface.

This section describes two of the oldest and best known programming support
environments, Unix and Interlisp. Neither Unix nor Interlisp was designed as a
total programming support environment. Both started out in life as
experimental projects of a much simpler nature: Unix as an operating system,
Interlisp as a Lisp interpreter. Over the past decade, they evolved into
fairly sophisticated programming support environments in response to user
feedback and developer insight.

The discussion overviews the most salient features of each system (but does
not attempt to critically evaluate or cover them in detail). For both systems,
the discussion covers the basic design philosophy ("why is this system the way
it is?"), the key characteristics of each environment ("what distinguishes this

* system?"), and tools that are particularly interesting.

- 48 -

Existing Advanced Progs=ming Kvironmnmts

7.1.1 UNIIX

Unix [Kernighan 81] is a total progranming support environment -- it is an
operating system and a set of tools and languages. Unix was developed at Bell
Labs in 1969 for a PDP-7 minicomputer. Since then, it has been moved to a
variety of different machines, and there are currently several thousand Unix
installations around the world.

Philosophy

The Unix design philosophy has been a major factor in the success of Unix.
The philosophy has been stated (retrospectively) in [Mcllroy 78]:

- Make each program do one thing well. To do a new job, build afresh rather

than complicate old programs by adding new features.

- Expect the output of every program to become the input to another. Don't
clutter output with extraneous information, and avoid stringently columnar

* or binary input formats. Don't insist on interactive input.

- Design and build software to be tried early. Don't hesitate to throw away
the clumsy parts and rebuild them.

- Use tools in preference to unskilled help to lighten a programming task,
even if you have to detour to build the tools and expect to throw some of
them out after you've finished using them.

Key characteristics

As a result of the Unix philosophy, Unix tools have tended to be small and
conceptually simple, thus facilitating a "toolkit" approach to systems
development. The toolkit approach has been enhanced by the Unix command
language interpreter, which provides high level "connectives" for putting
things together.

6
Unix was built around the C language. Most of the Unix system is coded in C,

and all the facilities of the system are available to the C programmer. In
addition to making the code easier to read (and hence maintain), its dependence
on C (instead of assembly language) has made Unix a relatively "portable"
operating system.

Unix supports a uniform I/O structure, based on a hierarchical file system.
File, device, and inter-process I/O are compatible; there is no need to be
concerned with the actual source or destination of I/O operations. Files are
unstructured and randomly addressable.

- 49 -

Kxisting Advanced Progrmaing IKvirommts

Tools

This section discusses some of the more notable Unix tools. We include the
Unix operating system interface (the Shell) here because it really is a Unix
tool (unlike other computer systems, where the operating syatem interface is a
special program).

~ Shell

The Shell [Bourne 78] is a command programming language that provides an
interface to the Unix operating system; it is the basis of the Unix prograing

support environment. A number of different versions of the Shell have emerged
over the years. Most have a large number of features in common; the features
we describe here should be available in every Shell (in some form or another).

As a language interpreter, the Shell provides control and data structures.
For control structures, the Shell supports the if...then statement, for and
while loops, and the case statement. A limited form of exception handling is

'I also available. For data structures, the Shell provides simple variables,
parameters, and the Unix file system. The Shell provides a pattern matching
facility for generating filenames. It also has a macro substitution facility.

The language provided by the Shell is rich enough for "control" programming,
where the primary task is to invoke existing tools. It is not unusual for a
program to be implemented initially by a Shell procedure (possibly augmented by
a few specially written C programs) and then later rewritten in C. This allows
easy experimentation, and as well as easy construction of "one shot" tools.

As an operating system interface, the Shell provides access to many of the
features of Unix. The Shell allows the user to perform computations in the
background. The Shell has a facility called pipes which allow the output from
one command to be used as the input of another command; a similar mechanism
allows input and output to be redirected from or to files. This I/0
flexibility is one of the powerful connective mechanisms that Unix uses to

* allow programs to be put together easily from component parts.

Source Code Control System

Many problems that arise during the software maintenance phase are due to a
lack of adequate control and organization of program source code and
documentation. The Source Code Control System (SCCS) is one of the best known
systems for dealing with this problem [Giasser 78].

SCCS can be thought of as a database facility for textual material. It
* provides facilities for storing, changing, and retrieving all versions of a

- 50 -

.... ,I, ,

~7

Rxisting Advanced Programing ftnironments

text file. When changes are made, SCCS records the changes, but it does not
discard the old text; this allows SCCS to retrieve any version of the text. It
also asks users for an explanation every time a change is recorded, and saves
this information along with the changes.

SCCS provides a tree-like structure for handling versions. In the simplest
(and most common) case, the tree reduces to a straight line: each version is

qalways an update of the previous version. Tree structures can arise for
numerous reasons: a software system may evolve into several separate versions,
or it might be necessary to provide temporary versions (e.g., temporary bug
fixes), which may be replaced when a later "real" version is released.

SCCS does much work to ensure that nothing disastrous happens to the
maintained text. It handles synchronization of multiple readers and writers,

* as well as attempting to protect users against interruptions or crashes. SCCS
* uses the operating system protection mechanism to control the creation and

destruction of text. When an SCCS database is initialized, a database
administrator is selected. The administrator is responsible for providing
users with access privileges to the database.

SCCS has a facility for identifying the version of text file, even if the
text file has been converted by some processor into a different form. For
example, a source code file can be identified, as well as a load module and an
executable file. On some systems, where all code is maintained with SCCS,
users can easily identify the version of any program, without examining the
source code.

Make

Make is a facility for rebuilding a software system automatically and
incrementally. For example, if a programmer changes one module, invoking Make
will rebuild the whole system, but it will only redo those parts that were
affected by the change. Make is very simple (and relatively inexpensive) to
use, yet it eliminates a large amount of routine, error-prone, and time
consuming work for the programmer.

Make can also be used to perform a variety of other tasks associated with
software systems. For example, a makefile can contain information which will
test a system (if the testing can be done automatically) or perform other
housekeeping tasks, such as deleting unnecessary files.

- 51 -

Rziating Advanced Programing Environments

Other tools

As might be expected in an environment touting the toolkit approach, Unix
provides numerous other tools. These tools can be divided into two classes:
programmable and non-programmable. By a "programmable tool," we mean one that
has some sort of input or command language (i.e., something beyond command-line
options). We do not include bona fide programming languages here, for they are
more than just tools.

Some of the popular programmable tools include:

m4 - a macro preprocessor

yacc - a parser generator

lex - a lexical analyzer generator

awk - a pattern scanning and processing "mini" language

rep- a generalized regular expression pattern matcher

sed - a script-based, stream-oriented editor

Some of the popular non-programmable tools include:

head - print first n lines in a file

tail - print the last n lines in a file

wc - count the number of characters, words, and lines

diff - differential file comparator

man - find and print information from the manual

sort - sort or merge files

find - find files with specified attributes

-52-

Existing Advanced frogrmming Environmeuts

7.1.2 IUTIRLISP

Interlisp is a programming support environment based on the Lisp programming
language [Teitelman 78], [Teitelman 81]. It is considered by many the most
sophisticated programming support environment in existence.

Philosophy

The basic tenets of the Interlisp philosophy have been stated in [Teitelman
81]:

- The Interlisp environment is aimed at research and experimental

programming, rather than produ:tion programming. The language and
environment provide for a great deal of flexibility, allowing for growth
necessary in experimental systems.

- Interlisp tries to do as much work for the programmer as possible. Its
designers were willing to expend computer resources to improve human
productivity.

- Interlisp is a system for experts. Its designers believed that users
would prefer sophisticated tools, even at expense of simplicity. Hence,
mastery of all of the tools and facilities is quite difficult, but
achieving competency pays off in the long run.

Key characteristics

- Interlisp is a programming support environment built around one language
(Lisp); much of Interlisp itself is coded in Interlisp. -'

- The Interlisp system is well integrated. All of it "lives in one
environment" (i.e., one address space), and there is a great deal of
sharing (hence dependence) between different parts of the system (e.g.,
tools share common data structures and subroutines).

- Interlisp is a flexible and extensible system. It contains a large number
of parameters and "hooks" (in the tools and in the underlying interpreter)
as well as sophisticated macro facilities. A good deal of flexibility is
due to the inherent flexibility of the Lisp language itself.

Tools

This section discusses some of the more notable Interlisp tools.

- 53 -

a
Existing Advanced Programing Environments

The file package

. The Interlisp programmer views Interlisp as a "residential" system -- all
* relevant programs and data structures are kept inside the Interlisp

environment. All actions and changes are also relative to the current
environment. This information usually must be saved, at some time or another,
on a file (provided by the resident operating system). For example, functions
used by an Interlisp programmer may be kept in several files. When the
programmer changes a function, the new version will be present in the Interlisp
environment, but will not be in the file. These changes must be made to the
appropriate file or else they will disappear, since the residential environment
"disappears" when the user exits from the system. The Interlisp file package
provides a mechanism that keeps the residential environment consistent with the
permanent file system. This mechanism can also be used directly by the
programmer to "checkpoint" a running program, saving necessary information to
allow recovery from a crash.

Masterscope

Masterscope is an interactive program for performing program flow analysis
and cross referencing. Masterscope works in an incremental fashion: it
maintains a database of the state of the "world" (i.e., what the programmer is
working on), and updates it when the programmer makes a Masterscope request.
Masterscope is well integrated into the Interlisp environment; not only can it
provide information, it can be used to apply "program transformers" based on
the results of a request. Masterscope goes a step beyond other cross reference
tools by allowing a request to include a transformation based on retrieved

* information. For example, the request

rename the function oldcommand to be newcommand

renames the function "oldcommand" to be "newcommand," and then changes all
function references to reflect the new name. Note that other references to the
symbol "oldcommand" are not affected.

Masterscope uses a number of heuristics and assumptions to circumvent
complexity problems. It also knows about the assumptions it is making, and can
warn programmers about those assumptions.

DWIM (Do What I Mean)

DWIM is a sophisticated spelling and syntax error corrector. It is a unique
system; there appears to be no other programming support environment with a
similar facility. DWIM can perform different types of transformations: Some it
performs automatically; others, it first asks the user for permission. When an
error is fixed, computation continues; but first, IDIM also repairs the cause

- 54 -

Sxiating Advanced Pograing hvirommenta

of the error (wherever possible).

DWIM can fix spelling errors. It bases its corrections on a spelling list of
possible words and a "closeness" metric for comparing the misspelled word with
words on the spelling list. WIMN has a number of rules for fixing other types
of errors, including certain types of syntactic and semantic errors.

DWIM provides the programmer with a good deal of control over the correction
process. IWIM can be turned off entirely. It can operate in "TRUSTING" mode,
where IWIM can make corrections without programmer approval, or in "CAUTIOUS"
mode, where approvals are necessary. By default, when NWIM asks for the
programmer s approval, it waits a prespecified amount of time, and then makes

rg the correction automatically if no response has been received.

The DWIM facility is also directly available to the programmer. For example,
the programmer could incorporate spelling correction into input processing for
an application program simply by providing a spelling list and setting desired
parameters.

Advising

Advising is a simple and clever mechanism. It essentially allows
modification of a function without knowing how the function works, or even what
it does (i.e., it treats functions as black boxes). It does this by modifying
the interface between functions (and not the function itself), allowing
arbitrary actions to be performed when a function is entered or exited. While
this technique is not recommended for writing permanent code, it is useful for
debugging and also for trying to understand how a program works.

Programmer's Assistant

The programmer's assistant is an intermediary between the programmer and the
Interlisp system. It records all of the programmer's inputs, a description of

* the side effects of each operation, and results of each operation. The
programmer can refer back to a previous action (or group of actions). A
previous action can be printed; it can be redone; it can be redone with
modifications (e.g., with different parameters, with errors corrected); or it
can be undone.

U
The facilities provided by the assistant are tremendously useful in helping

the programmer. It goes without saying that the capability to "undo" actions
is a simply fantastic feature, not available in any other programming support
environment. The "redo" capability can be thought of as a simple learning
mechanism, putting a good deal of intelligence in the hands of the programmer.

I

- 55 -

Eziating Advanced Protrmng hnvironmts

Like all of the other tools in the Interlisp environment, the prograumer s
assistant mechanism is available to Interlisp programs. This allows an

applications prograer make the redo and undo features available to the user.

* 7.2 CURRIUT RESEUCE PROJECTS

Many research projects were reviewed in the course of this study. Most were
ME reviewed via the technical literature or attendance at conferences and

workshops. A number of key project teams were visited in person for detailed
discussions. Rather than summarize all of the many projects investigated, we

limit the discussion here to three important research efforts that have

influenced our ideas regarding software maintenance tools. In addition, we
note ongoing work at AI&DS that has resulted in a preliminary design and some
key techniques for an intelligent program editor [Shapiro 82].

7.2.1 Stanford Verification Project

Goals

The Stanford Verification Project is concerned with the design and

implementation of languages and systems that support the development of
reliable software. The goals of this work are tools that support application

of verification techniques and related methods throughout the development of
programs, from initial design to testing and maintenance, and the methodology
of their use. The tools are to be integrated with other components of the
programming environment. A further goal is the development of a methodology of
specification and annotation of programs.

Approach

The development of a high-level specification language tailored to current
high-level programming languages is central to this research effort. The

annotation language Anna extends the programming language Ada by addition of
formal comments. Formal comments are constructed with the same precision as
the program text proper; they are intended to be processed by advanced tools
including a verifier, debugger, compiler, and documentation system.

The tools under development are being integrated in a prototype

* programming/verification environment. The environment can be adapted to
different programming languages, and is extensible so that new tools can be

added as they are developed. Emphasis is given to the interface between the

various tools and the user interface.

*The tools run off a common internal representation of programs and
specifications. Most of the tools depend on a capability for mechanical

- 56 -

S

4
Cmrrent Research Projects

reasoning. The theorem prover is being designed in such a manner that it can
be used by other tools as a subsidiary tool as well as by the user directly;

(accordingly, it includes components that perform simple reasoning tasks totally
automatically, and an interactive component for guidance in more difficult
proofs.

The system designs and implementation currently under way are intended to be
language independent; the primary target, however, is the programming language
Ada. The system is intended to support various forms of formal program
validation techniques, from test case generation to symbolic debugging,
analysis for specific run-time errors and formal verification.

Current status

The design effort for the verification environment benefits from the
experience gained from using the Pascal verifier previously developed at
Stanford. A preliminary design of Anna has already been published
[Krieg-Bruckner 80]; a revision of this design and a formal definition of the

language are in preparation. Some parts of the environment are operational in
experimental form (e.g., syntax-driven display editor, Ada compiler).
Currently, the integration of parts of the compiler into the editor (static
semantic analysis) is under investigation. Several special analyzers are under
development, e.g. a deadlock checker for systems of Ada tasks. The theorem
prover component of the Pascal verifier has been re-designed, and languages for
expressing specification concepts and guiding mechanical proofs are being
developed.

7.2.2 Programer's Apprentice

Goals

The Programmer's Apprentice Project (PA) is a research effort at MIT looking
into the area of program understanding [Rich 781. The goal of the project is
to support all phases of program development by creating a system which models
the organizing principles of code. The research takes the viewpoint that
programs are structured objects (at both low and high levels of resolution),
whose components can be represented explicitly. Given this representation, a
powerful capability to analyze and manipulate code has been developed. There
are two additional emphases in the PA research: an incremental model of program
development, in which the Apprentice assists and possibly advises the
programmer at each step of the way, and an analysis of existing systems into
their component parts (in order to bring other programs into the domain of the
Apprentice).

- 57 -

I

Current Research Projects

, Approach

CThe Apprentice views the primitive building blocks of code to be stereotyped

patterns of data and control flow. It uses these to represent slightly more
complex constructs such as iterations and expressions. The Apprentice
distinguishes several types of patterns in this domain, including: generators;
filters and terminators for describing looping behavior; and compositions,
predicates and conditionals for expressing straight line code. (Generators
produce a sequence of values, filters restrict them, compositions linearize or
segregate operations by data flow.) Using these concepts, programs can be
parsed into a collection of simple purposeful parts.

At the next level up, the Apprentice considers programs to be largely
U composed of cliches, meaning the typical programming actions that form a major

part of every programmer's repertoire. Examples of cliches include splice-in
operations, list insertions, and hash tables abstractions, as well as a queue
and process strategy, which is often used as to drive the function of many
routines. Cliches are built out of the data and control flow primitives
described above. One cliche may include another, or two may overlap, but the

* important point is that cliches organize large chunks of code into well
understood entities.

The representation which captures this analysis is called a plan. Plans are
an alternate method for expressing programs; they provide a representation that
does not obscure program features critical to analysis. Plans have several
important attributes:

- They ignore the way in which control and data flow are implemented. It
makes no difference if a program uses conditionals or gotos, it still maps
into the same plan. Similarly, all possible methods of using variables to
propagate values are judged equivalent.

- They associate related segments of code which may have been separated in
the original text. The fact that one piece of code outputs data which
another consumes is a evidence that both are working toward some unified
purpose.

- They are partitioned into fragments which have stereotyped behaviors.
This means that plans embody a simple semantics for the low level
structures found in program code.

Applications

The Programmer's Apprentice uses its knowledge of plans to support a number
of operations on code. For example, during the editing process, the Apprentice
can perform a semantic consistency analysis every time the programmer
introduces a change. This allows it to recognize a permutation of primitive

- 58 -

Current Research Projects

operators (e.g., a car for a cdr in Lisp) as an error in the implementation of
a specific aspect of a hash table. The Apprentice can also carry out some
manipulations automatically. For example, it will be able to rewrite a sorted
file abstraction to operate on keyed data. This transformation can be
accomplished in part by filling in vacant slots in cliches.

Other applications have significantly used the recognition capabilities of
the Apprentice. A system for understanding bugs was developed which first
recognized the type of function that was being performed, and then analyzed the
error [Shapiro 81]. A system which will produce high quality assembly code,
using a plan based analysis of the task, is under development. There have been
additional efforts within the Programmer's Apprentice project in automatic
documentation and semi-automatic translation which rely heavily on plans.U

Current status

At the current time, the Programmer's Apprentice project is primarily
concerned with developing a large scale, integrated system that demonstrates

* its ideas. The first research task along this line is to develop a recognition
engine which can break programs down into collections of cliches. This problem
has been cast in the format of a sophisticated pattern match of a plan against
a library of known cliches. The system which produces those plans given the
text of prL 6rams exists in implemented form, and an extensive library of
cliches has recently been published [Rich 81].

In terms of applicable techniques, the full impact of the Programmer's
Apprentice technology is a number of years away. This is true in part because
the Apprentice is a computationally complex system, but more importantly
because it requires a tremendous knowledge base before it gains a reasonable
coverage of programming activities. The Apprentice project also has a number
of research issues to pursue in order to adequately support incremental program
development.

In terms of the techniques which might be currently applicable in Ada
* environments, the analysis of programs into plans is a candidate. A knowledge

based editor, which aids in the construction of programs from cliches, has been
implemented [Waters 82]. A template based editor could be written to build
cliches (or other structures) using the vocabulary of plans. However, it might
be more appropriate to think in terms of programming support tools which use
the notion of cliches, but forgo the generality inherent in the Programmer's

* Apprentice by using less sophisticated representations.

7.2.3 Gandalf

- 59 -

0

Current Research Projects

Goals

UThe Gandalf project at Carnegie-Mellon University is aimed towards an
integrated programming support environment to improve the efficiency and

*: reliability of the software development process [Habermann 82]. Gandalf goes
further than trying to help the individual programmer working with a single
program: It also addresses the issues of project management and version
control. However, instead of building one programming support environment that
can handle these problems, the Gandalf project is trying to build a system that

can generate support environments for different programming languages. A
Gandalf environment (i.e., an environment generated by the Gandalf system)

provides a uniform interface for the programmer which is based on the syntax of
the target programming language and other tools that are part of the Gandalf

* environment.

Approach

To generate a Gandalf environment, the Gandalf system requires a formal
description of the abstract and concrete syntax of the target programming
language, as well as any necessary semantic routines. Using this formal

description, a system called ALOE (A Language Oriented Editor) is generated
[Medina-Mora 821. (Note that the generation process is concerned primarily

with the incremental programming component of Gandalf, and secondarily with the
version control component; however, the project management component is
independent of the target language, and so it does not have to be regenerated

for each Gandalf environment.) ALOE is a syntax oriented editor which has
commands for constructing and editing a Gandalf database. All components of a
Gandalf environment (incremental program construction, system version control,
and project management) operate on a common database. Thus, only one interface
is necessary for all steps in the programming process.

As a syntax oriented program editor, ALOE allows the programmer to talk about
program in terms of syntactic constructs, rather than lexical constructs. This
prevents a programmer from entering a syntactically incorrect program. ALOE
provides incremental program compilation; programs are compiled as they are
created or changed (without invocation of a compiler by the programmer). Thus,

compile time errors are caught almost immediately. Programs can also be run
and debugged from ALOE. Initiating the execution of a program takes little

time, since the program will usually be fully compiled, due to incremental
compilation. Breakpoints and debug statements can be inserted directly into

the text of the program, thus providing a simple yet effective debugging
* mechanism.

ALOE can act as a syntax editor to interface to the System Version Control
Language (SVCE) [Kaiser 821. This language provides the programmer with a way

of specifying the relationships between program components and versions. The

0 version control specification techniques grew out of work presented in [Ticdy

801.

- 60 -

0 @ Current Research Projects

Finally, ALOE provides an interface to the Software Development Control (SDC)

component of Gandalf, which provides project management facilities. SDC

handles a number of tasks, including synchronization of multiple programmers
working on one project, change logging, and protection and authorization
issues. The SDC component controls the state of the software; by using the
version control facilities, it can ensure that software is in a consistent
state before the software system is rebuilt.

Because of the integrated approach taken by Gandalf, the programmer may not
even be aware of the version control and project management components. ALOE
is capable of automatically invoking these facilities at certain times (e.g.,
automatically recompiling a module that is dependent on a module that has just
been changed).U
Current status

A prototype Gandalf envircnment for a dialect of the C programming language

currently exists and is being experimented with. A Gandalf environment for the

* Ada language is anticipated; however, the complexity of Ada may complicate the

generation of such an environment. Also, some of the techniques developed for

the Gandalf prototype may need to be discarded for an Ada Gandalf. For

example, some of the version control mechanisms could be replaced by constructs
provided directly by Ada; the central database provided by an APSE may be used

instead of the current Gandalf database. But overall, the Gandalf paradigm
seems quite powerful, and many of the techniques developed in the Gandalf

effort will most likely make their way into future versions of APSEs.

611

Et

II

Iq

- 61 -

8. DESIGNING ADVANCED TOOLS TO EASE MAINTEIANCE

* One of the major goals of this study was to develop designs for maintenance
tools aimed at improving productivity and reliability. This chapter presents
some general issues that are important considerations in designing tools.
(Designs for specific tools are presented in the following chapter.) While
there are many issues that might be discussed here, this chapter focuses on two
particularly interesting topics. The first is software productivity, which is
a topic of interest in most studies of the software life cycle. The second
topic covers several trends and techniques that may have an important impact on
advanced tools.

8.1 SOFTWARE PRODUCTIVITY

Software Productivity refers to the rate at which software is developed and
maintained. Traditionally, productivity has been measured in "lines of code
per man-month" [Gloss-Soler 79]. A more qualitative definition defines
software productivity as the rate at which useful work is performed on
software. Because the development and maintenance of software is a
labor-intensive process, software tools aimed at improving the process should
take into consideration factors that might directly influence productivity.

iReifer 82] has identified several of these factors affecting software
productivity. He calls these the "five Ms"

1. management - Administration and organization are necessary in any
programming environment. Management functions are generally performed by
people. However, some of these functions can be performed by (or with
the aid of) software tools (e.g., keeping people informed of schedules,
keeping programmers up to date on available tools and subroutine
packages, making sure that software is checked for adherence to
standards).

2. motivation - Simply giving a tool to a programmer is not sufficient.
Management must motivate its use, by explaining why the tool should be
used, and providing positive feedback when it is used. The tool itself
should give some feedback to the user. For some tools, such as a display
editor, this requirement is obvious. For other tools, such as a program
checker, feedback is often omitted under certain conditions (e.g., when
the tool encounters no errors).

3. methodology - Use of methodologies (in all phases of the software life
cycle) will have a positive impact on the process, by providing a
systematic way for performing sets of tasks. For example, various

0 programming methodologies (such as functional decomposition, data flow
design methodology, and data structure design methodology [Bergland 811)

- 62 -

UA

0
Software Froductivity

provide techniques and rules for designing and coding software.
Promoters of specific methodologies sometimes promise miracles for
faithful followers. However, any methodology (within reason) is
generally better than no methodology at all, since the simple step of
systematizing the process is often sufficient to increase productivity.
Acceptance of a methodology (by both management and technical staff) is
generally the most difficult step; once in place, it is easier to replace
an ill-suited methodology with a more appropriate one.

The design and selection of methodologies is still very much an art, and
must be performed by people. Once a specific methodology (or set of
methodologies) is selected, software tools should be provided to aid each
step of the methodology.

4. mechanization - The primary function of software tools is to mechanize
(i.e., automate) the software process. Just as methodology helps
systematize high level tasks (like designing the control structure of a

* program), mechanization systematizes lower level tasks that are best
performed automatically (e.g., checking standards, logging changes).

5. measurement - Measurements of performance are necessary to judge both
programmers and software. Used appropriately, this data can be used to
objectively improve the software process. For example, performance
statistics for a programmer can be useful in directing an educational
program; statistics about the quality of a program can be used to help
decide if the program should be modified or rewritten.

Few individual software tools address all of these issues. However, designers
of programming tool sets should take all of these issues into account. While
the focus here was on the "five Ms" with respect to software tools, the "Ms"
can also be considered from the viewpoint of managers or programmers; this
would be an appropriate topic for a project studying the "human component" of
the software life cycle.

8.2 TRENDS FOR ADVANCED TOOLS

* Turning from the issue of productivity, this section addresses some slightly
more technical issues. In surveying existing tools, as well as research
efforts, some particularly important trends and techniques have surfaced,
namely: integration, intelligent user interfaces, domain knowledge and
reasoning, history, and incrementalism. These trends represent important
paradigms for the entire programming process, capable of forming the basis of a
new generation of programming tools. Other than that, these trends are fairly
dissimilar, varying in scope from the very broad to the fairly specific. The
remainder of this chapter discusses these trends in more detail. The following
chapter presents designs for a number of advanced tools for the maintenance
environment which make use of all these concepts.

- 63 -

6

Trends for Advanced Tools

8.2.1 Integration - Tools That Work Together

There is a saying that "...the whole is more than the sum of its parts."
This notion of synergy is important in the design of software tools. When
several tools work together, they may provide something that neither one could
alone provide. The term integration is used here to refer to the degree of

*' synergy and close coupling between tools. Tools in a well integrated system
exhibit a large degree of synergy (as a result of working well together).
Since synergy results from interdependencies, integrated tools are likely to
share information, share common procedures, or provide complementary functions.
Systems such as Interlisp [Teitelman 811 and Unix [Kernighan 81] owe a large
amount of their success to their integration.

UI Well integrated systems provide several important advantages:

1. Human comprehension is aided by the uniformity provided by a well
integrated system. A consistent underlying philosophy aids users in
making inferences about how the system works.

2. An integrated tool set allows one to put tools together quickly in order
to perform tasks that may have not even been envisibned by the system
designers. This benefit is well known by Unix users.

3. Integrated tools work together, allowing more efficient and effective
performance. Efficiency is gained when tools can make use of each
others' work, eliminating redundant computations; for example, symbol
tables created by the compiler can be used by debuggers, linkers,
cross-reference listers, etc. -ffectiveness is increased when tools can
make use of each others' information; for example, a compiler may be able
to apply optimizing code generation strategies by getting information
from the program verifier that the compiler cannot deduce by purely
syntactic means.

Related to integration is the idea of completeness. Completeness means that
the user should be able to do everything that might be needed. The beauty of
an integrated system is marred when a user has to expend a large amount of
energy to do something that is conceptually easy but the system does not allow.
An integrated system should provide a mechanism to allow the user to perform
these sorts of tasks. For example, the vi text editor [Joy 801 is a display
oriented editor that provides a basic set of text editing functions. It
provides an escape mechanism that allows the edited text to be fed to other
programs (which are independent of the editor); e.g., text formatters. This is
easier (and faster) for the user than saving the edited text, exiting from the
editor, running the program, and then restarting the editor with the modified
text. As another example, the Interlisp system allows certain common
monitor-level commands to be performed without leaving the system; to perform
other commands, there is a simple interface that creates a new process running
the operating system's command processor, allowing the user to execute

- 64 -

Trends for Advanced Tools

arbitrary commands and then return to Interlisp without any loss of continuity.

Designing a consistent yet usable system requires a great deal of ingenuity
and insight on the part of the designers. But the effort does pay off; look at
the popularity of Unix. The APSE (Stoneman) also specifies an integrated tool
set; the success of this requirement will be seen as APSEs are implemented and
used.

8.2.2 Intelligent User Interfaces

An intelligent user interface can be seen as a programming support system
that provides (in varying degrees) some of the intelligence and assistance that
a human programming assistant might provide. An intelligent user interface not
only makes life easier for the programmer; it helps increase programmer
productivity and software reliability.

What kinds of features might an intelligent user interface provide?

- programmability: The user interface in a programming support environment
should provide the programmer with tools for programming his own work.
Many programming tasks are repetitious or systematic. The programmer
should be able to write a simple program to perform a task (unencumbered
by the burdens of modern programming languages), or, better yet, have the
system learn how to perform the task by watching the user perform it
(e.g., [Waterman 78]). Also, an initial set of high level commands,
performing common sequences of lower level commands, should be provided
(e.g., a command to compile, link, and execute a program).

- error prevention: By making '%ad" things hard to do, it is less likely
that they will be done inadvertently. [Conversely, good things should be
easy to do.] Warnings about dangerous actions, before they are performed,
further reduce the chances of error.

- error detection and correction: It is not to difficult to catch many types
of errors automatically. Every attempt should be made to catch errors as
early as possible; the later an error is detected, the more expensive it
is to fix. Error diagnostics should be meaningful to the user, not only
to the person who wrote them. Some errors, especially silly, careless
ones (e.g., spelling errors), can be corrected without too much
difficulty.

- recoverability: If an error is made, the user should be able to recover as
easily as possible. The system should have safeguards to provide the user
with certain paths of recourse, e.g., by allowing actions (such as
deleting a file) to be undone. "Forgiveness" is important; making a
blunder is bad enough; one should not have to spend hours or days to right
it.

- 65 -

Trends for Advanced Tools

- active help: If the user repeatedly does things incorrectly, there may be
no need to wait until help is requested. In many cases, the user may not
be aware that help exists, or may not know how to ask for it. Help should
be offered automatically.

- non-interactive mode: The system should be able to function without human
intervention if necessary. If a programmer leaves the terminal while
performing a task, there is oftentimes no need to bring things to a halt
when only trivial human input is needed.

8.2.3 Domain Knowledge and Reasoning

* One way of making tools and systems easier to use is to endow them with a
certain degree of "intelligence." Most tools do not have any idea what they
are doing; for example, text editors don't know anything about editing computer
programs, nor do compilers understand what programs are supposed to do.

Domain knowledge and reasoning can be quite useful in a programming support

environment. This is nicely illustrated with an example from an analogous

situation. Suppose you had a technical manuscript that needed to be typed. If
you gave the manuscript to a typist who spoke no English, you would expect, at
best, a word-for-word typewritten copy of the manuscript. If you gave it to an
English-speaking typist, you would hope that simple errors, such as
misspellings and punctuation errors, would be fixed. If you gave it to an
English teacher moonlighting as a typist, you wouldn't be surprised to find
that some of your prose had been changed and improved upon. And if you were
lucky enough to find a typist familiar with the domain of discourse (of the
manuscript), you shouldn't be surprised to find factual errors corrected.

*The problem of getting the manuscript typed with the best possible result is
similar to the problem of writing a program. You select some type of editor to
use for entering the program text. A standard text editor would be comparable
to the non-English-speaking typist: Text is entered exactly as typed, with no
enhancements. The English-speaking typist could be compared to a

* syntax-oriented editor: one which can eliminate syntactic program errors and
misspelled keywords. The remaining two typists have a fair degree of
knowledge, and understand how to apply it. The English teacher/typist knows
about the language itself (rather than content of what is being said). This
situation is comparable to a programming language-specific editor, which
applies knowledge about the domain of programming; the editor can help with
general programming techniques, can catch certain types of semantic errors, can
make style suggestions, and can improve the general flow of the program. The
technical typist who understands the content of what is being said is analogous
to an editor which utilizes knowledge about the application domain. It can
help with domain specific techniques, such as algorithm development, and can
catch certain kinds of pragmatic errors which are dependent upon the specific

application domain.

-66-

Trends for Advanced Tools

So, in a programming support environment, it is desirable to have two types
of expertise, programming expertise and application expertise. An "ultimate"

C goal might be to endow the system with expertise equalling that of a human; the
system would exhibit programming expertise comparable to that of a computer
scientist, and application expertise similar to that of a domain specialist.
Note that in a programming support environment, the latter type of knowledge is
more specialized, hence less widely applicable (a new knowledge base is needed
for each application area).

To construct these types of capabilities, both domains have a need for
representation and modelling of human users. It is necessary to understand the
programmer's actions (what he is doing) and intentions (what he will be or
wants to be doing). Knowledge cannot be applied effectively unless there is
some technique for deducing what is happening. For example, an editor
incorporating programming domain knowledge needs to know what parts of a
program the programmer will be writing or changing, as well as the (expected)
effect this will have on other parts of the system. An editor incorporating
application domain knowledge needs to know what techniques the programmer will
be utilizing, as well as the type of output and results expected.

I

The use of domain knowledge and reasoning in the programming environment will
drastically change the whole concept of programming. It will allow the
software tools to truly help the programmer, freeing the programmer to
concentrate on higher level issues.

8.2.4 History - Keeping Track of What Has Been Done

The notion of computational history refers to the information available
during the course of some computation. For example, when using a text editor,
the history includes the editing commands as well as the inserted and/or
deleted text; when using a compiler, the history includes the original source
code, the parse trees, parse tree transformations, and generated code. Some of
this information has no long term value beyond immediate consumption by a
program; but much of the information is quite valuable, either because it is
expensive to recompute (e.g., parse trees for a large module) or because it
cannot be recomputed (e.g., record of all operations performed by the user).
The predominating practice of discarding this information must be re-examined.
It is becoming apparent that effective programming environments must capture
and provide access to this type of information.

There are numerous reasons why history is a necessary ingredient for advanced
programming environments. First of all, sophisticated programing environments
must allow programmers to make changes incrementally, so that the cost of
making small changes is small (see next section for more detail). To
accomplish this, intermediate results of various system tools and utilities
(e.g., compilers, linkers) must be kept around. Another need is
accountability: records of all important activities should be maintained so it

- 67 -

Trends for Advanced Tools

L

can always be determined what has been done and who has done it. Important
activities include things like changes to code, document updates, system
builds, etc. From a user interface perspective, preservation of a history is
also desirable. Some programming systems, such as Interlisp, allow the user to
see a record of what has been done, and allow transactions to be "replayed."
Finally, history is necessary for the application of programming domain
knowledge and reasoning (see the previous section). To understand what the
programmer is doing, it is necessary to understand the context in which the
programmer has been working.

The Interlisp programming environment has a history mechanism which is well

integrated the programming environment, and APSEs have databases that also
* provide the requisite mechanisms.

8.2.5 Incrementalisu

Support of incremental change is vital for the maintenance of all but the
smallest systems. It is unacceptable and unnecessary to require a whole system
to be rebuilt each time a small change is made: unacceptable because the cost
is too high; unnecessary because changes usually leave many parts of the system
unaffected.

The move toward building systems that handle incremental change has been
slow, primarily since it is (in general) more difficult to build tools that are
incremental. There are several problems. First of all, new algorithms may
have to be devised, or old algorithms modified, in order to handle "batch"
requests as well as incremental requests. Another problem is lack of
information: most tools throw out information as soon as they are done with it,
rather than leaving it around for future reference. An example of this is
symbol table information, which the compiler builds up for each module and then
usually discards. This means that the symbol table must be rebuilt for each
recompilation, even if code changes had no effect on it.

Incrementalism is a technique vital for the development and maintenance of
large systems, yet few existing programming tools make use of it. Aside from

some research on incremental techniques for syntactic parsing, most attempts at
incorporating incrementalism have been somewhat ad hoc (and less than generally
applicable). The idea of incrementalism falls out naturally when some of the
other techniques discussed earlier in this section (e.g., history) are
incorporated into the programming environment.

- 68 -

i

[..

9. ADVANCED TOOLS FOR SOFTWARE]IUTIMAUCM

This chapter describes several tools that could be particularly important
with respect to the future development of maintenance programming environments.
These tools are not meant to be an exhaustive list of useful tools; such a list
is beyond the scope of this project. Nor are these tools meant to represent an
integrated or complete set: it is assumed that they will reside in a
programming support environment such as the APSE, which already provides the
basic necessities. Each of the selected tools satisfies the following
criteria:

-the tool should have potential for making a significant impact on the
maintenance process;

- the tool should be either unavailable (i.e., no ie has ever built one) or
else not widely known and used;

- the tool should benefit via application of advanced technologies (e.g.,
AI)

There are other tools satisfying these criteria which have not been listed
here. The goal here was not to catalog all possible tools, but rather to
select a particularly important subset.

As these tool are described, it may appear that the their goals are often
ambitious. However, each tool has components that are immediately realizable,
as well as components that are research efforts. Thus, each tool might be
considered a family of tools, of which some members are feasible in the short
term, while others members will take more time.

* . This chapter contains nine sections, each of which describes one tool. Two
of the tools, the Programming Manager and Intelligent Editor, may be classified
as Gcwmprehensive or meta-tools in that much of their function is to provide a
standard-i&Vd interface to other tools (including some of the other tools
discussed hite). Four other tools are much more focused on one problem or
aspect of software maintenance; these tools are the Metrics Tool Set, Style
Analyzer, Change Propagation Detector, and Test Case Analyzer. The breadth and
nature of the activities of the remaining tools are somewhere in between the
comprehensive and focused tools; these are the Documentation Assistant,
Intelligent Tutor, and Annotation Language.

The proposed tools are given names that attempt to describe their functions;
there are no clever acronyms (but suggestions are welcome!). To differentiate
between generic tools and specific instances of the proposed tools, the

-69-

0

convention of treating the names of specific tool instances as proper names is
used (i.e., first letters are capitalized). Each tool description contains the
following parts:

abstract - a short overview
need - the problem the tool is aimed at
approach - how the tool tackles the problem
use - how the tool will be used
examples - more specific instances of tool use [optional]
issues - miscellaneous issues relating to feasibility, etc.
time line - representative examples of what could be developed

in the following time periods:

short term (under 3 years)
medium term (3 - 7 years)
long term (over 7 years)

I7

- 70 -

Programing Manager

9.1 PROGRANKING MANAGER

abstract

The Programming Manager is a tool that will help improve the program
development and maintenance process by ensuring the systematic application of
managerial and technical policies and methodologies. It will also provide a
basis for transferring procedural and heuristic knowledge between programmers.

need

There are three problems of particular importance in the maintenance
programming environment:

1. In any programming organization, there exist management policies and
standards that programmers are supposed to follow. Organization-wide
programming standards help promote quality and reliability, and ensure
that programmers can be moved between projects without significant
retraining. Unfortunately, the complexity and volume of such policies
and standards can be overwhelming, and so are often ignored.

2. When working with large software systems, programmers spend a lot of time
learning (but then forget) how things work. During the process of
modifying and debugging code, a programmer really begins to understand
the minute details of the code. This knowledge is lost as soon as the
programmer stops working on that section of code or leaves the
organization. There is a real need to capture at least some of this
information. The usual routes for recording information - manuals,
memos, reports, etc. - are often not considered appropriate repositories
for this information, which may be low level, obscure, and often
heuristic.

3. In modern programming environments, programmers are faced with a large
number of tools, each applicable to certain parts of the software life
cycle. Some of these tools are absolutely necessary, and each programmer
quickly learns how to use them (e.g., editors and compilers), though many
of their intricate commands or parameters may be soon forgotten. Other
tools may not be used as often, and programmers may forgot how to use
them (e.g., macro preprocessors, debuggers). Some tools may provide
functions that are not vital to the process of getting a system to work;
hence, they are forgotten or ignored (e.g., style analyzers, execution
time profilers). Programmers need assistance in making effective use of
these tools. Manuals and on-line documei.tation are not adequate, for
they provide information only when explicitly consultel and thus don't
help in selecting tools that the programmer doesn't kxi,. about or has
forgotten.

- 71 -

0
Programing Manager

approach

The Programming Manager is an expert system whose domain of expertise is the
programming process. It will collect and maintain rules and information
relevant to the process. Rules can range from administrative rules (e.g. when
to file change reports) to technical (e.g. how to debug code); they can be used
to structure the programming process, or they can be used to aid a programmer
working on a complex module; they can be entered when the Manager is first
deployed, or they can be entered on the fly by a programmer as he learns how a
module works. Information maintained will include records ot what the
programmer has been doing as well as the status of the target software. The
Manager will use this knowledge to help the programmer through the morass of
tools and policies typically found in a programming environment, thus
permitting the programmer to work effectively in an environment that is too
complex for people to thoroughly comprehend. Thus, the Manager is an
intelligent user interface to a programming environment.

use

The Programming Manager's job is to both help the programmer and enforce
policies. The Manager could function in several different modes: it could aid
the programmer only when asked for help, in the meantime watching (and
recording) all that the programmer does; it could aid the programmer when it
deems necessary, e.g., when the programmer has neglected an important step; or
it could lead the programmer through every step of the process (an excellent
technique for training new programmers). One goal of the Manager is to be
helpful without being obtrusive; the only time it will get in the programmer's
way is when the programmer tries to do something that is not allowed (e.g.,
like releasing an untested version of a module) or fails to do something that
is required. The Manager can work with the programmer during all phases of the
software life cycle.

Rules are the basis of the Manager's power and flexibility. The rules can be
organized in a hierarchical rulebase, thereby allowing the scoping of rules,
based on the structure of the development or maintenance organization (e.g.,

* there may be some government-wide standards, then DoD standards, then Air Force
standards, then maintenance organization standards, etc.). Rule acquisition is
a flexible process; rules can be placed in the rule base from the start, or cal
be acquired on the fly (during the programming process). Policy rules may be
placed in the initial rulebase, whereas heuristic rules, which the programmer
knows or discovers, are most naturally added during the maintenance process.

examples

The following examples show how the Programming Manager handles some of t he
problems addressed in the preceding need section. The examples are prsctnted

* in terms of scenarios that a maintenance programmer might be likely to
encounter. For the purposes of exposition, the dialog presented here is in

- 72 -

O

Programing Manager

natural language. In an actual implementation, the communication would be in a

more restricted form.

Scenario: The programmer wants to make a change to a module.

Programmer: Edit <module>.
Manager: You must create a Modification Design Statement before

changing <module>. Do you want to see the correct format?

Explanation: The Manager has found a rule which says that no modules can

be changed until a design for the change has been created.

q

Scenario: The programmer has changed a module and wants the change's

to become "official".

Programmer: Add <module> to program library.

Manager: You must first run the code auditor on <module>. Shall I
do it for you now?

Explanation: The Manager has a rule that says all modules must be checked

out by the code auditor before becoming part of the official program
library. Since the Manager 1eeps track of the programmer's actions, it

knows that changes have been made to the module and that the code auditor
was not invoked. The Manager is capable of automatically invoking the
code auditor if the programmer desires.

Scenario: Over a period of time, the programmer notices that changes
to module X often cause problems to crop up in module Y.

Programmer: Module Y appears sensitive to changes in Module X.
Manager: OK, I will make a note of that.

Explanation: The Manager recognizes that the programmer is offering

information, and so it records the knowledge for future use.

- 73 -

L Progra=ing Manager

iT Scenario: The programmer makes some changes to module X, and notices that
strange results are being produced by module Z during testing.

Programmer: Module Z appears to be producing strange results.
What could be wrong?

Manager: Check module Y for errors introduced by the changes you
made in module X.

Explanation: While analyzing the situation, the Manager noticed that
module Y calls module Z. It also found the programmer's information,
regarding the sensitivity of Y to changes in X. Since changes were made
to X, the Manager concludes that module Y is a good place to start looking J

I for problems (the Manager will have also analyzed other modules; in this
case, we assume that none of them was a likely candidate).

Scenario: It has been decided that maintenance programmers in a
particular group must use a newly developed tool for analyzing program
style.

Supervisor: Add this rule to the database: "Before a module is
tested, it should be able to pass through the new program
style analyzer without any complaints."

Manager: OK, I'll add that to the rule database.

Explanation: The Manager maintains information about how and when to use
available tools. The addition of this rule will insure that programmers
use the new tool (even if they haven't been previously notified of its
existence).

Scenario: The programmer is ready to test a module.

Programmer: Test <module>.
Manager: You should run <module> through the new style analyzer before

you do any testing.

Explanation: Because of the new rule added by the supervisor,
the Manager automatically notifies the user that the new
tool should be invoked at this point. As in previous examples, the

6 Manager could have invoked the tool automatically, if desired.

- 74 -

I

Prograing Manager

issues

Some of the technology required by the Programming Manager has been developed
in the field of artificial intelligence; however, the necessary techniques have
not been put together in one system, and careful attention must be paid to

integration of techniques as well as human engineering aspects (which are
particularly crucial to a system of this type). For the Programming Manager to
be successful, it is necessary that it both perform its tasks well and
interface with users in a natural fashion. Some of the technology required is
still considered a research area in software engineering (e.g., models of how
people program, programming methodologies, specification techniques).

The Programming Manager is a 'meta" tool; its primary purpose is to (help the
programmer) control the application of other tools. Research will be necessary
to determine the meta-knowledge that must go into the system. Determining the
required knowledge and meta-knowledge and selecting appropriate representation
formalisms represent a large part of the research necessary to build the
system. And as with any expert sy..tem, the acquisition of prerequisite

* knowledge will require a reasonable effort.

The Programming Manager can function as the basis for a distributed
programming environment, where the programmer's immediate environment is
separate from the development/maintenance environment. This provides
flexibility, and also minimizes competition for computational resources between
the Manager and the programmer's application.

time line

under 3 years

- script-driven (non-heuristic) control: The Programming Manager would
initially have a simple control mechanism based on prestored scripts which
would contain information on typical programming actions likely to be
invoked by a programmer.

history recording: All actions taken by the user would be recorded, for

future reference by the user, for documentation, or for later use by the
Manager.

t gration oi many tools: Using the script-based approach, many small
su~h as those found in the Unix environment) could be integrated
environment provided by the Manager.

- 75 -

Programing Manager

3 - 7 years

- rule driven: The Manager would employ a more flexible control technique,
based on rules, that would allow it to adapt more readily to the
environment, as well as provide the ability to handle sequences of actions
taken by the programmer that were not anticipated by the authors of the
rules.

- methodology driven: The programming methodology selected for the
environment would be incorporated into the knowledge base of the Manager.

- models of tools: The Programming Manager would have formal descriptions of
what each tool does, allowing it to select among tools more intelligently
(i.e., not blindly applying rules).

- intelligent user interface: By "watching over the user's shoulder" to see
what is being done, the Manager does not need the user to explicitly state
what has been happening; it figures things out by inferring from the
communication between the user and the system.

- simple inferencing: There will be a capability for making logical
inferences based on rules, models of programming tools, a simple model of
the programming process, etc.

- simple explanation: The Manager will be capable of telling the user why a
particular choice was made.

- semi-automatic rule acquisition: When the Manager sees the programmer
perform new steps that seem to have some importance, it asks the
programmer the meaning of these steps, and can then add them to its

* knowledge base if requested by the programmer.

over 7y .

- methodoiogy specification language: With a technique for the formal
specification of methodologies, the Manager will be able to work with a
definition of the methodology, allowing more flexibility and intelligence
than the rule-based approach (which describes only the procedural aspects
of the methodology).

* - modelling of user actions: The Manager would use some model (or set of
models) to understand how users might function in the context of a
programming environment; models might range from relatively simple (model
of how a person reacts to a stereotypical programming situation) to
complex (model of human problem solving).

* - programming domain modelling: The Manager would utilize models of the
programming process, e.g., a model of debugging, model of program

- 76 -

Ptogrsing Manager

development by by stepvise refinement.

-77-

Intelligent Editor

9.2 INTELLIGENT EDITOR

abstract

The Intelligent Program Editor will provide facilities for manipulating
programs at a number of conceptual levels, and act as a general interface to be
used in conjunction with other tools in the programming environment.

need

Current programming environments use general purpose text editors for the
manipulation of program text. Much is lost by not taking advantage of the
structuring information inherent in programming languages. First, this
information could be used to prevent certain types of errors (e.g., syntactic
errors). Second, the information could be used to allow program manipulation
based on language syntax and semantics (e.g., to delete a block of code, the
user could say "delete this block of code" instead of saying "delete these N
lines of code"). Third, the structuring information could allow the editor to
serve as an interface to other language-oriented tools (e.g., debuggers).
Finally, the information could be used to support incremental program
development; the editor could tell the compiler which syntactic units have been
changed, instead of forcing the entire module to be recompiled.

approach

The Intelligent Editor will provide an interface to program text, based on
the syntax and semantics of the programming language. The Editor will aid the
programmer by providing incremental checking for semantic completeness and
consistency (thereby allowing errors to be caught early in the process) and by
allowing the specification and manipulation of program parts by the use of
program specific techniques. The Editor might also provide an interface to
other language dependent tools proposed later in this chapter, e.g., the Style
Analyzer (section 9.4), the Documentation Assistant (section 9.3), the
Annotation Language (section 9.6), and the Change Propagation Detector (section
9.7).

The basis of the Intelligent Editor is the program reference language and the
underlying knowledge representations of programs and documentation [Shapiro
82]. The program reference language provides a formalism for talking about

4 programs; it was originally defined in [McCune 791. It provides numerous
methods for referencing programs: lexical, syntactic, contextual, historical,
semantic, and pragmatic methods. The Editor extends work done on syntax
directed editors and transformation systems. It makes use of techniques from
software engineering and artificial intelligence.

78

- 78 -

IntelliSent Editor

use

The Editor actually will provide a working environment for the programmer.
Since the Editor and all the tools to which it allows access are based on the
target language (Ada, in this case), the user is both protected and aided in
the environment; it becomes easier to do things right (and harder to do them
wrong). Since the Editor may act as an interface to other language dependent
tools, as well as providing for direct manipulation of program objects, it will
aid in many phases of the software life cycle. It will fit into any
programming environment, but an environment such as an APSE allows for the full
integration that makes the Editor so useful.

q examples

The following examples demonstrate the capabilities of the program reference
methods, as discussed in the preceding approach section. For purposes of
exposition, the references are in natural language; in a production system, the

, references would be in a more restricted language.

lexical: "the line containing the string 'for "

syntactic: "the for loop using the variable 'sum'

contextual: "the third for loop down from the current location"

historical: "the last loop that was referenced"

semantic: "the loop that accumulates the variable 'sum'

pragmatic: "the loop that computes the sum of the test scores"

issues

The design of the program reference language is a topic that must be further
researched. The required integration between the Editor and the rest of the
environment will pose some engineering problems, since each tool in the
environment has its own model of the world. There is a fair degree of risk in
building the Editor, but the potential impact is also significant. The idea of
language oriented editors has been around for a while (e.g., in the Interlisp
environment [Teitelman 811), but there has been a recent flurry of work in
design of syntax oriented editors (e.g., Mentor [Donzeau-Gouge 791) as well as
work in integrated environments (e.g., Gandalf [Habermann 81] and the Cornell
Program Synthesizer [Teitelbaum 80]). However, these systems do not go very
far in using knowledge about the semantics of programs and programming
languages.

- 79 -

•-A

Intelligent Editor

time line

under 3 years

- syntax editing: The Editor would perform manipulations based on a formal
syntactic description of the target programming language.

- simple interface to other tools: It would have the ability to invoke tools
on all or part of a program, plus a limited ability to interpret results
of certain tools (e.g., if the Style Analyzer complains, the Editor would
keep track of the offending lines).

3 - 7 years

- simple semantic searching and editing: The Editor would utilize semantic
information about the programming language to allow the programmer to

-* communicate with the editor in terms of the language (e.g., "find the loop
that accumulates the variable "sum'").

- incremental checking and compilation: Programs would be checked for
consistency and correctness while the editing is being performed; correct
program parts could be compiled (incrementally) if they appeared
completed.

- simple code transformation: A library of source-to-source transformations
(e.g., changing a for loop to a while loop) is available upon request by
the programmer.

- integrated interface to other tools: The Editor could automatically
invoke tools and handle their responses; tool invocation could often be
done without the programmer's knowledge.

over 7 years

- language-specific semantics for editing: The Editor would be capable of
using a full set of formal language semantics for manipulating programs;
this would be especially useful in the more complex parts of the language

* (e.g., tasking in Ada), where simple semantics would not be sufficient.

- domain-specific semantics for editing: The Editor would also employ
knowledge about the application of the program, thus allowing manipulation
based on what the program is doing.

* - complex code transformations: A more complete set of transformations would
be available, based on inferencing mechanisms, which would allow any

80

q1

Intelligent Editor

transformation specifiable in terms of the language's syntax or semantics(e.g., change a set of procedures into a set of parallel tasks).

8

- 81 -

Intelligent Editor

The Programming Manazer vs. The Intelligent Editor7

Both the Programming Manager and the Intelligent Editor can serve as
interfaces between the user and the programming environment, and in the tool
descriptions that follow, one of these tools is often mentioned as a possible
interface for other tools. This is not meant to imply that the other tool
would not make an adequate interface; the purpose is to present an operational
scenario, rather than enumerate all possibilities.

It is interesting to note the differences between the Programming Manager and
the Intelligent Editor, when considered as interfaces. The Editor's domain of
expertise is programs, and thus will provide a natural interface for other
tools which may require just such expertise. The Programming Manager's domain
of expertise is the entire programming process; but like any good manager, the
Programming Manager should "stand back" when one of its "subordinates" has some
particular competence. In an environment with an Intelligent Editor, there is
no need for the Manager to replicate the knowledge about programs that the
Editor has.

The Editor will provide a tightly coupled environment, where all the tools
work together and share resources, as a result of their need for related types
of knowledge. The Manager will handle a diverse set of tools, and will not
require that there be any logical cohesion between the set of tools it manages.
It can manage tools that manage other tools (like the Editor) in a variety of
ways: by giving the subordinate manager full responsibility, by providing
alternate access to tools managed by the subordinate, or by sharing knowledge
and responsibility with the subordinate.

- 82 -

I

4T

Docentation Assistant

9.3 DOCUNuTATION ASSISTANT

abstract

The Lacumentation Assistant will provide assistance to the programmer in
creating, structuring, maintaining, and accessing software documentation,
including requirements specifications, design documents, in-line comments, test
documents, user documents, and maintenance documents.

need

Although documentation is one of the largest problem areas in softwareImaintenance, there appear to be few generally available tools that support the
tasks of collecting, maintaining, and utilizing documentation. In-line program
comments have suffered at the hands of programming language designers, who have
continued to neglect comments, treating them as ignorable text which happen to
be randomly interspersed with the code. Other documentation also takes back
seat to program code, and it is difficult to keep the documentation up to date
with the actual code.

approach

The Documentation Assistant will provide a set of tools to help in the
process of writing documentation, using documentation, and keeping
documentec.on updated. These tools will provide support for incremental
documentotion (due to the incremental nature of maintenance, the only way to
keep documentation "in sync" with the rest of the system is to update the
documentation incrementally as other things change).

The Documentation Assistant will handle the two types of documentation found
in the programming process: program comments and documents. The term
"document" is used here to mean "non-program" text, including requirements,
high-level design rationale, user manuals, test data, etc. Both types of

4 documentation will be treated uniformly by the Documentation Assistant, which
is somewhat different than the standard practice of treating program comments
as "lower class" documentation. Each piece of documentation will be treated as
a unique object. A program comment, previously considered to be a piece of
text that happened to lie adjacent to some piece of code (in a source code
file), will now be formally considered an object in its own right. All
documentation will be attached to code, i.e., a link will be made from the
documentation object to the code which the documentation references.
Documentation objects are structured (e.g., via templates or frames). Each
object will have a functional property associated with it which specifies the
relationship of the documentation to the code (e.g., documentation may say what
is done, why it is done, how it is done, or when it is done). The link will
also have chronological information (so it can be determined if documentation
was updated to reflect a code change) and author information.

- 83 -

0

Documentation Assistant

* Tools for collecting and maintaining documentation could be invoked by the
I, Intelligent Editor or by the Programming Manager. Use of the Documentation

Assistant may require considerably more work on the part of the user than
before, but this is not a problem inherent with the Assistant; rather, it is a
function of the documentation process. Since programmers will be prompted
incrementally for structured documentation, the process should be much less

[painful than current documentation methods. Tools for accessing documentation
will provide users with better information than ever before. One accessing
tool will be a simple, keyword-based, information retrieval system. Another
tool will provide more sophisticated rule-based access of structured

* information (e.g., "retrieve documentation on why a change was made and who
made it") [McCune 821. The organization and structure provided by the
Documentation Assistant will allow tools to make use of documentation in new
and unique ways, e.g., using documentation links to track down implicit code
dependencies. The Assistant is extendable, and could be used for record
keeping in various phases of the software life cycle; for example, the
Assistant could be used to associate test data with the code that it is meant
to exercise.

issues

The techniques necessary to implement the Documentation Assistant are within
reach of current technology. Related ideas for text representation and
manipulation have been proposed elsewhere (e.g., [Nelson 821). The challenge
in buildirg this type of system is providing the high degree of integration
required for effective functioning, coupled with a simple interface for ease of
use. Language-specific interfacing is necessary to provide support for linking
code to documentation. Incorporating the system into existing environments may
require a moderate amount of redesign in order to add the new capabilities.
The system will fit nicely into the APSE environment, especially if an
intelligent editor is eventually added.

A precursor to a documentation system is a set of definitions and
requirements for different types of documentation for each phase of the
software life cycle. The issues involved are not so much research issues as
they are engineering (and, to some extent, management) issues. Efforts in this
direction are currently being made, e.g., for test documentation [Gelperin 821.

The Documentation Assistant addresses many of the important problems
associated with the documentation process. It cannot directly solve the major
documentation problem, which is writing the documentation. The Assistant will
require the programmer to spend more time thinking about and writing
documentation, but this is desirable- it is the only way that good
documentation will get written.

- 84 -

Documentation Assistant

time line

under 3 years

- collection of program comments as objects: The Documentation Assistant
would collect documentation (as opposed to simply letting the programmer
use a text editor to enter comments anywhere in the code), treating each
piece of documentation specially, depending on its importance and
relevance to the program.

- database for documentation collection: The collected documentation would
reside in a database (such as the APSE database, which will be accessible
to all APSE tools).

- simple dependency links: There would be links between the documentation
and the program code, allowing the tools such as the Editor to display
comments adjacent to the appropriate code.

- interface to source code control system: The documentation would be

maintained using the same version control mechanism to be used on the
program, thus allowing versions of documentation to correspond to versions
of software.

- documentation guidelines: To effectively collect documentation, it is

necessary to set up guidelines that specify what documentation is
necessary, why it is necessary, how necessary it is, when to collect it,
and where it should (logically) be placed (i.e., linked).

- information retrieval: An information retrieval system would allow
documentation to be accessed independently of the Editor or any other
development tools; this would be usable by those only trying to get
information about the system (rather than changing it).

3 -7 years

- documentation language: a language for representing documentation; the
language would provide methods and constructs that are relevant to
documentation (e.g., methods for talking about objects in general, rather
than more specific constructs that talk about code).

- functional links between code and documentation: Links between
documentation and code will specify the nature of the relationship (e.g.,
"this piece of documentation explains why the particular algorithm was
chosen"); these links actually form part of the documentation.

- notification of out-of-date documentation: Using the version control
mechanisms, it will be easy to spot documentation that refers to code that

- 85 -

Documentation Assistant

has been changed or deleted; various mechanism can be used to determine if

the documentation should be changed (e.g., querying the programmer,
semantic analysis of the code).

- graphical documentation: Since the documentation takes the form of a tree
or a network, adequate presentation requires some way of graphically

displaying the information.

- integrated with intelligent user interface: An intelligent user interface,
such as the Intelligent Editor, would mask the Documentation Assistant;
the programmer would only see an integrated programming environment which
handles all aspects of the programming process.

- intelligent information retrieval: A rule based information retrieval
system would allow flexible access, while requiring little knowledge about
the structure of the documentation on the user's part; the retrieval
system would use its knowledge about the structure of the documentation to
facilitate the process.

I over 7 years

- document interpretation: With tools that can perform semantic analysis on

programs, the Documentation Assistant could interpret some of what the
documentation meant, based on the interpretation of the code as well as
the documentation formalisms provided by the documentation language.

- use of formal annotation language: A formal annotation language (section
9.6) used to describe programs more formally and completely can be
interpreted and utilized as a form of documentation. Annotations would
complement (and not replace) other forms of documentation.

86

I

I

- 86 -

Style Analyzer

9.4 STYLE ANALUEL

abstract

The Style Analyzer will check programs for adherence to predetermined
standards and style guidelines. The rules used by the analyzer are
independently specified, and will not be built into the analyzer; different

users or groups of users can create their own standards.

need

Even the simplest programming languages have a good deal of flexibility,
allowing programmers multiple ways of doing equivalent things. Programming
languages also allow programmers to say things in distinctly awkward or
confusing ways (e.g., the Roto statement). These factors serve to decrease

program readability and reliability. Programming language standards and style
guidelines help minimize these problems, and should be part of every production

0 programming environment. Style analyzers currently do exist, but they tend to
suffer from lack of flexibility and poor user interfacing.

approach

Our approach to style analysis makes use of advanced techniques from language

theory and artificial intelligence. The Style Analyzer will achieve its
flexibility by separating the code that performs the analysis from the rules
that specify what analysis to perform. This independence allows users to
specify their own standards and guidelines without reprogramming the Analyzer,
and is necessary for widespread acceptance, since many organizations have their
own (differing) standards. Style rules can specify semantic constraints as
well as the standard types of syntactic constraints that existing style
analyzers enforce.

Human interfaces to style analyzers have tended to be awkward. First of all,
* style analyzers simply list all violations, leaving users on their own to fix

all the problems. The proposed Style Analyzer could work in conjunction with

the Intelligent Editor (section 9.2), allowing the user to either correct each
style violation, or possibly tell the Editor to fix all occurrences of each

violation (depending on the type of violation). Secondly, use of the APSE
database provides a natural way of recording style information and associating

* it with code segments. After the first report of guideline violations, the
programmer can specify that these violations should not be reported when the
style analyzer is re-run. The violation information will still be available,
but the programmer will no longer automatically be deluged with unnecessary

violation reports.

87

- 87 -

Style Analyzer

use

The first step in deploying the Style Analyzer is the development of style
guidelines. Guidelines can be developed at various levels in an organization,
and so the Analyzer will be capable of handling a hierarchically organized set
of rules. In actual use, the Analyzer can be invoked automatically by the
Intelligent Editor or the Programming Manager, or the programmer can explicitly
invoke it. The Analyzer will have no problems fitting into any environment
(though an environment with capabilities similar to those of the APSE are
preferable). The Intelligent Editor can provide a good user interface, but is
not absolutely necessary.

examples

The following examples demonstrate some of the possibilities for style
guidelines. Some of these are general, while other are aimed specifically at
Ada. For the purposes of exposition, these guidelines are expressed in natural
language; in a production system, they would be in a more restricted language.

4

formatting guidelines:

blanks should be used around assignment operators
loop bodies should be indented

syntactic guidelines:

do not assign to loop variables inside a loop
do not use nonportable constants
do not mix positional and name notation in the same

parameter list

E

semantic guidelines:

do not use variables before they are set
use enumeration types instead of integer types if no

4 arithmetic operations are performed
do not use in declarations expressions that may have side

effects

4 Another example is a set of guidelines for choosing program identifier's,
proposed by [Carter 82]. These rules help insure that names are raadabl1-, i

- 88 -

4

AD-R12G 146 ADVANCED TOOLS FOR SOFTUARE MAINTENANCE(J) ADVANCED 2./2
INFORMATION AND DECISION SYSTEMS MOUNTAIN VIEW CR

U hS J SDEAN ET AL. DEC 82 AI/DS-TR-306-i RADC-TR-82-3i3

UNCLASSIFIED F3S62-8-C-876 F/G 9/2 N

Eoss son m.EsoE
EoonhhhhhhhhsoI
EhhhhhhhhhhhhE
mhhhhhhhhhhhhI
iEMELhhhhh

1111 1 -I W 328 120
IIIJIL2 __A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-]963-A

Style Analyzer

well as insuring that names are selected in a consistent fashion.

issues

Some research will be necessary to develop a method for specifying style

rules (something similar to a program reference language [Shapiro 82] may be
one approach), as well as developing techniques for performing the analysis
efficiently and incrementally. A style specification language allows the
creation of style specifications which will serve as a style reference guide,
as well as instructions for the style analyzer. Most importantly, it is
necessary to develop style guidelines. Appendix A contains a sample set of
style guidelines for Ada.

time line

under 3 years

- syntactic-based analysis: The Style Analyzer would enforce rules that can
be specified in terms of the syntax of the language (e.g., "do not mix
positional and names parameters in a parameter list [in Ada]").

- flow-based analysis: The Analyzer would enforce rules that can be
specified in terms of a flow model (e.g., "complain about program
statements not reached," "complain about variables never used").

3 - 7 years

- simple semantic analysis: The Analyzer would enforce rules that can be
specified in terms of the semantics of the language (e.g., "do not build
loops using a goto statement").

* - simple style specification language: A technique for specifying style
rules (independent of target language) would be used.

- rule-driven operation: The Style Analyzer would be driven off a set of
rules representing the style guidelines for the target language.

- heuristic rules: Some style guidelines may be somewhat "fuzzy." Heuristic
rules would allow these guidelines to be applied flexibly, by the
association of variable weights with each rule (a technique used in other
systems, such as information retrieval [McCune 82]).

- semi-automatic correction: In addition to specifying constraints, style
rules could specify ways to fix code not conforming to the constraints
(e.g., "loops built with a goto can be transformed (possibly with the help

-89-

Style A-malyser

of the Editor) into another type of loop").

integrated with intelligent user interface: The Style Analyzer could make
use of the features of the Editor (e.g., performing an analysis
incrementally, making use of the Editor's ability to perform program
transformations). The Editor could make use of style rules for creating
code (and not just after-the-fact analysis).

over 7 years

- full style specification language: A complete style specification language
would obviate the need to have any language or environment specific rules
coded into the Analyzer.

- semantic analysis: The more thorough the semantic analysis of a program,
the better the Analyzer will be about catching things that are really
violations and ignoring things that are really not violations.

09

4 ,o

a .

.....

NAutrics Tool Set

9.5 KEICS TOOL SEr

abstract

The Metrics Tool Set will provide tools for measuring, analyzing, and
assessing various properties of software systems. This information can be used
for diagnostic and predictive purposes as well as for studying the evolution of
a system.

need

Measuring aggregate properties of software can be particularly useful for
software maintenance. This information can be used as a basis for decision
making, ranging from lover level decisions, such as selecting a code change
from a set of alternatives (based on the complexity of each change), to higher
level decisions, such as deciding that a software system or subsystem needs to
be rewritten (based on the complexity of modules and their interconnections).
This information could also be used to identify weak areas or potential trouble
spots of a system. In current programming environments, tools to extract this

* information are generally not available.

approach

The Metrics Tool Set will provide metrics to measure various aggregate
software characteristics and, equally important, will provide support tools to
help use the metrics intelligently and effectively. Metrics that might be
included are operator/operand count metrics, control flow complexity metrics,
interconnectivity metrics, etc. Support tools include collection tools to
apply metrics (possibly automatically) and save the results in the APSE
database, statistical tools for combining measurements and analyzing trends,
graphics tools for displaying results of statistical analyses, etc.
Individually, none of the tools is very complex; the power of the Metrics Tool
Set is due primarily to the synergistic effect of an integrated set of tools
(see section 8.2.1).

use

The Metrics Tool Set will be easy to use, and could be applied automatically
by a tool like the Programming Manager (section 9.1). User education is an
important factor in the effective use of the Tool Set; to a large extent, the
value of statistics depend upon the skill of the interpreter. Statistics from
various software systems, collected over time, will serve as a valuable
reference point; but this database is not required for initial operation. As
with the Style Analyzer, the Metrics Tool Set will fit easily into any
environment, but an environment with the capabilities similar to an APSE would
be preferable.

- 91 -

o.-.- .-- - .-.. • - . -.. = ° .,, . * . .- L , . * ., = i
etrics Tool Set

issues

The field of software metrics is an active research area (see, for example,
[Perlis 81]). Designing and using metrics is still an art, rather than a

science. However, even the use of simple metrics to help make simple decisions

would still be better than nothing at all; there appears to be a real need for
decision making aids in the maintenance process. The risk in building the Tool
Set seems fairly low; more important is whether users will find it worth their
while to use the tools.

- [Kafura 81] cites four criteria for a practical metrics system:

- the metrics must be useable in a large-scale environment: they must be
automatable, and it must be possible to take measurements during the
design phase;

- the metrics should be complete and sensitive to changes in the structure
of the system; they should also be sensitive to implicit data connections;

- the proposed metrics must be validated on actual large-scale systems;

- the measurements must be robust: they should apply to a wide class of
structures, and should suggest causes for and solutions to structural
deficiencies revealed by the metrics.

time line

* under 3 years

- battery of metrics: The Metrics would use a set of metrics based on

previous research.

* - graphical statistics package: A statistical package would allow the
analysis of trends based on data produced by the metrics; the need for
graphical representation would be useful since the programmer would not
have much assistance in interpreting the data (people better at detecting
patterns when they are represented graphically).

3- 7 years

- guidelines for metrics comparison: Guidelines would be set up for

determining wbat metrics mean in terms of the overall software life cycle;
methods for comparing different metrics would be established.

- 92 -

6

Metrics Tool got

- simple trend interpretation: Techniques would be established for finding
simple (e.g., linear) trends in the collected data (e.g., "the cost of
making a single modification to a program appears proportional to a metric

- improved metrics: The set of metrics would be expanded for completeness;
metrics that complement each other would be grouped together.

- validation of metrics: It would be necessary to determine which metrics
are "meaningful," and which are useless or subsumed by other metrics.

- structural analysis based on simple semantic reasoning: Metrics will be
more sophisticated, relying on semantic analysis of programs; these
metrics would provide a "deeper" analysis, and would be more likely to
measure the characteristics the programmer is really interested in
measuring.

- sensitivity analysis: Sensitivity analyses would be performed for the
metrics, providing a measurement of how metrics are affected by code
changes.

- integrated with intelligent user interface: The Metrics Set would be
integrated with an intelligent user interface, allowing the metrics to be
invoked automatically on parts of a program, and allowing the results to
be fed back into the programming process.

over 7 years

- metric-based acceptance testing: The Metrics would be used as an acceptance
test; programs not satisfying the required criteria would be rejected
(e.g., one acceptance criterion might be program complexity).

- trend interpretation: Analysis techniques would be used to create more
complex interpretations of metrics (such as non-linear combinations of
several metrics); these interpretations would be used to guide the
maintenance process (e.g., determining the cost and ramifications of a
software change on the basis of several metrics).

93

- 93 -

-4

Anotation Language

9.6 ANNOTATION LANGUAGE

abstract

The Annotation Language will extend a programming language by allowing the
* - programmer to state properties and aspects of programs that cannot be expressed

in the programming language proper.

need

The Annotation Language is a vehicle for specifying intended program
behavior. It is necessary for the formal, precise specification of program
behavior, against which an actual program can be verified. Formal program
verification augments existing debugging tools for applications where design
correctness and reliability are particularly important. Viewed as
documentation, program annotations also help to reduce the documentation
problem.

approach

The Annotation Language combines elements of programming languages with
formal logic. It can be thought of as extending a programing language with
"formal comments." The Annotation Language may be regarded as a tool in
itself, but it should be viewed primarilj as the input to a system such as a
formal program verifier. The verification system would perform the
transformation 6f specifications and annotated programs into logical
statements, which could then be proved (or disproved) with the help of

* automated reasoning aids (t'W -em provers).

use

The programmer will use thi! Annotation Language as a special type of
programming language. Just what a programmer says with the Annotation Language
will depend on why the annotation is being written; annotation information maybe different for verification than for another purpose. The primary use of
annotations is in program verification, but they are useful throughout the
whole life cycle of software, especially if the various tools are sufficiently
integrated and are able to interpret relevant parts of annotations. In
compilation, annotations may express hints to the compiler for generation of
optimized object code. In testing, annotations may be used to help generate
test cases. Formal annotations improve documentation and maintainability; the
judicious use of precise specifications of modules should increase programmer
productivity.

- 94 -

= . .-

Annotation Language

examples

Some example of Ada annotation are presented here; these examples come from
[Krieg-Bruckner 80]. The annotations appear as Ada comments, prefaced by;..i;: .. ,,-- I".

subtype Even is Integer;
-- I for all X:Even -- > X mod 2 = 0;

function Sqrt(N: Natural) return Natural;
--I return that S: Natural --> S**2 <- N < (S+1)**2;

procedure P(X: in Integer; --[X > 0
Y,Z: in out Integer);

-- I where Y <- Z;

issues

Specification languages and formal verification are an important means for
* guaranteeing that a critical piece of software performs as expected. Formal

verification remains a research area, but the technology is beginning to mature
enough to move it into other environments, under carefully controlled
conditions.

time line

under 3 years

6

- design of formal annotation language: An Annotation Language for the
target language will be designed; this language will evolve as new uses
for it arise.

- partial interpretation of annotation language: An analyzer would attempt
to "understand" the annotations, making the information available to other
tools (e.g., debuggers).

- limited verification: Based on current verification techniques, some
verification of programs could be done, with the axioms stated as
annotations.

- 95 -

i,

. : .*.. _ - -. _ ,.d-

Anntation LaugeS

3 - 7 years

- extended multi-purpose language: The Annotation Language will be extended
as more needs become apparent through actual use.

- extended verification capabilities: Continued research in formal
verification would increase the sophistication of the verification tools.

- test data generation: Using annotations (which specify code behavior),
test data could be automatically generated.

over 7 years

full interpretation and verification: The eventual goal of the Annotation

" Language is to facilitate relatively "complete" verification and to allow
* semantic information derived from annotations to be fed back to other
*tools.

96

0

Change Propagation Detector

9.7 CHRAGE PROPhUTION DZTECTOR

abstract

The Change Propagation Detector (CPD) system will help analyze and isolate
the effects of program changes.

need

When a change is made to a program, the effect of that change may propagate
to other parts of the program. This often results in a "vicious" cycle where
the programmer makes a change, tests the program, finds that a new bug has been
introduced, so then makes another change, etc. The problem becomes larger when
there is a long delay between introducing a bug and finding it; by that time,
the program may have been released.

approach

The Change Propagation Detector will use knowledge of the syntax and
semantics of the target language to determine the effects of change. Direct
effects are easiest to find (e.g., if a change is made to a data structure, all
direct references to the data structure can be tracked down). Indirect effects
(e.g., variable references through pointers) and implicit effects (e.g.,
changes made to nonparameterized constants) can be more difficult to locate.
The CPD system will make use of a variety of techniques for tracking down these
changes. The system is meant to be flexible, allowing the addition of new
techniques as they become available; due to the nature of the problem, it is
unlikely that the system will ever stop growing. For example, as AI techniques
mature, they will be added to the system to augment its capabilities. The CPD
system should also be able to make use of 'nonconventional" techniques. For
example, it could make use of the dependency links provided by the
Documentation Assistant (section 9.3) in order to locate indirect code
dependencies. Once the system is capable of interacting with the Documentation
Assistant, it could be used to detect the effect of changes on documentation.
The CPD system may also be useful in other parts of the software life cycle,
e.g., learning how programs work.

By design, the CPD system will generally take a conservative approach,
warning about potential problems (since it cannot always distinguish between a
real problem and a "non-problem"). The system can be incorporated into any
programming environment, though an environment with capabilities similar to
those of the APSE are preferable. Like the Style Analyzer (section 9.4), the
CPD system will record its information in the APSE database, and interact with
the user, possibly through the Intelligent Editor (section 9.2), to correct
problems. When the user indicates a "non-problem", the appropriate database
entry (e.g., the Diana tree [Intermetrics 811) can be annotated, to avoid
reporting the problem in the future.

- 97 -

--

Change Propagation Detector

use

The Change Propagation Detector will be used by the programmer during the
process of modifying code. The programmer needs neither extensive knowledge of
the target code nor of the tool itself. The CPD tool can easily be invoked
automatically by other tools (e.g., the Programming Manager), and will fit
nicely into any programming environment.

issues

The technology for analyzing data flow connectivity is available; more
sophisticated checking, such as semantic checking, is still a research topic.

* The CPD tool is not a critical link in the maintenance process; its use is as
an aid in preventing errors, but errors not caught will (should) eventually be
caught during the testing phase. Recent programming languages provide
facilities for modularity and data abstraction, which help reduce the problem
to some extent, but they do not eliminate it.

time line

under 3 years

- syntactic and simple semantic detection: The Change Propagation Detector
would use standard flow analysis techniques for tracking down the effects
of changes.

- editor-assisted correction: The Detector would be interfaced to the
Intelligent Editor (or some other user interface) so that all places
needing modification (after a change) would be known to the Editor.

3 - 7 years

- detection and simple automatic correction: Effects of changes would be
detected and automatically corrected if they matched a specific
transformation rule known to the Detector (e.g., using a variable without
declaring it could be fixed if the declaration could be inferred, or if
the declaration was known elsewhere).

- simple inferencing: The Detector would use inferencing techniques to
become better at really tracking down change propagation problems;
inferencing would be based on a semantic analysis of the code.

- better techniques for detecting indirect propagation: The Detector would
apply new techniques for tracking down indirect propagation, including
inferencing, program annotations, and semi-formal documentation.

-98-

I.

Change Propagation Detector

- integrated with intelligent user interface: The functions of the Detector
would be available to the Editor or other interface, so that the
programmer need not even be aware that propagation detection has been
done.

over 7 years

- application domain knowledge: The use of knowledge about specific program
*applications would give the Detector additional capability for inferring

the effect of a change.

- automatic detection and correction: The Detector would be able to fin ud
explain (most) problems that resulted from a change to the code.

90

6

- 99 -

6

Test Case Analyzer

9.8 TEST CASK ARAL ER

abstract

The Test Case Analyzer will allow output of system testing to be

automatically checked for correctness. It is based on a formalism for
specifying correctness of system output and I/O relationships.

need

Over the life cycle of a piece of software, most testing activity is

regression testing [Intermetrics 81]. Each cycle of regression tests generally
involves a large number of test cases, resulting in voluminous output. The
task of checking the output for correctness is tedious and error prone. Some
programming projects have built systems that perform automatic checking, but
these systems are special purpose, and are not easily adapted to other
applications. Moreover, these systems usually perform very simple (e.g.,
bitwise) comparisons of the actual output with the expected output.

The standard method used in regression testing is to run the software on a
set of test data and then do some simple comparison of the actual output with
the expected output (often, the expected output is the actual output of a
previous version of the software). The comparator may be a simple byte by byte
comparator, or could be a more sophisticated differential file comparator
(e.g., the Unix tool diff [Unix 801). In either case, the comparator is
ineffective when the concept of equivalence between actual and expected output
is more sophisticated than a character by character comparison. For example,
output may be considered equivalent if all printing characters correspond
(i.e., "white space" is not significant), or if all corresponding numeric
values are approximately equivalent (floating point calculations might have
resulted in insignificant differences). In general, there is a need for the
capability of specifying equivalence based on syntactic or semantic structure,
in addition to lexical structure.

approach

The Test Case Analyzer will utilize more sophisticated methods for analyzing

test run outputs, by providing a specification language for stating the
correctness conditions for the actual test output, and an interpreter that
checks the test case output with respect to the specifications. This allows
much more flexibility in automating the testing process, by handling valious
kinds of outputs (including the types described above) without requiring
programmer intervention. Reduced programmer intervention has important
effects: more testing can be done, since the programmer does not have to
monitor and examine the tests as carefully as before; errors are more likely to
be caught, since more will be checked automatically, and since there will be
fewer for the programmer to manually check; programmers do not need extensive

- 100 -

.- .

I

Test Case hAayaer

." training to run the tests, since the analyzer relieves them of much of the work
" involved in analyzing the test results.

use

The major step in using the Test Case Analyzer is to write the output
specifications; use of an Intelligent Editor (section 9.2) will ease this task.
The tool itself can be invoked automatically by the test driver, leaving the
programmer to simply examine the results. The Test Case Analyzer can fit
easily into any programming environment.

The Test Case Analyzer is primarily directed at the testing phases of the
software life cycle. Its use in testing can go beyond standard regression
testing; for example, it could be used to check the results of instrumented
code, insuring that no control flow anomalies have occurred. It does not

attempt to address the issues of selecting test cases; rather, it helps apply
tests correctly and efficiently. The Analyzer does have the capability for
comparing any types of objects, and could be extended for use during other
phases of the life cycle (e.g., determining if two versions of a program are
syntactically equivalent).

issues

Some research will be necessary to develop a specification language and an
interpreter. Building a general purpose specification language is an ambitious
undertaking, but a conservative approach can make a positive impact without
significant development risk. Unlike the Change Propagation Detector (section
9.7), the correctness of the Analyzer is very important, since it will perform
the function of "certifying" test runs; if it functions improperly, software
problems may not be detected during the testing phase.

time line

under 3 years

- diff: An existing tool such as the Unix tool diff would be used to compare
output known to be correct with new output.

- syntactic equivalency specifications: The Test Case Analyzer would be
extended to handle syntactic specifications of test case results.

-101-

Io

., - :. X .. ,.-:.-.-.... -. . -...- -. .,'-- --.. :2 - - . -:.-.. -.-- ..-- .-- •.-..- . .- - - - -

Test Case Analyzer

3- 7 years

- rule-based analysis: The programmer would be able to specify rules that

would allow more flexibility than a context-free syntactic specification.

- simple output specification language: A language for specifying output
correctness would be used, allowing the programmer to say how things
should be, and letting the Analyzer figure out how to actually do the
checking.

over 7 Years

-knowledge-based representation of output specifications: Output
specifications would be knowledge-based, allowing the semantics of the
application to be used in analyzing the test case output.

- analysis driven by program specifications: Correct output behavior would
be inferred from the specifications of the program itself, eliminating the
need for test output specifications.

1

0

S

- 102 -

6

intelligent Tutor

9.9 IUMLLIGT, TUTOR

abstract

The Intelligent Tutor will help teach programmers about progra ning
environments. It will always be available, not just during the learning phase,
so programmers can learn or relearn as necessary at their convenience. It can
be used to help experienced programmers adapt to a new environment as vell as
to teach new programmers.

need

The training of personnel is a major problem during the software maintenance
phase. Programmers must not only learn the programming environment; they must
also become conversant with the system to be maintained. There are virtually
no tools in existing or proposed programming environments that address this
problem. At best, existing environments provide some sort of on-line manual
with a flexible access method. None help teach; users are expected to have
enough knowledge from the start.

approach

The key to building a useful computer-assisted instruction (CAI) system is to
build "intelligence" into the system. Many existing CAI systems provide little
more than computerized page turning and test scoring. The Intelligent Tutor
for the APSE environment will utilize knowledge about the programming
environment (both Ada and the APSE) as well as knowledge about programmers
themselves, in order to provide a sophisticated form of online instruction.
The Tutor's knowledge about the environment will allow it to use the
environment as well as to teach about it. For example, it might ask the
student to write a program to perform some function. In order to check the
program, the Tutor can compile and run the program, checking at all stages of
the process to ensure that there are no program errors.

.4 use

The Tutor will be capable of working in several modes. While the user is
learning, the system will ask questions, and the user will answer. When the
user is actually programming, s/he can turn around and ask the system
questions. This is referred to as a mixed initiative scheme, and allows enough

4 flexibility to be used by experienced as well as novice users. In system
initiative mode, the Tutor simply follows some predefined curriculum, with
variations based on the user's capabilities.

In user initiative mode, the Tutor must be able to answer questions as well
as make explanations. The following (somewhat arbitrary) distinction is made

- 103 -

r Intelligent Tutor

here between question answering and explanation: question answering involves
looking up answers (e.g., in a database) or applying a priori rules to
determine the answer (e.g., running the compiler on a program to check for
syntactic errors); explanation, on the other hand, requires more reasoning
capabilities, allowing the Tutor respond to questions like 'hy did this
happen?" and "What. will this do?". Eventually, the Tutor should be able to

critique programs (making use of other tools in the environment to perform
various decompositions and analyses) and help users write programs.

The Tutor will easily fit into any programming environment, though an
environment with capabilities similar to the APSE is preferable. Its
intelligence may make it invaluable for many (all?) phases of the software life
cycle. It might be considered to be an intelligent help system, or, maybe,
like a friendly expert programmer who has also memorized all the manuals.

issues

The CAI field has been around for quite some time, and so a straightforward
tutoring system is easily within reach. Incorporating intelligence into a CAI
system is still a research area, but the necessary techniques are indeed being
developed (see [Gable 801 for a survey of AI techniques in CAI). The more
advanced aspects of the Tutor, such as explanation and critiquing, still need
more research. Another area important to the success of the Tutor, and still
undergoing research, is knowledge representation and acquisition (e.g.,

[Wescourt 771). To make the Tutor general and useful, it is desirable to use
an explicit representation for knowledge, rather than hardwiring it into the
code (an approach sure to guarantee quick obsolescence).

The risk in building a full-scale Intelligent Tutor is relatively high; such

systems in the past have rarely made it out of research labs. However, parts
can be built without much risk. Its reliability is important, since
programmers will make decisions based on it, but, as its effect on target
software is indirect, there is not much risk in using the tool (compare it to a
manual or teacher with erroneous information).

The use of the Tutor will have a significant impact on the maintenance
process, for two reasons. First, due to high turnover of personnel, there is a
need for continual retraining in each organization. Since the Tutor will be
able to teach specific systems as well as the general APSE environment, each

* organization can use the Tutor to teach whatever is necessary to begin work in
a new environment. Second, even without rapid personnel turnover, there is a
continuing need to train people, especially with a new programming environment
such as the APSE.

* [Gable 80] lists qualities desirable in a human tutor; these are reproduced
below as guidelines for what an Intelligent Tutor might strive to do.

- 104 -

Intelligent Tutor

1. The tutor causes the problem solving heuristics of the student to
converge to those of the tutor.

2. The tutor will learn and adopt student solution methods if they are

superior.

3. The tutor chooses appropriate examples and problems for the student.

4. When the student needs help, the tutor can recommend solution scheme
choices and demonstrate how to apply techniques.

5. The tutor can work arbitrary examples chosen by the student.

6. The tutor is able to adjust to different student backgrounds.

7. The tutor is able to measure the student's progress.

8. The tutor can review previously learned material with the student as the
need arises.

9. The tutor will give immediate feedback on errors while allowing the
student a free hand in deciding how to solve a problem.

10. After the student solves a problem, the tutor may point out more direct
solutions or ones that use recently learned theorems or techniques.

time line

under 3 years

- simple instruction, independent of the compiler: The Intelligent Tutor
would use prepared materials like conventional CAI systems.

- script-driven lessons, with simple heuristi,-s: The Tutor would make use
scripts outlining different possible user responses, with methods for

4 trying to be intelligent about what to do.

- intelligent information retrieval: This would be a capability for the user
to use the Tutor directly as a source of information, without having to
use a formal information retrieval query language.

3 - 7 years

- simple question/answer capability: The Tutor would be able to answer

questions, using some combination of information retrieval, scripts, and
inferencing techniques.

- 105 -

Intelligemt Tutor

- rudimentary knowledge of language and environment: The Tutor would have a
knowledge base and inferencing capability that would allow it to deduce
information that was not explicitly given to it.

over 7 years

- program analysis and critique: The Tutor would be able to take programs
written by the user, analyze them, and critique them; the critique would
cover style and structure as well as logical correctness.

- modelling of human users: The Tutor would use knowledge about how people
learn to understand why the user was having difficulty understanding
concepts.

- error explanation: The Tutor would detect errors made by the user, and
then explain the error to the user; it might also point out how to fix the
error, and ways of avoiding it in the future.

106

6.

10. EVALUATING ADVANCED SOFTWARE MINTEUCR TOOLS

An evaluation of the tools proposed in the previous section was undertaken.
. This evaluation was done to confirm our judgment that these nine tools were in

fact feasible and desirable, to sharpen our intuitions about their prospects
and potential problems, and to aid in deciding the relative importance of the
tools (and hence the recommended order of development). The evaluation was
guided by AI&DS staff; the evaluators consisted of both Air Force personnel and
AI&DS staff. While only the proposed tools were evaluated, the evaluation

techniques are general enough to be applied to other tools also.

10.1 TECHNIQUES FOR EVALUATION

One of the goals of this project was to develop criteria and metrics by which
tools can be evaluated for their impact on software maintenance problems.
Unfortunately, the task of developing criteria and metrics is quite difficult.
A metric deemed "usable" by one person is often deemed "unusable" by another.
Attempts to quantify questions like "...what tool is best?" are often
controversial. Several approaches were considered, including an informal
empirical approach and a more formal decision-analytic approach. An empirical
approach was chosen. While lacking the rigor of a formal mathematical model,
this approach seems adequate in the context of this project.

Based on interviews with Air Force maintenance personnel, as well as a review
of the literature, a set of questionnaires was developed to measure the utility
of maintenance tools. The questionnaires were administered in two rounds, to
both Air Force personnel and AI&DS staff. The set of people answering the
first round was not identical to the set answering the second round (but there
was some overlap). The first round assessed the importance of each of the
criteria in the questionnaire. The second round evaluated each of the tools
with respect to these criteria.

Most of the criteria on the questionnaire were derived from the criteria
4 specified in the Statement of Work for this project. These criteria are:

- potential impact on software maintenance problems, i.e., which functions

of the maintenance process will be reduced, and to what degree;

- feasibility of application and implementation in a "production" and

maintenance environment;

- estimated development cost;

- computer resources required for recurrent use;

- 107 -

I + .. . "m -

Techniques for Evaluation

- prerequisite level of user education and training;

-*. - relationship with common software development and maintenance tools.

10.1.1 Evaluating Criteta

The questionnaire for the first round was designed to evaluate the importance
of various criteria against which tools could be evaluated. The results were
meant to be used to evaluate the results of the following round. Hence, the
results of this round could be considered an intermediate product.

The questionnaire was divided into four categories: feasibility, capabilities
and benefits, costs, and qualities. Each section contained a list of criteria
that could be used to evaluate a tool. The criteria were defined by AI&DS; the
list is reproduced in Appendix C. Respondents were asked to rate the
importance of each criterion on an integer scale from 0 to 10, with 0
signifying "the criterion is of no importance" and 10 signifying "the criterion
is of extreme importance".

This questionnaire was sent out to four Air Force sites (Rome Air Development
Center, plus the three sites described in section 4.1: SCF, CCPC, and SAC), and

* was also filled in by members of the AI&DS staff. A total of thirty
questionnaires were completed (twenty-six by Air Force personnel and four by
AI&DS personnel).

To evaluate the questionnaire, the rankings for each criterion were averaged,
* producing a weight for each criterion which reflects the importance of that

criterion. The weights were designed to be used during the second round of
questionnaires, and so are not of direct interest here (for reference, they are
included in Appendix C, listed next to the criteria). The weights were
examined to ensure that all of the evaluation criteria were useful (and they
were: There was no criterion that was uniformly rated low). In computing the
weights, the evaluations from all sites were lumped together; no attempt was
made to create separate sets of weightings for each group of evaluators.

10.1.2 Evaluating Tools

* The second round of questionnaires was designed to evaluate individual tools.
The questions were the same as the questions in the first round, but instead of
asking "How important is this criterion?", the question was "How does each tool
rate on this criterion?".

" Since the tools being evaluated were designed by AI&DS staff members, the
*g questionnaires were split into two sets. One set of questionnaires (see

Appendix D) had criteria best evaluated by potential users of the tool; this

- 108 -

Tecbniques for Evaluation

was the set used by Air Force evaluators. The other set (see Appendix E)
contained criteria best evaluated by those knowledgeable about the design and

* implementation of the tool; this was the set used by AI&DS evaluators. The
questions in the two different sets were mutually exclusive (with two
exceptions, discussed later).

Along with the questionnaire, evaluators were given a draft copy of the
previous chapter of this report, which describes the tools to be evaluated.
They were asked to rate each tool on all criteria. Since nine tools were to be
evaluated, considerably more work was required for the evaluation. Hence, the
number of evaluators was reduced to thirteen (eleven from the Air Force and two
from AI&DS).

There were several steps in evaluating these questionnaires. First, the
answers were averaged across respondents, resulting in nine sets of averages,
one set for each tool. Then, each set of averages was multiplied by the
previously collected weights, giving a set of weighted averages. Next, each
set of weighted averages was totalled, resulting in nine scores, one for each
tool. The scores, in descending order, are presented in terms of percentage of
the maximum possible score:

Composite Ranking of Usefulness

score tool

54.8 Documentation Assistant
52.8 Metrics Set
51.8 Programming Manager
50.1 Change Propagation Detector
49.2 Intelligent Tutor
49.1 Style Analyzer
49.1 Test Case Analyzer
48.3 Intelligent Editor
40.8 Annotation Language

The ranking of these tools provides some insight into how the evaluators felt
the tools satisfied the selected criteria. Each tool was independently ranked
on an absolute scale for each criterion. These values were used to form the
scores shown above. However, we feel that the most appropriate way to
interpret the tool ranking implicit in the ordered list of tools above is to
pay attention to the relative ordering of tools and to the difference between
tools; the specific score is much less important. This ranking provides a
relative evaluation. A low ranking does not imply a tool is worthless; rather,
it means that the tool appears less useful than the other tools being
evaluated. For more detail, see Appendix F, which presents scores broken up by
questionnaire category and respondent.

-109-

! .

Tecbniquos for Rvaluation

Two extra questions were added to both sets of questionnaires in the second
round. These questions asked respondents to rate each tool on its "overall
practical usefulness" and "overall theoretical usefulness." Practical
usefulness refers to the usefulness of the tool, given real-world constraints

*: in building and using the tool; theoretical usefulness assumes that building
and deploying the tool is not a problem. The purpose of these questions was to

..7 allow a simple, direct evaluation of each tool. The results below from these
* questions are simply averaged responses. The results, in descending order,

were as follows:

Overall Practical Usefulness

score tool

6.0 Documentation Assistant
5.8 Metrics Set
5.5 Programming Manager
5.4 Style Analyzer
5.3 Change Propagation Detector
5.3 Intelligent Tutor
5.1 Intelligent Editor
4.7 Test Case Analyzer
2.8 Annotation Language

Overall Theoretical Usefulness

score tool

8.0 Programming Manager
7.9 Intelligent Tutor
7.6 Documentation Assistant
6.8 Intelligent Editor
6.8 Style Analyzer
6.8 Metrics Set
6.8 Change Propagation Detector

6 6.8 Test Case Analyzer
6.3 Annotation Language

* These simple rankings were meant to provide a more intuitive way of
evaluating tools, and should be compared with the more complex ratings to
provide additional support for the evaluation techniques. Two tools, the
Documentation Assistant and the Programming Manager, fell in the top three for
all rankings. These tools appear to be excellent candidates for further study
and implementation. Two other tools, the Metrics Set and the Change

* Propagation Detector, ranked fairly well except on the theoretical usefulness
question. Since these tools are simpler than many of the others, they probably

- 110 -

Teclmiques for Evaluation

rankea high because they are feasible in the short term. Their lower
theoretical ranking most likely indicates that their long term potential is not
as great as some other tools.

10.2 TOOL RATINGS - NIHNTU CKI PROBILE AREAS

Another way of looking at tools is in terms of how they address the major
maintenance problems (as identified in section 4.2.3). Table 10-1 identifies
each tool's ability to deal with the various maintenance problems. The
maintenance problems are listed on the top of the table; they appear in
descending order of importance. 4

Not surprisingly, the two top rated tools from the previous section (the
Documentation Assistant and the Programming Manager) both address all of the
most important problem areas. Note these ratings indicate what problems each
tool addresses; they do not indicate how well the problem is addressed.

10.3 SUMARY

The results reported in this chapter were meant to provide a method for
evaluating software maintenance tools. The evaluation techniques are generally
applicable, and could easily be applied to other tools. With repeated use,
norms could be established, allowing tools to be evaluated on an individual
basis.

The proposed tools were chosen on the basis of real problems and perceived
needs. Thus, all of the tools are likely to have a large positive impact on
the maintenance process. Even low ranking tools would be likely to provide
significant benefit.

I

- 111 -

1

PROBLEM ARlL

TOOL
personnel poor making diagnosing/
turnover documentation changes monitoring

Programming Manager ++ ++ ++ ++

Intelligent Editor I + ++

Documentation Assistant + ++ + +

Style Analyzer + + ++

Metrics Set ++ +

Annotation Language ++ ++ +

Change Detector ++ ++

Test Case Analyzer + + ++

Intelligent Tutor ++ +

Legend

++ the tool directly addresses the problem
+ the tool indirectly addresses the problem

blank entry means tool does not address problem

Table 10-1: Rating of Tools with Respect to Problem Areas

1

- 112 -

K 11. CONCLUSIONSr..

11.1 ACCOMPLISM$U S

11.1.1 Identification of Major Maintenance Problems

Four major problems have been identified in the software maintenance process.
They are:

1. high turnover of personnel and lack of qualified replacements

2. understanding what a software system does, without good documentation

3. determining all relevant places to make changes

4. diagnosing and monitoring operations

A major factor in all of these problems is the difficulty people have in
comprehending complex software systems. If one problem were to be selected as
the most significant maintenance problem, it would be the problem of
comprehension. This conclusion differs from the widely held belief that ease
of making changes is the most important factor in software maintenance.

11.1.2 Identification of Useful Tools

After identifying the major maintenance problems, a number of tools capable
of making a large impact on these problems were proposed. These tools are
summarized below:

- The Programming Manager assists the programmer by systematically applying
administrative and technical policies, as well as helping apply both
general and application-specific programming techniques and methods.

- The Intelligent Editor provides facilities for manipulating programs at
several conceptual levels (e.g., textual, syntactic, semantic, and
intentional), and provides an intelligent interface to other tools.

- The Documentation Assistant is a tightly woven collection of tools for
creating, structuring, maintaining, and accessing all forms of
documentation.

- The Style Analyzer checks programs for adherence to programming standards
and style guidelines (which are expressed with a specification method that
is independent of the analysis process itself).

- 113 -

4I

Accompiishmnts

- The Metrics Tool Set provides tools for measuring, analyzing, and

assessing various properties of software systems over their lifetime.

" - The Annotation Lanzuage is a method for extending a programming language
by allowing annotations which specify state properties and other aspects
of programs that cannot be conveniently expressed in the programming

*language itself.

- The Change Propagation Detector analyzes a program for effects of a
program change.

- The Test Case Analyzer allows the output produced by test runs to be
automatically checked for correctness, based on a formal (or informal)
specification of what the output should look like.

- The Intelligent Tutor uses a knowledge-based approach to tcach programmers
about programming languages and programming environments, using the tools
themselves.

11.2 RECONOKDATIOIS

11.2.1 Proposed Tools

All nine tools should be developed and used in the Ada Programming Support
Environment.

Looking at long term solutions, three of the proposed tools seem particularly
valuable, because they provide significant capabilities in all phases of the
maintenance process. The Programming Manager presents a new approach to an old J,
problem: How can people work more effectively in a complex environment? In a
software maintenance environment, complexity can be introduced in many places:
the applications software, the tools used for performing the maintenance, and
the administrative environment which controls the process. The Programming
Manager provides a mechanism for guiding the programmer through this maze. The
Documentation Assistant provides an innovative solution to the problem of
documentation. By recognizing that documentation can be an entity unto itself
and by providing tools that handle those unique requirements, the whole
documentation process can be improved. The Intelligent Editor itself is not a
new idea; however, it goes significantly beyond current efforts by providing a
great deal of sophistication in the manipulation of programs and software
systems. While all these tools may be long term efforts, each can be scaled
down to provide similar capabilities for shorter term goals, particularly the
Documentation Assistant.

Several of the proposed tools are less comprehensive, attempting to solve
smaller problems. These tools provide capabilities that may already be
available, but they also employ advanced techniques which provide much greater -1

-114-
.1

Recommendations

depth and sophistication than existing tools. Style analysis is not a new
problem, but the proposed Style Analyzer provides new capabilities by allowing
the style rules to be specified independently of the analyzer (most style
analyzers have the guidelines coded in-line). Software metrics are a somewhat
newer phenomena. The Metrics Tool Set provides more than just metrics: it
provides tools for analyzing and saving metrics. The Change Propagation
Detector provides capabilities similar to that of a data flow analyzer; it
extends these capabilities by attempting to detect implicit flows, using
information not generally available to a data flow analyzer (e.g., program
assertions). This also allows it to avoid the "pessimism" typical of analyzers
which make worst case assumptions when in doubt. The Test Case Analyzer
automates the tedious and error-prone task of checking the results of test
runs. Existing tools of this type tend to be project specific. The automated
approach allows the expected outputs to be formally (or informally) specified,q thus eliminating the need to build new special purpose test analyzers.

The effectiveness of these simpler tools can be greatly enhanced by the use
of the Intelligent Editor. The Editor provides a uniform interface, and allows
the programmer to converse at a higher level, since the Editor can make the
mapping between high level statements and the actual code. For example, a
programmer might ask it to perform a style analysis on all loops containing
multiple exits. The Editor is capable of figuring out which parts of the
program satisfy this condition, and can then pass the appropriate statements to
the Style Analyzer.

Two tools require separate treatment. The Annotation Language is actually
more of a technique than a tool. This probably explains why it ranked lowest
in all the evaluations. The technique of annotating programs, which arose from
research in formal program verification, is still relatively new. Its full
potential has not yet been uncovered. The Intelligent Tutor, on other hand,

Lprovides a function which has been around for a while: computer assisted
instruction. The Tutor takes an unconventional approach by incorporating
knowledge into the system. This includes knowledge about the human student, as
well as knowledge about the programming domain. There are two somewhat
separate tasks required to build an Intelligent Tutor. Mechanisms to
manipulate the knowledge and interact with the user need to be constructed.
Equally important is the development of a curriculum and courses. While much
of the former effort can be considered longer term (due to the necessary
research), the latter effort is short term.

11.2.2 Development Strategy for Proposed Tools

For greatest rewaid, we recommend three tools to be developed as part of a
medium term effort (3 - 7 years): the Programming Manager, the Documentation
Assistant, and the Intelligent Editor. However, all of the proposed tools
incorporate unique or untried solutions to various maintenance problems, and
therefore justify further research and development.

- 115 -

;'''" ,' '? : ' - .- " "--- -. ,- ,.-- . " -IY .. .-" * "".. -... "........... . • .'. .

Recmendat ions

These selections were made on the basis of our expert opinion, influenced by
the tool evaluations discussed in the previous chapter. We emphasize tools
that will provide long term benefits and solutions, over tools that are more
immediately realizable but have less to offer in the long term. Both the
Documentation Assistant and the Programming Manager provide long term solutions

* to many of the major maintenance problems (see 10.2). Both were highly rated in
the evaluation process. The Intelligent Editor, though not rated as highly,
was selected because of its ability to act as an interface for a number
of the proposed tools, including the Documentation Assistant. Accordingly, its
initial development should be focused on its ability to serve as a common
interface to other tools.

For a shorter term effort (under 3 years), we recommend simpler versions of
the Documentation Assistant and the Metrics Tool Set. These two tools were ranked
at the top in terms of immediate practical benefit. We feel that a useful version
of each could be in use within three years of the start of a tool development
effort.

11.2.3 Other Research Areas

In studying maintenance problems and designing tools tr solve them, we have
identified important research topics that warrant further investigation, either
as independent inquiries or in conjunction with tool development. The topics
fall mainly into the categories of software engineering and artificial
intelligence. Because of the sophistication of the proposed tools, it is not
surprising that some of the topics seem to fall into both categories. The
research topics most relevant to the proposed tools are listed below:

- software methodologies: Promising development and maintenance
methodologies need to be identified and further refined. The Ada effort
has led to a standard language, and a possible standard environment, but
no methodology. The Programming Manager does not require a methodology,
but if one is used, the Manager can help in its use.

- metrics: Much work has been done on developing metrics; little has been
done on using them. Interpretation and application of program metrics is
still not well understood.

- specification techniques: Several of the proposed tools rely on formal
specifications for their operation, including the Annotation Language (for

D program annotations or formal comments), Style Analyzer (for guidelines)
and the Test Case Analyzer (for expected outputs). Specification
techniques include both representational issues as well as application
issues.

- reasoning about programs: To aid the programmer, it may be necessary to
* understand the programs that are being manipulated. For example, the

Intelligent Editor should allow the programmer to talk about a program in

- 116 -

S

. , - . - " - , . ' - - ' _ " -'

I

Recomedat ions

terms of what it does; the Style Analyzer needs to make use of information

which goes beyond that directly derivable from the source code. 7

- reasoning about programming: To help the programmer make decisions about
-what to do, the Programming Manager needs to understand the programming

process itself. The Intplligent Tutor needs to reason about the
programming process in order to understand what the programmer is doing
wrong (or if the programmer is doing things correctly). -

- reasoning about programmers: The Programming Manager cannot effectively
aid the programmer unless it has a good model of what help the programmer
needs, and the ability to determine when to help out. The Intelligent
Tutor also needs to have a model of how people learn.

- friendly user interfaces: Many of the tools converse with the programmer.
To be used effectively, it is necessary for the user to understand what
the tool says, and how to respond to it.

- multiple users and knowledge bases: Tools such as the Programming Manager
must coordinate the activities of many prograamers working on different
parts of one project (or even on separate projects) over long periods of
time. This is significantly harder than managing the activities of just
one programmer.

- information structuring: How should information about a program be
structured so that it is understandable by people? The Documentation
Assistant collects large quantities of information; however, it can't
simply throw the information at the user. It should understand that
information must be presented selectively, to avoid overloading and
confusing the user.

- evaluating tools: The work on evaluating tools should be extended.
Techniques must be developed to evaluate tools after they are deployed, to
determine how well they really work, and how they can be improved.

- understanding software maintenance: More data on software maintenance
activities is needed to allow the development of a comprehensive process
model of software maintenance. This would help in understanding where the
bottlenecks are. Such an understanding would point the way to
administrative and methodological improvements, as well as identify
critical needs that could be addressed by maintenance tools.

11.2.4 Other Recommendations
-1

There are many other comments that could be made about software maintenance
practices in the Air Force. Since these comments are peripheral to the main
focus of our work, we mention only a few key ones here.

We believe that SAC's strategy of keeping maintenance personnel for a tour of

- 117 -

Recoendations

duty that is longer than normal is a good idea. This allows for more complete
training at the start of the tour and a larger return on that investment
thereafter.

Large C3 systems that include computer hardware and software must be
procured using more realistic estimates of cost and life span. If a system's
life span is estimated to be upwards of a decade during requirements analysis,
then the appropriate magnitude of investment during the development phase will
be much clearer. Specifically, systems should be designed and documented with
maintenance and long life in mind.

Although this is contrary to the recommendations of some, we feel that it is
not a good organizational or technical practice to separate development and
maintenance programmers, particularly within the same project or system. This
immediately leads to a loss of esteem for the maintenance staff.

11.3 DEPLOYING NEW TOOLS

Incorporating a new tool into an existing environment requires more work than

simply installing the tool. Before installation, one must ensure that the tool
is compatible, in some sense, with the environment, and there must be a need
for it (as a far fetched example, a Fortran preprocessor doesn't make much
sense in a Jovial environment). Once installed, users have to be identified
and trained. Also, changes may have to be made to the environment or to the
applications software.

11.3.1 The Ada Programming Support Environment

This study has assumed that the Ada Programming Support Environment will be
the target environment for all the tools proposed here. The APSE will contain
features used in some of the most successful programming environments.
Incorporating sophisticated tools into the APSE will be easy; many of the
necessary features, considered fancy in some systems, are standard in the APSE
(for example, a central database for storage of historical information).

11.3.2 Retrofitting New Tools to Old Applications

Once a new tool is installed, any compatibility problems between the tool and
* the applications software must be worked out (e.g., a tool might require that

code be in a certain format, or might require that a certain development
methodology was used). Of the proposed tools, some are simple enough to be
used with no compatibility problem. For example, the Intelligent Editor, the
Test Case Analyzer, and the Change Propagation Detector can all be used with
little or no adaptation.

- 118 -

S

Deploying Now Tools

Other tools, which capture "historical" information during the development
and maintenance phases, are somewhat more difficult to incorporate. For

Cexample, the Metrics Tool Set collects measurements over the lifetime of a
software system. If measurements are missing for part of the tool's lifetime,
initial use of the tool may be somewhat frustrating, since it can collect data
but not produce much in the way of analysis. This is the initial build-up
period, where the tool may be "consuming" more than it is producing. Other
tools of this type are the Documentation Assistant and, to some extent, the
Programming Manager, since they collect information during the entire
development and maintenance process. It is important to recognize and plan for
this initiation period before installing a tool of this type.

Another class of tools is that which requires additional (non-historical)
U9 information. For example, to use the Annotation Language, programs must be

annotated. However, it doesn't matter when the programs are annotated; they
can be annotated when they are first written, or can be annotated later.
Annotations are not considered historical information because when the code
changes, the annotations change too; the annotations never need to refer back
to older annotations. Similarly, the Style Analyzer can be run on any program.

* However, programs developed without the aid of an analyzer will require more
work if they need to be changed to conform to standards.

Finally, there are tools that utilize knowledge about their environment. For
characteristics that are invariant across environments (e.g., all Air Force
sites will use the Ada language), no special effort is necessary. However, for
characteristics that do vary with the environment, these tools will need to
have their knowledge bases updated. Both the Intelligent Tutor and the
Programming Manager fall into this category. If necessary, both can function
with incomplete environment-specific knowledge, but then, of course, their
capabilities are not fully realized.

11.3.3 Training People to Use New Tools

Installing a new tool requires more than simply making it available. People
have to be trained how and when to use it. This is basically an administrative
problem. However, two of the proposed tools can aid the training process. One
is the Intelligent Tutor. Once a "course" has been developed, it can be made
available to all who have access to the Tutor. "Classes" are individualized,
and are held at the convenience of the individual. Another helpful tool is the
Programming Manager. As mentioned above, people must be taught when to use the
tool. For some tools, of course, this is not a real problem; i.e., all

4 programmers know when to run a compiler. But other tools, such as a style
analyzer or runtime monitor, are more difficult to handle. The reasons for
invoking these tools may be technical (e.g., to catch more program errors more
readily) or administrative (e.g., to ensure that all code conforms to
standards). The Programming Manager maintains this type of knowledge, and
assists the programmer in making the appropriate decision. Even if a new tool
were added by telling only the Programming Manager and the Intelligent Tutor

- 119 -

-eo

a

Deploying New Tools

(and not the programmer), it would be possible for the tool to be used
appropriately and effectively. If a situation arose where the tool was
applicable, the Manager would mention it to the programmer, who would then

. realize there was a new tool. At that point, depending on the tool, the
S programmer could: go ahead and use it (if he were familiar with that type of

tool); invoke the Tutor to learn about the tool; or ask the Manager to invoke
the tool automatically.

4

S- 120 - -I
I J

I - - !.- .. , , , :.''-..-'" . ."-'' --- '..

-. o4

APPEMDX A. ADA STYLE GUIDELINES

This appendix contains some sample style guidelines for the Ada language.
The style analyzer described in section 9.4 would make use of a set of rules
such as these. Note that these rules are in no way meant to be complete or
definitive. Some of these guidelines are easily checked automatically, while
others would require considerable work to perform automatically.

This list was compiled by Prof. David Luckham of Stanford University as part
of this project.

11

4 - 4

- 121 -

II

-S.ME ADA STYLE GUIDELI S

David C. Luckham

February 1982

At the present time there is not enough experience with Ada to really
compile a comprehensive list of Do's and Don't's. The lack of compilers
at present means that most Ada "experience" comes from other Algol-like
languages. There is very little experience with compilation and running of
tasking programs.

The following list of specific style recommendations comes from some
classroom experience teaching Ada, and some limited experience compiling
and running Ada programs using the Adam compiler at Stanford University.
It is expected that this list will be greatly expanded over the next year
or two, and that some items will be revised. Those items that could be
enforced by a checking tool and would be worth enforcing in some
applications programs, are marked with a comment preceded by "***".

The categories and top-level category numbers below correspond to the
chapters of the Ada manual [Ada 801.

2. Text Conventions

.1 Stick rigidly to formatting conventions -- Readability.

Also: develop conventions for situations where the Ada text -

overflows a line.
For example, in the case of long subprogram
parameter lists, each sublist of a given type could be placed
on a separate line, the set of lines being delimited by the

* parentheses opening and closing the parameter list.
* This can be checked. Formatting conventions may vary from

installation to installation as a matter of taste.
Format checkers would be easy to build.

.2 Use distinct identifiers for formal parameters of subprograms in
same scope -- To avoid naming confusions.
***Checkers for formal name clashes may be very well worthwhile,

especially on large projects, since such clashes may indicate
some more basic misunderstandings between programmers.

.3 Do not mix positional and named notation in the same parameter
list -- Readability.
Although Ada permits this, it seems to introduce more confusion;

- 122 -

when in doubt use the named parameter form for clarity.
*** This would be checked by format checkers for 2.1.

.4 Mnemonic names for all identifiers: verbs for subprograms, nouns
for objects, types, and packages.

.5 Blanks should be used after ",", and before and after "'", :
and "i>".

.6 Use blank lines to delimit related groups of declarations within
a declarative part; bodies of program units should always be in the
same order as the corresponding specifications.

3. Types

.1 Make strongest possible use of strong typing: e.g., different types
should be declared for sets of objects if there is no common processing
between objects in the different sets.
*** Analysis for groups of independent objects of the same type is

probably time-consuming but possible. Strategies for where to check
for this need to be worked out if the results are to be useful.
E.g., redeclaring new types for independent sets of objects
should be done in basic, most widely used modules of a system;
this ensures that later use will not confuse those independencies.

.2 Derived types should be used in preference to subtypes to express
logical independence.
However it should be noted that the inheritance of subprograms by a
derived type from its parent type is poorly defined. As a general
style rule the parent type should be encapsulated with its selectors
and constructors (subprograms to be inherited) in a package
specification to clarify exactly what is inherited. Derivation
(declaration of a derived type) should never be in the body of that
package encapsulating the parent type.

.3 Enumeration types should be used instead of integer types if no

arithmetical operations are performed.

6 .4 Always use default initial values for discriminants of
variant records

-- This avoids constraints on declaration of variant objects
which then fix the variant part of the object thereby not
permitting the variant part to be changed. Essentially,
this use of a variant record type is equivalent to a union

of disjoint subtypes.
(a) If a variant record type is declared without default initial

values for the discriminants, then a further set of subtypes
corresponding to the cases of the variant parts should be

declared -- this makes an explicit declaration of the actual
use of the variant type.

-1

- 123 -

4. Expressions and Overloading

.1 Try to use static expressions wherever possible in declarative
parts.

.2 Avoid expressions in declarations which, during elaboration, may
have side effects on other objects than the one being elaborated.

5. Statements

.1 Loops should not be built with "go to", nor should exceptions
be used for the normal exit from a loop.

.2 Loop exit: place "exit" clearly at top level of loop body --

use 'when" rather than nesting in "if else".

.3 A Loop with more than one exit should be carefully analyzed with
a view to clarifying its functionality; e.g., Can it be separated
into two or more one-exit loops? Can it be abstracted out as a
subprogram?

6. Subprograms

.1 If a subprogram propagates an exception, that fact should be
documented by means of a comment in the specification of
the subprogram. -- A compilation unit should have "no surprises".
• A tool to add such declarations to subprogram specifications

can be built, and would be a useful part of an automatic
documentation system.

.2 If a set of subprograms share a set of global variables, then
the subprograms and common globals should be encapsulated in a

package body. The visible part of the package should contain
the subprogram specifications.

.3 Subprograms should have small bodies in general, say on the order
of 10 Ada statements. Large subprograms should be analyzed with a
view to "packaging" into smaller units, especially when that
subprogram may be shared in multitask computations.

7. Packages

.1 Despite Ada visibility, packages should be treated as closed
scopes %ith respect to objects.
The use of outside global units in packages should be restricted to
context specifications.
• Tools to check this can be built and could be very important in

checking secure software, and in maintenance. Such "Imports"
checkers could either add "imports declarations" to package

- 124 -

specifications or bodies, or give warnings.

.2 Use private types in visible specifications wherever possible
in place of complete type declarations.

-- The effect of a change in type implementation is then localized
to the body of the exporting package.

7A. Documentation of Packages

.1 Package visible parts should declare all exceptions propagated
from the package operations.
* As before in 6.1.

.2 Normal Ada visibility rules should be observed in the comments;
thus, implementation details hidden in a package body may not be
referenced in comments in the package visible part.

.3 Ada conventions with respect to repetition of subprogram
specifications in the corresponding bodies should be observed
also for comments documenting subprogram specifications.

9. Tasks

.1 Declare all task types at outermost level (if possible)
-- clarity of program and facilitation of analysis for liveness
errors and resource requirements. Also lessens need for use of
task TERMINATE construct.

.2 Do not share globals between tasks if possible.
Stick to the recommended Ada rendezvous communication between
tasks whenever possible.
Here "global" means unprotected object or package on which two
tasks may operate in such a way that the second task starts
operation before the first has completed its operations.
(a) Wherever a global is shared between tasks, e.g., for efficiency,
this fact should be clearly documented by comments.

* (b) A global shared between tasks should NEVER form part of the local
state of a task, e.g., the values of expressions in the task body
should not depend on globals.

-- e.g., if this happens to expressions governing select alternatives,
any kind of monitoring for liveness problems becomes an impossibility.
(c) The safety of overlapping operations by tasks on a shared global
should NEVER depend on the underlying runtime scheduling.

*** (a) and (b) can be checked and such tools would be helpful in
debugging tasking and in maintenance. At present there is not much
hope of doing dynamic liveness detection for liveness errors

resulting from use of shared globals, so such checkers are very
very important, especially for (b) as applications requiring
efficient tasking become commonplace and shared globals are used.

- 125 -

6

.3 Try very hard not to use tasks in subprograms or local blocks;
declare task objects, or allocate tasks only at outermost declarative
parts of main programs or packages.
-- aimed at simplifying program structure, and alleviating the chances

of liveness and termination errors.

.4 Avoid nesting "select" and "accept" statements.
-- common sources of liveness errors.

10. Program Structure

.1 Collect commonly used types in a global package (do not distribute
them around the system)

.2 Bounds on Tasking: Generally the total number of tasks needed for a
computation should be known at compile time.
If the total number of tasks that can be initiated
is not compile time determinable, this could mean that tasking is being
used as a substitute for recursion; such situations should be analyzed
carefully.

.3 Tasks versus Packages: tasks provide critical sections for mutual
exclusion and communication among parallel threads of control.
Tasks basically are packages (with certain
restrictions); in order to prevent a task becoming a global bottleneck,
the programmer should attempt to make tasks "as small as possible" -

this a a vague concept!

(a) Test One: How many other tasks may call a given service task?
If this a high proportion of the total number of tasks the programmer
should check if the task can be broken into separate tasks, or if the
task body can be reduced in size, perhaps by placing local data
structures into a package global to the task and reducing the task to
the function of scheduling access to that package.

I
11. Exceptions

.1 Predefined exceptions should be handled somewhere in the program,
at least in the main program.

.2 Exceptions should NOT be used to terminate loops, nor in place
of any other normal control statement.

.3 Exception handlers should be documented by comments stating
conditions under which the handler "expects" to see the exception.
Similarly subprograms that may propagate exceptions should be
documented with comments stating conditions under which the exception
may be propagated.

- 126 -

.4

-aids in analysis of correct functioning of the program in
exceptional situations.

-127-

APPEMNIX B. THE PIO]LJ QUISTIODE&IU

A. I. & D. S.

Software Mairtenance Questionnaire

The purpose of this questionnaire is to gather information about the
software maintenance process in C31 applications.

This questionnaire is split into three parts:

REASONS FOR SOFTWARE MODIFICATIONS
SOFIWARE MAINTENANCE FUNCTIONS
DIFFICULTIES

Please base.your responses on your actual experience or on the collective
experience of your-staff with C31 systems.

- 128 -

Si

a

Reasons for Software Modifications

We have found that requests or reasons for software modifications can be
classified into four groups. Please estimate the percentage of requests
that falls into each of these categories:

modifying - New or modified requirements are defined.

- adaptive - The external operating environment changes (hardware)
or software).

_ corrective - A system failure (i.e., bug) is discovered). A
failure may be due to nonconformity to requirements
specifications, including efficiency requirements and
programming standards.

- perfective - A performance enhancement is desired. These are changes
that are similar to corrective changes, but are not required
to make the system correct in any sense. Within existing
requirements specifications, such changes may provide
improvements in system capability, efficiency,
maintainability, etc.

1

- 129 -

It

Software Maintenance Functions

The maintenance process consists of a number of functions (some of which

overlap with design process functions). Please rate these functions,
according to the amount of time spent doing each (during maintenance only)
on a scale from 0 to 10, with 0 signifying "no time spent" and 10
signifying "extreme amounts of time spent."

reanalysis and respecification of requirements

_ redesign (high and low level)

recoding (all code changes, including patching)

1 retesting

redocumentation

monitoring, problem detection, diagnosis, and resolution (but not

actual fixing)

configuration control (control of code and documentation)

training of new maintenance personnel and users

management (formulating and following maintenance policies and

procedures)

- 130-

L

Difficulties

We have identified four particularly significant problems in the
maintenance applications we have studied. Please rate these problems *

based on how important you feel it is to solve or eliminate them. Use a
scale from 0 to 10, with 0 signifying "the problem is not worth solving"
and 10 signifying "it is extremely important to solve the problem."

If there are other major problems you feel should be on this list, please
add them to the bottom of this page and rate them. Also, for each major
problem listed below (or added by you), please describe specific
difficulties you have had (e.g., under "lack of good documentation,"
specific difficulties might be non-existent user documentation or source
code documentation that is out of phase with the code).

difficulty in understanding what the system does because of the lack
of good documentation

difficulty in monitoring operations and diagnosing problems

difficulty in deciding all relevant places to make changes (i.e., at
all appropriate development levels, in all required parts of a given
level, and with appropriate updating of documents and versions)

-high turnover of maintenance personnel and lack of qualified replacements

Additional problems and details (use back of page if necessary):

13

- 131 -

-!

APPENDIX C. ThE CRITERIA EYALUATIOE QUESTIONNIRl

A. I. & D. S.

Criteria for the Effectiveness of Software Tools

The purpose of this questionnaire is to help determine and understand
the important factors in evaluating software maintenance tools. To do
this, we are asking your help in assigning weights to a number of
potential evaluation factors. The weights indicate how important you
consider each factor, and will be used to determine overall desirability

for a number of tools.
Note that at this time we are concerned only with establishing
weights; we are NOT concerned with evaluating any particular tools.

Each criterion addresses a particular characteristic on which a tool
can be rated. The importance of each criterion should be ranked on
an integer scale from 0 to 10, with 0 signifying "this criterion is
of no importance" to 10 signifying "this criterion is of extreme importance".

The evaluation criteria are divided into four major groups:

FEASIBILITY
CAPABILITIES AND BENEFITS
COSTS
QUALITIES

We realize that some of these categories are broad and overlapping, while
others may not be applicable to all situations. We ask that you use
your best judgment in making these evaluations.

NOTE - The average results from this questionnaire are listed in
parentheses in front of each criterion.]

1

- 132 -

6

FEASIBILITY

(5.6) maturity of tool technology area
This refers to the technology in general; the following criterion
refers to the specific technique (e.g. parsing can be thought of as a
technology area, while LR parsing is a specific technique).
Some factors that should be considered are: time in existence,
number of systems developed, number of successful systems developed,
and number of people involved.

(6.2) maturity of specific techniques to be used
Some factors that should be considered are:
time in existence, number of systems developed, number of successful
systems developed, and number of people involved.

>>> The next four criteria concern the risk involved. For these
categories, 0 signifies "high risk acceptable" and 10 signifies
'no risk acceptable".

(3.8) risk in building tool
(4.1) risk in introducing tool
(7.5) risk in using tool
(8.1) tool's effect on risk in using target

Will the system be successful?

(7.4) feasibility for target language
Feasibility for some tools depends on the selected target
language (though some tools are language independent). Some
factors that should be considered are: existence of problem
attacked by tool, and amenability of language to tool's approach.

(6.9) feasibility of tool in language's environment
Take into consideration interaction with the existing environment(s)
for the language and other tools planned for the environment(s).

(6.1) fits into Air Force maintenance technical schemes
Consider the specific programming methodologies and techniques
used by the Air Force (e.g. structured design).

(5.6) fits into Air Force maintenance management schemes
Consider the specific management techniques that are used by
the Air Force.

- 133 -

CAPABILITIES AND BENEFITS

(8.4) responsiveness to requirements
How responsive is the tool to the requirements? Consider the
relative size of the problem(s) that the tool addresses and the
degree to which the tool helps to solve the problem(s).

(5.2) usefulness in other areas of life cycle
Can the tool also be used elsewhere?

(7.7) handling frequent changes
Can the tool handle frequent and/or small changes? Does it have
the ability to handle changes incrementally?

(7.5) handling increasing complexity
Does the tool help to deal with more complex target programs?

(6.3) management control provided by tool
Does the tool increase or aid effective management control?

1

4

II

- 134 -

COSTS

>>> For all of the cost criteria, a 0 signifies "high cost is acceptable"
and a 10 signifies "low cost is required".

(3.8) time to build tool
(5.8) time to introduce tool
(7.5) time to use tool

The overall elapsed time should be considered here.

(4.3) people to build tool
(5.6) people to introduce tool
(7.2) people to use tool

Personnel considerations include:
man-months, change in productivity, change in job satisfaction,
and level of user acceptance.

(5.7) software efficiency of tool
(7.3) tool's effect on software efficiency of target a

Consider program size and cpu time.

(4.5) hardware costs to build tool
(6.1) hardware costs to use tool
(6.5) tool's effect on hardware costs to use target

Consider requirements of cpu speed, physical memory size, disk space,
special resources, etc.

(3.9) money to build tool
(5.3) money to introduce tool
(7.5) money to use tool
(8.0) tool's effect on money required to use target

What is the overall cost (in dollars)?

-135-

QUALITIES

-(9.0) usability of tool
(8.6) tool's impact on usability of target

Consider factors such as human engineering and classes of users.

(8.5) correctness of tool
(8.7) tool's impact on correctness of target

Can the system be formally proven correct? Or does the system
inherently lack provability?

(8.6) reliability of tool
,(8.8) tool's impact on reliability of target

Consider factors such as: number of bugs found over some time
period, confidence the users have in the system, and number
of complaints reported.

(7.9) testability of tool
(8.8) tool's impact on testability of target

How easy is it to test? How much confidence is there in the test
results?

-(7.3) robustness of tool
_(7.5) tool's impact on robustness of target

Can the system provide (help provide) automatic responses to
minor problems? Can it handle user variability?

(7.4) maintainability of tool
(9.0) tool's impact on maintainability of target

Is the system easy to understand and modify?

(5.9) portability of tool
(6.2) tool's impact on portability of target

Can the system be moved to other environments (e.g. other
machines, operating systems, target languages)?

e

- 136 -

I.l

APPENDIX D. TOOL EVALUATION QUESTIOUEIIK - AIR FORCE EVALUATORS

A. I. & D. S.

Evaluation of Software Maintenance Tools

The purpose of this questionnaire is to evaluate software maintenance
tools. To do this, we are asking your help in ranking tools with respect
to a set of evaluation criteria.

We have included descriptions for each of the tools to be evaluated. For
each tool, we ask that you read its description and then answer the
questionnaire for that tool. Each criterion in the questionnaire
addresses a particular characteristic on which a tool can be rated. A
description of the rating scale precedes each set of questions. The
criteria in this questionnaire comprise roughly half the criteria that
will be used to evaluate the tools; the remaining criteria will be
evaluated by the AI&DS tool design team.

The evaluation criteria are divided into five sections:

FEASIBILITY
CAPABILITIES AND BENEFITS Ie
COSTS
QUALITIES
OVERALL

We realize that some of these categories are broad and overlapping, while
others may not be applicable to all situations. We ask that you use your
best judgment in making these evaluations.

The tool descriptions come from the draft of a report on software
maintenance, being prepared by AI&DS for the Air Force. Any comments on
the tools (or the descriptions themselves) are welcome.

- 137 -

*

FEASIBILITY

>>> For the following risk categories, 0 signifies "bad (large) risk" and
10 signifies "good (small) risk".

*risk in introducing tool
_ risk in using tool

tool's effect on risk in using target software

>>> For the following categories, 0 signifies "poor fit" and 10
signifies "good fit".

tool fits into Air Force maintenance technical schemes
Consider the specific programming methodologies and techniques
used by the Air Force (e.g. structured design).

tool fits into Air Force maintenance management schemes
Consider the specific management techniques that are used by
the Air Force.

- 138 -

CAPABILITIES AND BENEFITS

>>> For the next question, 0 signifies "not responsive" and 10
signifies "highly responsive".

responsiveness to requirements
How responsive is the tool to the problems it was meant to address?
Consider the relative size of the problem(s) that the tool addresses
and the degree to which the tool helps to solve the problem(s).

13

Ib-

- 139 -

COSTS
b

>>> For the following cost criteria, 0 signifies " expensive" and
10 signifies "inexpensive".

time to introduce tool
time to use tool

The overall elapsed time should be considered here.

people to introduce tool
people to use tool

Consider factors such as required number of man-months, user
acceptance, required support, etc.

money to introduce tool
money to use tool

Other costs (not including those listed above and not including
hardware costs).

- 140 -

.4

QUALITIES

>>> For the following criterion, 0 signifies "low satisfaction"
and 10 signifies "high satisfaction".

usability of tool

>>> For the remaining criteria, the scale is an integer scale from
-10 to +10. -10 signifies a "negative effect," 0 signifies
"no effect," and +10 signifies a "positive effect."

The term "target software" refers to the software that the tool
will be applied to (i.e., the application software).

____tool's impact on usability of target software
Does the tool make the software easier to use?

_ tool's impact on reliability of target software
Does the tool help increase the reliability of the target software?
Does it decrease the number of bugs found in the software
(over some period of time)? Does it increase confidence users
have in the system?

_ tool's impact on testability of target software
Does the tool make it easier to test software? Does it increase
confidence in the test results?

_ tool's impact on robustness of target software
Can the tool help provide better handling for errors and
variability in the software environment?
Can the system provide (help provide) automatic responses to
minor problems? Can it help handle user variability?

_ tool's impact on maintainability of target software
Does the tool make the software easy to understand and modify?

___ tool's impact on portability of target
Can the tool improve or assist in moving the software to other
environments (e.g., other machines, operating systems, target
languages)?

- 141 -

COVERALL

>>> Finally, we would like to get some overall ratings.
For the following questions, 0 signifies "poor" and
10 signifies "excellent."

*rate the tool on overall "practical" usefulness (i.e., how useful
could the tool be, given real-world constraints in both building and
using the tool?)

I
rate the tool on overall "theoretical" usefulness (i.e., how useful

could the tool be, given that it could be built and used effectively?)

1

I

- 142 -

APPENDIX K. TOOL EVALUATION QUESTIONIAIR - AI&DS EVALUATORS

A. I. & D. S.

Evaluation of Software Maintenance Tools

FOR USE BY AI&DS EVALUATION TEAM

The purpose of this questionnaire is to evaluate software maintenance
tools. To do this, we are asking your help in ranking tools with respect

, to a set of evaluation criteria.

We ask that you read the description for each tool, and then fill in the
questionnaire for that tool. Each criterion in the questionnaire
addresses a particular characteristic on which a tool can be rated. Most
of the criteria are to be ranked on an integer scale from 0 to 10. The
meaning of the scale is described in each section, by providing definitions

* of the endpoints. The criteria in this questionnaire comprise roughly
half the criteria that will be used to evaluate the tools; the remaining
criteria will be evaluated by outside evaluators.

The evaluation criteria are divided into five sections:

FEASIBILITY
CAPABILITIES AND BENEFITS
COSTS
QUALITIES
OVERALL

We realize that some of these categories are broad and overlapping, while
others may not be applicable to all situations. We ask that you use your
best judgment in making these evaluations.

I

- 143 -

I

FEASIBP .TY

>>> For the following maturity categories, 0 signifies "very immature"
and 10 signifies "very mature".

maturity of tool technology area
This refers to the technology in general; the following criterion
refers to the specific technique (e.g. parsing can be thought of as a
technology area, while LR parsing is a specific technique).
Some factors that should be considered are: time in existence,
number of systems developed, number of successful systems developed,u and number of people involved.

maturity of specific techniques to be used
Some factors that should be considered are:
time in existence, number of systems developed, number of successful
systems developed, and number of people involved.

>>> For the following risk category, 0 signifies "bad (high) risk
and 10 signifies "good (low) risk".

risk in building tool

>>> For the following categories, 0 signifies "poor feasibility" and 10
signifies "good feasibility".

feasibility for target language

Feasibility for some tools depends on the selected target
language (though some tools are language independent). Some
factors that should be considered are: existence of problem
attacked by tool, and amenability of language to tool's approach.

feasibility of tool in language's environment
Take into consideration interaction with the existing environment(s)
for the language and other tools planned for the environment(s).

14

0

- 144 -

S

6J

CAPABILITIES AND BENEFITS

>>> For the following questions, 0 signifies "low satisfaction"
and 10 signifies "high satisfaction".

usefulness in other areas of life cycle
Can the tool also be used elsewhere?

handling frequent changes
Can the tool handle frequent and/or small changes? Does it have
the ability to handle changes incrementally?

___handling increasing complexity
Does the tool help to deal with more complex target programs?

management control provided by tool
Does the tool increase or aid effective management control?

145

4

- 145 -

COSTS

>>> For the following cost criteria, 0 signifies "expensive" and
10 signifies "inexpensive".

time to build tool
The overall elapsed time should be considered here.

people to build tool
Consider factors such as required number of man-months, user
acceptance, required support, etc.

* software efficiency of tool
tool's effect on software efficiency of target

Consider program size and cpu time.

hardware costs to build tool
hardware costs to use tool
tool's effect on hardware costs to use target

Consider requirements of cpu speed, physical memory size, disk space,
special resources, etc.

" money to build tool
tool's effect on money required to use target

Other costs (not including those listed above).

O

S

-146-

S"

QUALITIES

>>> For the following criterion, the scale is an integer scale from

-10 to +10. -10 signifies a 'negative effect," 0 signifies
"no effect," and +10 signifies a 'positive effect."

The term "target software" refers to the software that the tool
will be applied to (i.e., the application software).

tool's impact on correctness of target
Can the tool help prove formal correctness?

>>> For the remaining criteria, 0 signifies "low satisfaction"
and 10 signifies "high satisfaction."

correctness of tool
Can the system be formally proven correct? Or does the system
inherently lack provability?

reliability of tool
Consider factors such as: number of bugs found over some time
period, confidence the users have in the system, and number
of complaints reported.

testability of tool
How easy is it to test? How much confidence is there in the test
results?

robustness of tool
Can the system provide (help provide) automatic responses to
minor problems? Can it handle user variability?

- maintainability of tool
Is the system easy to understand and modify?

- portability of tool
Can the system be moved to other environments (e.g. other
machines, operating systems, target languages)?

- 147 -

OVERALL

>>> Finally, we would like to get some overall ratings.
For the following questions, 0 signifies "poor" and
10 signifies "excellent".

rate the tool on overall "practical" usefulness (i.e., how useful
is the tool, given real-world constraints in both building and
using the tool?)

rate the tool on overall "theoretical" usefulness (i.e., how useful
is the tool, given that it could be built and used effectively?)

- 148 -

APPENDIX F. TOOL EVALUTIOn 1sULT SCONS

This appendix contains the scores from the tool evaluation questionnaires
(Appendix D and Appendix E). The scores presented here are split up by both
questionnaire category (four categories: feasibility, capabilities and
benefits, costs, and qualities) and by respondent (two categories: Air Force
and AI&DS). Totals for each cross section are included, as well as a grand
total. See section 10 for a description of the evaluation process.

Each of the scores presented is a weighted average, computed in the following
way: For each criterion on the tool eva'"stion questionnaires, all responses

I were averaged, giving an average response for each criterion and tool. Then,
each average response was multiplied by a weight (which reflects the importance
of each criterion, as established in the previous round of questionnaires) and
summed, thus resulting in a weighted average for each tool.

It is important to note that the absolute values of these scores are not as
useful or important as the relative ordering of the scores. Scores between Air
Force and AI&DS respondents cannot be directly compared, because Air Force
respondents and AI&DS respondents had different questionnaires (and hence,
different questions with different weights). Similarly, scores between
different question categories cannot be meaningfully compared.

Section 10 presented the grand totals in terms of percentage of maximum
value. The scores in this appendix can be converted similarly, based on the
weights in Appendix C. The maximum value for any question is simply its weight
multiplied by ten (since ten is the highest rating available on the second
questionnaire). The maximum value for a set of questions is the sum of the
maximum values for the individual questions.

- 149 -

'I

FEASIBILITY

Air Force AI&DS Total Tool

179.4 179.8 359.2 Programming Manager
187.9 171.3 359.2 Intelligent Editor
198.6 186.0 384.6 Documentation Assistant
199.6 193.4 393.0 Style Analyzer
200.0 203.2 403.2 Metrics Set
133.3 164.1 297.4 Annotation Language
184.0 187.3 371.3 Change Propagation Detector
165.5 174.4 339.9 Test Case Analyzer

q 206.2 193.2 399.4 Intelligent Tutor

CAPABILITIES AND BENEFITS

Air Force AI&DS Total Tool

51.2 253.7 304.8 Programming Manager
43.5 199.8 243.3 Intelligent Editor
53.5 225.3 278.7 Documentation Assistant
48.1 154.5 202.6 Style Analyzer
51.2 139.2 190.3 Metrics Set
37.4 131.3 168.7 Annotation Language
51.2 166.4 217.6 Change Propagation Detector
46.6 145.6 192.2 Test Case Analyzer
56.5 119.3 175.8 Intelligent Tutor

COSTS

4 Air Force AI&DS Total Tool

180.5 197.8 378.2 Programming Manager
218.6 197.9 416.4 Intelligent Editor
185.6 226.5 412.0 Documentation Assistant
213.2 209.9 423.0 Style Analyzer

* 240.8 266.0 506.8 Metrics Set
140.2 183.4 323.5 Annotation Language
210.2 228.2 438.7 Change Propagation Detector
180.5 219.7 400.2 Test Case Analyzer
210.9 240.0 450.9 Intelligent Tutor

- 150 -

I. ,

QUALITIES

Air Force AI&DS Total Tool

242.6 256.4 498.9 Programing Manager
167.4 250.8 418.2 Intelligent Editor
289.0 267.1 556.1 Documentation Assistant
243.9 198.1 442.0 Style Analyzer
245.1 226.9 471.9 Metrics Set
165.7 259.5 425.2 Annotation Language
231.3 233.4 464.7 Change Propagation Detector
258.0 270.3 528.2 Test Case Analyzer
192.8 246.6 439.4 Intelligent Tutor

TOTALS

Air Force AI&DS Total Tool

653.6 887.5 1541.1 Programming Manager
617.4 819.7 1437.1 Intelligent Editor
726.7 904.8 1631.5 Documentation Assistant
704.8 755.8 1460.6 Style Analyzer
737.1 835.2 1572.3 Metrics Set
476.6 738.2 1214.8 Annotation Language
676.7 815.6 1492.2 Change Propagation Detector
650.6 809.9 1460.5 Test Case Analyzer
666.5 799.1 1465.6 Intelligent Tutor

- 151 -

'EVUEMCKS

[Ada 80] Reference Manual for the Ada Programming Language
Department of Defense, 1980.

[Arsac 79] Arsac, J.
Syntactic Source to Source Transforms and Program Manipulation.
Communications of the ACM 22(1):43-54, January, 1979.

[Ashcroft 77] Ashcroft, E. and W. Wadge.
Lucid, a Nonprocedural Language with Iteration.
Communications of the ACM 20(7):519-526, July, 1977.

[Asirelli 79] Asirelli, P., et al.
A Flexible Environment for Program Development Based on a

Symbolic Interpreter.
In Proceedings, Fourth International Conference on Software

Engineering, pages 251-263. IEEE, 1979.

[Baker 80] Baker, A. and S. Zweben.
A Comparison of Measures of Control Flow Complexity.
IEEE Transactions on Software Engineering SE-6(6):506-512,

November, 1980.

[Barr 82] Barr, A. and E. Feigenbaum.
The Handbook of Artificial Intelligence.
William Kaufman, Inc., Los Altos, California, 1982.

[Belady 71] Belady, L.A. and M.M. Lehman.
Programming System Dynamics.
Technical Report RC 3546, IBM Thomas J. Watson Research Center,

Yorktown Heights, New York, September, 1971.

[Bergland 811 Bergland, G.D.
A Guided Tour of Program Design Methodologies.
Computer :13-37, October, 1981.

[Bourne 781 Bourne, S.R.
The UNIX Shell.
The Bell System Technical Journal 57(6):1971-1990, 1978.

[Boyer 751 Boyer, R.S., B. Elspas, and K.N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by

Symbolic Execution.
In Proceedings, International Conference on Reliable Software,

pages 234-245. ACM SIGPLAN, 1975.

- 152 -

[Boyer 78] Boyer, R. and J.S. Moore.
A Computational Logic.
Academic Press, New York, 1978.

[Boyer 801 Boyer, R. and J.S. Moore.
A Verification Condition Generator for Fortran.
Technical Report CSL-103, SRI International, 1980.

[Brooks 75] Brooks, F.P.
The Mythical Man-Month.
Addison-Wesley, Reading, Massachusetts, 1975.

[Carter 82] Carter, B.
On Choosing Identifiers.
SIGPLAN Notices 17(5):54-59, May, 1982.

[Cheatham 79a] Cheatham, T.E., G.H. Holloway, and J.A.Townley.
Symbolic Evaluation and the Analysis of Programs.
IEEE Transactions on Software Engineering SE-5(4):402-417, 1979.

[Cheatham 79b] Cheatham, T.E., G.H. Holloway, and J.A. Townley.
A System for Program Refinement.
In Proceedings, Fourth International Conference on Software

Engineering, pages 53-63. 1979.

[Clarke 76] Clarke, L.A.
A System to Generate Test Data and Symbolically Execute

Programs.
IEEE Transactions on Software Engineering SE-2(3):215-222, 1976.

[Davis 791 Davis, R.
Statement on Computer Sciences.

Subcommittee on Research and Development, Committee on Armed
Services, United States House of Representatives, Washington
D.C.

[Devlin 811 Devlin, M.T.
Introducing Ada: Problems and Potential.
unpublished paper, Air Force Satellite Control Facility, 1981.

[Dewar 791 Dewar, R., A. Grand, S. Liu, J. Schwartz, and E. Schonberg.
Programming by Refinement as Exemplified by the SETL

Representation Sublanguage.
Transactions on Programming Languages and Systems 1(1):27-49,

July, 1979.

[Dewar ??] Dewar, R.
The SETL Programming Language.
NYU Courant Institute of Mathematical Sciences.

- 153 -

[Donzeau-Gouge 791
Donzeau-Gouge, V., et al.

Mentor Program Manipulation System.
Technical Report, IRIA-Laoria, August, 1979.

[Druffel 82] Druffel, L.E.
The Need for a Programming Discipline to Support the APSE: Where

Does the APSE Path Lead?
Ada Letters I(4), 1982.

[Elshoff 82] Elshoff, J. and M. Marcotty.
Improving Computer Program Readability to Aid Modification.
Communications of the ACM 25(8):512-521, August, 1982.

q [Elspas 80] Elspas, B.
Ruged Jovial Environment.
Technical Report CSL Interim Report, SRI International, 1980.

[Gable 801 Gable, A. and C.V. Page.
The Use of Artificial Intelligence Techniques in Computer-

Assisted Instruction: An Overview.
International Journal of Man-Machine Studies 12:259-282, 1980.

[Gelperin 82] Gelperin, D. (ed.).
Draft, IEEE Standard for Software Test Documentation.
Standard for Software Test Documentation Task Group, IEEE

Computer Society, 1982.

[Gerhart 80] Gerhart, S.L., et al.
An Overview of Affirm: A Specification and Verification System.
In Proceedings, pages 343-349. IFIP, 1980.

[Glass 79] Glass, R.L.
Software Reliability Guidebook.
Prentice Hall, Englewood Cliffs, New Jersey, 1979.

[Glass 811 Glass, R.L.
Persistent Software Errors.

4 IEEE Transactions on Software Engineering SE-7(2):162-168,
March, 1981.

[Glasser 78] Glasser, A.
The Evolution of a Source Code Control System.
Software Engineering Notes 3(5):122-125, 1978.

[Gloss-Soler 79]
Gloss-Soler, S.
The DACS Glossary: A Bibliograph of Software Engineering Terms.
Technical Report, Data & Analysis Center for Software, Rome Air

Development Center, October, 1979.

- 154 -

! ! i.

-. . - - i n ,

[Good 791 Good, D., et al.
Principles of Proving Concurrent Programs in Gypsy.
ACM Sixth Symposium on Principles of Programming Languages

1979.

[Habermann 811 Habermann, N., et al.
A Compendium of Gandalf Documentation.
Technical Report, Department of Computer Science, Carnegie-

Mellon University, April, 1981.

[Habermann 821 Habermann, A.N., and D. Notkin.
The Gandalf Software Development Environment.
Technical Report, Department of Computer Science, Carnegie-

Mellon University, January, 1982.

[Halstead 77] Halstead, M.
Elements of Software Science.
Elsevier North-Holland, New York, 1977.

[Hoare 731 Hoare, C.A.R., and N. Wirth.
An Axiomatic Definition of the Programming Language PASCAL.
Acta Informatica 2:335-355, 1973.

[Howden 77] Howden, W.E.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering SE-3(4):266-278, 1977.

[Intermetrics 811
Intermetrics, Inc. and Massachusetts Computer Associates.
Ada Integrated Environment: Design Rationale.
Technical Report IR-684 (Interim Report), Intermetrics, Inc.,

March, 1981.

[Jackson 82] Jackson, M.
A Practical Method of System Development.
Wang Institute of Graduate Studies, Prospectus on a short

course, 1982.

[Jensen 74] Jensen, K. and N. Wirth.
PASCAL: User Manual and Report.
Spinger-Verlag, Berlin, 1974.

[Joy 80] Joy, W.
An Introduction to Display Editing with Vi.
Technical Report, Computer Science Division, University of

California, Berkeley, 1980.

[Kafura 811 Kafura, D. and S. Henry.
Software Quality Metrics Based on Interconnectivity.
Journal of Systems and Software , 1981.

- 155 -

[Kaiser 82] Kaiser, G., and A.N. Habermann.
An Environment for System Version Control.

UTechnical Report, Department of Computer Science, Carnegie-
Mellon University, February, 1982.

[Kant 791 Kant, E.
Efficiency Considerations in Program Synthesis: A Knowledge-

Based Approach.
1PhD thesis, Stanford University, 1979.

[Kernighan 811 Kernighan, B.W. and J.R. Mashey.
The Unix Programming Environment.
Computer 14(4):12-24, April, 1981.

* [King 751 King, J.

A New Approach to Program Testing.
In Proceedings, International Conference on Reliable Software,

pages 228-233. ACM SIGPLAN, 1975.

[King 81] King, J.
Program Reduction Using Symbolic Execution.
Software Engineering Notes 6(l):9-14, 1981.

[Knuth 731 Knuth, D.
The Art of Computer Programming: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, 1973.

[Krieg-Bruckner 80]
Krieg-Bruckner, B. and D. Luckham.
ANNA: Towards a Language for Annotating Ada Programs.
In Symposium on the Ada Programming Language, pages 128-138.

ACM SIGPLAN, November, 1980.

[Ledbetter 801 Ledbetter, L.E.
The Software Life Cycle Model: Implications for Program

Development Support Systems.
Technical Report, Schlumberger-Doll Research, May, 1980.

S [Lientz 801 Lientz, B.P. and E.B. Swanson.
Software Maintenance Management.
Addison-Wesley, Reading, Massachusetts, 1980.

[London 781 London, R., et al.
Proof Rules for the Programming Language EUCLID.
Acta Informatica 10:1-26, 1978.

[Loveman 771 Loveman, D.
Program Improvement by Source to Source Transformation.
Journal of the ACM 24(1):121-145, January, 1 77.

- 156 -

SI

[Low 74] Low, J.
Automatic Coding: Choice of Data Structures.
PhD thesis, Stanford University, 1974.

[McCune 79] McCune, B.P.
Building Program Models Incrementally from Informal

Descriptions.
PhD thesis, Stanford University, 1979.

[McCune 82] McCune, B., J. Dean, and D. Shapiro.
Rule-Based Information Retrieval.
Technical Report 1018-2, Advanced Information & Decision

Systems, Mountain View, CA, April, 1982.

[McIlroy 781 McIlroy, M., E. Pinson, and B. Tague.
UNIX Time-Sharing System: Foreword.
Bell System Technical Journal 57(6):1899-1904, 1978.

[Medina-Mora 82]
Medina-Mora, R.

0 Syntax-Directed Editing: Towards Integrated Programming

Environments.
PhD thesis, Carnegie-Mellon University, March, 1982.

[Melliar-Smith 82]
Melliar-Smith, P.M. and R. Schwartz.
The Proof of SIFT (Software Implemented Fault Tolerance). r

Software Engineering Notes 7(1):2-5, 1982.

[Nelson 821 Nelson, T.
A New Home for the Mind.
Datamation , March, 1982.

[Osterweil 811 Osterweil, L.
Software Environment Research: Directions for the Next Five

Years.
Computer :35-43, April, 1981.

* [Perlis 811 Perlis, A.J., F.G. Sayward, and M. Shaw. -'

Software Metrics.
MIT Press, Cambridge, Massachusetts, 1981.

[Polak 801 Polak, W.
Theory of Compiler Specification and Verification.
Technical Report STAN-CS-80-802, Computer Science Department,

Stanford University, 1980.

[Reifer 82] Reifer, D.J.
Increasing Software Productivity.
DPMA Seminar Description, 1982.

- 157 -

4

[Rich 781 Rich, C. and H. Shrobe.
Initial Report on a Lisp Programmer's Apprentice.
IEEE Transactions on Software Engineering SE-4(6):456-467,

November, 1978.

[Rich 81] Rich, C.
Inspection Methods in Programming.
PhD thesis, MIT, June, 1981.

[Robinson 79] Robinson, L.
The HDM Handbook.
Technical Report Vols. I - III, SRI International, 1979.

[Sale 81] Sale, A.H.J.
Proposal for Extension to Pascal: Addition of REPEAT and UNTIL

as Identifiers.
ACM SIGPLAN Notices 16(4), April, 1981.

[Schwartz 75] Schwartz, J.
Automatic Data Structure Choice in a Language of Very High

Level.
Communications of the ACM 18(12):722-728, December, 1975.

[Shapiro 81] Shapiro, D.
Sniffer: A System that Understands Bugs.
Technical Report MIT/AIM/638, MIT AI Lab, June, 1981.

[Shapiro 82] Shapiro, D., B. McCune, and G. Wilson.
Design of an Intelligent Program Editor.
Technical Report 3023-1, Advanced Information & Decision

Systems, September, 1982.

[Stoneman 801
Requirements for Ada Programming Support Environments.
Department of Defense, 1980.

[SVG 79] Stanford Verification Group.
Stanford Pascal Verifier User Manual.
Technical Report STAN-CS-79-731, Computer Science Department,

Stanford University, 1979.

[Teitelbaum 80]
Teitelbaum, T. and T. Reps.
The Cornell Program Synthesizer: A Syntax Directed Programming

Environment.
Technical Report TR 80-421, Department of Computer Science,

Cornell University, May, 1980.

[Teitelman 78] Teitelman, W.
Interlisp Reference Manual
Xerox Palo Alto Research Center, 1978.

- 158 -

IJ

I .

[Teitelman 811 Teitelman, W. and L. Masinter.
T3. The Interlisp Programming Environment.

Computer 14(4):25-33, April, 1981.

* [Tichy 80] Tichy, W.
Software Development Control Based on System Structure

Description.
PhD thesis, Carnegie-Mellon University, January, 1980.

[TRW 801
A Study of Embedded Computer Systems Support.
TRW (performed for the Air Force Logistics Command, Wright

Patterson AFB), 1980.

[Unix 80] Unix User's Manual
Bell Laboratories, Murray Hill, New Jersey, June 1980.

[Waterman 78] Waterman, D.
Rule-Directed Interactive Transaction Agents: An Approach to

* Knowledge Acquisition.
Technical Report R-2171-ARPA, Rand Corporation, February, 1978.

[Waters 821 Waters, R.
The Programming Apprentice: Knowledge Based Program Editing.
IEEE Transactions on Software Engineering SE-8(Q), January,

1982.

[Wescourt 771 Wescourt, K., M. Beard, and L. Gould.
Knowledge-Based Adaptive Curriculum Sequencing for CAI:

Application of a Network Representation.
Technical Report 288, Institute for Mathematical Studies in the

Social Sciences, Stanford University, September, 1977.

[Yau 80] Yau, S.S. and J.S. Collofello.
Some Stability Measures for Software Maintenance.
IEEE Transactions on Software Engineering SE-6(6):545-552,

November, 1980.

[Zelkowitz 781 Zelkowitz, M.
Perspectives on Software Engineering.
Computing Surveys 10(2):197-216, June, 1978.

- 159 -

MISSION
Of

Rom Air Development Center
RAVC ptan6 and execwtea6 xesewah, devetopment, te~t and
Aetected aequi~ition puogwms in .6&ppo-'zt 06 Command, ContAot
Cormunocton6 and Intetz~gence (C31) atvitie.. Tedtnicat
and engineeting 6uppo)Lt uWthin a~etu 6 o ehnicat competence
i6 p'Lovided to ESP P40 g~am O66ice,6 (PO.6) and o-tJL ESV
etenlent6. The pzi ncZ pat techniLeat mizaion a.ea auL
communcati4onA, etec.tl~omagnete guiZdance and contLot, .6u&-
veiUanee o6 gtound and ae'w,6pace object, intee igence data
cottec~ov and handting, -Ln6o~nmat4ion .6ytem, technotogy,
iono4pheJ~ic p4opagation, Aotid state Ac.Zenceh6, FnZctowave
phy~sca and etectwnic 4tetiabZLZty, mainta.Lnabitity and
cornpatibitity.

I

