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1. INTRODUCTION 

Preceding reports 1•2 by the authors describe an algorithm for computing derivatives of 
a function of a real variable from its tabular data. The algorithm is based on two sets of 
assumptions. The first set specifies a class of functions such that the tabular data are 
approximate values of one of these functions. The second set of assumptions determines 
a finite dimensional subspace Ak of the selected functions from which an approximation of 
the tabular data is selected. The essential difference between the current algorithm (i.e., 
the algorithm described in this report) and any of the standard procedures such as moving 
polynomial arc, linear regression, spline approximation, and others is due to this second 
set of assumptions. The standard methods assume directly or indirectly that an element of 
a preselected finite dimensional space, say Sk, yields an appropriate approximation and that 
Sk is independent of the data at hand. The "best" approximation in Sk is obtained by 
applying a preselected criterion characteristic of the algorithm. In contrast to this our pro
cedure examines the data and selects a linear subspace Ak of an assumed infinite dimen
sional algebra A that is most appropriate for the available data and then determines a fam
ily of approximations in the subspace Ak dependent on the data and also the relative accu
racy of these approximations expressed by weights which in their turn depend on the data. 
Final results are weighted averages of individual approximations. 

Usually a subspace Sk and its approximating element are selected by a heuristic cri
terion such as minimum root mean square error, degree of smoothness, and others. In 
most cases this criterion represents a compromise between simplicity (smoothness, dimen
sion of Sk) of an approximating function and its faithfulness to the data. Similarly, our 
procedure selects approximating elements and their weights by a compromise between the 
accuracy of approximation and the robustness of the approximating model. The criterion 
for this compromise is purely heuristic. In this reporf ye examine such a criterion, which 
is a modification of one used in the previous reports. ' 

We note that approximating functions selected by the algorithm2 yield no values of 
derivatives in the initial and final segments of the data, where the lengths of these seg
ments are dependent on the data. The number of points lost in this way depends on the 
dimension k of the subspace Ak and on the selected multiple q of the data step size. Here 
we describe a procedure for computing derivatives at the beginning and the end of the 
data sequence. These are obtained with the aid of digital linear filters dependent on the 
data. 

1 C. Masaitis and G. Francis, "Numerical Differentiation of Noisy Data," ARBRL-MR-03126, Aug 81, AD 
A104631. 

2 C. Masaitis and G. Francis, "CompJtation Q{ Derivatives from Tabular Data," ARBR.lrMR-03188, Jul 
82, AD B066124L. 
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2. ALGORITHM 

Details of the algorithm for computing derivatives are described in the report 1 which is 
denoted by ND in the references below. A summary of these details follows. 

Various formulas of this algorithm are derived from four assumptions: 

a. Tabular data x(n ),n -= 1,2, .. .,N are obtained by measuring a function y(t) at 
equally spaced points with a step size 4. The measuring error En is a white noise with zero 
mean and unknown variance a 2 independent of time, i.e. x (n)- y(n 4) +En. 

b. The function y (t ) belongs to a family of functions whose derivatives on the 
interw.l [O,T] can be represented by a linear combination of values of y(t ), i.e. 

y '( t) - f. a1 ( v )y [t + ( v - i) 4 ] (2.1) 
I -1 

for any integer v satisfying - t + k 4~v 4 ~T - t. The coefficients a1( v) depend on 
the function y( t) and the location parameter v but not on t . 

As shown in Section 3 of ND assumption (b) implies that y (t) belongs to the algebra 
A generated by algebraic, trigonometric, and exponential polynomials defined on the inter
val [O,T ]. 

According to Section 1 of ND an assumption that y (t ) E A is equivalent to an assump
tion that for every 4 > 0 y(t) satisfies the difference equation: 

P 4 ( B 4 ) y (t) - 0, (2.2) 

where P 4 (A) - IT (A - )} t 1 + 1and B 4 y (t) - y (t - 4). Hence, an approximating 
J-1 

function can be obtained by constructing an autoregressive model such as (2.2). 

We write x (n ,p ,q) for x (p + qn ), for any pos1uve integer q and 
N-p . 

p = 0, 1, 2, ... ,q - l,n = 0, l, ... ,NP, where NP = [ ], 1.e. 
q 

x (n,p,q) = y(r 4)+E,, 

where r - p + qn. By substituting this in (2.2) we get 

x (n,p,q) -E, ... f. a1 [x (n-j,p,q)- E,_1). 
1 -l 

(2.3) 

(2.4) 

According to Section 2 of ND the minimum variance estimates of the a1 's are obtained by 
the following iterative procedure. 
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Let M (k ,q) be the matrix of the normal equations of the overdetermined system 

k I: a1 x (n-j,p, q)-=x (n,p, q), (2.5) 
J-1 

, - k + 1, ... , Np,P -0, l, ... ,q -I. Let X (k,q) be the right-hand side vector of these 
- q -1 

normal equations and N - I: (NP - k ). Let 
P-o 

1 q -1 N [ k ]2 N I: :E x (n, p, q) - I: a}u >x (n - j, p, q) 

2 p~ n-k+l J-1 
cr u (k, q) - k [ )2 (2.6) 

1 + I: a}u) 
J-1 

for u -I, 2, ... and crJ- 0. Let a<u> be the colwnn vector whose components are the 
approximate values of the coefficient, a1 's, obtained on the u-th iteration by solving the 
system of linear equations 

(M(k, q )-N crJ_1 (k, q) I) a<u>- X(k ,q ), (2.7) 

where I is an identity matrix. In swnmary, we choose positive integers k and q and use 
the tabular data x (n ) to generate the augmented matrix (M (k, q ), X (k, q ) ) correspond
ing to the overdetermined system (2.5). Then by starting with crJ = 0 we obtain the first 
approximations, a}D's, by solving (2.7). These values are substituted in (2.6) to obtain 
cr{ which in turn is used in (2.7) to obtain the second approximation vector a(2>, and so 
on. The iteration is continued until I a}u+l)- a}u) I < 8- 10--6 or u == 20. Together 
with a solution of (2. 7) the determinant of this system is also computed. The absolute 
value of the determinant of the last iteration is denoted by D (k ,q ). Thus, at the end of 
the iteration we have 

computed by (2.6), 

(a 1 (k ,q ), a 2 (k ,q ), ... , ak (k ,q )), 

and 

D (k,q ). 

The corresponding autoregressive model is 
k 

x (n,p,q)- I: a1 (k,q)x (n-j,p,q). 
J-1 

The eigenvalues of the autoregressive model, namely 

9 
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A 1(k,q ), A 2(k,q ), ... ,A k(k,q ), (2.12) 

are the roots of the equation 

k 
A k (k,q)- I: a1 (k,q) A k-J (k,q ). (2.13) 

J-1 

It is very unlikely that the estimates of the a1 's obtained from the tabular data will yield 
multiple roots of (2.13). Therefore, we assume here that all the roots are distinct, since all 
the ca~s of synthetic data examined in this report and empirical data of the previous 
report produced no pairs of nearly equal roots. We note that exact representation of 
y (t) =41 (I + t +t2 + t 3) used below to generate one set of synthetic data does yield four 
equal roots. However, an approximation of the values of this function with an added 
noise does not produce an autoregressive model with equal or nearly equal eigenvalues. 

As stated above, an approximating function is an element of the algebra A . Hence, 
with simple eigenvalues we take 

k n 
X (n ,p,q) = I:, CJAJ (2.14) 

J-1 

for all data points with the same value of n. The coefficients, c1 's, are selected to minim
ize the RMSE of the resulting approximation over a span, say, from n-K to n+K. We 
select K -k. Thus, the coefficients, c1 's, are obtained by solving the normal equations of 
the overdetermined system (2.14), i.e., by solving the following: 

K k K I: I: c1Al+u Ar+u- I: x (n+u ,p,q) Ar+u,i - 1,2, ... ,k. (2.15) 
u --K j-1 u --K 

k 
Let cJ- (c 1, c2, ... , ck ), su ..... I: ArA1u, S be the matrix (su ), and Z be the 

u --k 
k 

column vector with components I:, Aj x (n-+u ,p,q ), J - 1,2, ... ,k. Then (2.15) can 
u --k 

be rewritten in equivalent matrix form: S C k = Z. Consequently, 

ck -s-• z (2.16) 

Let Yn be the column vector with components x (n +u,p,q)Aj, j -1,2, ... ,k. Then 
we get from (2.16): 

(2.17) 

By wnung AT = ( Af, Af, ... , Af > and by substituting (2.17) in (2.14) we get the 
smoothed value of the function: 

(2.18) 
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In view of (2.3) the relation (2.14) can be written · as follows: 
k t_p_ 

x k (t) - :r, c1 A./1;- q , or 
J-1 

Differentiation of (2.19) s times yields 

(2.19) 

(2.20) 

We replace t in (2.20) by t - p!J., and then we lett - r !J. with r as in (2.3). This in 

turn leads to 

(2.21) 

In view of (2.17) the estimate of the s-th derivative in (2.20 can be written as fol

lows: 

x:s) (n,p,q)-
1 t A[S-1Yu 

(q !J,.)S u -- k 
(2.22) 

where A5 - d 5 A I du s is a column vector with components A.j log' A.1J - 1,2, ... ,k 

This completes the description of the basic relations of the algorithm. 

3. RELATIVE ACCURACY OF APPROXIMATIONS 

The algorithm of the preceding section yields several approximating functions 
corresponding to various choices of k and q. According to the choices in an earlier 

repon2 there are 3[ min(~ ,39)1 approximating functions for a data set of N points. 

Here the square brackets denote an integer not exceeding the expression in the brackets. 

We discuss now a heuristic rule to assign a weight to each approximation. 

As described in Section 2 of ND all the approximations corresponding to autoregressive 
models with eigenvalues containing a real negative part are assigned weight zero, since in 
this case an approximating function contains a periodic term with the period so short that 
less than four data points are contained in the period; i.e., the data are inadequate to deter
mine this term with sufficient accuracy. We illustrate this by an approximation to x (t) = 

erf (t) + E, where E is a normally distributed random variable with standard deviation u. 

We generate data by evaluating x (t) in the interval [0,2] with the step size !J. ==- 0.005 
and by adding pseudorandom numbers E. Autoregressive models computed for the values 
of this function plus random error with u ... O.O:H19 corresponding to eigenvalues with 
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positive real parts allow a maximum frequency (I) max- 0.451T. If only the terms with the 

frequencies (I) 1 - i; satisfying the condition ru 1_ 1 <(l)max~ru1 are included in a trun

cated Fourier series we obtain an approximation with RMSE's equal to 0.087, 0.420, and 
1.10 for the function, first, and second derivatives, respectively. If the terms of the next 
higher frequency are added to this approximation, the RMSE's are 0.068, 0.537 and 2.41. 
Thus, we have a slight improvement in the v ·'"es of the function, as expected, but more 
than twice as big an error in the second derivative. This example shows that rejection of 
the autoregressive models with negative parts in their eigenvalues is appropriate. 

We made similar tests in two additional cases, namely, with the data obtained by 
evaluating the Bessel function J0 (t) of the first kind (500 points in the interval [ 1, 6] with 
one-sigma error of 0.00344) and by evaluating sin2'7T t + O.lsin10 '7T t (250 points in the 
interval [0, 1] with one-sigma error of 0.022). 

In the first case, if only the terms with the frequencies (I) 1 ~(1)1 where 
(1)1_ 1 <(!)max~ (I) 1 are included in the Fourier expansion the corresponding errors are 
0.121, 0.255, and 0.334. If the terms with frequency (I) i+l are added the errors are 0.090, 
0.296, and 0.588. Again we have a slight improvement in the values of the function, but 
derivatives become less accurate. 

In the second case the terms with (I) 1J == 1,2,3,4,5 are allowed in the Fourier expan
sion, according to the same criterion. The resulting RMSE's in the values of the function, 
first, and second derivatives are 0.0038, 0.074, and 1.73. If the terms with the frequency 
(I) 5 are dropped, the RMSE's become 0.07013, 2.23, and 69.6, respectively. If the terms 

with (I)JJ == 1,2,3,4,5,6 are included the errors are 0.01169, 0.209, and 6.09. Thus, here 
again the selected criterion for cut-off frequency in the representation of the data yields 
optimal results. 

Similarly, comparison of approximations computed by the method of the preceding sec
tion corresponding to autoregressive models with negative real parts and those correspond
ing to positive real parts shows that rejection of approximations with negative real parts in 
their eigenvalues is appropriate. 

For instance, for x (t ) == sin21Tt (with noise) evaluated in [ 0, 1] at a step of 0.004 the 
constraints imposed on k and q allow a total of 48 models. Of these, 24 contain eigen
values with negative real parts. The most accurate approximation among these yields 
RMSE's of 0.069 and 2.17 in the first and second derivatives, while the best approximation 
with positive real parts in eigenvalues yields 0.0397 and 0.0920, respectively. 

The remarks in Section 2 of ND and the examples just presented provide heuristic and 
empirical justification for rejecting (i.e., assigning weights of :rero to) the approximations 
corresponding to autoregressive models with negative real parts in their eigenvalues. 

The weights assigned in a previous report2 to the approximations with positive real 
parts in their eigenvalues produced relatively good results. Here we examine a modified 
form of the weights that yields somewhat better results. We assume as before that the 
weight increases as the RMSE u (k ,q) of the solution of the overdetermined system 
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(2.5) decreases and that it also increases as the corresponding normal system becomes less 
sensitive to perturbations of the data, i.e., as the absolute value of det M (k ,q) in (2.10) 
increases. We select a simple function satisfying these conditions and invariant with 
respect to rescaling of the dependent variable x; i.e., we choose the weight w (k ,q) given 
by 

w (k ) - D (k ,q ) 
,q u"(k ,q) 

(3.1) 

Comparison of accuracy of various models provides empirical support for this choice of 
their relative weights. Eight sets of synthetic data yield a total of 196 approximating func
tions for various values of k and q with non-negative real parts of eigenvalues. The 
number of the models of this kind for individual data sets range between 16 and 37. 
Thus, we have 196x2-392 approximations of the first and second derivatives. It turns out 
that the three highest weights computed by (3.1) for each set of data differ very little, and 
the values of the weights drop rapidly for the remaining models. For this reason we con
sider the three models with the highest weights for each set of data. We have altogether 
48 approximations of the first and second derivatives with the weights among the three 
highest. Among these there are 32 approximations that produce smaller errors in the 
respective derivatives than the remaining 360 approximations. Nine out of sixteen approx
imations with the highest weights in their respective sets actually are best for the first or 
second derivative. The remaining seven models with highest values of w (k ,q) do not 
yield best approximations. However, they are not much inferior to the best models of the 
autoregressive type. In fact, the average reduction of the RMSE of derivatives between 
the models with the highest w (k ,q) and the best ones by comparison with exact values 
of derivatives is only 32% for these seven cases. The results of the next section show that 
the RMSE of derivatives computed by a spline approximation is higher in one case 
(second derivative of e') by as much as 26700% than the RMSE obtained by the current 
method. Even if this extreme case is ignored, the RMSE of the approximations computed 
by the spline procedure is 474% higher than that of the current method. In view of this a 
32% increase in those cases in which the criterion (3.1) fails to select the best model is not 
significant. Consequently, we accept this criterion on the basis of empirical results. 

The smoothed functional values and estimates of derivatives for each (k ,q ) pair are 
given by (2.18) and (2.22), respectively, with p- 0,1,2, · · · ,q-1 and 
n - k+1, k+2, · · · , NP-k, where NP is the same as in (2.6). This produces no 
smoothed values for t - 4,2 4 , · · · , kq 4 , and for 
t - (N - kq + 1)4,(N - kq + 2)4, · · · ,N 4. Denote the values of k and q 

corresponding to the three models with highest values of w (k ,q) by (k1,q; ),i == 1,2,3 and 
Jet n0 - max (k1 q1 ). We obtain the smoothed values and approximation of derivatives 
based on all three models with highest weights only at the points t - (n

0 
+ 1 )4, 

(n0 - 2) 4, · · · ,(N - n0 )4. These points belong to what we call here the central inter
val of the data. The smoothed functional values :X (n) and approximate derivatives 
.x<s )(n) at the points of the central interval are defined by the foJJowing: 
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X (r) -1: w (k ,q) xk (n ,p ,q) I 1: w (k ,q) (3.2) 
k,q k,q 

and 

_x(s) (r) = 1: w (k ,q) _x(s) (n ,p ,q) I 1: w (k ,q) (3.3) 
k,q k,q 

with r - p + qn. 

Instead of estimating derivatives at the data points not included in the central interval 
with the aid of available models of lesser accuracy (such as with k - q - 1) 'We adopt the 
filtering procedure described in the next section. 

4. DERIVATIVES IN THE INITIAL AND FINAL SEGMENTS OF THE DATA 

Let k 0 - max (k 1, k 2, k 3 ), where k; , i - 1, 2, 3 are the parameters of the three models 
with the highest "Weights w (k; , Q; ), and let q0 be the value of Q;, such that k; = k

0
• 

Equations (3.2) and (3.3) yield x (r) and x<s > (r) ~ror r .... (n
0 

+ 1) a, 
( n0 + 2) a, · · · ,(n - n0 ) a. We assume digital filtering models: 

Po ro 
x' (j) - 1: d;x (J - iq o ) + 1: f; x' (J - iq0 ) (4.1) 

i-o 1-1 

for each pair of non-negative integers P0 and r0 satisfying the conditions Po ~k0 , r0 ~k0 • 

If j is such that n0 + q0 max (po , r 0 ) ~ j ~ N - n0 then the values 
x' (j) , x (j - iq0 ) and x ' (J - iq0 ) belong to the central interval of the data. Hence, for 
these values of j (4.1) constitutes an overdetermined system with unknowns d; and f;· 

We solve this system by the least squares method and obtain the estimates d; (r
0 

, p
0

) 

and f; (r0 , Po), the RMSE cr (po ,r0 ) of the solution, and the absolute value 
E (p0 ,r 0 ) of the determinant of the corresponding normal equations. In analogy to the 
preceding section we assign a relative weight W (po ,r0 ) to each of the digital filters (4.1) 
as follows: 

(4.2) 

Let (p1, r 1), (p2 ,r2) and (p3 ,r3) be the pairs of (po.'o) corresponding to the three largest 
values of W (p0 ,r0 ) • For s - 1,2,3 let 

~ (ps •'s)- X (j)' 

if j > N - n0 • Let 
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if n0 + 1 ~ j ~ N - n0 • Let 

Ps r, 
X 'J(ps •'s)- I:, d; (ps •'s )x(j - iqo) + I:, f; (ps •'s )x' (j - iqo) ' 

1-o i-1 

if N ";?::J >N - n0 Then the estimates of the first derivative in the final interval of the 

data are given by 

x'(J) .... t w (ps, 's>x/ (ps,rs>l t w (ps •'s> (4.3) 
s-1 s-1 

j =- N - n0 + 1 ,N - n0 + 2 , ... , N. 

The estimates of the second derivative are obtained in the same manner by replacing 
x'(j) by x"(J) for J = n0 + 1, n0 + 2, · · · , N- n0 in (4.1) and then by solving the 

resulting overdetermined system, i.e., by determining the corresponding linear digital 
filters. These are used to obtain the estimates of the second derivative analogous to (4.3). 

The estimates of the derivatives in the initial segment of the data are obtained by 
renumbering the data points as follows: f (}) - x (N - J + 1) and then by applying the 
procedure just described to f (j) . 

5. NUMERICAL EXAMPLES 

We compute approximations of the first and second derivative by the method described 
on the preceding pages for ten sets of synthetic data. The ten cases numbered in Column 
1 of Table 1 are obtained by evaluating the functions x (t) listed in Column 2 in the 
intervals given in Column 3 at the step size ~ shown in Column 4 and then by adding to 
each value a pseudo-random error normally distributed with zero mean and standard devi
ation u as contained in Column 5. In each case the standard deviation u is equal to the 
average of the absolute values of the change of the corresponding function as its argument 
changes by~ . With random errors of this size derivatives cannot be estimated by divided 
differences. 

In Case 9 u- 0 , i.e., here vve have functional values exact up to 15 decimal digits, 
which is single precision for the computer employed. 

In Case 5 the function x (t) - J0 (t) is the Bessel function of the first kind. In Case 7 

(Witch of Agnesi) x (t) - 2 cos2 ( tan-1 ~ ) and in Case 8 we have a rational function 

x (t) - 36 t I (t 2 + 9) . These three functions as well as the error function are included 
to test how well their derivatives can be approximated when the functions do not belong 
to the Algebra A defined in Section 2. 
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TABLE 1. SYN1HETIC DATA 

1 2 J 4 5 

Cue X (t) Tnwval A tT 

1 lin2•1 [0,1] .004 .001 

2 sin 2 • t + 0.1 sin 10 •t [0,1] .004 .022 

3 ~ , [0,5) .01 .295 

4 II (1 +t +t2 +t3) [(U) .004 .471 

5 10 (t) [1,6] .01 .00344 

6 error fum:tion [0,2] .005 .00119 

7 Wiu:h of Agmsi [0,2] .005 .0025 

8 Newton Serpenti:ne [0.2] .005 .(lJ9 

9 2 13 - 9 t 2 + 12 I [0.3) .005 0 

10 2 13 -9 t 2 + 12 1 [0,3] .005 .01833 
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The results are summarized in Table 2. Here Column 1 is the same as in Table 1. To 
each row of Column 1 there correspond two rows of the remaining columns. One of these 
contains the errors of the first derivative x'(t) and the other that of the second derivative 
x"(t) as indicated in Column 2. Columns 3 and 4 give RMSE's of the respective esti
mates of derivatives expressed in percent of the RMS of the actual values at the data 
points. Column 3 (B.S.) shows the errors of the estimates obtained by fitting the noisy 
data by B-sp1ines. Column 4 contains the errors (in percent) of the estimates computed by 
the current method (C.M.), i.e., by the method of this report. By comparing these two 
columns we see that the method described here gives much better estimates of derivatives 
in all but three cases out of 20. Two of these cases are for exact values of the cubic poly
nomial. The first and the second derivatives computed by cubic B-spline approximation 
agree up to eight digits with the exact values in this case. The coefficients of the autore
gressive model with highest weight agree with the exact coefficients up to seven digits. 
The resulting perturbation of one or two units in the eighth digit yields eigenvalues accu
rate up to only three decimal digits. The derivatives computed with these approximations 
on the average differ from the exact values in the fourth decimal digit, as shown in 
Column 4. The last two rows show that the method of this report produces considerably 
better results than the B-spline approximation when the values of this same polynomial 
contain random errors. 

In Case 2 the error for the first derivative obtained by the method of this report is 
almost twice as big as that obtained by the spline approximation. However, the error of 
the second derivative computed by the current method is only half the error obtained by 
the spline. 

Of the remaining sixteen derivatives (aside from Cases 2 and 9) five approximations by 
the current method are better by an order of magnitude or more than that by the spline; 
six approximations have errors four or more times smaller than the errors by the spline 
method, and the remaining five are at least twice as good as those by the spline procedure. 
The worst error by the spline approximation as compared to the approximation by the 
current method is that of the second derivative of the exponential function. Even if this 
worst case is ignored, the error by the sp1ine approximation is on the average 474% of the 
error by the method of this report. 

Compatibility of derivatives computed by our method with the data was further tested 
by comparing exact functional values with an approximate first integral of the first deriva
tive and the second integral of the second derivative. Approximations of the integrals 
were obtained by trapezoidal rule. The RMSE of the integral of the first derivative com
puted for various segments of the central portion of the data varies from 0.075 to 1.88 per
cent of the RMS of the functional values. The smallest error is for Witch of Agnesi (Case 
7) and the largest for Case 4. The values of the derivatives in the initial and final data 
segments, however, are less accurate. Consequently, the RMSE's of the integrals of the 
first derivative computed for various segments of the complete data set vary from 0.10 
(Case 3) to 3.8 (Case 5) percent. Similarly, the RMSE's of the second integral of the 
second derivative in the central portion of the data vary from 0.26 (Case 3) to 17.5 (Case 
4) percent and in the complete set of data between 0.25 (Case 3) and 43.5 (Case 2) per
cent. 
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TABLE 2. APPROXIMATION ERRORS .JN PERCENT 

1 2 3 4 

Case Deriv B.S. C.M. 
x' 2.5 .61 

1 
x" 20 1.1 
x' 3.3 6.2 

2 
x" 23 11.9 
x' 3.3 .22 

3 
x" 67 .25 
x' 3.2 1.6 

4 
x" 67 8.6 
x' 4.7 2.2 

5 
x" 140 15.5 
x' 4.5 1.7 

6 
x" 253 37 
x' 3.8 1.9 

7 
x" 191 36 
x' 4.7 1.1 

8 
x" 347 28 
x' 0 .042 

9 
x" 0 .071 
x' 4.29 1.55 

10 
x" 88 3.55 
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We note further that our method is not too time-consuming in spite of the fact that it 
determines several approximations and the corresponding computer program contains 
several loops. Computing time on the CDC CYBER 76 computer of BRL, including gen
eration of synthetic data, in none of the ten cases exceeded 8.8 sec. The average comput
ing time per case was 4.5 sec. 

6. EXTRAPOLATION/FORECASTING 

A variant of the new method described in this and earlier related reports can be used 
for extrapolation out of the region in which the data was sampled. As with any forecasting 
procedure it must be assumed that the underlying trend shown by the sample continues 
into the region considered. If conditions change that trend significantly, the forecast will 
naturally be much less reliable. 

If equation (2.14) remains valid, functional values s · q · A t later in time are obtained 
by replacing n by n + s , while the eigenvalues A remain the same. Other equations are 
modified accordingly. 

In the central portion of the sample a span of 2 k + 1 points, q · A t apart, was used to 
find values at a point t offset zero from the center of the span. In the right-hand end por
tion the offset was changed to k · q · A t so as to use available data points, to the left of 
and including t, in the evaluation. If the offset is increased further, to v · q · At for 
some v >k, the span can remain within the data sample even though t is outside. This 
provides the basis of forecasting. 

The correspondingly modified algorithm was used for extrapolation of several of the 
standard test functions. In cases where the A 's closely approximate those of the exact 
(non-noisy) function, extrapolated values well outside the sample were obtained with 
acceptable accuracy. In cases of greater noise, poorer approximation of the true A 's is 
typical, and extrapolation is therefore less satisfactory. 

For x = sin 2 'IT t + E , 201 points on [ 0, 1 ], prediction of the extrema and zeroes on 
[ 1,2] was undertaken. For a noise level ( u ( E )) of .001 the zeroes at t = 1.5 and 2.0 
were predicted to be at t ± 1 · A t with error in x (t) less than .001 in those intervals. 
Similarly, the extrema at 1.25 and I. 75 were predicted at t ± 1 · A t with I x I values on 
(0.999, 1.000). The corresponding first derivatives x', computed by the linear filtering 
method of Section 4, -were found with RMS error within 0.2 percent of the overall RMS 
(x'). 

Corresponding results with greater noise ( u -.010) also located the extrema and 
zeroes within 1· A t, with lx I in error by .010 (RMS error) over the entire interval [I, 2] 
The RMS error for x' in the extrapolated region was 3.0% of RMS (x' ). 

For the more oscillatory function x = sin2 'IT t + 0.1 sin 10 'IT t + E , with 
u ( E ) ==.001, the extrema at t - 1.25 and 1.75 and the zeroes at t = 1.5 and 2.0 were 
predicted to within 1 · A t, and the values near the extrema were correct within .002. The 
corresponding first derivatives x' near the zero at t = 1.5 were in error by less than 3% of 
true value, degrading somewhat thereafter. The corresponding case with u = .010 
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extrapolated :X well (RMSE of .02 on [1, 2]) but :X' began to degrade somewhat earlier in 
the extrapolation region. Note that the increased input noise is a significant fraction of the 
amplitude of the second term of this double sine function. 

Extrapolation should always be used with caution, but there are many practical atses 
where it may be necessary. Economic forecasting, demographic projections, and prediction 
of future locations of moving targets are examples. The reverse process of extrapolating 
into the past is also of interest, e.g., likely earlier values of a variable with only recent 
measurements available. This can be achieved by storing the data values in reverse and 
changing the sign of first, third, and other odd derivatives of interest. The current gen
eralized algorithm thus can be used in either context . 
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APPENDIX 

DNDLIB - A USER LIBRARY FOR DIFFERENTIATING NOISY DATA 

There now exists on MFZ, the BRL COC Cyber 7f:IXJ computer, a user library called 
DNDLIB, created by G. Francis in September 1981 and based on the computer programs 
and theoretical algorithms discussed in three BRL publications by C. Masaitis and G. 
Francis, this report and its earlier companions. 

The library was designed for easy access by other users of the BRL computer. In gen
eral only one of the 14 subroutines included need be called by a user program, as the oth
ers are called as needed automatically. That particular subroutine is named DND and 
allows a certain amount of flexibility on the part of the user. He must set up an array 
(vector) of equally spaced data points (usually experimental values containing noise, i.e., 
measurement errors and the like) and specify the number of such points, say N. In addi
tion he must select the maximum order of derivatives of interest (1 to 3) and provide 
additional arrays for smoothed results and each order of derivative. The current upper 
bound on N is 1000, and N should exceed 30. 

A sample call (in Fortran) is as follows: 

CALL DND (XN, N, DT, MXOD, XS, D1, D2, D3) 

where, say, N = 250, XN is an array of at least N values (points 1 toN to be processed), 
DT is the spacing of the independent variable, MXOD is the maximum order of derivative 
wanted (1 to 3), and arrays XS (of length N or more) and D1 (similarly) are to receive 
the smoothed values and the first derivatives at corresponding points. If MXOD is 2 or 
more, an array D2 must be provided; likewise if MXOD is 3, an array D3 is needed. The 
labels D2 and D3 may be omitted from the call if MXOD is 1. 

For each point i, i=1 toN, there will be a smoothed value at XS(i) and a first deriva
tive at D1 (i). If MXOD is 2 a numerical second derivative will be at D2(i), and if MXOD 
is 3 then D3(i) will contain the third derivative corresponding to point i. (If still higher 
derivatives are desired, the process can be repeated by copying D3, say, into XM and mak
ing a new call. The accuracy of derivatives grows worse, however, as the order increases, 
particularly if the original data contains considerable error.> 

The method of DNDLIB uses a few subroutines from the IMSL library, so that library 
must be made available, too. This is done on MFZ by means of the following CDC 'con
trol cards' or suitable replacements: 

A TT ACH(IMSL) 
ATTACH (DNDLIB, ID-= PUBLIC) 
LIBRAR Y(IMSL,DNDLIB) 

In addition the standard BRL subroutines known as FNEQS and MA TINV are used for 
matrix setup and inversion. These are available on MFZ with no user action required. 
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The size of the full set of subroutines is approximately 20K words of SCM (central 
memory) and 12K of LCM plus the user-supplied arrays (of 3N to 5N words, as men
tioned earlier). This includes all work space for N up to 1000 and MXOD up to 3, mostly 

inLCM. 

The time required for calculations is highly dependent on the number of data points 

arx:i also on the order of derivatives wanted as well as the degree of complexity of the 
underlying function. For a sample noisy sinusoid with derivatives wanted through order 2 
the following times were found (in cpu seconds on MFZ): 

N - 100 250 500 1000 
T- 0.5 1.3 4.4 11.1 

As indicated above results are found at all N points, not just a few. 

If extrapolation is required, an alternate call of much the same form is used, with one 

additional parameter, denoted NP, arx:i the subroutine name is DNDE rather than DND: 

CALL DNDE (XN, N, DT, MXOD, NP, XS, Dl, D2, D3) 

A request for extrapolation forward is entered by specifying NP greater than N, but under 

1000. This feature should be used with caution. Naturally, all arrays for results should be 

of at least NP cells. 

It is hoped that this library will prove of benefit to users, who are encouraged to apply 

it to their own noisy data, especially when the assumptions of Section 2 are thought to be 

satisfied. 
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