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FOREWORD

The axisymmetric perturbations (sausage and hollowing modes) of an intense

relativistic self-pinched electron beam propagating in a resistive plasma back-

ground are studied, especially for a beam with rounded radial density profile.

The Bennett profiles are assumed for both the equilibrium beam current

Jb(r) = J (1 + r2/S)-2 and plasma return current Jp(r) *-f Jb(O)

2 2 -2(I + r2/R) , where R and Rp are the characteristic radii of the beam and

plasma return currents respectively. It is further assumed that the electric

conductivity a(r) of the plasma channel is proportional to the return current.

For a paraxial electron beam with complete space-charge neutralization by the

ambient plasma, the axisymmetric modes can be destabilized by the phase lag

between the magnetic field and beam current, even without the plasma return

current.

The plasma return current significantly modifies the growth rate of the
= 2 2.

instability such that the ratio of plasma to beam current (-Ip/Ib = f Rp/N)

largely determines the stability character of the beam. Furthermore, for the

same fractional current neutralization f, the modes are highly unstable for

smaller ratio of plasma to beam radius Rp/Rb . As comparing to the resistive

hose instability, the growth rates for hollowing mode could be larger than those

of hose mode, while the sausage mode is much stabler than the hose mode.

Stability properties are illustrated in detail for various system parameters.

Approved by:

IRA M. BLATSTE1N, Head
Radiation Division
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I. Introduction

There has been considerable interest in recent years in the propagation of

high-energy self-pinched relativistic electron beam in the highly resistive plasma

medium. Naturally, the equilibrium and stability properties of the electron

beam become one of the important subjects under investigation. The resistive

*hose instability appears to be the most serious magnetohydrodynamic instability

for a beam in a resistive plasma channel and has been studied extensively by
L

° 1-3
many authors. Nevertheless, the axisymmetric oscillations could expell the

beam from its channel and plague early beam propagation.4  It is the purpose of

this paper to examine the importance of the axisymmetric modes in comparison with

the hose mode. The axisymmetric perturbations of an intense self-pinched

relativistic electron beam propagating in the plasma background have been studied
previously by many workers both analytically5'6 and numerically.7,8 Recently

Uhm and Lampe developed a self-consistent theory 1,9 to derive the dispersion

relation for a flat-topped radial density profile electron beam. This paper is

an improved version of the previous study, including the influence of the

rounded beam density profile on the axisymmetric modes. It has been understood

that the flat-topped electron beam has the feature of unbounded linear growth

* rate for axisymmetric oscillations because all the beam electrons are assumed to

have the same natural oscillation frequency which resonants with the wave. As

we know in the real world, the beam contains electrons of all energies from the

smallest up to the maximum possible energy which is equal to the kinetic energy

of the accelerated electron. The electrons at different energy level oscillates

with different frequencies and radii, thus the unharmonic beam electrons at

different radial position exhibit different betatron frequency and resonant

locally with the waves. Electrons with an excess of energy will move with

--
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Ia greater radius and electrons with less energy oscillates around smaller'radius.

- Therefore, each electron automatically chooses the appropriate phase necessary

for their interaction with perturbed waves. This phase mixing is a damping

mcchanism for oscillation which prevents perturbation from growing to infinity.

* .From the thermal equilibrium calculations of the intense relativistic

electron beam, it was found that the radial density profile for a nonrotating

electron beam has the familiar Bennett equilibrium as derived originally by
~10

' Bennett. For the choice of the thermal distribution function, the beam

temperature profile and the axial velocity profile are uniform in the radial

direction. For the matter of practical interest, we assume the beam flow is

paraxial, such that all the beam particles have nearly the same axial velocity,

and the transverse energy is much smaller than that in the axial direction. For

the type of beam we consider here, the equilibrium beam current can very well be

represented by the Bennett profile

2 2 2
Jb(r) = Jb( 0 )/( 1 + r2/ 1) (1)

where Rb is the characteristic beam radius.

O The resistive plasma background responds the beam current with a plasma

return current which strongly influences the stability behavior of the beam.

A small transverse displacement of thc beam can separate the beam from the

*@ return current which eventually causes the instability. For simplicity we

assume the plasma background supplies enough ions to neutralize the beam

electrons completely. Although the radial profile of the return current is

*determined by the electrical conductivity a(r) which relies heavily on the

properties of the ambient plasma and experimental condition, for the time

2
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e being, it is assumed throughout this paper that the equilibrium plasma return

current J (r) and electrical conductivity a~r) have also the Bennett profile
p

like

Jr -f J (0)/(l + r 2/R 2)2  (2)
p b p

and

a(r) * r(O)/(l + r 2/R 2) 2(3)
p

where the characteristic beam radius R pcan be greater or smaller thanRb

depending on the nature of the background plasma such as the ambient pressure

and other physical properties. f is the ratio of beam current to plasma

current at the beam axis

f -= i p 0)/ib(O)(4)

If the above mentioned equilibrium current configurations are used, then the

effective current neutralization would be determined by the ratio of plasma to

beam current which has the value

2 2

R..R

f ef

The influence of the steady return current on the axisymmetric perturbations

depends largely on the extent of plasma current profile overlapped with the bean

current. By varying Rr and Ro the effective current neutralization not only

denotes the measure of roundness of the bean but also represents the degree of

63
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overlap between beam and plasma current profiles. It is an important parameter

used later to describe the effect of the current profiles on the instability.

In the sections which follow, the equilibrium properties of a self-pinched

electron beam with a steady plasma return current are discussed in Section II,

the necessary condition for radial confinement of the electron beam is iiined.

The standard linearized Vlasov-Maxwell treatments are summarized in Sec . III.

An integro-differential eigenvalue equation is obtained for the genera --ded

beam case, making use of the energy group model. The most important so%._-e

term, namely the perturbed beam current for the rounded beam is also derived.

For the purpose of comparison to the previous results, an integral form of

an approximate dispersion relation is obtained for the general rounded beam.

For the special case where the electrical conductivity, the beam and plasma

return currents all have the Bennett profile, numerical results are obtained

for various system parameters such as f, Rp and Rb . Stability properties for

the sausage and hollowing modes are illustrated and discussed in great detail.

Finally, the growth rates of the axisymmetric modes are compared to those

of the hose instability and the conclusions are drawn in Section IV.

4
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II. Equilibrium state

" Let us consider the steady state of an infinitely long intense relativistic

self-pinched electron beam propagating in a resistive background plasma. The

beam dynamic properties are described by the Vlasov-Maxwell Theory. In the

following analysis, the cylindrical polar coordinates (r, e, z) are used with

the z-axis along the axis of symmetry. In steady state 0 /9t = 0) all the

beam equilibrium quantities are assumed to be azimuthally symmetric (a/D 8 = 0)q
and infinitely long and uniform in the axial direction (/az = 0). The beam

with net current I is assumed to satisfy the following relationship1
2

I/Ia = v/y = 1/17000 y <<1 (6)

where v is Budker's parameter representing the number of electrons per

classical electron radius length of the beamVb = Bc is the characteristic

beam electron axial velocity, y is the relativistic factor of the beam

particle and Ia is the Alfven-Lawson limiting current. The beam electrons

motion can be taken to be paraxial (P >> p 2 + p2) where P. denotes the

three components of the canonical angular momentum in i direction respectively.

The axial velocity is very large compared to the transverse velocity and is

considered to be a constant. In this regime, the equilibrium properties

of an electron beam can be described by a velocity distribution function of

the form

f = F (H- y mc 2 ) 6 (P 7)
b 0 z b (7)

where H is the total energy, P; is the axial canonical momentum. The single

5
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* . particle constants of motions in the equilibrium fields are given by

2 4 22
•H =(m c4 + cp 2 P

Pz 1 z " e A2 z r)/c

where Yb = (I 82) and 8 -vb/c are the standard relativistic quantities,

m and vb are the rest mass and the velocity of the beam electron, c is the

velocity of light in vacuum, y 0 and Pb are constants, A z(r) is the axial

component of vector potential for the equilibrium azimuthal self-magnetic

field. There is no externally applied magnetic field in the self-pinched

beam case so that P = 0. As a result, we can assume that f is not a
8 b

function of Pe as shown in (7). For the nonrotating beam, the vector

potential A (r) has only the axial component A (r) which can be determined

self-consistently from the z component of the Ampere's law

I (rBe) = -41 'e8nb(r) - np(r)] (8)

where nb(r) is the radial number density distribution of the electron beam,

0 n pCr) is not the actual number density but related to the plasma return

current by J p(r) = -esc n p(r). and by definition

6 B0 - -A (r) /r (9)

where in deriving Eq. (8) the paraxial beam approximation has been used. All

the electrons have the same axial velocity Vz = 8c and the transverse velocity

of the beam electron is small compared with the axial velocity. Eq. (8) can

6
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be used to calculate equilibrium azimuthal self-magnetic field self-consistently

*for any net current in the system. The relationship can be further related

to .the squared betatron frequency as

w 2 (r) E -eSB(r)ybmr

S(4: d r" mrb() - n p (10)

where w is the usual betatron frequency which characterizes the electron

oscillations.

If the beam and plasma return currents have the assumed Bennett profile

* . as in Eqs. (1) and (2), then Eq. (10) gives the value after integration

2 = 0.5 2 2 [l/(l+r2/ 2 f 2/R2

2where w ( 4lfnb(0)e./bm) is the beam plasma frequency at axis. It is
pb Ym

important to point out that w is a function of r except in the special
case of a flat-topped beam which has the constant value; i.e.,

22 2 2-

0.5 pb b f) (12)

This is the most important distinction between the rounded and flat-topped

beams, which gives,by no surprise, two complete different pictures in the

linear perturbation analysis. In short, the growth rate for axisymmetric

perturbations goes to infinity as Q - w for the flat-topped beam, because

6the pinch force is harmonic. All the beam electrons are able to resonate

with the wave at the same frequency. On the other hand, because the pinch

7
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force is anharmonic for the rounded beam, the electrons have a wide variety

of betatron frequencies which could damp the oscillation by phase mixing

mechanism. It could have only radially localized wave-particle resonance,

so that the growth rate is finite, which will become more obvious later.

As a matter of fact, if the squared betatron frequency is negative at

certain radius r, then the equilibrium fails, and the beam is blown apart.

Therefore, the radial confinement for the equilibrium state requires at

least w2(r) > 0 for any radius r inside the beam. This assures that the

magnetic focussing force is pinching the beam; otherwise, the beam will be

hollowing out and eventually will become an annular beam. Since we have

assumed in the beginning that the equilibrium beam current has the Bennett

profile, the minimum requirement for such equilibrium profile to exist needs
22 (r) > 0, which leads to

2 2 2 2f < (1 + r /R )l1 + r (13)
p

For the case of R > Rp, the fractional current neutralization f is bounded

by

4 fc1 , Rp< R, (14)

so that the beam current Jb(r) is peaked on axis. However, if Rb < Rp,

we obtain from Eq. (13) that

S< / , Rb < Rp3  (15)

8
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which is equivalent to feff 1. Note that in the limit where R b =Rp,

both Eqs. (14) and (15) yield the same condition, namely f < 1, which alsb

applies to the flat-topped beam case.

Next let us consider an electron beam with a "loss-cone" distribution

function

f 2
fb (nb/ 2 7Ybm) 6 (H- y0mc 6 (Pz Pb )  (16)

Integration of (16) in the P space, according to definition, leads to a density

distribution with flat-topped radial profile

nb(r) = nb for 0< r < Rb (17)b 0 for Rb< r

where nb(r) is the equilibrium beam density profile and Rb is defined as the

effective beam radius such that the number of electrons per unit length of

the beam has

SNb= 21f dr r nb(r) = 2 Sn b  (18)

* Note that the beam with flat-topped or Bennett profiles carry essentially the

same amount of total current, which is very important when we compare the

growth rates in both cases later on.

*@ In the energy group model a beam has been subdivided into groups of

particles with the same value of energy. By use of Eq. (7) the beam current

9
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profile can be expressed by definition as

b ( 211- mefc dU F (U + YmC(19);. . b r)= b b0(r

t0

where U = H - bmc2 is the effective transverse energy and -0 (r)- eBAz(r),

which appeares in the lower lImit of integration, is the minimum possible value

of U necessary for an electron at r. Thus, the beam can be considered as a

superposition of many components with different transverse energy

f Jb(r) =b dU F (U Ybmc0) J(r, U) (20)

" where each component has the equilibrium current density profile like

J0 (r, U) mec rR (U) (21)

0 r> R (U)

where R(U) is the maximum radius for an electron with energy U.

I1

10
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III. Stability Analysis

A. Linear Perturbations

In this section, we use the linearized Vlasov-Maxwell equations to

investigate the axisymmetric perturbations Cm = 0) where m is the azimuthal

harmonic number. We follow a normal mode approach by assuming that all the

axisymmetric perturbed quantities vary with z and t according to

60(it) = 60(r) exp [- jCWT + SZ/vz)] (22)

where the oscillating angular frequency w is assumed to be complex with

Im(w) > 0. The variables T and Q are defined by

" E t - z/vz

and Q w - kvz.

Where z and t are the axial position and time in the laboratory frame,

k is the axial wavenumber. Since all the beam electrons have nearly the same

axial velocity for the paraxial beam we consider here, it is more convenient

to use z and T as independent variables than the normal use of z and t. Thus

0 is the Doppler-shifted eigenfrequency seen by a beam electron, VbT is a

measure of the distance of a particular segment from the head of the beam.

"'4 If each beam segment is taken to oscillate at a fixed real frequency f then

the solution for complex w can be solved mathematically from the dispersion

relation. Physically Im(w) represents the growth rate of the wave as we move

backward from the head of the beam.

6
|1
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After Fourier decomposing the Maxwell equations, it is straight-

forward to show that for the case of long wave length (k Rb << 1) and low

frequency (w Rb << c) regime the eigenvalue equation for the perturbed field

60 has the form

1 r 3 4ri 4r
r r r 6 + - = - -- 6Jb(r) (23)

where a is the electrical conductivity of the plasma channel and the Vlasov

perturbed beam current contribution 6Jb(r) is defined as

4

Jb(r) = - e fvz 6fb (r, p) dp . (24)

where 6fb(r,p) is to be calculated from the integration of the linearized

Vlasov equation. According to the energy group model in Eq. (20) one can

express the perturbed beam current as

6JbCr) = 0dU F(U + Yb mc 2 ) 61J0 (rU). (25)

. By use of Eq. (19) one can derive the following relationship

FdO0 (R)/dR = (1/2Tybme c) Jb (R) /a R (26)
a0

Substituting Eq. (26) into Eq. (25) for change of variables, one can finally

write down the perturbed beam current below

'6

L ~12
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Jb(r ) = (1/2 rbmeBc) jR dR 6Jo(rR) (27)
r

If the plasma is a perfect conductor with infinite conductivity, all

the beam particles which initially lie on a magnetic field line should continue

to do so, and when they move the field must in some sense be carried along by

13the conductor. This is what Alflen expressed dramatically by saying that

the field and fluid were "frozen together". On the contrary, if the plasma

resistivity is significant, there is a phase lag between the beam oscillations

and the magnetic restoring force. This magnetic decay force prevents the

field line from following the beam oscillation which causes the instability to

grow. This driving force is well represented by the second term of Eq. (23).

The plasma return current influences the structure of the equilibrium beam

current and vise versa which will be discussed in a separate paper later

on. What we concern here is both currents with different radial profile

strongly effect the perturbed beam current which in turn goes to Eq. (23)

to determine the perturbed field. This is a major driving force for the

axisymmetric perturbations. We will concentrate to derive the most important

quantity, namely the perturbed beam current for the rounded beam.

Recall that for the loss-cone distribution as in Eq. (16) the corresponding

beam density profile is known to be flat-topped as shown in Eq. (17). To

solve the linearized Vlasov equation for the perturbed distribution function

* 6fb(x,p,t), one can do the orbit integration along the unperturbed particle

orbits, using the method of characteristic. From this standard Vlasov analysis

and using a variational approximation method, an approximate dispersion relation

can be obtained with the help of the trial eigenfunction of the form

n

( r )  Aj(r/Rb) O rS : (28)
j=0

* 13



NSWC TR 83-14

where n is the radial mode number. We will mainly be interested in the loyer

order number modes, namely n = 1 and 2 which are believed to be the most important

perturbations. For a = 1 which is identified as sausage mode, the eigenfunction

has the simple form

A 0 (1- r2 / 0) r <Rb

6l (r) = (29)
0 Rb -:5 r

which is a self-consistent solution to Eq. (23). The perturbed beam current

density as defined in Eq. (24) can be integrated with the help of eigenfunction

(29). This standard procedure but tedious operation gives the final result

for the axial componient of the perturbed current density like

4'w r (rr)(r

r) c 2  1 L (r -bCr) 6(r) (30)

as given in Eq. (32) of reference 5, where the plasma frequency wpbCr) is

defined for the flat-topped beam by

2 4n%(O)e 2/Ybm 0 < r < Rb

pb(r) 0 Rb < r

Similarly, let us consider next the radial mode number n = 2 which is known

* as hollowing mode. The name "hollowing" comes because the perturbation can

indeed reduce the beam density on axis, leading to a hollow beam profile. The

eigenfunction for n * 2 has been given by

1

14
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A (l-4r 2 /N+3r A : r )

6$2 (r) = (32)

0 Rb<r

After some tedious algebraic manipulations as demonstrated in reference (5),

the z component of the perturbed current density finally becomes

2 18 2)

( r ) =4 r r LO 2+ - (33)

b ~ ~~~ ~ ~ ~ 2 r 3 12 4

Eqs. (30) and (33) display explicitly the intrinsic singularity at 2 = 2

for wave-particle resonance. Moreover, it is further noticed that the hollowing

mode has another singularity at second harmonic betatron frequency too; i.e.,

2 = 4w2. For the same token, one can expect more singularities at higher

harmonic frequencies for higher order modes. Since is single-valued for the

flat-topped beam, every electron can be in resonance at the same frequency and

there is no limitation for the instability to grow. Therefore, it is almost

impossible for a flat-topped beam to propagate in any medium. Fortunately as we

shall see later because the beam is rounded, the nature is not going to be so

cruel to allow the instability to grow indefinitely.

For the obvious reason, we are going to consider the importance of the

influence of rounded radial density profile on axisymmetric perturbations. As

we mentioned earlier, the betatron frequency is a function of radius r as long

as the beam profile is rounded. It is very comon to have energy spread for a0

high energy beam even right after coming out of the accelerator. In nature,

it always represents an oscillation in energy about the equilibrium value.

As long as the energy exceeds the equilibrium energy, the electron will travel
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in orbit of larger radii, conversely, it will have smaller orbit at lower energy.

The electrons reside on each infinitesmal Ar can have approximately constant w

with which they resonate locally. Therefore, it is quite reasonable to extend

from the previous results for the flat-topped beam profile to include the

rounded beam profile effect. To investigate the sausage and hollowing modes for

the rounded beam, we have to derive first the perturbed beam current and the

3 associated eigenfunction for each mode which are described below separately.

1. Sausage mode (n = 1)

It is evident that a beam with rounded radial density profile can

be subdivided into groups of particles with the same value of energy, and in

addition, it can also be sliced into components with different radii. As pointed

out in Eq. (30), each energy group designated by R gives its perturbed axial

current density for the n = 1 sausage mode

6 R' = 2 2  2 1 a 6 dJ ~ b(R)/dR61o(r,R) - 2 ee cS2  T- r (34)
o r -a-r Q 2 _ w 2(R)

where SJ0 (r,R) should be a continuous function on 0 < r < R and vanish smoothly

at r = 0. Substituting Eq. (34) into Eq. (27) for summing up each individual

* component of the perturbed beam current, we have finally the result for the

axial perturbed beam current like

. 6Jb(r) - rR dJb (R)/dR

a Jr f R _d - (35)

The corresponding eigenfunction is given by

(~ '2
6 r= jr dR A0 (1 - r2/R ) dJb(R)/dR (36)

r
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Note that the intrinsic singularity at .2 w w8 in Eq. (30) for the flat-topped

case has been replaced by the integration over R space which eventually g'ives

a logarithmic singularity. Because of this, the growth rate is no longer

unbounded as in the flat-topped case. The natural oscillation frequency w8

varies for different electrons at different radius r, so that there is no

single frequency 0 for which the entire beam electrons can resonate with

the wave.

2. Hollowing mode (n = 2)

Accordingly, after considering the n = I sausage mode, likewise

we can easily derive, based on the same theory, the perturbed current density

and corresponding trial eigenfunction for the n = 2 hollowing mode. By use

of Eqs. (32) and (33), one can obtain the perturbed beam current which has the

axial component

2

= e81 ad~b()/dR18 w8
6Jbr) de 1 r R ( + 2 (37)
Jb~r -em r 3 r Jr 2 2 (1 _ 2 ) (37)

a a

and the corresponding eigenfunction for n = 2 becomes

W

60 2 (r) = dR A(l - 4r 2 /R 2 + 3r4/R4 )  b (R)/dR (38)

Obviously, if the beam current Jb(R) is a step function, then the above

derived results for the rounded beam go back to that for the flat-topped

beam case.

B. Dispersion relation

The derived eigenvalue equation (23) along with the perturbed beam

0 current (35) or (37) constitute the main result for axisymmetric perturbat. ,ns

17
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which can be summarized in the general form

1d r - so(r) r(r) + ± a(r)wi6o(r) = 0 (39)
rdr I+r

where j = I or 2 representing sausage and hollowing mode respectively, so that

the function r .(r) are defined by

1 4e fdR dJb(R)/dR (40)

rjr I+Ymc fd
r - (R)

and

(~r e ~ d~R)/dR 1W2 ()(41)
2(r 1 + 4-1 e__ dR 2 2 (1+ 2 2

S1 2_4(R) w2 4w(R)

It is worth while to point out that the eigenvalue problem represented by

Eq. (39) is independent of c(0), Jb(0) and S which enables us to use them as

a normalization factor for w and Q later in expressing the dispersion

relationship. Therefore, the dispersion relation can be expressed quite

generally as a functional relationship between S2 /W and wTd where the
pb d

magnetic decay time for the perturbed current is defined by Td- I1a(0)R/2c 2

For any rounded beam, Eq. (39) along with (40) or (41) can be used to

investigate the influence of the magnetic decay time and the plasma return

current on axisymmetric instabilities.

Ironically, Eq. (39) is a standard eigenvalue problem which can be

solved numerically. However, the method we adapted here enables us to

18
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study certain specific cases which exhibit explicitly more physics. The

dispersion relation that determines the complex eigenfrequency W can be

obtained easily by multiplying Eq. (39) by r 60(r) on both sides and

integrating over r from 0 to . This operation gives the following result

Go24 .7 i CO 24 2

fdr r [d6(r)/dr]2 r (r) = 2 r c(r)[6(r 2 (42)

c

The dependence of stability properties on the form of the conductivity

profile is of considerable interest. Since the right hand side of Eq. (42)

is not a function of i, the electrical conductivity a (r) only serves as a

weighted function in determining the value of w. In other words, the results

become free of restriction to beams propagating in a medium with any fixed

conductivity profile. For any growing wave, broadening the conductivity

channel (Rp > Rb.) will reduce w and has a stabilizing effect. A narrow

profile for o(r) (Rp< Rb) can substantially enhance the growth rate.

However, the equilibrium conductivity c(r) in reality is a response to beam

current and ambient plasma according to experimental condition and must

be allowed to change with respect to time and space. We will examine this

* important property in the near future; Eq. (42) can be solved numerically

to determine the stability properties for various system parameters of our

interest. However, if the beam current is a step function as in the

4 flat-topped beam case, Eq. (42) could lead to the following analytical

results. Substituting Eqs. (36) and (40) into Eq. (42), the dispersion

1
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relation for the m = 1 (sausage mode) becomes the simple form

42 W 2 22 (1 - 2f) (43)

3itd S1 2 -2w 2 62(l )
pb b

Similarly, by use of Eqs. (38), (41) and (42), the dispersion relation for the

n = 2 (hollowing mode) becomes

W 2 62 9W2 a2

i dWT 1 + Ib + pb b (l - (44)15 d S2 _ 2pbb 2  ( - f) 12 _ 8 Wp2Bb (1 - f)

Since the right hand side of Eqs. '43) and (44) are real always, we can expect

Re (w) = 0 all the time. So the instabilities for the flat-topped beam are

purely growing modes.

C. Numerical results

In the dispersion relations (42), we fix the real frequency 2 and

solve for the complex w numerically for various system parameters to determine

the wave properties. The radial dependence of the equilibrium beam current,

steady plasma current and conductivity of plasma channel are all assumed to

0 have the similar Bennett profile, but different radii are allowed in general

to express the complexity of the nature. In the following, the sausage and

hollowing modes will be investigated separately for various system parameters

* such as f, Rb and R . The dispersion relation will be expressed as ap
r 2 2 2

functional relationship between Q /Wpb8b  and WTd. The results between

rounded and flat-topped beams will be compared with physical interpretation.

20



NSWC TR 83-14

1. Sausage mode (n = 1)

Let us start considering the n = 1 sausage mode in the simplest

case where R = R i.e., the beam and plasma return currents have the same

Bennett profiles of equal radii so that f = Jp r)/Jb(r) is constant everywhere

for any radius r. According to Eq. (36), if the beam current J b(R) has the

Bennett profile as expressed in Eq. (1), then6 I(r) can be integrated easily

to obtain

60l (r) -- i /r2)/2 - In( + %/r )-0.5/ (l+%/r 2 ) (45)

which has the peak value at r = 0 and decreases monotonically -o zero at r =

Furthermore, the eigenfunction C ) and its first derivative with respect to

r (i.e., ai/3r) are independent of Q and f, so that the LHS of dispersion

relation (42) decides the stability criteria (stable or unstable) and the RHS

determines the strength of the instability. Using Eqs. (1) and (11), Eq. (40)

can be integrated to give the following analytical form

( r )- ' 2 2 2 I n 2 -- - - () -- J (( 46f
L1 + pbb2(1 - f) r (J

-~~ 2 lnb bl-~~

Rbb

* Note that r1(r) is complex with the definition for the complex logarithm

In Z = ln r + ie (47)

whr z-x i nr--x2  2 y2)/2 -1a-where z Sx + iy and T = 212, = tan(y/x). It becomes apparent

that the intrinsic singularity appears in Eq. (30) has been replaced by

the logarithmic singularity as explicitly shown in Eq. (46) as we mentioned
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before; for any fixed Q and f, the pole for logarithmic singularity can be

located from the limit lim tn(z) which gives
z-0

2 2
2 2(l -f)w bb 1R Rb (48)

It is because 6 1(r) obtined in (4S) is a strong monotone decreasing function,

with respect to increasing r, the integrant in the LHS of Eq. (42) is

almost zero near the logarithmic singularity Rs. In this regard, the

perturbation is contributed essentially from the integration interval

between 0 and Rs. Otherwise the LHS of Eq. (42) could approach infinity

which gives the unbounded growth rate.

The results of solving Eqs. (42) and (43) give the unstable regions as

shown in Fig. 1 for different values of f and E. The dashed and solid lines

are for the flat-topped and rounded beams respectively. As Eq. (43)

indicated, the unstable region for the flat-topped beam is bounded by two

straight lines in the f - £1 space. The value of f is restricted but taken

from -1 to 1 which covers completely the possible magnitude and direction of

the plasma return current in our case. The fact is for a single pulse

* electron beam, the plasma return current is known to be flowing in the

direction opposite to the beam current. However, the situation is not always

so simple. For example, as in the case where the beam is a continuous pulse

4train, the intermission between the pulse can cause the plasma return current

going in the opposite direction before the second pulse arrives. Anyway, the

unstable region for the rounded beam has been greatly reduced towards smaller

S1 in the upper half of f space. It is interesting to observe that the

instability exists even when 0 = 0 for both beams. For P = 0, Eq. (46)

can be simplified to give
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2 2 -1 -
] rlr) = -(1 + r/) " (1-)1 (49)

The real frequency Re(w) = 0 for the rounded beam also indicating that the

perturbations are purely growing modes, which can only be driven unstable by

certain amount of plasma return current, i.e., f + 0. As f increases, the

rounded beam becomes unstable first at f = 0.2 approximately while the flat-

topped beam remains stable until about f - 0.5. The growth rates Im(w d ) for

both beams are plotted against f in Figure 2 when Q - 0. The growth rates are

approaching infinity in the limit of f = 1 as one can expect. Because the

plasma return current cancels the beam current completely and the self-magnetic

pinched force no longer exists.

If 1 f 0, the growth rates versus Q2 for the flat-topped beam are shown

in Figure 3 for various values of fractional current neutralization f. The

growth rates could go to infinity no matter what value of f is chosen because

of the singularities which appear explicitly in Eq. (43). Again, the results of

Re(w) are always zero indicating that the perturbation are purely growing modes.

As to the results for rounded beam, the Im(CwTd) and Re(wTd) for various f are

shown versus Q2 in Figure 4(a) and (b) respectively. The growth rate is very

small when f = 0 where the sausage mode is driven by magnetic decay force alone.

For larger f, the growth rate increases dramatically which indicates the strong

influence of the plasma return current on the instability. In comparison, the

rounded beam does not have the feature of unbounded linear growth rate as in

the case for the flat-topped beam. This is an important quantity for the rounded

beam which is in favor of the beam propagation. As we know, if the beam is rounded,

then the betatron frequency for each electron is not unique. A wave with a given

real frequency 2 is resonant with portion of the beam electrons only, but not
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all of them, and the resonant electrons tend to be localized in particular

radial ranges of the beam; the oscillation frequency Re(w) as shown in

2
Figure 4(b) increases linearly with respect to 2 . The reason of being

that is very simple. As one can see in Eq. (42) the Re(w) comes from

Im(r1 (r)), and the imaginary part of r1 (r) is contributed only from the pole

at n = w according to Eq. (40) if the path of integration is chosen along the

Re(R) axis. By Cauchy's theorem a contour can be deformed without crossing the

singularity and then applying the theorem of residues for evaluating the

definite integral in Eq. (40), which gives eventually the same unique value of

ni. More specifically, the last term in Eq. (46) has a logarithmic singularity

from which a value of i is obtained according to Eq. (47). Clearly, the term

is linearly proportional to Q

The electrical conductivity of the plasma channel is a rather complicated

quantity characterized by a radial profile a(r) which determines the radial

distribution of the plasma return current. For simplicity, the electrical

conductivity a(r) and the plasma return current J p(r) are assumed to be steady

and have the Bennett profiles of equal radii; usually the plasma return

current flows at larger radius than the beam current at lower pressure because

* electric breakdown considerably spreads the conductivity channel. On the

contrary, the higher pressure forces the plasma return current concentrating

towards the beam axis. Therefore, without loss of generality, it is our interest

to consider these two extreme cases where R # R , i.e., the plasma return

current J (r) and beam current Jb(r) have the same Bennett profiles but
pb

different radii. When we do this, it is important to remember that the
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restriction on fractional current neutralization f as shown in Eq. (13) has to

be .enforced so that the equilibrium beam profile may exist. Furthermore,

uder'the condition of Rp + Rb, it is more convenient to use the effective

current neutralization feff as defined in Eq. (5) instead of f.

First, let us consider the case of Rp > Rb . Figure (5) demonstrates

the change of unstable region in the 0 - feff space due to different ratio of

Rp/Rb. As feff = 0, the unstable regions in Q domain are identical because

there is no plasma return current so that the ratio of Rp/Rb is irrelevant.

The electrical conductivity a(r) serves as a weighting function in determining

the growth rate of instability. For feff j 0, the instability growth region

shrinks in the S1 space but extends towards higher negative feff region as the

ratio of Rp/Rb increases. If feff < 0, the expanded plasma return current

flows in the same direction as the beam current does, which is contrary to

the concept used in the center-core transmission line where both currents flow

in the directions opposite to each other. No wonder it is more unstable for

larger ratio of Rp/Rb; as far as the growth rate is concerned, Figure (6) shows
p b 2the solution (WTd) versus Q for various feff when Rp = 2 R The growth rates

Im(WTd) increases as feff increases. Obviously, the growth rates and the

magnetic decay force Re(wTd) are smaller when comparing to those in Figure (4)

where Rp = Rb, which indicates that the increase of plasma current radius aids

stability for feff > 1.

Now let us consider the other extreme case where Rp < Rb , the results for

the unstable regions in 0 - feff space are shown in Figure (7) for different

ratio of Rp/Rb. The current neutralization f or effective current

neutralization feff has to be restricted according to Eq. (14) as a

minimum requirement for the radial confinement of the Bennett
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beam. As a result, there is a forbidden region for each case in Figure (7)
which fulfills the inequality feff< (R/R) in feff domain; e.g.,

eff > .25 when Rp = 0.5

As the plasma channel is narrower than the beam current, the unstable

region increases in f2 space for f eff> 0 but remains very stable for feff < 0.

As feff < 0, the self-magnetic pinched force has been enhanced somewhat by the

plasma return current which flows in the same direction as the beam current

so that the beam is very stable. The growth rates for Rp = 0.5 Rb are shown

in Figure (8) versus Q- for different feff The value of feff is chosen only

from 0 to 0.2 which corresponds that f increases from 0 to 0.8 because of the

restriction of Eq. (14). The growth rate can be very large even for small

value of feff" Finally, let us summarize the sausage mode calculations by

presenting the criteria for non-oscillatory growth region in the feff - Rp/Rb

- space which is shown in Figure (9). It is a purely growing mode where 0 = 0

and Re(w) = 0. As one can see, the sausage mode of this kind can only be

excited when feff > 0.

2. Hollowing mode

Next to the sausage mode, we want to consider and therefore do

the similar calculations for the hollowing mode (n = 2). For the simplest case

where Rp = Rb, the eigenfunction (38) has the form after integration

02 (r) 60 1(r) - 1.5(r/Rb)4 {0.75 + 0.25 X2
- l.S X

(50)

+ 1.5 In X + 0.5/X
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where 601(r) is equivalent to that shown in Eq. (45) and X 1 + Rb 2/r2 for

simplification. 602 (r) is also a monotone decreasing function which vanishes

as r - -. Likewise the expression for r2 (r) in Eq. (41) can be integrated

to give

9 ____2 2p 8b (1 - f)
r2 (r) rl(r) + J b ( In X2 1 4 W2 a2 2(1Q~~pb b i-f)2 n

2w2a2(1pf 8W 2bab (i - f)
+ In X - pb - In X - b (51)

where rI(r) denotes the same expression as in Eq. (46) and X = 1 + (Rb/r)2

also for simplification. As one can see in Eq. (51), the last two terms

contain two logarithmic singularities which have been formed due to the two

intrinsic singularities in Eq. (41). Substituting Eqs. (50) and (51) into

Eq. (42), we solve the dispersion relation numerically for various system

parameters. The results for the unstable regions in the n - f space are

illustrated in Fig. (10) for the flat-topped (dashed line) and rounded beam

(solid line) respectively. Note that the unstable region for the flat-topped

beam is greatly reduced by the influence of the rounded beam profile. From

Eq. (44) the growth rates for the flat-topped beam can be obtained easily

and shown in Fig. (11) for various value of current neutralization f.

Correspondingly, the Im(wTd ) and Re(wrd) for the rounded beam are plotted

against f2 for various f in Fig. (12). As one can immediately see, the

unbounded linear growth rates of the flat-topped beam are replaced by the

finite growth rates of the rounded beam. For the rounded beam, both Im(WTd)

and Re(WTd) increases as f increases. Note that the growth rate is very

large even when f = 0, the hollowing mode is driven unstable by the magnetic
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decay force along. It is further noticed that the peaks of the growth rates

can be found near the dashed l.ne as shown in Fig. (10) where the growth

rates for the flat-topped beam become infinity.

Now, we are ready to make a comparison between the sausage and hollowing

mode perturbations for the rounded beam. The growth rates as shown in Fig. (12)

for the hollowing mode are generally larger than that of the sausage mode

in Fig. (4). Fow example, when f = 0, the growth rate for the hollowing mode

is at least an order of 2 larger than the n = 1 sausage mode. It concludes

that the magnetic decay force plays an important role in exciting the hollowing

mode. As f increases, the ratio of the growth rate between the two modes

reduces gradually but still remains a factor of 10 approximately when f = 0.8.

As f < 0, the plasma return current has the stabilizing effect on both modes,

because it introduces additional self-magnetic pinched force for the beam.

The sausage modes are very stable but not for the hollowing modes because the

growth rates are very large even when f = 0, it certainly needs more plasma

return current flowing in the same direction to stabilize the beam. Generally

speaking, because of the huge growth rate of the hollowing mode, it seems

unlikely to have any sausage mode oscillations or enough time for them to grow

before the hollowing mode totally destroys the beam. Now, if one looks closely

in Figs. (4) and (12) again, one can find another big difference between the

results for the sausage and hollowing modes. Namely the maximum growth rate

for various f occurs near small value of 0 for the sausage mode but span to

very large values of Q except for those with high current neutralization

for the hollowing mode. Recall that the perturbation we are interested is in

the low frequency regime. The theory derived here is not necessarily correct

for high frequency perturbation. The beam electrons at various energy level

oscillate with various betatron frequency at different radius. From Eq. (11),

the betatron frequency wa(r) has the maximum value w.3(0) at the beam axis and
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decreases outwards outwards radially. Because of the natural oscillation of the

electrons, it is likely that the waves are excited primarily in the frequency

range of 0 < a < w (0). In this respect, although the growth rates of the

hollowing mode are very large in general, one has to be very careful about

the location of Q where the peaks of growth rates occur. One could argue

that it is almost impossible to have waves excited with very large frequency

a (e.g. a > wa(0) ) unless the perturbation is imposed externally. In Fig. (12)

the maximum growth rate occurs near the region where a > w8 (0) which is not

likely to happen in the nature. Nevertheless, the maximum growth rate for

f > 0.5 can be found in the region of a satisfying a < wa(O). It indicates

the possible excitation of the hollowing mode naturally when the current

neutralization is high. There has been some evidence from numerical simu-
8

lation results. For example, there is no sausage mode oscillation which

has even been observed experimentally for a self-pinched electron beam

propagating in the plasma. In addition, numerical simulation has indicated

that the electron beam becomes hollow if the current neutralization exceeds

0.5 or so.

It is straight forward to extend the calculation of hollowing mode to

consider the case where Rp i Rb, namely the beam and plasma return currents

have the similar Bennett profiles but unequal radii. First, for the case

Rp > Rb, Fig. (13) illustrates the various growth regions in the a - feff

space for different ratio of Rp/%. The beam seems more stable as the

ratio Rp/Rb increases, because the unstable region in a space have been

greatly reduced and concentrated towards higher Q domain. The growth rates

2versus 2 for Rp = 2Rb are shown in Fig. (14) for various feff" One can see

4 clearly that the growth rates are not a strong function of feff any more.

The reason is very simple, the hollowing mode perturbation is highly unstable

at f = 0 where the instability is driven simply by the magnetic decay force.
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The plasma return current tries to change the situation. However, under the

C condition of R > Rb, the amount of plasma return current overlapped

with the beam remains almost unchanged even for very large ratio of R/Rb.

On the other hand, for the second case where Rp < Rbp the unstable region

Sfr the hollowing mode perturbation as shown in Fig. (15) expands very much

in Q space as the ratio of R/Rb decreases first (e.g., Rp = 0.5 Rb), but

shrinks back for further decrease of Rp/Rb , a forbidden region in the feff

domain is drawn in Fig. (15) where the equilibrium Bennett beam fails to

exist. The growth rates for Rp = 0.5 Rb are plotted in Fig. (16) against
pR

1z for various feff* It is very clear that as feff increases the growth

I rate increases and can go to infinity (e.g., fff > 0.15 or f > 0.6

equivalently). For higher feff' this is a very unstable situation for the

beam because of the hollowing mode oscillations. Once the self-magnetic

pinched force is reduced near the axis by the presence of the plasma return

current, it is not difficult to understand why the beam electrons on the

beam axis can easily be expelled by the highly concentrating return current.

As long as the hollowing mode exists, the beam is going to become annular

eventually and expand continuously.

I
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IV. Conclusions

The equilibrium and stability of an intense relativistic self-pinched

electron beam propagating in a resistive plasma channel has been studied by

the Vlasov-Maxwell Theory. For the thermal equilibrium distribution function,

the steady and equilibrium electron beam without plasma return current has

the familiar Bennett radial density profile. When the plasma return current

is unavoidable in the system, the minimum requirement for the radial confinement

of the electron beam has been derived to restrict the degree of current

neutralization. An analytical theory of the axisymmetric perturbations including

the sausage (n = 1) and hollowing (n = 2) modes has been derived for an electron

beam with rounded radial current profile. Complete space-charge neutralization

and the paraxial beam electron motion have been assumed in the derivation.

In this paper, we have considered in particular a wave with real frequency

Q and Im(w) > 0 which has a certain wave amplitude at the beam head and grows

spatially backward along the beam. It is essentially a convective instability.

A numerical calculation has been made for the special case where the equilibrium

radial distribution of the beam and plasma return current, as well as

electrical conductivity of the plasma channel, have similar Bennett profiles

but different radii is also allowed. The results for axisymmetric perturbations

have shown that the important system parameters such as the effective current

neutralization, the radial profile of electrical conductivity of plasma channel,

beam and plasma return current are very sensitive in determining the stability

behavior of an electron beam. First, the results for the rounded beam have been

compared to that of the flat-topped beam. Generally speaking, there is no linear

bound on wave growth for the flat-topped beam. Fcr the rounded beam, the finite

growth rates for the hollowing mode are much larger than that of the sausage
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mode. In practice, it has been concluded that the naturally ex'Ated hollowing

mode oscillation is more likely to happen when the current neutralization

exceeds about 0.5.

It has been shown from the calculations the high-frequency hollowing mode
2 2 2

perturbations (i.e., Q /W 2 8b= 2) can be driven unstable by the magnetic decay

force alone where the phase lag between the transverse displacement of the

beam and the magnetic field drives the instability. The naturally occurring

plasma return current can flow either in the same or in the opposite direction

as that of the beam current. The one flows in the same direction introduces

additional self-magnetic pinched force which intends to stabilize the beam.

On the contrary, the one in the opposite direction reduces the pinched force

and thus enhances the perturbations. As Rp < Rb where a narrow conducting

channel confines the plasma return current, the highly concentrating return

current on beam axis is very dangerous for hollowing and destroying the beam.

Finally, it is of importance to compare the growth rates of the axisymmetric

modes to those of the hose instability. Generally, the growth rates for the

sausage mode are much smaller than that of the hose modes as obtained from

Figure 5 of Reference 2. This may well ev;plain why the sausage mode oscillation

has not been found experimentally or in numerical simulation. It is simply

because of the domination of the hose mode, the beam could Le expelled from

its channel even before the sausage mode starts to grow. However, the maximum

growth rates for the hollowing mode are larger in most cases or at least

comparable to those of the hose mode which addresses very clearly the importance

* of the hollowing mode oscillation in the beam propagation.
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FOR THE ROUNDED AND FLAT-TOPPED BEAMS
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FIGURE 4. GROWTH RATE Im (w) AND REAL EIGENFREQUENCY Re (w) VERSUS Q2FOR THE SAUSAGE
MODE OF A BENNETT BEAM WITH Rp Rb FOR VARIOUS f
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FIGURE 13. THE UNSTABLE REGION OF THE HOLLOWING MODE OF THE BENNETT BEAM IN THE
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